WO2011149019A1 - 金メッキ金属微細パターン付き基材の製造方法、金メッキ金属微細パターン付き基材、プリント配線板、インターポーザ及び半導体装置 - Google Patents

金メッキ金属微細パターン付き基材の製造方法、金メッキ金属微細パターン付き基材、プリント配線板、インターポーザ及び半導体装置 Download PDF

Info

Publication number
WO2011149019A1
WO2011149019A1 PCT/JP2011/062096 JP2011062096W WO2011149019A1 WO 2011149019 A1 WO2011149019 A1 WO 2011149019A1 JP 2011062096 W JP2011062096 W JP 2011062096W WO 2011149019 A1 WO2011149019 A1 WO 2011149019A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
gold
metal fine
fine pattern
plating
Prior art date
Application number
PCT/JP2011/062096
Other languages
English (en)
French (fr)
Inventor
賢也 橘
哲平 伊藤
保明 三井
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to US13/697,720 priority Critical patent/US20130058062A1/en
Priority to CN2011800238851A priority patent/CN102893709A/zh
Priority to KR1020127030100A priority patent/KR20130079404A/ko
Publication of WO2011149019A1 publication Critical patent/WO2011149019A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • H05K3/387Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive for electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48228Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad being disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0753Insulation
    • H05K2201/0761Insulation resistance, e.g. of the surface of the PCB between the conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands

Definitions

  • the present invention relates to a method for producing a substrate with a gold-plated metal fine pattern, a substrate with a gold-plated metal fine pattern produced using the method, particularly a printed wiring board such as a mother board or an interposer, and a semiconductor device using the printed wiring board About.
  • the semiconductor element mounting surface of a printed wiring board called an interposer is required to have a finer circuit pattern.
  • a printed wiring board of a semiconductor device a mother board and an interposer are known.
  • the interposer is a printed wiring board similar to the mother board, but is interposed between the semiconductor element (bare chip) or semiconductor package and the mother board and mounted on the mother board.
  • the interposer may be used as a substrate on which a semiconductor package is mounted in the same manner as a mother board.
  • the interposer is used as a package substrate or a module substrate as a specific usage method different from the mother board.
  • the package substrate means that an interposer is used as a substrate of a semiconductor package.
  • a semiconductor element is mounted on a lead frame, both are connected by wire bonding, and sealed with resin, and an interposer is used as a package substrate, and a semiconductor element is mounted on the interposer, There is a type that is connected by a method such as wire bonding and sealed with resin.
  • connection terminals for the mother board can be arranged on the mother board connection side plane (the lower surface side of the interposer) of the semiconductor package.
  • the wiring dimension can be gradually increased from the semiconductor element connection side of the interposer to the motherboard connection side, and the wiring dimension gap between the semiconductor element and the motherboard can be filled.
  • an interposer of a multilayer printed wiring board is also used.
  • the distance of the conductor circuit width and the distance between the circuits are called line and space (L / S).
  • L / S The distance of the conductor circuit width and the distance between the circuits.
  • the line and space of the internal circuit of the semiconductor element has reached the submicron level, and the line and space (L / S) of the connection terminal of the outermost layer circuit on the semiconductor element connection side of the interposer connected to this is several tens of ⁇ m. / Several tens of ⁇ m.
  • the line and space (L / S) of the connection terminal of the outermost layer circuit on the motherboard connection side of the interposer is about several hundred ⁇ m / several hundred ⁇ m
  • the line of the connection terminal of the outermost layer circuit on the interposer connection side of the motherboard And space (L / S) is also about several hundred ⁇ m / several hundred ⁇ m.
  • the module substrate means that it is used as a substrate on which a plurality of semiconductor packages or semiconductor elements before packaging are mounted in a single module. Further miniaturization of the circuit is required for the semiconductor element mounting surface of the module substrate.
  • the semi-additive method has begun to be performed as a technique for achieving the formation of a fine circuit on a printed wiring board.
  • the surface of the core substrate or the interlayer insulating layer is subjected to a roughening process, followed by an electroless plating process as a base, an electroplating mask is formed with a resist, and the copper thickness of the circuit forming portion is formed by electrolytic plating.
  • This is a method in which a circuit is formed on an insulating layer by performing resist removal and soft etching.
  • the roughening means that fine irregularities are formed on the surface of the conductor circuit.
  • gold plating is performed as the final surface treatment of circuit mounting portions and terminal portions on the printed wiring board.
  • One of the typical gold plating methods is an electroless nickel-gold plating method.
  • the ENIG method Electroless Nickel Immersion Gold
  • Immersion Gold substitution gold plating treatment
  • the electroless nickel-gold plating method can prevent the diffusion of the conductor material in the circuit and terminal portions, improve the corrosion resistance, and prevent nickel oxidation.
  • the ENEPIG method is a method of performing substitution gold plating treatment (Immersion Gold) in the electroless gold plating treatment stage of the electroless nickel-palladium-gold plating method (Patent Document 1).
  • the electroless nickel-palladium-gold plating method it is possible to prevent the diffusion of the conductor material in the circuit and the terminal portion, improve the corrosion resistance, and prevent the nickel oxidation and the diffusion.
  • the electroless nickel-palladium-gold plating method can prevent nickel oxidation by gold by providing an electroless palladium plating film, so that the reliability of lead-free solder bonding with a large heat load is improved.
  • nickel diffusion does not occur without increasing the gold film thickness, the cost can be reduced as compared with the electroless nickel-gold plating method.
  • the insulation supporting the conductor circuit is performed.
  • the metal deposits abnormally around the circuit on the resin surface of the film or substrate, causing the quality of the plated surface to deteriorate.
  • a short circuit is likely to occur due to metal deposited between adjacent wirings or terminals.
  • connection terminal of the outermost layer circuit on the semiconductor element connection side of the package substrate interposer has a narrow line-and-space (L / S) of about several tens of ⁇ m / several tens of ⁇ m, and thus is particularly prone to short circuit.
  • Patent Document 2 discloses a method of forming a circuit pattern by performing electroless copper plating and electrolytic copper plating and then performing etching, and performing electroless metal plating on the circuit.
  • a method is disclosed in which a solution containing nitric acid, chlorine ions and a cationic polymer is used as a removal solution for the metal deposition catalyst attached to the resin surface during the metal plating step.
  • Patent Document 2 in order to perform electroless metal plating while maintaining insulation even when the distance between wirings is narrower, in addition to the removal liquid, between the etching step and the electroless metal plating step, A method of working a known anti-bridging solution is described.
  • the electroless nickel is formed on the surface of the circuit formed by the SAP method by the method using the specific removing solution disclosed in Patent Document 2 or the method using the specific removing solution and a known anti-bridging solution in combination. -When performing electroless metal plating by gold plating or electroless nickel-palladium-gold plating, abnormal deposition of metal around the circuit may not be sufficiently prevented.
  • the above-mentioned result was attributed to the palladium catalyst applied in the SAP process and the palladium catalyst applied in the electroless nickel-gold plating process or the electroless nickel-palladium-gold plating process. Abnormal precipitation is thought to occur.
  • an electroless plating catalyst is applied before the electroless plating in order to improve the electroless plating property of the resin surface.
  • the electroless plating property refers to the ease of adsorption of the electroless plating metal to the catalyst.
  • a palladium catalyst is often used as the electroless plating catalyst.
  • the resin surface to be subjected to the SAP method is formed of a resin having good adhesion of a palladium catalyst, a palladium metal residue remains on the resin surface on which a circuit is formed only by performing soft etching after electrolytic plating. Further, in the electroless nickel-gold plating process or the electroless nickel-palladium-gold plating process, a palladium catalyst is applied before the nickel electroless plating in order to improve the electroless plating property of the circuit surface.
  • the resin surface on which the circuit is formed is formed of a resin having good adhesion of the palladium catalyst in order to improve the processability in the SAP process. It adheres not only to the circuit surface to be applied but also to the resin surface around the circuit. It is considered that abnormal precipitation occurs on the resin surface around the circuit due to such a palladium catalyst or palladium metal residue existing on the resin surface as a nucleus.
  • the present inventors have found that when the SAP method and the electroless nickel-palladium-gold plating treatment are combined, a larger amount of abnormal precipitation is more likely to occur than when the electroless nickel-gold plating treatment is performed. For this reason, when performing electroless nickel-palladium-gold plating, it is particularly necessary to prevent abnormal precipitation.
  • the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to form a fine circuit in a method for producing a substrate with a gold-plated metal fine pattern, which is excellent in electroless plating with an SAP process. And suppressing the abnormal precipitation in the electroless nickel-palladium-gold plating process or the electroless nickel-gold plating process and improving the insulation reliability between wires and the connection reliability of the fine circuit. Is to provide. Further, a substrate with a gold-plated metal fine pattern obtained by the manufacturing method, in particular, an interposer obtained by using the gold-plated metal fine pattern as a conductor circuit, a printed wiring board such as a mother board, and a semiconductor device obtained using the printed wiring board Is to provide.
  • the above object can be achieved by the following inventions (1) to (15).
  • a method for producing a substrate with a gold-plated metal fine pattern comprising: On the support surface made of the resin, a primer resin layer having a surface roughness represented by an arithmetic average of 0.5 ⁇ m or less is formed, A metal fine pattern is formed on the primer resin layer by a semi-additive method including electroless metal plating using a palladium catalyst, After the formation of the metal fine pattern, at any stage before the gold plating process, the following (a) to (d): (A) treatment
  • an electroless nickel plating treatment or an electroless palladium plating treatment is performed.
  • a printed wiring board in which a composite gold plating layer selected from the group consisting of a nickel-palladium-gold plating layer and a nickel-gold plating layer is formed on the conductor circuit on the surface of the printed wiring board by the method of (1).
  • An interposer in which a composite gold plating layer selected from the group consisting of a nickel-palladium-gold plating layer and a nickel-gold plating layer is formed on the conductor circuit on the surface of the interposer by the method of (1) above.
  • the SAP is used.
  • a series of steps of the method (palladium catalyst application, electroless metal plating, and electrolytic metal plating) are performed. Therefore, an electroless metal plating layer is formed on the surface of the resin having good adhesion of the palladium catalyst and having uniform and dense irregularities. Therefore, the surface of the substrate made of resin is excellent in electroless plating property, and a metal fine pattern having excellent peel strength is formed.
  • the surface roughness refers to a value measured according to, for example, JIS B 0601.
  • the peel strength refers to the peel strength between a resin and a metal interface measured according to, for example, JIS C 6481. Say.
  • the surface roughness represented by the arithmetic average can be measured according to, for example, JIS B 0601. Further, by performing at least one palladium removal treatment selected from the group consisting of (a) to (d) above, when forming a metal fine pattern by the SAP method and electroless nickel-palladium-gold plating treatment or electroless nickel-gold plating treatment It is possible to prevent abnormal deposition of palladium metal during the gold plating process.
  • electroless nickel-palladium-gold plating treatment after the palladium catalyst is applied and before electroless palladium plating, in the case of electroless nickel-gold plating treatment, electroless treatment is applied after the palladium catalyst is applied.
  • electroless treatment is applied after the palladium catalyst is applied.
  • the conductor circuit of the outermost layer on the motherboard connection side of the interposer and the conductor circuit of the outermost layer on the interposer connection side of the motherboard are formed by the method of the present invention in the same manner as described above, and only the terminal portion is exposed and the other portions are solder resist layers. And the terminal portion can be gold-plated by the method of the present invention.
  • FIG. 1 It is a conceptual diagram explaining the method of roughening a primer resin layer. It is a conceptual diagram explaining the method of roughening a primer resin layer. It is a conceptual diagram explaining the method of roughening a primer resin layer. It is a conceptual diagram explaining the method of roughening a primer resin layer. It is a block diagram which shows the procedure of an ENEPIG method. It is a block diagram which shows the procedure of ENIG method. It is a figure which shows typically an example of the mounting hierarchy structure of the semiconductor device concerning embodiment of this invention. It is a figure which shows typically an example of the semiconductor package using the interposer concerning embodiment of this invention. It is a figure which shows typically the comb-tooth pattern copper circuit formed on the test piece of an Example. 2 is an electron micrograph of a terminal portion of a plated product obtained in Example 1.
  • FIG. 1 It is a conceptual diagram explaining the method of roughening a primer resin layer. It is a conceptual diagram explaining the method of roughening a primer resin layer. It is
  • Example 3 is an electron micrograph of a terminal portion of a plated product obtained in Example 2.
  • FIG. It is an electron micrograph of the terminal portion of the plated product obtained in Example 3. It is an electron micrograph of the terminal part of the plating process thing obtained in Example 4.
  • FIG. It is an electron micrograph of the terminal portion of the plated product obtained in Example 5. It is an electron micrograph of the terminal portion of the plated product obtained in Example 12. 2 is an electron micrograph of a terminal portion of a plated product obtained in Comparative Example 1.
  • the method for producing a substrate with a gold-plated metal fine pattern includes a step of preparing a substrate having a support surface made of a resin, Forming a metal fine pattern by a semi-additive method on a support surface made of a resin of the base material to obtain a substrate with a metal fine pattern; Performing a gold plating process selected from the group consisting of an electroless nickel-palladium-gold plating process and an electroless nickel-gold plating process on at least a part of the surface of the metal fine pattern; A primer-plated resin layer having a surface roughness represented by an arithmetic average of 0.5 ⁇ m or less is formed on the support surface made of the resin.
  • a metal fine pattern is formed on the primer resin layer by a semi-additive method including an electroless metal plating process using a palladium catalyst. After the formation of the metal fine pattern, a metal fine pattern is formed at any stage before the gold plating process.
  • a metal fine pattern is formed at any stage before the gold plating process.
  • B) treatment with a potassium cyanide (KCN) -containing solution
  • KCN potassium cyanide
  • the manufacturing method of the base material with a gold-plated metal fine pattern according to the present invention is a method in which a palladium catalyst is applied to the surface of the metal fine pattern of the base material with the metal fine pattern in the gold plating process after the palladium removal process.
  • a palladium catalyst is applied to the surface of the metal fine pattern of the base material with the metal fine pattern in the gold plating process after the palladium removal process.
  • 1A to 1J are diagrams for explaining the procedure of the manufacturing method.
  • a core substrate 1 of a printed wiring board is prepared as a substrate having a support surface made of resin.
  • the “base material having a support surface made of resin” is an object to be subjected to the SAP method and gold plating treatment by the method of the present invention, as long as the surface of the base material is made of resin.
  • the deep part of the material may be made of a material other than resin.
  • a core base material may be used, or a laminated body in the form of multilayer wiring on the core base material, and an interlayer insulating layer is laminated on the outermost surface A thing may be used.
  • a core base material well-known core substrates, such as a glass cloth base material epoxy resin copper clad laminated board, a well-known prepreg, etc. can be used, for example.
  • the laminated body in the middle of multilayer wiring can be obtained by repeatedly forming a conductor circuit layer on the core substrate by the SAP method by a conventionally known method.
  • a primer resin layer 2 is formed on the core substrate 1 in order to improve the electroless plating property.
  • the primer resin preferably contains a resin selected from the group consisting of a polyamide resin and a polyimide resin. These resins have good adhesion of a palladium catalyst and electroless plating.
  • the polyamide resin is not particularly limited, but those represented by the following structural formula (1) are preferable.
  • Ar 1 and Ar 2 represent a divalent hydrocarbon group or an aromatic group, and may be different from each other by repetition. Further, n represents a repeating unit and is an integer of 5 to 5000.
  • rubber-modified polyamide resin is preferable. Thereby, flexibility improves and it can improve adhesiveness with a conductor layer.
  • Rubber modification means that Ar 1 and / or Ar 2 in the structural formula (1) has a skeleton of rubber components such as butadiene and acrylonitrile groups. More preferably, Ar 1 and / or Ar 2 have a phenolic hydroxyl group. Thereby, the compatibility with the epoxy resin is excellent, and three-dimensional crosslinking with the polyamide polymer is possible by thermosetting, and the mechanical strength is excellent. More specifically, preferred polyamide resins include those represented by the following structural formula (2).
  • the weight average molecular weight is 8,000 to 100,000, and the hydroxyl group equivalent is 1,000 to 5,000 g / eq.
  • Examples of the polyimide resin are not particularly limited. For example, those obtained by dehydration condensation using a known tetracarboxylic dianhydride and diamine as raw materials, and a tetracarboxylic dianhydride and diisocyanate as raw materials. And those represented by the following structural formula (3) having an imide skeleton obtained.
  • X represents a skeleton derived from tetracarboxylic acid dihydrate
  • Y represents a skeleton derived from diamine or diisocyanate.
  • a silicon-modified polyimide represented by the following structural formula (4) is preferable.
  • the primer resin becomes solvent-soluble and can be varnished.
  • Varnishing means that a solid resin component dissolves in a diluting solvent until no insoluble component disappears.
  • R 1 and R 2 are a divalent aliphatic group or aromatic group having 1 to 4 carbon atoms
  • R 3 , R 4 , R 5 and R 6 are a monovalent aliphatic group or aromatic group.
  • a and B are trivalent or tetravalent aliphatic groups or aromatic groups
  • R 7 is a divalent aliphatic group or aromatic group
  • k, m, and n are the number of repeating units. It is an integer of ⁇ 5000.
  • a polyamide-imide resin having an amide skeleton in the polyimide block is also preferable because the primer resin becomes solvent-soluble and can be varnished.
  • the surface roughness expressed by the arithmetic average of the primer resin layer is preferably 0.01 to 0.5 ⁇ m, particularly preferably 0.05 to 0.2 ⁇ m. When the surface roughness is within the above range, the surface of the primer resin layer becomes uniform and dense unevenness, and is excellent in electroless plating property and peel strength.
  • the surface roughness expressed by the arithmetic average can be measured according to, for example, JISJB 0601.
  • Examples of the method for roughening the primer resin layer include the following methods (a) to (c) shown in FIGS. 2A to 2C, respectively.
  • the roughened metal foil 9 is laminated on the primer resin layer 2 with the roughened surfaces facing each other, and then the roughened metal foil 9 is removed by etching.
  • the metal foil 9 with roughness is, for example, a metal foil such as a copper foil or an aluminum foil, a surface of a copper thin film formed by performing copper plating on the film, or the like, which is chemically roughened or polished with an etching chemical. It is obtained by physically roughing using a machine. Among these, it is preferable that the surface of the copper thin film formed by performing the copper plating process is roughened from the viewpoint of thinning.
  • the roughened surface of the metal foil 9 with roughness is laminated on the primer resin layer 2, the metal foil 9 is removed by etching, and then the plasma is removed.
  • This is a method of performing surface treatment, desmear treatment, or both.
  • a non-roughened metal foil 9 ′ is laminated on the primer resin layer 2, and the metal foil is removed by etching, and then on the surface of the primer resin layer, This is a method of performing plasma treatment, desmear treatment, or both surface treatment.
  • the non-roughened metal foil 9 ′ one before roughening the surface of the metal foil 9 with roughness can be used.
  • either the plasma treatment or the desmear treatment may be performed, but it is preferable to perform both the plasma treatment and the desmear treatment. This is because smear on the primer resin layer can be surely removed.
  • the method (b) is preferable from the viewpoint of excellent electroless plating property and peel strength.
  • the thickness of the primer resin layer is preferably 0.5 to 10 ⁇ m, particularly preferably 2 to 7 ⁇ m. When the thickness is within the above range, a printed wiring board corresponding to thinning can be obtained.
  • palladium catalyst 3 is applied to the surface of primer resin layer 2 in the procedure shown in FIG. 1C, and electroless copper plating is performed in the procedure shown in FIG. 1D to form electroless copper plating layer 4.
  • the non-circuit forming part is masked by the plating resist 5 on the electroless copper plating layer 4, and the circuit forming part is thickened by electroless copper plating in the procedure shown in FIG. 1F.
  • the electrolytic copper plating layer 6 is formed.
  • the plating resist 5 is removed in the procedure shown in FIG. 1G, and the electroless copper plating layer 4 in the non-circuit forming portion is removed by soft etching in the procedure shown in FIG. Conductor circuit 7 is formed.
  • palladium removal processing is performed on the circuit formation surface.
  • the palladium catalyst applied in the SAP process and the palladium metal residue resulting therefrom are removed.
  • the palladium catalyst 3 in the region covered with the conductor circuit 7 remains even after the palladium removal process.
  • the palladium removal process after the SAP process is (A) treatment with a palladium remover; (B) treatment with a potassium cyanide (KCN) -containing solution, At least one can be selected from the group consisting of (c) desmear treatment with a chemical solution and (d) dry desmear treatment with plasma.
  • KCN potassium cyanide
  • the treatment with the palladium remover can be performed with the following two types of chemical solutions alone or in combination.
  • Treatment with a chemical solution containing nitric acid and chlorine ions A chemical solution containing nitric acid and chlorine ions has an action of dissolving and removing palladium metal adhering to the resin surface.
  • the content of nitric acid contained in the chemical solution containing nitric acid and chlorine ions is preferably 50 to 500 mL / L, particularly preferably 100 to 400 mL / L as 67.5% nitric acid. If the nitric acid content is less than 50 mL / L, the palladium removal effect is hardly obtained.
  • Examples of the supply source of chloride ions contained in the chemical solution containing nitric acid and chloride ions include, for example, hydrochloric acid, sodium chloride, potassium chloride, ammonium chloride, copper chloride, iron chloride, nickel chloride, cobalt chloride, tin chloride.
  • Inorganic chlorides such as zinc chloride and lithium chloride. Of these inorganic chlorides, hydrochloric acid and sodium chloride are preferred.
  • the chlorine ion content is preferably 1 to 60 g / L, and particularly preferably 5 to 50 g / L as chlorine ions.
  • the chloride ion content is less than 1 g / L, the palladium removal effect is hardly obtained. On the other hand, if it exceeds 60 g / L, the effect of removing palladium is not improved.
  • a surfactant or NOx inhibitor usually used for improving permeability and wettability can be added to the chemical solution containing nitric acid and chlorine ions in an amount that does not affect palladium removal.
  • the chemical solution containing nitric acid and chlorine ions is adjusted to have a pH of 1 or less.
  • [2] sulfur organic substance-containing solution by treatment sulfur organic substances not only has the effect of roughening the resin surface, a sulfur organic matter by contacting the resin surface, Pd 2+ said sulfur organic substances adhering to the resin surface It is presumed that abnormal precipitation can be prevented because it can form complex ions and inactivate Pd 2+ .
  • the sulfur organic substance is not particularly limited as long as it contains a sulfur atom and a carbon atom in the compound, but does not include an element that does not contain a carbon atom even if it contains sulfur such as sodium thiosulfate.
  • sulfur organic substances include, for example, thiourea derivatives, thiols, sulfides, thiocyanates, sulfamic acids or salts thereof.
  • thiourea derivative examples include thiourea, diethylthiourea, tetramethylthiourea, 1-phenyl-2-thiourea, thioacetamide and the like.
  • thiols examples include 2-mercaptoimidazole, 2-mercaptothiazoline, 3-mercapto-1,2,4-triazole, mercaptobenzimidazole, mercaptobenzoxazole, mercaptobenzothiazole, and mercaptopyridine.
  • sulfides examples include 2-aminophenyl disulfide, tetramethylthiuram disulfide, thiodiglycolic acid and the like.
  • Examples of thiocyanates include sodium thiocyanate, potassium thiocyanate, and ammonium thiocyanate. Still further, examples of sulfamic acid or salts thereof include sulfamic acid, ammonium sulfamate, sodium sulfamate, potassium sulfamate and the like. Of these sulfur organic substances, thiols having a mercapto group or thiocyanates having a thiocyan group are preferable.
  • the concentration of the sulfur organic substance is preferably 0.1 to 100 g / L, particularly preferably 0.2 to 50 g / L.
  • the sulfur organic substance-containing liquid is adjusted to have a pH of 10-14.
  • KCN potassium cyanide
  • the potassium cyanide (hereinafter sometimes referred to as KCN) -containing liquid not only has the effect of roughening the resin surface, but also brings the KCN-containing liquid into contact with the resin surface. Can form Pd 2+ and CN ⁇ complex ions [Pd (CN) 3 ] ⁇ adhering to the resin surface and inactivate Pd 2+ , so that abnormal precipitation can be prevented.
  • As the KCN-containing liquid a strong alkaline liquid containing only KCN can be used. The KCN-containing liquid is adjusted to have a pH of 10-14.
  • the desmear treatment with a chemical solution is a treatment with a permanganate-containing solution, and the permanganate solution can be used to roughen the resin surface by the following oxidation reaction.
  • a concentrated compact CP building bath solution NaMnO 4 -containing oxidizing agent manufactured by Atotech Co., Ltd.
  • the permanganate-containing liquid is adjusted to have a pH of 12-14.
  • (D) Dry desmear treatment with plasma Dry desmear treatment with plasma (hereinafter sometimes referred to as “plasma treatment”) simultaneously removes smear from the copper terminal surface by oxidative decomposition by bringing the plasma into contact with the surface to be treated.
  • plasma treatment simultaneously removes smear from the copper terminal surface by oxidative decomposition by bringing the plasma into contact with the surface to be treated.
  • the surface material of the resin supporting the circuit is appropriately removed to roughen the surface. Since Pd 2+ ions adhering to the resin surface in the vicinity of the circuit are removed together with the material on the resin surface by plasma treatment, it is estimated that abnormal precipitation can be prevented.
  • the plasma processing apparatus for example, PCB2800E manufactured by March Plasma System can be used. The following examples are given as specific implementation methods and implementation conditions of the plasma treatment.
  • the palladium removal process after the SAP process can be performed at any stage after the formation of the conductor circuit and before the gold plating process.
  • the abnormal deposition in the gold plating process can be suppressed only by performing the palladium removing process only on the part where the gold plating process is desired. For example, if you want to perform gold plating of ENEPIG method or ENIG method only on the terminal part of the conductor circuit formed by the SAP method, cover the part other than the terminal part of the conductor circuit with the solder resist layer and then expose it from the solder resist layer. Palladium removal treatment may be performed only on the region where it is present.
  • the gold plating process is a gold plating process selected from the group consisting of an electroless nickel-palladium-gold plating process (ENEPIG method) and an electroless nickel-gold plating process (ENIG method).
  • ENEPIG method electroless nickel-palladium-gold plating process
  • ENIG method electroless nickel-gold plating process
  • a composite gold plating layer selected from the group consisting of a nickel-palladium-gold plating layer (Ni-Pd-Au layer) and a nickel-gold plating layer (Ni-Au layer) is formed on the conductor circuit.
  • electroless nickel-palladium-gold plating treatment is particularly preferable. This is because it is more excellent in preventing oxidation and diffusion of nickel, has high heat resistance, and can reduce the thickness of the gold film.
  • FIG. 3 is a block diagram showing a procedure of electroless nickel-palladium-gold plating treatment (ENEPIG method)
  • FIG. 4 is a block diagram showing a procedure of electroless nickel-gold plating treatment (ENIGIG method).
  • the terminal portion can be subjected to a surface treatment by one or more methods as necessary.
  • cleaner (S1a), soft etching (S1b), acid treatment (S1c), and pre-dip (S1d) are shown as pretreatments, but other treatments may be performed.
  • a composite gold plating layer Ni—Pd—Au layer or Ni—Au layer
  • Ni—Au layer Ni—Au layer
  • the procedure of the ENEPIG method will be described unless otherwise specified, but the ENIG method can be considered in the same manner as the procedure of the ENEPIG method, except that the step of electroless palladium plating (S4) is not performed.
  • the pretreatment (S1), the palladium catalyst application step (S2), the electroless nickel plating treatment (S3), the electroless palladium plating treatment (S4), and the electroless gold plating treatment (S5) are the same as before.
  • Cleaner treatment which is one of the pre-treatments, removes the organic film from the surface of the terminal, activates the metal on the surface of the terminal, and wets the surface of the terminal by bringing an acidic or alkaline cleaner solution into contact with the terminal surface. This is done to improve the performance.
  • the acid type cleaner mainly activates the surface by etching a very thin part of the terminal surface.
  • a liquid containing oxycarboxylic acid, ammonia, salt and a surfactant is used as an effective material for a copper terminal.
  • ACL-007 of Uemura Kogyo Co., Ltd. is used as an effective material for a copper terminal.
  • a solution containing sulfuric acid, a surfactant and sodium chloride for example, ACL-738 of Uemura Kogyo Co., Ltd.
  • the alkaline type cleaner mainly removes the organic film, and effective for the copper terminal is a liquid containing nonionic surfactant, 2-ethanolamine, diethylenetriamine (for example, ACL of Uemura Kogyo Co., Ltd.). -009) is used.
  • any one of the above-mentioned cleaner liquids may be brought into contact with the terminal portion by a method such as immersion or spraying, and then washed with water.
  • the soft etching process (S1b) which is another pretreatment, is performed in order to remove the oxide film by etching a very thin portion of the terminal surface.
  • a soft etching solution effective for the copper terminal an acidic solution containing sodium persulfate and sulfuric acid is used.
  • the soft etching solution may be brought into contact with the terminal portion by a method such as immersion or spraying and then washed with water.
  • the pickling treatment (S1c) which is another pretreatment, is performed to remove smut (copper fine particles) from the terminal surface or the resin surface in the vicinity thereof.
  • smut copper fine particles
  • the pickling solution effective for the copper terminal sulfuric acid is used.
  • the pickling solution is brought into contact with the terminal portion by a method such as immersion or spraying and then washed with water.
  • the pre-dip treatment (S1d) which is another pretreatment, is a treatment that is immersed in sulfuric acid having substantially the same concentration as the catalyst application solution prior to the palladium catalyst application step. Increasing the hydrophilicity of the terminal surface to improve the adhesion to Pd ions contained in the catalyst application liquid, allowing the catalyst application liquid to be repeatedly reused by avoiding the flow of washing water into the catalyst application liquid, This is performed to remove the oxide film.
  • sulfuric acid is used as the pre-dip solution.
  • the terminal portion is immersed in the pre-dip solution. In addition, water washing is not performed after the pre-dip treatment.
  • Palladium sulfate or palladium chloride can be used as a palladium salt which is a Pd 2+ ion supply source. Palladium sulfate has a lower adsorption power than palladium chloride and is easy to remove Pd, so it is suitable for forming fine wires.
  • Examples of palladium sulfate-based catalyst imparting solutions effective for copper terminals include sulfuric acid, palladium salts, and strong acid solutions containing copper salts (for example, KAT-450 from Uemura Kogyo Co., Ltd.), oxycarboxylic acids, sulfuric acid, and Further, a strong acid solution containing a palladium salt (for example, MNK-4 manufactured by Uemura Kogyo Co., Ltd.) is used.
  • a strong acid solution containing a palladium salt for example, MNK-4 manufactured by Uemura Kogyo Co., Ltd.
  • palladium chloride has a strong adsorptive power and displaceability, and is difficult to remove Pd. Therefore, when electroless plating is performed under conditions where plating non-deposition is likely to occur, the effect of preventing non-plating is obtained.
  • a palladium catalyst provision process what is necessary is just to wash with water, after making the said catalyst provision liquid contact a terminal part by methods, such
  • Electroless nickel plating treatment for example, a plating bath containing a water-soluble nickel salt, a reducing agent and a complexing agent can be used. Details of the electroless nickel plating bath are described, for example, in JP-A-8-269726.
  • a plating bath containing a water-soluble nickel salt, a reducing agent and a complexing agent can be used. Details of the electroless nickel plating bath are described, for example, in JP-A-8-269726.
  • As the water-soluble nickel salt nickel sulfate, nickel chloride or the like is used, and its concentration is set to about 0.01 to 1 mol / liter.
  • hypophosphite such as hypophosphorous acid and sodium hypophosphite, dimethylamine borane, trimethylamine borane, hydrazine and the like are used, and the concentration is set to about 0.01 to 1 mol / liter.
  • carboxylic acids such as malic acid, succinic acid, lactic acid, citric acid, and sodium salts thereof, and amino acids such as glycine, alanine, iminodiacetic acid, arginine, and glutamic acid are used, and the concentration is 0.01- About 2 mol / liter.
  • the plating bath is adjusted to pH 4-7 and used at a bath temperature of about 40-90 ° C.
  • Electroless palladium plating bath for example, a plating bath containing a palladium compound, a complexing agent, a reducing agent, and an unsaturated carboxylic acid compound can be used.
  • a palladium compound for example, palladium chloride, palladium sulfate, palladium acetate, palladium nitrate, tetraamminepalladium hydrochloride and the like are used, and the concentration is about 0.001 to 0.5 mol / liter based on palladium.
  • the complexing agent ammonia or an amine compound such as methylamine, dimethylamine, methylenediamine, EDTA or the like is used, and the concentration is set to about 0.001 to 10 mol / liter.
  • the reducing agent hypophosphorous acid or hypophosphite such as sodium hypophosphite or ammonium hypophosphite is used, and the concentration is set to about 0.001 to 5 mol / liter.
  • unsaturated carboxylic acid compounds include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and maleic acid, anhydrides thereof, salts such as sodium salts and ammonium salts thereof, derivatives such as ethyl esters and phenyl esters thereof, and the like. And the concentration is about 0.001 to 10 mol / liter.
  • the plating bath is adjusted to pH 4 to 10 and used at a bath temperature of about 40 to 90 ° C.
  • hypophosphorous acid is used as a reducing agent in this plating bath, the following main reaction proceeds on the surface of the copper terminal, and a Pd plating film is formed.
  • Electroless gold plating treatment for example, a plating bath containing a water-soluble gold compound, a complexing agent, and an aldehyde compound can be used. Details of the electroless gold plating bath are described in, for example, JP-A-2008-144188.
  • a gold cyanide salt such as gold cyanide, potassium gold cyanide, sodium gold cyanide, ammonium gold cyanide is used, and the concentration thereof is 0.0001 to 1 mol / liter based on gold. To the extent.
  • the complexing agent for example, phosphoric acid, boric acid, citric acid, gluconic acid, tartaric acid, lactic acid, malic acid, ethylenediamine, triethanolamine, ethylenediaminetetraacetic acid and the like are used, and the concentration is 0.001 to 1 mol / Use about liters.
  • aldehyde compound examples include aliphatic saturated aldehydes such as formaldehyde and acetaldehyde, aliphatic dialdehydes such as glyoxal and succindialdehyde, aliphatic unsaturated aldehydes such as crotonaldehyde, benzaldehyde, o-, m- Alternatively, aromatic aldehydes such as p-nitrobenzaldehyde and saccharides having an aldehyde group (—CHO) such as glucose and galactose are used, and the concentration is set to about 0.0001 to 0.5 mol / liter.
  • This plating bath is adjusted to pH 5 to 10 and used at a bath temperature of about 40 to 90 ° C.
  • this plating bath is used, the following two substitution reactions proceed on the copper terminal surface, and an Au plating film is formed.
  • the printed wiring board After providing the palladium catalyst on the surface of the metal fine pattern, at any stage before performing the electroless nickel plating process or the electroless palladium plating process, the printed wiring board, It is preferable to perform at least one second palladium removal treatment selected from the group consisting of (e) treatment with a solution having a pH of 10 to 14 and (f) dry desmear treatment with plasma.
  • the second palladium removal treatment can be performed.
  • the second palladium removal process can be performed in the stage between the palladium catalyst applying process and the electroless nickel plating process (S + a).
  • the resin surface material supporting the conductor circuit is appropriately removed to roughen the resin surface. Since Pd 2+ ions adhering to the resin surface in the vicinity of the circuit are removed together with the material on the resin surface by these treatments, it is estimated that abnormal precipitation can be prevented.
  • the treatment with the solution having a pH of 10 to 14 can be carried out by any one or more of the following (e-1) to (e-4).
  • (E-1) Treatment with Sodium Hydroxide-Containing Solution As the sodium hydroxide-containing solution, a simple aqueous solution of NaOH is preferably used by adjusting the concentration to a strong alkali having a pH of 10 to 14, more preferably a pH of 11 to 13. be able to. Further, even a mixed solution containing NaOH and an acidic ethylene glycol solvent-containing solution such as a NaOH-containing surface wetting alkali buffer solution may be used as long as the concentration of the mixed solution is a strong alkali having a pH of 10 to 14. Also good.
  • the ethylene glycol solvent-containing liquid mixed with NaOH for example, Swelling Dip Securigant P building bath liquid manufactured by Atotech Co., Ltd. may be mentioned.
  • a primer resin layer having a surface roughness expressed by arithmetic mean of 0.5 ⁇ m or less is provided on the surface of a resin on which a metal fine pattern is to be formed
  • a series of steps of the SAP method palladium catalyst application, Electroless metal plating and electrolytic metal plating. Therefore, an electroless metal plating layer is formed on the surface of the resin having good adhesion of the palladium catalyst and having uniform and dense irregularities. Therefore, the surface of the substrate made of resin is excellent in electroless plating property, and a metal fine pattern having excellent peel strength is formed.
  • the resin surface excellent in electroless plating property has a problem that abnormal metal deposition is likely to occur when the metal fine pattern formed on the resin surface is subjected to gold plating by the ENIG method or the ENEPIG method.
  • the present invention by performing the first palladium removal process (a) to (d) before performing the gold plating process, abnormal metal deposition during the gold plating process can be suppressed.
  • a semiconductor device can be manufactured by mounting a semiconductor on the printed wiring board of the present invention.
  • the said semiconductor device is excellent in the insulation reliability between wiring and connection reliability by using the printed wiring board obtained by the manufacturing method of the base material with a gold plating metal fine pattern of this invention.
  • a semiconductor device can be manufactured by using the interposer obtained by the present invention as a package substrate and mounting, connecting, and sealing a semiconductor element thereto.
  • As a configuration of a semiconductor device using an interposer as a package substrate for example, there are those shown in FIGS.
  • FIG. 5 is a diagram schematically showing an example of a mounting hierarchical structure of a semiconductor device according to an embodiment of the present invention.
  • the semiconductor device is a semiconductor device in which a semiconductor package using an interposer as a package substrate is mounted on a motherboard. is there. Both surfaces of the mother board 11 are covered with solder resist layers 16a and 16b, but the connection terminals 15 of the outermost circuit on the semiconductor package connection side are exposed from the solder resist layer 16a.
  • the semiconductor package 12 is an area array type package in which the connection terminals 20b are arranged on the lower surface of the package. The connection terminals 20b on the lower surface of the package and the connection terminals 15 on the package mounting side of the mother board 11 are solder-connected by solder balls 22. Yes.
  • the semiconductor package 12 includes a semiconductor element 14 mounted on an interposer 13 that is a package substrate.
  • the interposer 13 is a multilayer printed wiring board. Three conductor circuit layers 18a, 18b, and 18c are sequentially stacked on the semiconductor element mounting side of the core substrate 17, and three conductor circuit layers 19a and 19b are also stacked on the motherboard connection side. , 19c are sequentially stacked.
  • the wiring dimensions are reduced stepwise by passing through the three conductor circuit layers 18a, 18b, and 18c.
  • the outermost layer circuits on both surfaces of the interposer 13 are covered with solder resist layers 21a and 21b, but the connection terminals 20a and 20b are exposed from the solder resist layers 21a and 21b.
  • connection terminal 20a of the outermost layer circuit on the semiconductor element mounting side of the interposer 13 has a line and space of preferably 10 to 50 ⁇ m / 10 to 50 ⁇ m, more preferably 12 to 30 ⁇ m / 12 to 30 ⁇ m.
  • the terminal portion 20b of the outermost layer circuit on the motherboard connection side of the interposer 13 has a line and space of preferably 300 to 500 ⁇ m / 300 to 500 ⁇ m, more preferably 350 to 450 ⁇ m / 350 to 450 ⁇ m.
  • connection terminal 15 of the outermost layer circuit on the package mounting side (interposer connection side) of the mother board 11 also preferably has a line and space of 300 to 500 ⁇ m / 300 to 500 ⁇ m, more preferably 350 to 450 ⁇ m / 350 to 450 ⁇ m.
  • the semiconductor element 14 has an electrode pad 23 on the lower surface, and the electrode pad 23 and the connection terminal 20 a of the outermost layer circuit on the semiconductor element mounting side of the interposer 13 are solder-connected by a solder ball 24. A gap between the interposer 13 and the semiconductor element mounted thereon is sealed with a sealing material 25 such as an epoxy resin.
  • a sealing material 25 such as an epoxy resin.
  • FIG. 6 is a diagram schematically showing the structure of another type of semiconductor package (wire bonding type) using an interposer as a package substrate.
  • a semiconductor package 30 is formed by mounting a semiconductor element 32 on an interposer 31 that is a package substrate.
  • the semiconductor package 30 is an area array type package in which connection terminals 33b are arranged on the lower surface of the package, and solder balls 38 are arranged on the connection terminals 33b on the lower surface of the package.
  • connection terminals 33b are arranged on the lower surface of the package
  • solder balls 38 are arranged on the connection terminals 33b on the lower surface of the package.
  • the detailed laminated structure of the interposer 31 is omitted, it is a multilayer printed wiring board similar to the interposer shown in FIG. 5, and the outermost layer circuits on both sides are covered with solder resist layers 34a and 34b.
  • the semiconductor element 32 is fixed to the semiconductor element mounting side of the interposer 31 through a die bond material cured layer 37 such as an epoxy resin.
  • the semiconductor element 32 has an electrode pad 35 on the upper surface, and the electrode pad 35 is connected to the connection terminal 33 a of the outermost circuit on the semiconductor element mounting side of the interposer 31 by a gold wire 36.
  • the semiconductor element mounting side of the semiconductor package 31 is sealed with a sealing material 39 such as epoxy resin.
  • a sealing material 39 such as epoxy resin.
  • the conductor circuit on the outermost layer on the motherboard connection side of the interposer and the conductor circuit on the outermost layer on the interposer connection side of the motherboard are also formed by the method of the present invention in the same manner as described above, and only the terminal portion is exposed and the other portions are solder resist layers. And the terminal portion can be gold-plated by the method of the present invention.
  • the manufacturing method of the base material with a gold-plated metal fine pattern of the present invention is not only a printed wiring board as described above, but also a base material with a gold-plated metal fine pattern of an electronic component other than a printed wiring board, and more than an electronic component. It can carry out suitably also for a substrate with a gold-plated metal fine pattern in various fields.
  • primer resin 31.5 parts by weight of methoxynaphthalene aralkyl type epoxy resin (DICIC, EPICLON HP-5000) as an epoxy resin, phenol novolac type cyanate resin (Primase PT-30, manufactured by LONZA) as cyanate ester resin 7 parts by weight, polyamide resin (manufactured by Nippon Kayaku Co., Ltd., KAYAFLEX BPAM01) 31.5 parts by weight, imidazole (manufactured by Shikoku Kasei Co., Ltd., Curazole 1B2PZ) 0.3 part by weight as a mixed solvent of dimethylacetamide and methyl ethyl ketone 30 Stir for minutes to dissolve.
  • DICIC methoxynaphthalene aralkyl type epoxy resin
  • phenol novolac type cyanate resin Principal Novolac type cyanate resin
  • polyamide resin manufactured by Nippon Kayaku Co., Ltd., KAYAFLEX BPAM01
  • primer resin sheet A peelable type copper foil (manufactured by Nippon Electrolytic Co., Ltd.) obtained by bonding the resin varnish obtained above to a peelable carrier foil layer and an electrolytic copper foil layer having a thickness of 0.5 to 5.0 ⁇ m. , YSNAP-3B, carrier foil layer: copper foil (18 ⁇ m), electrolytic copper foil layer (3 ⁇ m), surface roughness Ra (0.4 ⁇ m)), and a resin layer after drying using a comma coater was applied with a drying apparatus of 150 ° C. for 10 minutes to produce a primer resin sheet with copper foil.
  • test piece (1) The 3 ⁇ m copper foil of the copper clad laminate obtained above was removed by etching to expose the primer layer.
  • (2) Desmear treatment of primer layer surface The substrate on which the primer layer was exposed was subjected to a surface treatment using a NaOH-containing surface wetting alkali buffer and a sodium permanganate-containing solution according to the following procedure.
  • -Resin surface swelling treatment The substrate is immersed in a mixed solution (pH 12) of commercially available sodium hydroxide having a liquid temperature of 60 ° C. and an ethylene glycol solvent-containing solution (Swelling Dip Securigant P building bath solution manufactured by Atotech) for 2 minutes. And washed with water three times.
  • -Resin surface roughening treatment After the swelling treatment, the substrate was immersed in a sodium permanganate-containing roughening treatment solution (concentrate compact CP building bath solution manufactured by Atotech Co., Ltd.) at a liquid temperature of 80 ° C for 2 minutes, and then washed with water three times. . -Neutralization treatment: After the roughening treatment, the substrate was immersed for 3 minutes in a neutralization treatment solution (Atotech Co., Ltd., reduction securigant P500 building bath solution), and then washed with water three times.
  • a neutralization treatment solution Atotech Co., Ltd., reduction securigant P500 building bath solution
  • An electroless copper plating layer (manufactured by Uemura Kogyo Co., Ltd., Sulcup PEA process) was formed on the surface of the primer layer subjected to desmear treatment with a thickness of 1 ⁇ m.
  • a semi-additive dry film (UFG-255 manufactured by Asahi Kasei) was laminated on the copper foil surface of the copper-clad laminate using a roll laminator.
  • Exposing the dry film in a predetermined pattern parallel light exposure machine: EV-0800 manufactured by Ono Sokki, exposure condition: exposure amount 140 mJ, hold time 15 minutes), development (developer: 1% sodium carbonate aqueous solution, Development time: 40 seconds).
  • An electrolytic copper plating process was performed on the exposed portion of the pattern to form an electrolytic copper plating film having a thickness of 20 ⁇ m, and the dry film was peeled off (peeling solution: R-100, manufactured by Mitsubishi Gas Chemical, stripping time: 240 seconds).
  • the 1 ⁇ m electroless copper seed layer was removed by flash etching (SAC process from Ebara Densan).
  • a test piece having FIG. 7 shows a comb-teeth pattern copper circuit formed on a test piece.
  • ENEPIG process (1) Cleaner treatment ACL-007 manufactured by Uemura Kogyo Co., Ltd. was used as a cleaner liquid, and the test piece was immersed in a cleaner liquid at a liquid temperature of 50 ° C. for 5 minutes and then washed with water three times. (2) Soft Etching Treatment After the cleaner treatment, a mixed solution of sodium persulfate and sulfuric acid was used as a soft etching solution, the test piece was immersed in a soft etching solution at a liquid temperature of 25 ° C. for 1 minute, and then washed with water three times. (3) Pickling treatment After the soft etching treatment, the test piece was immersed in sulfuric acid having a liquid temperature of 25 ° C.
  • Electroless Ni plating treatment After the palladium catalyst application step, the test piece was immersed in an electroless Ni plating bath (NPR-4 manufactured by Uemura Kogyo Co., Ltd.) at a liquid temperature of 80 ° C. for 35 minutes, and then washed three times with water. did. (7) Electroless Pd plating treatment After the electroless Ni plating treatment, the test piece was immersed in an electroless Pd plating bath (TPD-30 manufactured by Uemura Kogyo Co., Ltd.) at a liquid temperature of 50 ° C. for 5 minutes and then washed with water three times. did.
  • TPD-30 manufactured by Uemura Kogyo Co., Ltd.
  • Electroless Au plating treatment After the electroless Pd plating treatment, the test piece was immersed in an electroless Au plating bath (TWX-40 manufactured by Uemura Kogyo Co., Ltd.) with a liquid temperature of 80 ° C. for 30 minutes, and then washed with water three times. did.
  • an electroless Au plating bath TWX-40 manufactured by Uemura Kogyo Co., Ltd.
  • Example 2 (b) treatment, ENEPIG process
  • the surface treatment using a chemical solution containing nitric acid and chlorine ions was not performed, and the test piece was immersed in a KCN-containing liquid having a concentration of 20 g / liter and a liquid temperature of 25 ° C. for 1 minute, and then three times. Washed with water (treatment with KCN).
  • Example 3 (c) treatment, ENEPIG process
  • surface treatment using a chemical solution containing nitric acid and chlorine ions was not performed, and desmear treatment (surface treatment using a sodium permanganate-containing solution) was performed according to the following procedure.
  • (1) Resin surface swelling treatment The test piece is mixed with a mixed solution (pH 12) of commercially available sodium hydroxide having a liquid temperature of 60 ° C. and an ethylene glycol solvent-containing liquid (Swelling Dip Securigant P building bath liquid manufactured by Atotech). After soaking for 3 minutes, it was washed with water three times.
  • Example 4 (d) treatment, ENEPIG process
  • the surface treatment using the chemical solution containing nitric acid and chlorine ions was not performed, and dry desmear treatment with plasma was performed according to the following apparatus and conditions.
  • Example 5 (a) treatment, ENIG process )
  • the same procedure as in Example 1 was performed except that the ENEPIG process was changed to the ENIG process without performing the electroless Pd plating process (TPD-30 manufactured by Uemura Kogyo Co., Ltd.) in the ENEPIG process in the process of Example 1. .
  • Example 6 (b) treatment, ENIG process)
  • surface treatment using a chemical solution containing nitric acid and chlorine ions was not performed, and the test piece was immersed in a KCN-containing solution having a concentration of 20 g / liter and a liquid temperature of 25 ° C. for 1 minute, and then three times. Washed with water (treatment with KCN).
  • Example 7 (c) treatment, ENIG process)
  • surface treatment using a chemical solution containing nitric acid and chloride ions is not performed, and (c) a desmear treatment with a chemical solution (surface using a sodium permanganate-containing solution) according to the same procedure as in Example 3. Treatment).
  • Example 8 (d) treatment, ENIG process
  • surface treatment step of Example 5 surface treatment using a chemical solution containing nitric acid and chlorine ions was not performed, and dry desmear treatment with plasma was performed under the same apparatus and conditions as in Example 4.
  • Example 9 (a) treatment, (e-1) treatment in ENEPIG step S + a)
  • the test piece is a commercially available sodium hydroxide and ethylene glycol solvent-containing liquid having a liquid temperature of 60 ° C. (Swelling manufactured by Atotech) After dipping for 10 minutes in a mixed solution (pH 12) of dip securigant P building bath solution, it was washed with water three times.
  • Example 10 (a) treatment, (e-2) treatment in ENEPIG step S + a)
  • the test piece was subjected to a sodium permanganate-containing roughening treatment solution at 80 ° C. After being immersed in a bath solution, pH 14) for 2 minutes, it was washed with water three times.
  • Example 11 (a) treatment, (e-3) treatment in ENEPIG step S + a)
  • the test piece was surface-treated with a sulfur organic substance-containing liquid (mercaptothiazoline 1 g / liter aqueous solution, pH 12.5) after electroless Pd catalyst application and before electroless nickel plating. After carrying out, it was washed with water three times.
  • a sulfur organic substance-containing liquid mercaptothiazoline 1 g / liter aqueous solution, pH 12.5
  • Example 12 (a) process, (e-4) process in ENEPIG process S + a)
  • a KCN-containing liquid having a concentration of 20 g / liter and a liquid temperature of 25 ° C. at a stage after electroless Pd catalyst application and before electroless nickel plating, Washed 3 times with water.
  • Example 13 (a) process, (f) process in ENEPIG process S + a)
  • plasma treatment was performed using the following apparatus and conditions at the stage after application of the electroless Pd catalyst and before electroless nickel plating.
  • Processing device PCB2800E (manufactured by March Plasma System)
  • Treatment conditions Gas (mixture of two): O 2 (95%) / CF 4 (5%), Atmospheric pressure: 250 mTorr, Wattage: 2000 W, Time: 75 seconds
  • Example 14 (a) treatment, (e-4) treatment in ENEPIG step S + b))
  • the test piece was immersed in a KCN-containing liquid (pH 12) having a concentration of 20 g / liter and a liquid temperature of 25 ° C. for 1 minute after electroless nickel plating and before electroless palladium plating. Washed with water.
  • Example 15 (a) treatment, (e-4) treatment in ENIG step S + b))
  • the test piece was immersed in a KCN-containing liquid (pH 12) having a concentration of 20 g / liter and a liquid temperature of 25 ° C. for 1 minute after electroless nickel plating and before electroless palladium plating. Washed with water.
  • Example 1 No palladium removal treatment, ENEPIG process It carried out like Example 1 except not having performed a surface treatment process.
  • Excellent electroless plating in the SAP process enables the formation of fine circuits, and suppresses abnormal deposition in the gold plating process, thereby improving the insulation reliability between wires and the connection reliability of fine circuits.
  • a substrate with a gold-plated metal fine pattern, particularly a printed wiring board, and a semiconductor device using the printed wiring board can be provided. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 樹脂からなる支持表面を有する基材を準備する工程と、前記支持表面上に、表面粗度が0.5μm以下であるプライマー樹脂層を形成し、その上にSAP法によって金属微細パターンを形成して金属微細パターン付き基材を得る工程と、前記金属微細パターンの少なくとも一部の表面に金メッキ処理を行う工程とを含み、前記金メッキ処理を行う前の任意の段階において、金属微細パターン付き基材に対し、パラジウム除去処理を行う。

Description

金メッキ金属微細パターン付き基材の製造方法、金メッキ金属微細パターン付き基材、プリント配線板、インターポーザ及び半導体装置
 本発明は、金メッキ金属微細パターン付き基材の製造方法、前記方法を用いて製造した金メッキ金属微細パターン付き基材、特にマザーボードやインターポーザ等のプリント配線板、及び前記プリント配線板を用いた半導体装置に関する。
 近年、電子機器の高機能化、軽量化、小型化、薄型化の要求に伴い、電子部品の高密度集積化、高密度実装化が進んでいる。これらの電子機器に使用されるプリント配線板の回路配線は高密度化、複雑化する傾向にあり、回路パターンの微細化が進んでいる。
 特に、インターポーザと呼ばれるプリント配線板の半導体素子搭載面は、回路パターンの微細化が求められている。
 半導体装置のプリント配線板としては、マザーボード及びインターポーザが知られている。インターポーザは、マザーボードと同様のプリント配線板であるが、半導体素子(ベアチップ)又は半導体パッケージとマザーボードの間に介在し、マザーボード上に搭載される。
 インターポーザは、マザーボードと同様に、半導体パッケージを実装する基板として用いても良いが、マザーボードと異なる特有の使用方法としては、パッケージ基板又はモジュール基板として用いられる。
 パッケージ基板とは、半導体パッケージの基板としてインターポーザが用いられるという意味である。半導体パッケージには、半導体素子をリードフレーム上に搭載し、両者をワイアボンディングで接続し、樹脂で封止するタイプと、インターポーザをパッケージ基板として用い、半導体素子を前記インターポーザ上に搭載し、両者をワイアボンディング等の方法で接続し、樹脂で封止するタイプとがある。
 インターポーザをパッケージ基板として用いる場合、半導体パッケージのマザーボード接続側平面(インターポーザの下面側)に、マザーボードに対する接続端子を配置することができる。また、インターポーザの半導体素子接続側からマザーボード接続側へ配線寸法を段階的に拡大し、半導体素子とマザーボードの間の配線寸法ギャップを埋めることができる。
 回路の微細化の更なる進展に対応するために、多層プリント配線板のインターポーザも用いられる。
 導体回路幅の距離と回路間の距離をラインアンドスペース(L/S)という。現在、半導体素子内部回路のラインアンドスペースはサブミクロンレベルに到達しており、これに接続するインターポーザの半導体素子接続側最外層回路の接続端子は、ラインアンドスペース(L/S)が数十μm/数十μm程度である。一方、インターポーザのマザーボード接続側最外層回路の接続端子のラインアンドスペース(L/S)は、数百μm/数百μm程度であり、これに対するマザーボードのインターポーザ接続側最外層回路の接続端子のラインアンドスペース(L/S)も、数百μm/数百μm程度である。
 一方、モジュール基板とは、複数の半導体パッケージ又はパッケージ前の半導体素子を単一モジュール内に搭載する基板として用いられるという意味である。モジュール基板の半導体素子搭載面に対しても、回路の微細化が求められる。
 近年、プリント配線板の微細回路形成を達成する技術として、セミアディティブ法(SAP法)が行われ始めている。SAP法は、コア基板または層間絶縁層の表面に粗化処理を行い、引き続き、下地になる無電解メッキ処理を施し、レジストにより電解メッキ用マスクを形成し、電解メッキにより回路形成部の銅厚付けを行った後、レジスト除去とソフトエッチングにより、絶縁層上に回路を形成する方法である。なお粗化とは、導体回路表面に微細な凹凸をつけることをいう。
 一方、プリント配線板上の回路の実装部分および端子部分等の最終表面処理として、金メッキが行われる。
 金メッキの代表的な方法の一つとして、無電解ニッケル-金メッキ法がある。ENIG法(Electroless Nickel Immersion Gold)は、無電解ニッケル-金メッキ法の一つであり、無電解金メッキ処理段階において、置換金メッキ処理(Immersion Gold)を行う方法である。
 無電解ニッケル-金メッキ法では、回路や端子部分における導体材料の拡散防止および耐食性向上、ニッケル酸化防止が可能である。
 また、他の金メッキの方法として、無電解ニッケル-パラジウム-金メッキ法の適用が検討され始めている。この方法では、めっき対象に、クリーナー等の適宜の方法により前処理を行った後、パラジウム触媒を付与し、その後さらに、無電解ニッケルメッキ処理、無電解パラジウムメッキ処理、及び、無電解金メッキ処理を順次行う。
 ENEPIG法(Electroless Nickel Electroless Palladium Immersion Gold)は、無電解ニッケル-パラジウム-金メッキ法の無電解金メッキ処理段階において、置換金メッキ処理(Immersion Gold)を行う方法である(特許文献1)。
 無電解ニッケル-パラジウム-金メッキ法では、回路や端子部分における導体材料の拡散防止および耐食性向上、ニッケル酸化防止および拡散防止が可能である。また、無電解ニッケル-パラジウム-金メッキ法は、無電解パラジウムメッキ被膜を設けることによって、金によるニッケル酸化を防止することができるので、熱負荷の大きい鉛フリー半田接合の信頼性が向上する。さらに金の膜厚を厚くしなくてもニッケル拡散が生じないため、無電解ニッケル-金メッキ法よりも低コスト化できる。
 しかし、プリント配線板の回路をSAPプロセスにより形成した後、前記回路に無電解ニッケル-金メッキ処理又は無電解ニッケル-パラジウム-金メッキ処理による無電解金属メッキを行うと、導体回路を支持している絶縁膜または基板の樹脂表面の回路周囲に金属が異常析出し、メッキ処理面の品質を落とす原因となる。
 特に、近年の回路配線の高密度化、複雑化に応えるべく回路が微細化すると、隣接する配線間あるいは端子間に析出した金属によってショートが発生しやすくなる。パッケージ基板用インターポーザの半導体素子接続側最外層回路の接続端子は、ラインアンドスペース(L/S)が数十μm/数十μm程度と狭いため、特にショートを起こしやすい。
 特許文献2には、無電解銅メッキと電気銅メッキを行った後、エッチングすることにより回路パターンを形成し、その回路上に無電解金属メッキを行う方法であって、前記エッチング工程と無電解金属メッキ工程の間に、硝酸、塩素イオンおよびカチオン性ポリマーを含む溶液を、樹脂表面に付着した金属析出触媒の除去液として用いる方法が開示されている。
 また特許文献2には、より配線間が狭いものについても絶縁性を保ったまま無電解金属メッキをするために、前記エッチング工程と無電解金属メッキ工程の間に、前記除去液に加えて、公知のブリッジ防止液を作用させる方法が記載されている。
 しかしながら、特許文献2で開示されている特定の除去液を用いる方法や、前記特定の除去液と公知のブリッジ防止液を組み合わせて用いる方法によっても、SAP法により形成した回路の表面に無電解ニッケル-金メッキ処理又は無電解ニッケル-パラジウム-金メッキ処理による無電解金属メッキを行う際に、回路周囲の金属の異常析出を充分に防止できないおそれがある。
 本発明者らの研究によると、SAP法のプロセスにおいて付与されるパラジウム触媒、及び、無電解ニッケル-金メッキ処理又は無電解ニッケル-パラジウム-金メッキ処理のプロセスにおいて付与されるパラジウム触媒に起因して上記異常析出が起きると考えられる。
 SAPプロセスにおいては、樹脂表面の無電解メッキ付き性を向上させるために、無電解メッキを行う前に無電解メッキ触媒を付与する。なお無電解メッキ付き性とは、触媒に対する無電解メッキ金属の吸着しやすさをいう。無電解メッキ触媒としてはパラジウム触媒がしばしば用いられる。
 SAP法を行う樹脂表面は、パラジウム触媒の付着性が良い樹脂で形成されるため、電解メッキ後にソフトエッチングを行うだけでは、回路を形成した樹脂面にパラジウム金属残渣が残る。
 また、無電解ニッケル-金メッキ処理又は無電解ニッケル-パラジウム-金メッキ処理のプロセスにおいては、回路表面の無電解メッキ付き性を向上させるために、ニッケル無電解メッキを行う前にパラジウム触媒を付与する。しかし、上述したとおり回路を形成した樹脂面はSAPプロセスでの加工性を向上させるためにパラジウム触媒の付着性が良い樹脂で形成されるため、この段階で付与されるパラジウム触媒は、メッキ対象とされる回路表面だけでなく、回路周囲の樹脂表面にも付着する。
 このような樹脂表面に存在するパラジウム触媒またはパラジウム金属残渣が核となって、回路周囲の樹脂面に異常析出が起きると考えられる。
 また、SAP法と無電解ニッケル-パラジウム-金メッキ処理を組み合わせた場合には、無電解ニッケル-金メッキ処理を行う場合と比べて更に多量の異常析出が起こりやすいことが本発明者らによって判明した。このため、無電解ニッケル-パラジウム-金メッキ処理を行う場合には、特に異常析出を防止する必要性が高い。
特開2008-144188号公報 特開2005-213547号公報
 本発明は、上記実情を鑑みて成し遂げられたものであり、本発明の目的は、金メッキ金属微細パターン付き基材の製造方法において、SAPプロセスでの無電解メッキ付き性に優れ、微細回路の形成を可能とし、かつ、無電解ニッケル-パラジウム-金メッキ処理又は無電解ニッケル-金メッキ処理での異常析出を抑制して微細回路の配線間絶縁信頼性および接続信頼性を向上させることを可能とする方法を提供することである。
 また、前記製造方法によって得られる金メッキ金属微細パターン付き基材、特に、前記金メッキ金属微細パターンを導体回路として得られるインターポーザ、マザーボード等のプリント配線板、及び前記プリント配線板を用いて得られる半導体装置を提供することである。
 上記目的は、下記発明(1)~(15)により達成される。
(1)樹脂からなる支持表面を有する基材を準備する工程と、
前記基材の樹脂からなる支持表面上に、セミアディティブ法によって金属微細パターンを形成して金属微細パターン付き基材を得る工程と、
前記金属微細パターンの少なくとも一部の表面に、無電解ニッケル-パラジウム-金メッキ処理及び無電解ニッケル-金メッキ処理よりなる群から選ばれる金メッキ処理を行う工程と、
を含む金メッキ金属微細パターン付き基材を製造する方法であって、
 前記樹脂からなる支持表面上に、算術平均で表される表面粗度が0.5μm以下であるプライマー樹脂層を形成し、
 前記プライマー樹脂層の上にパラジウム触媒を用いる無電解金属メッキ処理を含むセミアディティブ法によって金属微細パターンを形成し、
 前記金属微細パターンの形成後、前記金メッキ処理を行う前の任意の段階において、金属微細パターン付き基材に対し、下記(a)から(d): 
(a)パラジウム除去剤による処理
(b)シアン化カリウム(KCN)含有液による処理
(c)薬液によるデスミア処理
(d)プラズマによるドライデスミア処理
よりなる群から選ばれる少なくとも一つのパラジウム除去処理を行い、
 前記パラジウム除去処理を行った後、前記金メッキ処理を行うことを特徴とする、金メッキ金属微細パターン付き基材の製造方法。
(2)前記パラジウム除去処理を行った後の金メッキ処理工程において、金属微細パターン付き基材の金属微細パターンの表面にパラジウム触媒を付与した後、無電解ニッケルメッキ処理又は無電解パラジウムメッキ処理を行う前の任意の段階において、金属微細パターン付き基材に対し、下記(e)及び(f): 
(e)pH10~14の溶液による処理、
(f)プラズマによるドライデスミア処理
よりなる群から選ばれる少なくとも一つの第2のパラジウム除去処理を行うことを特徴とする、上記(1)に記載の金メッキ金属微細パターン付き基材の製造方法。
(3)前記金属微細パターン付き基材がプリント配線板であり、前記金属微細パターンがプリント配線板表面の導体回路である、上記(1)又は(2)に記載の金メッキ金属微細パターン付き基材の製造方法。
(4)前記プリント配線板がマザーボードであり、そのめっき処理部における導体回路のラインアンドスペース(L/S)が300~500μm/300~500μmである、上記(3)に記載の金メッキ金属微細パターン付き基材の製造方法。
(5)前記プリント配線板がインターポーザである、上記(3)に記載の金メッキ金属微細パターン付き基材の製造方法。
(6)前記インターポーザは、半導体素子との接続面側のめっき処理部における導体回路のラインアンドスペース(L/S)が10~50μm/10~50μmである、上記(5)に記載の金メッキ金属微細パターン付き基材の製造方法。
(7)前記インターポーザは、マザーボードとの接続面側のめっき処理部における導体回路のラインアンドスペース(L/S)が300~500μm/300~500μmである、上記(5)に記載の金メッキ金属微細パターン付き基材の製造方法。
(8)上記(1)の方法により製造された金メッキ金属微細パターン付き基材。
(9)プリント配線板表面の導体回路上に、上記(1)の方法によりニッケル-パラジウム-金メッキ層及びニッケル-金メッキ層よりなる群から選ばれる複合金メッキ層を形成したプリント配線板。
(10)前記導体回路の前記複合金メッキ層を有する部分のラインアンドスペース(L/S)が300~500μm/300~500μmである、上記(9)に記載のプリント配線板。
(11)インターポーザ表面の導体回路上に、上記(1)の方法によりニッケル-パラジウム-金メッキ層及びニッケル-金メッキ層よりなる群から選ばれる複合金メッキ層を形成したインターポーザ。
(12)前記インターポーザは、半導体素子との接続面側のめっき処理部における導体回路のラインアンドスペース(L/S)が10~50μm/10~50μmである、上記(11)に記載のインターポーザ。
(13)前記インターポーザは、マザーボードとの接続面側のめっき処理部における導体回路のラインアンドスペース(L/S)が300~500μm/300~500μmである、上記(11)に記載のインターポーザ。
(14)上記(9)又は(10)に記載のプリント配線板上に半導体が搭載された半導体装置。
(15)上記(11)~(13)の何れか一に記載のインターポーザを含むプリント配線板の前記インターポーザ上に半導体が搭載された半導体装置。
 本発明の金メッキ金属微細パターン付き基材の製造方法では、絶縁層と導体回路層との間に、算術平均で表される表面粗度が0.5μm以下のプライマー樹脂層を設けた後に、SAP法の一連の工程(パラジウム触媒付与、無電解金属メッキ、及び電解金属メッキ)を行う。そのため、パラジウム触媒の付着性が良好で且つ均一で緻密な凹凸を有する樹脂表面に無電解金属メッキ層が形成される。したがって、樹脂からなる基材の表面は無電解メッキ付き性に優れており、ピール強度に優れた金属微細パターンが形成される。なお表面粗度とは、例えばJIS  B  0601に準じて測定される数値のことをいい、ピール強度とは、例えばJIS C 6481に準じて測定される樹脂と金属界面の引き剥がし強さのことをいう。前記算術平均で表される表面粗度は、例えばJIS  B  0601に準じて測定することができる。
 さらに前記(a)~(d)よりなる群から選ばれる少なくとも一つのパラジウム除去処理を行うことによって、SAP法による金属微細パターン形成時および無電解ニッケル-パラジウム-金メッキ処理又は無電解ニッケル-金メッキ処理による金メッキ処理時のパラジウム金属の異常析出を防止することができる。
 また、無電解ニッケル-パラジウム-金メッキ処理の場合にはパラジウム触媒の付与後から無電解パラジウムメッキを行う前までの間に、無電解ニッケル-金メッキ処理の場合にはパラジウム触媒の付与後から無電解ニッケルメッキを行う前までの間に、前記(e)又は(f)の第2のパラジウム除去処理を行うことにより、金メッキ処理を行う際の金属の異常析出を、さらに低いレベルに抑えることができる。
 従って、本発明の金メッキ金属微細パターン付き基材の製造方法を行うことによって、配線間絶縁信頼性および接続信頼性に優れる微細回路を有する金メッキ金属微細パターン付き基材、特に、インターポーザ、マザーボード等のプリント配線板を得ることができる。インターポーザのマザーボード接続側最外層の導体回路、及び、マザーボードのインターポーザ接続側最外層の導体回路は、上記と同様に本発明の方法で形成し、端子部分のみ露出させて他の部分をソルダーレジスト層で被覆し、前記端子部分に対し本発明の方法で金メッキ処理を行うことができる。
本発明の金メッキ金属微細パターン付き基材の製造方法の一例(前半の一工程)を示す概念図である。 本発明の金メッキ金属微細パターン付き基材の製造方法の一例(前半の一工程)を示す概念図である。 本発明の金メッキ金属微細パターン付き基材の製造方法の一例(前半の一工程)を示す概念図である。 本発明の金メッキ金属微細パターン付き基材の製造方法の一例(前半の一工程)を示す概念図である。 本発明の金メッキ金属微細パターン付き基材の製造方法の一例(前半の一工程)を示す概念図である。 本発明の金メッキ金属微細パターン付き基材の製造方法の一例(前半の一工程)を示す概念図である。 本発明の金メッキ金属微細パターン付き基材の製造方法の一例(後半の一工程)を示す概念図である。 本発明の金メッキ金属微細パターン付き基材の製造方法の一例(後半の一工程)を示す概念図である。 本発明の金メッキ金属微細パターン付き基材の製造方法の一例(後半の一工程)を示す概念図である。 本発明の金メッキ金属微細パターン付き基材の製造方法の一例(後半の一工程)を示す概念図である。 プライマー樹脂層を粗化する方法を説明する概念図である。 プライマー樹脂層を粗化する方法を説明する概念図である。 プライマー樹脂層を粗化する方法を説明する概念図である。 ENEPIG法の手順を示すブロック図である。 ENIG法の手順を示すブロック図である。 本発明の実施形態にかかる半導体装置の実装階層構造の一例を模式的に示す図である。 本発明の実施形態にかかるインターボーザを用いた半導体パッケージの一例を模式的に示す図である。 実施例のテストピース上に形成した櫛歯パターン状銅回路を模式的に示す図である。 実施例1で得ためっき処理物の端子部分の電子顕微鏡写真である。 実施例2で得ためっき処理物の端子部分の電子顕微鏡写真である。 実施例3で得ためっき処理物の端子部分の電子顕微鏡写真である。 実施例4で得ためっき処理物の端子部分の電子顕微鏡写真である。 実施例5で得ためっき処理物の端子部分の電子顕微鏡写真である。 実施例12で得ためっき処理物の端子部分の電子顕微鏡写真である。 比較例1で得ためっき処理物の端子部分の電子顕微鏡写真である。
 本発明の金メッキ金属微細パターン付き基材の製造方法は、樹脂からなる支持表面を有する基材を準備する工程と、
前記基材の樹脂からなる支持表面上に、セミアディティブ法によって金属微細パターンを形成して金属微細パターン付き基材を得る工程と、
前記金属微細パターンの少なくとも一部の表面に、無電解ニッケル-パラジウム-金メッキ処理及び無電解ニッケル-金メッキ処理よりなる群から選ばれる金メッキ処理を行う工程と、
を含む金メッキ金属微細パターン付き基材を製造する方法であって、前記樹脂からなる支持表面上に、算術平均で表される表面粗度が0.5μm以下であるプライマー樹脂層を形成し、前記プライマー樹脂層の上にパラジウム触媒を用いる無電解金属メッキ処理を含むセミアディティブ法によって金属微細パターンを形成し、前記金属微細パターンの形成後、前記金メッキ処理を行う前の任意の段階において、金属微細パターン付き基材に対し、
(a)パラジウム除去剤による処理、
(b)シアン化カリウム(KCN)含有液による処理、
(c)薬液によるデスミア処理、および
(d)プラズマによるドライデスミア処理
よりなる群から選ばれる少なくとも一つのパラジウム除去処理を行い、前記パラジウム除去処理を行った後、前記金メッキ処理を行うことを特徴とする。
 また、本発明の金メッキ金属微細パターン付き基材の製造方法は、前記パラジウム除去処理を行った後の金メッキ処理工程において、金属微細パターン付き基材の金属微細パターンの表面にパラジウム触媒を付与した後、無電解ニッケルメッキ処理又は無電解パラジウムメッキ処理を行う前の任意の段階において、金属微細パターン付き基材に対し、
(e)pH10~14の溶液による処理及び
(f)プラズマによるドライデスミア処理
よりなる群から選ばれる少なくとも一つの第2のパラジウム除去処理を行うことが好ましい。
 以下、コア基材上にSAP法により銅回路を形成し、その銅回路の表面に金メッキ処理を行う場合を例とし、本発明の金メッキ金属微細パターン付き基材の製造方法を説明する。
 図1A~図1Jは、製造方法の手順を説明する図である。
 この例では、先ず図1Aに示される手順において、樹脂からなる支持表面を有する基材として、プリント配線板のコア基材1を準備する。
 本発明において、「樹脂からなる支持表面を有する基材」とは、本発明の方法によりSAP法及び金メッキ処理を行う対象物であり、基材の表面が樹脂からなるものであればよく、基材の深い部分が樹脂以外の材料からなるものであってもよい。
 プリント配線板を製造する場合には、コア基材を用いてもよいし、或いは、コア基材上に多層配線化している途中の積層体であって最表面に層間絶縁層が積層されているものを用いてもよい。
 コア基材としては、例えばガラス布基材エポキシ樹脂銅張積層板等の公知のコア基板、及び公知のプリプレグ等を用いることができる。
 また、多層配線化している途中の積層体は、コア基材上に、従来公知の方法でSAP法により導体回路層を繰返し形成することにより得られる。
 次に図1Bに示される手順において、コア基材1の上に、無電解メッキ付き性を向上させるためにプライマー樹脂層2が形成される。プライマー樹脂は、ポリアミド樹脂及びポリイミド樹脂よりなる群から選ばれる樹脂を含むことが好ましい。これらの樹脂は、パラジウム触媒の付着性、無電解メッキ付き性が良い。
 前記ポリアミド樹脂としては、特に限定されないが、下記構造式(1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、Ar、Arは二価の炭化水素基、または芳香族基を示し、繰り返しで異なっていてもよい。また、nは繰り返し単位を示し、5~5000の整数である。)
 これらの中でも、ゴム変性ポリアミド樹脂が好ましい。これにより、可とう性が向上し、導体層との密着性を向上させることができる。ゴム変性とは、前記構造式(1)のAr、および/またはArにブタジエン、アクリロニトリル基等のゴム成分の骨格を有することをいう。また、更に好ましくは、Ar、および/またはArにフェノール性水酸基を有することをいう。これにより、エポキシ樹脂との相溶性に優れ、かつ熱硬化によりポリアミドポリマーとの三次元架橋が可能になり機械強度に優れる。更に好ましいポリアミド樹脂として、具体的には、下記構造式(2)に表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000002
(式中、n、mは仕込みモル数を表し、n/(m+n)=0.05~2(仕込みモル比)であり、x、y、pは重量比を表し(x+y)/p=0.2~2(重量比)である。重量平均分子量は、8,000~100,000、水酸基当量は、1,000~5,000g/eqの範囲である。)
 前記ポリイミド樹脂の例としては、特に限定されず、例えば、公知のテトラカルボン酸二無水物とジアミンを原料にして脱水縮合して得られるもの、及び、テトラカルボン酸二無水物とジイソシアネートを原料にして得られるイミド骨格を有する下記構造式(3)で表されるもの等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式中、Xはテトラカルボン酸二水和物由来の骨格、Yはジアミンまたはジイソシアネート由来の骨格を示す。)
 これらの中でも、下記構造式(4)で表わされるシリコン変性ポリイミドが好ましい。これにより、前記プライマー樹脂が溶剤可溶となりワニス化することができる。なおワニス化とは、固形の樹脂成分が不溶成分がなくなるまで希釈溶剤に溶解することをいう。
Figure JPOXMLDOC01-appb-C000004
(式中、R、Rは炭素数1~4で二価の脂肪族基または芳香族基、R、R、R、およびRは一価の脂肪族基または芳香族基、A、Bは三価または四価の脂肪族基または芳香族基、Rは二価の脂肪族基または芳香族基を示す。また、k、m、nは繰り返し単位数を表し、5~5000の整数である。)
 また、ポリイミドブロック内にアミド骨格を有するポリアミドイミド樹脂も、前記プライマー樹脂が溶剤可溶となりワニス化することができるため好ましい。
 前記プライマー樹脂層の算術平均で表わされる表面粗度は、0.01~0.5μmであることが好ましく、特に0.05~0.2μmであることが好ましい。表面粗度が前記範囲内であることにより、プライマー樹脂層表面は均一で緻密な凹凸状となり、無電解メッキ付き性及びピール強度に優れる。尚、前記算術平均で表される表面粗度は、例えばJIS  B  0601に準じて測定することができる。
 前記プライマー樹脂層を粗化する方法の例としては、例えば図2A~図2Cにそれぞれ示す以下(a)~(c)の方法が挙げられる。
 図2Aに示される粗化方法(a)は、プライマー樹脂層2上に、粗度付き金属箔9の粗化面を向き合わせて積層した後、前記粗度付き金属箔9をエッチングにより除去することによってプライマー樹脂層の表面を粗化する方法である。
 前記粗度付き金属箔9は、例えば、銅箔、アルミ箔等の金属箔、フィルム上に銅メッキ処理を行って形成した銅薄膜等の表面をエッチング薬液により化学的に粗化する、あるいは研磨機を用いて物理的に粗化することによって得られる。これらの中でも、薄膜化の観点から、銅メッキ処理を行って形成した銅薄膜の表面を粗化したものであることが好ましい。
 図2Bに示される粗化方法(b)は、プライマー樹脂層2上に、粗度付き金属箔9の粗化面を向き合わせて積層し、前記金属箔9をエッチングにより除去した後、前記プラズマ処理、デスミア処理又はそれら両方の表面処理を行う方法である。
 前記プラズマ処理及び/又はデスミア処理を行うことで、プライマー樹脂層を粗化した後のスミアが除去され、無電解メッキ付き性がさらに向上し、ピール強度も強くなる。なおスミアとは、不要な樹脂異物のことである。
 図2Cに示される粗化方法(c)は、プライマー樹脂層2上に、無粗化の金属箔9’を積層し、前記金属箔をエッチングにより除去した後、前記プライマー樹脂層の表面に、プラズマ処理、デスミア処理又はそれら両方の表面処理を行う方法である。
 前記無粗化の金属箔9’としては、前記粗度付き金属箔9の表面を粗化する前のものを用いることができる。
 前記(b)及び前記(c)の方法では、プラズマ処理又はデスミア処理のどちら一方のみの表面処理でもよいが、プラズマ処理及びデスミア処理の両方の表面処理を行うことが好ましい。プライマー樹脂層上のスミアを確実に除去することができるからである。
 前記(a)~(c)の中でも、特に無電解メッキ付き性及びピール強度に優れる点から、(b)の方法が好ましい。
 前記プライマー樹脂層の厚みは、0.5~10μmであることが好ましく、特に2~7μmであることが好ましい。厚みが前記範囲内であることにより、薄膜化に対応したプリント配線板を得ることができる。
 次に、図1Cに示される手順においてプライマー樹脂層2の表面にパラジウム触媒3を付与し、図1Dに示される手順において無電解銅メッキを行い、無電解銅メッキ層4を形成する。
 次に、図1Eに示される手順において無電解銅メッキ層4の上にメッキレジスト5により非回路形成部をマスクし、図1Fに示される手順において無電解銅メッキにより回路形成部の銅厚付けを行い電解銅メッキ層6を形成する。
 次に、図1Gに示される手順においてメッキレジスト5を除去し、図1Hに示される手順において非回路形成部の無電解銅メッキ層4をソフトエッチングで除去することにより、コア基材1上に導体回路7を形成する。
 次に、図1Iに示される手順において、回路形成面のパラジウム除去処理を行う。この処理によって、SAPプロセスにおいて付与したパラジウム触媒及びこれに起因するパラジウム金属残渣を除去する。なお、導体回路7で被覆されている領域のパラジウム触媒3は、パラジウム除去処理後も残留する。
 SAPプロセス後のパラジウム除去処理は、
(a)パラジウム除去剤による処理、
(b)シアン化カリウム(KCN)含有液による処理、
(c)薬液によるデスミア処理、及び
(d)プラズマによるドライデスミア処理
よりなる群から少なくとも一つ選ぶことができる。
 以下、前記(a)~(d)のパラジウム除去処理について順次説明する。
(a)パラジウム除去剤による処理
 パラジウム除去剤による処理は、下記2種類の薬液による処理を単独であるいは併用して行うことが可能である。
 [1]硝酸および塩素イオンを含む薬液による処理
 硝酸および塩素イオンを含む薬液は、樹脂表面に付着したパラジウム金属を溶解除去する作用がある。
 前記硝酸および塩素イオンを含む薬液に含まれる硝酸の含有量は、67.5%硝酸として50~500mL/Lが好ましく、特に100~400mL/Lが好ましい。硝酸の含有量が50mL/Lより少ないとパラジウム除去効果がほとんど得られない。また、500mL/Lよりも多いとパラジウム除去効果が向上しないだけでなく、銅回路の溶解性も大きくなってしまう。
 また、前記硝酸および塩素イオンを含む薬液に含まれる塩素イオンの供給源の例としては、例えば、塩酸、塩化ナトリウム、塩化カリウム、塩化アンモニウム、塩化銅、塩化鉄、塩化ニッケル、塩化コバルト、塩化スズ、塩化亜鉛、及び塩化リチウム等の無機塩化物が挙げられる。これらの無機塩化物のうち、塩酸、塩化ナトリウムが好ましい。上記塩素イオンの含有量は塩素イオンとして1~60g/Lが好ましく、特に5~50g/Lが好ましい。塩素イオンの含有量が1g/Lより少ないとパラジウム除去効果がほとんど得られない。また、60g/Lより多いとパラジウムの除去効果が向上しない。
 さらに前記硝酸および塩素イオンを含む薬液には、パラジウム除去に影響を与えない量で浸透性や濡れ性の向上のために通常用いられる界面活性剤やNOx抑制剤を添加することもできる。
 前記硝酸および塩素イオンを含む薬液は、pH1以下となるように調整される。
 [2]イオウ有機物含有液による処理
 イオウ有機物は、樹脂表面を粗化する作用を有するだけでなく、イオウ有機物を樹脂表面に接触させることによって、前記イオウ有機物が樹脂表面に付着しているPd2+と錯イオンを形成し、Pd2+を不活性化することができるため、異常析出を防止できると推測される。
 前記イオウ有機物としては、化合物中に硫黄原子と炭素原子を含むものであれば、特に制限されないが、チオ硫酸ナトリウム等の硫黄を含んでいても炭素原子を含まないものは含まれない。このようなイオウ有機物の例としては、例えば、チオ尿素誘導体、チオール類、スルフィド、チオシアン酸塩類、スルファミン酸またはその塩類等が挙げられる。
 チオ尿素誘導体の具体例としては、チオ尿素、ジエチルチオ尿素、テトラメチルチオ尿素、1-フェニル-2-チオ尿素、チオアセトアミド等が挙げられる。
 チオール類の例としては、2-メルカプトイミダゾール、2-メルカプトチアゾリン、3-メルカプト-1,2,4-トリアゾール、メルカプトベンゾイミダゾール、メルカプトベンゾキサゾール、メルカプトベンゾチアゾール、メルカプトピリジンが挙げられる。更に、スルフィドの例としては、2-アミノフェニルジスルフィド、テトラメチルチウラムジスルフィド、チオジグリコール酸等が挙げられる。
 チオシアン酸塩類の例としては、チオシアン酸ナトリウム、チオシアン酸カリウム、チオシアン酸アンモニウムが挙げられる。また更に、スルファミン酸またはその塩類の例としては、スルファミン酸、スルファミン酸アンモニウム、スルファミン酸ナトリウム、スルファミン酸カリウム等が挙げられる。
 これらのイオウ有機物のうち、メルカプト基を有するチオール類またはチオシアン基を有するチオシアン酸塩類が好ましい。
 前記イオウ有機物の濃度は、0.1~100g/Lが好ましく、特に0.2~50g/Lが好ましい。
 前記イオウ有機物含有液は、pH10~14となるように調整される。
 (b)シアン化カリウム(KCN)含有液による処理
 シアン化カリウム(以下、KCNと称することがある。)含有液は、樹脂表面を粗化する作用を有するだけでなく、KCN含有液を樹脂表面に接触させることによって、樹脂表面に付着しているPd2+とCNの錯イオン[Pd(CN)を形成し、Pd2+を不活性化することができるため、異常析出を防止できると推測される。
 前記KCN含有液としては、KCNのみ含有する強アルカリ液を用いることができる。
 前記KCN含有液は、pH10~14となるように調整される。
(c)薬液によるデスミア処理
 薬液によるデスミア処理は、過マンガン酸塩含有液による処理であり、過マンガン酸塩液を用い、次の酸化反応により樹脂表面を粗化することができる。
CH+12MnO +14OH→CO 2-+12MnO 2-+9HO+O
2MnO 2-+2HO→2MnO+4OH+O
 過マンガン酸塩液としては、例えば、コンセントレートコンパクトCP建浴液(アトテック社製のNaMnO含有酸化剤)を、OH供給源であるNaOHと組み合わせて用いることができる。
 前記過マンガン酸塩含有液は、pH12~14となるように調整される。
(d)プラズマによるドライデスミア処理
 プラズマによるドライデスミア処理(以下、「プラズマ処理」と称することがある)は、被処理面にプラズマを接触させることによって、銅端子表面からスミアを酸化分解除去すると同時に、回路を支持している樹脂表面の材料を適度に除去し粗面化する処理である。回路近傍の樹脂表面に付着していたPd2+イオンは、プラズマ処理により樹脂表面の材料と共に除去されるため、異常析出を防止できると推測される。
 プラズマ処理装置としては、例えば、マーチ・プラズマ・システム社製、PCB2800Eを使用できる。プラズマ処理の具体的な実施方法、実施条件として以下の例が挙げられる。
<プラズマ処理の条件>
・ガス:CF/O(2種混合)、又は、CF/O/Ar(3種混合)
・雰囲気圧力:10~500mTorr
・出力:1000W~10000W
・時間:60~600秒
 SAPプロセス後のパラジウム除去処理は、導体回路の形成後、金メッキ処理を行う前までの間の任意の段階で行うことができる。SAP法により形成した導体回路の一部だけに金メッキ処理を行う場合には、金メッキ処理を行いたい部分だけにパラジウム除去処理を行うだけでも、金メッキ処理における異常析出を抑制できる。例えば、SAP法により形成した導体回路の端子部分だけにENEPIG法又はENIG法の金メッキ処理を行いたい場合には、導体回路の端子部分以外をソルダーレジスト層で被覆した後で、ソルダーレジスト層から露出している領域だけにパラジウム除去処理を行ってもよい。
 次に、図1Jに示される手順において金メッキ処理を行い、導体回路の表面に複合金メッキ層8を形成する。
 前記金メッキ処理は、無電解ニッケル-パラジウム-金メッキ処理(ENEPIG法)及び無電解ニッケル-金メッキ処理(ENIG法)よりなる群から選ばれる金メッキ処理である。前記金メッキ処理を行うことにより、前記導体回路上に、ニッケル-パラジウム-金メッキ層(Ni-Pd-Au層)及びニッケル-金メッキ層(Ni-Au層)よりなる群から選ばれる複合金メッキ層を形成する。これらの中でも、特に無電解ニッケル-パラジウム-金メッキ処理(ENEPIG法)が好ましい。よりニッケルの酸化防止および拡散防止に優れ、耐熱性が強く、金膜厚を薄くできるからである。
 図3は、無電解ニッケル-パラジウム-金メッキ処理(ENEPIG法)の手順を示すブロック図であり、図4は、無電解ニッケル-金メッキ処理(ENIG法)の手順を示すブロック図である。
 本発明においてENEPIG法又はENIG法を行う場合、パラジウム触媒付与工程に先立つ前処理として、前記端子部分に必要に応じ1つ又は2つ以上の方法で表面処理を行うことができる。これらの図には、前処理としてクリーナー(S1a)、ソフトエッチング(S1b)、酸処理(S1c)、プレディップ(S1d)を示したが、それ以外の処理を行っても良い。
 前処理の後、パラジウム触媒の付与と、ENEPIG法又はENIG法を行うことで、複合金メッキ層(Ni-Pd-Au層又はNi-Au層)が形成される。
 以下、特に断らない限りENEPIG法の手順について説明するが、ENIG法についても、無電解パラジウムめっき処理(S4)の工程を行わないこと以外は、ENEPIG法の手順と同様に考えることができる。
 ENEPIG法においては、前処理(S1)、パラジウム触媒付与工程(S2)、無電解ニッケルめっき処理(S3)、無電解パラジウムめっき処理(S4)、無電解金めっき処理(S5)は、従来と同様に行えばよい。
<前処理(S1)>
(1)クリーナー処理(S1a)
 前処理の一つであるクリーナー処理(S1a)は、酸性タイプ又はアルカリタイプのクリーナー液を端子表面に接触させることにより、端子表面からの有機皮膜除去、端子表面の金属活性化、端子表面の濡れ性向上を図るために行われる。
 酸性タイプのクリーナーは、主として端子表面の極薄い部分をエッチングして表面を活性化するものであり、銅端子に有効なものとしては、オキシカルボン酸、アンモニア、食塩、界面活性剤を含有する液(例えば、上村工業(株)のACL-007)が用いられる。
 銅端子に有効な別の酸性タイプクリーナーとしては、硫酸、界面活性剤、塩化ナトリウムを含有する液(例えば、上村工業(株)のACL-738)を用いても良く、この液は濡れ性が高い。
 アルカリ性タイプのクリーナーは、主として有機皮膜を除去するものであり、銅端子に有効なものとしては、ノニオン界面活性剤、2-エタノールアミン、ジエチレントリアミンを含有する液(例えば、上村工業(株)のACL-009)が用いられる。
 クリーナー処理を行うには、端子部分に浸漬、スプレイ等の方法で上記いずれかのクリーナー液を接触させた後、水洗すればよい。
(2)ソフトエッチング処理(S1b)
 他の前処理であるソフトエッチング処理(S1b)は、端子表面の極薄い部分をエッチングして酸化膜の除去を図るために行われる。銅端子に有効なソフトエッチング液としては、過硫酸ソーダと硫酸を含有する酸性液が用いられる。
 ソフトエッチング処理を行うには、端子部分に浸漬、スプレイ等の方法で上記ソフトエッチング液を接触させた後、水洗すればよい。
(3)酸洗処理(S1c)
 他の前処理である酸洗処理(S1c)は、端子表面又はその近傍の樹脂表面からスマット(銅微粒子)を除去するために行われる。
 銅端子に有効な酸洗液としては、硫酸が用いられる。
 酸洗処理を行うには、端子部分に浸漬、スプレイ等の方法で上記酸洗液を接触させた後、水洗すればよい。
(4)プレディップ処理(S1d)
 他の前処理であるプレディップ処理(S1d)は、パラジウム触媒付与工程に先立ち、触媒付与液とほぼ同じ濃度の硫酸に浸ける処理である。端子表面の親水性を上げて触媒付与液中に含有されるPdイオンに対する付着性を向上したり、触媒付与液への水洗水の流入を避けて触媒付与液の繰り返し再使用を可能としたり、酸化膜除去を図るために行われる。プレディップ液としては、硫酸が用いられる。
 プレディップ処理を行うには、端子部分を上記プレディップ液に浸漬する。なお、プレディップ処理後に水洗は行わない。
<パラジウム触媒付与工程(S2)>
 Pd2+イオンを含有する酸性液(触媒付与液)を端子表面に接触させて、イオン化傾向(Cu+Pd2+→Cu2++Pd)により端子表面でPd2+イオンを金属Pdへ置換する。端子表面に付着したPdは、無電解めっきの触媒として作用する。Pd2+イオン供給源であるパラジウム塩として、硫酸パラジウム又は塩化パラジウムを用いることができる。
 硫酸パラジウムは、吸着力が塩化パラジウムより弱く、Pd除去されやすいため、細線形成に適している。銅端子に有効な硫酸パラジウム系触媒付与液としては、硫酸、パラジウム塩、及び、銅塩を含有する強酸液(例えば、上村工業(株)のKAT-450)や、オキシカルボン酸、硫酸、及び、パラジウム塩を含有する強酸液(例えば、上村工業(株)のMNK-4)が用いられる。
 一方、塩化パラジウムは、吸着力、置換性が強く、Pd除去されにくいため、めっき未着が起こり易い条件で無電解めっきを行う場合に、めっき未着を防止する効果が得られる。
 パラジウム触媒付与工程を行うには、端子部分に浸漬、スプレイ等の方法で上記触媒付与液を接触させた後、水洗すればよい。
<無電解ニッケルめっき処理(S3)>
 無電解ニッケルめっき浴としては、例えば、水溶性ニッケル塩、還元剤及び錯化剤を含有するめっき浴を用いることができる。無電解ニッケルめっき浴の詳細は、例えば、特開平8-269726号公報などに記載されている。
 水溶性ニッケル塩としては、硫酸ニッケル、塩化ニッケル等を用い、その濃度を0.01~1モル/リットル程度とする。
 還元剤としては、次亜リン酸、次亜リン酸ナトリウム等の次亜リン酸塩、ジメチルアミンボラン、トリメチルアミンボラン、ヒドラジン等を用い、その濃度を0.01~1モル/リットル程度とする。
 錯化剤としては、りんご酸、こはく酸、乳酸、クエン酸などやそのナトリウム塩などのカルボン酸類、グリシン、アラニン、イミノジ酢酸、アルギニン、グルタミン酸等のアミノ酸類を用い、その濃度を0.01~2モル/リットル程度とする。
 このめっき浴を、pH4~7に調整し、浴温度40~90℃程度で使用する。このめっき浴に還元剤として次亜リン酸を用いる場合、銅端子表面で次の主反応がPd触媒によって進行し、Niめっき皮膜が形成される。
Ni2+  +  HPO   +  HO  +2e  →  Ni  +  HPO   +  H
<無電解パラジウムめっき処理(S4)>
 無電解パラジウムめっき浴としては、例えば、パラジウム化合物、錯化剤、還元剤、不飽和カルボン酸化合物を含有するめっき浴を用いることができる。
 パラジウム化合物としては、例えば、塩化パラジウム、硫酸パラジウム、酢酸パラジウム、硝酸パラジウム、テトラアンミンパラジウム塩酸塩などを用い、その濃度をパラジウム基準として、0.001~0.5モル/リットル程度とする。
 錯化剤としては、アンモニア、或いはメチルアミン、ジメチルアミン、メチレンジアミン、EDTA等のアミン化合物などを用い、その濃度を0.001~10モル/リットル程度とする。
 還元剤としては、次亜リン酸、或いは次亜リン酸ナトリウム、次亜リン酸アンモニウム等の次亜リン酸塩などを用い、その濃度を0.001~5モル/リットル程度とする。
 不飽和カルボン酸化合物としては、アクリル酸、メタクリル酸、マレイン酸等の不飽和カルボン酸、それらの無水物、それらのナトリウム塩、アンモニウム塩等の塩、それらのエチルエステル、フェニルエステル等の誘導体などを用い、その濃度を0.001~10モル/リットル程度とする。
 このめっき浴を、pH4~10に調整し、浴温度40~90℃程度で使用する。このめっき浴に還元剤として次亜リン酸を用いる場合、銅端子表面で次の主反応が進行し、Pdめっき皮膜が形成される。
Pd2+  +  HPO   +  HO→  Pd  +  HPO   +  2H
<無電解金めっき処理(S5)>
 無電解金めっき浴としては、例えば、水溶性金化合物、錯化剤、及びアルデヒド化合物を含有するめっき浴を用いることができる。無電解金めっき浴の詳細は、例えば、特開2008-144188号公報などに記載されている。
 水溶性金化合物としては、例えば、シアン化金、シアン化金カリウム、シアン化金ナトリウム、シアン化金アンモニウム等のシアン化金塩を用い、その濃度を金基準で0.0001~1モル/リットル程度とする。
 錯化剤としては、例えば、リン酸、ホウ酸、クエン酸、グルコン酸、酒石酸、乳酸、リンゴ酸、エチレンジアミン、トリエタノールアミン、エチレンジアミン四酢酸などを用い、その濃度を0.001~1モル/リットル程度とする。
 アルデヒド化合物(還元剤)としては、例えば、ホルムアルデヒド、アセトアルデヒド等の脂肪族飽和アルデヒド、グリオキサール、スクシンジアルデヒド等の脂肪族ジアルデヒド、クロトンアルデヒド等の脂肪族不飽和アルデヒド、ベンズアルデヒド、o-,m-又はp-ニトロベンズアルデヒド等の芳香族アルデヒド、グルコース、ガラクトース等のアルデヒド基(-CHO)を有する糖類などを用い、その濃度を0.0001~0.5モル/リットル程度とする。
 このめっき浴を、pH5~10に調整し、浴温度40~90℃程度で使用する。このめっき浴を用いる場合、銅端子表面で次の2つの置換反応が進行し、Auめっき皮膜が形成される。
Pd  +  Au  →  Pd2+  +  Au  +  e
(Au自動触媒の作用により、めっき浴中成分を酸化して獲得する)+  Au→Au
 前記金メッキ処理工程において、前記金属微細パターンの表面にパラジウム触媒を付与した後、無電解ニッケルメッキ処理又は無電解パラジウムメッキ処理を行う前の任意の段階で、プリント配線板に対し、
(e)pH10~14の溶液による処理及び
(f)プラズマによるドライデスミア処理
よりなる群から選ばれる少なくとも一つの第2のパラジウム除去処理を行うことが好ましい。
 具体的には、図3のENEPIGプロセスを行う場合には、パラジウム触媒付与工程と無電解ニッケルめっき処理の間(S+a)の段階および無電解ニッケルめっき処理と無電解パラジウムめっき処理の間(S+b)の段階において第2のパラジウム除去処理を行うことができる。
 また、図4のENIGプロセスを行う場合には、パラジウム触媒付与工程と無電解ニッケルめっき処理の間(S+a)の段階において第2のパラジウム除去処理を行うことができる。
 前記(e)または(f)の第2のパラジウム除去処理は、導体回路を支持している樹脂表面の材料を適度に除去し、前記樹脂表面を粗面化する。回路近傍の樹脂表面に付着していたPd2+イオンは、これらの処理によって樹脂表面の材料と共に除去されるため、異常析出を防止できると推測される。
 以下、(e)pH10~14の溶液による処理、および(f)プラズマによるドライデスミア処理について順次説明する。
 (e)pH10~14の溶液による処理は、以下(e-1)~(e-4)のうち、いずれか1つ又は2つ以上を行うことができる。
(e-1)水酸化ナトリウム含有液による処理
 水酸化ナトリウム含有液としては、NaOHの単純な水溶液を、好ましくはpH10~14、より好ましくはpH11~13の強アルカリとなる濃度に調整して用いることができる。
 また、NaOH含有表面湿潤用アルカリ緩衝液のようなNaOHと酸性であるエチレングリコール系溶剤含有液を含む混合溶液であっても、混合溶液としてpH10~14の強アルカリとなる濃度であれば用いてもよい。NaOHと混合されるエチレングリコール系溶剤含有液の例としては、例えば、アトテック社製スウェリングディップセキュリガントP建浴液が挙げられる。
(e-2)薬液によるデスミア処理
 前記(c)薬液によるデスミア処理と同様の処理である。
(e-3)イオウ有機物含有液による処理
 前記(a)中の[2]イオウ有機物含有液による処理と同様の処理である。イオウ有機物含有液は、樹脂上のパラジウムを不活動化し、銅回路上のパラジウムに作用しないため、第2のパラジウム除去処理として好適である。
(e-4)シアン化カリウム(KCN)含有液による処理
 前記(b)シアン化カリウム(KCN)含有液による処理と同様の処理である。
(f)プラズマによるドライデスミア処理
 前記(d)プラズマによるドライデスミア処理と同様の処理である。
 本発明によれば、金属微細パターンを形成したい樹脂表面に、算術平均で表される表面粗度が0.5μm以下のプライマー樹脂層を設けた後に、SAP法の一連の工程(パラジウム触媒付与、無電解金属メッキ、及び電解金属メッキ)を行う。そのため、パラジウム触媒の付着性が良好で且つ均一で緻密な凹凸を有する樹脂表面に無電解金属メッキ層が形成される。したがって、樹脂からなる基材の表面は無電解メッキ付き性に優れており、ピール強度に優れた金属微細パターンが形成される。
 また、無電解メッキ付き性に優れた樹脂表面は、前記樹脂表面上に形成された金属微細パターンにENIG法又はENEPIG法により金メッキ処理する場合に、金属の異常析出が起こりやすいという問題がある。しかしながら、本発明によれば、金メッキ処理を行う前に前記(a)から(d)の第1のパラジウム除去処理を行うことによって、金メッキ処理を行う際の金属の異常析出を抑えることができる。
 さらにENEPIG法の場合にはパラジウム触媒の付与後から無電解パラジウムメッキを行う前までの間に、またENIG法の場合にはパラジウム触媒の付与後から無電解ニッケルメッキを行う前までの間に、前記(e)又は(f)の第2のパラジウム除去処理を行うことにより、金メッキ処理を行う際の金属の異常析出を、さらに低いレベルに抑えることができる。
 本発明のプリント配線板上に半導体を実装することで、半導体装置を製造することができる。前記半導体装置は、本発明の金メッキ金属微細パターン付き基材の製造方法により得られたプリント配線板を用いることで、配線間絶縁信頼性および接続信頼性に優れる。
 また、本発明により得られたインターポーザをパッケージ基板として用い、これに半導体素子を搭載、接続し、封止することで半導体装置を製造することができる。インターポーザをパッケージ基板として用いる半導体装置の構成としては、例えば、下記図5及び図6に示すものがある。
 図5は、本発明の実施形態にかかる半導体装置の実装階層構造の一例を模式的に示す図であり、前記半導体装置は、インターポーザをパッケージ基板として用いた半導体パッケージをマザーボードに実装した半導体装置である。
 マザーボード11の両面は、ソルダーレジスト層16a、16bで被覆されているが、半導体パッケージ接続側の最外層回路の接続端子15は、ソルダーレジスト層16aから露出している。
 半導体パッケージ12は、接続端子20bがパッケージ下面に配列したエリアアレイ型パッケージであり、パッケージ下面の接続端子20bと、マザーボード11のパッケージ実装側の接続端子15とが、半田ボール22により半田接続している。
 半導体パッケージ12は、パッケージ基板であるインターポーザ13上に半導体素子14を搭載してなる。
 インターポーザ13は多層プリント配線板であり、そのコア基板17の半導体素子搭載側に3層の導体回路層18a、18b、18cが順次積層され、マザーボード接続側にも3層の導体回路層19a、19b、19cが順次積層されている。インターポーザ13の半導体素子搭載側は、3層の導体回路層18a、18b、18cを通過することで段階的に配線寸法が縮小する。インターポーザ13の両面の最外層回路は、ソルダーレジスト層21a、21bで被覆されているが、接続端子20a、20bはソルダーレジスト層21a、21bから露出している。
 インターポーザ13の半導体素子搭載側最外層回路の接続端子20aは、ラインアンドスペースが、好ましくは10~50μm/10~50μm、より好ましくは12~30μm/12~30μmである。
 一方、インターポーザ13のマザーボード接続側最外層回路の端子部分20bは、ラインアンドスペースが、好ましくは300~500μm/300~500μm、より好ましくは350~450μm/350~450μmである。
 マザーボード11のパッケージ実装側(インターポーザ接続側)最外層回路の接続端子15も、ラインアンドスペースが、好ましくは300~500μm/300~500μm、より好ましくは350~450μm/350~450μmである。
 半導体素子14は、下面に電極パッド23を有しており、この電極パッド23と、インターポーザ13の半導体素子搭載側の最外層回路の接続端子20aとが、半田ボール24により半田接続している。
 インターポーザ13と、その上に搭載された半導体素子の間の空隙は、エポキシ樹脂等の封止材25により封止されている。
 このような図5のインターポーザ13の半導体素子搭載側最外層回路18cを本発明の方法で形成し、その接続端子20aに本発明の方法で金メッキ処理を行うことができる。
 図6は、インターポーザをパッケージ基板として用いる別のタイプの半導体パッケージ(ワイヤボンディング型)の構造を模式的に示す図である。
 図6において半導体パッケージ30は、パッケージ基板であるインターポーザ31上に半導体素子32を搭載してなる。
 半導体パッケージ30は、接続端子33bがパッケージ下面に配列したエリアアレイ型パッケージであり、前記パッケージ下面の接続端子33bの上に、半田ボール38が配置されている。
 インターポーザ31の詳細な積層構造は省略するが、図5に示したインターポーザと同様の多層プリント配線板であり、両面の最外層回路は、ソルダーレジスト層34a、34bで被覆されているが、接続端子33a、33bはソルダーレジスト層34a、34bから露出している。
 半導体素子32は、インターポーザ31の半導体素子搭載側に、エポキシ樹脂等のダイボンド材硬化層37を介して半導体素子32が固着される。
 半導体素子32は、上面に電極パッド35を有しており、この電極パッド35と、インターポーザ31の半導体素子搭載側の最外層回路の接続端子33aとが、金線36により接続している。
 半導体パッケージ31の半導体素子搭載側は、エポキシ樹脂等の封止材39により封止されている。
 このような図6のインターポーザ31の半導体素子搭載側最外層回路を本発明の方法で形成し、その接続端子33aに本発明の方法で金メッキ処理を行うことができる。
 インターポーザのマザーボード接続側最外層の導体回路、及び、マザーボードのインターポーザ接続側最外層の導体回路も、上記と同様に本発明の方法で形成し、端子部分のみ露出させて他の部分をソルダーレジスト層で被覆し、前記端子部分に対し本発明の方法で金メッキ処理を行うことができる。
 また、本発明の金メッキ金属微細パターン付き基材の製造方法は、上述したようなプリント配線板の他にも、プリント配線板以外の電子部品の金メッキ金属微細パターン付き基材、さらには電子部品以外の様々な分野における金メッキ金属微細パターン付き基材に対しても好適に行うことができる。
 以下において、実施例を示して本発明を更に詳細に説明するが、これに限定されるものではない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
(実施例1:(a)処理、ENEPIG工程)
1.プライマー樹脂の調製
 エポキシ樹脂としてメトキシナフタレンアラルキル型エポキシ樹脂(DIC社製、EPICLON  HP-5000)31.5重量部、シアネートエステル樹脂としてフェノールノボラック型シアネート樹脂(LONZA社製、Primaset  PT-30)26.7重量部、ポリアミド樹脂(日本化薬社製、KAYAFLEX  BPAM01)31.5重量部、硬化触媒としてイミダゾール(四国化成社製、キュアゾール1B2PZ)0.3重量部をジメチルアセトアミドとメチルエチルケトンの混合溶媒で30分攪拌し、溶解させた。さらに、カップリング剤としてエポキシシランカップリング剤(日本ユニカー社製、A187)0.2重量部と無機充填材として球状溶融シリカ(扶桑化学工業社製、SP-7、平均粒径0.75μm)9.8重量部を添加して、高速攪拌装置を用いて10分間攪拌し、樹脂ワニスを調製した。
2.プライマー樹脂シートの製造
 前記で得られた樹脂ワニスを、剥離可能なキャリア箔層と0.5~5.0μmの厚みの電解銅箔層とを張り合わせたピーラブルタイプの銅箔(日本電解社製、YSNAP-3B、キャリア箔層:銅箔(18μm)、電解銅箔層(3μm)、表面粗さRa(0.4μm))の電解銅箔層に、コンマコーターを用いて乾燥後の樹脂層が5μmとなるように塗工し、これを150℃の乾燥装置で10分間乾燥して、銅箔付きプライマー樹脂シートを製造した。
3.コア材料の製造
 0.1mm厚のプリプレグ(日立化成製GEA-679FG)を、前記で得られた樹脂シートのプライマー層が内向きになるように挟み込むようにセットし、真空雰囲気化で加熱・加圧プレスしプリプレグを硬化させた後にキャリア箔層を除去することによって、3μm厚の電解銅箔および5μm厚のプライマー層付きの積層板を製造した。
 4.テストピースの作成
 (1)前記で得られた銅張積層板の3μm銅箔をエッチング除去し、プライマー層を露出させた。
 (2)プライマー層表面のデスミア処理
 プライマー層が露出した基板を、次の手順によりNaOH含有表面湿潤用アルカリ緩衝液および過マンガン酸ナトリウム含有液を用いる表面処理を行った。
 ・樹脂表面膨潤処理:基板を、液温60℃の市販の水酸化ナトリウムとエチレングリコール系溶剤含有液(アトテック社製スウェリングディップセキュリガントP建浴液)の混合液(pH12)に2分間浸漬した後、3回水洗した。
 ・樹脂表面粗化処理:膨潤処理後、基板を液温80℃の過マンガン酸ナトリウム含有粗化処理液(アトテック社製コンセントレートコンパクトCP建浴液)に2分間浸漬した後、3回水洗した。
 ・中和処理:粗化処理後、基板を液温40℃の中和処理液(アトテック社製リダクションセキュリガントP500建浴液)に3分間浸漬した後、3回水洗した。
 (3)デスミア処理されたプライマー層表面に無電解銅めっき層(上村工業社製、スルカップPEAプロセス)を1μm厚狙いで形成した。
 (4)銅張積層板の銅箔表面に、セミアディティブ用ドライフィルム(旭化成製UFG-255)をロールラミネーターによりラミネートした。
 (5)上記ドライフィルムを所定パターン状に露光(平行光露光機:小野測器製EV-0800、露光条件:露光量140mJ、ホールドタイム15分)、現像(現像液:1%炭酸ナトリウム水溶液、現像時間:40秒)した。パターン状の露出部に電解銅めっき処理を行って20μm厚の電解銅めっき皮膜を形成し、ドライフィルムを剥離(剥離液:三菱ガス化学製R-100、剥離時間:240秒)した。
 (6)剥離後、フラッシュエッチング処理(荏原電産のSACプロセス)により、1μm無電解銅シード層を除去した。
 (7)その後、回路粗化処理(粗化処理液:メック(株)製CZ8101、1μm粗化条件)を実施し、ラインアンドスペース(L/S)=20μm/30μmの櫛歯パターン状銅回路を有するテストピースを作成した。図7に、テストピース上に形成した櫛歯パターン状銅回路を示す。
 5.表面処理工程
 前記で得られたテストピースに、67.5%硝酸(300mL/L)、35%塩酸(10mL/L)、カチオン性ポリマー(エポミン、日本触媒(株)製、0.5g/L)を含む水溶液(硝酸および塩素イオンを含む薬液)を用いて表面処理を行なった後、3回水洗した(パラジウム除去剤による処理)。
 6.ENEPIG工程
 (1)クリーナー処理
 クリーナー液として上村工業(株)製ACL-007を用い、上記テストピースを液温50℃のクリーナー液に5分間浸漬した後、3回水洗した。
 (2)ソフトエッチング処理
 クリーナー処理後、ソフトエッチング液として過硫酸ソーダと硫酸の混液を用い、上記テストピースを液温25℃のソフトエッチング液に1分間浸漬した後、3回水洗した。
 (3)酸洗処理
 ソフトエッチング処理後、上記テストピースを液温25℃の硫酸に1分間浸漬した後、3回水洗した。
 (4)プレディップ処理
 酸洗処理後、上記テストピースを液温25℃の硫酸に1分間浸漬した。
 (5)パラジウム触媒付与工程
 プレディップ処理後、端子部分にパラジウム触媒を付与するために、パラジウム触媒付与液として上村工業(株)製KAT-450を用いた。上記テストピースを、液温25℃の前記パラジウム触媒付与液に2分間浸漬した後、3回水洗した。
 (6)無電解Niめっき処理
 パラジウム触媒付与工程の後、上記テストピースを液温80℃の無電解Niめっき浴(上村工業(株)製NPR-4)に35分間浸漬した後、3回水洗した。
 (7)無電解Pdめっき処理
 無電解Niめっき処理後、上記テストピースを液温50℃の無電解Pdめっき浴(上村工業(株)製TPD-30)に5分間浸漬した後、3回水洗した。
 (8)無電解Auめっき処理
 無電解Pdめっき処理後、上記テストピースを液温80℃の無電解Auめっき浴(上村工業(株)製TWX-40)に30分間浸漬した後、3回水洗した。
(実施例2:(b)処理、ENEPIG工程)
 実施例1の表面処理工程において、硝酸および塩素イオンを含む薬液を用いた表面処理を行わず、テストピースを濃度20g/リットル、液温25℃のKCN含有液に1分間浸漬した後、3回水洗した(KCNによる処理)。
(実施例3:(c)処理、ENEPIG工程)
 実施例1の表面処理工程において、硝酸および塩素イオンを含む薬液を用いた表面処理を行わず、次の手順により薬液によるデスミア処理(過マンガン酸ナトリウム含有液を用いる表面処理)を行った。
 (1)樹脂表面膨潤処理
 テストピースを、液温60℃の市販の水酸化ナトリウムとエチレングリコール系溶剤含有液(アトテック社製スウェリングディップセキュリガントP建浴液)の混合液(pH12)に2分間浸漬した後、3回水洗した。
 (2)樹脂表面粗化処理
 テストピースを、液温60℃の過マンガン酸ナトリウム含有粗化処理液(アトテック社製コンセントレートコンパクトCP建浴液)に1分間浸漬した後、3回水洗した。
 (3)中和処理
 粗化処理後、テストピースを液温40℃の中和処理液(アトテック社製リダクションセキュリガントP500建浴液)に3分間浸漬した後、3回水洗した。
(実施例4:(d)処理、ENEPIG工程)
 実施例1の表面処理工程において、硝酸および塩素イオンを含む薬液を用いた表面処理を行わず、次の装置、条件によりプラズマによるドライデスミア処理を行った。
 処理装置:PCB2800E(マーチ・プラズマ・システム社製)
 処理条件:ガス(2種混合):O(95%)/CF(5%)、雰囲気圧力:250mTorr、ワット数:2000W、時間:75秒
(実施例5:(a)処理、ENIG工程)
 実施例1の工程において、ENEPIG工程の無電解Pdめっき処理(上村工業(株)製TPD-30)を実施せずにENEPIG工程をENIG工程に変更した以外は、実施例1と同様に行った。
(実施例6:(b)処理、ENIG工程)
 実施例5の表面処理工程において、硝酸および塩素イオンを含む薬液を用いた表面処理を行わず、テストピースを濃度20g/リットル、液温25℃のKCN含有液に1分間浸漬した後、3回水洗した(KCNによる処理)。
(実施例7:(c)処理、ENIG工程)
 実施例5の表面処理工程において、硝酸および塩素イオンを含む薬液を用いた表面処理を行わず、実施例3と同様の手順により(c)薬液によるデスミア処理(過マンガン酸ナトリウム含有液を用いる表面処理)を行った。
(実施例8:(d)処理、ENIG工程)
 実施例5の表面処理工程において、硝酸および塩素イオンを含む薬液を用いた表面処理を行わず、実施例4と同様の装置、条件によりプラズマによるドライデスミア処理を行った。
(実施例9:(a)処理、ENEPIG工程S+aにて(e-1)処理)
 実施例1のENEPIG工程において、無電解Pd触媒付与後・無電解ニッケルめっき前の段階で、テストピースを液温60℃の市販の水酸化ナトリウムとエチレングリコール系溶剤含有液(アトテック社製スウェリングディップセキュリガントP建浴液)の混合液(pH12)に10分間浸漬した後、3回水洗した。
(実施例10:(a)処理、ENEPIG工程S+aにて(e-2)処理)
 実施例1のENEPIG工程において、無電解Pd触媒付与後・無電解ニッケルめっき前の段階で、テストピースを液温80℃の過マンガン酸ナトリウム含有粗化処理液(アトテック社製コンセントレートコンパクトCP建浴液、pH14)に2分間浸漬した後、3回水洗した。
(実施例11:(a)処理、ENEPIG工程S+aにて(e-3)処理)
 実施例1のENEPIG工程において、無電解Pd触媒付与後・無電解ニッケルめっき前の段階で、テストピースをイオウ有機物含有液(メルカプトチアゾリン1g/リットルの水溶液、pH12.5)を用いて表面処理を行なった後、3回水洗した。
(実施例12:(a)処理、ENEPIG工程S+aにて(e-4)処理)
 実施例1のENEPIG工程において、無電解Pd触媒付与後・無電解ニッケルめっき前の段階で、テストピースを濃度20g/リットル、液温25℃のKCN含有液(pH12)に1分間浸漬した後、3回水洗した。
(実施例13:(a)処理、ENEPIG工程S+aにて(f)処理)
 実施例1のENEPIG工程において、無電解Pd触媒付与後・無電解ニッケルめっき前の段階で、次の装置、条件によりプラズマ処理を行った。
 処理装置:PCB2800E(マーチ・プラズマ・システム社製)
 処理条件:ガス(2種混合):O(95%)/CF(5%)、雰囲気圧力:250mTorr、ワット数:2000W、時間:75秒
(実施例14:(a)処理、ENEPIG工程S+bにて(e-4)処理)
 実施例1のENEPIG工程において、無電解ニッケルめっき後・無電解パラジウムめっき前の段階で、テストピースを濃度20g/リットル、液温25℃のKCN含有液(pH12)に1分間浸漬した後、3回水洗した。
(実施例15:(a)処理、ENIG工程S+bにて(e-4)処理)
 実施例5のENIG工程において、無電解ニッケルめっき後・無電解パラジウムめっき前の段階で、テストピースを濃度20g/リットル、液温25℃のKCN含有液(pH12)に1分間浸漬した後、3回水洗した。
(比較例1:パラジウム除去処理なし、ENEPIG工程)
 表面処理工程を行わなかったこと以外は、実施例1と同様に行った。
(比較例2:パラジウム除去処理なし、ENIG工程)
 表面処理工程を行わなかったこと以外は、実施例5と同様に行った。
(評価)
 各実施例及び比較例で得られためっき処理物の端子部分を、電子顕微鏡(反射電子像)により観察し、線間の品質を評価した。
 図8~図14に、実施例1~5、12及び比較例1の電子顕微鏡写真をそれぞれ示す。実施例1~5、12(図8~図13)は、端子周囲の樹脂表面に異常析出が発生しなかった。前記以外の写真は添付しないが、他の実施例と同様に、端子周囲の樹脂表面に異常析出が発生しないことが観察された。これに対し、比較例1(図14)はパラジウム除去処理なしであり、端子周囲(線間)の樹脂表面に著しい異常析出が発生した。比較例2のENIGめっき後の写真は添付しないが、比較例1と同様に著しい異常析出が観察された。
 SAPプロセスでの無電解メッキ付き性に優れ、微細回路の形成を可能とし、かつ、金メッキ処理での異常析出を抑制して微細回路の配線間絶縁信頼性および接続信頼性を向上させることを可能とする金メッキ金属微細パターン付き基材の製造方法を提供し、前記製造方法によって、金メッキ金属微細パターン付き基材、特にプリント配線板、及び前記プリント配線板を用いた半導体装置を提供することができる。
 1  コア基材
 2  プライマー樹脂層
 3  パラジウム触媒
 4  無電解銅メッキ層
 5  メッキレジスト
 6  電解銅メッキ層
 7  導体回路
 8  複合金メッキ層
 9  粗度付き金属箔
 9’ 無粗化の金属箔
 10 半導体装置
 11 マザーボード
 12 半導体パッケージ
 13 インターポーザ
 14 半導体素子
 15 マザーボードの接続端子
 16(16a、16b) マザーボードのソルダーレジスト層
 17 インターポーザのコア基板
 18(18a、18b、18c) インターポーザの半導体素子搭載側の導体回路層
 19(19a、19b、19c) インターポーザのマザーボード接続側の導体回路層
 20(20a、20b) インターポーザの接続端子
 21(21a、21b) インターポーザのソルダーレジスト層
 22 半田ボール
 23 半導体素子の電極パッド
 24 半田ボール
 25 封止材
 30 半導体パッケージ
 31 インターポーザ
 32 半導体素子
 33(33a、33b) インターポーザの接続端子
 34(34a、34b) インターポーザのソルダーレジスト層
 35 半導体素子の電極パッド
 36 金線
 37 ダイボンド材硬化層
 38 半田ボール
 39 封止材

Claims (15)

  1.  樹脂からなる支持表面を有する基材を準備する工程と、
    前記基材の樹脂からなる支持表面上に、セミアディティブ法によって金属微細パターンを形成して金属微細パターン付き基材を得る工程と、
    前記金属微細パターンの少なくとも一部の表面に、無電解ニッケル-パラジウム-金メッキ処理及び無電解ニッケル-金メッキ処理よりなる群から選ばれる金メッキ処理を行う工程と、
    を含む金メッキ金属微細パターン付き基材を製造する方法であって、
     前記樹脂からなる支持表面上に、算術平均で表される表面粗度が0.5μm以下であるプライマー樹脂層を形成し、
     前記プライマー樹脂層の上にパラジウム触媒を用いる無電解金属メッキ処理を含むセミアディティブ法によって金属微細パターンを形成し、
     前記金属微細パターンの形成後、前記金メッキ処理を行う前の任意の段階において、金属微細パターン付き基材に対し、下記(a)から(d): 
    (a)パラジウム除去剤による処理
    (b)シアン化カリウム(KCN)含有液による処理
    (c)薬液によるデスミア処理
    (d)プラズマによるドライデスミア処理
    よりなる群から選ばれる少なくとも一つのパラジウム除去処理を行い、
     前記パラジウム除去処理を行った後、前記金メッキ処理を行うことを特徴とする、金メッキ金属微細パターン付き基材の製造方法。
  2.  前記パラジウム除去処理を行った後の金メッキ処理工程において、金属微細パターン付き基材の金属微細パターンの表面にパラジウム触媒を付与した後、無電解ニッケルメッキ処理又は無電解パラジウムメッキ処理を行う前の任意の段階において、金属微細パターン付き基材に対し、下記(e)及び(f):
    (e)pH10~14の溶液による処理、
    (f)プラズマによるドライデスミア処理
    よりなる群から選ばれる少なくとも一つの第2のパラジウム除去処理を行うことを特徴とする、請求項1に記載の金メッキ金属微細パターン付き基材の製造方法。
  3.  前記金属微細パターン付き基材がプリント配線板であり、前記金属微細パターンがプリント配線板表面の導体回路である、請求項1又は2に記載の金メッキ金属微細パターン付き基材の製造方法。
  4.  前記プリント配線板がマザーボードであり、そのめっき処理部における導体回路のラインアンドスペース(L/S)が300~500μm/300~500μmである、請求項3に記載の金メッキ金属微細パターン付き基材の製造方法。
  5.  前記プリント配線板がインターポーザである、請求項3に記載の金メッキ金属微細パターン付き基材の製造方法。
  6.  前記インターポーザは、半導体素子との接続面側のめっき処理部における導体回路のラインアンドスペース(L/S)が10~50μm/10~50μmである、請求項5に記載の金メッキ金属微細パターン付き基材の製造方法。
  7.  前記インターポーザは、マザーボードとの接続面側のめっき処理部における導体回路のラインアンドスペース(L/S)が300~500μm/300~500μmである、請求項5に記載の金メッキ金属微細パターン付き基材の製造方法。
  8.  請求項1の方法により製造された金メッキ金属微細パターン付き基材。
  9.  プリント配線板表面の導体回路上に、請求項1の方法によりニッケル-パラジウム-金メッキ層及びニッケル-金メッキ層よりなる群から選ばれる複合金メッキ層を形成したプリント配線板。
  10.  前記導体回路の前記複合金メッキ層を有する部分のラインアンドスペース(L/S)が300~500μm/300~500μmである、請求項9に記載のプリント配線板。
  11.  インターポーザ表面の導体回路上に、請求項1の方法によりニッケル-パラジウム-金メッキ層及びニッケル-金メッキ層よりなる群から選ばれる複合金メッキ層を形成したインターポーザ。
  12.  前記インターポーザは、半導体素子との接続面側のめっき処理部における導体回路のラインアンドスペース(L/S)が10~50μm/10~50μmである、請求項11に記載のインターポーザ。
  13.  前記インターポーザは、マザーボードとの接続面側のめっき処理部における導体回路のラインアンドスペース(L/S)が300~500μm/300~500μmである、請求項11に記載のインターポーザ。
  14.  請求項9又は10に記載のプリント配線板上に半導体が搭載された半導体装置。
  15.  請求項11~13の何れか一項に記載のインターポーザを含むプリント配線板の前記インターポーザ上に半導体が搭載された半導体装置。
PCT/JP2011/062096 2010-05-26 2011-05-26 金メッキ金属微細パターン付き基材の製造方法、金メッキ金属微細パターン付き基材、プリント配線板、インターポーザ及び半導体装置 WO2011149019A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/697,720 US20130058062A1 (en) 2010-05-26 2011-05-26 Method for manufacturing base material having gold-plated metal fine pattern, base material having gold-plated metal fine pattern, printed wiring board, interposer, and semiconductor device
CN2011800238851A CN102893709A (zh) 2010-05-26 2011-05-26 附有镀金金属微细图案的基材的制造方法、附有镀金金属微细图案的基材、印刷配线板、内插板及半导体装置
KR1020127030100A KR20130079404A (ko) 2010-05-26 2011-05-26 금 도금 금속 미세 패턴 부착 기재의 제조 방법, 금 도금 금속 미세 패턴 부착 기재, 프린트 배선판, 인터포저 및 반도체 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-120399 2010-05-26
JP2010120399A JP2011249511A (ja) 2010-05-26 2010-05-26 金メッキ金属微細パターン付き基材の製造方法、金メッキ金属微細パターン付き基材、プリント配線板、インターポーザ及び半導体装置

Publications (1)

Publication Number Publication Date
WO2011149019A1 true WO2011149019A1 (ja) 2011-12-01

Family

ID=45004004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062096 WO2011149019A1 (ja) 2010-05-26 2011-05-26 金メッキ金属微細パターン付き基材の製造方法、金メッキ金属微細パターン付き基材、プリント配線板、インターポーザ及び半導体装置

Country Status (6)

Country Link
US (1) US20130058062A1 (ja)
JP (1) JP2011249511A (ja)
KR (1) KR20130079404A (ja)
CN (1) CN102893709A (ja)
TW (1) TW201215265A (ja)
WO (1) WO2011149019A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930773A4 (en) * 2012-12-07 2016-07-27 Toyo Kohan Co Ltd FUEL CELL SAVOR, FUEL BATTERY CELL, FUEL CELL STACK AND METHOD FOR PRODUCING A FUEL CELL PARAMETER
US20160348246A1 (en) * 2014-02-21 2016-12-01 Atotech Deutschland Gmbh Pre-treatment process for electroless plating

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102149800B1 (ko) * 2013-08-08 2020-08-31 삼성전기주식회사 인쇄회로기판용 적층재, 이를 이용한 인쇄회로기판 및 그 제조 방법
CN103491732B (zh) * 2013-10-08 2016-08-17 华进半导体封装先导技术研发中心有限公司 一种电路板增层结构的制造方法
EP3085212A4 (en) * 2013-12-17 2017-11-22 Sanmina Corporation Methods of forming segmented vias for printed circuit boards
CN103929890B (zh) * 2013-12-31 2017-08-29 中国科学院微电子研究所 一种电路板内层电路的制造方法
JP6280754B2 (ja) * 2014-01-24 2018-02-14 株式会社クオルテック 配線基板、及び配線基板の製造方法
TWI614370B (zh) * 2014-02-21 2018-02-11 德國艾托特克公司 用於無電電鍍之預處理方法
EP3162172B1 (en) * 2014-06-30 2022-09-28 3M Innovative Properties Company Metallic microstructures with reduced-visibility and method for producing the same
KR101444687B1 (ko) * 2014-08-06 2014-09-26 (주)엠케이켐앤텍 무전해 금도금액
CN104411099B (zh) * 2014-12-04 2017-04-12 奥士康科技(益阳)有限公司 厚铜电路板电路图形的转移方法
CN104582279B (zh) * 2014-12-08 2017-09-29 东莞美维电路有限公司 Pcb板沉金工艺
KR20160093555A (ko) * 2015-01-29 2016-08-08 제이엑스금속주식회사 표면 처리 동박, 캐리어가 부착된 동박, 기재, 수지 기재, 적층체, 프린트 배선판, 전자 기기 및 프린트 배선판의 제조 방법
JP6619563B2 (ja) * 2015-04-30 2019-12-11 日本高純度化学株式会社 無電解金めっき液、アルデヒド−アミン付加体補給液及びそれらを用いて形成した金皮膜
US10537017B2 (en) * 2015-08-17 2020-01-14 Sumitomo Electric Industries, Ltd. Printed circuit board and electronic component
US10537020B2 (en) * 2015-08-17 2020-01-14 Sumitomo Electric Industries, Ltd. Printed circuit board and electronic component
WO2017175856A1 (ja) * 2016-04-08 2017-10-12 富士フイルム株式会社 処理液、その製造方法、パターン形成方法及び電子デバイスの製造方法
JP6340053B2 (ja) * 2016-10-05 2018-06-06 小島化学薬品株式会社 無電解パラジウム/金めっきプロセス
TW201930647A (zh) 2017-12-22 2019-08-01 德商德國艾托特克公司 用於選擇性移除鈀之方法及處理組合物
JP6927117B2 (ja) * 2018-03-29 2021-08-25 信越化学工業株式会社 パワーモジュール
JP7063101B2 (ja) * 2018-05-11 2022-05-09 住友電気工業株式会社 プリント配線板及びプリント配線板の製造方法
CN108718485B (zh) * 2018-06-07 2021-02-02 珠海元盛电子科技股份有限公司 一种制造细线厚铜双面fpc的半加成法技术
KR102484395B1 (ko) 2018-10-25 2023-01-03 삼성전자주식회사 반도체 패키지
CN110139474B (zh) * 2019-05-27 2022-02-22 健鼎(湖北)电子有限公司 一种便于镀金的基板线路结构
JP2022024720A (ja) * 2020-07-28 2022-02-09 上村工業株式会社 無電解パラジウムめっき浴
CN114375117A (zh) * 2021-12-06 2022-04-19 之江实验室 一种应用于深海大功率电子器件的散热模组
CN114531774A (zh) * 2022-02-21 2022-05-24 京东方科技集团股份有限公司 一种柔性电路板、制作方法和显示装置
CN116879598B (zh) * 2023-09-01 2023-12-01 江苏鹏利芝达恩半导体有限公司 一种用于连接探头卡和半导体检测装置的接口制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632374B2 (ja) * 1984-09-04 1994-04-27 アンプ―アクゾ コーポレイション 相互接続をもつ電子回路板を選択的に金属化するための改良した方法
JP2003293143A (ja) * 2002-04-04 2003-10-15 Murata Mfg Co Ltd パラジウム触媒洗浄剤とパラジウム触媒の洗浄方法、及び該洗浄剤を使用した電子部品のめっき方法、並びに電子部品
WO2006118230A1 (ja) * 2005-04-28 2006-11-09 Kaneka Corporation めっき用材料及びその利用
JP2009099831A (ja) * 2007-10-18 2009-05-07 Nippon Circuit Kogyo Kk 配線基板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559936B2 (ja) * 2004-10-21 2010-10-13 アルプス電気株式会社 無電解めっき方法およびこの方法を用いた回路形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632374B2 (ja) * 1984-09-04 1994-04-27 アンプ―アクゾ コーポレイション 相互接続をもつ電子回路板を選択的に金属化するための改良した方法
JP2003293143A (ja) * 2002-04-04 2003-10-15 Murata Mfg Co Ltd パラジウム触媒洗浄剤とパラジウム触媒の洗浄方法、及び該洗浄剤を使用した電子部品のめっき方法、並びに電子部品
WO2006118230A1 (ja) * 2005-04-28 2006-11-09 Kaneka Corporation めっき用材料及びその利用
JP2009099831A (ja) * 2007-10-18 2009-05-07 Nippon Circuit Kogyo Kk 配線基板の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930773A4 (en) * 2012-12-07 2016-07-27 Toyo Kohan Co Ltd FUEL CELL SAVOR, FUEL BATTERY CELL, FUEL CELL STACK AND METHOD FOR PRODUCING A FUEL CELL PARAMETER
US10629917B2 (en) 2012-12-07 2020-04-21 Toyo Kohan Co., Ltd. Separator for fuel cells, fuel cell, fuel cell stack, and method of manufacturing separator for fuel cells
US20160348246A1 (en) * 2014-02-21 2016-12-01 Atotech Deutschland Gmbh Pre-treatment process for electroless plating
US9896765B2 (en) * 2014-02-21 2018-02-20 Atotech Deutschland Gmbh Pre-treatment process for electroless plating

Also Published As

Publication number Publication date
CN102893709A (zh) 2013-01-23
US20130058062A1 (en) 2013-03-07
TW201215265A (en) 2012-04-01
JP2011249511A (ja) 2011-12-08
KR20130079404A (ko) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2011149019A1 (ja) 金メッキ金属微細パターン付き基材の製造方法、金メッキ金属微細パターン付き基材、プリント配線板、インターポーザ及び半導体装置
JP5573429B2 (ja) 無電解ニッケル−パラジウム−金めっき方法、めっき処理物、プリント配線板、インターポーザ、および半導体装置
KR101268145B1 (ko) 구리의 표면 처리 방법 및 구리
TWI732045B (zh) 印刷配線基板之製造方法
TW201126619A (en) Substrate for mounting semiconductor chip and method for producing same
TWI805550B (zh) 印刷配線基板之製造方法
CN109252148B (zh) 在感光性树脂的表面形成金属层的方法
WO2014042829A1 (en) Direct electroless palladium plating on copper
JP2008109087A (ja) 半導体チップ搭載用基板及び前処理液
JP2006316350A (ja) 無電解ニッケルめっき用前処理液および無電解ニッケルめっきの前処理方法
JP2012524990A (ja) 多層プリント回路板の製造
JP5978587B2 (ja) 半導体パッケージ及びその製造方法
JP5371465B2 (ja) 非シアン無電解金めっき液及び導体パターンのめっき方法
JPH0376599B2 (ja)
JP2009212221A (ja) 回路基板の製造方法
JP7205027B2 (ja) めっき積層体及びプリント回路基板
JP5691527B2 (ja) 配線基板の表面処理方法及びこの表面処理方法により処理された配線基板
JP2011258597A (ja) 金メッキ金属微細パターン付き基材、プリント配線板、半導体装置、及び、それらの製造方法
JP2023028520A (ja) プリント配線板の製造方法及び半導体パッケージの製造方法
JP3465016B2 (ja) 銅表面に対する樹脂の接着性向上法およびこれに用いる高接着性無電解銅めっき浴
JP2008182068A (ja) ポリイミド配線板の製造方法
JP2012219273A (ja) めっき装置およびめっき方法
KR20110032356A (ko) 반도체 연성회로기판의 제조 방법
JP2013102050A (ja) 穴付き積層体およびその製造方法、多層基板およびその製造方法、下地層形成用組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023885.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13697720

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127030100

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786718

Country of ref document: EP

Kind code of ref document: A1