WO2015199150A1 - ガラス、および、それを用いた化学強化ガラス - Google Patents

ガラス、および、それを用いた化学強化ガラス Download PDF

Info

Publication number
WO2015199150A1
WO2015199150A1 PCT/JP2015/068250 JP2015068250W WO2015199150A1 WO 2015199150 A1 WO2015199150 A1 WO 2015199150A1 JP 2015068250 W JP2015068250 W JP 2015068250W WO 2015199150 A1 WO2015199150 A1 WO 2015199150A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
chemical strengthening
less
strengthening treatment
mgo
Prior art date
Application number
PCT/JP2015/068250
Other languages
English (en)
French (fr)
Inventor
順子 宮坂
盛輝 大原
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2016529641A priority Critical patent/JP6607356B2/ja
Priority to CN201580046117.6A priority patent/CN106660857B/zh
Priority to EP15811886.9A priority patent/EP3162772A4/en
Publication of WO2015199150A1 publication Critical patent/WO2015199150A1/ja
Priority to US15/385,428 priority patent/US10196304B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to a glass suitable for chemical strengthening treatment. Moreover, this invention relates to the chemically strengthened glass using said glass.
  • Display devices including display means such as liquid crystal members or LED members are widely used as small and / or portable display devices such as electronic notebooks, notebook personal computers, tablet PCs, and smartphones. .
  • Such a display device is provided with a cover glass on the surface in order to protect the display device.
  • Display devices particularly portable display devices, are relatively likely to be inadvertently dropped while being used or carried by a user. Therefore, even when the display device is dropped, there is a demand for a cover glass having high strength that can avoid breakage of the cover glass.
  • the cover glass is required to have high visibility with respect to the display image so as not to impair such a higher definition function.
  • strength of a cover glass it is possible to implement a chemical strengthening process with respect to a cover glass.
  • soda lime silicate glass has a low ion exchange rate, so the surface compressive stress layer depth (DOL) formed by chemical strengthening treatment has not been sufficient. Moreover, since the brittleness of glass was high, there was a problem that cracks were likely to occur during handling.
  • DOL surface compressive stress layer depth
  • the applicant of the present application provides the glass for chemical strengthening described in Patent Document 1 in order to solve the above problems. Since this chemically strengthening glass has a high ion exchange rate, the surface compressive stress layer depth (DOL) formed by the chemical strengthening treatment is sufficient. In addition, since the brittleness is low, cracks are unlikely to occur during handling.
  • DOL surface compressive stress layer depth
  • the present invention provides a glass for chemical strengthening treatment that satisfies low brittleness, low melt viscosity, and high chemical strengthening properties, and a chemically strengthened glass using the glass. For the purpose.
  • the present invention is expressed in mass% based on oxide, SiO 2 63-76, B 2 O 3 0-2, Al 2 O 3 2-10, MgO 2-12, CaO 0.1-8, Na 2 O 14.5-19, K 2 O 0-3, Containing Fe 2 O 3 0-0.5,
  • the total alkaline earth metal oxide content (RO) is 5-15, 15 ⁇ MgO / RO ⁇ RO ⁇ 3 is satisfied, Temperature T 2 which the glass viscosity becomes 10 2 dPa ⁇ s is 1600 ° C. or less, to provide a glass for chemical strengthening treatment.
  • MgO / RO is preferably 0.5 or more.
  • the present invention provides a chemically strengthened glass obtained by subjecting at least one main surface of the chemically strengthened glass of the present invention to a chemical strengthening treatment.
  • the chemically tempered glass of the present invention preferably has a surface compressive stress layer depth (DOL) of 8 ⁇ m or more and a surface compressive stress (CS) of 300 MPa or more on the main surface subjected to the chemical strengthening treatment.
  • DOL surface compressive stress layer depth
  • CS surface compressive stress
  • the chemically strengthened glass of the present invention has a surface compressive stress layer depth (DOL) of 20 ⁇ m or more and a surface compressive stress (CS) of 550 MPa or more on the main surface subjected to the chemical strengthening treatment. preferable.
  • DOL surface compressive stress layer depth
  • CS surface compressive stress
  • Chemical strengthening treatment for glass of the present invention since temperature T 2 which the glass viscosity becomes 10 2 dPa ⁇ s is lower and 1600 ° C. or less, good solubility of the glass, high productivity. Moreover, since the glass for chemical strengthening treatment of the present invention has low brittleness, it is difficult for cracks to occur during handling. Since the glass for chemical strengthening treatment of the present invention has a high ion exchange rate, the surface compressive stress layer depth (DOL) formed by the chemical strengthening treatment is sufficient and becomes 8 ⁇ m or more. Moreover, high surface compressive stress (CS) of 300 MPa or more is obtained by the chemical strengthening treatment.
  • DOL surface compressive stress layer depth
  • CS high surface compressive stress
  • FIG. 1 is a graph showing the relationship between MgO / RO and RO and the result of brittleness evaluation in the examples.
  • FIG. 2 is a graph showing the relationship between CS and DOL for the example.
  • composition range of each component of the glass for chemical strengthening treatment of the present invention will be described.
  • “%” showing content of each component of the glass for chemical strengthening processing of this invention means “mass%” of an oxide basis unless there is particular notice.
  • “mass%” and “wt%” are synonymous.
  • SiO 2 is known as a component that forms a network structure in the glass microstructure, and is a main component constituting the glass.
  • the content of SiO 2 is 63 to 76%, and the lower limit is preferably 64% or more, more preferably 65% or more, still more preferably 66% or more, still more preferably 67% or more, and particularly preferably 68% or more. is there. Further, the upper limit of the content of SiO 2 is preferably 75% or less, more preferably 74% or less, and still more preferably 73% or less. When the content of SiO 2 is 63% or more, it is advantageous in terms of stability and weather resistance as glass. On the other hand, when the content of SiO 2 is 76% or less, it is advantageous in terms of solubility and moldability.
  • the B 2 O 3 may be contained in a range of 2% or less because the solubility at high temperature becomes good and the increase in temperature T 2 at which the glass viscosity becomes 10 2 dPa ⁇ s can be prevented.
  • the B 2 O 3 content is preferably 0.5% or more, more preferably 1% or more.
  • the B 2 O 3 content is preferably 1% or less, more preferably 0.5% or less, and substantially no inclusion. preferable.
  • “substantially does not contain” means that it is not contained other than inevitable impurities mixed from raw materials or the like, that is, it is not intentionally contained. The same applies hereinafter.
  • Al 2 O 3 has an effect of improving ion exchange properties in the chemical strengthening treatment, and particularly has a large effect of improving surface compressive stress (CS). It is also known as a component that improves the weather resistance of glass.
  • the content of Al 2 O 3 is 2 to 10%, and the lower limit thereof is preferably 2.5% or more, more preferably 3% or more, further preferably 3.5% or more, further preferably 4% or more, More preferably, it is 4.5% or more, more preferably 5% or more, and particularly preferably 5.5% or more.
  • the upper limit of the content of Al 2 O 3 is preferably 9.5% or less, more preferably 9% or less, still more preferably 8.5% or less, still more preferably 8% or less, and further preferably 7.5. % Or less, particularly preferably 7% or less.
  • CS surface compressive stress
  • MgO is a component that stabilizes glass and is essential.
  • the content of MgO is 2 to 12%, and the lower limit thereof is preferably 2.5% or more, more preferably 3% or more, further preferably 3.5% or more, further preferably 4% or more, further preferably It is 4.5% or more, particularly preferably 5% or more.
  • the upper limit of the content of MgO is preferably 11.5% or less, more preferably 11% or less, still more preferably 10.5% or less, further preferably 10% or less, more preferably 9.5% or less, Particularly preferably, it is 9% or less.
  • the solubility at high temperature becomes good, and an increase in temperature T 2 at which the glass viscosity becomes 10 2 dPa ⁇ s can be prevented.
  • the content of MgO is 12% or less, the difficulty of devitrification is maintained, and a sufficient ion exchange rate is obtained.
  • CaO is a component that stabilizes glass and is essential.
  • the CaO content is 0.1 to 8%, and the lower limit is preferably 0.3% or more, more preferably 0.5% or more, and further preferably 1% or more. Further, the upper limit of the CaO content is preferably 6% or less, more preferably 5% or less, further preferably 2.5% or less, still more preferably 2% or less, and particularly preferably 1.5% or less.
  • the solubility at high temperature becomes good and devitrification hardly occurs.
  • the content of CaO is 8% or less, a sufficient ion exchange rate is obtained, and a chemically strengthened layer having a desired thickness is obtained.
  • the upper limit of the CaO content is preferably 5% or less, more preferably 3% or less, and even more preferably 1%. Or less, particularly preferably less than 1%.
  • Na 2 O is an essential component that forms a chemically strengthened layer by ion exchange. Moreover, it is a component which lowers the high temperature viscosity and devitrification temperature of glass, and improves the meltability and moldability of glass.
  • the content of Na 2 O is 14.5 to 19%, and the lower limit thereof is preferably 15% or more, more preferably 15.5% or more, and further preferably 16% or more. Further, the upper limit of the content of Na 2 O is preferably 18.5% or less, more preferably 18% or less, still more preferably 17.5% or less, and particularly preferably 17% or less.
  • a desired chemical strengthening treatment layer can be formed by ion exchange, and surface compressive stress (CS) is improved.
  • CS surface compressive stress
  • the content of Na 2 O is 19% or less, sufficient weather resistance is obtained, and the glass after chemical strengthening treatment can be made difficult to warp without excessively increasing CTE.
  • K 2 O has an effect of increasing the ion exchange rate and thickening the chemically strengthened layer, and therefore may be contained in a range of 3% or less. When the content is 3% or less, sufficient surface compressive stress can be obtained. Since K 2 O is a component that increases CTE, when it contains K 2 O, it is preferably 2.5% or less, more preferably 2% or less, even more preferably 1.5% or less, and even more preferably 1 % Or less, more preferably 0.5% or less, and it is particularly preferred not to contain substantially.
  • Li 2 O is a component that lowers the glass transition point Tg to facilitate stress relaxation and, as a result, makes it impossible to obtain a stable surface compressive stress layer. Even so, the content is preferably less than 2%, more preferably 1% or less, and particularly preferably less than 0.1%.
  • Fe 2 O 3 is not an essential component, but it is an extremely difficult component to reduce its content to zero because it exists in nature and everywhere in the production line. It is known that Fe 2 O 3 in the oxidized state causes yellow coloring, and FeO in the reduced state causes blue coloring, and the balance between the two is known to cause the glass to turn green. Yes.
  • the content of Fe 2 O 3 is 0.5% or less, when used as a cover glass after chemical strengthening treatment, the color of the member arranged under the cover glass also changes when viewed through the cover glass. do not do.
  • the Fe 2 O 3 content is preferably 0.3% or less, more preferably 0.2% or less.
  • the total content of alkaline earth metal oxides (MgO, CaO, SrO, BaO) (hereinafter referred to as “RO”) is 5 to 15%, and the lower limit thereof is preferably 5.5% or more. More preferably 6% or more, further preferably 6.5% or more, further preferably 7% or more, further preferably 7.5% or more, still more preferably 8% or more, still more preferably 8.5% or more, particularly preferably Is 9% or more. Further, the upper limit of RO is preferably 14.5% or less, more preferably 14% or less, further preferably 13.5% or less, further preferably 13% or less, further preferably 12.5% or less, particularly preferably. 12% or less.
  • the glass is low in brittleness, and cracks are unlikely to occur during handling. 15 ⁇ MgO / RO-RO (1)
  • the formula (1) is preferably 3.5 or more, more preferably 4 or more, still more preferably 4.5 or more, and particularly preferably 5 or more.
  • Formula (1) when the formula (1) is 10 or less, the solubility at a high temperature is improved, and the temperature T 2 is increased so that the glass viscosity becomes 10 2 dPa ⁇ s.
  • Formula (1) is more preferably 9 or less, still more preferably 8 or less, still more preferably 7 or less, still more preferably 6.5 or less, and particularly preferably 6 or less.
  • the ratio of MgO in the alkaline earth metal oxide (hereinafter referred to as “MgO / RO”) is 0.5 or more, preferably 0.55 or more, more preferably. Is 0.6 or more, more preferably 0.65 or more, more preferably 0.7 or more, more preferably 0.75 or more, further preferably 0.8 or more, more preferably 0.85 or more, and particularly preferably 0. .9 or more.
  • MgO / RO is 0.5 or more, the ion exchange rate can be increased and the chemical strengthening treatment layer can be thickened.
  • the glass for chemical strengthening treatment of the present invention consists essentially of the above components, but may contain other components as long as the object of the present invention is not impaired. Examples of other components include the following.
  • ZrO 2 is generally known to have an effect of increasing the surface compressive stress (CS) during the chemical strengthening treatment. However, even if ZrO 2 is contained, the effect is not great for the cost increase. Therefore, an arbitrary proportion of ZrO 2 can be contained as long as the cost permits. When ZrO 2 is contained, it is preferably 3% or less, more preferably 2.5% or less, further preferably 2% or less, further preferably 1.5% or less, further preferably 1% or less, particularly Preferably it is 0.5% or less.
  • the glass for chemical strengthening treatment of the present invention is, for example, a coloring component such as Co, Cr, Mn, Zn, Sr, Ba, Ti, Cl, F, SO 3 and the like as long as the effects of the invention are not lost. 3% or less in total.
  • the glass for chemical strengthening treatment of the present invention has a temperature T 2 at which the glass viscosity becomes 10 2 dPa ⁇ s is 1600 ° C. or less from the viewpoint of good solubility at high temperatures.
  • the temperature T 2 is preferably 1570 ° C. or lower, and more preferably 1550 ° C. or lower.
  • the temperature T 2 can be measured using a rotational viscometer or the like.
  • each raw material is prepared so as to have a target composition according to a conventional method, and this is heated to 1450 to 1650 ° C. and vitrified. Next, the molten glass is clarified and then formed into a predetermined shape. When the glass after chemical strengthening is used for applications such as a cover glass, it is formed into a plate glass.
  • the temperature T 4 at which the glass viscosity becomes 10 4 dPa ⁇ s is 1300 ° C. or less because it is suitable for float forming.
  • the temperature T 4 is more preferably 1200 ° C. or less, and further preferably 1150 ° C. or less. It notes that the temperature T 4 can be measured using a rotational viscometer or the like.
  • the glass for chemical strengthening treatment of the present invention preferably has a glass transition point (Tg) of 520 ° C. or higher.
  • Tg glass transition point
  • CS surface compressive stress
  • the glass for chemical strengthening treatment of the present invention preferably has a linear thermal expansion coefficient (CTE) of 100 ⁇ 10 ⁇ 7 / ° C. or less.
  • CTE linear thermal expansion coefficient
  • the CTE is preferably 97 ⁇ 10 ⁇ 7 / ° C. or lower, and more preferably 95 ⁇ 10 ⁇ 7 / ° C. or lower.
  • the chemically strengthened glass of the present invention has low brittleness and is unlikely to crack during handling. Specifically, when the brittleness evaluation is performed according to the procedure described in the examples described later, the load at which the crack occurrence rate is 50% or more is 0.1 kgf or more.
  • the glass for chemical strengthening treatment of the present invention preferably has a specific gravity measured at room temperature of 2.55 or less when the glass after chemical strengthening treatment is used for applications such as a cover glass.
  • the chemical strengthening glass of the present invention preferably has a specific gravity of 2.52 or less, and more preferably 2.50 or less.
  • the composition is changed from the commonly known soda lime silicate glass in equipment that continuously produces plate glass, such as the float method or the overflow down draw method, the commonly known soda lime silicate
  • the specific gravity is too far from 2.49, it is difficult to change the composition, so 2.40 or more is preferable, 2.42 or more is more preferable, and 2.44 or more is more preferable.
  • the glass for chemical strengthening treatment of the present invention has good chemical strengthening characteristics as shown below.
  • the chemical strengthening treatment is applied to the main surface of the glass for chemical strengthening treatment of the present invention, the surface of the main surface subjected to the chemical strengthening treatment of the glass after chemical strengthening treatment (hereinafter referred to as “chemical strengthening glass”).
  • the compressive stress layer depth (DOL) is preferably 8 ⁇ m or more in order to make it less susceptible to scratches that occur during processing.
  • DOL is 9 micrometers or more.
  • the chemically tempered glass of the present invention preferably has a DOL of 25 ⁇ m or less because of good cutting properties after chemical strengthening, more preferably 20 ⁇ m or less, and even more preferably 18 ⁇ m or less. DOL can be evaluated by a commercially available surface stress meter.
  • the surface compressive stress (CS) on the chemically strengthened main surface is 300 MPa or more, because the fracture probability of the glass when dropped or bent decreases. preferable.
  • CS is more preferably 500 MPa or more, further preferably 600 MPa or more, and particularly preferably 700 MPa or more.
  • CS can be evaluated by a commercially available surface stress meter.
  • DOL is 20 ⁇ m or more and CS is 550 MPa or more.
  • the chemical strengthening treatment in the present invention can be carried out by immersing the above-described glass for chemical strengthening treatment in a molten nitric acid salt at 400 ° C. to 465 ° C. for a predetermined time.
  • a molten nitric acid salt for example, potassium nitrate (KNO 3 ) is used as the nitric acid molten salt.
  • the time for the chemical strengthening treatment is not particularly limited, but is usually 1 hour to 12 hours. In order to obtain higher CS, it is preferable to use potassium nitrate having a low impurity concentration such as sodium nitrate.
  • the sodium nitrate concentration in potassium nitrate is preferably 3% by mass or less, and more preferably 1% by mass or less.
  • the sodium nitrate concentration in potassium nitrate is preferably 0.05% by mass or more, and 0.1% by mass or more. More preferably.
  • the time of the chemical strengthening treatment becomes longer, the CS decreases due to stress relaxation, and therefore the time of the chemical strengthening treatment is preferably 8 hours or less, and preferably 6 hours or less. If the chemical strengthening treatment time is less than 1 hour, the DOL is shallow and the desired strength may not be obtained. Preferably it is 1.5 hours or more, More preferably, it is 2 hours or more.
  • an additive may be appropriately added to potassium nitrate.
  • the chemical strengthening treatment is not necessarily applied to the entire surface of the glass for chemical strengthening treatment.
  • the target surface for example, one main surface of the glass for chemical strengthening processing .
  • Example 12 is a common soda lime silicate glass.
  • commonly used glass raw materials such as oxides, hydroxides, carbonates or nitrates are appropriately selected so as to have compositions represented by mass percentages in the columns from SiO 2 to K 2 O.
  • the glass was weighed to 900 g.
  • the mixed raw materials were put into a platinum crucible, put into a resistance heating electric furnace at 1600 ° C., melted for 4 hours, defoamed and homogenized.
  • the obtained molten glass was poured into a mold material, held at a temperature of Tg + 30 ° C. for 1 hour, and then cooled to room temperature at a rate of 1 ° C./min to obtain a glass block.
  • the glass block was cut and ground, and finally both surfaces were processed into mirror surfaces to obtain a plate-like glass (brittleness evaluation glass and chemical strengthening glass) having a size of 20 mm ⁇ 20 mm and a thickness of 1 mm.
  • Specific gravity, Tg, T 2 and T 4 were measured by the following methods. The results are shown in Tables 1 to 3.
  • “wt%” means “wt%” and is synonymous with “mass%”.
  • a Vickers indenter In an atmosphere of a temperature of 22 ° C. and a moisture dew point of ⁇ 1 ° C., a Vickers indenter is pushed into the surface of the glass sample with a predetermined load (0.05 kgf, 0.1 kgf, 0.2 kgf) for 15 seconds. Next, when the Vickers indenter is removed, diamond-shaped indentations are formed on the surface of the sample. After 15 seconds from the end of the indentation, the four corners of the indentation are observed to confirm the number of cracks generated in the corner.
  • a predetermined load 0.05 kgf, 0.1 kgf, 0.2 kgf
  • the indentation of the Vickers indenter and the confirmation of the number of cracks are repeated 10 times, the average number of cracks generated by one indentation of the Vickers indenter is calculated, and divided by 4 which is the number of corners.
  • the probability of occurrence of cracks is 50%.
  • the maximum load at which the crack occurrence rate is 50% or less is 0.1 kgf or more, the brittleness evaluation is ⁇ , and when the maximum load at which the crack occurrence rate is 50% or less is less than 0.1 kgf, the brittleness evaluation is ⁇ And
  • FIG. 1 is a graph showing the relationship between MgO / RO and RO and the results of brittleness evaluation in the examples. From FIG. 1, when RO ⁇ 15 ⁇ MgO / RO ⁇ 3 is satisfied (when 15 ⁇ MgO / RO ⁇ RO ⁇ 3 is satisfied), the brittleness evaluation is ⁇ , and RO ⁇ 15 ⁇ MgO / RO ⁇ 3 is not satisfied. (When 15 ⁇ MgO / RO-RO ⁇ 3 is not satisfied), it can be confirmed that the brittleness evaluation is x.
  • the chemical strengthening process was implemented with the following procedure with respect to the plate-shaped glass sample obtained by said procedure.
  • (Chemical strengthening treatment 1) The chemical strengthening treatment was performed by immersing the entire glass sample in a potassium nitrate molten salt at 425 ° C. for 150 minutes.
  • the sodium nitrate concentration in the potassium nitrate molten salt is 2.2%.
  • the DOL and CS of the glass sample after the chemical strengthening treatment were measured using a surface stress meter (manufactured by Orihara Seisakusho: FSM-6000).
  • FIG. 2 is a graph showing the relationship between CS and DOL for these glass samples.
  • FIG. 2 is an index of ion exchange rate and chemical strengthening characteristics at the time of chemical strengthening treatment. In the upper right part of FIG. 2, the ion exchange rate at the time of chemical strengthening treatment is faster and stress relaxation is less. Good chemical strengthening properties.
  • Example 10 The glass samples of the examples (Examples 1 to 9) all have a higher ion exchange rate during chemical strengthening treatment and less stress relaxation than the comparative examples (Examples 10 and 12). Good reinforcing properties.
  • is given when there is a chemical strengthening treatment temperature at which CS is 550 MPa or more and DOL is 20 ⁇ m or more, and “x” is not present. It can be confirmed that Example 10 where Tg is as low as 520 ° C. or less and stress is easily relaxed and Example 12 where Al 2 O 3 is 2% or less and the ion exchange rate is slow are x.
  • the glass samples of Examples are both temperature T 2 is 1600 ° C. or less. Further, the maximum load at which the crack occurrence rate is 50% or more is 0.1 kgf or more, and the brittleness evaluation is ⁇ . Moreover, DOL is 8 ⁇ m or more, CS is 300 MPa or more, the evaluation of the relationship between ion exchange rate and stress relaxation (chemical strengthening treatment 2) is ⁇ , and the chemical strengthening characteristics are good.
  • the glass sample of Example 10 having an MgO content of less than 2% by mass and an Na 2 O content of less than 14.5% by mass, and the glass sample of Example 11 having an Al 2 O 3 content of more than 10% by mass has a temperature T 2. Was over 1600 ° C.

Abstract

 低脆性、低溶解粘性、および、高い化学強化特性を満たす、化学強化処理用ガラス、および、それを用いた化学強化ガラスを提供することを目的とし、酸化物基準の質量%表示で、SiO 63~76、B 0~2、Al 2~10、MgO 2~12、CaO 0.1~8、NaO 14.5~19、KO 0~3、Fe 0~0.5を含有し、アルカリ土類金属酸化物の合計含有量(RO)が5~15であり、15×MgO/RO - RO ≧3を満たし、ガラス粘度が10dPa・sとなる温度Tが1600℃以下である、化学強化処理用ガラスを提供する。

Description

ガラス、および、それを用いた化学強化ガラス
 本発明は、化学強化処理に適したガラスに関する。
 また、本発明は、上記のガラスを用いた化学強化ガラスに関する。
 液晶部材またはLED部材などの表示手段を備える表示装置は、例えば、電子手帳、ノート型パーソナルコンピュータ、タブレットPC、およびスマートフォン等のような小型および/または携帯用の表示装置として、幅広く使用されている。このような表示装置には、該表示装置を保護するため、表面にカバーガラスが設置されている。
 表示装置、特に携帯用の表示装置は、ユーザが使用中や携帯中に不注意で落としてしまう可能性が比較的高い。そのため、表示装置を落とした場合であっても、カバーガラスの破損を回避することが可能な、高い強度を有するカバーガラスが要望されている。
 また、近年の表示装置の高精細化にともない、カバ-ガラスには、そのような高精細化機能を損なわないよう、表示画像に対して高い視認性を有することが求められている。
 ここで、カバーガラスの強度を高めるため、カバーガラスに対して化学強化処理を実施することが考えられる。
 これまで、一般的に知られているソーダライムシリケートガラスでは、イオン交換速度が遅いため、化学強化処理によって形成される、表面圧縮応力層深さ(DOL)が十分ではなかった。また、ガラスの脆性が高いため、取り扱いの際にクラックが生じやすいという問題があった。
 本願出願人は、上記の問題点を解決するため、特許文献1に記載の化学強化用ガラスを提供している。この化学強化用ガラスは、イオン交換速度が速いため、化学強化処理によって形成される、表面圧縮応力層深さ(DOL)が十分である。また、脆性が低いため、取り扱いの際にクラックが生じにくい。
 しかしながら、特許文献1に記載の化学強化用ガラスは、溶解粘性が高いため、生産性に劣る。また、ガラス転移点(Tg)が低いため、化学強化処理中に応力が緩和し、高い表面圧縮応力(CS)を得られないという問題があった。
日本国特開2012-184118号公報
 上記した従来技術の問題点を解決するため、本発明は、低脆性、低溶解粘性、および、高い化学強化特性を満たす、化学強化処理用ガラス、および、それを用いた化学強化ガラスを提供することを目的とする。
 本発明は、上記の目的を達成するため、酸化物基準の質量%表示で、
SiO     63~76、
      0~2、
Al     2~10、
MgO     2~12、
CaO     0.1~8、
NaO     14.5~19、
O      0~3、
Fe    0~0.5を含有し、
アルカリ土類金属酸化物の合計含有量(RO)が5~15であり、
15×MgO/RO - RO ≧3を満たし、
ガラス粘度が10dPa・sとなる温度Tが1600℃以下である、化学強化処理用ガラスを提供する。
 本発明の化学強化処理用ガラスにおいて、MgO/ROが0.5以上であることが好ましい。
 本発明の化学強化処理用ガラスにおいて、酸化物基準の質量%表示で、
SiO     63~73
Al    2~7
MgO     6~10
CaO     0.3~5
であることが好ましい。
 また、本発明は、本発明の化学強化処理用ガラスの少なくとも一方の主表面に化学強化処理を施した化学強化ガラスを提供する。
 本発明の化学強化ガラスは、前記化学強化処理が施された主表面において、表面圧縮応力層深さ(DOL)が8μm以上であり、表面圧縮応力(CS)が300MPa以上であることが好ましい。
 また、本発明の化学強化ガラスは、前記化学強化処理が施された主表面における、表面圧縮応力層深さ(DOL)が20μm以上であり、表面圧縮応力(CS)が550MPa以上であることが好ましい。
 本発明の化学強化処理用ガラスは、ガラス粘度が10dPa・sとなる温度Tが1600℃以下と低いため、ガラスの溶解性が良好であり、生産性が高い。
 また、本発明の化学強化処理用ガラスは、低脆性であるため、取り扱いの際にクラックが生じにくい。
 本発明の化学強化処理用ガラスは、イオン交換速度が速いため、化学強化処理によって形成される、表面圧縮応力層深さ(DOL)が十分であり、8μm以上となる。また、化学強化処理によって、300MPa以上という高い表面圧縮応力(CS)が得られる。
図1は、実施例における、MgO/ROと、ROと、の関係、および、脆性評価の結果と、の関係を示したグラフである。 図2は、実施例について、CSと、DOLと、の関係を示したグラフである。
 以下、本発明の化学強化処理用ガラス、および、化学強化ガラスについて説明する。
 本発明の化学強化処理用ガラスの各成分の組成範囲について説明する。
 なお、本発明の化学強化処理用ガラスの各成分の含有量を表す「%」は、特に断りのない限り、酸化物基準の「質量%」を意味する。また、本明細書において、「質量%」と「重量%」は同義である。
 SiOは、ガラス微細構造の中で網目構造を形成する成分として知られており、ガラスを構成する主要成分である。
 SiOの含有量は63~76%であり、その下限は64%以上が好ましく、より好ましくは65%以上、さらに好ましくは66%以上、さらに好ましくは67%以上、特に好ましくは68%以上である。また、SiOの含有量の上限は、75%以下が好ましく、より好ましくは74%以下、さらに好ましくは73%以下である。SiOの含有量が63%以上であると、ガラスとしての安定性や耐候性の点で優位である。一方、SiOの含有量が76%以下であると、溶解性および成形性の点で優位である。
 Bは、高温での溶解性が良好になり、ガラス粘度が10dPa・sとなる温度Tの上昇を防止できるため、2%以下の範囲で含有してもよい。上記の効果を得るためには、B含有量は0.5%以上が好ましく、より好ましくは1%以上である。溶解中のアルカリホウ酸化合物の揮散による組成変動を起こしにくくする場合には、B含有量は1%以下が好ましく、0.5%以下がより好ましく、実質的に含有しないことがさらに好ましい。なお、「実質的に含有しない」とは、原料等から混入する不可避的不純物以外には含有しないこと、すなわち、意図的に含有させないことを意味する。以下同じである。
 Alは、化学強化処理におけるイオン交換性を向上させる作用があり、特に表面圧縮応力(CS)を向上する作用が大きい。ガラスの耐候性を向上する成分としても知られている。
 Alの含有量は、2~10%であり、その下限は2.5%以上が好ましく、より好ましくは3%以上、さらに好ましくは3.5%以上、さらに好ましくは4%以上、さらに好ましくは4.5%以上、さらに好ましくは5%以上、特に好ましくは5.5%以上である。また、Alの含有量の上限は、9.5%以下が好ましく、より好ましくは9%以下、さらに好ましくは8.5%以下、さらに好ましくは8%以下、さらに好ましくは7.5%以下、特に好ましくは7%以下である。
 Alの含有量が2%以上であると、イオン交換により、所望の表面圧縮応力(CS)値が得られ、また、フロート成形時にボトム面からのスズの浸入を抑制する効果を発揮し、スズに接していたボトム面側を化学強化処理した際に、表面圧縮応力(CS)の低下を防止することができる。一方、Alの含有量が10%以下であると、高温での溶解性が良好になり、ガラス粘度が10dPa・sとなる温度Tの上昇を防止できる。
 MgOは、ガラスを安定化させる成分であり、必須である。
 MgOの含有量は、2~12%であり、その下限は2.5%以上が好ましく、より好ましくは3%以上、さらに好ましくは3.5%以上、さらに好ましくは4%以上、さらに好ましくは4.5%以上、特に好ましくは5%以上である。また、MgOの含有量の上限は、11.5%以下が好ましく、より好ましくは11%以下、さらに好ましくは10.5%以下、さらに好ましくは10%以下、さらに好ましくは9.5%以下、特に好ましくは9%以下である。MgOの含有量が2%以上であると、高温での溶解性が良好になり、ガラス粘度が10dPa・sとなる温度Tの上昇を防止できる。一方、MgOの含有量が12%以下であると、失透の起こりにくさが維持され、充分なイオン交換速度が得られる。
 CaOは、ガラスを安定化させる成分であり、必須である。
 CaOの含有量は、0.1~8%であり、その下限は0.3%以上が好ましく、より好ましくは0.5%以上、さらに好ましくは1%以上である。また、CaOの含有量の上限は、6%以下が好ましく、より好ましくは5%以下、さらに好ましくは2.5%以下、さらに好ましくは2%以下、特に好ましくは1.5%以下である。CaOの含有量が0.1%以上であると、高温での溶解性が良好になり、失透が起こり難くなる。一方、CaOの含有量が8%以下であると、充分なイオン交換速度が得られ、所望の厚さの化学強化処理層が得られる。特に線熱膨張係数(CTE)を低下させて化学強化処理で起こる反りを防ぎたい場合は、CaOの含有量の上限は、5%以下が好ましく、より好ましくは3%以下、さらに好ましくは1%以下であり、特に好ましくは1%未満である。
 NaOは、イオン交換により化学強化処理層を形成させる必須成分である。またガラスの高温粘性と失透温度を下げ、ガラスの溶解性、成形性を向上させる成分である。
 NaOの含有量は、14.5~19%であり、その下限は15%以上が好ましく、より好ましくは15.5%以上、さらに好ましくは16%以上である。また、NaOの含有量の上限は、18.5%以下が好ましく、より好ましくは18%以下、さらに好ましくは17.5%以下、特に好ましくは17%以下である。NaOの含有量が14.5%以上であると、イオン交換により所望の化学強化処理層を形成することができ、表面圧縮応力(CS)が向上する。一方、NaOの含有量が19%以下であると、充分な耐候性が得られ、CTEが上がりすぎずに化学強化処理後のガラスを反り難くすることができる。
 KOは、イオン交換速度を高め、化学強化処理層を厚くする効果があるため、3%以下の範囲で含有してもよい。3%以下であると、充分な表面圧縮応力が得られる。KOはCTEを増加させる成分であるため、KOを含有する場合は、好ましくは2.5%以下、より好ましくは2%以下、さらに好ましくは1.5%以下、さらに好ましくは1%以下、さらに好ましくは0.5%以下であり、実質的に含有しないことが特に好ましい。
 LiOは、ガラス転移点Tgを低くして応力緩和を起こりやすくし、その結果、安定した表面圧縮応力層を得られなくする成分であるので実質的に含有しないことが好ましく、含有する場合であってもその含有量は2%未満であることが好ましく、より好ましくは1%以下、特に好ましくは0.1%未満である。
 Feは、必須成分ではないが、自然界および生産ラインのあらゆるところに存在するため、その含有量をゼロにすることが極めて困難な成分である。酸化状態にあるFeが黄色の着色原因となり、還元状態にあるFeOが青色の着色原因となることが知られており、両者のバランスでガラスは、緑色に着色することが知られている。
 Fe含有量が0.5%以下であると、化学強化処理後に、カバーガラスとして使用した際、カバーガラスの下に配置される部材の色味がカバーガラスを通して見たときにも変化しない。Fe含有量は、好ましくは0.3%以下、より好ましくは0.2%以下である。
 アルカリ土類金属酸化物(MgO、CaO、SrO、BaO)の合計含有量(以下、「RO」と記載する。)は、5~15%であり、その下限は5.5%以上が好ましく、より好ましくは6%以上、さらに好ましくは6.5%以上、さらに好ましくは7%以上、さらに好ましくは7.5%以上、さらに好ましくは8%以上、さらに好ましくは8.5%以上、特に好ましくは9%以上である。また、ROの上限は、14.5%以下が好ましく、より好ましくは14%以下、さらに好ましくは13.5%以下、さらに好ましくは13%以下、さらに好ましくは12.5%以下、特に好ましくは12%以下である。
 ROが5%以上であると、ガラス粘度が10dPa・sとなる温度Tの上昇を防止できる。一方、ROが15%以下であると、失透温度の上昇を防止することができる。
 本発明の化学強化処理用ガラスは、ガラス成分中のMgOおよびROからなる下記式(1)が3以上であると、ガラスが低脆性であり、取り扱いの際にクラックが生じにくい。
 15×MgO/RO - RO  (1)
 なお、上記式(1)が3以上である場合に、ガラスが低脆性となることは後述する実施例でも示されている。
 本発明の化学強化処理用ガラスは、式(1)が3.5以上であることが好ましく、より好ましくは4以上、さらに好ましくは4.5以上、特に好ましくは5以上である。
 一方、本発明の化学強化処理用ガラスは、式(1)が10以下であることが、高温での溶解性が良好になり、ガラス粘度が10dPa・sとなる温度Tの上昇を防止できる点で好ましく、式(1)はより好ましくは9以下、さらに好ましくは8以下、さらに好ましくは7以下、さらに好ましくは6.5以下、特に好ましくは6以下である。
 本発明の化学強化処理用ガラスにおいて、アルカリ土類金属酸化物におけるMgOの割合(以下、「MgO/RO」と記載する。)は0.5以上であり、0.55以上が好ましく、より好ましくは0.6以上、さらに好ましくは0.65以上、さらに好ましくは0.7以上、さらに好ましくは0.75以上、さらに好ましくは0.8以上、さらに好ましくは0.85以上、特に好ましくは0.9以上である。
 MgO/ROが0.5以上であるとイオン交換速度を高め、化学強化処理層を厚くすることができる。
 本発明の化学強化処理用ガラスは本質的に上記成分からなるが、本発明の目的を損なわない範囲でその他の成分を含有してもよい。その他の成分としてはたとえば以下がある。
 ZrOは、一般に化学強化処理の際の表面圧縮応力(CS)を大きくする作用があることが知られている。ただし、ZrOを含有しても、コスト増加の割には、その効果は大きくない。従って、コストが許す範囲で、任意の割合のZrOを含有することができる。ZrOを含有する場合は、3%以下であることが好ましく、より好ましくは2.5%以下、さらに好ましくは2%以下、さらに好ましくは1.5%以下、さらに好ましくは1%以下、特に好ましくは0.5%以下である。
 この他、本発明の化学強化処理用ガラスは、発明の効果を失わない範囲で、例えば、Co、Cr、Mn等の着色成分や、Zn、Sr、Ba、Ti、Cl、F、SO等を、合計で3%以下含んでもよい。
 次に、本発明の化学強化処理用ガラスの特性について説明する。
 本発明の化学強化処理用ガラスは、高温での溶解性が良好であるという観点から、ガラス粘度が10dPa・sとなる温度Tが1600℃以下である。本発明の化学強化処理用ガラスは、温度Tが1570℃以下であることが好ましく、1550℃以下であることがより好ましい。
 なお、この温度Tは、回転式粘度計等を用いて測定することができる。
 本発明の化学強化処理用ガラスは、高温での溶解性が良好であるため、各種の製造方法が適用できる。たとえば、常法にしたがって目標組成になるように各原料を調合し、これを1450~1650℃に加熱しガラス化する。次いでこの熔融ガラスを清澄した後、所定の形状に成形する。化学強化処理後のガラスをカバーガラス等の用途に使用する場合は、板ガラスに成形する。
 本発明の化学強化処理用ガラスは、ガラス粘度が10dPa・sとなる温度Tが1300℃以下であることが、フロート成形に適しているため好ましい。本発明の化学強化処理用ガラスは、温度Tが1200℃以下であることがより好ましく、1150℃以下であることがさらに好ましい。
 なお、この温度Tは、回転式粘度計等を用いて測定することができる。
 本発明の化学強化処理用ガラスは、ガラス転移点(Tg)が、520℃以上であることが好ましい。Tgが520℃以上であると、化学強化処理時の応力緩和の抑制、熱反りの抑制等の点で有利となる。例えば、化学強化処理時の応力緩和が抑制されるため、高い表面圧縮応力(CS)を得ることができる。Tgが540℃以上であることがより好ましく、550℃以上であることがさらに好ましく、560℃以上であることが最も好ましい。
 本発明の化学強化処理用ガラスは、線熱膨張係数(CTE)が、100×10-7/℃以下であることが好ましい。CTEが100×10-7/℃以下であると、化学強化処理でのガラスの反りが起こりにくくなる。CTEが97×10-7/℃以下であることが好ましく、95×10-7/℃以下であることがより好ましい。
 本発明の化学強化処理用ガラスは、低脆性であり、取り扱いの際にクラックが生じにくい。具体的には、後述する実施例に記載の手順にしたがって、脆性評価を実施した際に、クラック発生率が50%以上となる荷重が0.1kgf以上である。
 本発明の化学強化処理用ガラスは、室温で測定される比重が2.55以下であることが、化学強化処理後のガラスをカバーガラス等の用途に使用する上で好ましい。
 本発明の化学強化処理用ガラスは、比重が2.52以下であることがより好ましく、2.50以下であることがさらに好ましい。フロート法やオーバフローダウンドロー法などのように連続的に板ガラスを製造する設備で、一般的に知られているソーダライムシリケートガラスから組成を変更する場合、一般的に知られているソーダライムシリケートの比重である2.49から離れすぎると組成変更がしにくくなるため、2.40以上が好ましく、2.42以上がより好ましく、2.44以上がさらに好ましい。
 本発明の化学強化処理用ガラスは、以下に示すように化学強化特性が良好である。
 本発明の化学強化処理用ガラスの主表面に化学強化処理を施した場合に、化学強化処理後のガラス(以下、「化学強化ガラス」という。)の化学強化処理が施された主表面における表面圧縮応力層深さ(DOL)が8μm以上であることが、加工時に生じる傷の影響を受けにくくするために好ましい。本発明の化学強化ガラスは、DOLが9μm以上であることがより好ましい。
 一方、本発明の化学強化ガラスは、DOLが25μm以下であることが、化学強化後の切断性が良好であるため好ましく、20μm以下であることがより好ましく、18μm以下であることがさらに好ましい。
 なお、DOLは、市販の表面応力計により評価することができる。
 また、本発明の化学強化ガラスは、化学強化処理された主表面における表面圧縮応力(CS)が、300MPa以上であることが、落下したとき、もしくは曲げたときのガラスの破壊確率が低下するため好ましい。本発明の化学強化ガラスは、CSが、500MPa以上であることがより好ましく、600MPa以上であることがさらに好ましく、700MPa以上であることが特に好ましい。
 なお、CSは、市販の表面応力計により評価することができる。
 また、本発明の化学強化ガラスの用途が、モバイル機器用のカバーガラスの場合、DOLが20μm以上であり、CSが550MPa以上であることが好ましい。
 本発明における化学強化処理は、上述した化学強化処理用ガラスを、400℃~465℃の硝酸溶融塩中に所定時間浸漬することにより実施できる。硝酸溶融塩には、例えば、硝酸カリウム(KNO)が使用される。化学強化処理の時間は、特に限られないが、通常の場合、1時間~12時間程度実施される。より高いCSを得るためには、硝酸ナトリウムなどの不純物濃度が低い硝酸カリウムを用いることが好ましい。
 具体的には、硝酸カリウム中の硝酸ナトリウム濃度は3質量%以下であることが好ましく、1質量%以下であることがより好ましい。ただし、硝酸ナトリウム濃度が低すぎると、化学強化のバッチ間でCSに差が生じやすいため、硝酸カリウム中の硝酸ナトリウム濃度は0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。
 また、化学強化処理の時間が長くなると、応力緩和によりCSが低下するため、化学強化処理の時間は8時間以下が好ましく、6時間以下が好ましい。化学強化処理の時間が1時間未満だと、DOLが浅く所望の強度が得られにくい恐れがある。好ましくは1.5時間以上、より好ましくは2時間以上である。なお、化学強化を促進する目的、品質を改善する目的で、硝酸カリウム中に添加物を適宜加えてもよい。
 化学強化処理は、必ずしも化学強化処理用ガラスの全面に適用する必要はない。例えば、化学強化処理用ガラスのいくつかの面(例えば5つの面)に対してマスク処理をして、化学強化処理を実施することにより、化学強化処理用ガラスの対象面(例えば一つの主表面)にのみ、化学強化処理を施してもよい。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定されない。なお、例1~9は実施例であり、例10~例26は比較例である。例12は一般的なソーダライムシリケートガラスである。
 例1~26について、SiOからKOまでの欄に質量百分率表示で示す組成になるように、酸化物、水酸化物、炭酸塩または硝酸塩等一般に使用されているガラス原料を適宜選択し、ガラスとして900gとなるように秤量した。ついで、混合した原料を白金製るつぼに入れ、1600℃の抵抗加熱式電気炉に投入し、4時間溶融し、脱泡、均質化した。
 得られた溶融ガラスを型材に流し込み、Tg+30℃の温度で1時間保持した後、1℃/分の速度で室温まで冷却し、ガラスブロックを得た。このガラスブロックを切断、研削し、最後に両面を鏡面に加工して、サイズが20mm×20mm、厚みが1mmである板状ガラス(脆性評価用ガラス、及び、化学強化用ガラス)を得た。比重、Tg、T、Tを以下の方法で測定した。その結果を表1~3に示す。なお、表中、「wt%」とは「重量%」であり、「質量%」と同義である。
 比重:アルキメデス法
 ガラス転移点Tg:TMA法
 CTE:JIS R 1618:2002に基づき、ガラス転移点(Tg)の測定と同時に熱膨張計(ブルカー・エイエックスエス社製、TD5000SA)を用いて5℃/分の昇温速度で測定し50~350℃の平均線熱膨張係数を求めた。
 温度Tおよび温度T:ガラスサンプルを溶解させ、回転式粘度計を用いて、溶融ガラスの粘度を測定する。粘度が10dPa・sとなる温度をT(℃)とし、粘度が10dPa・sとなる温度をT(℃)とした。
 脆性評価:温度22℃、水分露点-1℃の雰囲気下において、ガラスサンプルの表面に、所定の荷重(0.05kgf、0.1kgf、0.2kgf)でビッカース圧子を15秒間押し込む。次に、ビッカース圧子を取り除くと、サンプルの表面には、菱形状の圧痕が形成される。押し込みが終了してから15秒後に、この圧痕の4箇所のコーナー部を観察し、コーナー部に発生したクラックの本数を確認する。上記ビッカース圧子の押し込み、及び、クラック本数の確認を10回繰り返して、1回のビッカース圧子の押し込みにより発生するクラックの平均本数を算出し、コーナーの個数である4で除する。1回の押し込みにより発生したクラックの平均本数が2本の場合、クラックの発生確率が50%とする。クラック発生率が50%以下となる最大の荷重が0.1kgf以上の場合、脆性評価を○とし、クラック発生率が50%以下となる最大の荷重が0.1kgf未満の場合、脆性評価を×とする。
 図1は、実施例における、MgO/ROと、ROと、の関係、および、脆性評価の結果と、の関係を示したグラフである。図1から、RO ≦ 15×MgO/RO - 3を満たす場合(15×MgO/RO - RO ≧ 3を満たす場合)、脆性評価が○となり、RO ≦ 15×MgO/RO - 3を満たさない場合(15×MgO/RO - RO ≧ 3を満たさない場合)、脆性評価が×となることが確認できる。
 上記の手順で得られた板状ガラスサンプルに対して、下記手順で化学強化処理を実施した。
(化学強化処理1)
 化学強化処理は、425℃の硝酸カリウム溶融塩中に、ガラスサンプル全体を150分間浸漬することにより実施した。硝酸カリウム溶融塩中の硝酸ナトリウム濃度は、2.2%である。
 化学強化処理後のガラスサンプルのDOLおよびCSを、表面応力計(折原製作所社製:FSM-6000)を用いて測定した。
(化学強化処理2)
化学強化処理におけるイオン交換速度と応力緩和の関係評価:
 例1~10、例12~13のガラスサンプルについては、375℃から450℃の間の温度の100%の硝酸カリウム溶融塩中に、ガラスサンプル全体を6時間浸漬することにより化学強化処理を実施し、化学強化処理後のガラスサンプルのDOLおよびCSを測定した。図2は、これらのガラスサンプルについて、CSと、DOLと、の関係を示したグラフである。図2は、化学強化処理時のイオン交換速度、および、化学強化特性の指標であり、図2中、右上になるほど、化学強化処理時のイオン交換速度が速く、また、応力緩和が少ないため、化学強化特性が良好である。実施例(例1~例9)のガラスサンプルは、いずれも、比較例(例10、例12)に比べて、化学強化処理時のイオン交換速度が速く、また、応力緩和が少ないため、化学強化特性が良好である。化学強化処理温度を調整することにより、CSが550MPa以上、DOLが20μm以上となる化学強化処理温度が存在する場合○とし、存在しない場合×とする。Tgが520℃以下と低く、応力緩和しやすい例10と、Alが2%以下でイオン交換速度が遅い例12は×となることが確認できる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表から明らかなように、実施例(例1~例9)のガラスサンプルは、いずれも、温度Tが1600℃以下である。また、クラック発生率が50%以上となる最大の荷重が0.1kgf以上であり、脆性評価が○である。また、DOLが8μm以上、CSが300MPa以上、イオン交換速度と応力緩和の関係評価(化学強化処理2)が○であり、化学強化特性が良好である。
 MgO含有量が2質量%未満、NaO含有量が14.5質量%未満の例10のガラスサンプル、Al含有量が10質量%超の例11のガラスサンプルは、温度Tが1600℃超であった。15×MgO/RO - RO ≧3を満たさない例12~例26のガラスサンプルは、いずれも脆性評価が×であった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2014年6月27日付で出願された日本特許出願(特願2014-132551)に基づいており、その全体が引用により援用される。

Claims (6)

  1.  酸化物基準の質量%表示で、
    SiO     63~76、
         0~2、
    Al    2~10、
    MgO     2~12、
    CaO     0.1~8、
    NaO     14.5~19、
    O      0~3、
    Fe    0~0.5を含有し、
    アルカリ土類金属酸化物の合計含有量(RO)が5~15であり、
    15×MgO/RO - RO ≧3を満たし、
    ガラス粘度が10dPa・sとなる温度Tが1600℃以下である、化学強化処理用ガラス。
  2.  MgO/ROが0.5以上である請求項1に記載の化学強化処理用ガラス。
  3.  酸化物基準の質量%表示で、
    SiO     63~73
    Al    2~7
    MgO     6~10
    CaO     0.3~5
    である、請求項1または2に記載の化学強化処理用ガラス。
  4.  請求項1~3のいずれか1項に記載の化学強化処理用ガラスの少なくとも一方の主表面に化学強化処理を施した化学強化ガラス。
  5.  前記化学強化処理が施された主表面において、表面圧縮応力層深さ(DOL)が8μm以上であり、表面圧縮応力(CS)が300MPa以上である、請求項4に記載の化学強化ガラス。
  6.  前記化学強化処理が施された主表面における、表面圧縮応力層深さ(DOL)が20μm以上であり、表面圧縮応力(CS)が550MPa以上である、請求項4または5に記載の化学強化ガラス。
PCT/JP2015/068250 2014-06-27 2015-06-24 ガラス、および、それを用いた化学強化ガラス WO2015199150A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016529641A JP6607356B2 (ja) 2014-06-27 2015-06-24 ガラス、および、それを用いた化学強化ガラス
CN201580046117.6A CN106660857B (zh) 2014-06-27 2015-06-24 玻璃和使用了该玻璃的化学强化玻璃
EP15811886.9A EP3162772A4 (en) 2014-06-27 2015-06-24 Glass and chemically toughened glass using same
US15/385,428 US10196304B2 (en) 2014-06-27 2016-12-20 Glass and chemically toughened glass using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014132551 2014-06-27
JP2014-132551 2014-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/385,428 Continuation US10196304B2 (en) 2014-06-27 2016-12-20 Glass and chemically toughened glass using same

Publications (1)

Publication Number Publication Date
WO2015199150A1 true WO2015199150A1 (ja) 2015-12-30

Family

ID=54938228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068250 WO2015199150A1 (ja) 2014-06-27 2015-06-24 ガラス、および、それを用いた化学強化ガラス

Country Status (6)

Country Link
US (1) US10196304B2 (ja)
EP (1) EP3162772A4 (ja)
JP (1) JP6607356B2 (ja)
CN (1) CN106660857B (ja)
TW (1) TWI653204B (ja)
WO (1) WO2015199150A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180111872A1 (en) * 2015-04-21 2018-04-26 Agc Glass Europe Chemically temperable glass sheet
CN109219583A (zh) * 2016-06-03 2019-01-15 Agc株式会社 化学强化用玻璃和化学强化玻璃
WO2022004808A1 (ja) * 2020-06-30 2022-01-06 日本板硝子株式会社 化学強化用ガラス組成物、及び化学強化ガラス物品
WO2022004809A1 (ja) * 2020-06-30 2022-01-06 日本板硝子株式会社 化学強化用ガラス組成物、及び化学強化ガラス物品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660856A (zh) * 2014-07-18 2017-05-10 旭硝子株式会社 防眩处理用玻璃和使用其的防眩玻璃
DE102018116483A1 (de) 2018-07-06 2020-01-09 Schott Ag Chemisch vorspannbare Gläser mit hoher chemischer Resistenz und Rißbeständigkeit
DE102019117498B4 (de) 2018-07-06 2024-03-28 Schott Ag Gläser mit verbesserter Ionenaustauschbarkeit
DE102018116464A1 (de) 2018-07-06 2020-01-09 Schott Ag Chemisch vorspannbare, korrosionsstabile Gläser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193887A (ja) * 2012-03-15 2013-09-30 Nippon Sheet Glass Co Ltd ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、ディスプレイ用のカバーガラスおよび強化ガラス物品の製造方法
JP2014506553A (ja) * 2011-01-28 2014-03-17 コーナーストーン マテリアルズ テクノロジー シーオー.、エルティーディー 高強度アルカリアルミノけい酸ガラス

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2335423A (en) * 1998-03-20 1999-09-22 Pilkington Plc Chemically toughenable glass
US7572746B2 (en) * 2003-09-09 2009-08-11 Kabushiki Kaisha Ohara Optical glass
JP5467490B2 (ja) * 2007-08-03 2014-04-09 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
JP5699434B2 (ja) * 2009-04-02 2015-04-08 旭硝子株式会社 情報記録媒体基板用ガラス、情報記録媒体用ガラス基板および磁気ディスク
JP2012184118A (ja) 2009-07-16 2012-09-27 Asahi Glass Co Ltd ディスプレイ装置用ガラス板
JP5621239B2 (ja) * 2009-10-20 2014-11-12 旭硝子株式会社 ディスプレイ装置用ガラス板、ディスプレイ装置用板ガラスおよびその製造方法
EP2578550A4 (en) * 2010-06-03 2015-02-18 Asahi Glass Co Ltd GLASS SUBSTRATE AND METHOD OF PRODUCING THE SAME
US20120052275A1 (en) * 2010-08-30 2012-03-01 Avanstrate Inc. Glass substrate, chemically strengthened glass substrate and cover glass, and method for manufactruing the same
JP5880439B2 (ja) * 2010-10-27 2016-03-09 旭硝子株式会社 ガラス板およびその製造方法
JP5834793B2 (ja) * 2010-12-24 2015-12-24 旭硝子株式会社 化学強化ガラスの製造方法
US9701580B2 (en) * 2012-02-29 2017-07-11 Corning Incorporated Aluminosilicate glasses for ion exchange
WO2014042175A1 (ja) * 2012-09-14 2014-03-20 旭硝子株式会社 化学強化用ガラスおよび化学強化ガラス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506553A (ja) * 2011-01-28 2014-03-17 コーナーストーン マテリアルズ テクノロジー シーオー.、エルティーディー 高強度アルカリアルミノけい酸ガラス
JP2013193887A (ja) * 2012-03-15 2013-09-30 Nippon Sheet Glass Co Ltd ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、ディスプレイ用のカバーガラスおよび強化ガラス物品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3162772A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180111872A1 (en) * 2015-04-21 2018-04-26 Agc Glass Europe Chemically temperable glass sheet
JP2018513828A (ja) * 2015-04-21 2018-05-31 エージーシー グラス ユーロップAgc Glass Europe 化学強化可能なガラス板
US10457585B2 (en) * 2015-04-21 2019-10-29 Agc Glass Europe Chemically temperable glass sheet
JP2021120344A (ja) * 2015-04-21 2021-08-19 エージーシー グラス ユーロップAgc Glass Europe 化学強化可能なガラス板
CN109219583A (zh) * 2016-06-03 2019-01-15 Agc株式会社 化学强化用玻璃和化学强化玻璃
WO2022004808A1 (ja) * 2020-06-30 2022-01-06 日本板硝子株式会社 化学強化用ガラス組成物、及び化学強化ガラス物品
WO2022004809A1 (ja) * 2020-06-30 2022-01-06 日本板硝子株式会社 化学強化用ガラス組成物、及び化学強化ガラス物品

Also Published As

Publication number Publication date
US10196304B2 (en) 2019-02-05
TWI653204B (zh) 2019-03-11
CN106660857B (zh) 2019-05-17
JPWO2015199150A1 (ja) 2017-04-20
CN106660857A (zh) 2017-05-10
TW201604164A (zh) 2016-02-01
US20170121220A1 (en) 2017-05-04
JP6607356B2 (ja) 2019-11-20
EP3162772A4 (en) 2018-01-10
EP3162772A1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
JP6607356B2 (ja) ガラス、および、それを用いた化学強化ガラス
CN110546115B (zh) 化学强化玻璃以及化学强化用玻璃
CN106966586B (zh) 化学强化用玻璃和化学强化玻璃以及化学强化玻璃的制造方法
CN106470951B (zh) 化学强化用玻璃和化学强化玻璃
US8691711B2 (en) Glass for display device and glass plate
US8715829B2 (en) Glass plate for display devices
JP6137390B2 (ja) 化学強化用ガラス及び化学強化ガラス並びに化学強化ガラスの製造方法
JP5764084B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、ディスプレイ用のカバーガラスおよび強化ガラス物品の製造方法
CN104114511A (zh) 强化玻璃基板的制造方法及强化玻璃基板
WO2012077796A1 (ja) 化学強化ガラスの製造方法
JPWO2015088006A1 (ja) 化学強化用ガラス及び化学強化処理されたガラス
WO2016136539A1 (ja) ガラス、及び化学強化ガラス並びに化学強化ガラスの製造方法
TWI724002B (zh) 強化玻璃
KR20130127956A (ko) 알칼리 유리 및 그 제조 방법
KR20130127957A (ko) 알칼리 유리 및 그 제조 방법
TW202348573A (zh) 經強化之無鋰之鋁硼矽酸鹽玻璃
WO2019017278A1 (ja) 化学強化用ガラスおよび化学強化ガラス
KR20130127954A (ko) 알칼리 유리 및 그 제조 방법
KR20130127953A (ko) 알칼리 유리 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529641

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015811886

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015811886

Country of ref document: EP