WO2016010050A1 - 防眩処理用ガラス、および、それを用いた防眩ガラス - Google Patents

防眩処理用ガラス、および、それを用いた防眩ガラス Download PDF

Info

Publication number
WO2016010050A1
WO2016010050A1 PCT/JP2015/070202 JP2015070202W WO2016010050A1 WO 2016010050 A1 WO2016010050 A1 WO 2016010050A1 JP 2015070202 W JP2015070202 W JP 2015070202W WO 2016010050 A1 WO2016010050 A1 WO 2016010050A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
treatment
antiglare
glare
concentration
Prior art date
Application number
PCT/JP2015/070202
Other languages
English (en)
French (fr)
Inventor
順子 宮坂
盛輝 大原
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2016534458A priority Critical patent/JPWO2016010050A1/ja
Priority to CN201580039387.4A priority patent/CN106660856A/zh
Publication of WO2016010050A1 publication Critical patent/WO2016010050A1/ja
Priority to US15/390,939 priority patent/US20170166473A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step

Definitions

  • the present invention relates to a glass suitable for antiglare treatment such as frost treatment or antiglare treatment using a treatment liquid containing hydrofluoric acid (HF) and ammonium fluoride (NH 4 F).
  • HF hydrofluoric acid
  • NH 4 F ammonium fluoride
  • the present invention also relates to an antiglare glass such as a frosted glass or an antiglare glass using the above glass.
  • a display device including a display unit such as a liquid crystal member or an LED member is widely used as a small and / or portable display device such as an electronic notebook, a notebook personal computer, a tablet PC, and a smartphone. ing.
  • a display device is provided with a cover glass on the surface in order to protect the display device.
  • the cover glass is required to have high visibility with respect to the display image so as not to impair such a high definition function.
  • Chemical anti-glare treatment is a treatment that exhibits anti-glare action by forming fine irregularities on the glass surface using a treatment solution containing hydrofluoric acid to enhance light diffusivity, and is an indicator of light diffusibility. Depending on the height of the haze value, it can be divided into frost processing and anti-glare processing (see Non-Patent Document 1).
  • the frost treatment is characterized by a high haze value that is an index of light diffusibility.
  • anti-glare treatment also called non-glare treatment, exhibits anti-glare action by imparting light diffusibility while keeping the resolution as high as possible. Therefore, as an index for anti-glare treatment, a haze value that is an index of light diffusibility and a gloss value that is an index of glossiness are used in combination.
  • a treatment liquid containing hydrofluoric acid (HF) and ammonium fluoride (NH 4 F) is preferably used.
  • HF hydrofluoric acid
  • NH 4 F ammonium fluoride
  • a three component treatment liquid containing potassium fluoride (KF) is used. Had to be used.
  • the progress of the antiglare treatment is greatly influenced by the concentration of hydrofluoric acid (HF) and ammonium fluoride (NH 4 F) in the treatment liquid, particularly the concentration of hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • NH 4 F ammonium fluoride
  • the present invention provides a glass for anti-glare treatment, which has a low concentration dependency of the treatment liquid on the gloss value and the haze value, and an anti-glare using the same. It aims at providing dazzling glass.
  • the present invention is as follows. 1. In mass% display based on oxide, SiO 2 60-75%, Al 2 O 3 2.5-10%, Na 2 O 13-19%, K 2 O 0-1.8%, MgO 0-12%, CaO 0-9%, Containing 0-4% ZrO 2 , Glass for anti-glare treatment. 2. Furthermore, it contains Fe 2 O 3 and is expressed in mass% based on oxide, SiO 2 64 to 71%, Al 2 O 3 2.5-10%, Na 2 O 13-18%, K 2 O 0-1.8%, MgO 6-12%, CaO 0.5-9%, ZrO 2 0-3%, 2. The glass for antiglare treatment according to item 1 above, containing 0 to 0.05% of Fe 2 O 3 . 3.
  • the Na concentration at a depth of 0 to 5 nm is lower than the average Na concentration at a depth of 100 to 150 nm, and the Na concentration is a depth of 100.
  • An antiglare glass obtained by applying an antiglare treatment to at least one main surface of the antiglare treatment glass described in any one of 1 to 3 above. 5.
  • the glass for antiglare treatment of the present invention can be antiglare treated with a treatment liquid containing only two components of hydrofluoric acid (HF) and ammonium fluoride (NH 4 F).
  • HF hydrofluoric acid
  • NH 4 F ammonium fluoride
  • FIG. 1 is a graph showing the relationship between the HF concentration in the antiglare treatment liquid and the gloss value (%) of the glass after treatment in Example 1 and Comparative Example 1.
  • FIG. 2 is a graph showing the relationship between the HF concentration in the antiglare treatment liquid and the haze value (%) of the treated glass in Example 1 and Comparative Example 1.
  • FIG. 3 shows the results of the Na concentration distribution normalized by the average Na concentration at a depth of 100 to 150 nm.
  • composition range of each component of the antiglare glass of the present invention will be described.
  • content of the glass component will be described using mass percentage display unless otherwise specified.
  • SiO 2 is known as a component that forms a network structure in the glass microstructure, and is a main component constituting the glass.
  • the content of SiO 2 is 60% or more, preferably 62% or more, more preferably 64% or more. Further, the content of SiO 2 is 75% or less, preferably 73% or less, more preferably 71% or less. When the content of SiO 2 is 60% or more, it is advantageous in terms of stability and weather resistance as glass. On the other hand, when the content of SiO 2 is 75% or less, it is advantageous in terms of solubility and moldability.
  • Al 2 O 3 is a component that improves the weather resistance of the glass. Further, when the antiglare glass is further subjected to a chemical strengthening treatment, it has an effect of improving the ion exchange property, and particularly has a large effect of improving the surface compressive stress (CS).
  • CS surface compressive stress
  • the content of Al 2 O 3 is 2.5% or more, preferably 3% or more, more preferably 4% or more. Further, the content of Al 2 O 3 is 10% or less, preferably 9% or less, more preferably 8% or less.
  • Na 2 O is an essential component that lowers the high temperature viscosity and devitrification temperature of glass and improves the solubility and formability of glass. This is a component for forming a chemically strengthened layer by ion exchange when the antiglare glass is further subjected to a chemical strengthening treatment.
  • the content of Na 2 O is 13% or more, preferably 14% or more, more preferably 15% or more. Further, the content of Na 2 O is 19% or less, preferably 18% or less, more preferably 17% or less.
  • a desired chemical strengthening treatment layer can be formed by ion exchange when the antiglare glass is further subjected to chemical strengthening treatment, and the surface compressive stress (CS) is improves.
  • K 2 O has an effect of increasing the ion exchange rate and thickening the chemical strengthening treatment layer when the chemical strengthening treatment is further applied to the antiglare glass.
  • the content of K 2 O is 1.8% or less, the treatment liquid concentration dependency on the antiglare performance is reduced, and a stable antiglare performance is obtained.
  • containing K 2 O is preferably 1.5% or less, more preferably 1.3% or less, more preferably 1.0% or less.
  • MgO is a component that stabilizes the glass, so it may be contained in a range of 12% or less. When it is 12% or less, it is difficult to cause devitrification, and a sufficient ion exchange rate can be obtained when the antiglare glass is further subjected to a chemical strengthening treatment.
  • the content of MgO is preferably 10% or less, more preferably 9% or less.
  • the content is preferably 2% or more, more preferably 4% or more, still more preferably 5% or more, and most preferably 6% or more.
  • the solubility at high temperature is improved, and an increase in temperature T 2 at which the glass viscosity becomes 10 2 dPa ⁇ s can be prevented.
  • the antiglare glass is further chemically strengthened, if MgO is 5% or more, a sufficient ion exchange rate can be obtained, and a chemically strengthened layer having a desired thickness can be obtained. More preferably, it is 6% or more, and more preferably 7% or more.
  • CaO is a component that stabilizes the glass, so it may be contained in a range of 9% or less. When the amount is 9% or less, when the antiglare glass is further subjected to chemical strengthening treatment, a sufficient ion exchange rate can be obtained, and a chemical strengthening treatment layer having a desired thickness can be obtained.
  • the CaO content is preferably 8% or less, more preferably 7% or less, and even more preferably 5% or less.
  • CaO When CaO is contained, its content is preferably at least 0.1%, more preferably at least 0.3%, even more preferably at least 0.5%, even more preferably at least 1%. Further, when the content of CaO is 0.1% or more, the solubility at high temperature becomes good and devitrification hardly occurs.
  • ZrO 2 is generally known to have an effect of increasing the surface compressive stress (CS) during the chemical strengthening treatment.
  • CS surface compressive stress
  • the anti-glare glass When the anti-glare glass is further subjected to a chemical strengthening treatment, it may be contained in a range of 4% or less.
  • the content of ZrO 2 is preferably 3% or less, more preferably 2% or less. If it is 4% or less, an increase in the devitrification temperature can be prevented.
  • the chemical anti-glare glass of the present invention consists essentially of the above components, but may contain other components as long as the object of the present invention is not impaired. Examples of other components include the following.
  • the B 2 O 3 is not an essential component, becomes favorable solubility at high temperatures, because of the effect of preventing a rise in temperature T 2 which the glass viscosity of 10 2 dPa ⁇ s, the range of 2% or less You may contain.
  • the B 2 O 3 content is preferably 0.5% or more, more preferably 1% or more.
  • the B 2 O 3 content is preferably 1% or less, more preferably 0.5% or less.
  • Fe 2 O 3 is not an essential component, but it is an extremely difficult component to reduce its content to zero because it exists in nature and everywhere in the production line. It is known that Fe 2 O 3 in the oxidized state causes yellow coloring, and FeO in the reduced state causes blue coloring, and the balance between the two is known to cause the glass to turn green. Yes.
  • the Fe 2 O 3 content is preferably 0.1% or less, more preferably 0.05% or less.
  • the glass for chemical anti-glare treatment of the present invention is, for example, a coloring component such as Co, Cr and Mn, and Zn, Sr, Ba, Ti, Cl, F and SO, as long as the effects of the invention are not lost. 3 etc. may be included 3% or less in total.
  • the temperature T 2 at which the glass viscosity becomes 10 2 dPa ⁇ s is preferably 1600 ° C. or less because the solubility at high temperature is good.
  • the temperature T 2 is more preferably 1570 ° C. or less, and further preferably 1550 ° C. or less.
  • the temperature T 2 can be measured using a rotational viscometer or the like.
  • the glass for antiglare treatment of the present invention preferably has a glass transition point (Tg) of 520 ° C. or higher.
  • Tg glass transition point
  • CS surface compressive stress
  • the antiglare treatment glass of the present invention has a low concentration dependency of the treatment liquid when the main surface of the antiglare treatment glass is subjected to the antiglare treatment. This can be confirmed by the small numerical values of slope1 and slope2 in the examples described later. Since the concentration dependency of the treatment liquid is low, it is not necessary to strictly control the concentrations of hydrofluoric acid (HF) and ammonium fluoride (NH 4 F) in the treatment liquid. Therefore, the anti-glare treatment becomes easy and the productivity of the anti-glare glass is improved.
  • HF hydrofluoric acid
  • NH 4 F ammonium fluoride
  • the antiglare treatment glass of the present invention can be antiglare treated with a treatment solution containing only two components of hydrofluoric acid (HF) and ammonium fluoride (NH 4 F).
  • HF hydrofluoric acid
  • NH 4 F ammonium fluoride
  • the anti-glare process using these process liquids is called chemical anti-glare process.
  • anti-glare treatment when simply described as “anti-glare treatment”, it means chemical anti-glare treatment.
  • a fluoride ion source a mineral acid or a buffer solution, or a combination thereof may be added to the treatment solution as necessary.
  • the fluoride source is, for example, a salt selected from ammonium fluoride, ammonium hydrogen fluoride, sodium fluoride, sodium hydrogen fluoride, potassium fluoride and potassium hydrogen fluoride, and similar salts, or combinations thereof.
  • Mineral acids are, for example, hydrofluoric acid, sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid and similar acids, or combinations thereof. Still further, glycols, glycerol, alcohols, ketones or surfactants, or combinations thereof may be added.
  • two or more steps of chemical anti-glare treatment may be performed using two or more different treatment solutions.
  • you may perform physical anti-glare processes, such as sandblasting, before performing a chemical anti-glare process as needed.
  • the glass of the present invention Since the antiglare performance is manifested through a mechanism in which the glass is eluted by immersing in the treatment liquid and the eluted glass component is precipitated as a salt, the glass of the present invention is used even if the treatment liquid is changed. Thus, the same effect can be expected.
  • At least one main surface of the anti-glare glass of the present invention contains hydrofluoric acid (HF) and ammonium fluoride (NH 4 F) at a predetermined concentration. What is necessary is just to immerse in the processing liquid to perform for a predetermined time.
  • HF hydrofluoric acid
  • NH 4 F ammonium fluoride
  • the glass for anti-glare treatment of the present invention may be anti-glare treated on only one main surface, or may be anti-glare treated on both main surfaces.
  • the glass after antiglare treatment is referred to as “antiglare glass”.
  • the hydrofluoric acid (HF) concentration and the ammonium fluoride (NH 4 F) concentration in the treatment liquid are appropriately selected according to the required antiglare treatment.
  • index of an anti-glare process the gloss value and haze value which were measured about the main surface which performed the anti-glare process are used. The lower the measured gloss value, the more antiglare treatment is performed. The higher the haze value that is an indicator of light diffusibility, the more antiglare treatment is performed.
  • the temperature of the treatment liquid is preferably 10 to 40 ° C.
  • the temperature of the treatment liquid is more preferably 15 to 35 ° C, and further preferably 20 to 30 ° C.
  • the gloss value measured on the main surface subjected to the antiglare treatment is 10 to 90%, and the haze value is 4 to 70%, the effect of the antiglare treatment is sufficiently exhibited. Therefore, the gloss value is preferably 20 to 100%, and the haze value is more preferably 5 to 60%.
  • the preferred gloss value and haze value differ depending on the type of anti-glare treatment.
  • the antiglare treatment is a frost treatment
  • the gloss value is low and the haze value is high.
  • the gloss value is preferably 10 to 60%
  • the haze value is preferably 10 to 60%
  • the gloss value is 20 to 50%
  • the haze value is more preferably 20 to 50%. preferable.
  • the gloss value is relatively high and the haze value is relatively low.
  • the gloss value is preferably 40 to 90%, the haze value is preferably 5 to 40%, the gloss value is 50 to 80%, and the haze value is more preferably 7 to 20%. More preferably, the gloss value is 70 to 80%, and the haze value is 8 to 15%.
  • the composition of the glass substrate is within the range specified in the present invention, and after molding into a plate shape, a surface on which a gas such as SO 2 is blown onto at least one glass main surface
  • a gas such as SO 2
  • the glass for anti-glare treatment of the present invention preferably has a reduced Na concentration on at least one main surface.
  • the Na concentration at the outermost surface depth 0 to 5 nm
  • the average Na concentration at a depth of 100 to 150 nm it can be said that the surface Na concentration is lowered. Therefore, in the glass for antiglare treatment of the present invention, the Na concentration at a depth of 0 to 5 nm is preferably lower than the average Na concentration at a depth of 100 to 150 nm in the Na concentration distribution in the thickness direction of at least one main surface. .
  • the Na concentration of the glass for antiglare treatment is measured with an X-ray photoelectron spectrometer by the method described later in Examples. Further, the Na concentration distribution in the thickness direction of at least one main surface refers to a Na concentration distribution normalized by an average Na concentration at a depth of 100 to 150 nm.
  • the depth at which the Na concentration is 90% or more with respect to the average Na concentration with a depth of 100 to 150 nm is preferably 10 nm or more, more preferably 14 nm or more, More preferably, it is 18 nm or more.
  • slopes of slope1 and slope2 which will be described later, become gentle and the antiglare performance can be easily controlled.
  • the depth at which the Na concentration is 90% or more with respect to the average Na concentration of 100 to 150 nm on at least one main surface is preferably 60 nm or less, more preferably Is 50 nm or less, more preferably 40 nm or less.
  • the depth is 60 nm or less, excessive generation of mirabilite on the surface can be suppressed, and mirabilite adhering to the surface can be easily removed by washing. Further, since the gas used for the surface treatment, for example, SO 2 or SO 3 is not excessively used, the corrosion of the equipment can be suppressed.
  • the antiglare glass of the present invention may further be subjected to chemical strengthening treatment on at least one main surface.
  • the chemical strengthening treatment is performed after the antiglare treatment.
  • the surface subjected to the antiglare treatment may be subjected to a chemical strengthening treatment, or the surface not subjected to the antiglare treatment may be subjected to a chemical strengthening treatment.
  • At least one main surface of the antiglare glass of the present invention is immersed in a molten nitric acid salt at 400 ° C. to 465 ° C. for a predetermined time.
  • a molten nitric acid salt for example, potassium nitrate (KNO 3 ) is used as the nitric acid molten salt.
  • KNO 3 potassium nitrate
  • the time for the chemical strengthening treatment is not particularly limited, but is usually 1 hour to 12 hours.
  • potassium nitrate having a low impurity concentration such as sodium nitrate.
  • the sodium nitrate concentration in potassium nitrate is preferably 3% by mass or less, and more preferably 1% by mass or less.
  • the sodium nitrate concentration in potassium nitrate is preferably 0.05% by mass or more, and 0.1% by mass or more. More preferably.
  • the time of the chemical strengthening treatment is preferably 8 hours or less, and preferably 6 hours or less. If the chemical strengthening treatment time is less than 1 hour, the surface compressive stress layer depth (DOL) is so shallow that it is difficult to obtain a desired strength. Preferably it is 1.5 hours or more, More preferably, it is 2 hours or more.
  • an additive may be appropriately added to potassium nitrate.
  • the antiglare glass of the present invention has good chemical strengthening characteristics when at least one main surface is chemically strengthened.
  • the surface compressive stress layer depth (DOL) on the main surface subjected to the chemical strengthening treatment is 8 ⁇ m or more. It is preferable in order to make it difficult to receive the influence of the damage
  • the DOL on the main surface subjected to the chemical strengthening treatment is preferably 25 ⁇ m or less because cutting properties after chemical strengthening are favorable, more preferably 20 ⁇ m or less, and further preferably 18 ⁇ m or less. preferable.
  • DOL can be evaluated with a commercially available surface stress meter.
  • the surface compressive stress (CS) on the chemically strengthened main surface is 300 MPa or more because the probability of fracture of the glass when falling or bending is lowered, and CS is 500 MPa or more. More preferably, it is more preferably 600 MPa or more, and particularly preferably 700 MPa or more.
  • CS can be evaluated by a commercially available surface stress meter.
  • the use of the antiglare glass of the present invention is a cover glass for mobile devices, it is preferable to perform chemical strengthening treatment on at least one main surface of the antiglare glass.
  • DOL is 12 ⁇ m or more and CS is 550 MPa or more.
  • oxides, hydroxides, carbonates, nitrates, etc. so as to have compositions indicated by mass percentages in the columns from SiO 2 to ZrO 2
  • glass raw materials were appropriately selected and weighed so as to be 900 g as glass.
  • the mixed raw materials were put into a platinum crucible, put into a resistance heating electric furnace at 1600 ° C., melted for 4 hours, defoamed and homogenized.
  • the obtained molten glass was poured into a mold material, held at a temperature of Tg + 30 ° C. for 1 hour, and then cooled to room temperature at a rate of 1 ° C./min to obtain a glass block.
  • This glass block was cut and ground, and finally both surfaces were processed into mirror surfaces to obtain plate-like glass (antiglare processing glass and chemical strengthening glass) having a size of 30 mm ⁇ 30 mm and a thickness of 1 mm. .
  • the glass transition point Tg and T 2 at which the glass viscosity was 10 2 dPa ⁇ s were measured by the following methods. The results are shown in Table 1.
  • Tg TMA method
  • T 2 dissolve the glass sample, using a rotational viscometer to measure the viscosity of the molten glass. The temperature at which the viscosity was 10 2 dPa ⁇ s was defined as T 2 (° C.).
  • Examples 8-1 to 8-3 a plate-shaped glass in an electric furnace, after SO 2 treatment with either SO 2 treatment conditions shown in Table 8, was cooled to room temperature is taken out from the electric furnace.
  • the amount (atomic%) of Na at a depth of 150 nm from the surface of the plate glass was measured with an X-ray photoelectron spectrometer (ESCA5500, manufactured by ULVAC-PHI). Grinding from the surface of the plate glass to 150 nm was sputter-etched with a C60 ion beam.
  • Table 8 shows the depth at which the Na concentration is 90% or more of the average Na concentration with a depth of 100 to 150 nm in the Na concentration distribution in the plate thickness direction of the sheet glass.
  • the antiglare treatment was carried out by the following procedure on the plate-like glass sample obtained by the above procedure.
  • the gloss value (Gloss) and the haze value (Haze) were measured with the following method.
  • ⁇ Gross value> Using a gloss meter (IG-410) manufactured by HORIBA, Ltd., the gloss value of the surface that was not masked with the acid-resistant tape, that is, the surface that was subjected to the antiglare treatment was measured.
  • ⁇ Haze value> The haze value of the glass after antiglare treatment was measured using a haze computer (HZ-2) manufactured by Suga Test Instruments Co., Ltd.
  • the gloss value is almost constant regardless of the HF concentration under a condition where the HF concentration is low to some extent. Also, under conditions where the HF concentration is high to some extent, the gloss value is substantially constant regardless of the HF concentration.
  • FIG. 1 is a graph showing the relationship between the HF concentration in the antiglare treatment solution and the gloss value (%) of the glass after treatment in Example 1 and Comparative Example 1.
  • the absolute value of the slope of the plot is the above slope1.
  • FIG. 2 is a graph showing the relationship between the HF concentration in the antiglare treatment liquid and the haze value (%) of the glass after treatment in Example 1 and Comparative Example 1, and FIG. The absolute value of the slope of the plot is the aforementioned plot2.
  • these slope1 and slope2 are used as indicators of the concentration dependency of the treatment liquid during the antiglare treatment.
  • FIGS. 1 and 2 show that, compared with Comparative Example 1, Example 1 has smaller slope 1 and slope 2 and is less dependent on the concentration of the treatment liquid during the antiglare treatment.
  • the chemical strengthening process was implemented with the following procedure with respect to the plate-shaped glass sample obtained by said procedure.
  • ⁇ Chemical strengthening treatment> The chemical strengthening treatment was performed by immersing the entire glass sample in a potassium nitrate molten salt at 425 ° C. for 150 minutes.
  • the sodium nitrate concentration in the potassium nitrate molten salt was 2.2%.
  • the surface compressive stress layer depth (DOL) and the surface compressive stress (CS) of the glass sample after the chemical strengthening treatment were measured using a surface stress meter (manufactured by Orihara Seisakusho: FSM-6000). *
  • the glass samples of the examples all have smaller values of slope 1 and slope 2 than the glass samples of the comparative examples, and the concentration dependence of the treatment liquid during the anti-glare treatment is low. I found it small.
  • the glass samples of the examples have a DOL of 8 ⁇ m or higher, a CS of 300 MPa or higher, good chemical strengthening characteristics, a Tg of 520 ° C. or higher, and a temperature T 2 at which the viscosity becomes 10 2 dPa ⁇ s. It was 1600 degrees C or less.

Abstract

 防眩処理実施時における、処理液の濃度依存性が低い防眩処理用ガラス、および、それを用いた防眩ガラスの提供。酸化物基準の質量%表示で、SiO 60~75%、Al 2.5~10%、NaO 13~19%、KO 0~1.8%、MgO 0~12%、CaO 0~9%、ZrO 0~4%を含有する、防眩処理用ガラス。

Description

防眩処理用ガラス、および、それを用いた防眩ガラス
 本発明は、フッ酸(HF)およびフッ化アンモニウム(NHF)を含む処理液を用いた、フロスト処理またはアンチグレア処理といった、防眩処理に適したガラスに関する。また、本発明は、上記のガラスを用いた、フロスト処理ガラスまたはアンチグレア処理ガラスといった、防眩ガラスに関する。
 例えば、液晶部材またはLED部材などの表示手段を備える表示装置は、例えば、電子手帳、ノート型パーソナルコンピュータ、タブレットPC、およびスマートフォン等のような小型および/または携帯用の表示装置として、幅広く使用されている。このような表示装置には、該表示装置を保護するため、表面にカバーガラスが設置されている。
 近年の表示装置の高精細化にともない、カバ-ガラスには、そのような高精細化機能を損なわないよう、表示画像に対して高い視認性を有することが求められている。ここで、表示画像に対する視認性を向上させるため、カバーガラスに対して防眩処理を施すことが考えられる。
 強度を高めるために、化学強化処理を施す場合もあるカバーガラスに対する防眩処理としては、化学的防眩処理の使用が好ましい。化学的防眩処理は、フッ酸を含む処理液を用いて、ガラス表面に微細な凹凸を形成して、光拡散性を高めることで防眩作用を発揮させる処理であり、光拡散性の指標であるヘイズ値の高さにより、フロスト処理とアンチグレア処理に分けられる(非特許文献1参照)。
 フロスト処理は、光拡散性の指標であるヘイズ値が高いことを特徴とする。一方、ノングレア処理とも呼ばれる、アンチグレア処理は、解像度を可能な限り高く保ちつつ、光拡散性を付与することで、防眩作用を発揮させるものである。そのため、アンチグレア処理の指標としては、光拡散性の指標であるヘイズ値と、光沢度の指標であるグロス値が併用される。
フッ酸によるガラスの表面処理、保坂 達哉、菊池 典生、表面技術 Vol.44,No.3,1993,p.205-208.
 防眩処理に使用する処理液としては、フッ酸(HF)およびフッ化アンモニウム(NHF)を含む処理液が好ましく使用される。これまで、一般的に知られているソーダライムシリケートガラスの場合、結晶の析出性を高めるために、上記の二成分に加えて、たとえば、フッ化カリウム(KF)を含む三成分の処理液を使用する必要があった。
 また、処理液におけるフッ酸(HF)およびフッ化アンモニウム(NHF)の濃度、特に、フッ酸(HF)濃度により、防眩処理の進行が大きく影響され、例えば、アンチグレア処理の場合、意図したヘイズ値およびグロス値を達成できない場合があった。このような、防眩処理実施時における処理液の濃度依存性の影響があるため、処理液におけるフッ酸(HF)およびフッ化アンモニウム(NHF)の濃度を厳密に管理する必要があった。
 上記した従来技術の問題点を解決するため、本発明は、防眩処理実施時において、グロス値とヘイズ値に対する処理液の濃度依存性が低い防眩処理用ガラス、および、それを用いた防眩ガラスを提供することを目的とする。
 本発明は以下の通りである。
1.酸化物基準の質量%表示で、
SiO   60~75%、
Al   2.5~10%、
NaO   13~19%、
O   0~1.8%、
MgO   0~12%、
CaO   0~9%、
ZrO   0~4%を含有する、
防眩処理用ガラス。
2.さらに、Feを含有し、酸化物基準の質量%表示で、
SiO   64~71%、
Al   2.5~10%、
NaO   13~18%、
O   0~1.8%、
MgO   6~12%、
CaO   0.5~9%、
ZrO   0~3%、
Fe   0~0.05%を含有する、前項1に記載の防眩処理用ガラス。
3.前記防眩処理用ガラスの少なくとも一方の主表面の板厚方向におけるNa濃度分布において、深さ0~5nmのNa濃度が深さ100~150nmの平均Na濃度よりも低く、Na濃度が深さ100~150nmの平均Na濃度の90%以上となる深さが10nm以上である、前項1または2に記載の防眩処理用ガラス。
4.前項1~3のいずれか1項に記載の防眩処理用ガラスの少なくとも一方の主表面に防眩処理を施した防眩ガラス。
5.前記防眩処理がフロスト処理である、前項4に記載の防眩ガラス。
6.前記防眩処理がアンチグレア処理である、前項4に記載の防眩ガラス。
7.前記防眩処理を施した主表面について測定した、グロス値が10~90%であり、ヘイズ値が4~70%である、前項4~6のいずれか1項に記載の防眩ガラス。
8.少なくとも一方の主表面に化学強化処理が施された、前項4~7のいずれか1項に記載の防眩ガラス。
9.前記防眩処理が化学的防眩処理である、前項4~8のいずれか1項に記載の防眩ガラス。
 本発明の防眩処理用ガラスは、フッ酸(HF)およびフッ化アンモニウム(NHF)の二成分のみを含む処理液により、防眩処理を施すことができる。また、防眩処理の実施時において、得られる防眩性能(グロス値およびヘイズ値)に対する処理液の濃度依存性が低いため、処理液におけるフッ酸(HF)およびフッ化アンモニウム(NHF)の濃度を厳密に管理する必要がない。そのため、防眩処理が容易になり、防眩ガラスの生産性が向上する。
図1は、実施例1および比較例1における、防眩処理液中のHF濃度と、処理後のガラスのグロス(Gloss)値(%)との関係を示したグラフである。 図2は、実施例1および比較例1における、防眩処理液中のHF濃度と、処理後のガラスのヘイズ(Haze)値(%)との関係を示したグラフである。 図3は、深さ100~150nmの平均Na濃度で規格化したNa濃度分布の結果を示す。
 以下、本発明の化学的防眩処理用ガラス、および、防眩ガラスについて説明する。
 本発明の防眩処理用ガラスの各成分の組成範囲について説明する。なお、本明細書において、ガラス成分の含有量は、特に断らない限り質量百分率表示を用いて説明する。
 SiOは、ガラス微細構造の中で網目構造を形成する成分として知られており、ガラスを構成する主要成分である。
 SiOの含有量は、60%以上であり、好ましくは62%以上、より好ましくは64%以上である。また、SiOの含有量は、75%以下であり、好ましくは73%以下、より好ましくは71%以下である。SiOの含有量が60%以上であると、ガラスとしての安定性および耐候性の点で優位である。一方、SiOの含有量が75%以下であると、溶解性および成形性の点で優位である。
 Alは、ガラスの耐候性を向上する成分である。また、防眩ガラスにさらに化学強化処理を施す場合に、イオン交換性を向上させる作用があり、特に表面圧縮応力(CS)を向上する作用が大きい。
 Alの含有量は、2.5%以上であり、好ましくは3%以上、より好ましくは4%以上である。また、Alの含有量は、10%以下であり、好ましくは9%以下、より好ましくは8%以下である。
 Alの含有量が2.5%以上であると防眩性能に対する処理液濃度依存性が小さくなり、安定した防眩性能が得られる。また、Alの含有量が3%以上であると、防眩ガラスにさらに化学強化処理を施す場合に、イオン交換により、所望の表面圧縮応力(CS)値が得られ、また、フロート成形時にボトム面からのスズの浸入を抑制する効果を発揮し、スズに接していたボトム面側を化学強化処理した際に、表面圧縮応力(CS)の低下を防止することができる。
 一方、Alの含有量が10%以下であると、高温での溶解性が良好になり、ガラス粘度が10dPa・sとなる温度Tの上昇が防止できる。
 NaOは、ガラスの高温粘性と失透温度を下げ、ガラスの溶解性、成形性を向上させる必須成分である。防眩ガラスにさらに化学強化処理を施す場合に、イオン交換により化学強化処理層を形成させる成分である。
 NaOの含有量は、13%以上であり、好ましくは14%以上、より好ましくは15%以上である。また、NaOの含有量は、19%以下であり、好ましくは18%以下、より好ましくは17%以下である。
 NaOの含有量が13%以上であると、防眩ガラスにさらに化学強化処理を施す場合に、イオン交換により所望の化学強化処理層を形成することができ、表面圧縮応力(CS)が向上する。
 一方、NaOの含有量が19%以下であると、充分な耐候性が得られ、また、防眩ガラスにさらに化学強化処理を施す場合に、化学強化処理後のガラスを反り難くすることができる。
 KOは、防眩ガラスにさらに化学強化処理を施す場合に、イオン交換速度を高め、化学強化処理層を厚くする効果があるため、1.8%以下の範囲で含有してもよい。KOの含有量が1.8%以下であると防眩性能に対する処理液濃度依存性が小さくなり、安定した防眩性能が得られる。KOを含有する場合は、1.5%以下が好ましく、より好ましくは1.3%以下、さらに好ましくは1.0%以下である。
 MgOは、ガラスを安定化させる成分であるため、12%以下の範囲で含有してもよい。12%以下であると、失透の起こりにくさが維持され、防眩ガラスにさらに化学強化処理を施す場合に、充分なイオン交換速度が得られる。MgOの含有量は、好ましくは10%以下、より好ましくは9%以下である。
 MgOを含有する場合、その含有量は、好ましくは2%以上であり、より好ましくは4%以上、さらに好ましくは5%以上であり、最も好ましくは6%以上である。MgOの含有量が2%以上であると、高温での溶解性が良好になり、ガラス粘度が10dPa・sとなる温度Tの上昇が防止できる。
 また、防眩ガラスにさらに化学強化処理を施す場合に、MgOが5%以上であれば十分なイオン交換速度が得られ、所望の厚さの化学強化処理層が得られる。より好ましくは、6%以上であり、さらに好ましくは7%以上である。
 CaOは、ガラスを安定化させる成分であるため、9%以下の範囲で含有してもよい。9%以下であると、防眩ガラスにさらに化学強化処理を施す場合に、充分なイオン交換速度が得られ、所望の厚さの化学強化処理層が得られる。CaOの含有量は、好ましくは8%以下、より好ましくは7%以下であり、さらに好ましくは5%以下である。
 CaOを含有する場合、その含有量は、好ましくは0.1%以上であり、より好ましくは0.3%以上、さらに好ましくは0.5%以上であり、さらに好ましくは1%以上である。また、CaOの含有量が0.1%以上であると、高温での溶解性が良好になり、失透が起こり難くなる。
 ZrOは、一般に化学強化処理の際の表面圧縮応力(CS)を大きくする作用があることが知られている。防眩ガラスにさらに化学強化処理を施す場合に、4%以下の範囲で含有してもよい。ZrOの含有量は、好ましくは3%以下、より好ましくは2%以下である。4%以下であれば失透温度の上昇を防止することができる。
 本発明の化学的防眩処理用ガラスは本質的に上記成分からなるが、本発明の目的を損なわない範囲でその他の成分を含有してもよい。その他の成分としてはたとえば以下がある。
 Bは、必須成分ではないが、高温での溶解性が良好になり、ガラス粘度が10dPa・sとなる温度Tの上昇を防止する効果があるため、2%以下の範囲で含有してもよい。上記の効果を得るためには、B含有量は0.5%以上が好ましく、より好ましくは1%以上である。溶解中のアルカリホウ酸化合物の揮散による組成変動を起こしにくくする場合には、B含有量は1%以下が好ましく、より好ましくは0.5%以下である。
 Feは、必須成分ではないが、自然界および生産ラインのあらゆるところに存在するため、その含有量をゼロにすることが極めて困難な成分である。酸化状態にあるFeが黄色の着色原因となり、還元状態にあるFeOが青色の着色原因となることが知られており、両者のバランスでガラスは、緑色に着色することが知られている。
 Fe含有量が0.5%以下であると、化学強化処理後に、カバーガラスとして使用した際、カバーガラスの下に配置される部材の色味がカバーガラスを通して見たときにも変化しない。Fe含有量は、好ましくは0.1%以下、より好ましくは0.05%以下である。
 この他、本発明の化学的防眩処理用ガラスは、発明の効果を失わない範囲で、例えば、Co、CrおよびMnなどの着色成分、並びにZn、Sr、Ba、Ti、Cl、FおよびSO等を、合計で3%以下含んでもよい。
 次に、本発明の化学的防眩処理用ガラスの特性について説明する。
 本発明の化学的防眩処理用ガラスは、ガラス粘度が10dPa・sとなる温度Tが1600℃以下であることが、高温での溶解性が良好であるため好ましい。本発明の化学的防眩処理用ガラスは、温度Tが1570℃以下であることがより好ましく、1550℃以下であることがさらに好ましい。なお、この温度Tは、回転式粘度計等を用いて測定することができる。
 本発明の防眩処理用ガラスは、ガラス転移点(Tg)が、520℃以上であることが好ましい。Tgが520℃以上であると、防眩ガラスにさらに化学強化処理を施す場合に、化学強化処理時の応力緩和の抑制、熱反りの抑制等の点で有利となる。例えば、化学強化処理時の応力緩和が抑制されるため、高い表面圧縮応力(CS)を得ることができる。Tgが540℃以上であることがより好ましく、550℃以上であることがさらに好ましく、560℃以上であることが最も好ましい。
 本発明の防眩処理用ガラスは、防眩処理用ガラスの主表面に防眩処理を施す際に、処理液の濃度依存性が低い。この点については、後述する実施例におけるslope1およびslope2の数値が小さいことにより確認できる。処理液の濃度依存性が低いため、処理液におけるフッ酸(HF)およびフッ化アンモニウム(NHF)の濃度を厳密に管理する必要がない。そのため、防眩処理が容易になり、防眩ガラスの生産性が向上する。
 また、一般的に知られているソーダライムシリケートガラスの場合、結晶の析出性を高めるために、上記の二成分に加えて、例えば、フッ化カリウム(KF)を含む三成分の処理液を使用する必要があるが、本発明の防眩処理用ガラスは、フッ酸(HF)およびフッ化アンモニウム(NHF)の二成分のみを含む処理液により、防眩処理を施すことができる。なお、これら処理液を用いた防眩処理を化学的防眩処理という。なお、本明細書において、単に「防眩処理」と記載した場合、化学的防眩処理を指す。
 また、処理液には、必要に応じて、フッ化物イオン源、鉱酸若しくは緩衝液、またはそれらの組合せを加えてもよい。
 フッ化物源は、例えば、フッ化アンモニウム、フッ化水素アンモニウム、フッ化ナトリウム、フッ化水素ナトリウム、フッ化カリウムおよびフッ化水素カリウム並びに類似の塩、またはそれらの組合せから選択される塩である。
 鉱酸は、例えば、フッ化水素酸、硫酸、塩酸、硝酸およびリン酸並びに類似の酸、またはそれらの組合せである。また、さらに、グリコール、グリセロール、アルコール、ケトン若しくは界面活性剤、またはそれらの組合せを加えてもよい。
 また、必要に応じて、2種類以上の異なる処理液を用いて2段階以上の化学的防眩処理をおこなってもよい。また、必要に応じて、化学的防眩処理を施す前に、サンドブラストなどの物理的防眩処理を行なってもよい。
 防眩性能は、いずれも処理液に浸漬することでガラスが溶出し、溶出したガラス成分が塩として析出するという機構を経て発現するため、処理液を変更したとしても本発明のガラスを使用することで、同様の効果が得られると期待できる。
 本発明の防眩処理用ガラスに防眩処理を施す場合、本発明の防眩処理用ガラスの少なくとも一方の主表面を、フッ酸(HF)およびフッ化アンモニウム(NHF)を所定濃度含有する処理液に所定時間浸漬すればよい。
 本発明の防眩処理用ガラスは、一方の主表面のみを防眩処理してもよいし、両方の主表面を防眩処理してもよい。なお、本明細書において、防眩処理後のガラスを「防眩ガラス」という。
 処理液におけるフッ酸(HF)濃度およびフッ化アンモニウム(NHF)濃度は、要求される防眩処理に応じて適宜選択する。なお、防眩処理の指標としては、防眩処理を施した主表面について測定した、グロス値およびヘイズ値が用いられる。測定されるグロス値が低いほど、より防眩処理が施されている。光拡散性の指標であるヘイズ値が高いほど、より防眩処理が施されている。
 なお、処理液の温度は、10~40℃が好ましい。処理液の温度を10℃以上とすることにより、防眩処理に要する時間が長くなるのを防ぎ、防眩処理ガラスの製造効率が向上する。処理液の温度を40℃以下とすることにより、処理液が揮発するのを防ぎ、安全面および環境面で問題が生じにくい。処理液の温度は15~35℃がより好ましく、20~30℃がさらに好ましい。
 本発明の防眩ガラスにおいて、防眩処理を施した主表面について測定したグロス値が10~90%であり、ヘイズ値が4~70%であることが、防眩処理の効果が十分発揮されるため好ましく、グロス値が20~100%であり、ヘイズ値が5~60%であることがより好ましい。
 なお、防眩処理の種類により、好ましいグロス値およびヘイズ値が異なる。防眩処理がフロスト処理の場合、グロス値が低く、ヘイズ値が高いことが好ましい。具体的には、グロス値が10~60%であり、ヘイズ値が10~60%であることが好ましく、グロス値が20~50%であり、ヘイズ値が20~50%であることがより好ましい。
 防眩処理がアンチグレア処理の場合、グロス値が比較的高く、ヘイズ値が比較的低いことが好ましい。具体的には、グロス値が40~90%であり、ヘイズ値が5~40%であることが好ましく、グロス値が50~80%であり、ヘイズ値が7~20%であることがより好ましく、グロス値が70~80%であり、ヘイズ値が8~15%であることがさらに好ましい。
 本発明の防眩処理用ガラスの製造方法において、ガラス基板の組成を本発明で特定する範囲となるものとし、板形状に成形後、少なくとも一方のガラス主表面へSO等のガスを吹き付ける表面処理により、表面のNa濃度を低下させ、防眩性能に対する処理液の濃度依存性をさらに小さくすることができる。
 本発明の防眩処理用ガラスは、少なくとも一方の主表面のNa濃度が低下していることが好ましい。最表面(深さ0~5nm)のNa濃度が深さ100~150nmの平均Na濃度よりも低い場合、表面のNa濃度が低下しているといえる。したがって、本発明の防眩処理用ガラスは、少なくとも一方の主表面の板厚方向におけるNa濃度分布において、深さ0~5nmのNa濃度が深さ100~150nmの平均Na濃度より低いことが好ましい。
 防眩処理用ガラスのNa濃度は、実施例において後述する方法により、X線光電子分光装置により測定する。また、少なくとも一方の主表面の板厚方向におけるNa濃度分布とは、深さ100~150nmの平均Na濃度で規格化したNa濃度分布をいう。
 防眩処理用ガラスの板厚方向におけるNa濃度分布において、Na濃度が深さ100~150nmの平均Na濃度に対して90%以上となる深さは、好ましくは10nm以上、より好ましくは14nm以上、さらに好ましくは18nm以上である。該深さが10nm以上であることにより、後述するslope1およびslope2の傾きが緩やかになり、防眩性能を制御しやすくなる。
 防眩処理用ガラスの板厚方向におけるNa濃度分布において、Na濃度が少なくとも一方の主表面における100~150nmの平均Na濃度に対して90%以上となる深さは、好ましくは60nm以下、より好ましくは50nm以下、さらに好ましくは40nm以下である。
 前記深さが60nm以下であることにより、表面で芒硝が過剰に生成することを抑制し、表面に付着する芒硝を洗浄により容易に除去することができる。また、表面処理に使用するガス、例えばSOまたはSOを過剰に使用することがないので、設備の腐食を抑制することができる。
 本発明の防眩ガラスは、さらに、少なくとも一方の主表面に化学強化処理を施してもよい。この場合、防眩処理の実施後に化学強化処理を施す。一方の主表面のみに防眩処理を施している場合、該防眩処理を施した面に化学強化処理を施してもよく、防眩処理を施していない面に化学強化処理を施してもよい。
 本発明の防眩ガラスの少なくとも一方の主表面に化学強化処理を施す場合、上述した防眩ガラスの少なくとも一方の主表面を、400℃~465℃の硝酸溶融塩中に所定時間浸漬する。硝酸溶融塩には、例えば、硝酸カリウム(KNO)が使用される。化学強化処理の時間は、特に限られないが、通常の場合、1時間~12時間程度実施される。
 より高い表面圧縮応力(CS)を得るためには、硝酸ナトリウムなどの不純物濃度が低い硝酸カリウムを用いることが好ましい。具体的には、硝酸カリウム中の硝酸ナトリウム濃度は3質量%以下であることが好ましく、1質量%以下であることがより好ましい。
 ただし、硝酸ナトリウム濃度が低すぎると、化学強化のバッチ間でCSに差が生じやすいため、硝酸カリウム中の硝酸ナトリウム濃度は0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。
 また、化学強化処理の時間が長くなると、応力緩和によりCSが低下するため、化学強化処理の時間は8時間以下が好ましく、6時間以下が好ましい。化学強化処理の時間が1時間未満だと、表面圧縮応力層深さ(DOL)が浅く所望の強度が得られにくい恐れがある。好ましくは1.5時間以上、より好ましくは2時間以上である。なお、化学強化を促進する目的、品質を改善する目的で、硝酸カリウム中に添加物を適宜加えてもよい。
 本発明の防眩ガラスは、少なくとも一方の主表面に化学強化処理を施した場合に、化学強化特性が良好である。本発明の防眩ガラスの少なくとも一方の主表面に化学強化処理を施した場合に、化学強化処理が施された主表面における表面圧縮応力層深さ(DOL)が8μm以上であることが、加工時に生じる傷の影響を受けにくくするために好ましく、DOLが9μm以上であることがより好ましい。
 一方、化学強化処理が施された主表面におけるDOLが25μm以下であることが、化学強化後の切断性が良好であるため好ましく、20μm以下であることがより好ましく、18μm以下であることがさらに好ましい。
 なお、DOLは、市販の表面応力計により評価することができる。
 また、化学強化処理された主表面における表面圧縮応力(CS)が、300MPa以上であることが、落下したとき、もしくは曲げたときのガラスの破壊確率が低下するため好ましく、CSが500MPa以上であることがより好ましく、600MPa以上であることがさらに好ましく、700MPa以上であることが特に好ましい。
 なお、CSは、市販の表面応力計により評価することができる。
 また、本発明の防眩ガラスの用途が、モバイル機器用のカバーガラスの場合、防眩ガラスの少なくとも一方の主表面に化学強化処理を施すことが好ましい。この場合、DOLが12μm以上であり、CSが550MPa以上であることが好ましい。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定されない。   
 表1および2の実施例1~8および比較例1~3について、SiOからZrOまでの欄に質量百分率表示で示す組成になるように、酸化物、水酸化物、炭酸塩または硝酸塩等一般に使用されているガラス原料を適宜選択し、ガラスとして900gとなるように秤量した。ついで、混合した原料を白金製るつぼに入れ、1600℃の抵抗加熱式電気炉に投入し、4時間溶融し、脱泡、均質化した。
 得られた溶融ガラスを型材に流し込み、Tg+30℃の温度で1時間保持した後、1℃/分の速度で室温まで冷却し、ガラスブロックを得た。このガラスブロックを切断、研削し、最後に両面を鏡面に加工して、サイズが30mm×30mm、厚みが1mmである板状ガラス(防眩処理用ガラス、及び、化学強化用ガラス)を得た。ガラス転移点Tg、および、ガラス粘度が10dPa・sとなるTを以下の方法で測定した。その結果を表1に示す。
ガラス転移点Tg:TMA法
温度T:ガラスサンプルを溶解させ、回転式粘度計を用いて、溶融ガラスの粘度を測定する。粘度が10dPa・sとなる温度をT(℃)とした。
 実施例8-1~8-3では、板状ガラスを電気炉内で、表8に示すSO処理条件のいずれかでSO処理後、電気炉から取出して室温まで冷却した。
 板状ガラスの表面から深さ150nmにおけるNaの量(原子%)をX線光電子分光装置(アルバック・ファイ社製、ESCA5500)により測定した。板状ガラスの表面から150nmまでの研削は、C60イオンビームによりスパッタエッチングした。
 深さ100~150nmの平均Na濃度で規格化したNa濃度分布の結果を図3に示す。板状ガラスの板厚方向におけるNa濃度分布において、Na濃度が深さ100~150nmの平均Na濃度に対して90%以上になる深さを表8に示す。
 上記の手順で得られた板状ガラスサンプルに対して、下記手順で防眩処理を実施した。
<step1(洗浄1)>
 イオン交換水で5分間超音波洗浄した後、洗浄液を新たなイオン交換水に置換してから30分間超音波洗浄する。片面を耐酸性テープでマスキングする。
<step2(洗浄2)>
 10質量%のフッ酸(HF)水溶液で15秒間洗浄する。
<step3(化学的防眩処理)>
 フッ酸(HF)およびフッ化アンモニウム(NHF)を表3に示す濃度で含有する各処理液(温度30℃)に3分間浸漬させる。3分間のうち、最初の30秒間は処理液を撹拌し、残り2分30秒間は静置する。
<step4(水洗)>
 流水で10分間洗浄した後、5分間超音波洗浄する。耐酸性テープを剥がす。
 防眩処理後のガラスサンプルについて、グロス値(Gloss)、および、ヘイズ値(Haze)を下記方法で測定した。
<グロス値>
 堀場製作所社製光沢計(IG-410)を用いて、耐酸性テープでマスキングしていなかった面、即ち防眩処理が行われた面のグロス値を測定した。
<ヘイズ値>
 スガ試験機株式会社製ヘイズコンピュータ(HZ-2)を用いて、防眩処理後のガラスのヘイズ値を測定した。
 結果を表4~7、9、10に示す。なお、表4、5、9に示すグロス値(Gloss)および、表6,7、10に示すヘイズ値(Haze)はサンプル数3における平均値である。
 処理液中のHF濃度とグロス値との関係をプロットすると、HF濃度がある程度低い条件では、HF濃度によらず、グロス値はほぼ一定になる。また、HF濃度がある程度高い条件では、HF濃度によらず、グロス値はほぼ一定になる。
 防眩処理実施時における処理液の濃度依存性を評価する際には、これらグロス値がほぼ一定になる領域を除外する必要がある。そのため、表4、5および9に示すグロス値(Gloss)のうち、グロス値(Gloss)が、10以上となり、初めて90を超えた数値となるまでの範囲(表4、5および9中、太線で囲った範囲、以下、本明細書において、「slope設定範囲」という。)について、プロットの傾きの絶対値(slope1)を求める。表6、7および10に示すヘイズ値についても、上記のslope設定範囲(表6、7および10中、太線で囲った範囲)について、プロットの傾きの絶対値(slope2)を求める。
 図1は、実施例1および比較例1における、防眩処理液中のHF濃度と、処理後のガラスのグロス(Gloss)値(%)との関係を示したグラフであり、図1中のプロットの傾きの絶対値が、上記したslope1である。
 図2は、実施例1および比較例1における、防眩処理液中のHF濃度と、処理後のガラスのヘイズ(Haze)値(%)との関係を示したグラフであり、図2中のプロットの傾きの絶対値が、上記したplot2である。
 本発明では、これらslope1およびslope2を、防眩処理実施時における処理液の濃度依存性の指標とする。これらslope1およびslope2の数値が大きいほど、防眩処理実施時における処理液の濃度依存性が大きい。これらslope1およびslope2の数値が小さいほど、防眩処理実施時における処理液の濃度依存性が小さい。
 図1、2には、比較例1に比べて、実施例1は、slope1およびslope2が小さく、防眩処理実施時における処理液の濃度依存性が小さいことを示している。
 また、上記の手順で得られた板状ガラスサンプルに対して、下記手順で化学強化処理を実施した。
<化学強化処理>
 化学強化処理は、425℃の硝酸カリウム溶融塩中に、ガラスサンプル全体を150分間浸漬することにより実施した。硝酸カリウム溶融塩中の硝酸ナトリウム濃度は、2.2%とした。
 化学強化処理後のガラスサンプルの表面圧縮応力層深さ(DOL)、および、表面圧縮応力(CS)を、表面応力計(折原製作所社製:FSM-6000)を用いて測定した。   
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表4~7から明らかなように、実施例のガラスサンプルは、いずれも、比較例のガラスサンプルに比べて、slope1およびslope2の数値が小さく、防眩処理実施時における処理液の濃度依存性が小さいことがわかった。
 また、実施例のガラスサンプルは、DOLが8μm以上、CSが300MPa以上と高く、化学強化特性が良好であり、Tgも520℃以上と高く、粘度が10dPa・sとなる温度Tが1600℃以下であった。
 表8~10から明らかなように、ガラスサンプルの板厚方向におけるNa濃度分布において、深さ100~150nmの平均Na濃度に対して90%以上の濃度になる深さが10nm以上となる場合、slope1およびslope2の傾きが緩やかになり、防眩処理実施時における処理液の濃度依存性が小さくなることがわかった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2014年7月18日付けで出願された日本特許出願(特願2014-148033)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (9)

  1.  酸化物基準の質量%表示で、
    SiO   60~75%、
    Al   2.5~10%、
    NaO   13~19%、
    O   0~1.8%、
    MgO   0~12%、
    CaO   0~9%、
    ZrO   0~4%を含有する、
    防眩処理用ガラス。
  2.  さらに、Feを含有し、酸化物基準の質量%表示で、
    SiO   64~71%、
    Al   2.5~10%、
    NaO   13~18%、
    O   0~1.8%、
    MgO   6~12%、
    CaO   0.5~9%、
    ZrO   0~3%、
    Fe   0~0.05%を含有する、請求項1に記載の防眩処理用ガラス。
  3.  前記防眩処理用ガラスの少なくとも一方の主表面の板厚方向におけるNa濃度分布において、深さ0~5nmのNa濃度が深さ100~150nmの平均Na濃度よりも低く、Na濃度が深さ100~150nmの平均Na濃度の90%以上となる深さが10nm以上である、請求項1または2に記載の防眩処理用ガラス。
  4.  請求項1~3のいずれか1項に記載の防眩処理用ガラスの少なくとも一方の主表面に防眩処理を施した防眩ガラス。
  5.  前記防眩処理がフロスト処理である、請求項4に記載の防眩ガラス。
  6.  前記防眩処理がアンチグレア処理である、請求項4に記載の防眩ガラス。
  7.  前記防眩処理を施した主表面について測定した、グロス値が10~90%であり、ヘイズ値が4~70%である、請求項4~6のいずれか1項に記載の防眩ガラス。
  8.  少なくとも一方の主表面に化学強化処理が施された、請求項4~7のいずれか1項に記載の防眩ガラス。
  9.  前記防眩処理が化学的防眩処理である、請求項4~8のいずれか1項に記載の防眩ガラス。
PCT/JP2015/070202 2014-07-18 2015-07-14 防眩処理用ガラス、および、それを用いた防眩ガラス WO2016010050A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016534458A JPWO2016010050A1 (ja) 2014-07-18 2015-07-14 防眩処理用ガラス、および、それを用いた防眩ガラス
CN201580039387.4A CN106660856A (zh) 2014-07-18 2015-07-14 防眩处理用玻璃和使用其的防眩玻璃
US15/390,939 US20170166473A1 (en) 2014-07-18 2016-12-27 Glass for anti-dazzle processing and anti-dazzle glass using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-148033 2014-07-18
JP2014148033 2014-07-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/390,939 Continuation US20170166473A1 (en) 2014-07-18 2016-12-27 Glass for anti-dazzle processing and anti-dazzle glass using same

Publications (1)

Publication Number Publication Date
WO2016010050A1 true WO2016010050A1 (ja) 2016-01-21

Family

ID=55078540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070202 WO2016010050A1 (ja) 2014-07-18 2015-07-14 防眩処理用ガラス、および、それを用いた防眩ガラス

Country Status (5)

Country Link
US (1) US20170166473A1 (ja)
JP (1) JPWO2016010050A1 (ja)
CN (1) CN106660856A (ja)
TW (1) TW201612122A (ja)
WO (1) WO2016010050A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020525397A (ja) * 2017-06-29 2020-08-27 スーチョワン シューホン オプトエレクトロニック テクノロジー カンパニー リミテッドSichuan Xuhong Optoelectronic Technology Co., Ltd. 化学強化されたアンチグレアガラス、及び防眩処理用ガラス
JP2020132508A (ja) * 2019-02-26 2020-08-31 Agc株式会社 凹凸形状付きガラス基体およびその製造方法
WO2021153469A1 (ja) * 2020-01-30 2021-08-05 Agc株式会社 ガラス基板、表示装置、及びガラス基板の製造方法
JP2022511627A (ja) * 2018-10-18 2022-02-01 コーニング インコーポレイテッド 向上させられたヘッドフォーム衝撃性能を示す強化ガラス物品および同強化ガラス物品を組み込んだ自動車内装システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019100261B4 (de) * 2019-01-08 2020-10-01 Schott Ag Element aus Glas mit verminderter elektrostatischer Aufladung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068225A1 (ja) * 2009-12-04 2011-06-09 旭硝子株式会社 ガラス板およびその製造方法
JP2011148685A (ja) * 2009-12-24 2011-08-04 Avanstrate Inc 強化ガラスおよび強化ガラスの製造方法
WO2012057232A1 (ja) * 2010-10-27 2012-05-03 旭硝子株式会社 ガラス板およびその製造方法
JP2013071878A (ja) * 2011-09-29 2013-04-22 Central Glass Co Ltd 抗菌性ガラス及び該抗菌性ガラスの製造方法
JP2015013777A (ja) * 2013-07-05 2015-01-22 旭硝子株式会社 着色ガラス

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2465315B1 (en) * 2009-08-14 2015-01-07 Nec Corporation Method for detecting a downlink control structure for carrier aggregation
KR20130098877A (ko) * 2010-06-03 2013-09-05 아사히 가라스 가부시키가이샤 유리 기판 및 그의 제조 방법
DE102011009769A1 (de) * 2011-01-28 2012-08-02 Eglass Asia Ltd. Hochfestes Alkali-Alumo-Silikatglas
WO2012124586A1 (ja) * 2011-03-14 2012-09-20 古河電気工業株式会社 直交復調装置
US9446979B2 (en) * 2011-11-02 2016-09-20 Corning Incorporated Method for sparkle control and articles thereof
US9573842B2 (en) * 2011-05-27 2017-02-21 Corning Incorporated Transparent glass substrate having antiglare surface
WO2015088010A1 (ja) * 2013-12-13 2015-06-18 旭硝子株式会社 化学強化用ガラスおよび化学強化ガラス並びに化学強化ガラスの製造方法
JP6435274B2 (ja) * 2014-03-28 2018-12-05 Agc株式会社 化学強化用ガラス及び化学強化ガラス並びに化学強化ガラスの製造方法
WO2015199150A1 (ja) * 2014-06-27 2015-12-30 旭硝子株式会社 ガラス、および、それを用いた化学強化ガラス
JP6109257B2 (ja) * 2015-07-21 2017-04-05 三菱電機株式会社 駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068225A1 (ja) * 2009-12-04 2011-06-09 旭硝子株式会社 ガラス板およびその製造方法
JP2011148685A (ja) * 2009-12-24 2011-08-04 Avanstrate Inc 強化ガラスおよび強化ガラスの製造方法
WO2012057232A1 (ja) * 2010-10-27 2012-05-03 旭硝子株式会社 ガラス板およびその製造方法
JP2013071878A (ja) * 2011-09-29 2013-04-22 Central Glass Co Ltd 抗菌性ガラス及び該抗菌性ガラスの製造方法
JP2015013777A (ja) * 2013-07-05 2015-01-22 旭硝子株式会社 着色ガラス

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020525397A (ja) * 2017-06-29 2020-08-27 スーチョワン シューホン オプトエレクトロニック テクノロジー カンパニー リミテッドSichuan Xuhong Optoelectronic Technology Co., Ltd. 化学強化されたアンチグレアガラス、及び防眩処理用ガラス
JP2022511627A (ja) * 2018-10-18 2022-02-01 コーニング インコーポレイテッド 向上させられたヘッドフォーム衝撃性能を示す強化ガラス物品および同強化ガラス物品を組み込んだ自動車内装システム
US11767257B2 (en) 2018-10-18 2023-09-26 Corning Incorporated Strengthened glass articles exhibiting improved headform impact performance and automotive interior systems incorporating the same
JP7410140B2 (ja) 2018-10-18 2024-01-09 コーニング インコーポレイテッド 向上させられたヘッドフォーム衝撃性能を示す強化ガラス物品および同強化ガラス物品を組み込んだ自動車内装システム
JP2020132508A (ja) * 2019-02-26 2020-08-31 Agc株式会社 凹凸形状付きガラス基体およびその製造方法
JP7305982B2 (ja) 2019-02-26 2023-07-11 Agc株式会社 凹凸形状付きガラス基体およびその製造方法
WO2021153469A1 (ja) * 2020-01-30 2021-08-05 Agc株式会社 ガラス基板、表示装置、及びガラス基板の製造方法

Also Published As

Publication number Publication date
TW201612122A (en) 2016-04-01
CN106660856A (zh) 2017-05-10
JPWO2016010050A1 (ja) 2017-04-27
US20170166473A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP5779296B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用のカバーガラス
KR102628432B1 (ko) 내스크래치성을 갖는 텍스쳐링된 유리-계 물품 및 이를 제조하는 방법
KR102638938B1 (ko) 결정화 유리 및 화학 강화 유리
JP5957097B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用カバーガラス
WO2016010050A1 (ja) 防眩処理用ガラス、および、それを用いた防眩ガラス
JP5977841B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用カバーガラス
JP5255611B2 (ja) ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ
JP6245275B2 (ja) 化学強化用ガラス及び化学強化処理されたガラス
JP5764084B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、ディスプレイ用のカバーガラスおよび強化ガラス物品の製造方法
TWI756171B (zh) 可經由化學強化而具有經控制翹曲之玻璃片材
JP2010202514A (ja) 携帯型液晶ディスプレイ用のガラス基板及びその製造方法並びにこれを用いた携帯型液晶ディスプレイ
JP2010275126A (ja) ディスプレイ装置用ガラス板
JP6607356B2 (ja) ガラス、および、それを用いた化学強化ガラス
CN115231820A (zh) 化学强化用玻璃及化学强化玻璃
CN106132888A (zh) 化学强化用玻璃和化学强化玻璃以及化学强化玻璃的制造方法
TW201630839A (zh) 玻璃及化學強化玻璃
JP2015013777A (ja) 着色ガラス
JP6451495B2 (ja) 化学強化ガラスの製造方法
TWI692458B (zh) 可經由化學強化而具有經控制翹曲之玻璃片材
JP2020158340A (ja) 化学強化ガラスの製造方法、溶融塩組成物及び溶融塩組成物の寿命延長方法
WO2015008760A1 (ja) 化学強化ガラス及び化学強化ガラスの製造方法
WO2016117479A1 (ja) ガラス基材の製造方法
JP2021525208A (ja) リチウム含有ガラスの逆イオン交換処理
JP2022044041A (ja) 結晶化ガラスおよび化学強化ガラス
JP6593227B2 (ja) 化学強化ガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822828

Country of ref document: EP

Kind code of ref document: A1