WO2011152266A1 - 磁気エンコーダ - Google Patents

磁気エンコーダ Download PDF

Info

Publication number
WO2011152266A1
WO2011152266A1 PCT/JP2011/062027 JP2011062027W WO2011152266A1 WO 2011152266 A1 WO2011152266 A1 WO 2011152266A1 JP 2011062027 W JP2011062027 W JP 2011062027W WO 2011152266 A1 WO2011152266 A1 WO 2011152266A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic encoder
track
tracks
encoder
Prior art date
Application number
PCT/JP2011/062027
Other languages
English (en)
French (fr)
Inventor
高橋亨
上野新太郎
デビオル・パスカル
ピーターシュミッツ・シリル
Original Assignee
Ntn株式会社
エヌティエヌ-エスエヌアール・ルルマン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, エヌティエヌ-エスエヌアール・ルルマン filed Critical Ntn株式会社
Priority to EP11789675.3A priority Critical patent/EP2579002B1/en
Priority to CN201180027195.3A priority patent/CN102933940B/zh
Priority to US13/700,833 priority patent/US9250102B2/en
Publication of WO2011152266A1 publication Critical patent/WO2011152266A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means
    • G01D5/24438Special design of the sensing element or scale
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders

Definitions

  • the present invention relates to a magnetic encoder used for rotation detection, rotation angle detection, and linear movement detection of various devices.
  • Patent Documents 1 and 2 techniques for obtaining interpolated pulse signals using magnetic sensors arranged in a line are disclosed (Patent Documents 1 and 2).
  • a technique for calculating an absolute angle using a magnetic drum having a different number of magnetic pole pairs per rotation and a plurality of magnetic sensors is disclosed (Patent Document 3).
  • An angle detection device that detects an absolute angle based on the phase difference between two different magnetic encoders using the magnetic sensor in Patent Documents 1 and 2 is disclosed (Patent Document 4).
  • a magnetic encoder used in Patent Document 4 is disclosed in which a gap is provided between adjacent magnetic tracks in a double row (Patent Document 5).
  • a magnetic encoder used in Patent Document 4 is disclosed in which a magnetic material is provided between adjacent magnetic tracks in a double row (Patent Document 6).
  • a technique for manufacturing a magnetic encoder having multiple magnetic poles is disclosed (Patent Document 7).
  • a magnetic encoder used in Patent Documents 1 and 2 discloses a technique of a double row track having different phases (Patent
  • JP 2001-518608 A Special Table 2002-541485 JP-A-6-58766 JP 2008-233069 A JP 2008-267867 A JP 2008-267868 A Japanese Patent No. 4024472 JP 2002-512687 A
  • a double-row magnetic encoder When a double-row magnetic encoder is used to achieve a rotation sensor or angle sensor for controlling a rotating device, if the interval between the plurality of magnetic tracks decreases, the magnetic interference between the magnetic tracks increases. There is a problem that detection accuracy deteriorates. In particular, when the double-row magnetic tracks are arranged close to each other and when the magnetic sensor is arranged close to the boundary line of the double-row magnetic tracks, the influence of magnetic interference becomes large. Further, when such a sensor is mounted on a device, it is necessary to secure a safe air gap between the magnetic encoder that is a rotating member and the sensor that is a fixed member, and to prevent a failure due to contact or the like.
  • Magnetic interference can be reduced by providing a separation band made of a magnetic material between double-row magnetic tracks.
  • the structure of the magnetic encoder becomes complicated, there is a problem that the manufacturing cost increases.
  • a part of the magnetic field emitted from the magnetic encoder is short-circuited by the magnetic material, so that the magnetic force reaching the sensor becomes weak.
  • the magnetic interference is reduced.
  • the size of the detection device cannot be made compact.
  • the magnetic pattern formed on the double-row magnetic track is formed with the clearest possible boundary without being affected by each other, and an accurate magnetic field signal can be realized even at the detection position of the sensor. There was a need to be.
  • FIG. 21A is a longitudinal sectional view of a conventional radial type magnetic encoder 50
  • FIG. 21B is a longitudinal sectional view of a conventional axial type magnetic encoder 50
  • FIG. 22A shows the magnetization state of the magnetic track surface when a desired magnetic pattern is magnetized on the magnetic encoder 50.
  • the detected magnetic pattern read by the sensor is as shown in FIG.
  • the magnetized state in the vicinity of the boundary between the tracks 51 and 52 in the detected magnetic pattern changes gently.
  • the accuracy of the magnetic sensor information obtained by reading the signals of the respective tracks 51 and 52 deteriorates.
  • FIG. 23A is a longitudinal sectional view of a conventional radial type magnetic encoder 53
  • FIG. 23B is a longitudinal sectional view of a conventional axial type magnetic encoder 53
  • FIG. FIGS. 24A, 24B, and 25 show the concept of the double row magnetic encoder 53 described in Patent Document 4 and the error.
  • the number of magnetic pole pairs of the Ch1 and Ch2 tracks is 8 and 7, respectively, and the magnetic encoder is magnetized in an ideal state, that is, in an error-free state.
  • the air gap is 1 mm.
  • 24A and 24B show the magnetic patterns of the Ch1 and Ch2 tracks, and there is no error because it is an ideal state.
  • the detected magnetic pattern acting on the actual sensor position becomes an error pattern including an error due to the magnetic interference between the tracks due to the different number of pole pairs.
  • This error pattern means a deviation from the ideal magnetized magnetic pattern position.
  • the Ch1 track is affected by the magnetic interference of the magnetic pattern of the Ch2 track.
  • the Ch1 track is the length of the apparent magnetic pole pair (acting on the actual sensor position).
  • the error is in the + direction. This error increases up to about 90 degrees, but on the other hand, the error decreases from 90 to 180 degrees, and the error becomes zero near 180 degrees. This is because the magnetic patterns of the Ch1 and Ch2 tracks are reversed by gradually shifting, and the length of the magnetic pole pair of the Ch1 track is apparently reduced.
  • the error pattern for one rotation has a sine wave shape, and the error pattern of the Ch2 track has characteristics obtained by inverting the error pattern on the Ch1 track side.
  • the air gap with the magnetic sensor cannot be freely adjusted, and the mounting method is limited.
  • the error is reduced by moving the double-tracks away from each other or inserting a magnetic material between adjacent tracks.
  • the magnetic encoder cannot be made compact.
  • a magnetic encoder having a magnetic material between adjacent tracks is difficult to manufacture and increases the manufacturing cost. -Although it may be possible to increase the distance between the magnetic sensors that read the signals of the double row track, the detection device cannot be made compact.
  • the object of the present invention is to have a double-row magnetic encoder track, and even if magnetic interference occurs between the tracks, the sensor can detect an equal pitch signal for rotation detection with high accuracy, and a desired air gap. It is another object of the present invention to provide a magnetic encoder capable of reducing the size and simplifying the structure.
  • the magnetic encoder according to the first configuration of the present invention integrally includes a plurality of adjacent circular magnetic encoder tracks arranged side by side, and at least one magnetic encoder track generates an equal pitch signal for detecting rotation.
  • the magnetic encoder is formed with a magnetized magnetic pattern in which N poles and S poles are alternately arranged, and is used across an air gap with respect to a sensor that reads a magnetic signal of each magnetic encoder track.
  • the magnetic encoder track is formed such that the detected magnetic patterns acting on the position of the sensor have the same pitch due to the interference of the magnetism of the magnetic encoder tracks in both rows.
  • the at least one magnetic encoder track is formed so that the detected magnetic patterns acting on the position of the sensor have the same pitch due to the interference of the magnetism of the magnetic encoder tracks in both rows. For this reason, the magnetic pattern to be detected at the actual detection position of the sensor can be obtained without complicating the structure of the magnetic encoder by making use of the magnetic interference between the magnetic encoder tracks of both rows after making the desired air gap.
  • the pitch can be made equal. Therefore, while having a double-row magnetic encoder track, it is possible to accurately detect an equal pitch signal for rotation detection by the sensor.
  • it is no longer necessary to separate the magnetic encoder tracks of the double row or interpose the magnetic material between the tracks so the structure of the magnetic encoder can be simplified, the manufacturing cost can be reduced, and the magnetic encoder can be made compact. Can be achieved.
  • another magnetic encoder track adjacent to the one magnetic encoder track is formed with a magnetized magnetic pattern indicating a rotation reference position.
  • the pattern has the same number of magnetic poles as that of the one magnetic encoder track for rotation detection, and has a phase shift with respect to the magnetized magnetic pattern of the one magnetic encoder track.
  • the rotation reference position may be indicated by using a phase shift with respect to the magnetized magnetic pattern of the one magnetic encoder track.
  • another magnetic encoder track adjacent to the one magnetic encoder track forms an N-pole or S-pole magnetic pole at a specific circumferential position, and other circumferential positions. May be formed as a magnetized magnetic pattern indicating the rotation reference position.
  • another magnetic encoder track adjacent to the one magnetic encoder track forms an N-pole or S-pole magnetic pole at a specific circumferential position, and other circumferential positions.
  • a magnetic pole opposite to the magnetic pole in the specific circumferential direction may be formed to form a magnetized magnetic pattern indicating the rotation reference position.
  • the magnetic encoder tracks may be formed so that each track width in the arrangement direction of the magnetic encoder tracks is 1 mm or more and 5 mm or less.
  • the “alignment direction” means a direction parallel to the rotation axis of the magnetic encoder or a direction orthogonal to the rotation axis of the magnetic encoder.
  • the detection part of the sensor is arranged on each magnetic encoder track separated from the boundary line of the adjacent magnetic encoder tracks of the double row to each magnetic encoder track side of 0.5 mm or more and 3 mm or less. It may be used with an air gap larger than 3 mm and smaller than 4 mm.
  • a sensor detection unit is arranged on each magnetic encoder track of 0.5 mm or more and 3 mm or less from the boundary line, and when the air gap is 0.3 mm or less, it contacts a magnetic encoder track formed of, for example, rubber or resin.
  • the surface of the magnetic encoder track may be damaged. Further, foreign matter is likely to be caught between the magnetic encoder track and the sensor, and the surface of the magnetic encoder track may be damaged.
  • the air gap is 4 mm or more, a decrease in magnetization intensity is inevitable, and it becomes difficult to properly control the magnetic interference between the magnetic encoder tracks in both rows, and an accurate magnetic field signal can be obtained at the detection position of the sensor. It becomes difficult to generate.
  • the magnetic encoder track is composed of any one of a sintered magnet of a rare earth magnet, a magnet in which rare earth magnet powder is mixed with rubber or resin, a sintered ferrite magnet, a magnet in which ferrite powder is mixed with rubber or resin,
  • the thickness of this magnetic encoder track may be greater than 0.5 mm and less than 4 mm.
  • the demagnetizing field inside the formed magnetic encoder track becomes large. For this reason, irreversible demagnetization is likely to occur during high temperature use, and the reliability as a magnet is reduced.
  • the thickness of the magnetic encoder track is 4 mm or more, since the distance between the magnetizing heads is increased, it is difficult to cause a sufficient magnetic flux to flow through the magnetic encoder track to be magnetized. According to this configuration, since the thickness of the magnetic encoder track is larger than 0.5 mm, the demagnetizing field inside the formed magnetic encoder track is reduced, and irreversible demagnetization is unlikely to occur during high temperature use, and the reliability as a magnet is improved. Can be improved.
  • the length L of each magnetic pole in the circumferential direction of the magnetized magnetic pattern in the one magnetic encoder track is not less than 0.3 mm and not more than 5 mm, and the relationship between each track width W and W> L in the arrangement direction of each magnetic encoder track It is good also as what is materialized. By setting W> L, it is possible to reduce the influence of the error of magnetic interference acting between the double-row magnetic encoder tracks. Further, if the length L of each magnetic pole is 0.3 mm or more and 5 mm or less, the magnetic signal of each magnetic encoder track can be detected sufficiently and sufficiently.
  • Adjacent magnetic encoder tracks in the double row are formed with magnetized magnetic patterns having different numbers of magnetic poles, and the at least one magnetic encoder track is located at the position of the sensor due to the interference of the magnetism of the magnetic encoder tracks in both rows.
  • the magnetized magnetic patterns may be formed at unequal pitches so that the acting magnetic patterns to be detected are at equal pitches.
  • the detected magnetic pattern acting on the actual sensor position becomes an error pattern including an error due to the magnetic interference between the tracks due to the different number of magnetic poles.
  • the at least one magnetic encoder track has a non-magnetized magnetic pattern so that the detected magnetic pattern acting on the position of the sensor has an equal pitch due to the interference of the magnetism of the magnetic encoder tracks in both rows. It is formed at an equal pitch.
  • the magnetic interference between the magnetic encoder tracks cancels the error pattern and reduces the error.
  • the detected magnetic pattern acting on the actual sensor position can be brought close to an ideal one without error. Therefore, while having a double-row magnetic encoder track, it is possible to accurately detect an equal pitch signal for rotation detection by the sensor.
  • a magnetic material may be interposed between adjacent magnetic encoder tracks in the double row.
  • the double-row magnetic encoder tracks may be provided on a mandrel, and these magnetic encoder tracks may be disposed with a gap between the double-row adjacent magnetic encoder tracks. In these cases, the effect of the magnetic interference between the magnetic encoder tracks canceling out the error pattern can be further enhanced.
  • the track width in the arrangement direction of the magnetic encoder tracks in the one magnetic encoder track may be different from the track width in another magnetic encoder track adjacent to the one magnetic encoder track.
  • the magnetic encoder since the arrangement of the sensors becomes free, the magnetic encoder can be easily incorporated into the device.
  • the two detection surfaces of adjacent magnetic encoder tracks in the double row may not be on the same plane.
  • a magnetic encoder integrally includes double-row adjacent linear magnetic encoder tracks, and generates an equal pitch signal for speed detection in at least one magnetic encoder track.
  • the magnetic encoder is formed with a magnetized magnetic pattern in which N poles and S poles are alternately arranged, and is used across an air gap with respect to a sensor that reads a magnetic signal of each magnetic encoder track.
  • the two magnetic encoder tracks are formed such that the detected magnetic patterns acting on the position of the sensor have the same pitch due to the interference of the magnetism of the magnetic encoder tracks in both rows.
  • At least one magnetic encoder track has an equal pitch of detected magnetic patterns that act on the position of the sensor due to the interference of the magnetism of the magnetic encoder tracks of both rows. It is formed to become. For this reason, the magnetic pattern to be detected at the actual detection position of the sensor can be obtained without complicating the structure of the magnetic encoder by making use of the magnetic interference between the magnetic encoder tracks of both rows after making the desired air gap.
  • the pitch can be made equal. Therefore, it is possible to accurately detect the equal pitch signal by the sensor while having the double-row magnetic encoder track.
  • This configuration eliminates the need to separate the double-row magnetic encoder tracks or interpose a magnetic material between the tracks, simplifying the structure of the magnetic encoder, reducing manufacturing costs, and making it more compact Can be achieved.
  • (A) is a figure which shows the magnetization magnetic pattern in the track
  • (B) is a figure which shows the to-be-detected magnetic pattern in the desired air gap in the magnetic encoder.
  • (A) is a longitudinal sectional view of a radial type magnetic encoder according to a second embodiment of the present invention, and (B) is a longitudinal sectional view of an axial type magnetic encoder.
  • (A) is a longitudinal sectional view of a radial type magnetic encoder according to a third embodiment of the present invention, and (B) is a longitudinal sectional view of an axial type magnetic encoder. It is a figure which shows the magnetization magnetic pattern of the magnetic encoder.
  • FIGS. 1-10 are figures which show the various examples of the magnetization magnetic pattern of the magnetic encoder which concerns on 4th Embodiment of this invention. It is a figure which shows the example of the magnetization magnetic pattern of the magnetic encoder which concerns on 5th Embodiment of this invention. It is a figure which shows the example of the magnetization magnetic pattern of the magnetic encoder which concerns on 6th Embodiment of this invention.
  • (A) is a longitudinal sectional view of a radial type magnetic encoder according to a seventh embodiment of the present invention
  • (A) is a diagram showing a magnetized magnetic pattern and its error pattern of one magnetic encoder track of the magnetic encoder
  • (B) is a magnetized magnetic pattern and error of the other magnetic encoder track of the magnetic encoder. It is a figure which shows a pattern.
  • (A) is a longitudinal sectional view of a radial type magnetic encoder according to an eighth embodiment of the present invention
  • (B) is a longitudinal sectional view of an axial type magnetic encoder.
  • (A) is a longitudinal sectional view of a radial type magnetic encoder according to a ninth embodiment of the present invention
  • (B) is a longitudinal sectional view of an axial type magnetic encoder.
  • (A) is a longitudinal sectional view of a radial type magnetic encoder according to a tenth embodiment of the present invention
  • (B) is a longitudinal sectional view of an axial type magnetic encoder.
  • (A) is a longitudinal sectional view of a radial type magnetic encoder according to an eleventh embodiment of the present invention
  • (B) is a longitudinal sectional view of an axial type magnetic encoder.
  • (A) is a longitudinal sectional view of a radial type magnetic encoder according to a twelfth embodiment of the present invention
  • (B) is a longitudinal sectional view of an axial type magnetic encoder.
  • (A) is a longitudinal sectional view of a radial type magnetic encoder according to a thirteenth embodiment of the present invention
  • (B) is a longitudinal sectional view of an axial type magnetic encoder.
  • (A) is a longitudinal sectional view of a radial type magnetic encoder according to a fourteenth embodiment of the present invention
  • (B) is a longitudinal sectional view of an axial type magnetic encoder. It is a figure which shows the example of the magnetization magnetic pattern of the magnetic encoder which concerns on 15th Embodiment of this invention. It is a figure which shows the example of the magnetization magnetic pattern of the magnetic encoder which concerns on 16th Embodiment of this invention.
  • (A) is a longitudinal sectional view of a conventional radial type magnetic encoder
  • (B) is a longitudinal sectional view of a conventional axial type magnetic encoder.
  • (A) The figure which shows the example of the magnetized state of the magnetic track surface when a desired magnetic pattern is magnetized to a magnetic encoder
  • (B) is a figure which shows the example of the magnetic state which a sensor reads in the position of a desired air gap It is.
  • (A) is a longitudinal sectional view of a conventional radial type magnetic encoder
  • (B) is a longitudinal sectional view of a conventional axial type magnetic encoder.
  • (A) is a diagram showing a magnetized magnetic pattern of one magnetic encoder track of the magnetic encoder
  • (B) is a diagram showing a magnetized magnetic pattern of the other magnetic encoder track of the magnetic encoder. It is a figure which shows the magnetization magnetic pattern and its error pattern of the magnetic encoder.
  • the magnetic encoder according to this embodiment is applied to, for example, a magnetic encoder used for rotation detection, rotation angle detection, and linear movement detection of various devices.
  • the magnetic encoder ME integrally includes annular magnetic encoder tracks 1 and 2 arranged side by side in double rows. These magnetic encoder tracks 1 and 2 are arranged side by side concentrically (FIG. 1A) adjacent to each other on the surface of a disk-shaped (FIG. 1B) or cylindrical cored bar 3.
  • a magnetic encoder ME obtained by magnetizing an axial-type annular magnetic body is press-fitted with a cylindrical portion of the cored bar 3 on an outer peripheral surface Da of a bearing rotating wheel or the like. Installed.
  • the magnetic encoder tracks 1 and 2 are, for example, rubber, plastic, and sintered body containing magnetic powder, and become magnetized by magnetizing, such as rubber magnet, plastic magnet, and sintered magnet, respectively.
  • annular magnetic body is not limited to an axial type, For example, a radial type as shown to FIG. 1 (A) may be sufficient.
  • the magnetic encoder tracks 1 and 2 are composed of magnets formed by sintering ferrite (so-called ferrite sintered magnets) or magnets formed by mixing ferrite magnetic powder into rubber or resin.
  • the magnet material may be composed of rare earth magnets, but ferrite is more desirable under normal use conditions because it is easy to magnetize and inexpensive.
  • the magnetic encoder tracks 1 and 2 are alternately magnetized with N magnetic poles and S magnetic poles along the circumferential direction.
  • this magnetic encoder ME has a detection surface larger than 0.3 mm and 4 mm with respect to the sensors Sa and Sb that read the magnetic signals of the magnetic encoder tracks 1 and 2. Less than the air gap Gp is used.
  • the magnetic encoder tracks 1 and 2 are separated from the boundary line Lk of the adjacent magnetic encoder tracks 1 and 2 in the double row by 0.5 to 3 mm.
  • the detection units of the sensors Sa and Sb are arranged on the magnetic encoder tracks 1 and 2.
  • the detection units of the sensors Sa and Sb are arranged at sensor reading positions P1 and P2 indicated by dotted lines in FIGS.
  • the track width W of each of the magnetic encoder tracks 1 and 2 is 1 mm or more and 5 mm or less, and the length L of each magnetic pole is 0.3 mm or more and 5 mm or less.
  • Each track width W is a track width in the track arrangement direction orthogonal to the rotation direction of the magnetic encoder ME.
  • the length L of each magnetic pole is the length of each magnetic pole in the magnetic pattern along the rotation direction of the magnetic encoder ME. It is desirable that the track width W and the length L of each magnetic pole satisfy the relationship of W> L.
  • the thickness t1 of the magnetic encoder tracks 1 and 2 is set to be larger than 0.5 mm and smaller than 4 mm.
  • FIG. 22A shows a magnetized magnetic pattern on the surface of the magnetic encoder
  • FIG. 2B shows an example of a detected magnetic pattern detected at a position where the detectors of the actual sensors Sa and Sb are arranged. Yes.
  • the magnetic encoder ME integrally includes annular magnetic encoder tracks 1 and 2 arranged side by side in a double row (two rows in this example). Magnetized magnetic patterns Pa and Pb in which N poles and S poles are alternately arranged are formed on the tracks 1 and 2.
  • the AB track that is one magnetic encoder track 1 is used to generate an equal pitch signal for rotation detection
  • the Z track that is the other magnetic encoder track 2 is used to generate an origin signal. used.
  • the Z track magnetized magnetic pattern Pb has the same number of magnetic poles as the AB track and has a phase shift with respect to the magnetized magnetic pattern Pa of the AB track.
  • the magnetic pole width L21 on the AB track side, L and L22 are equal to each other and are equal pitch magnetic patterns for generating equal pitch signals for rotation detection.
  • the magnetization magnetic pattern Pa is formed so that the magnetization magnetic pattern is formed with an unequal pitch relationship of L12 ⁇ L ⁇ L11, and the detected magnetic pattern Psa has the same pitch.
  • the magnetic pitch is modulated.
  • the magnetized magnetic pattern is formed so that L11 ′ ⁇ L21 ′ ⁇ L and L ⁇ L22 ′ ⁇ L12 ′, and the magnetic pole width along the circumferential direction of each magnetic pole is more narrow.
  • the magnetized magnetic pattern Pb is modulated so that it is narrower and wider in a wide part.
  • a sensor Sa facing the AB track with an air gap Gp between them is an A-phase and B-phase pulse signal having a phase difference of 90 ° from the magnetic field signal detected by the magnetic sensor element. Is output.
  • a sensor Sb (FIGS. 1A and 1B) facing the Z track with an air gap Gp outputs a Z-phase pulse signal indicating the origin position from the magnetic field signal detected by the magnetic sensor element.
  • the AB track is formed so that the detected magnetic patterns Psa that act on the position of the sensor Sa by the interference of the magnets of the AB track and the Z track in both rows have an equal pitch. ing.
  • the desired air gap Gp is used, and the magnetic interference between the magnetic encoder tracks 1 and 2 in both rows is used to complicate the structure of the magnetic encoder ME without complicating the structure of the magnetic encoder ME.
  • the detected magnetic pattern Psa can be made to have an equal pitch. While having the double-row magnetic encoder tracks 1 and 2, the sensor Sa can detect the equal pitch signal for rotation detection with high accuracy.
  • This configuration eliminates the need to separate the double-row magnetic encoder tracks 1 and 2 from each other and interpose a magnetic material between the tracks 1 and 2, thereby simplifying the structure of the magnetic encoder ME and reducing the manufacturing cost.
  • the magnetic encoder ME can be made compact.
  • the magnetic encoder tracks 1 and 2 have a track width W of 1 mm or more and 5 mm or less. It becomes possible to detect 1 and 2 magnetic signals, respectively.
  • the thickness t1 of the magnetic encoder tracks 1 and 2 that is, the thickness of the magnet portion is 0.5 mm or less
  • the demagnetizing field inside the formed magnetic encoder track becomes large. For this reason, irreversible demagnetization is likely to occur during high temperature use, and the reliability as a magnet is reduced.
  • the thickness t1 of the magnetic encoder tracks 1 and 2 is 4 mm or more, when magnetic flux is penetrated from the front surface to the back surface of the encoder, it is difficult to flow a sufficient magnetic flux to the magnetic encoder track to be magnetized.
  • the thickness t1 of the magnetic encoder tracks 1 and 2 is larger than 0.5 mm, the demagnetizing field inside the formed magnetic encoder track is reduced, and irreversible demagnetization hardly occurs when used at high temperatures. Reliability can be improved. Furthermore, since the thickness t1 of the magnetic encoder tracks 1 and 2 is less than 4 mm, a sufficient magnetic flux can be passed through the magnetic encoder tracks 1 and 2 to be magnetized. It is desirable that the length L of each magnetic pole is 0.3 mm or more and 5 mm or less, and that each track width W and each magnetic pole length L satisfy the relationship W> L. It is possible to reduce the influence of errors of magnetic interference acting on the. Further, if the length L of each magnetic pole is 0.3 mm or more and 5 mm or less, the magnetic signals of the magnetic encoder tracks 1 and 2 can be detected sufficiently and sufficiently.
  • FIGS. 3A and 3B show a second embodiment.
  • this magnetic encoder is composed of magnetic encoder tracks 1 and 2 arranged side by side in two rows (in this example, two rows). Of these, the track width W of one magnetic encoder track 1 is different from the track width W of the other magnetic encoder track 2.
  • the magnetic encoder ME and the sensor can be easily incorporated into various devices.
  • a magnetic encoder ME integrally including three or more adjacent magnetic encoder tracks may be used.
  • a plurality of Z tracks may be provided. In this case, more complex rotation detection can be performed using the obtained signal.
  • FIGS. 6 (A) and 6 (B) in the magnetic encoder ME having the magnetic encoder tracks 1 and 2 in double rows (two rows in this example), only in a specific circumferential position on the Z track, One pole, for example, an N pole is formed. Other circumferential positions on the Z track may be non-magnetized. As shown in FIG. 6C, for example, an N pole as one magnetic pole is formed only at a specific circumferential position on the Z track, and the specific circumferential position is set at the other circumferential position. A magnetic pole opposite to the magnetic pole may be formed.
  • the length L of the magnetic pole may be varied at every constant angle (180 degrees in this example) of the magnetic encoder ME, and the interval between the position detection signals may be different.
  • the reference signal is at least once every 180 degrees. According to this magnetic encoder ME, since the reference signal is obtained every time the interval of the position detection signal changes, complicated position detection can be easily obtained.
  • the boundary line Lm of the magnetization distribution that is, the boundary line Lm of each magnetic pole is not perpendicular to the rotation direction of the magnetic encoder ME. It is good also as what has fixed inclination
  • the magnetic encoder MEa is an annular magnetic encoder arranged in multiple rows adjacent to each other and formed with magnetized magnetic patterns having different numbers of magnetic poles. Tracks 1 and 2 are integrated.
  • the magnetic encoder MEa is used with an air gap Gp of 1 mm, for example.
  • Gp the number of magnetic pole pairs of the Ch1 track in the double-row magnetic encoder tracks 1 and 2 is set to 8
  • the number of magnetic pole pairs of the Ch2 track is set to 7.
  • the Ch1 track in FIG. 11A is obtained by inverting the error pattern of the Ch1 track in FIG. 25, and the Ch2 track in FIG.
  • the error pattern of the Ch2 track is inverted.
  • each error pattern is periodic.
  • the magnetism of the Ch1 and Ch2 tracks interferes to cancel the error pattern and eliminate the error.
  • the detected magnetic patterns measured at the positions of the 1 mm sensors Sa and Sb which are the desired air gap Gp, have an equal pitch.
  • the error pattern is periodic.
  • the magnetic fields of the tracks 1 and 2 in both rows interfere with each other to cancel the error pattern and eliminate the error. Therefore, the magnetic encoder MEa can be made compact without complicating the structure of the magnetic encoder MEa, and the accuracy can be improved. The magnetic encoder MEa can be obtained.
  • the air gap Gp is 1 mm and the number of magnetic pole pairs of the Ch1 and Ch2 tracks is 8 and 7, respectively.
  • the present invention is not necessarily limited to these numerical values. That is, the magnetic encoder tracks 1 and 2 may be magnetized so as to cancel out the error pattern and error pattern of magnetic interference when a desired air gap Gp, a desired number of magnetic pole pairs is selected. For example, when the number of magnetic pole pairs of the Ch1 and Ch2 tracks is 32 and 28, respectively, the number of magnetic pole pairs is 8 and 7 every 90 °. In this case, since the above error pattern is repeated four times per rotation, the magnetic pattern to be modulated may be set to four times. Further, it is not always necessary to modulate both the magnetic encoder tracks 1 and 2 in both rows, and only one of the magnetic encoder tracks 1 or 2 that requires particularly high accuracy may be modulated.
  • the air gap Gp is an air gap other than 1 mm
  • the larger the air gap Gp the larger the magnetic pattern to be modulated.
  • the magnetic encoder MEa can be realized with a desired air gap Gp, the degree of design freedom increases. Therefore, restrictions on incorporation of the magnetic encoder MEa and the sensors Sa and Sb into the target device and the like are relaxed, and versatility of the magnetic encoder MEa can be improved. Since it is not necessary to keep the double-row magnetic encoder tracks 1 and 2 away from each other or to insert a magnetic material or the like between the tracks 1 and 2, the structure of the magnetic encoder MEa can be simplified and the manufacturing cost can be reduced. Since it is not necessary to increase the distance between the sensors Sa and Sb that read the signals of the double-row magnetic encoder tracks 1 and 2, it is possible to make the entire apparatus including the magnetic encoder MEa and the sensors Sa and Sb compact.
  • a structure in which magnetic spacers 12 are arranged between the double-row magnetic encoder tracks 1 and 2 may be employed. Since the magnetic spacer 12 shorts the leakage magnetic field from the magnetic encoder tracks 1 and 2, mutual magnetic interference is reduced, and a more accurate double-row magnetic encoder MEa can be realized.
  • a structure in which a groove V is provided between the double-row magnetic encoder tracks 1 and 2 may be employed.
  • the groove V is formed in a V-shaped cross section that becomes narrower toward the groove bottom. This groove V further reduces the mutual influence in the magnetizing process and the magnetic interference in detection by the sensors Sa and Sb (FIGS. 9A and 9B).
  • a magnetic encoder MEa can be realized.
  • the groove V is formed in a V-shaped cross section that becomes narrower toward the groove bottom, the surfaces of the adjacent magnetic encoder tracks 1 and 2 can be reliably separated from each other. As a result, a double-row magnetic encoder MEa can be realized with higher accuracy than those shown in FIGS.
  • the shape of the groove V is not limited to a V-shaped cross section, and may be a U-shaped cross section.
  • annular member 13 formed of a non-magnetized region may be provided between the double-row magnetic encoder tracks 1 and 2.
  • the annular member 13 can reliably separate the surfaces of the adjacent magnetic encoder tracks 1 and 2 from each other. As a result, a double-row magnetic encoder MEa with higher accuracy than that of FIG. 9 can be realized.
  • the track width W of one magnetic encoder track 1 may be different from the track width W of the other magnetic encoder track 2.
  • the magnetic encoder MEa and the sensor can be easily incorporated into various devices.
  • the track surface of one magnetic encoder track 1 may not be flush with the track surface of the other magnetic encoder track 2.
  • the track surface 1a of the magnetic encoder track 1 on the axial front end side is formed to be an inclined surface in which the track thickness t1 becomes thinner toward the front end in the axial direction.
  • the track surface 1a of the magnetic encoder track 1 on the outer diameter side is formed to be an inclined surface where the track thickness t1 becomes thinner toward the outer diameter side.
  • the entire magnetic encoder track 2 on the axial base end side is formed thinner than the magnetic encoder track 1 on the axial front end side.
  • the entire track of the magnetic encoder track 2 on the inner diameter side is formed thinner than the magnetic encoder track 1 on the outer diameter side.
  • the detection surfaces of the magnetic encoder tracks 1 and 2 in both rows do not have to be the same plane. By providing a difference in magnetic strength, it is possible to easily control the magnetic interference between the magnetic encoder tracks 1 and 2 in both rows.
  • a magnetic encoder MEa integrally including three or more adjacent magnetic encoder tracks 1 and 2.14 is used. Also good.
  • a magnetic encoder MEa in which a Ch1 track consisting of an 8-pole pair, a Ch2 track consisting of a 7-pole pair, and a Ch3 track consisting of a 6-pole pair are sequentially arranged. In this case, more complex rotation detection can be performed using the obtained signal.
  • the boundary line Lm of the magnetization distribution that is, the boundary line Lm of each magnetic pole is not perpendicular to the rotation direction of the magnetic encoder MEa. It is good also as what has fixed inclination
  • a rotary magnetic encoder having an annular magnetic encoder track is shown, but the invention is not limited to the rotary type.
  • the magnetic patterns (FIGS. 2A, 2B, 5, etc.) of the respective embodiments are applied to a linear (linear motion) encoder used for detecting the position of a slider in a linear motion mechanism such as a movable table. Even when the double-row magnetic encoder provided is employed, the same effects as those of the above-described embodiments can be obtained.

Abstract

 複列の磁気エンコーダトラックを有しながら、トラック間の磁気干渉が生じてもセンサにより回転検出用の等ピッチ信号を精度良く検出することができ、また所望のエアギャップとすることができ、且つ、コンパクト化を図ると共に構造を簡単化することができる磁気エンコーダおよびその着磁装置を提供する。磁気エンコーダトラック(1)には、回転検出用の等ピッチ信号を生成するためのN極とS極とが交互に並ぶ着磁磁気パターン(Pa)が形成され、各磁気エンコーダトラック(1),(2)の磁気信号を読み取るセンサに対し、エアギャップを隔てて使用される磁気エンコーダ(ME)において、磁気エンコーダトラック(1)は、両列の磁気エンコーダトラック(1),(2)の磁気が干渉してセンサの位置に作用する被検出磁気パターン(Psa)が等ピッチとなるように形成されている。

Description

磁気エンコーダ 関連出願
 本出願は、2010年6月3日出願の特願2010-127768の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、各種機器の回転検出、回転角度検出、および直線移動検出に使用する磁気エンコーダに関する。
 軸受要素の技術分野に関し、ライン状に並べた磁気センサを使用して、内挿したパルス信号を得る技術が開示されている(特許文献1,2)。1回転あたりの磁極対の数が異なる磁気ドラムと、複数の磁気センサとを使用して絶対角度を演算する技術が開示されている(特許文献3)。前記特許文献1,2における磁気センサを使用して、異なる2つの磁気エンコーダの位相差に基づいて絶対角度を検出する角度検出装置が開示されている(特許文献4)。前記特許文献4に使用する磁気エンコーダであって、複列の隣り合う磁気トラック間に隙間を設けた技術が開示されている(特許文献5)。前記特許文献4に使用する磁気エンコーダであって、複列の隣り合う磁気トラック間に磁性体を設けた技術が開示されている(特許文献6)。多磁極を形成した磁気エンコーダを製造する技術が開示されている(特許文献7)。特許文献1,2に使用する磁気エンコーダであって、異なる位相をもつ複列トラックの技術が開示されている(特許文献8)。
特表2001-518608号公報 特表2002-541485号公報 特開平6-58766号公報 特開2008-233069号公報 特開2008-267867号公報 特開2008-267868号公報 特許第4024472号公報 特表2002-512687号公報
 複列の磁気エンコーダを使用して、回転機器の制御用の回転センサまたは角度センサを実現しようとする場合、複数の磁気トラックの間隔が狭くなると、磁気トラック間の磁気的な干渉が大きくなり、検出精度が悪化するという課題がある。特に、複列の磁気トラックが近接配置されている場合、および、複列の磁気トラックの境界線に近接して磁気センサが配置される場合には、磁気的な干渉の影響が大きくなる。また、このようなセンサを機器に搭載する場合、回転部材である磁気エンコーダと固定部材であるセンサとの間には、安全なエアギャップを確保し、接触等による故障を防止する必要がある。
 複列の磁気トラック間に磁性体で構成した分離帯を設けることで、磁気干渉を低減することができる。しかし、磁気エンコーダの構造が複雑になるため、製造コストが増加する課題がある。また、前記磁性体が存在すると、磁気エンコーダから放出される磁界の一部が磁性体によって短絡されるため、センサに到達する磁力が弱くなってしまうのも課題となる。一方、磁気トラック間の距離を大きくとれば磁気干渉が減少するが、大きな実装スペースが必要になるため、検出装置のサイズをコンパクトにできなくなってしまう。
 実際の組込み設計においては、機器をコンパクト化するためにセンサの配置スペースをできるだけ小さくすることが望まれており、2mm~10mm程度の狭い幅に複列トラックを形成した磁気エンコーダが必要となる。しかし、機械公差や使用環境条件の制約があるため、磁気エンコーダ表面とセンサとのギャップを狭くするのは難しく、0.3mm~4mm程度のエアギャップを確保して組み込む必要がある。また、センサの検出する磁界強度は、各トラックの回転方向に対する幅の中央付近がもっとも磁力が強くなるため、センサを各トラックの中央付近に配置するのが望ましい。このような状況でも、十分な磁界強度が確保された位置にセンサを配置可能で、精度の高い磁気信号を正確に読み取ることができる複列の磁気エンコーダが必要であった。そのためには、複列の磁気トラックに形成された磁気パターンが、互いの影響を受けずに、できる限りくっきりとした境界をもって形成されており、センサの検出位置でも正確な磁界信号が実現できている必要があった。
 図21(A)は従来のラジアルタイプの磁気エンコーダ50の縦断面図、図21(B)は従来のアキシアルタイプの磁気エンコーダ50の縦断面図である。図22(A)は、磁気エンコーダ50に所望の磁気パターンを着磁したときの磁気トラック表面の着磁状態を示す。この磁気エンコーダ50に対して、エアギャップ1mmの位置にセンサを配置した場合、センサが読み取る被検出磁気パターンは、図22(B)のようになる。同図に示すように、前記被検出磁気パターンにおける、それぞれのトラック51,52の境界付近での着磁状態がなだらかに変わっている。これにより、それぞれのトラック51,52の信号を読み取った磁気センサの情報は精度が悪化する。図22(A)の磁気トラック表面の理想的な着磁状態が実現できても、磁気センサのエアギャップが大きくなると、他方のトラックの信号の影響を受け易くなり、実際の磁気センサの位置において、各トラックの信号を読み取った磁気センサの情報精度が悪化する。この精度の悪化を防ぐ方法と、その課題は以下の通りである。
・各トラック上に配置するセンサの位置を他方のトラックから遠ざけることが有効であるが、その場合、省スペース化を図れない。また、複列の磁気エンコーダトラックの形成幅Wも大きくなり、磁気エンコーダ自体のコンパクト化が難しい。
・エアギャップを小さくして、他方のトラックからの影響を相対的に小さくするのも有効であるが、実現できるエアギャップには制限があり、可能な構成は限定される。
・両列の磁気エンコーダトラック間に、磁性体、溝、無着磁領域を介在させた磁気エンコーダを構成すると、他方のトラックの信号の影響が小さくなるが、磁気エンコーダの構造が複雑になるため、製造コストが増加してしまう。
 図23(A)は従来のラジアルタイプの磁気エンコーダ53の縦断面図、図23(B)は従来のアキシアルタイプの磁気エンコーダ53の縦断面図である。図24(A),(B)、図25には、前記特許文献4に記載された複列の磁気エンコーダ53と誤差の概念を示す。分かり易く説明するために、Ch1,Ch2トラックの磁極対数をそれぞれ8、7とし、理想的な状態つまり誤差なしの状態に着磁された磁気エンコーダとした。エアギャップは1mmとする。図24(A),(B)は、Ch1,Ch2トラックの磁気パターンを表しており、理想的な状態のため誤差はない。
 図25に示すように、各トラックが近接すると、実際のセンサの位置に作用する被検出磁気パターンは、異なる極対数により互いのトラックの磁気の干渉により誤差を含んだ誤差パターンとなる。この誤差パターンは、理想的な着磁磁気パターンの位置に対するずれを意味している。
 つまり角度0度のとき互いのトラックがN極で揃っていると、Ch1トラックはCh2トラックの磁気パターンの磁気の干渉の影響を受ける。この場合、Ch2トラックの磁気パターンの各磁極対の方がCh1トラックの磁気パターンの各磁極対よりも大きいため、Ch1トラックは、見かけ上の(実際のセンサの位置に作用する)磁極対の長さが大きくなり、誤差は+方向となる。90度付近までこの誤差は大きくなるが、90~180度では反対に誤差が小さくなり、180度付近で誤差がゼロになる。これは、Ch1,Ch2トラックの磁気パターンが徐々にずれることで反転し、Ch1トラックの磁極対の長さが見かけ上小さくなるためである。1回転の誤差パターンは正弦波状になり、Ch2トラックの誤差パターンは、Ch1トラック側の誤差パターンを反転した特性となる。
 なお、磁気エンコーダの磁極対数が多ければ多い程この誤差パターンは正弦波に近似する。この誤差は以下のパラメータによって大きく変化する。
・エアギャップを小さくすると誤差は減るが、部品の組み付け精度が必要になり、磁気センサとのエアギャップを自由に調整することができず、組み込み方法が制限される。
・複列トラック同士を遠ざけるか、または隣り合うトラック間に磁性体を挿入することで、誤差を小さくする。しかし、複列トラック同士を遠ざけると、磁気エンコーダのコンパクト化が図れない。隣り合うトラック間に磁性体を設けた磁気エンコーダは製造が難しく、製造コストが高くなる。
・複列トラックの信号を読み取る磁気センサ同士の間隔を遠ざけることも考えられるが、検出装置のコンパクト化が図れない。
 この発明の目的は、複列の磁気エンコーダトラックを有しながら、トラック間の磁気干渉が生じてもセンサにより回転検出用の等ピッチ信号を精度良く検出することができ、また所望のエアギャップとすることができ、且つ、コンパクト化を図ると共に構造を簡単化することができる磁気エンコーダを提供することである。
 この発明の第1構成にかかる磁気エンコーダは、複列の隣り合って並ぶ環状の磁気エンコーダトラックを一体に有し、少なくとも一つの磁気エンコーダトラックには、回転検出用の等ピッチ信号を生成するためのN極とS極とが交互に並ぶ着磁磁気パターンが形成され、各磁気エンコーダトラックの磁気信号を読み取るセンサに対し、エアギャップを隔てて使用される磁気エンコーダであって、前記少なくとも一つの磁気エンコーダトラックは、両列の磁気エンコーダトラックの磁気が干渉して前記センサの位置に作用する被検出磁気パターンが等ピッチとなるように形成されている。
 各列の磁気エンコーダトラックの表面に、所望の着磁磁気パターンを形成した場合、この磁気エンコーダに対して、所望のエアギャップの位置でセンサが読み取る被検出磁気パターンは理想的な状態からズレを起こす。これは、両列の磁気エンコーダトラックが一体に近接することで互いの列の着磁磁気パターンの磁気が干渉することに起因する。
 この構成によると、少なくとも一つの磁気エンコーダトラックは、両列の磁気エンコーダトラックの磁気が干渉して前記センサの位置に作用する被検出磁気パターンが等ピッチとなるように形成されている。このため、所望のエアギャップとしたうえで、両列の磁気エンコーダトラックの磁気干渉を利用して、磁気エンコーダの構造を複雑化することなく、センサの実際の検出位置での被検出磁気パターンを等ピッチにすることができる。よって、複列の磁気エンコーダトラックを有しながら、センサにより回転検出用の等ピッチ信号を精度良く検出することができる。また、複列の磁気エンコーダトラック同士を離隔させたり、トラック間に磁性体等を介在させる必要がなくなるため、磁気エンコーダの構造を簡単化でき、製造コストの低減を図れるうえ、磁気エンコーダのコンパクト化を図ることができる。
 前記複列の磁気エンコーダトラックのうち、前記一つの磁気エンコーダトラックに隣り合う他の磁気エンコーダトラックには、回転基準位置を示す着磁磁気パターンが形成され、前記他の磁気エンコーダトラックの着磁磁気パターンが、回転検出用の前記一つの磁気エンコーダトラックと同じ磁極数であり、且つ、前記一つの磁気エンコーダトラックの着磁磁気パターンに対し位相のずれを有し、前記他の磁気エンコーダトラックは、前記一つの磁気エンコーダトラックの着磁磁気パターンに対する位相のずれを用いて回転基準位置を示すものとしても良い。
 前記複列の磁気エンコーダトラックのうち、前記一つの磁気エンコーダトラックに隣り合う他の磁気エンコーダトラックは、特定の円周方向位置にN極またはS極の磁極を形成し、その他の円周方向位置を無着磁として、回転基準位置を示す着磁磁気パターンが形成されているものとしても良い。前記複列の磁気エンコーダトラックのうち、前記一つの磁気エンコーダトラックに隣り合う他の磁気エンコーダトラックは、特定の円周方向位置にN極またはS極の磁極を形成し、その他の円周方向位置に、前記特定の円周方向位置の磁極とは反対の磁極を形成して、回転基準位置を示す着磁磁気パターンが形成されているものとしても良い。
 前記各磁気エンコーダトラックは、磁気エンコーダトラックの並び方向の各トラック幅を1mm以上5mm以下として形成されているものであっても良い。前記「並び方向」とは、磁気エンコーダの回転軸心に平行な方向、または磁気エンコーダの回転軸心に直交する方向を意味する。エアギャップの設定によりセンサの検知する磁界強度は変化するが、この構成によると、磁気エンコーダトラックの並び方向の各トラック幅を1mm以上5mm以下とすることで、各磁気エンコーダトラックの磁気信号をそれぞれ検出することが可能となる。
 前記複列の隣り合う磁気エンコーダトラックの境界線から0.5mm以上3mm以下各々の磁気エンコーダトラック側に離隔した各磁気エンコーダトラック上に、前記センサの検出部が配置され、前記センサに対し、0.3mmより大きく4mm未満のエアギャップを隔てて使用されるものであっても良い。前記境界線から0.5mm以上3mm以下の各磁気エンコーダトラック上に、センサの検出部を配置したうえで、エアギャップが0.3mm以下では、例えばゴムまたは樹脂で形成した磁気エンコーダトラックと接触し、磁気エンコーダトラックの表面が損傷するおそれがある。また、前記磁気エンコーダトラックとセンサとの間に異物が噛込まれ易くなり、磁気エンコーダトラックの表面が損傷するおそれがある。前記エアギャップが4mm以上では、着磁強度の低下が避けられず、また、両列の磁気エンコーダトラックの磁気の干渉を適切に制御することが難しくなり、センサの検出位置で正確な磁界信号を生成することが困難となる。
 前記磁気エンコーダトラックが、希土類磁石の焼結磁石、希土類磁石の粉末がゴムまたは樹脂に混成された磁石、フェライト焼結磁石、ゴムまたは樹脂にフェライト粉末が混成された磁石のいずれかにより構成され、この磁気エンコーダトラックの厚さが0.5mmより大きく4mm未満であっても良い。磁気エンコーダトラックの厚さが0.5mm以下の場合、形成された磁気エンコーダトラック内部の反磁界が大きくなる。このため、高温使用時、不可逆減磁が起こりやすく、磁石としての信頼性が低下する。磁気エンコーダトラックの厚さが4mm以上の場合、着磁ヘッド間の距離が離れるため、着磁したい磁気エンコーダトラックに十分な磁束を流しにくくなる。この構成によると、磁気エンコーダトラックの厚さを0.5mmより大きくしたため、形成された磁気エンコーダトラック内部の反磁界を小さくし、高温使用時、不可逆減磁が起こり難く、磁石としての信頼性を向上することができる。
 前記一つの磁気エンコーダトラックにおける着磁磁気パターンの円周方向の各磁極の長さLが0.3mm以上5mm以下であり、各磁気エンコーダトラックの並び方向の各トラック幅WとW>Lの関係が成立しているものとしても良い。W>Lとすることにより、複列の磁気エンコーダトラック間に作用する磁気干渉の誤差の影響を小さくすることができる。また、各磁極の長さLを0.3mm以上5mm以下とすれば、各磁気エンコーダトラックの磁気信号を必要十分に検出可能となる。
 前記複列の隣り合う磁気エンコーダトラックは、互いに磁極数の異なる着磁磁気パターンが形成され、前記少なくとも一つの磁気エンコーダトラックは、両列の磁気エンコーダトラックの磁気が干渉して前記センサの位置に作用する被検出磁気パターンが等ピッチとなるように、着磁磁気パターンが非等ピッチに形成されていても良い。
 複列の磁気エンコーダトラックが近接すると、実際のセンサの位置に作用する被検出磁気パターンは、異なる磁極数により互いのトラックの磁気の干渉により誤差を含んだ誤差パターンとなる。この構成によると、少なくとも一つの磁気エンコーダトラックは、両列の磁気エンコーダトラックの磁気が干渉して前記センサの位置に作用する被検出磁気パターンが等ピッチとなるように、着磁磁気パターンが非等ピッチに形成されている。複列の磁気エンコーダトラックを近接させて一体に設けると、互いの磁気エンコーダトラックの磁気干渉が誤差パターンを打消し合い誤差を低減させ得る。実際のセンサの位置に作用する被検出磁気パターンを、誤差のない理想的なものに近づけることができる。よって、複列の磁気エンコーダトラックを有しながら、センサにより回転検出用の等ピッチ信号を精度良く検出することができる。
 前記複列の隣り合う磁気エンコーダトラック間に、磁性体を介在させても良い。前記複列の磁気エンコーダトラックを芯金上に設け、前記複列の隣り合う磁気エンコーダトラック間に、隙間を介在させてこれら磁気エンコーダトラックを配設しても良い。これらの場合、互いの磁気エンコーダトラックの磁気干渉が誤差パターンを打消し合う効果をさらに高めることができる。
 前記一つの磁気エンコーダトラックにおける、磁気エンコーダトラックの並び方向のトラック幅は、前記一つの磁気エンコーダトラックに隣り合う他の磁気エンコーダトラックにおけるトラック幅と異なるものとしても良い。この場合、センサの配置が自由になるため、磁気エンコーダを機器に組込み易くなる。前記複列の隣り合う磁気エンコーダトラックの両検出面が同一平面にないものとしても良い。
 この発明の第2構成にかかる磁気エンコーダは、複列の隣り合って並ぶ直線状の磁気エンコーダトラックを一体に有し、少なくとも一つの磁気エンコーダトラックには、速度検出用の等ピッチ信号を生成するためのN極とS極とが交互に並ぶ着磁磁気パターンが形成され、各磁気エンコーダトラックの磁気信号を読み取るセンサに対し、エアギャップを隔てて使用される磁気エンコーダであって、前記少なくとも一つの磁気エンコーダトラックは、両列の磁気エンコーダトラックの磁気が干渉して前記センサの位置に作用する被検出磁気パターンが等ピッチとなるように形成されている。
 直動エンコーダに複列の磁気エンコーダを適用した場合においても、少なくとも一つの磁気エンコーダトラックは、両列の磁気エンコーダトラックの磁気が干渉して前記センサの位置に作用する被検出磁気パターンが等ピッチとなるように形成されている。このため、所望のエアギャップとしたうえで、両列の磁気エンコーダトラックの磁気干渉を利用して、磁気エンコーダの構造を複雑化することなく、センサの実際の検出位置での被検出磁気パターンを等ピッチにすることができる。よって、複列の磁気エンコーダトラックを有しながら、センサにより等ピッチ信号を精度良く検出することができる。この構成によると、複列の磁気エンコーダトラック同士を離隔させたり、トラック間に磁性体等を介在させる必要がなくなるため、磁気エンコーダの構造を簡単化でき、製造コストの低減を図れるうえ、コンパクト化を図ることができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
(A)は、この発明の第1実施形態に係るラジアルタイプの磁気エンコーダの縦断面図、(B)はアキシアルタイプの磁気エンコーダの縦断面図である。 (A)は同磁気エンコーダにおけるトラック表面での着磁磁気パターンを示す図、(B)は同磁気エンコーダにおける所望のエアギャップでの被検出磁気パターンを示す図である。 (A)は、この発明の第2実施形態に係るラジアルタイプの磁気エンコーダの縦断面図、(B)はアキシアルタイプの磁気エンコーダの縦断面図である。 (A)は、この発明の第3実施形態に係るラジアルタイプの磁気エンコーダの縦断面図、(B)はアキシアルタイプの磁気エンコーダの縦断面図である。 同磁気エンコーダの着磁磁気パターンを示す図である。 (A)~(C)はこの発明の第4実施形態に係る磁気エンコーダの着磁磁気パターンの各種例を示す図である。 この発明の第5実施形態に係る磁気エンコーダの着磁磁気パターンの例を示す図である。 この発明の第6実施形態に係る磁気エンコーダの着磁磁気パターンの例を示す図である。 (A)は、この発明の第7実施形態に係るラジアルタイプの磁気エンコーダの縦断面図、(B)はアキシアルタイプの磁気エンコーダの縦断面図である。 同磁気エンコーダの両磁気エンコーダトラックを近接配置した着磁磁気パターンの例を示す図である。 (A)は、同磁気エンコーダのうち一方の磁気エンコーダトラックの着磁磁気パターンおよびその誤差パターンを示す図、(B)は同磁気エンコーダのうち他方の磁気エンコーダトラックの着磁磁気パターンおよびその誤差パターンを示す図である。 (A)は、この発明の第8実施形態に係るラジアルタイプの磁気エンコーダの縦断面図、(B)はアキシアルタイプの磁気エンコーダの縦断面図である。 (A)は、この発明の第9実施形態に係るラジアルタイプの磁気エンコーダの縦断面図、(B)はアキシアルタイプの磁気エンコーダの縦断面図である。 (A)は、この発明の第10実施形態に係るラジアルタイプの磁気エンコーダの縦断面図、(B)はアキシアルタイプの磁気エンコーダの縦断面図である。 (A)は、この発明の第11実施形態に係るラジアルタイプの磁気エンコーダの縦断面図、(B)はアキシアルタイプの磁気エンコーダの縦断面図である。 (A)は、この発明の第12実施形態に係るラジアルタイプの磁気エンコーダの縦断面図、(B)はアキシアルタイプの磁気エンコーダの縦断面図である。 (A)は、この発明の第13実施形態に係るラジアルタイプの磁気エンコーダの縦断面図、(B)はアキシアルタイプの磁気エンコーダの縦断面図である。 (A)は、この発明の第14実施形態に係るラジアルタイプの磁気エンコーダの縦断面図、(B)はアキシアルタイプの磁気エンコーダの縦断面図である。 この発明の第15実施形態に係る磁気エンコーダの着磁磁気パターンの例を示す図である。 この発明の第16実施形態に係る磁気エンコーダの着磁磁気パターンの例を示す図である。 (A)は従来のラジアルタイプの磁気エンコーダの縦断面図、(B)は従来のアキシアルタイプの磁気エンコーダの縦断面図である。 (A)磁気エンコーダに所望の磁気パターンを着磁したときの磁気トラック表面の着磁状態の例を示す図、(B)は所望のエアギャップの位置でセンサが読み取る磁気状態の例を示す図である。 (A)は従来のラジアルタイプの磁気エンコーダの縦断面図、(B)は従来のアキシアルタイプの磁気エンコーダの縦断面図である。 (A)は、同磁気エンコーダの一方の磁気エンコーダトラックの着磁磁気パターンを示す図、(B)は同磁気エンコーダの他方の磁気エンコーダトラックの着磁磁気パターンを示す図である。 同磁気エンコーダの着磁磁気パターンおよびその誤差パターンを示す図である。
 この発明の第1実施形態を図1(A),(B)および図2(A),(B)と共に説明する。この実施形態に係る磁気エンコーダは、例えば、各種機器の回転検出、回転角度検出、および直線移動検出に使用する磁気エンコーダに適用される。
 図1(A),(B)に示すように、磁気エンコーダMEは、複列の隣り合って並ぶ環状の磁気エンコーダトラック1,2を一体に有する。これら磁気エンコーダトラック1,2は、円盤状(図1(B))または円筒状の芯金3の表面上に隣り合わせて同心状(図1(A))に並べて設けられている。例えば、図1(B)に示すように、アキシアルタイプの環状磁性体を着磁して得られる磁気エンコーダMEは、軸受回転輪等の外周面Daに前記芯金3の円筒部を圧入嵌合して取付けられる。磁気エンコーダトラック1,2は、例えば、磁性粉を含むゴム、プラスチック、焼結体等であり、着磁によってそれぞれゴム磁石、プラスチック磁石、焼結磁石等となる。なお、前記環状磁性体はアキシアルタイプに限定されるものではなく、例えば図1(A)に示すようなラジアルタイプであっても良い。
 磁気エンコーダトラック1,2は、フェライト焼結で成形した磁石(いわゆるフェライト焼結磁石)、ゴムまたは樹脂にフェライト磁性粉末を混ぜ込んで成形した磁石のいずれかにより構成される。磁石材料を希土類磁石で構成してもよいが、着磁が容易で安価であるため通常の使用条件においてはフェライトのほうが望ましい。この実施形態では、図2(A)に示すように、各磁気エンコーダトラック1,2は周方向に沿ってN磁極とS磁極とが交互に着磁されている。図1(A),(B)に示すように、この磁気エンコーダMEは、その検出面が、各磁気エンコーダトラック1,2の磁気信号を読み取るセンサSa,Sbに対し、0.3mmより大きく4mm未満のエアギャップGpを隔てて配置されて使用される。また、図2(A),(B)に示すように、複列の隣り合う磁気エンコーダトラック1,2の境界線Lkから0.5mm以上3mm以下各々の磁気エンコーダトラック1,2側に離隔した各磁気エンコーダトラック1,2上に、センサSa,Sbの検出部が配置されている。図2(A),(B)の点線で示すセンサ読み取り位置P1,P2に、センサSa,Sbの検出部が配置されている。
 各磁気エンコーダトラック1,2の各トラック幅Wを1mm以上5mm以下とし、各磁極の長さLを0.3mm以上5mm以下としている。前記各トラック幅Wは、この磁気エンコーダMEの回転方向に直交するトラック並び方向の各トラック幅である。前記各磁極の長さLは、磁気エンコーダMEの回転方向に沿った磁気パターンにおける各磁極の長さである。これら各トラック幅Wと各磁極の長さLとは、W>Lの関係を満たすのが望ましい。また、図1(A),(B)に示すように、磁気エンコーダトラック1,2の厚さt1を0.5mmより大きく4mm未満としている。
 図22(A)に示した磁気パターンを所望のパターンとしてセンサで検出するように構成した場合を例として、実際の着磁磁気パターンの形成方法について説明する。図2(A)は磁気エンコーダ表面における着磁磁気パターンを示し、図2(B)は実際のセンサSa,Sbの検出部が配置された位置で検出される被検出磁気パターンの例を示している。
 図2(A),(B)に示すように、磁気エンコーダMEは、複列(この例では2列)の隣り合って並ぶ環状の磁気エンコーダトラック1,2を一体に有し、これら磁気エンコーダトラック1,2には、N極とS極とが交互に並ぶ着磁磁気パターンPa、Pbが形成されている。これらのうち、一つの磁気エンコーダトラック1であるABトラックは、回転検出用の等ピッチ信号を生成するために使用され、他方の磁気エンコーダトラック2であるZトラックは、原点信号を生成するために使用される。Zトラックの着磁磁気パターンPbは、ABトラックと同じ磁極数であり、且つ、ABトラックの着磁磁気パターンPaに対し位相のずれを有する。
 磁気エンコーダからエアギャップGpを隔てて対向する、実際のセンサ検出部Sa,Sbで検出される被検出磁気パターンにおいては、図2(B)に示したように、ABトラック側の磁極幅L21,L,L22は等しくなり、回転検出用の等ピッチ信号を生成するための等ピッチ磁気パターンとなっている。この状態とするためには、両列の磁気エンコーダトラック1,2の磁気が干渉した結果、図2(B)のパターンとなるように磁気エンコーダトラックを形成する必要がある。すなわち、図2(A)に示したように、磁気の干渉による影響を補償するような着磁磁気パターンを磁気エンコーダ表面に形成する。具体的には、ABトラックにおいては、L12<L<L11の不等ピッチの関係で着磁磁気パターンが形成され、被検出磁気パターンPsaが等ピッチとなるように、着磁磁気パターンPaの着磁ピッチが変調されている。一方、Zトラックにおいては、L11′<L21′<L、L<L22′<L12′となるように着磁磁気パターンが形成され、各磁極の円周方向に沿った磁極幅が狭い部分ではより狭く、広い部分ではより広くなるように、着磁磁気パターンPbが変調されている。
 ABトラックにエアギャップGpを隔てて対向するセンサSa(図1(A),(B))は、その磁気センサ素子の検出した磁界信号から互いに90°位相の異なるA相およびB相のパルス信号を出力する。ZトラックにエアギャップGpを隔てて対向するセンサSb(図1(A),(B))は、その磁気センサ素子の検出した磁界信号から原点位置を示すZ相のパルス信号を出力する。これらA相、B相およびZ相のパルス信号(ABZ相信号)は、互いに90度位相が異なる信号である。
 以上説明した磁気エンコーダMEの構成によると、ABトラックは、両列のABトラック,Zトラックの磁気が干渉してセンサSaの位置に作用する被検出磁気パターンPsaが等ピッチとなるように形成されている。このため、所望のエアギャップGpとしたうえで、両列の磁気エンコーダトラック1,2の磁気干渉を利用して、磁気エンコーダMEの構造を複雑化することなく、センサSaの実際の検出位置での被検出磁気パターンPsaを等ピッチにすることができる。複列の磁気エンコーダトラック1,2を有しながら、センサSaにより回転検出用の等ピッチ信号を精度良く検出することができる。この構成によると、複列の磁気エンコーダトラック1,2同士を互いに離隔させたり、トラック1,2間に磁性体等を介在させる必要がなくなるため、磁気エンコーダMEの構造を簡単化でき、製造コストの低減を図れるうえ、磁気エンコーダMEのコンパクト化を図れる。
 エアギャップGpの設定によりセンサSa,Sbの検知する磁界強度は変化するが、この構成によると、磁気エンコーダトラック1,2の各トラック幅Wを1mm以上5mm以下とすることで、各磁気エンコーダトラック1,2の磁気信号をそれぞれ検出することが可能となる。
 また、磁気エンコーダトラック1,2の厚さt1つまり磁石部分の厚さが0.5mm以下の場合、形成された磁気エンコーダトラック内部の反磁界が大きくなる。このため、高温使用時、不可逆減磁が起こりやすく、磁石としての信頼性が低下する。磁気エンコーダトラック1,2の厚さt1が4mm以上の場合、エンコーダ表面から裏面にかけて磁束を貫通させて着磁するときに、着磁したい磁気エンコーダトラックに十分な磁束を流しにくくなる。
 この構成によると、磁気エンコーダトラック1,2の厚さt1を0.5mmより大きくしたため、形成された磁気エンコーダトラック内部の反磁界を小さくし、高温使用時、不可逆減磁が起こり難く、磁石としての信頼性を向上することができる。さらに磁気エンコーダトラック1,2の厚さt1を4mm未満としたため、着磁したい磁気エンコーダトラック1,2に十分な磁束を流すことができる。各磁極の長さLを0.3mm以上5mm以下とし、各トラック幅Wと各磁極の長さLとは、W>Lの関係を満たすのが望ましく、複列の磁気エンコーダトラック1,2間に作用する磁気干渉の誤差の影響を小さくすることができる。また、各磁極の長さLを0.3mm以上5mm以下とすれば、各磁気エンコーダトラック1,2の磁気信号を必要十分に検出可能となる。
 以下、この発明の第2~16実施形態について説明する。以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の符号を付し、重複する説明を省略する。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 図3(A),(B)は第2実施形態を示し、同図に示すように、この磁気エンコーダは、複列(この例では2列)の隣り合って並ぶ磁気エンコーダトラック1,2のうち、一方の磁気エンコーダトラック1のトラック幅Wを、他方の磁気エンコーダトラック2のトラック幅Wと異ならせている。この場合、各磁気エンコーダトラック1,2に対応するセンサの配置が自由になるため、各種機器に磁気エンコーダMEおよびセンサを組み込み易くなる。
 図4(A),(B)、図5に示す第3実施形態のように、3列以上の隣り合う磁気エンコーダトラックを一体に有する磁気エンコーダMEとしても良い。例えば、Zトラックを複数列有するものとしても良い。この場合、得られた信号を利用して、より複雑な回転検出を行うことが可能となる。
 図6(A)~(C)により第4実施形態を説明する。図6(A),(B)に示すように、複列(この例では2列)の磁気エンコーダトラック1,2を有する磁気エンコーダMEにおいて、Zトラック上の特定の円周方向位置だけに、一方の磁極である例えばN極を形成する。Zトラック上のその他の円周方向位置を無着磁としても良い。図6(C)に示すように、Zトラック上の特定の円周方向位置だけに、一方の磁極である例えばN極を形成し、その他の円周方向位置に、前記特定の円周方向位置の磁極とは反対の磁極を形成しても良い。
 図7に示す第5実施形態のように、磁気エンコーダMEの一定角度(この例では180度)毎に磁極の長さLを異ならせ、位置検出用の信号の間隔が異なるものとしても良い。この実施形態では、基準信号が少なくとも180度毎に1回ある。この磁気エンコーダMEによると、位置検出用の信号の間隔が変わる度に基準信号を得るため、複雑な位置検出を容易に得ることが可能となる。
 図8に示す第6実施形態のように、着磁分布の境界線Lmつまり各磁極の境界線Lmが、磁気エンコーダMEの回転方向と直角になっていないものであって、矢符Aにて表記する回転方向に対し一定の傾斜角度α1を有するものとしても良い。
 図9(A),(B)および図10に示す第7実施形態では、磁気エンコーダMEaは、互いに磁極数の異なる着磁磁気パターンが形成された、複列の隣り合って並ぶ環状の磁気エンコーダトラック1,2を一体に有する。この磁気エンコーダMEaは、例えば1mmのエアギャップGpを隔てて使用される。分かり易く説明するために、複列の磁気エンコーダトラック1,2のうちCh1トラックの磁極対数を8とし、Ch2トラックの磁極対数を7とした。
 複列の磁気エンコーダトラック1,2のうち、図11(A)のCh1トラックは、図25のCh1トラックの誤差パターンを反転したものであり、図11(B)のCh2トラックは、図25のCh2トラックの誤差パターンを反転したものである。図11(A),(B)のCh1,Ch2トラックがそれぞれ単独で存在する場合、各誤差パターンは周期的である。これらCh1,Ch2トラックが図10に示すように近接すると、互いのCh1,Ch2トラックの磁気が干渉して誤差パターンを打ち消し合い誤差が無くなる。製品に現れる特徴として、所望のエアギャップGpである1mmのセンサSa,Sbの位置で計測した被検出磁気パターンは等ピッチである。所望のエアギャップGp以外の例えば磁気エンコーダMEaの表面等では、誤差パターンが周期的になっている。
 以上のように両列のトラック1,2の磁気が干渉して誤差パターンを打ち消し合い誤差が無くなるため、磁気エンコーダMEaの構造を複雑化することなく、磁気エンコーダMEaのコンパクト化を図れるうえ、精度の良い磁気エンコーダMEaとすることができる。
 この第7実施形態では、エアギャップGpを1mmとし、Ch1,Ch2トラックの磁極対数をそれぞれ8,7としているが、これらの数値に必ずしも限定されるものではない。すなわち所望のエアギャップGp、所望の磁極対数を選択したときの磁気干渉の誤差の大きさ、誤差パターンを打ち消すように磁気エンコーダトラック1,2に着磁すれば良い。例えば、Ch1,Ch2トラックの磁極対数がそれぞれ32,28の場合、90°毎に磁極対数がそれぞれ8,7となる。この場合、前述の誤差パターンが1回転あたり4回繰り返すため、変調する磁気パターンも4回に設定すれば良い。さらに、必ずしも両列の磁気エンコーダトラック1,2を共に変調する必要はなく、特に精度が必要とされる一方の磁気エンコーダトラック1または2だけを変調して構成しても良い。
 エアギャップGpを1mm以外のエアギャップとする場合、エアギャップGpが大きい程、変調する磁気パターンの大きさを大きくすれば良い。この場合、所望のエアギャップGpで磁気エンコーダMEaを実現できるため、設計の自由度が上がる。したがって、磁気エンコーダMEaおよびセンサSa,Sbの対象機器等への組み込みの制限が緩和され、磁気エンコーダMEaの汎用性を高めることができる。複列の磁気エンコーダトラック1,2同士を遠ざける、またはトラック1,2間に磁性体等を挿入する必要がないため、磁気エンコーダMEaの構造を簡単化し製造コストの低減を図れる。複列の磁気エンコーダトラック1,2の信号を読み取るセンサSa,Sb同士の間隔を遠ざける必要がないため、磁気エンコーダMEaおよびセンサSa,Sbを含む機器全体のコンパクト化を図れる。
 図12(A),(B)に示す第8実施形態のように、複列の磁気エンコーダトラック1,2間に磁性体のスペーサ12を配置した構造としても良い。磁性体から成るスペーサ12が互いの磁気エンコーダトラック1,2からの漏れ磁界をショートするため、相互の磁気干渉が低減されて、より精度の高い複列の磁気エンコーダMEaが実現できる。
 図13(A),(B)に示す第9実施形態のように、複列の磁気エンコーダトラック1,2間に溝Vを設けた構造としても良い。前記溝Vは、溝底に向かうに従って幅狭となる断面V字状に形成される。この溝Vにより、着磁工程での互いの影響、およびセンサSa,Sb(図9(A),(B))での検出における磁気干渉がさらに低減されるため、より精度の高い複列の磁気エンコーダMEaが実現できる。また、溝Vが溝底に向かうに従って幅狭となる断面V字状に形成されるため、隣り合う磁気エンコーダトラック1,2の表面を互いに確実に離隔させることができる。これにより、図9(A),(B)のものよりも高精度の複列の磁気エンコーダMEaを実現し得る。溝Vの形状は断面V字型に限らず、断面U字型などとしてもよい。
 図14(A),(B)に示す第10実施形態のように、複列の磁気エンコーダトラック1,2間に無着磁領域から成る環状部材13を設けても良い。この環状部材13により隣り合う磁気エンコーダトラック1,2の表面を互いに確実に離隔させることができる。これにより、図9のものよりも高精度の複列の磁気エンコーダMEaを実現し得る。
 図15(A),(B)に示す第11実施形態のように、一方の磁気エンコーダトラック1のトラック幅Wが、他方の磁気エンコーダトラック2のトラック幅Wと異なるものとしても良い。この場合、各磁気エンコーダトラック1,2に対応するセンサの配置が自由になるため、各種機器に磁気エンコーダMEaおよびセンサを組み込み易くなる。
 図16(A),(B)に示す第12実施形態のように、一方の磁気エンコーダトラック1のトラック表面が、他方の磁気エンコーダトラック2のトラック表面に対し同一平面になくても良い。図16(A)に示すものでは、軸方向先端側の磁気エンコーダトラック1のトラック表面1aが、軸方向先端に向かうに従ってトラック厚さt1が薄くなる傾斜面となるように形成されている。図16(B)に示すものでは、外径側の磁気エンコーダトラック1のトラック表面1aが、外径側に向かうに従ってトラック厚さt1が薄くなる傾斜面となるように形成されている。
 図17(A),(B)に示す第13実施形態では、軸方向基端側の磁気エンコーダトラック2のトラック全体が、軸方向先端側の磁気エンコーダトラック1よりも薄肉に形成されている。図17(B)に示すものでは、内径側の磁気エンコーダトラック2のトラック全体が、外径側の磁気エンコーダトラック1よりも薄肉に形成されている。これら図16(A),(B)、図17(A),(B)に示す磁気エンコーダMEaによると、両列の磁気エンコーダトラック1,2の検出面を同一平面としなくてもよく、着磁強度に差を設けて、両列の磁気エンコーダトラック1,2の磁気の干渉を容易に制御することが可能となる。
 図18(A),(B)に示す第14実施形態または図19に示す第15実施形態のように、3列以上の隣り合う磁気エンコーダトラック1,2.14を一体に有する磁気エンコーダMEaとしても良い。この例では、図19に示すように、8極対から成るCh1トラックと、7極対から成るCh2トラックと、6極対から成るCh3トラックとが順次並ぶ磁気エンコーダMEaとしている。この場合、得られた信号を利用して、より複雑な回転検出を行うことが可能となる。
 図20に示す第16実施形態のように、着磁分布の境界線Lmつまり各磁極の境界線Lmが、磁気エンコーダMEaの回転方向と直角になっていないものであって、矢符Aにて表記する回転方向に対し一定の傾斜角度α1を有するものとしても良い。
 前記各実施形態では、環状の磁気エンコーダトラックを有する回転型の磁気エンコーダについて示しているが、回転型のみに限定されるものではない。例えば、移動テーブル等の直動機構における移動子の位置検出などに使用されるリニア(直動)エンコーダに前記各実施形態の磁気パターン(図2(A),(B)、図5等)を備えた複列磁気エンコーダを採用しても、前記各実施形態と同様の作用効果を奏する。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1,2…磁気エンコーダトラック
Gp…エアギャップ
ME,MEa…磁気エンコーダ
Pa,Pb…着磁磁気パターン
Psa,Psb…被検出磁気パターン
Sa,Sb…センサ
W…トラック幅

Claims (14)

  1.  複列の隣り合って並ぶ環状の磁気エンコーダトラックを一体に有し、少なくとも一つの磁気エンコーダトラックには、回転検出用の等ピッチ信号を生成するためのN極とS極とが交互に並ぶ着磁磁気パターンが形成され、各磁気エンコーダトラックの磁気信号を読み取るセンサに対し、エアギャップを隔てて使用される磁気エンコーダであって、
     前記少なくとも一つの磁気エンコーダトラックは、両列の磁気エンコーダトラックの磁気が干渉して前記センサの位置に作用する被検出磁気パターンが等ピッチとなるように形成されている磁気エンコーダ。
  2.  請求項1において、前記複列の磁気エンコーダトラックのうち、前記一つの磁気エンコーダトラックに隣り合う他の磁気エンコーダトラックには、回転基準位置を示す着磁磁気パターンが形成され、
     前記他の磁気エンコーダトラックの着磁磁気パターンが、回転検出用の前記一つの磁気エンコーダトラックと同じ磁極数であり、且つ、前記一つの磁気エンコーダトラックの着磁磁気パターンに対し位相のずれを有し、前記他の磁気エンコーダトラックは、前記一つの磁気エンコーダトラックの着磁磁気パターンに対する位相のずれを用いて回転基準位置を示すものとした磁気エンコーダ。
  3.  請求項1において、前記複列の磁気エンコーダトラックのうち、前記一つの磁気エンコーダトラックに隣り合う他の磁気エンコーダトラックは、特定の円周方向位置にN極またはS極の磁極を形成しその他の円周方向位置を無着磁として、回転基準位置を示す着磁磁気パターンが形成されている磁気エンコーダ。
  4.  請求項1において、前記複列の磁気エンコーダトラックのうち、前記一つの磁気エンコーダトラックに隣り合う他の磁気エンコーダトラックは、特定の円周方向位置にN極またはS極の磁極を形成し、その他の円周方向位置に、前記特定の円周方向位置の磁極とは反対の磁極を形成して、回転基準位置を示す着磁磁気パターンが形成されている磁気エンコーダ。
  5.  請求項1において、前記各磁気エンコーダトラックは、磁気エンコーダトラックの並び方向の各トラック幅を1mm以上5mm以下として形成されている磁気エンコーダ。
  6.  請求項1において、前記複列の隣り合う磁気エンコーダトラックの境界線から0.5mm以上3mm以下各々の磁気エンコーダトラック側に離隔した各磁気エンコーダトラック上に、前記センサの検出部が配置され、前記センサに対し、0.3mmより大きく4mm未満のエアギャップを隔てて使用される磁気エンコーダ。
  7.  請求項1において、前記磁気エンコーダトラックが、フェライト焼結磁石、ゴムまたは樹脂にフェライト粉末が混成された磁石のいずれかにより構成され、この磁気エンコーダトラックの厚さが0.5mmより大きく4mm未満である磁気エンコーダ。
  8.  請求項1において、前記一つの磁気エンコーダトラックにおける着磁磁気パターンの円周方向の各磁極の長さLが0.3mm以上5mm以下であり、各磁気エンコーダトラックの並び方向の各トラック幅WとW>Lの関係が成立している磁気エンコーダ。
  9.  請求項1において、前記複列の隣り合う磁気エンコーダトラックは、互いに磁極数の異なる着磁磁気パターンが形成され、前記少なくとも一つの磁気エンコーダトラックは、両列の磁気エンコーダトラックの磁気が干渉して前記センサの位置に作用する被検出磁気パターンが等ピッチとなるように、着磁磁気パターンが非等ピッチに形成されている磁気エンコーダ。
  10.  請求項9において、前記複列の隣り合う磁気エンコーダトラック間に、磁性体を介在させた磁気エンコーダ。
  11.  請求項9において、前記複列の磁気エンコーダトラックを芯金上に設け、前記複列の隣り合う磁気エンコーダトラック間に、隙間を介在させてこれら磁気エンコーダトラックを配設した磁気エンコーダ。
  12.  請求項9において、前記一つの磁気エンコーダトラックにおける、磁気エンコーダトラックの並び方向のトラック幅は、前記一つの磁気エンコーダトラックに隣り合う他の磁気エンコーダトラックにおけるトラック幅と異なるものとした磁気エンコーダ。
  13.  請求項9において、前記複列の隣り合う磁気エンコーダトラックの両検出面が同一平面にない磁気エンコーダ。
  14.  複列の隣り合って並ぶ直線状の磁気エンコーダトラックを一体に有し、少なくとも一つの磁気エンコーダトラックには、等ピッチ信号を生成するためのN極とS極とが交互に並ぶ着磁磁気パターンが形成され、各磁気エンコーダトラックの磁気信号を読み取るセンサに対し、エアギャップを隔てて使用される磁気エンコーダであって、
     前記少なくとも一つの磁気エンコーダトラックは、両列の磁気エンコーダトラックの磁気が干渉して前記センサの位置に作用する被検出磁気パターンが等ピッチとなるように形成されている磁気エンコーダ。
PCT/JP2011/062027 2010-06-03 2011-05-25 磁気エンコーダ WO2011152266A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11789675.3A EP2579002B1 (en) 2010-06-03 2011-05-25 Magnetic encoder
CN201180027195.3A CN102933940B (zh) 2010-06-03 2011-05-25 磁性编码器
US13/700,833 US9250102B2 (en) 2010-06-03 2011-05-25 Magnetic encoder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-127768 2010-06-03
JP2010127768A JP5379748B2 (ja) 2010-06-03 2010-06-03 磁気エンコーダ

Publications (1)

Publication Number Publication Date
WO2011152266A1 true WO2011152266A1 (ja) 2011-12-08

Family

ID=45066641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062027 WO2011152266A1 (ja) 2010-06-03 2011-05-25 磁気エンコーダ

Country Status (5)

Country Link
US (1) US9250102B2 (ja)
EP (1) EP2579002B1 (ja)
JP (1) JP5379748B2 (ja)
CN (1) CN102933940B (ja)
WO (1) WO2011152266A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234964A (zh) * 2017-02-02 2019-09-13 Ntn株式会社 磁性编码器及其制造方法
US11181399B2 (en) 2017-02-02 2021-11-23 Ntn Corporation Magnetic encoder, and production method therefor

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028093A1 (de) * 2009-07-29 2011-02-10 Robert Bosch Gmbh Verfahren zur Herstellung eines magnetischen Sensorelements
DE102010050026B4 (de) * 2010-11-02 2021-05-06 Ic-Haus Gmbh Magnetisch abtastende Positionsmessvorrichtung
JP5973278B2 (ja) 2012-08-16 2016-08-23 Ntn株式会社 磁気エンコーダの着磁装置
US11802422B2 (en) 2013-03-15 2023-10-31 August Home, Inc. Video recording triggered by a smart lock device
US10691953B2 (en) 2013-03-15 2020-06-23 August Home, Inc. Door lock system with one or more virtual fences
US9922481B2 (en) 2014-03-12 2018-03-20 August Home, Inc. Intelligent door lock system with third party secured access to a dwelling
US10181232B2 (en) 2013-03-15 2019-01-15 August Home, Inc. Wireless access control system and methods for intelligent door lock system
US9359794B2 (en) 2014-03-12 2016-06-07 August Home, Inc. Method for operating an intelligent door knob
US9725927B1 (en) 2014-03-12 2017-08-08 August Home, Inc. System for intelligent door knob (handle)
US9916746B2 (en) 2013-03-15 2018-03-13 August Home, Inc. Security system coupled to a door lock system
US11527121B2 (en) 2013-03-15 2022-12-13 August Home, Inc. Door lock system with contact sensor
US9447609B2 (en) 2013-03-15 2016-09-20 August Home, Inc. Mobile device that detects tappings/vibrations which are used to lock or unlock a door
US11043055B2 (en) 2013-03-15 2021-06-22 August Home, Inc. Door lock system with contact sensor
US9326094B2 (en) 2013-03-15 2016-04-26 August Home, Inc. BLE/WiFi bridge with audio sensor
US9818247B2 (en) 2015-06-05 2017-11-14 August Home, Inc. Intelligent door lock system with keypad
US11421445B2 (en) 2013-03-15 2022-08-23 August Home, Inc. Smart lock device with near field communication
US10443266B2 (en) 2013-03-15 2019-10-15 August Home, Inc. Intelligent door lock system with manual operation and push notification
US11352812B2 (en) 2013-03-15 2022-06-07 August Home, Inc. Door lock system coupled to an image capture device
US9706365B2 (en) 2013-03-15 2017-07-11 August Home, Inc. BLE/WiFi bridge that detects signal strength of bluetooth LE devices at an interior of a dwelling
US10140828B2 (en) 2015-06-04 2018-11-27 August Home, Inc. Intelligent door lock system with camera and motion detector
US9574372B2 (en) 2013-03-15 2017-02-21 August Home, Inc. Intelligent door lock system that minimizes inertia applied to components
US9695616B2 (en) 2013-03-15 2017-07-04 August Home, Inc. Intelligent door lock system and vibration/tapping sensing device to lock or unlock a door
US9470018B1 (en) 2013-03-15 2016-10-18 August Home, Inc. Intelligent door lock system with friction detection and deformed door mode operation
US11441332B2 (en) 2013-03-15 2022-09-13 August Home, Inc. Mesh of cameras communicating with each other to follow a delivery agent within a dwelling
US9382739B1 (en) 2013-03-15 2016-07-05 August Home, Inc. Determining right or left hand side door installation
US9704314B2 (en) 2014-08-13 2017-07-11 August Home, Inc. BLE/WiFi bridge that detects signal strength of Bluetooth LE devices at an exterior of a dwelling
US10388094B2 (en) 2013-03-15 2019-08-20 August Home Inc. Intelligent door lock system with notification to user regarding battery status
US11072945B2 (en) 2013-03-15 2021-07-27 August Home, Inc. Video recording triggered by a smart lock device
US9528294B2 (en) 2013-03-15 2016-12-27 August Home, Inc. Intelligent door lock system with a torque limitor
JP6314372B2 (ja) 2013-04-22 2018-04-25 村田機械株式会社 位置検出装置、位置検出方法、及び移動体システム
US9976874B2 (en) * 2013-07-16 2018-05-22 Ntn Corporation Magnetic encoder device and rotation detection device
US20190390978A1 (en) * 2013-09-04 2019-12-26 Bogen Electronic Gmbh Using Inclination Angles of Marker Stripes on a Scale Band to Measure a Position
EP2846126B1 (de) * 2013-09-04 2015-09-16 Bogen Electronic GmbH Messvorrichtung und Verfahren zum Messen der Position von Körpern
KR102113048B1 (ko) * 2013-11-13 2020-05-20 현대모비스 주식회사 마그네틱 엔코더 구조
DE112013007661T5 (de) * 2013-12-02 2016-09-01 Aktiebolaget Skf Codierscheibe und Anordnung, die eine solche Scheibe aufweist
JP6447310B2 (ja) * 2014-06-04 2019-01-09 中西金属工業株式会社 磁気エンコーダ及びその製造方法
DE112014006914T5 (de) * 2014-08-29 2017-05-18 Aktiebolaget Skf Sensorlagereinheit, mechanisches System mit einer solchen Einheit und Verfahren zum Herstellen einer solchen Einheit
CN104236449A (zh) * 2014-09-19 2014-12-24 三峡大学 一种方向盘转角传感器
JP6449090B2 (ja) * 2015-04-15 2019-01-09 Ntn株式会社 磁気エンコーダの着磁装置
US10168184B2 (en) * 2015-08-12 2019-01-01 Infineon Technologies Ag Angle sensing in an off-axis configuration
CN105387878A (zh) * 2015-11-19 2016-03-09 于广华 一种磁编码器磁鼓及其制造方法和使用方法
JP6634276B2 (ja) * 2015-12-04 2020-01-22 日本電産サンキョー株式会社 位置検出装置
DE102015121812B4 (de) * 2015-12-15 2017-11-02 Bogen Electronic Gmbh Gegenstand, Verfahren zum Herstellen des Gegenstands und Verfahren zum Bestimmen einer Position des Gegenstands
TWI601939B (zh) * 2016-03-04 2017-10-11 國立清華大學 絕對位置偵測裝置及方法
JP2017223528A (ja) * 2016-06-15 2017-12-21 Ntn株式会社 トルク検出装置
JP2018124189A (ja) * 2017-02-02 2018-08-09 Ntn株式会社 磁気エンコーダ並びにその製造方法および製造装置
JP6925881B2 (ja) * 2017-06-14 2021-08-25 日本電産サンキョー株式会社 磁気スケールおよび磁気式エンコーダ
TWI646311B (zh) * 2018-01-02 2019-01-01 大銀微系統股份有限公司 光學編碼感測裝置
US11513170B2 (en) * 2018-03-14 2022-11-29 Honeywell International Inc. Off-axis magnetic angular sensor using a magnetic sensing probe and multi-pole magnet array
CN110873581A (zh) * 2018-09-03 2020-03-10 大银微系统股份有限公司 量测旋转轴偏摆与角度位置的磁性编码器及其装置
US10948315B2 (en) 2018-12-21 2021-03-16 Industrial Technology Research Institute Magnetic position detecting device and method
DE102019135494B4 (de) 2019-12-20 2023-11-02 Baumer Germany Gmbh & Co. Kg Vorrichtung und Verfahren zur Bewegungs- und/oder Positionserfassung eines Objekts
GB2592611A (en) * 2020-03-03 2021-09-08 Zf Automotive Uk Ltd A magnetic encoder
GB2592612B (en) * 2020-03-03 2024-05-01 Zf Automotive Uk Ltd A magnetic encoder
KR20220009588A (ko) 2020-07-16 2022-01-25 한국전자기술연구원 자성체를 이용한 회전체의 절대위치 검출장치 및 검출방법
KR102419301B1 (ko) * 2020-07-16 2022-07-12 한국전자기술연구원 회전체의 절대위치 검출장치 및 검출방법
JP2023542359A (ja) 2020-09-17 2023-10-06 アッサ・アブロイ・インコーポレイテッド ロック位置用磁気センサ
KR102506405B1 (ko) * 2021-01-22 2023-03-06 주식회사 에스앤에이 자기식 엔코더를 이용한 각도 측정 시스템, 그 측정 방법 및 그 각도 측정 시스템의 파라미터 설정 방법
KR102591233B1 (ko) * 2021-02-25 2023-10-20 에스티엠(주) 마그네틱 엔코더
EP4130681B1 (en) * 2021-08-03 2023-12-27 Uchiyama Manufacturing Corp. Absolute magnetic encoder and setting method
WO2023227486A1 (de) 2022-05-21 2023-11-30 Flux Gmbh Mehrspuranordnung für linear- und winkelmesssysteme
JP2024039956A (ja) * 2022-09-12 2024-03-25 ミネベアミツミ株式会社 磁気エンコーダ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223620A (ja) * 1990-01-30 1991-10-02 Hitachi Metals Ltd 磁気ドラムまたは磁気ディスクの着磁方法
JPH0424472B2 (ja) 1978-08-21 1992-04-27 Fuerutomyuure Ag
JPH0658766A (ja) 1992-08-05 1994-03-04 Hitachi Ltd 絶対位置検出装置およびモ−タ制御装置
JPH0943260A (ja) * 1995-08-03 1997-02-14 Nissan Motor Co Ltd Mr素子式回転センサ
JP2001518608A (ja) 1997-09-26 2001-10-16 エス エヌ エール ルルマン 位置のディジタル検知器
JP2002512687A (ja) 1997-04-10 2002-04-23 ザ トリントン カンパニー 指標パルス付磁気符号器
JP2002541485A (ja) 1999-04-14 2002-12-03 エス.エヌ.エール.ルールマン コーダから生ずる磁気パルスを検出するための整列された複数の検知要素を有する素子を備えた軸受要素
JP2008233069A (ja) 2007-02-23 2008-10-02 Ntn Corp 回転検出装置および回転検出装置付き軸受
JP2008267868A (ja) 2007-04-17 2008-11-06 Ntn Corp 回転検出装置および回転検出装置付き軸受
JP2008267867A (ja) 2007-04-17 2008-11-06 Ntn Corp 回転検出装置および回転検出装置付き軸受

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045804B2 (ja) * 1978-02-28 1985-10-12 日本電気株式会社 角度検出器
JPS54118259A (en) * 1978-03-06 1979-09-13 Nec Corp Angle detector
JPS6086412A (ja) * 1983-10-19 1985-05-16 Hitachi Ltd 磁気検出装置
US4785241A (en) * 1985-08-08 1988-11-15 Canon Denshi Kabushiki Kaisha Encoder unit using magnetoresistance effect element
GB2188430B (en) * 1986-03-19 1990-01-17 Honda Motor Co Ltd Angle-of-rotation sensor
US4851771A (en) 1987-02-24 1989-07-25 Kabushiki Kaisha Yaskawa Denki Seisakusho Magnetic encoder for detection of incremental and absolute value displacement
JPH01297507A (ja) * 1988-05-26 1989-11-30 Hitachi Ltd 磁気的に位置や速度を検出する装置
EP0555961B1 (en) * 1992-02-13 1997-07-16 Japan Servo Co. Ltd. Absolute encoder
US6559633B1 (en) * 2000-09-18 2003-05-06 Freudenberg-Nok General Partnership Speed sensor with a seal
JP4024472B2 (ja) 2000-11-29 2007-12-19 Ntn株式会社 多極磁化環状体の着磁装置
JP2003089302A (ja) * 2001-09-18 2003-03-25 Ntn Corp 磁気エンコーダおよびそれを備えた車輪用軸受
JP2005172721A (ja) * 2003-12-15 2005-06-30 Harmonic Drive Syst Ind Co Ltd アブソリュート磁気エンコーダ
JP2005337886A (ja) * 2004-05-27 2005-12-08 Nok Corp エンコーダー
JP4586800B2 (ja) * 2004-07-12 2010-11-24 Nok株式会社 磁気エンコーダ
FR2875005B1 (fr) * 2004-09-06 2006-12-08 Hutchinson Sa Codeur de deplacement, dispositif comprenant un tel codeur et procede de fabrication d'un tel codeur
JP5073183B2 (ja) 2005-07-08 2012-11-14 日本電産サンキョー株式会社 磁気エンコーダ
WO2008129872A1 (ja) 2007-04-17 2008-10-30 Ntn Corporation 回転検出装置および回転検出装置付き軸受
JP5081553B2 (ja) * 2007-09-27 2012-11-28 Ntn株式会社 回転検出装置および回転検出装置付き軸受
DE112009000497B4 (de) * 2008-03-17 2012-12-13 Mitsubishi Electric Corp. Ursprungspositions-Signaldetektor
FR2930637B1 (fr) 2008-04-23 2010-06-18 Roulements Soc Nouvelle Montage d'un systeme de determination de position angulaire comprenant deux aimants multipolaires
EP2778624B1 (en) * 2008-09-11 2015-09-09 NTN Corporation Rotation detecting device and bearing with rotation detecting device
US20110101964A1 (en) 2009-11-05 2011-05-05 Udo Ausserlechner Magnetic Encoder Element for Position Measurement
US9696183B2 (en) * 2014-03-07 2017-07-04 Skf Magnetics Bearings Angular position detector including a variable reluctance resolver-encoder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424472B2 (ja) 1978-08-21 1992-04-27 Fuerutomyuure Ag
JPH03223620A (ja) * 1990-01-30 1991-10-02 Hitachi Metals Ltd 磁気ドラムまたは磁気ディスクの着磁方法
JPH0658766A (ja) 1992-08-05 1994-03-04 Hitachi Ltd 絶対位置検出装置およびモ−タ制御装置
JPH0943260A (ja) * 1995-08-03 1997-02-14 Nissan Motor Co Ltd Mr素子式回転センサ
JP2002512687A (ja) 1997-04-10 2002-04-23 ザ トリントン カンパニー 指標パルス付磁気符号器
JP2001518608A (ja) 1997-09-26 2001-10-16 エス エヌ エール ルルマン 位置のディジタル検知器
JP2002541485A (ja) 1999-04-14 2002-12-03 エス.エヌ.エール.ルールマン コーダから生ずる磁気パルスを検出するための整列された複数の検知要素を有する素子を備えた軸受要素
JP2008233069A (ja) 2007-02-23 2008-10-02 Ntn Corp 回転検出装置および回転検出装置付き軸受
JP2008267868A (ja) 2007-04-17 2008-11-06 Ntn Corp 回転検出装置および回転検出装置付き軸受
JP2008267867A (ja) 2007-04-17 2008-11-06 Ntn Corp 回転検出装置および回転検出装置付き軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2579002A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234964A (zh) * 2017-02-02 2019-09-13 Ntn株式会社 磁性编码器及其制造方法
US11099037B2 (en) 2017-02-02 2021-08-24 Ntn Corporation Magnetic encoder and production method therefor
US11181399B2 (en) 2017-02-02 2021-11-23 Ntn Corporation Magnetic encoder, and production method therefor

Also Published As

Publication number Publication date
CN102933940A (zh) 2013-02-13
CN102933940B (zh) 2015-07-08
US9250102B2 (en) 2016-02-02
JP2011252826A (ja) 2011-12-15
EP2579002A1 (en) 2013-04-10
US20130063138A1 (en) 2013-03-14
EP2579002B1 (en) 2017-03-29
EP2579002A4 (en) 2014-07-30
JP5379748B2 (ja) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5379748B2 (ja) 磁気エンコーダ
JP5840374B2 (ja) アブソリュートエンコーダ装置及びモータ
US5528139A (en) Magnetic position and speed sensor with hall probe in an air gap
JP4880066B2 (ja) 原点位置信号検出器
JP5079816B2 (ja) 好ましくは擬似正弦的に変化する磁石外形を有する磁気式位置センサ
US7595635B2 (en) Small size magnetic encoder unit with low power consumption
JP5666886B2 (ja) ロータリエンコーダ
US9691534B2 (en) Magnetization device for magnetic encoder
JP4621987B2 (ja) 磁気式エンコーダ装置およびアクチュエータ
KR20140138253A (ko) 자기식 회전각 검출기
JP5786067B2 (ja) 磁気式エンコーダ及びセンサ装置
JP6387788B2 (ja) 磁気エンコーダ用磁気媒体、磁気エンコーダ、並びに磁気媒体の製造方法
JP4737372B2 (ja) 回転角度検出装置
JP6893267B1 (ja) 磁気検出装置
JP7064966B2 (ja) 磁気式エンコーダ
WO2023223389A1 (ja) 回転数検出器
JP4775705B2 (ja) 磁気式アブソリュートエンコーダー
JP2009156589A (ja) 磁石付き磁気センサを使用した磁性体の移動方向検出装置
JP2015148636A (ja) 磁気式エンコーダ及びセンサ装置
JP2023022828A (ja) アブソリュート磁気エンコーダ及びその設計方法
JP2002148014A (ja) ステアリング角センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027195.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789675

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011789675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011789675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13700833

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE