WO2022004809A1 - 化学強化用ガラス組成物、及び化学強化ガラス物品 - Google Patents

化学強化用ガラス組成物、及び化学強化ガラス物品 Download PDF

Info

Publication number
WO2022004809A1
WO2022004809A1 PCT/JP2021/024819 JP2021024819W WO2022004809A1 WO 2022004809 A1 WO2022004809 A1 WO 2022004809A1 JP 2021024819 W JP2021024819 W JP 2021024819W WO 2022004809 A1 WO2022004809 A1 WO 2022004809A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass composition
glass
chemically strengthened
less
compressive stress
Prior art date
Application number
PCT/JP2021/024819
Other languages
English (en)
French (fr)
Inventor
晃 北山
淳史 倉知
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to KR1020227039800A priority Critical patent/KR20230031195A/ko
Priority to US18/001,665 priority patent/US20230373844A1/en
Priority to CN202180031836.6A priority patent/CN115485248A/zh
Priority to EP21832585.0A priority patent/EP4151606A1/en
Publication of WO2022004809A1 publication Critical patent/WO2022004809A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the present invention relates to a glass composition suitable for chemical strengthening, particularly a glass composition suitable for a cover glass of a display.
  • the present invention also relates to a chemically strengthened glass article composed of the glass composition, a mobile information device (smartphone, tablet, etc.) including the glass article, a digital signage, an in-vehicle display, and a protective case for the mobile information device. ..
  • Display cover glasses continue to be required to have high strength against bending and impact.
  • the known aluminosilicate glass composition has a high viscosity of the glass melt, a high temperature exceeding 1600 ° C. is required at the time of melting, and it is difficult to adopt a float manufacturing method suitable for mass production of glass plates. ..
  • the viscosity of the glass melt is high, it is difficult to homogenize the glass melt, and it is difficult to increase the yield as a glass article. A large amount of expensive raw materials are required as a component of glass.
  • Patent Document 1 discloses a glass composition for chemical strengthening that can be melted at a temperature of less than 1600 ° C.
  • the surface compressive stress is not so large when the compressive stress layer depth is large, and the compressive stress layer depth is not so large when the surface compressive stress is large.
  • Alkali resistance is also an important property for chemically strengthened glass compositions.
  • Patent Document 1 alkali resistance has not been examined.
  • the present invention provides a chemically strengthened glass composition having a melting temperature of less than 1600 ° C., excellent alkali resistance, and suitable for achieving both surface compressive stress and compressive stress layer depth in an appropriate range.
  • the purpose is to provide.
  • the present inventor has succeeded in achieving the above object as a result of vigorous research on the content and physical properties of components in soda lime silicate-based glass.
  • the present invention Displayed by mol%, SiO 2 60-80%, Al 2 O 3 1-5%, MgO 0-13%, CaO 0-10%, Na 2 O 10-20%, K 2 O 0-10%, A glass composition for chemical strengthening containing the above as a component, and a glass composition for chemical strengthening thereof are used.
  • Surface compressive stress is 650-950 MPa, Provided are chemically strengthened glass articles having a compressive stress layer depth in the range of 7 to 17 ⁇ m.
  • the present invention it is possible to provide a glass composition for chemical strengthening, which has excellent alkali resistance and is suitable for achieving both surface compressive stress and compressive stress layer depth in an appropriate range. Further, according to the present invention, it becomes possible to provide a chemically strengthened glass article in which the surface compressive stress and the compressive stress layer depth are appropriately compatible with each other.
  • % indicating the content of the components of the glass composition is "mol%" unless otherwise specified.
  • the preferred range of the content of each component, the total thereof, the ratio according to a predetermined formula, the characteristic value of glass, and the like can be obtained by arbitrarily combining the preferable upper and lower limits described individually below.
  • the content of the component in mol% indication may be shown in the form of [X].
  • X is a component constituting the glass composition. Therefore, for example, [SiO 2 ] + [Al 2 O 3 ] means the sum of the content of SiO 2 in mol% and the total of Al 2 O 3 in mol%.
  • substantially free means that the content is limited to less than 0.1 mol%, preferably less than 0.07 mol%, more preferably less than 0.05 mol%. Means. Industrially produced glass compositions often contain trace impurities derived from industrial raw materials and the like. “Substantially” is intended to allow unavoidable impurities up to the above content. Further, the following description of the embodiment of the present invention is not intended to limit the present invention to a specific embodiment.
  • SiO 2 is a component that constitutes the mesh structure of glass.
  • the content of SiO 2 is preferably 80% or less, 72% or less, 71% or less, 70.5% or less, and may be 69.5% or less in some cases.
  • the content of SiO 2 is preferably 60% or more, 63% or more, 65% or more, and in some cases 66% or more, further 68% or more. If the content of SiO 2 is too high, the viscosity of the glass increases, T2 shown at a temperature at which the viscosity reaches 10 2 dPa ⁇ s becomes very high, and the meltability of the glass decreases. On the other hand, if it is too low, the glass will be devitrified and the weather resistance will be reduced.
  • Al 2 O 3 is a component that enhances the ion exchange performance of glass, improves the alkali resistance of glass, and improves the surface compressive stress after chemical strengthening. If the Al 2 O 3 content is too high, the viscosity and devitrification temperature of the glass will increase and the meltability will decrease, while if it is too low, the alkali resistance of the glass will be significantly reduced and the surface compression will be high after chemical strengthening. No stress can be obtained.
  • the content of Al 2 O 3 is preferably 5% or less, 4.9% or less, 4.5% or less, and may be 4% or less in some cases.
  • the content of Al 2 O 3 is preferably 1% or more, 1.5% or more, and 2% or more.
  • the molar ratio [Al 2 O 3 ] / ([SiO 2 ] + [Al 2 O 3 ]) is a parameter that affects the acid resistance to fluorine. If this ratio is large, the acid resistance tends to decrease, while if it is too small, the viscosity tends to increase. From this point of view, [Al 2 O 3 ] / ([SiO 2 ] + [Al 2 O 3 ]) is preferably 0.028 or more, 0.03 or more, particularly 0.032 or more, and 0.04 in some cases. It may be the above. [Al 2 O 3 ] / ([SiO 2 ] + [Al 2 O 3 ]) is preferably 0.055 or less, 0.052 or less, and particularly preferably 0.05 or less.
  • MgO is a component that makes it difficult for glass to devitrify, but if the content is too high, devitrification of glass tends to occur. On the other hand, if the content is too low, the chemical resistance and water resistance such as acid resistance and alkali resistance of the glass will decrease.
  • the content of MgO is preferably 0% or more, 4% or more, 6.5% or more, and particularly preferably 7% or more.
  • the MgO content is preferably 13% or less, 12% or less, 10% or less, and particularly preferably 8% or less.
  • CaO is a component that makes it difficult for glass to devitrify, but if the content is too high, it has the effect of reducing the surface compressive stress after chemical strengthening. Further, if the CaO content is too high, devitrification is likely to occur and the surface compressive stress after chemical strengthening becomes low. On the other hand, if the content is too low, the alkali resistance of the glass will decrease.
  • the CaO content is preferably 0% or more, 3% or more, 4% or more, and may be 5% or more.
  • the CaO content is preferably 10% or less, 8% or less, 7% or less, and particularly preferably 6% or less.
  • meltability of the glass melt tends to be high. More preferably, it is 10.5% or more and 12% or more. On the other hand, if the content is too high, devitrification of the glass is likely to occur, and the preferable range is 14% or less.
  • the chemical resistance such as the alkali resistance of the glass melt tends to be high. More preferably, it is 12% or more. On the other hand, if the content is too high, devitrification of the glass is likely to occur, and the preferable ranges are 16% or less, 15% or less, and further 14% or less.
  • the depth of the compressive stress layer after chemical strengthening can be increased. This effect is suitably exhibited when it is 0.55 or more, particularly 0.58 or more. On the other hand, if this molar ratio is too high, the depth of the compressive stress layer after chemical strengthening becomes excessively large, and the alkali resistance of the glass composition is lowered.
  • [MgO] / ([CaO] + [MgO]) is preferably 1 or less, particularly 0.97 or less, 0.9 or less, 0.8 or less, 0.75 or less, and particularly preferably 0.7 or less.
  • the glass composition of the present embodiment may have a molar ratio [MgO] / ([CaO] + [MgO]) of more than 0.5, CaO of 4.5% or more, and further 5% or more.
  • the preferred range of the molar ratio [MgO] / [RO] is the same as the preferred range described for the molar ratio [MgO] / ([CaO] + [MgO]).
  • Na 2 O is a component that lowers the viscosity of glass and suppresses devitrification. However, if the Na 2 O content is too high, the water resistance of the glass will be too low. On the other hand, if the content is too low, the viscosity of the glass becomes high and the meltability decreases.
  • the Na 2 O content is preferably 10% or more, 11% or more, 13% or more, and particularly preferably 14% or more.
  • the Na 2 O content is preferably 20% or less, 19% or less, 18% or less, and particularly preferably 16% or less.
  • K 2 O is an optional component that suppresses devitrification by adding a small amount. However, if the K 2 O content is too high, the desired surface compressive stress cannot be obtained after chemical strengthening.
  • the content of K 2 O may be 0% or more, 0.05% or more, 0.2% or more, particularly 0.5% or more, and in some cases 0.7% or more.
  • the content of K 2 O may be 10% or less, 2% or less, 1.3% or less, and in some cases 1.1% or less.
  • Li 2 O is an optional component and may be added in the range of 1% or less, further 0.5% or less, but may not be substantially contained.
  • this ratio is preferably 0.5 or more, particularly preferably 0.75 or more, and may be 0.9 or more, and further 0.92 or more in some cases.
  • this ratio is preferably 1 or less, 0.99 or less, and in some cases 0.97 or less.
  • ZnO is an optional component that improves the meltability of glass. However, if the ZnO content is too high, it will be reduced by a float bath when manufactured by the float manufacturing method, which will be a product defect.
  • the ZnO content may be 0% or more, 0.01% or more, 0.03% or more.
  • the ZnO content is preferably 1% or less, 0.6% or less, and 0.5% or less. ZnO may not be substantially contained.
  • SrO and BaO remarkably hinder the movement of sodium ions in the glass, greatly reduce the surface compressive stress after chemical strengthening, and significantly reduce the depth of the compressive stress layer. Therefore, it is preferable that SrO and BaO are not substantially contained in each.
  • P 2 O 5 and B 2 O 3 are optional components that promote the melting of raw materials. However, these components promote the erosion of the refractory material of the melting furnace, and after volatilizing, they may condense on the furnace wall and be mixed into the glass melt as foreign matter. It is preferable that P 2 O 5 and B 2 O 3 are not substantially contained.
  • SO 3 generated from the sulfate often remains on the glass. Therefore, SO 3 is an optional component and may not be substantially contained, but the content of SO 3 is preferably 0.5% or less and 0.3% or less.
  • As 2 O 5 , Sb 2 O 5 , F and Cl can also be exemplified. However, these components have a great impact on the environment.
  • F is contained, it is preferably 0.1% or less, 0.06% or less, 0.05% or less, and more preferably substantially not contained. Further, it is preferable that As 2 O 5 , Sb 2 O 5 and Cl are substantially not contained.
  • Iron oxide is an optional component that acts as a colorant, and is also a typical impurity that is inevitably mixed from industrial raw materials of glass. Iron oxide is present in the glass composition as a divalent oxide (FeO) or a trivalent oxide (Fe 2 O 3). When the glass composition is used as a cover glass for a display, it is required that the coloring is inconspicuous, so that the content of Fe 2 O 3 is preferably low.
  • the iron oxide content is indicated by the content converted to trivalent oxide [T-Fe 2 O 3 ], and is 0.5% or less, 0.3% or less, 0.2% or less, especially coloring. If you dislike it severely, 0.02% or less or 0.01% or less is preferable.
  • the glass composition of the present embodiment may contain arbitrary components other than the above, but it is preferable that the glass composition other than the above is substantially free of any components.
  • the glass composition of this embodiment may have a low density.
  • a glass plate made of a low-density glass composition contributes to weight reduction of the product in which the glass plate is used.
  • the characteristics that the glass composition according to the present invention may have in a preferred embodiment, specifically, elastic modulus, density and temperature characteristics, are as follows.
  • the Young's modulus is preferably 65 GPa or more, more preferably 69 GPa or more. Young's modulus may be 75 GPa or less. Density, 2.5 g / cm 3 or less, 2.49 g / cm 3 or less, further 2.48 g / cm 3 or less.
  • the specific elastic modulus is preferably 27 ⁇ 10 6 Nm / kg or more, 28 ⁇ 10 6 Nm / kg or more, and 29 ⁇ 10 6 Nm / kg or more. Specific modulus may be less than or equal to 31 ⁇ 10 6 Nm / kg.
  • the specific elastic modulus is a value calculated by dividing the Young's modulus by the density, and a high specific elastic modulus as described above is advantageous for reducing the deflection of the product using the glass plate composed of this glass composition. Is.
  • a preferred form of the glass composition according to the present invention may have the following properties. Density: 2.5 g / cm 3 or less, and specific elastic modulus: 28 ⁇ 10 6 Nm / kg or more, Further Density: 2.49 / cm 3 or less, and a specific modulus of at 29 ⁇ 10 6 Nm / kg or more.
  • the devitrification temperature TL is preferably 1120 ° C. or lower, more preferably 1000 ° C. or lower.
  • the molding temperature T4 is preferably 1150 ° C. or lower, and may be 1040 ° C. or higher.
  • the molding temperature T4 is the temperature at which the viscosity measured by a platinum ball pulling method becomes 10 4 dPa ⁇ s.
  • the devitrification temperature TL is the maximum temperature at which devitrification is observed inside the glass taken out from the glass after crushing the sample glass and holding it in a temperature gradient electric furnace for 2 hours.
  • the glass according to the invention may have a devitrification temperature as low as above and a positive ⁇ T.
  • a glass composition having ⁇ T of 0 ° C. or higher is suitable for production by a float production method.
  • the temperature of T2 of the glass composition of the present embodiment that is, the temperature at which the viscosity becomes 10 2 dPa ⁇ s is preferably 1550 ° C. or lower, more preferably 1500 ° C. or lower.
  • the glass transition point Tg may be 510 to 600 ° C. and further may be 540 to 590 ° C. If the Tg is too high, the difficulty of manufacturing the glass plate by the float manufacturing method becomes high. On the other hand, when Tg is too low, stress relaxation during the chemical strengthening treatment tends to increase, and the surface compressive stress after the chemical strengthening tends to decrease.
  • the preferred coefficient of linear thermal expansion is 70 ⁇ 10 -7 to 100 ⁇ 10 -7 / ° C, and further 90 ⁇ 10 -7 to 130 ⁇ 10 -7 / ° C.
  • the coefficient of linear thermal expansion means an average coefficient of linear thermal expansion of 50 to 350 ° C. This value is larger than that of general soda lime glass used for windows of buildings and vehicles.
  • the large coefficient of linear thermal expansion shortens the time required for the chemical strengthening treatment and suppresses peeling when the glass article made of the glass composition of the present invention is used by being bonded to a member made of metal or plastic. effective.
  • the glass composition of this embodiment is suitable for mass production by the float manufacturing method, and in this case, it is manufactured as a glass plate called float glass.
  • the float manufacturing method includes a step of melting a glass raw material in a melting furnace and a step of forming a molten glass raw material introduced into a float tank into a glass plate on molten tin in the float tank. ing.
  • float glass is produced by preparing a glass raw material so that the glass composition constituting the obtained glass plate has the above-mentioned desired composition. Float glass is formed in a float tank with one main surface in contact with molten tin, and tin diffuses to the main surface.
  • the float glass has a surface layer in which tin is diffused on one main surface called the bottom surface, and this surface layer does not exist on the other main surface called the top surface. From another point of view, in float glass, the concentration of tin on one main surface is higher than the concentration of tin on the other main surface.
  • the glass composition of the present embodiment may have excellent alkali resistance.
  • the glass composition of the present embodiment is an alkali resistance test which is an elution test according to the Japan Optical Glass Industry Association standard JOBIS 06-1999 "Measuring method of chemical durability of optical glass (powder method)". Weight loss due to is 0.2% or less. Details of this dissolution test will be described in the Examples section.
  • the glass plate may be chemically strengthened glass.
  • the chemical strengthening treatment is performed on the surface of the glass by substituting the alkali ions contained in the glass with alkali ions having a larger ionic radius, for example, lithium ions with sodium ions or sodium ions with potassium ions. It is a process to introduce compressive stress.
  • the chemical strengthening treatment of the glass plate is usually carried out by bringing the glass plate into contact with a molten salt containing alkaline ions.
  • the molten salt include potassium nitrate and a mixed salt of potassium nitrate and sodium nitrate.
  • the temperature of the molten salt is appropriately about 460 ° C. to 500 ° C. in consideration of the thermal decomposition of potassium nitrate and the heat resistance of the glass.
  • the time for contacting the glass with the molten salt is, for example, 4 hours to 12 hours.
  • the chemically strengthened glass article of the present embodiment thus obtained can have an appropriately high surface compressive stress and an appropriately deep compressive stress layer.
  • the surface compressive stress is 650 to 950 MPa and the depth of the compressive stress layer is 7 to 15 ⁇ m.
  • the surface compressive stress is 750 to 950 MPa or more and the depth of the compressive stress layer is 9 to 17 ⁇ m.
  • the surface compressive stress is 800 to 950 MPa or more and the depth of the compressive stress layer is 10 to 17 ⁇ m.
  • the chemically strengthened glass article of the present embodiment has an appropriately high surface compressive stress, so that the surface is less likely to be scratched. Further, since the compressive stress layer is appropriately deep, even if the surface is scratched, the scratches are less likely to reach the inside of the glass article than the compressive stress layer.
  • the surface compressive stress CS displayed in MPa and the compressive stress layer depth DOL displayed in ⁇ m can satisfy the following relationship. -0.04 x CS + 41 ⁇ DOL ⁇ -0.04 x CS + 48.6 650 ⁇ CS ⁇ 950
  • the elastic energy due to the compressive stress is balanced with the elastic energy due to the tensile stress (internal tensile stress) generated inside the glass article. Therefore, even if the surface compressive stress and the compressive stress layer depth are the same, the internal tensile stress increases as the thickness of the article decreases. When an external force is applied to such a glass article and exceeds the limit value of the internal tensile stress, the glass article is destroyed, and the strength of the glass article is deteriorated.
  • the depth of the compressive stress layer is not too deep at the same time, so that the value of the internal tensile stress is not too high, and therefore the strength of the chemically strengthened glass article is excellent.
  • the chemically strengthened glass article of the present embodiment is particularly suitable as a cover glass for a display.
  • the glass plate according to the present embodiment can also be used for other purposes, for example, as a window glass of an automobile or the like.
  • Glass transition point Tg, coefficient of linear thermal expansion ⁇ A columnar sample having a diameter of 5 mm and a length of 18 mm was prepared from the sample glass, and the thermal expansion curve when heated at 5 ° C./min by a TMA device was measured. Based on this curve, a glass transition point Tg and an average coefficient of linear thermal expansion ⁇ at 50 to 350 ° C. were obtained.
  • the chemical strengthening treatment of the glass plate was usually carried out by bringing the glass plate into contact with a molten salt containing alkaline ions. The sample glass was cut and the main surface was mirror-polished to prepare two 25 ⁇ 25 ⁇ 0.7 mm plate-shaped samples. Potassium nitrate was used as the molten salt.
  • the chemical strengthening treatment was carried out under the following conditions. Molten salt temperature 420 ° C, contact time between glass and molten salt 2 hours 30 minutes or 4 hours Molten salt temperature 400 ° C, contact time between glass and molten salt 4 hours
  • the alkali resistance test was carried out based on the dissolution test according to the Japan Optical Glass Industry Association standard JOBIS 06-1999 "Measuring method of chemical durability of optical glass (powder method)". Specifically, the procedure was as follows. The sample glass was pulverized, passed through a sieve having an opening of 600 ⁇ m, and the particles remaining on the sieve having an opening of 425 ⁇ m were sieved. The particles were washed with ethanol to remove fine particles adhering to the particles, and dried to prepare a sample for alkali resistance test.
  • the specific gravity gram of the alkali resistance test sample was placed in a platinum basket, immersed in 80 ml of an aqueous sodium hydroxide solution (concentration 0.1 N) in a flask, and heated in a boiling water bath for 1 hour for elution treatment.
  • the sample after the elution treatment was washed with ethanol, dried at 120 ° C., and then weighed to calculate the weight loss rate [%].
  • Examples 1 to 20 are all Alkali resistance is less than 0.2%, Surface compressive stress CS is 650-950 MPa, Compressive stress layer depth DOL is 9 to 17 ⁇ m Furthermore, the surface compressive stress CS expressed in MPa and the compressive stress layer depth expressed in ⁇ m are DOL. -0.04 x CS + 41 ⁇ DOL ⁇ -0.04 x CS + 48.6 was within the range of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本開示は、耐アルカリ性に優れ、表面圧縮応力と圧縮応力層深さとの両立に適した化学強化用ガラス組成物を提供する。本開示によるガラス組成物は、モル%表示により、SiO260~80%、Al231~5%、MgO5~25%、CaO0~5%、Na2O10~20%、K2O0~10%、を成分として含有する。このガラス組成物を用いることにより、例えば表面圧縮応力650~950MPa、圧縮応力層深さが7~17μmの範囲にある化学強化ガラス物品を提供することが可能となる。

Description

化学強化用ガラス組成物、及び化学強化ガラス物品
 本発明は、化学強化に適したガラス組成物、特にディスプレイのカバーガラスに適したガラス組成物に関する。また、本発明は、そのガラス組成物により構成された化学強化ガラス物品、さらにはそのガラス物品を含む携帯情報機器(スマートフォン、タブレットなど)、デジタルサイネージ、車載用ディスプレイや携帯情報機器の保護ケースに関する。
 ディスプレイのカバーガラスには、曲げや衝撃に対する高い強度が要求され続けている。その達成手段の一つは、ガラス組成物としてAl23を多量に含有するアルミノシリケートガラス組成物を用いることが知られている。しかし、公知のアルミノシリケートガラス組成物は、ガラス融液の粘性が高いため、溶融時に1600℃を超える高い温度が必要であり、ガラス板の大量生産に適するフロート製法を採用することが困難だった。またガラス融液の粘性が高いため、ガラス融液の均質化の難易度が高く、ガラス物品としての歩留まりを高くすることが困難である、ガラスの成分として高価な原料が多量に必要とされる、前述の高温操業の要求から多量の加熱エネルギーが必要とされコストが高いという欠点があった。特許文献1には、1600℃未満の温度で溶融することができる化学強化用のガラス組成物が開示されている。
国際公開第2016/002888号
 一般に、化学強化ガラス物品は、圧縮応力層深さが大きい場合は表面圧縮応力がそれほど大きくなく、表面圧縮応力が大きい場合は圧縮応力層深さがそれほど大きくない。また、化学強化用ガラス組成物については、耐アルカリ性も重要な特性である。しかし、特許文献1では耐アルカリ性が検討されていない。
 以上に鑑み、本発明は、溶融温度が1600℃未満であって、耐アルカリ性に優れ、表面圧縮応力と圧縮応力層深さとを適切な範囲に両立させることに適した化学強化用ガラス組成物を提供することを目的とする。さらに本発明は、表面圧縮応力と圧縮応力層深さとが適切に両立した化学強化ガラス物品を提供することを目的とする。
 本発明者は、ソーダライムシリケート系ガラスにおける成分の含有率と物性とに関する精力的な研究の結果、上記目的を達成することに成功した。
 本発明は、
 モル%により表示して、
SiO2   60~80%、
Al23   1~5%、
MgO    0~13%、
CaO    0~10%、
Na2O   10~20%、
2O     0~10%、
を成分として含有する化学強化用ガラス組成物、および
その化学強化用ガラス組成物を用いた、
 表面圧縮応力が650~950MPa、
 圧縮応力層深さが7~17μm、の範囲にある
化学強化ガラス物品を提供する。
 本発明によれば、耐アルカリ性に優れ、表面圧縮応力と圧縮応力層深さとを適切な範囲に両立させることに適した化学強化用ガラス組成物を提供することが可能になる。また本発明によれば、表面圧縮応力と圧縮応力層深さとが適切に両立した化学強化ガラス物品を提供することが可能になる。
 以下において、ガラス組成物の成分の含有率を示す%は、特に断らない限り「モル%」である。各成分の含有率、その合計、所定の計算式による比、ガラスの特性値等についての好ましい範囲は、以下で個別に述べる好ましい上限及び下限を任意に組み合わせて得ることができる。以下では、表記を簡略化するために、成分のモル%表示の含有率を[X]の形式で示すことがある。Xはガラス組成物を構成する成分である。したがって、例えば[SiO2]+[Al23]は、SiO2のモル%表示の含有率とAl23のモル%表示との合計を意味する。[R2O]は、[Li2O]、[Na2O]及び[K2O]の合計を意味し([R2O]=[Li2O]+[Na2O]+[K2O])、[RO]は、[MgO]、[CaO]、[SrO]及び[BaO]の合計を意味する([RO]=[MgO]+[CaO]+[SrO]+[BaO])。
 以下において、「実質的に含まれていない」とは、含有率が0.1モル%未満、好ましくは0.07モル%未満、さらに好ましくは0.05モル%未満、に制限されていることを意味する。工業的に製造されるガラス組成物には、工業原料等に由来する微量の不純物が含まれていることが多い。「実質的に」は、上記の含有率を限度として不可避的不純物を許容する趣旨である。また、以下の本発明の実施形態についての説明は、本発明を特定の形態に制限する趣旨ではない。
 SiO2は、ガラスの網目構造を構成する成分である。SiO2の含有率は、80%以下、72%以下、71%以下、70.5%以下が好ましく、場合によっては69.5%以下であってもよい。SiO2の含有率は、60%以上、63%以上、65%以上が好ましく、場合によっては66%以上、さらに68%以上であってもよい。SiO2の含有率が高すぎると、ガラスの粘度が上昇し、粘度が102dPa・sになる温度で示されるT2が非常に高くなり、ガラスの溶融性が低下する。一方低すぎると、ガラスが失透したり耐候性が低下する。
 Al23は、ガラスのイオン交換性能を高めるとともに、ガラスの耐アルカリ性を向上させるとともに化学強化後の表面圧縮応力を向上させる成分である。Al23の含有率が高すぎると、ガラスの粘度と失透温度が上昇し、溶融性が低下する一方、低すぎると、ガラスの耐アルカリ性が非常に低下するとともに化学強化後に高い表面圧縮応力が得られなくなる。Al23の含有率は、5%以下、4.9%以下、4.5%以下が好ましく、場合によっては4%以下であってもよい。Al23の含有率は、1%以上、1.5%以上、2%以上が好ましい。
 モル比[Al23]/([SiO2]+[Al23])は、耐フッ酸性に影響を与えるパラメータである。この比が大きいと耐フッ酸性が下がる傾向にあり、一方小さすぎると粘性が高くなる傾向にある。この観点から、[Al23]/([SiO2]+[Al23])は、0.028以上、0.03以上、特に0.032以上が好ましく、場合によっては0.04以上であってもよい。[Al23]/([SiO2]+[Al23])は、0.055以下、0.052以下、特に0.05以下が好ましい。
 MgOは、ガラスを失透させにくくする成分であるが、含有率が高すぎるとガラスの失透が起こり易くなる。一方、含有率が低すぎると、ガラスの耐酸性・耐アルカリ性など耐薬品性や耐水性が低下してしまう。MgOの含有率は、0%以上、4%以上、6.5%以上、特に7%以上が好ましい。MgOの含有率は、13%以下、12%以下、10%以下、特に8%以下が好ましい。
 CaOは、ガラスを失透させにくくする成分であるが、含有率が高すぎると化学強化後の表面圧縮応力を低下させる効果がある。また、CaOの含有率が高すぎると、失透が起こり易くなるとともに、化学強化後の表面圧縮応力が低くなってしまう。一方、含有率が低すぎると、ガラスの耐アルカリ性が低下してしまう。CaOの含有率は、0%以上、3%以上、4%以上が好ましく、5%以上であってもよい。CaOの含有率は、10%以下、8%以下、7%以下、特に6%以下が好ましい。
 ([MgO]+[CaO]+[SrO]+[BaO]+[ZnO])が10%以上であると、ガラス融液の溶融性が高い傾向にある。より好ましくは、10.5%以上、12%以上である。一方、含有率が高すぎると、ガラスの失透が起こりやすくなり、好ましい範囲は14%以下である。
 さらに、([MgO]+[CaO])が10%以上、さらに10.5%以上であると、ガラス融液の耐アルカリ性など耐薬品性が高い傾向にある。より好ましくは、12%以上である。一方、含有率が高すぎると、ガラスの失透が起こりやすくなり、好ましい範囲は16%以下、15%以下、さらに14%以下である。
 モル比[MgO]/([CaO]+[MgO])が0.5より大きいと、化学強化後の圧縮応力層深さを大きくすることができる。この効果は0.55以上、特に0.58以上である場合に好適に表れる。一方、このモル比が高すぎると、化学強化後の圧縮応力層深さが過度に大きくなるほか、ガラス組成物の耐アルカリ性が低下する。[MgO]/([CaO]+[MgO])は、1以下、特に0.97以下、0.9以下、0.8以下、0.75以下、特に0.7以下が好ましい。本実施形態のガラス組成物は、モル比[MgO]/([CaO]+[MgO])が0.5より大きく、CaOが4.5%以上、さらに5%以上であり得る。モル比[MgO]/[RO]の好ましい範囲は、モル比[MgO]/([CaO]+[MgO])について述べた好ましい範囲と同じである。
 Na2Oは、ガラスの粘性を下げ、失透を抑制する成分である。しかし、Na2Oの含有率が高すぎると、ガラスの耐水性が低くなりすぎる。一方、含有率が低すぎると、ガラスの粘性が高くなり、溶融性が下がる。Na2Oの含有率は、10%以上、11%以上、13%以上、特に14%以上が好ましい。Na2Oの含有率は、20%以下、19%以下、18%以下、特に16%以下が好ましい。
 K2Oは、少量の添加によって失透を抑制する任意成分である。しかし、K2Oの含有率が高すぎると、化学強化後に所望の表面圧縮応力が得られない。K2Oの含有率は、0%以上、0.05%以上、0.2%以上、特に0.5%以上、場合によっては0.7%以上であってもよい。K2Oの含有率は、10%以下、2%以下、1.3%以下、場合によっては1.1%以下であってもよい。
 Li2Oは、任意成分であり、1%以下、さらに0.5%以下の範囲で添加してもよいが、実質的に含まれていなくてもよい。
 また、モル比[Na2O]/([Na2O]+[K2O])が小さすぎると、ガラス融液の粘性が不必要に低くなるとともに、化学強化を施すために浸漬する溶融塩の劣化が激しくなり、化学強化ガラス物品の生産性が悪くなり製造コストが上昇する。そのため、この比は0.5以上、特に0.75以上が好ましく、場合によっては0.9以上、さらに0.92以上であってもよい。一方このモル比が大きすぎると、化学強化後の表面圧縮応力が低くなることがある。そこでこの比は1以下、0.99以下、場合によっては0.97以下が好ましい。
 ZnOは、ガラスの溶融性を向上する任意成分である。しかし、ZnOの含有率が高すぎると、フロート製法で製造する場合には、フロートバスで還元され製品欠点となる。ZnOの含有率は、0%以上、0.01%以上、0.03%以上であってもよい。ZnOの含有率は、1%以下、0.6%以下、0.5%以下が好ましい。ZnOは実質的に含まれていなくてもよい。
 SrO及びBaOは、ガラスにおけるナトリウムイオンの移動を顕著に妨げ、化学強化後の表面圧縮応力を大きく低下させ、圧縮応力層深さが大幅に浅くなる。したがって、SrO及びBaOは、それぞれ実質的に含まれていないことが好ましい。
 P25、B23は、原料の溶融を促進する任意成分である。しかし、これらの成分は、溶融炉の耐火物の侵食を助長し、揮発した後に炉壁にて凝縮し、異物としてガラス融液に混入することがある。P25、B23はそれぞれ実質的に含まれていないことが好ましい。
 清澄のために原料の一部を硫酸塩として添加するとよいことが知られている。この場合は硫酸塩から発生するSO3がガラスに残存することが多い。そこでSO3は、任意成分であり、実質的に含まれていなくてもよいが、SO3の含有率は、0.5%以下、0.3%以下が好ましい。
 清澄作用を奏しうるその他の任意成分としては、As25、Sb25、F及びClも例示できる。しかし、これらの成分は環境に対する影響が大きい。Fが含有される場合は、0.1%以下、0.06%以下、0.05%以下が好ましく、より好ましくは実質的に含まれないことである。またAs25、Sb25及びClは実質的に含まれていないことが好ましい。
 酸化鉄は、着色剤として作用する任意成分であり、またガラスの工業原料から不可避的に混入する代表的な不純物でもある。酸化鉄は、2価の酸化物(FeO)または3価の酸化物(Fe23)としてガラス組成物中に存在する。ガラス組成物をディスプレイのカバーガラスとして用いる場合、着色が目立たないことが求められるため、Fe23の含有率は少ない方が好ましい。酸化鉄の含有率は、3価の酸化物に換算した含有率[T-Fe23]により表示して、0.5%以下、0.3%以下、0.2%以下、特に着色を厳しく嫌う場合は、0.02%以下や0.01%以下が好ましい。
 本実施形態のガラス組成物は、上記以外の任意成分も含み得るが、上記以外の任意成分は実質的に含まれていないことが好ましい。
 本実施形態のガラス組成物は、低い密度を有し得る。密度が低いガラス組成物により構成されたガラス板は、そのガラス板が用いられた製品の軽量化に寄与する。
 好ましい実施形態において本発明によるガラス組成物が有し得る特性、具体的には弾性率、密度及び温度特性、は以下のとおりである。
 ヤング率は、65GPa以上、さらに69GPa以上が好ましい。ヤング率は、75GPa以下であってもよい。密度は、2.5g/cm3以下、2.49g/cm3以下、さらに2.48g/cm3以下が好ましい。比弾性率は、27×106Nm/kg以上、28×106Nm/kg以上、29×106Nm/kg以上、が好ましい。比弾性率は、31×106Nm/kg以下であってもよい。なお、比弾性率はヤング率を密度で除して算出される値であり、上記程度に高い比弾性率は、このガラス組成物により構成されたガラス板を用いた製品のたわみの低減に有利である。
 密度と比弾性率とに着目すると、本発明によるガラス組成物の好ましい一形態は、以下の特性を具備し得る。
 密度:2.5g/cm3以下、かつ比弾性率:28×106Nm/kg以上、
さらに密度:2.49/cm3以下、かつ比弾性率:29×106Nm/kg以上である。
 失透温度TLは、1120℃以下、さらには1000℃以下が好ましい。成形温度T4は、1150℃以下が好ましく、1040℃以上であってもよい。また、成形温度T4から失透温度TLを差し引いた差分ΔT(ΔT=T4-TL)は、0℃以上であることが好ましく、5℃以上がより好ましく、10℃以上がさらに好ましく、15℃以上がより好ましく、18℃以上が特に好ましく、25℃以上であってもよい。ここで、成形温度T4は、白金球引き上げ法により測定した粘度が104dPa・sとなる温度である。失透温度TLは、試料ガラスを粉砕し、温度傾斜電気炉中で2時間保持し、炉から取り出したガラス内部に失透が観察された最高温度である。好ましい一形態において、本発明によるガラスは、上記程度に低い失透温度と正のΔTを有し得る。ΔTが0℃以上であるガラス組成物は、フロート製法による製造に適している。
 なお、本実施形態のガラス組成物のT2、すなわち上記粘度が102dPa・sになる温度は、1550℃以下、さらには1500℃以下が好ましい。ガラス転移点Tgは、510~600℃、さらに540~590℃であってもよい。Tgが高すぎる場合は、とくにフロート製法でのガラス板の製造の難易度が高くなる。一方、Tgが低すぎる場合は、化学強化処理時の応力緩和が増加し、化学強化後の表面圧縮応力が低くなる傾向がある。
 好ましい線熱膨張係数は、70×10-7~100×10-7/℃、さらに90×10-7~130×10-7/℃である。ここで、線熱膨張係数は、50~350℃の平均線熱膨張係数を意味する。この値は、建築物や車両の窓等に用いられる一般的なソーダライムガラスよりも大きい。大きい線熱膨張係数は、化学強化処理に要する時間の短縮や、本発明のガラス組成物から構成されるガラス物品が、金属やプラスチックから構成される部材と接着されて用いられる際の剥離抑制に効果がある。
 本実施形態のガラス組成物は、フロート製法による量産に適し、この場合はフロートガラスと呼ばれるガラス板、として製造されることになる。フロート製法は、周知のとおり、溶融炉においてガラス原料を溶融する工程と、フロート槽へと導入した溶融されたガラス原料をフロート槽内の溶融錫上においてガラス板に成形する工程と、を具備している。本発明の一形態では、得られるガラス板を構成するガラス組成物が上述した所望の組成となるようにガラス原料を調製することにより、フロートガラスが製造される。フロートガラスは、フロート槽において一方の主面が溶融錫に接して成形され、その主面へと錫が拡散する。このため、フロートガラスは、ボトム面と呼ばれる一方の主面に錫が拡散した表面層を有し、この表面層はトップ面と呼ばれる他方の主面には存在しない。別の観点から述べると、フロートガラスでは、一方の主面における錫の濃度が他方の主面における錫の濃度よりも高くなっている。
 本実施形態のガラス組成物は、優れた耐アルカリ性を有し得る。具体的には、本実施形態のガラス組成物は、日本光学硝子工業会規格JOGIS 06-1999「光学ガラスの化学的耐久性の測定方法(粉末法)」に準じた溶出試験である耐アルカリ性試験による重量減が0.2%以下である。この溶出試験の詳細は、実施例の欄において説明する。
 ガラス板は化学強化ガラスとしてもよい。化学強化処理は、周知のとおり、ガラスに含まれるアルカリイオンをそれよりもイオン半径が大きいアルカリイオン、例えばリチウムイオンをナトリウムイオンにより、或いはナトリウムイオンをカリウムイオンにより置換することにより、ガラスの表面に圧縮応力を導入する処理である。
 ガラス板の化学強化処理は、通常アルカリイオンを含む溶融塩にガラス板を接触させることにより実施される。溶融塩としては、硝酸カリウム、硝酸カリウムと硝酸ナトリウムとの混塩を例示できる。硝酸カリウム単独の溶融塩を用いる場合、硝酸カリウムの熱分解及びガラスの耐熱性を考慮し、溶融塩の温度は460℃~500℃程度が適切である。
ガラスと溶融塩とを接触させる時間は、例えば4時間~12時間が適切である。
 こうして得られた本実施形態の化学強化ガラス物品は、表面圧縮応力が適度に高く、かつ、圧縮応力層の深さが適度に深いものになり得る。
 具体的には、表面圧縮応力が650~950MPaかつ圧縮応力層の深さが7~15μmであり、 
 好ましくは表面圧縮応力が750~950MPa以上かつ圧縮応力層の深さが9~17μmであり、
 さらに好ましくは表面圧縮応力が800~950MPa以上かつ圧縮応力層の深さが10~17μmである。
 したがって、本実施形態の化学強化ガラス物品は、適度に高い表面圧縮応力を有しているため、表面に傷が生じにくい。また、圧縮応力層が適度に深いため、表面に傷が生じた場合であっても、その傷が圧縮応力層よりガラス物品内部に届くことが少ない。本実施形態の化学強化ガラス物品は、MPaで表示した表面圧縮応力CSと、μmで表示した圧縮応力層深さDOLとが、以下の関係を満たし得る。
  -0.04×CS+41≦DOL≦-0.04×CS+48.6
  650≦CS≦950
 一般的に、表面近傍の圧縮応力層を有するガラス物品においては、その圧縮応力による弾性エネルギーが、ガラス物品内部に生じる引張応力(内部引張応力)による弾性エネルギーと釣り合っている。したがって、同一の表面圧縮応力と圧縮応力層深さであっても、物品の厚みが薄くなるに従い内部引張応力が増大する。そのようなガラス物品に外力が加わり内部引張応力の限界値を超えると、そのガラス物品は破壊してしまうことになり、却ってガラス物品の強度が劣化する。
 本実施形態の化学強化ガラス物品は、同時に圧縮応力層の深さが深すぎないため、内部引張応力の値が高すぎることがなく、よって化学強化ガラス物品の強度に優れる。
 よって、本実施形態の化学強化ガラス物品、具体的にはガラス板は、特にディスプレイのカバーガラスとして適している。もっとも、本実施形態によるガラス板は、その他の用途、例えば自動車などの窓ガラスとしても使用できる。
 以下、具体的な実施例により本発明をさらに詳細に説明するが、以下の実施例も本発明を限定するものではない。
 表1~3に示した組成となるように、通常のガラス原料であるシリカ、アルミナ、炭酸ナトリウム、酸化マグネシウム、炭酸カルシウム、炭酸カリウム等を用いてバッチを調合した。調合したバッチを白金坩堝に投入して1580℃で4時間保持し、鉄板上に流し出した。このガラスを電気炉中650℃で30分保持した後、炉の電源を切り、室温まで放冷して試料ガラスとした。得られた各試料ガラスの特性を以下のように測定した。結果を表1~3に示す。なお、例21~35は特許文献1に記載の例である。
〔密度ρ、ヤング率E〕
 試料ガラスを切断し、各面を鏡面研磨して25×25×5mmの板状サンプルを作製し、アルキメデス法により各サンプルの密度ρを測定した。また、ヤング率はJIS R1602-1995の超音波パルス法に準じて測定した。具体的には、前述の密度測定に用いたサンプルを用い、超音波パルスが伝播する音速を縦波と横波について測定し、前述の密度とともに当該JIS記載の数式に代入してヤング率Eを算出した。なお、伝播速度は、オリンパス株式会社製の超音波厚さ計MODEL 25DL PLUSを用い、周波数20kHzの超音波パルスがサンプルの厚み方向に伝播し反射して戻ってくるまでの時間を、伝播距離(サンプルの厚さの2倍)で除して算出した。 
〔ガラス転移点Tg、線熱膨張係数α〕
 試料ガラスから径5mm、長さ18mmの円柱状試料を作製し、TMA装置により5℃/分で加熱した際の熱膨張曲線を測定した。この曲線に基づいて、ガラス転移点Tg、50~350℃の平均線熱膨張係数αを得た。
〔失透温度TLの測定〕
 試料ガラスを粉砕し、目開き2.83mmの篩を通り、目開き1.00mmの篩に残る粒子をふるい分けた。この粒子を洗浄して粒子に付着した微粉を除去し、乾燥して失透温度測定用サンプルを調製した。失透温度測定用サンプルの25gを白金ボート(長方形でフタのない白金製の器)に厚みが略均一になるようにいれ、温度傾斜炉中で2時間保持した後に炉から取り出し、ガラス内部に失透が観察された最高温度を失透温度TLとした。
〔溶融温度T2、成形温度T4の測定〕
 白金球引き上げ法により粘度を測定し、その粘度が102dPa・sと104dPa・sとなる温度をそれぞれ溶融温度T2、成形温度T4とした。
〔化学強化〕
ガラス板の化学強化処理は、通常アルカリイオンを含む溶融塩にガラス板を接触させることにより実施した。試料ガラスを切断し、主面を鏡面研磨して25×25×0.7mmの板状サンプルを2枚作製した。溶融塩としては、硝酸カリウムを使用した。
 化学強化処理は、以下の条件で実施した。
  溶融塩温度 420℃、ガラスと溶融塩の接触時間 2時間30分または4時間
  溶融塩温度 400℃、ガラスと溶融塩の接触時間 4時間
[表面圧縮応力CS、圧縮応力層深さDOL]
 上記のようにして得た化学強化ガラス物品について、表面圧縮応力CSおよび圧縮応力層深さDOLを測定した。測定には表面応力計(折原製作所製、SM-6000LE)を用いた。具体的には、上記表面応力計を用いて観察される干渉縞の本数とその間隔を観察し、付属のソフトウェアを用いて算出した。その算出には、干渉縞だけでなく、屈折率と光弾性定数が必要であるが、屈折率は1.511と定め、光弾性定数は、各成分の含有率を周知の予測式(M. B. Volf, (1988), "Mathematical Approach to Glass (Glass Science and Technology, Vol9)",  Elsevier Science Ltd.)のp169-174, 289-292に記載)に代入して求めた。
 なお、表1~3では、成分Xの含有率を[X]ではなく単にXと表記して記載しているが、含有率はすべてモル%である。
[耐アルカリ性試験]
 耐アルカリ性試験は、日本光学硝子工業会規格JOGIS 06-1999「光学ガラスの化学的耐久性の測定方法(粉末法)」に準じた溶出試験に基づき行った。具体的には以下のように行った。試料ガラスを粉砕し、目開き600μmの篩を通り、目開き425μmの篩に残る粒子をふるい分けた。この粒子をエタノールで洗浄して粒子に付着した微粉を除去し、乾燥して耐アルカリ性試験用サンプルを調整した。耐アルカリ性試験用サンプルの比重グラムを白金製カゴに入れ、フラスコ内の水酸化ナトリウム水溶液(濃度0.1N)80ml中に浸し、沸騰水の水浴中で1時間加熱して溶出処理を施した。溶出処理後のサンプルをエタノールで洗浄し、120℃で乾燥後に秤量し、減量率[%]を算出した。
 例1~20は、いずれも、
  耐アルカリ性が 0.2%未満、
  表面圧縮応力CSが650~950MPa、
  圧縮応力層深さDOLが9~17μm
さらに
 MPaで表示した表面圧縮応力CSと、μmで表示した圧縮応力層深さがDOLとが、
  -0.04×CS+41≦DOL≦-0.04×CS+48.6
の範囲内であった。
 一方、例21~35では、
 耐アルカリ性が0.2%以上であるか(例21~25、27、28、32、34)
または
  -0.04×CS+41≦DOL≦-0.04×CS+48.6
の関係式を満たさなかった(例26、28~31、33~35)。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (18)

  1.  モル%により表示して、
    SiO2   60~80%、
    Al23   1~5%、
    MgO    0~13%、
    CaO    0~10%、
    Na2O   10~20%、
    2O     0~10%、
    を成分として含有する、化学強化用ガラス組成物。
  2.  請求項1に記載の化学強化用ガラス組成物であって、
     モル%により表示して、
    SiO2   66~71%、
    Al23   2~4%、
    MgO    4~8%、
    CaO    0~6%、
    Na2O   11~18%、
    2O     0~1.3%、
    ZnO    0~1%、
    Fe23   0~1%、
    を成分として含有し、
     MgO+CaO+SrO+BaO+ZnOが10%以上、
     Na2O+K2O+Li2Oが18%以下、であり、
     密度が2.50g/cm3以下、
     耐アルカリ性試験による重量減が0.2%未満である、 
    化学強化用ガラス組成物。
  3.  請求項2に記載の化学強化用ガラス組成物であって、
     モル%により表示して、
    SiO2   66~70.5%、
    Al23   2~4%、
    MgO  6.5~8%、
    CaO    4~6%、
    Na2O   11~16%、
    2O     0~1.3%、
    ZnO    0~1%、
    Fe23   0~1%、
    を成分として含有し、
     MgO+CaO+SrO+BaO+ZnOが10.5%以上、
     Na2O+K2O+Li2Oが17%以下、である、
    化学強化用ガラス組成物。
  4.  請求項3に記載の化学強化用ガラス組成物であって、
     モル%により表示して、
    SiO2   66~69.5%、
    Al23   2~4%、
    MgO    7~8%、
    CaO    5~6%、
    Na2O   14~16%、
    2O   0.7~1.3%、
    ZnO    0~1%、
    Fe23   0~1%、
    を成分として含有し、
     MgO+CaO+SrO+BaO+ZnOが12%以上、
     Na2O+K2O+Li2Oが17%以下、である、
    化学強化用ガラス組成物。
  5.  請求項1~4のいずれか1項に記載の化学強化用ガラス組成物であって、
     SrO及びBaOがそれぞれ実質的に含まれていない、化学強化用ガラス組成物。
  6.  請求項1~5のいずれか1項に記載の化学強化用ガラス組成物であって、
     モル%により表示して、
     MgO+CaOが10.5~15%の範囲にある、
    化学強化用ガラス組成物。
  7.  請求項1~6のいずれか1項に記載の化学強化用ガラス組成物であって、
     モル比MgO/(MgO+CaO)が0.5を超え1以下である、
    化学強化用ガラス組成物。
  8.  請求項1~7のいずれか1項に記載の化学強化用ガラス組成物であって、
     モル比Na2O/(Na2O+K2O)が0.9~1の範囲にある、
    である、化学強化用ガラス組成物。
  9.  請求項1~8のいずれか1項に記載の化学強化用ガラス組成物であって、
     モル比Al23/(SiO2+Al23)が0.028~0.055の範囲にある、
    化学強化用ガラス組成物。
  10.  請求項1~9のいずれか1項に記載の化学強化用ガラス組成物であって、
     ヤング率が65~75GPa、
     比弾性率が27×106~31×106Nm/kg、の範囲にある、
    化学強化用ガラス組成物。
  11.  請求項1~10のいずれか1項に記載の化学強化用ガラス組成物であって、
     粘度が102dPa・sになる温度T2が1550℃以下、
    である、化学強化用ガラス組成物。
  12.  請求項1~11のいずれか1項に記載の化学強化用ガラス組成物であって、
     粘度が104dPa・sになる温度T4が1150℃以下、
     T4-失透温度TLが0℃以上、
    である、化学強化用ガラス組成物。
  13.  請求項1~12のいずれか1項に記載の化学強化用ガラス組成物であって、
     50~350℃の間の平均熱膨張係数が70~100×10-7-1の範囲にある、
    化学強化用ガラス組成物。
  14.  請求項1~13のいずれか1項に記載の化学強化用ガラス組成物であって、
     ガラス転移点Tgが530~600℃の範囲にある、
    化学強化用ガラス組成物。
  15.  請求項1~14のいずれか1項に記載の化学強化用ガラス組成物を用いた化学強化ガラス物品であって、
     表面圧縮応力が650~950MPa、 
     圧縮応力層深さが7~17μm、の範囲にある、
    化学強化ガラス物品。
  16.  請求項15に記載の化学強化ガラス物品であって、
     表面圧縮応力が750~950MPa、
     圧縮応力層深さが9~17μm、の範囲にある、
    化学強化ガラス物品。
  17.  請求項16に記載の化学強化ガラス物品であって、
     表面圧縮応力が800~950MPa、
     圧縮応力層深さが10~17μm、の範囲にある、
    化学強化ガラス物品。
  18.  請求項15~17の何れか1項に記載の化学強化ガラス物品であって、
     MPaで表示した表面圧縮応力CSと、μmで表示した圧縮応力層深さDOLとが、
      -0.04×CS+41≦DOL≦-0.04×CS+48.6
      650≦CS≦950
    の関係式を満たす、化学強化ガラス物品。
PCT/JP2021/024819 2020-06-30 2021-06-30 化学強化用ガラス組成物、及び化学強化ガラス物品 WO2022004809A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227039800A KR20230031195A (ko) 2020-06-30 2021-06-30 화학 강화용 유리 조성물, 및 화학 강화 유리 물품
US18/001,665 US20230373844A1 (en) 2020-06-30 2021-06-30 Glass composition for chemical strengthening and chemically strengthened glass article
CN202180031836.6A CN115485248A (zh) 2020-06-30 2021-06-30 化学强化用玻璃组合物、及化学强化玻璃物品
EP21832585.0A EP4151606A1 (en) 2020-06-30 2021-06-30 Glass composition for chemical reinforcement and chemically reinforced glass article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112982A JP2022011681A (ja) 2020-06-30 2020-06-30 化学強化用ガラス組成物、及び化学強化ガラス物品
JP2020-112982 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004809A1 true WO2022004809A1 (ja) 2022-01-06

Family

ID=79316379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024819 WO2022004809A1 (ja) 2020-06-30 2021-06-30 化学強化用ガラス組成物、及び化学強化ガラス物品

Country Status (6)

Country Link
US (1) US20230373844A1 (ja)
EP (1) EP4151606A1 (ja)
JP (1) JP2022011681A (ja)
KR (1) KR20230031195A (ja)
CN (1) CN115485248A (ja)
WO (1) WO2022004809A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163411A1 (ja) * 2014-04-23 2015-10-29 旭硝子株式会社 熱線吸収ガラス板およびその製造方法
WO2015199150A1 (ja) * 2014-06-27 2015-12-30 旭硝子株式会社 ガラス、および、それを用いた化学強化ガラス
WO2016002888A1 (ja) 2014-07-04 2016-01-07 旭硝子株式会社 化学強化用ガラスおよび化学強化ガラス
JP2017078011A (ja) * 2015-10-21 2017-04-27 セントラル硝子株式会社 化学強化用ガラス板及び化学強化ガラス板の製造方法
JP2017114718A (ja) * 2015-12-24 2017-06-29 セントラル硝子株式会社 化学強化用ガラス板及び化学強化ガラスの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147092A1 (ja) * 2014-03-28 2015-10-01 旭硝子株式会社 化学強化用ガラス及び化学強化ガラス並びに化学強化ガラスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163411A1 (ja) * 2014-04-23 2015-10-29 旭硝子株式会社 熱線吸収ガラス板およびその製造方法
WO2015199150A1 (ja) * 2014-06-27 2015-12-30 旭硝子株式会社 ガラス、および、それを用いた化学強化ガラス
WO2016002888A1 (ja) 2014-07-04 2016-01-07 旭硝子株式会社 化学強化用ガラスおよび化学強化ガラス
JP2017078011A (ja) * 2015-10-21 2017-04-27 セントラル硝子株式会社 化学強化用ガラス板及び化学強化ガラス板の製造方法
JP2017114718A (ja) * 2015-12-24 2017-06-29 セントラル硝子株式会社 化学強化用ガラス板及び化学強化ガラスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. B. VOLF: "Mathematical Approach to Glass (Glass Science and Technology", vol. 9, 1988, ELSEVIER SCIENCE LTD, pages: 169 - 174,289-292

Also Published As

Publication number Publication date
EP4151606A1 (en) 2023-03-22
KR20230031195A (ko) 2023-03-07
CN115485248A (zh) 2022-12-16
JP2022011681A (ja) 2022-01-17
US20230373844A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
JP6424978B2 (ja) 化学強化ガラスおよび化学強化用ガラス
JP7184073B2 (ja) 化学強化用ガラス
JP5365974B2 (ja) 強化ガラス基板及びその製造方法
KR101314095B1 (ko) 화학강화에 적용되는 유리 및 화학강화유리
JPWO2019004124A1 (ja) 化学強化ガラス、その製造方法および化学強化用ガラス
JP2009084076A (ja) 強化ガラス及び強化ガラス基板、並びにその製造方法
TW201742841A (zh) 在後離子交換熱處理之後保留高壓縮應力的玻璃組成物
WO2020138062A1 (ja) 強化ガラス板及びその製造方法
WO2020008901A1 (ja) 化学強化ガラスおよびその製造方法
WO2022004809A1 (ja) 化学強化用ガラス組成物、及び化学強化ガラス物品
JP7335557B2 (ja) 強化ガラス及び強化用ガラス
WO2022004808A1 (ja) 化学強化用ガラス組成物、及び化学強化ガラス物品
JP7019941B2 (ja) 強化用ガラスの製造方法及び強化ガラスの製造方法
JPWO2019131528A1 (ja) カバーガラス
WO2022172813A1 (ja) 強化ガラス板及びその製造方法
WO2022097416A1 (ja) 強化ガラス板、強化ガラス板の製造方法及び強化用ガラス板
WO2023243574A1 (ja) 化学強化用ガラス及びガラス
WO2023210506A1 (ja) 強化ガラス板、強化ガラス板の製造方法及び強化用ガラス板
TWI838347B (zh) 化學強化用玻璃
JP2022076438A (ja) 強化ガラス板、強化ガラス板の製造方法及び強化用ガラス板
TW202231598A (zh) 強化玻璃板及其製造方法
WO2021182621A1 (ja) ガラス組成物、ガラス板とその製造方法、及び情報記録媒体用基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021832585

Country of ref document: EP

Effective date: 20221213

NENP Non-entry into the national phase

Ref country code: DE