WO2011148898A1 - 半導体記憶素子の電圧特性調整方法、半導体記憶装置の電圧特性調整方法およびチャージポンプ並びにチャージポンプの電圧調整方法 - Google Patents

半導体記憶素子の電圧特性調整方法、半導体記憶装置の電圧特性調整方法およびチャージポンプ並びにチャージポンプの電圧調整方法 Download PDF

Info

Publication number
WO2011148898A1
WO2011148898A1 PCT/JP2011/061761 JP2011061761W WO2011148898A1 WO 2011148898 A1 WO2011148898 A1 WO 2011148898A1 JP 2011061761 W JP2011061761 W JP 2011061761W WO 2011148898 A1 WO2011148898 A1 WO 2011148898A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
semiconductor memory
power supply
transistor
bit
Prior art date
Application number
PCT/JP2011/061761
Other languages
English (en)
French (fr)
Inventor
竹内 健
幸祐 宮地
周平 田中丸
健太郎 本田
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to US13/699,158 priority Critical patent/US20130114355A1/en
Priority to JP2012517256A priority patent/JPWO2011148898A1/ja
Publication of WO2011148898A1 publication Critical patent/WO2011148898A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1096Write circuits, e.g. I/O line write drivers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element

Definitions

  • the present invention relates to a voltage characteristic adjustment method for a semiconductor element, a voltage characteristic adjustment method for a semiconductor memory device, a charge pump, and a voltage characteristic adjustment method for a charge pump.
  • two halo regions having different impurity concentration peak values are formed in the region between the source and drain of the access transistor, and the source or drain adjacent to the halo region having the higher impurity concentration peak value is connected to the inverter.
  • a plurality of transistors are connected in series in a plurality of stages by connecting the source of a transistor having a connection terminal having a gate and a drain connected to the connection terminal of an adjacent transistor, and the connection terminal is connected via a capacitor.
  • a charge pump that boosts the power supply voltage input to the connection terminal of the starting transistor while applying the clock signal, and outputs the voltage from the output terminal connected to the source of the terminal transistor (for example, Non-patent document 2).
  • the voltage characteristic adjusting method for a semiconductor memory element, the voltage characteristic adjusting method for a semiconductor memory device, the charge pump and the voltage adjusting method for the charge pump according to the present invention are mainly intended to improve operating characteristics by a simpler method.
  • the voltage characteristic adjusting method for a semiconductor memory element, the voltage characteristic adjusting method for a semiconductor memory device, the charge pump, and the voltage adjusting method for the charge pump according to the present invention employ the following means in order to achieve the main object described above.
  • the voltage characteristic adjustment method of the semiconductor memory element of the present invention is: A first inverter having a first input terminal and a first output terminal; a second inverter having a second input terminal connected to the first output terminal; and a second output terminal connected to the first input terminal
  • a first gate insulating layer having a predetermined insulating property the gate is connected to the word line, one of the source and the drain is connected to the first output terminal of the first inverter, and the other of the source and the drain is two
  • a first pass gate transistor connected to one of the two bit lines; a second gate insulating layer having a predetermined insulation performance; the gate is connected to the word line; and one of the source and drain is the second inverter
  • a second pass gate transistor connected to the other output terminal of the two bit lines and connected to the other of the two bit lines.
  • Voltage characteristics of the semiconductor memory device comprising Te a voltage characteristic adjustment method for adjusting, A voltage difference between a power supply voltage application point for applying a power supply voltage when the semiconductor memory element is normally operated and the two bit lines is different from the power supply voltage application point for the normal operation of the semiconductor memory element.
  • the voltage difference between the power supply voltage application point for applying the power supply voltage and the two bit lines causes the semiconductor memory element to operate normally.
  • the voltage applied to the power supply voltage application point and the voltage applied to the two bit lines are adjusted so that a predetermined voltage difference is greater than the voltage difference between the power supply voltage application point and the two bit lines.
  • the state of the pass gate transistor is maintained even after the application of the voltage to the power supply voltage application point and the two bit lines is interrupted, so that the data stored in the semiconductor memory element is stored. It is possible to improve the operation characteristics of the semiconductor memory element such as the read characteristic when reading through the two bit lines and the write characteristic when writing data into the semiconductor memory element via the two bit lines.
  • a first bit voltage which is executed before the voltage adjustment step and is applied to the bit line when the semiconductor memory element is normally operated, Of the second bit voltages lower than the first bit voltage, the first bit voltage is applied to one of the two bit lines and the second bit voltage is applied to the other of the two bit lines
  • a writing step of applying an on-control voltage in a normal operation as a voltage to turn on the first pass gate transistor and the second pass gate transistor when the semiconductor memory element is normally operated on the word line It can also be.
  • the voltage adjustment step can be executed, and the operating characteristics of the semiconductor memory element can be improved more appropriately.
  • the first pass gate transistor and the second pass gate transistor are executed before the voltage adjustment step and when the semiconductor memory element is normally operated on the word line.
  • the power supply in a state of applying a normal operation off control voltage as a voltage for turning off the pass gate transistor and applying a normal operation substrate voltage as a voltage to be applied when the semiconductor memory element is normally operated on the semiconductor substrate.
  • a low power supply voltage application step of applying a predetermined low voltage lower than a power supply voltage applied when the semiconductor memory element is normally operated at a voltage application point may be provided.
  • the voltage at the first output terminal of the first inverter and the voltage at the first output terminal of the second inverter are set to voltages reflecting variations in the current driving force between the first inverter and the second inverter, and then the voltage
  • the adjustment step can be executed, and the operating characteristics of the semiconductor memory element can be improved more appropriately.
  • it is executed between the low power supply voltage application step and the voltage adjustment step, and the two bit lines are in an electrically floating state and the substrate voltage is applied to the semiconductor substrate during the normal operation.
  • the voltage of the first output terminal of the first inverter and the voltage of the first output terminal of the second inverter are set to the current driving power of the first inverter, the second inverter, the first pass gate transistor, and the second pass gate transistor.
  • the voltage adjustment step can be executed after setting the voltage reflecting the variation, and the operating characteristics of the semiconductor memory element can be improved more appropriately.
  • the voltage adjustment step includes the step of applying a voltage difference between the power supply voltage application point and the two bit lines to the predetermined voltage difference and the word line.
  • the voltage applied to the power supply voltage application point, the voltage applied to the two bit lines, and the word line so that the voltage difference between the two bit lines is a predetermined low voltage difference smaller than the predetermined voltage difference.
  • It may be a step of adjusting the voltage applied to.
  • the voltage adjusting step applies an on-control voltage during normal operation as a voltage for turning on the first pass gate transistor and the second pass gate transistor when the semiconductor memory element is normally operated on the word line.
  • the second bit voltage is set to the two bit lines. And applying a predetermined high power supply voltage higher than the power supply voltage applied during normal operation of the semiconductor memory element to the power supply voltage application point and higher than the on-control voltage during normal operation. You can also. In this way, the bit line connected to the first pass gate transistor or the second pass gate transistor connected to the higher one of the first output terminal of the first inverter and the second output terminal of the second inverter.
  • the threshold voltage when the voltage of the connected bit line is higher than the voltage of the output terminal can be made higher than the threshold voltage when the voltage of the output is lower than the voltage of the connected output terminal, and the operating characteristics of the semiconductor memory element Can be improved.
  • the voltage adjusting step applies the voltage applied to the semiconductor substrate so that the voltage applied to the semiconductor substrate is lower than the normal substrate voltage applied to the semiconductor substrate when the semiconductor memory element is normally operated.
  • an on-control voltage is applied to the word line during normal operation
  • the second bit voltage is applied to the two bit lines
  • the predetermined high power supply voltage is applied to the power supply voltage application point. It is also possible to be a step of applying.
  • the higher voltage of the first output terminal of the first inverter and the second output terminal of the second inverter can be made higher than when a normal substrate voltage is applied to the semiconductor substrate.
  • the threshold voltage when the voltage of the bit line being higher than the voltage of the output terminal to which it is connected can be made higher, and the operating characteristics can be further improved.
  • the voltage adjustment step may include that the voltage difference between the power supply voltage application point and the two bit lines becomes the predetermined voltage difference and the word line The voltage applied to the power supply voltage application point, the voltage applied to the two bit lines, and the word line so that the voltage difference between the two bit lines is a predetermined high voltage difference equal to or greater than the predetermined voltage difference. It can also be a step of adjusting the voltage applied to. In this case, the voltage adjustment step is not more than a normal operation off control voltage as a voltage for turning off the first pass gate transistor and the second pass gate transistor when the semiconductor memory element is normally operated on the word line.
  • the first bit voltage among a first bit voltage and a second bit voltage lower than the first bit voltage as a voltage applied to the bit line when a predetermined off voltage is applied and the semiconductor memory element is normally operated A step of applying a higher predetermined high bit voltage to the two bit lines and applying a predetermined low power supply voltage lower than a power supply voltage applied when the semiconductor memory element is normally operated at the power supply voltage application point. Can also be.
  • the threshold voltage when the voltage of the connected bit line is higher than the voltage of the output terminal can be made higher than the threshold voltage when the voltage of the output is lower than the voltage of the connected output terminal, and the operating characteristics of the semiconductor memory element Can be improved.
  • the charge pump of the present invention is A first input terminal, a second input terminal, a third input terminal, an output terminal, a connection terminal, a gate formed on an insulating layer having a predetermined insulation performance, and a source and a drain;
  • n transistors By connecting the source of a transistor in which one of the gates and the gate is connected to the connection terminal to the connection terminal of an adjacent transistor, n transistors (n is an integer of 2 or more) are connected in series.
  • n transistors is an integer of 2 or more
  • (N-1) transistor connection terminals excluding the transistor at the start of the transistor circuit and the n transistors of the multistage transistor circuit A capacitor circuit having (n ⁇ 1) capacitors connected at one end and having the other end different from the one end of an adjacent capacitor alternately connected to the second input terminal or the third input terminal;
  • An input signal supply circuit capable of supplying a voltage or a clock signal to the first input terminal, the second input terminal, and the third input terminal, and a power supply voltage to the first input terminal during normal operation The input signal supply circuit is controlled so that a clock signal is input to the second input terminal while an inverted clock signal obtained by inverting the clock signal is input to the third input terminal.
  • a charge pump comprising a control circuit, a control voltage supply circuit having n control terminals and supplying a voltage to each of the control terminals; N switching elements that turn on and off the supply of voltage from the n control terminals to the connection terminals and gates of the n transistors of the multistage transistor circuit;
  • the control circuit is configured to input a predetermined low voltage to the first input terminal, the second input terminal, and the third input terminal and to switch two adjacent switching elements among the n switching elements. With the elements turned on and the remaining switching elements turned off, a voltage equal to or lower than the predetermined low voltage is applied to one of the control terminals connected to the two switching elements that are turned on.
  • the input signal supply circuit and the control signal are applied so that a predetermined high voltage higher than the predetermined low voltage is applied to the other control terminal among the control terminals connected to the two switching elements that are turned on.
  • the gist of the present invention is to control a voltage supply circuit and the n switching elements.
  • a clock signal is input to the second input terminal while the power supply voltage is supplied to the first input terminal during normal operation, and the clock signal is input to the third input terminal.
  • the input signal supply circuit is controlled so that the inverted inverted clock signal is input.
  • the power supply voltage input to the first input terminal can be boosted and output from the output terminal.
  • a predetermined low voltage is input to the first input terminal, the second input terminal, and the third input terminal, and two adjacent switching elements among the n switching elements are turned on to perform the remaining switching.
  • Two switching elements that are turned on when a voltage equal to or lower than a predetermined low voltage is applied to one of the control terminals connected to the two switching elements that are turned on with the element turned off The input signal supply circuit, the control voltage supply circuit, and the n switching elements are controlled such that a predetermined high voltage higher than a predetermined low voltage is applied to the other control terminal among the control terminals connected to .
  • the connection of the terminal-side transistor from the voltage at the connection terminal of the transistor on the start-end side is made with respect to the transistor on the start-end side
  • the threshold voltage when the terminal voltage is high can be made lower than the threshold voltage when the voltage of the connection terminal of the terminal transistor is lower than the voltage of the connection terminal of the transistor on the start side. Since the state of such a transistor is maintained even after the supply of voltage to the first input terminal, the second input terminal, and the third input terminal is interrupted, the voltage of the first input terminal is boosted and output. It is possible to improve the boosting efficiency of the transistors constituting the multistage transistor circuit when outputting from the terminal, that is, to improve the operating characteristics.
  • the control circuit is configured to input a predetermined low voltage to the first input terminal, the second input terminal, and the third input terminal, and the n switching terminals. With the two adjacent switching elements turned on and the remaining switching elements turned off, the control terminal connected to the two switching elements that are turned on is connected to the transistor side at the beginning of the multistage transistor circuit. A voltage equal to or lower than the predetermined low voltage is applied to the control terminal and the predetermined terminal is connected to the control terminal on the transistor side at the end of the multistage transistor circuit among the connection terminals connected to the two switching elements that are turned on. The input signal supply circuit and the n switching elements so that a predetermined high voltage higher than the low voltage of the input signal is applied.
  • the control voltage supply circuit may be a circuit that controls the control voltage supply circuit, and the control circuit has a predetermined low level at the first input terminal, the second input terminal, and the third input terminal.
  • the control circuit is connected to the two switching elements that are turned on in a state in which two adjacent switching elements among the n switching elements are turned on and the remaining switching elements are turned off.
  • a predetermined high voltage higher than the predetermined low voltage is applied to the control terminal on the transistor side at the start of the multi-stage transistor circuit, and among the connection terminals connected to the two switching elements that are turned on
  • the input signal supply circuit is configured so that a voltage equal to or lower than the predetermined low voltage is applied to a control terminal on the transistor side at the end of the multistage transistor circuit. Can also be assumed the a n-number of circuits for controlling the switching element and the control voltage supply circuit.
  • the voltage characteristic adjustment method of the charge pump of the present invention is: A first input terminal, a second input terminal, a third input terminal, an output terminal, a connection terminal, a gate formed on an insulating layer having a predetermined insulation performance, and a source and a drain; By connecting the source of a transistor in which one of the gates and the gate is connected to the connection terminal to the connection terminal of an adjacent transistor, n transistors (n is an integer of 2 or more) are connected in series.
  • n transistors is an integer of 2 or more
  • (N-1) transistor connection terminals excluding the transistor at the start of the transistor circuit and the n transistors of the multistage transistor circuit A capacitor circuit having (n ⁇ 1) capacitors connected at one end and having the other end different from the one end of an adjacent capacitor alternately connected to the second input terminal or the third input terminal;
  • An input signal supply circuit capable of supplying a voltage or a clock signal to the first input terminal, the second input terminal, and the third input terminal, and n control terminals,
  • a control voltage supply circuit for supplying a voltage to each of the n switching elements for turning on and off the supply of voltage from the n control terminals to the connection terminals and gates of the n transistors of the multistage transistor circuit;
  • the n switching elements are turned off during normal operation and a power supply voltage is supplied to the first input terminal and a clock signal is supplied to the second input terminal.
  • a voltage characteristic of a charge pump that controls the input signal supply circuit and the n switching elements is adjusted so that an inverted clock signal obtained by inverting the clock signal is input to the third input terminal.
  • a voltage characteristic adjustment method comprising: A predetermined low voltage is inputted to the first input terminal, the second input terminal, and the third input terminal, and two adjacent switching elements among the n switching elements are turned on and the remainder is turned on. With the switching element turned off, a voltage equal to or lower than the predetermined low voltage is applied to one control terminal among the control terminals connected to the two switching elements that are turned on, and the switching element is turned on.
  • the input signal supply circuit, the control voltage supply circuit, and the control circuit are configured to apply a predetermined high voltage higher than the predetermined low voltage to the other control terminal among the control terminals connected to the two switching elements.
  • control n switching elements It is characterized by that.
  • a predetermined low voltage is inputted to the first input terminal, the second input terminal, and the third input terminal, and the n switching elements are adjacent to each other.
  • a voltage lower than a predetermined low voltage is applied to one of the control terminals connected to the two switching elements that are turned on.
  • the input signal supply circuit and the control voltage supply so that a predetermined high voltage higher than a predetermined low voltage is applied to the other control terminal among the control terminals connected to the two switching elements that are turned on.
  • the circuit and n switching elements are controlled.
  • the connection of the terminal-side transistor from the voltage at the connection terminal of the transistor on the start-end side is made with respect to the transistor on the start-end side
  • the threshold voltage when the terminal voltage is high can be made lower than the threshold voltage when the voltage of the connection terminal of the terminal transistor is lower than the voltage of the connection terminal of the transistor on the start side. Since the state of such a transistor is maintained even after the supply of voltage to the first input terminal, the second input terminal, and the third input terminal is interrupted, the voltage of the first input terminal is boosted and output. It is possible to improve the boosting efficiency of the transistors constituting the multistage transistor circuit when outputting from the terminal, that is, to improve the operating characteristics.
  • the method of adjusting the voltage characteristics of the semiconductor memory device of the present invention is as follows.
  • a first inverter having a first input terminal and a first output terminal; a second inverter having a second input terminal connected to the first output terminal; and a second output terminal connected to the first input terminal;
  • a first gate insulating layer having a predetermined insulating property and one of a source and a drain connected to the first output terminal of the first inverter and a second gate insulating layer having a predetermined insulating property N (n is an integer greater than or equal to 2) semiconductor memory elements each having a source or drain connected to the output terminal of the second inverter, and the n semiconductors N word lines connected to a gate of the first pass gate transistor and a gate of the second pass gate transistor of the storage element; and a source of the first pass gate transistor.
  • a voltage characteristic for adjusting a voltage characteristic of a semiconductor memory device including a first bit line connected to the other of the source and the drain and a second bit line connected to the other of the source and the drain of the second pass gate transistor
  • An adjustment method, A power supply voltage application point for applying a power supply voltage during normal operation of the semiconductor memory element, a word line connected to the first pass gate transistor and the second pass gate transistor of the semiconductor memory element, and the first bit line And the second bit line are voltage differences between the power supply voltage application point, the word line, and the two bit lines when normal data is written to the semiconductor memory element.
  • a second step of performing a low power supply voltage read operation for adjusting the voltage applied to the line on the at least two semiconductor memory elements After the second step is performed, the first pass gate transistors of the at least two semiconductor memory elements are applied with a voltage higher than the normal power voltage applied to the power supply voltage application point of the at least two semiconductor memory elements. And a voltage applied to a power supply voltage application point of the at least two semiconductor elements so that a voltage not lower than the normal power supply voltage and lower than the normal power supply voltage is applied to a word line connected to the second pass gate transistor.
  • a third step of adjusting a voltage applied to a word line connected to two semiconductor elements It is a summary to provide.
  • a power supply voltage application point for applying a power supply voltage when the semiconductor memory element is normally operated is connected to the first pass gate transistor and the second pass gate transistor of the semiconductor memory element.
  • the voltage difference between the word line, the first bit line, and the second bit line is the power supply voltage application point, the word line, the first bit line, and the second voltage when writing normal data to the semiconductor memory element.
  • the write operation to be adjusted is performed on at least two semiconductor memory elements among the n semiconductor memory elements.
  • the voltage at which the voltage at the first output terminal of the first inverter or the second output terminal of the second inverter is applied to the first bit line with respect to at least two of the n semiconductor memory elements and the second The voltage can correspond to the voltage applied to 2 bits.
  • the word line is applied in a state where a voltage lower than the normal power supply voltage, which is a voltage applied to the power supply voltage application point when the semiconductor memory element is normally operated at the power supply voltage application point, is applied.
  • the low power supply voltage read operation for adjusting the above is executed for at least two semiconductor memory elements.
  • the current drive capability of the first pass gate transistor or the second pass gate transistor is higher than the current drive capability of the first inverter or the second inverter of the semiconductor memory element, that is, the first pass gate transistor or the second pass gate.
  • the threshold voltage of the transistor When the threshold voltage of the transistor is low, when the second step is executed, the voltage at the first output terminal of the first inverter and the voltage at the second output terminal of the second inverter are different from the respective voltages after the first step is executed. That is, the stored data is inverted. Therefore, by executing the first step and the second step in order, it is possible to invert only the data stored in the semiconductor memory element having a pass gate transistor having a low threshold voltage among at least two semiconductor memory elements. Further, after the second step is executed, the first pass gate transistor and the first pass gate transistor of the at least two semiconductor memory elements and the first pass gate transistor in a state where a voltage higher than the normal power supply voltage is applied to the power supply voltage application point of the at least two semiconductor memory elements.
  • the voltage applied to the power supply voltage application point of at least two semiconductor memory elements and the at least two semiconductor memory elements are applied to a word line connected to the two-pass gate transistor so that a voltage not lower than the normal on-voltage and lower than the normal power supply voltage is applied.
  • the voltage applied to at least two word lines connected is adjusted. Accordingly, the pass gate transistor connected to the output terminal having the higher voltage among the first output terminal of the first inverter and the second output terminal of the second inverter of the semiconductor memory element in which the stored data is inverted.
  • the threshold voltage can be further increased by injecting electrons into the insulating layer of the first pass gate transistor or the second pass gate transistor. As a result, the voltage characteristics of the semiconductor memory device can be improved.
  • the write operation in the first step is performed in a state where the normal power supply voltage is applied to the power supply voltage application point and the normal on-voltage is applied to the word line.
  • the first bit voltage which is a voltage applied to the bit line when the semiconductor memory element is normally operated, and the second bit voltage lower than the first bit voltage
  • the first bit voltage is set to the first bit line and Applying to one of the second bit lines and applying the second bit voltage to the other of the first bit line and the second bit line to the power supply voltage application point of the semiconductor memory element Adjusting a voltage, a voltage applied to the first bit line, a voltage applied to the second bit line, and a voltage applied to the word line; It can also be as.
  • the first bit voltage is applied to the first bit voltage while the normal power supply voltage is applied to the power supply voltage application point and the normal on-voltage is applied to the word line.
  • Application of the power supply voltage of the semiconductor memory element so that the second bit voltage is applied to one of the first bit line and the second bit line while being applied to the other of the one bit line and the second bit line A write operation after performing the third step of adjusting a voltage applied to a point, a voltage applied to the first bit line, a voltage applied to the second bit line, and a voltage applied to the word line;
  • a fourth step is performed for at least two of the semiconductor memory elements, and the second step and the third step are performed after the fourth step is performed. It can also be made to run and up.
  • the threshold voltage of either the first pass gate transistor or the second pass gate transistor is low, the threshold voltage can be further increased by injecting electrons into the insulating layer of the transistor having a low threshold voltage.
  • the voltage characteristics of the memory device can be improved.
  • the first step is a step of executing the write operation on the n semiconductor memory elements.
  • the second step is a step of executing the low power supply voltage read operation on the n semiconductor memory elements, and the third step is higher than the normal power supply voltage at a power supply voltage application point of the n semiconductor memory elements.
  • FIG. 1 is an explanatory diagram showing an outline of a configuration of an SRAM (Static Random Access Memory) 10 equipped with a plurality of memory cells 12 whose voltage characteristics are adjusted by a voltage characteristic adjusting method according to a first embodiment of the present invention
  • 2 is a circuit diagram showing a schematic configuration of a memory cell 12.
  • FIG. It is explanatory drawing which shows an example of a structure of transistor NL, NR and pass gate transistor PGL, PGR. It is explanatory drawing which shows an example of a structure of transistors PL and PR.
  • 6 is a process diagram showing an example of a voltage characteristic adjustment process for adjusting the voltage characteristic of the SRAM 10.
  • FIG. 1 is an explanatory diagram showing an outline of a configuration of an SRAM (Static Random Access Memory) 10 equipped with a plurality of memory cells 12 whose voltage characteristics are adjusted by a voltage characteristic adjusting method according to a first embodiment of the present invention
  • FIG. It is explanatory drawing which shows an example of a structure of transistor
  • FIG. 6 is an explanatory diagram for explaining a state of a memory cell 12 during a data read operation.
  • FIG. 10 is an explanatory diagram for explaining a state of the memory cell 12 during a data write operation. It is process drawing which shows an example of the voltage characteristic adjustment process which adjusts the voltage characteristic of SRAM10 of 2nd Example.
  • FIG. 10 is an explanatory diagram illustrating an example of a configuration of transistors Tr1 to Trn. It is explanatory drawing for demonstrating a mode at the time of adjusting the voltage characteristic of the charge pump. It is explanatory drawing for demonstrating the state of transistor Tr2 at the time of adjusting a voltage characteristic. It is explanatory drawing which shows the relationship between the gate voltage Vg of the transistor by which the hole was injected into the insulating layer 122, the drain current Id which flows from a drain to a source, and a threshold voltage. It is explanatory drawing for demonstrating a mode when the clock signal CLK is rising by transistor Tr2 which inject
  • FIG. 2 is an explanatory diagram for explaining an outline of a configuration of a main part of an SRAM 410.
  • FIG. It is a process diagram showing an example of a voltage characteristic adjustment process for adjusting the voltage characteristic of the SRAM 410.
  • FIG. drawing shows an example of the bias condition in the middle of performing the process of step S220, and the electric current which flows through SRAM410.
  • FIG. 1 is an explanatory diagram showing an outline of the configuration of an SRAM (Static Random Access Memory) 10 equipped with a plurality of memory cells 12 whose voltage characteristics are adjusted by the voltage characteristic adjusting method according to the first embodiment of the present invention.
  • the SRAM 10 corresponds to a plurality of memory cells 12 connected to a plurality of word lines WL and a plurality of bit lines BLL and BLR arranged in a matrix, and a row address signal given when a row address signal is given.
  • FIG. 2 is a circuit diagram showing an outline of the configuration of the memory cell 12.
  • the memory cell 12 includes an inverter INVL having a p-channel MOS transistor PL and an n-channel MOS transistor NL (hereinafter referred to as transistors PL and NL) whose gates are connected to the input terminal INL and whose drains are connected to the output terminal OUTL.
  • a p-channel MOS transistor PR and an n-channel MOS transistor NR hereinafter referred to as transistors PR and NR whose gates are connected to the input terminal INR and whose drains are connected to the output terminal OUTR.
  • the n-channel MOS transistor PGL hereinafter referred to as a pass gate transistor PGL that releases the electrical connection between the bit line BLL and the output terminal OUTL, and the gate connected to the word line WL.
  • the bit line BLR When turned on, the bit line BLR is electrically connected to the output terminal OUTR, and when turned off, the electrical connection between the bit line BLR and the output terminal OUTR is released (hereinafter referred to as a pass gate transistor PGR). ).
  • the transistors PL and PR are connected to a power supply voltage application point Vdd to which a power supply voltage is applied when the source normally operates, and the transistors NL and NR are connected to the ground voltage Vss when the source normally operates. Is connected to a ground voltage application point Vss to which is applied.
  • the transistors PL, PR, NL, NR and pass gate transistors PGL, PGR constituting the inverters INVL, INVR will be described.
  • the transistors NL and NR and the pass gate transistors PGL and PGR are configured as well-known n-channel MOS transistors, and are semiconductors such as silicon (Si) whose conductivity type is adjusted to be p-type.
  • the transistors PL and PR are configured as well-known p-channel MOS transistors.
  • the transistors PL and PR are formed on the well 30 that is adjusted so that the conductivity type formed in the semiconductor substrate 20 is n-type.
  • the p-type diffusion layers 36 and 38 are formed in the well 30 so as to sandwich the region below 32 and function as a source or drain.
  • the transistors PL, PR, NL, NR and pass gate transistors PGL, PGR are formed on the same semiconductor substrate 20, and between the transistors PL, PR and the transistors NL, NR, pass gate transistors PGL, PGR, Elements are isolated by an oxide film or the like having a high insulation performance (not shown).
  • the well 30 is connected to the power supply voltage application point Vdd, the voltage applied to the power supply voltage application point Vdd is the voltage Vdd, the voltage applied to the ground voltage application point Vss is the ground voltage Vss, and the semiconductor substrate.
  • the voltage applied to 20 is the substrate voltage Vsub, basically, the voltage Vdd is a value V1 (for example, 1.0 V), the ground voltage Vss is 0 V, and the substrate voltage Vsub is 0 V so that the power supply voltage application point Vdd is The ground voltage application point Vss is applied to the semiconductor substrate 20 with a voltage. Such voltage application is performed to all the memory cells 12 at once.
  • the output terminal OUTL is changed by a data write operation, a read operation, a data hold operation, or the like in a state where the power supply voltage application point Vdd, the ground voltage application point Vss, or the above-described voltage is applied to the semiconductor substrate 20.
  • the output terminal OUTR is in a low voltage state (hereinafter referred to as L level), and when the output terminal OUTL is at L level, the output terminal OUTR is at H level.
  • bit line voltages Vbll and Vblr the voltages of the bit lines BLL and BLR (hereinafter referred to as bit line voltages Vbll and Vblr).
  • Vwl the voltage of the word line WL
  • a set of bit lines BLL and BLR is selected by the column decoder 16 based on the input column address signal, and the output terminal OUTL of the memory cell 12 connected to the selected word line WL and bit lines BLL and BLR is selected. , OUTR are set to voltages corresponding to the bit lines BLL and BLR.
  • the data read operation from the SRAM 10 is preliminarily applied to a voltage Vdd (value V1) to which a signal necessary for the operation such as a row address signal and a column address signal is applied and the bit lines BLL and BLR are applied to the power supply voltage application point Vdd.
  • the memory cell 12 connected to the word line WL and the bit lines BLL and BLR selected by the row decoder 14 and the column decoder 16 corresponds to the voltage difference between the output terminals OUTL and VR. This is done by reading out the voltage difference between the bit lines BLL and BLR generated as data. Further, in the data holding operation, all the word lines WL and bit lines BLL and BLR are deselected, the pass gate transistors PGL and PGR are turned off, and the voltages at the output terminals OUTL and OUTR of the memory cell 12 are held as data. This is done.
  • FIG. 5 is a process diagram showing an example of a voltage characteristic adjustment process for adjusting the voltage characteristic of the SRAM 10. This step is performed with the ground voltage application point Vss of the memory cell 12 fixed to 0V.
  • the voltage Vdd is the value V1
  • the substrate voltage Vsub is 0 V
  • the word line voltage Vwl is the value V1
  • the bit line voltage is applied to the power supply voltage application point Vdd of the memory cell 12, the semiconductor substrate 20, the word line WL, and the bit lines BLL and BLR so that Vbll becomes 0V and the bit line voltage Vblr becomes the value V1 (step S100).
  • the output terminal OUTL of the plurality of memory cells 12 can be set to L level and the output terminal OUTR can be set to H level, and data can be written to the plurality of memory cells 12 at once.
  • the voltage Vdd is a value V1h (eg, 3.0V) higher than the value V1
  • the substrate voltage Vsub is a value Vsub1 (eg, ⁇ 4.0V) lower than 0V
  • the word of the word line WL selected in the process of step S100 A voltage is applied to the power supply voltage application point Vdd of the plurality of memory cells, the semiconductor substrate 20, the word line WL, and the bit lines BLL and BLR so that the line voltage Vwl is the value V1, and the bit line voltage Vbll and the bit line voltage Vblr are 0V. (Step S110). The reason why the voltage is applied to the power supply voltage application point Vdd, the semiconductor substrate 20, the word line WL, and the bit lines BLL and BLR will be described below.
  • FIG. 6 is an explanatory diagram for explaining the state of the pass gate transistor PGR in the process of step S110.
  • the pass gate transistor PGR since the drain voltage Vd obtained by subtracting the voltage applied to the source from the voltage applied to the drain is higher than usual, impact ionization is performed near the drain of the semiconductor substrate 20. (Impact Ionization) generates hot electrons, and the voltage obtained by subtracting the voltage applied to the source from the voltage applied to the gate is lower than the drain voltage Vd. It is injected at a nearby position.
  • FIG. 7 shows the relationship between the gate voltage Vg of the transistor in which hot electrons are injected into the insulating layer 22, the drain current Id flowing from the drain to the source, and the threshold voltage.
  • the threshold voltage Vth_s when the diffusion layer adjacent to the electron injection region of the insulating layer 22 into which hot electrons are injected is used as the source of the two diffusion layers 26 and 28 has two diffusion layers. 26 and 28, the threshold voltage Vth_d is higher than that when the diffusion layer adjacent to the electron injection region is used as the drain, and the threshold voltages Vth_s and Vth_d are both higher than the threshold voltage Vth when hot electrons are not injected into the insulating layer 22. Get higher.
  • step S110 the power supply voltage application point Vdd and the bit line BLR are set by setting the voltage Vdd to the value V1h and the bit line voltage Vblr to 0 V while the word line voltage Vwl of the word line WL is set to the value V1.
  • the voltage difference between the word line WL and the bit line BLR becomes a normal voltage difference V1 smaller than the voltage V1h, and the pass gate transistor PGR has a voltage difference V1h higher than the normal voltage difference V1.
  • Hot electrons are injected into the insulating layer 22 near the diffusion layer connected to the output terminal OUTR of the inverter INVR out of the two diffusion layers serving as the source or drain.
  • the threshold voltage when the diffusion layer connected to the bit line BLR is used as the drain is higher than the threshold voltage when the diffusion layer connected to the bit line BLR is used as the source. . Therefore, the value V1h is a voltage at which hot electrons can be injected into the insulating layer 22 near the diffusion layer connected to the output terminal OUTR of the inverter INVR due to the voltage difference between the power supply voltage application point Vdd and the bit line BLR. As described above, a voltage obtained in advance by experiment or analysis is used.
  • the read gate transistors PGL and PGR are turned on after floating in a state where the voltages of the bit lines BLL and BLR are precharged to the value V1 at the time of reading.
  • the diffusion layer connected to the bit line BLR becomes the drain as shown in FIG. A current flows from the bit line BLR to the output terminal OUTR.
  • the threshold voltage of the pass gate transistor PGR is low, a large amount of current flows from the bit line BLR to the output terminal OUTR, and the voltage of the output terminal OUTR is easily inverted from the L level to the H level.
  • the higher the threshold voltage of PGR the more difficult it is to invert the voltage of the output terminal OUTR, and the read characteristics are improved.
  • the output terminal OUTL is at the L level and the output terminal OUTR is at the H level
  • the output terminal OUTL is at the H level and the output terminal OUTR is at the L level.
  • the diffusion layer connected to the bit line BLR is used as a source, as shown in FIG.
  • step S110 when the process of step S110 is performed, in the pass gate transistor PGR, when the diffusion layer connected to the bit line BLR is a drain, the threshold voltage of the diffusion layer connected to the bit line BLR is changed. Since the threshold voltage is higher than that when the source is used, the data read characteristics can be improved as compared with the case where electrons are not injected into the insulating layer 22.
  • the threshold voltage Vth_d in the case where the diffusion layer connected to the bit line BLR is used as the source does not become so much higher than the threshold voltage Vth before the electrons are injected, so that the data writing characteristic is not significantly deteriorated. Read characteristics can be improved. Thereby, the operating characteristics of the memory cell 12 can be improved.
  • the voltage difference between the power supply voltage application point Vdd and the bit line BLR is set to a voltage difference V1h higher than the normal voltage difference V1, and the voltage difference between the word line WL and the bit line BLR is set from the voltage V1h.
  • the normal voltage difference V1 By setting the normal voltage difference V1 to be small, the operating characteristics of the memory cell 12 can be improved.
  • step S110 the data read characteristics and write characteristics of the memory cell 12 can be improved only by adjusting the power supply voltage application point Vdd and the voltages applied to the semiconductor substrate 20, the word line WL, and the bit lines BLL and BLR. Therefore, the operation characteristics of the memory cell 12 can be improved by a simpler method than that in which a step of doping impurities into the memory cell 12 is added. Further, since the process of step S110 can be executed once for the plurality of memory cells 12, the data read characteristics of the entire SRAM 10 can be improved by a simpler method.
  • the substrate voltage Vsub is lower than 0 V, which is a voltage applied during normal operation, the voltage at the output terminal OUTR can be increased, and the amount of hot electrons injected into the insulating layer 22 can be increased.
  • the threshold voltage when the diffusion layer connected to the bit line BLR is the drain can be made higher.
  • the voltage Vdd is the value V1
  • the substrate voltage Vsub is 0 V
  • the word line voltage Vwl is the value V1
  • the bit line voltage Vbll is the value V1
  • the bit line for the memory cell 12 selected in the processes of steps S100 and S110.
  • a voltage is applied to the power supply voltage application point Vdd of the memory cell, the semiconductor substrate 20, the word line WL, and the bit lines BLL and BLR so that the voltage Vblr becomes 0 V, and the output terminals OUTL of the plurality of memory cells 12 are set to the H level.
  • step S120 the output terminal OUTR is set to the L level and data is written to the plurality of memory cells 12 in a lump (step S120), and then the process of step S130, which is the same process as step S110, is executed.
  • hot electrons can be injected into the insulating layer 22 in the vicinity of the diffusion layer connected to the output terminal OUTL of the inverter INVL, out of the two diffusion layers serving as the source or drain of the pass gate transistor PGL.
  • the threshold voltage when the diffusion layer connected to the bit line BLL is the drain can be higher than the threshold voltage when the diffusion layer connected to the bit line BLL is the source.
  • the read characteristics of the memory cell 12 can be improved.
  • the threshold voltage when the diffusion layer connected to the bit line BLL is used as the drain can be higher than the threshold voltage when the diffusion layer connected to the bit line BLL is used as the source, data writing is possible.
  • the pass gate transistors PGL and PGR of all the memory cells 12 connected to the word line WL are turned on, so that the data is selected by the column data 16. It is possible to suppress the occurrence of half-select disturbance, which is a phenomenon that data stored in the memory cells 12 connected to the non-existing bit lines BLL and BLR is inverted.
  • the voltage difference between the power supply voltage application point Vdd and the bit line BLR is set to the voltage difference V1h higher than the normal voltage difference V1, and the word line WL
  • the operation characteristics of the memory cell 12 can be improved by a simpler method.
  • the substrate voltage Vsub is lower than 0 V, which is a voltage applied during normal operation, the voltage at the output terminal OUTR can be increased, and the amount of hot electrons injected into the insulating layer 22 can be increased.
  • the threshold voltage when the diffusion layer connected to the bit line BLR is the drain can be made higher.
  • the substrate voltage Vsub is set to a value Vsub1 (for example, ⁇ 4.0V) smaller than 0V in the processing of steps S100 and S110, but the substrate voltage Vsub is What is necessary is just to make it the voltage below the voltage applied to bit line BLL, BLR, for example, it is good also as what is set to 0V.
  • Vsub1 for example, ⁇ 4.0V
  • the threshold voltage of the pass gate transistor PGL is executed by executing steps S120 and S130.
  • the threshold voltage of the pass gate transistor PGR may be adjusted by executing only the processing of steps S100 and S110 without executing the processing of steps S120 and S130, or the processing of steps S100 and S110. It is also possible to adjust only the threshold voltage of the pass gate transistor PGL by executing only the processing of steps S120 and S130 without executing the above. Further, only the process of step S110 may be executed without executing the processes of steps S100, S120, and S130. In this case, it is impossible to select which insulating layer of the pass gate transistors PGL and PGR is injected with electrons, but it is possible to inject electrons into one of the pass gate transistors PGL and PGR. Therefore, the operating characteristics can be improved.
  • the voltage characteristic adjustment process of the second embodiment is the same as the voltage characteristic adjustment process shown in FIG. 5 except that steps S110B and S130B are executed instead of steps S110 and S130. Steps are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 10 is a process diagram showing an example of a voltage characteristic adjustment process for adjusting the voltage characteristic of the SRAM 10 of the second embodiment.
  • the process of step S100 is executed, the output terminal OUTL of the memory cell 12 connected to the selected word line WL is set to L level and the output terminal OUTR is set to H level, and then the voltage Vdd is set.
  • the value V1 the substrate voltage Vsub is 0V, the word line voltage Vwl is lower than the off-voltage when the word line WL is normally turned off (for example, ⁇ 0.5V), the bit line voltage Vbll and the bit line voltage Vblr are values.
  • a voltage is applied to the power supply voltage application point Vdd of the memory cell 12 connected to the selected word line WL of the SRAM 10 and the semiconductor substrate 20, the word line WL, and the bit lines BLL and BLR so as to be V4 (for example, 2.5 V). Apply (step S110B).
  • the reason why the voltage is applied to the power supply voltage application point Vdd, the semiconductor substrate 20, the word line WL, and the bit lines BLL and BLR is as follows.
  • FIG. 11 is an explanatory diagram for explaining the state of the pass gate transistor PGL in the process of step S110B.
  • the voltage difference between the drain and the source is relatively large, and the voltage applied to the drain is higher than the voltage applied to the gate.
  • a hole is injected at a position near the drain end of the insulating layer 22 by a GIDL (Gate Induced DrainageLeakage) current generated in the vicinity of the drain when a high electric field is applied to the drain end under the gate in the off state.
  • FIG. 12 shows the relationship among the gate voltage Vg, drain current Id, and threshold voltage of the transistor in which holes are injected into the insulating layer 22.
  • the threshold voltage Vth_s when the diffusion layer adjacent to the hole injection region of the insulating layer 22 into which holes have been injected is used as the source of the two diffusion layers 26 and 28 is the two diffusion layers.
  • the threshold voltage Vth_d is lower when the diffusion layer adjacent to the hole injection region is the drain, and the threshold voltages Vth_s and Vth_d are both lower than the threshold voltage Vth when holes are not injected into the insulating layer 22.
  • the voltage Vdd is set to the value V1 while the word line voltage Vwl of the word line WL is set to the value Vwl1, and the bit line voltage Vbll is set to the value V4.
  • the voltage difference between the BLR and the word line WL is set to a voltage difference V4 higher than the normal voltage difference V1 and the voltage difference between the word line WL and the bit line BLR greater than the normal voltage difference V1 (V1 + Vwl1).
  • the write characteristic is improved by executing the process of step S110B. Can be achieved.
  • the threshold voltage Vth_d when the diffusion layer connected to the bit line BLL is used as the drain does not become much lower than the threshold voltage Vth before the electrons are injected, so that the data read characteristic is not significantly deteriorated.
  • the writing characteristics can be improved.
  • the data write characteristics of the memory cell 12 can be improved only by adjusting the power supply voltage application point Vdd, the voltage applied to the semiconductor substrate 20, the word line WL, and the bit lines BLL and BLR.
  • the data write characteristics of the memory cell 12 can be improved by a simple method as compared with a method in which an impurity doping step is added.
  • the voltage Vdd is the value V1
  • the substrate voltage Vsub is 0 V
  • the word line voltage Vwl is the value V1
  • the bit line voltage Vbll is the value V1
  • the bit line voltage for the memory cell 12 that has undergone the processing of steps S100 and S110B.
  • a voltage is applied to the power supply voltage application point Vdd of the memory cell, the semiconductor substrate 20, the word line WL, and the bit lines BLL and BLR so that Vblr becomes 0V, thereby setting the output terminal OUTL of the memory cell 12 to the H level and the output terminal.
  • OUTR is set to L level (step S120), and the process of step S130B, which is the same process as that of step S110B, is executed.
  • holes can be injected into the insulating layer 22 in the vicinity of the diffusion layer connected to the bit line BLR among the two diffusion layers serving as the source or drain of the pass gate transistor PGR.
  • the threshold voltage when the diffusion layer connected to the bit line BLR is used as the source can be made lower than the threshold voltage when the diffusion layer connected to the bit line BLR is used as the drain.
  • the write characteristics of the memory cell 12 can be improved as compared with the case where no implantation is performed.
  • the voltage difference between the power supply voltage application point Vdd and the bit lines BLL and BLR is set to the voltage difference V4 higher than the normal voltage difference V1, and the word
  • the voltage difference between the line WL and the bit lines BLL and BLR is set to a voltage difference (V1 + Vwll) larger than the normal voltage difference V1
  • the write characteristics of the memory cell 12 can be improved by a simpler method.
  • step S110B by executing the process of step S100, it is possible to select which insulating layer of the pass gate transistors PGL and PGR to inject holes, and to operate more appropriately. The characteristics can be improved.
  • the processing of steps S100 and S110B is executed to adjust the threshold voltage of the pass gate transistor PGR, and then the steps S120 and S130B are executed to execute the threshold voltage of the pass gate transistor PGL.
  • the threshold voltage of the pass gate transistor PGR may be adjusted by executing only the processing of steps S100 and S110B without executing the processing of steps S120 and S130B, or the processing of steps S100 and S110B. It is also possible to adjust only the threshold voltage of the pass gate transistor PGL by executing only the processing of steps S120 and S130B without executing the above. Further, only the process of step S110B may be executed without executing the processes of steps S100, S120B, and S130. In this case, it is impossible to select which insulating layer of the pass gate transistors PGL and PGR is to inject holes, but it is possible to inject holes into one of the pass gate transistors PGL and PGR. Therefore, the operating characteristics can be improved.
  • the threshold voltage of the pass gate transistor PGR is adjusted by executing the processing of steps S100 to S130B.
  • the voltage Power supply so that Vdd is 0V, substrate voltage Vsub is 0V, word line voltage Vwl is a value Vwll (for example, -0.5V, etc.), bit line voltage Vbll and bit line voltage Vblr are a value V4 (for example, 2.5V)
  • Vdd is 0V
  • substrate voltage Vsub is 0V
  • word line voltage Vwl is a value Vwll (for example, -0.5V, etc.)
  • bit line voltage Vbll and bit line voltage Vblr are a value V4 (for example, 2.5V)
  • a process of applying a voltage to the voltage application point Vdd, the semiconductor substrate 20, the word line WL, and the bit lines BLL and BLR may be executed.
  • FIG. 13 is a process diagram showing an example of a voltage characteristic adjustment process for adjusting the voltage characteristic of the SRAM 10 of the third embodiment. This step is performed with the ground voltage application point Vss of the memory cell 12 fixed to 0V.
  • the memory voltage is set such that the substrate voltage Vsub, the word line voltage Vwl, and the bit line voltages Vbll and Vblr are all 0 V for the plurality of memory cells 12 connected to the selected one word line WL.
  • the power supply voltage application point Vdd is set so that the voltage Vdd is changed from 0V to a value V2 (eg, 0.6V) lower than the value V1.
  • V2 eg, 0.6V
  • the value V2 is fixed at either the H level or the L level of the output terminals OUTL and OUTR due to variations in threshold voltages of the transistors PL, PR, NL, and NR when the voltage Vdd is gradually increased from 0V.
  • the voltage to be used a voltage obtained in advance by experiment or analysis is used. By such processing, the transistor having the lower threshold voltage among the transistors PL, PR, NL, and NR is turned on first, and the voltage of the output terminals OUTL and OUTR is determined depending on which transistor is turned on first.
  • the transistors PR and NL are turned on first, the output terminal OUTL of the memory cell 12 is at H level, and the output terminal OUTR is at L level.
  • the output terminal OUTL of the memory cell 12 is at the H level and the output terminal OUTR is at the L level after the process of step S100B is executed.
  • the word line voltage Vwl and the substrate voltage Vsub are set to 0 V
  • the voltage Vdd at the power supply voltage application point Vdd is set to the value V2
  • the bit lines BLL and BLR are precharged so that the bit line voltages Vbll and Vblr become the value V2.
  • the bit lines BLL and BLR are brought into an electrically floating state, and thereafter, a voltage is applied to the word line WL so that the word line voltage Vwl becomes the value V1, and data is read (step S105C).
  • step S105C Similar to the processing in step S110 of the illustrated voltage characteristic adjustment step, for a plurality of memory cells 12 connected to one word line WL, the voltage Vdd is a value V1h, and the substrate voltage Vsub is a value Vsub1, which is lower than 0V.
  • the memory cell is set so that the line voltage Vwl is the value V1, the bit line voltage Vbll and the bit line voltage Vblr are 0V.
  • Supply voltage applying point Vdd and the semiconductor substrate 20 of the 12, the word line WL, the bit line BLL, a voltage is applied to the BLR (step S110).
  • the reason for executing the process of step S105C is as follows.
  • the output terminal OUTL is likely to be L level and the output terminal OUTR is likely to be H level when reading data. Therefore, by executing the read operation in step S105C, the voltage of the output terminal connected to the pass gate transistor PGR having the low threshold voltage among the output terminals OUTL and OUTR is set to the H level as much as possible.
  • step S110 electrons are injected into the pass gate transistors PGL and PGR connected to the output terminal that is at the H level among the output terminals OUTL and OUTR.
  • the threshold voltage at the time of reading the data of the gate transistor can be increased. Thereby, the read characteristics in the memory cell 12 can be improved.
  • the semiconductor substrate 20 and the word line WL of the memory cell 12 so that the substrate voltage Vsub, the word line voltage Vwl, and the bit line voltages Vbll and Vblr are all 0V.
  • a voltage is applied to the power supply voltage application point Vdd so that the voltage Vdd is changed from 0 V to a value V2 lower than the value V1, and then the word line voltage Vwl becomes the value V1.
  • Data is read by applying a voltage to the word line WL, and thereafter, the voltage Vdd is the value V1h, the substrate voltage Vsub is lower than 0V, the value Vsub1, the word line voltage Vwl is the value V1, and the bit line voltage Vbll.
  • the power supply voltage application point Vdd of the memory cell of the SRAM 10 and the semiconductor substrate 20 so that the bit line voltage Vblr becomes 0V.
  • the process of step S105C and the process of step S110 are executed once, but the process of step S105C and the process of step S110 are performed a plurality of times. It may be executed.
  • the process of step S105C is executed, the voltage of the output terminal output to the pass gate transistor whose threshold voltage should be increased when executing the data read operation of the pass gate transistors PGL and PGR becomes H level.
  • the threshold voltage of one of the pass gate transistors is excessively increased. Can be suppressed.
  • the same process as the process of step S110 of the voltage characteristic adjustment process illustrated in FIG. 2 is executed after the process of step S105C, but instead of the process of step S110.
  • the same process as step S110B of the voltage characteristic adjustment process illustrated in FIG. 10 may be executed. In this way, the write characteristics of the SRAM 10 can be improved.
  • the above-described voltage adjustment process is performed collectively on the memory cells 12 connected to the selected word line WL of the SRAM 10.
  • the memory cell 12 may be performed collectively, or the SRAM 10 may be divided into several blocks and performed for each block, or the voltage characteristic adjustment described above may be performed for only a part of all the memory cells 12. It is good also as what performs a process.
  • the voltage characteristic adjusting process of the present invention is applied to a circuit composed of the transistors PL, PR, NL, and NR having the structure illustrated in FIGS.
  • PR may be formed on an n-type semiconductor substrate
  • transistors NL and NR may be applied to an n-type semiconductor substrate in which the conductivity type is formed in a p-type well.
  • the memory cell 12 of the SRAM 10 has the inverter INVL composed of the transistors PL and NL and the inverter INVR composed of the transistors PR and NR.
  • the configuration of the inverters INVL and INVR As long as it can be output from the output terminal by inverting the logic of the voltage input from the input terminal, for example, a resistance element having a relatively high resistance value is used instead of the transistors PL and PR. It is good.
  • the voltage characteristic adjusting method of the present invention is applied to the SRAM 10.
  • a plurality of word lines WL and bit lines BLL and BLR in addition to a plurality of word lines WL and bit lines BLL and BLR, a plurality of A plurality of memory cells 212 connected to the read word line RWL and the read bit line RBL, a row decoder 214 that selects the word line WL or the read word line RWL when a row address signal is supplied, and a column address A column decoder 216 that selects one set of bit lines BLL and BLR or one read bit line RBL corresponding to the applied column address signal when the signal is applied, and a read bit line RBL from the memory cell 212
  • a plurality of sense amplifiers 218 that amplify the signal output to the selected bit lines BLL and BLR,
  • a column selection circuit 219 Doo line RBL and data to connect the data lines (not shown) are input and output, or as applied to SRAM210 comprising.
  • FIG. 15 is a circuit diagram showing an outline of a configuration of a memory cell 212 of a modification.
  • the memory cell 212 has the same configuration as that of the memory cell 12, an n-channel MOS transistor RN (hereinafter referred to as a transistor RN) whose gate is connected to the input terminal INR, and whose source is connected to the ground voltage application point Vss. And an n-channel MOS transistor RPG (hereinafter referred to as a read pass gate transistor RPG) having a source connected to the read bit line RBL and a drain connected to the drain of the transistor RN.
  • a transistor RN n-channel MOS transistor RN
  • RPG n-channel MOS transistor RPG
  • the data write operation is performed in the same manner as the SRAM 10 described above with all the read word lines RWL being in a non-selected state (voltage is 0 V) and the read pass gate transistor RPG is turned off. It is.
  • all the word lines WL are deselected, and the memory cells 212 connected to the read word line RWL and the read bit line RBL selected by the row decoder 14 and the column decoder 16 are used. Is performed by reading out the voltage of the read bit line RBL corresponding to the voltage of the output terminal OUTL as data.
  • all the word lines WL, the read word line RWL, the bit lines BLL and BLR, and the read bit line RBL are deselected, and the pass gate transistors PGL and PGR and the read pass gate transistor RPG. Is turned off and the voltages at the output terminals OUTL and OUTR of the memory cell 12 are held as data.
  • the operation characteristics of the memory cell 212 can be improved by performing the voltage characteristic adjustment process illustrated in FIGS. 5, 10, and 13 with all the read bit lines RBL in a non-selected state. it can.
  • FIG. 16 is an explanatory diagram showing an outline of the configuration of the charge pump 100 as an embodiment of the present invention.
  • the charge pump 100 includes a multistage transistor circuit 110 configured by connecting three input terminals IN1 to IN3, an output terminal OUT, and n transistors Tr1 to Trn in series, and among the transistors Tr of the multistage transistor circuit 110, A capacitor circuit 130 having (n ⁇ 1) capacitors C1 to Cn ⁇ 1 connected to the transistors Tr2 to Trn excluding the starting transistor Tr1 and n transistors connected to the transistors Tr1 to Trn of the multistage transistor circuit 110 A control voltage supply circuit 140 that supplies a voltage to each of the switches SW1 to SWn, and the n control terminals Tv1 to Tvn connected to the switches SW1 to Swn, and voltage or voltage to each of the three input terminals IN1 to IN3 individually.
  • a control circuit 150 for performing a control of the voltage supplied to the control terminals Tv1 ⁇ Tvn from the control and
  • the transistors Tr1 to Trn of the multistage transistor circuit 110 each have a connection terminal Tc in which one of the source and the drain is connected to the gate, and the other of the source and the drain is connected to the connection terminal Tc of the adjacent transistor. Accordingly, the connection terminal Tc of the starting transistor Tr1 is connected to the input terminal IN1, and the source of the terminal transistor Trn is connected to the output terminal OUT.
  • the transistors Tr1 to Trn are configured as well-known n-channel MOS transistors, and are formed of a semiconductor substrate such as silicon (Si) whose conductivity type is adjusted to be p-type.
  • the n-type diffusion layers 126 and 128 are formed on the semiconductor substrate 120 so as to sandwich a region below the insulating layer 122 and function as a source or drain.
  • Capacitors C1 to Cn-1 of the capacitor circuit 130 are connected between the connection terminal Tc of the transistors Tr2 to Trn excluding the transistor Tr1 at the start of the transistors Tr1 to Trn and the input terminal IN2 or the input terminal IN3.
  • the capacitor adjacent to the capacitor connected to the terminal IN2 is alternately connected to one of the input terminals IN2 and IN3 so as to be connected to the input terminal IN3.
  • the switches SW1 to SWn are connected to the control terminals Tv1 to Tvn and the transistors Tr1 to Trn so as to turn on and off the voltage supply from the control terminals Tv1 to Tvn to the connection terminals Tc and the gates of the transistors Tr1 to Trn of the multistage transistor circuit 110. It is connected between each connection terminal Tc and the gate.
  • the charge pump 100 configured as described above, in a normal operation, all of the switches SW1 to SWn are turned off and a power supply voltage Vdd (for example, 3 V) is supplied from the control circuit 150 to the input terminal IN1.
  • Vdd for example, 3 V
  • the clock signal CLK is input to the input terminal IN2 and the inverted clock signal CLKB obtained by inverting the logic of the voltage of the clock signal CLK is input to the input terminal IN3
  • the power supply voltage Vdd from the input terminal IN is determined in advance.
  • the voltage is boosted to a predetermined voltage (for example, 20 V) and output from the output terminal OUT.
  • FIG. 18 is an explanatory diagram for explaining a state in which the voltage characteristic of the charge pump 100 is being adjusted.
  • the control circuit 150 sequentially turns on two adjacent switches among the n switches SW1 to SWn with the input terminals IN1 to IN2 being set to 0 V from the control circuit 150.
  • the switches SW1 to SWn are controlled (for example, the switch SW1 and the switch SW2, the switch SW2 and the switch SW3, the switch SW3 and the switch SW4, etc.), and the multistage of the control terminals connected to the two switches that are turned on
  • the voltage V5 is applied to the control terminal on the transistor Tr1 side at the beginning of the transistor circuit 110 (for example, the control terminal Tv2 when the switch SW2 and the switch SW3 are on), and the transistor at the end of the multistage transistor circuit 110
  • a control terminal on the Trn side for example, a scan terminal
  • VH controls the control voltage supply circuit 140 to 2.0 V
  • FIG. 19 is an explanatory diagram for explaining the state of the transistor Tr2 in FIG.
  • the voltage applied to the drain is higher than the voltage applied to the gate, so that a high electric field is applied to the drain end under the gate in a state where the transistor is off.
  • a hole is injected into a position near the drain end of the insulating layer 122 by a GIDL (Gate Induced Drain Leakage) current generated near the drain.
  • FIG. 20 shows the relationship between the gate voltage Vg, the drain current Id flowing from the drain to the source, and the threshold voltage of the transistor in which holes are injected into the insulating layer 122 in this way.
  • the threshold voltage Vth_s in the case where the diffusion layer adjacent to the hole injection region of the insulating layer 122 into which holes are injected is used as the source of the two diffusion layers 126 and 128 has two diffusion layers. 126 and 128, the threshold voltage Vth_d is lower than when the diffusion layer adjacent to the hole injection region is used as the drain, and the threshold voltages Vth_s and Vth_s are both lower than the threshold voltage when holes are not injected into the insulating layer 122. .
  • FIG. 21 and FIG. 22 are explanatory diagrams for explaining a state when the boosting operation is performed by the transistor Tr2 in which holes are thus injected.
  • the clock signal CLK rises, a current flows in a direction from the transistor Tr2 to the transistor Tr3 to charge the capacitor C2.
  • the threshold voltage of the transistor Tr2 becomes lower and flows to the transistor Tr2 than when holes are not injected into the transistor Tr2.
  • the current increases, charging of the capacitor C2 is promoted, and the voltage at the connection terminal Tc of the transistor Tr3 is further increased. That is, the voltage of the connection terminal Tc of the transistor Tr3 can be boosted more greatly at one rise of the clock signal CLK.
  • the clock signal CLK falls, as illustrated in FIG. 22, the voltage at the connection terminal Tc of the transistor Tr2 decreases and the diffusion layer connected to the connection terminal Tc of the transistor Tr2 serves as a source.
  • the threshold voltage of the transistor Tr2 is higher than that when the transistor Tr2 is rising, and the current flowing through the transistor Tr2 is reduced.
  • the discharge of the capacitor C2 is suppressed, and the voltage drop at the connection terminal Tc of the transistor Tr3 is suppressed.
  • a voltage drop at the connection terminal Tc of the transistor Tr3 after the boosting due to one falling of the clock signal CLK is suppressed. That is, the boosting efficiency of the charge pump 100, that is, the operating characteristics can be improved.
  • the switches SW1 to SWn are controlled so that two adjacent switches among the n switches SW1 to SWn are sequentially turned on while the input terminals IN1 to IN2 are set to 0 V, and the two switches that are turned on are controlled.
  • the voltage V5 is applied to the control terminal on the transistor Tr1 side at the start of the multistage transistor circuit 110, and the power supply voltage is applied to the control terminal on the transistor Trn side at the end of the multistage transistor circuit 110.
  • the switches SW1 to SWn are turned on so that two adjacent switches among the n switches SW1 to SWn are turned on with the input terminals IN1 to IN2 being set to 0V.
  • the voltage V5 is applied to the control terminal on the transistor Tr1 side at the start of the multistage transistor circuit 110, and the end of the multistage transistor circuit 110 is applied.
  • the control voltage supply circuit 140 By controlling the control voltage supply circuit 140 so that a predetermined high voltage VH higher than the power supply voltage Vdd is applied to the control terminal on the transistor Trn side of the transistor Trn, the voltage characteristics of the charge pump 100 can be improved. The operating characteristics of the pump 100 can be improved.
  • the switch SW1 when adjusting the voltage characteristics of the charge pump, the switch SW1 is set so that two adjacent switches among the n switches SW1 to SWn are turned on with the input terminals IN1 to IN2 being set to 0V.
  • the voltage V5 is applied to the control terminal on the transistor Tr1 side at the start of the multistage transistor circuit 110 among the control terminals connected to the two switches that are turned on and control SWn, and the multistage transistor circuit
  • the control voltage supply circuit 140 is controlled so that a predetermined high voltage VH higher than the power supply voltage Vdd is applied to the control terminal on the transistor Trn side at the end of 110, but connected to the two switches that are turned on.
  • the control voltage supply circuit 140 may be controlled such that a predetermined high voltage VH higher than the power supply voltage Vdd is applied and a voltage V5 is applied to the control terminal on the transistor Trn side at the end of the multistage transistor circuit 110.
  • FIG. 23 is an explanatory diagram for explaining the state of the transistor Tr2 when the predetermined high voltage VH is supplied to the control terminal Tv2 and the voltage V5 is supplied to the control terminal Tv3 in FIG.
  • the drain voltage Vd obtained by subtracting the voltage applied to the source from the voltage applied to the drain is high, so that impact ionization (Impact Ionization) occurs in the vicinity of the drain of the semiconductor substrate 20.
  • impact ionization Impact Ionization
  • FIG. 24 shows the relationship between the gate voltage Vg of the transistor in which hot electrons are injected into the insulating layer 122, the drain current Id flowing from the drain to the source, and the threshold voltage.
  • the threshold voltage Vth_s when the diffusion layer adjacent to the electron injection region of the insulating layer 122 into which hot electrons have been injected is used as the source of the two diffusion layers 26 and 28 has two diffusion layers. 26 and 28, the threshold voltage Vth_d is higher than that when the diffusion layer adjacent to the electron injection region is used as the drain, and the threshold voltages Vth_s and Vth_d are both higher than the threshold voltage when hot electrons are not injected into the insulating layer 122.
  • FIG. 25 and FIG. 26 are explanatory diagrams for explaining a state when the boosting operation is performed by the transistor Tr2 into which electrons are injected in this way.
  • the diffusion layer connected to the connection terminal Tc of the transistor Tr3 among the diffusion layers of the transistor Tr2 serves as the source, so that the threshold voltage of the transistor Tr2 is the transistor Tr2.
  • the voltage at the connection terminal Tc of the transistor Tr2 drops and is connected to the connection terminal Tc of the transistor Tr2, as illustrated in FIG. Since the diffusion layer is a source, the threshold voltage of the transistor Tr2 becomes higher than when the clock signal CLK rises. Thereby, the boosting efficiency of the charge pump 100 can be improved, that is, the operating characteristics can be improved.
  • the transistors Tr1 to Trn of the multistage transistor circuit 110 and the control terminals Tv1 to Tvn are connected via the switches SW1 to Swn.
  • the transistors Tr1 to Trn of the multistage transistor circuit 110 are connected. Any element that can be turned on and off may be connected between Trn and control terminals Tv1 to Tvn. For example, a transistor that turns on and off according to the voltage input to the gate may be used. .
  • the charge pump 100 is composed of a transistor formed on the p-type semiconductor substrate 120.
  • the charge pump 100 is formed on the n-type semiconductor substrate. It may be configured by a transistor that has been formed.
  • the configuration of the SRAM 410 whose voltage characteristics are to be adjusted is that the column switch 420 is provided between the bit lines BLL and BLR and the sense amplifier 18 or the power supply voltage application point Vdd of the memory cell 12 is supplied.
  • a voltage different from the voltage to be applied can be applied to the power supply voltage of the peripheral circuit (row decoder 14, column decoder 16, sense amplifier 18, column selection circuit 19), and the voltages of the bit lines BLL and BLR are precharged to the power supply voltage of the peripheral circuit.
  • the configuration is the same as that of the SRAM 10 of the first embodiment except that a precharge circuit 422 is provided. Therefore, in the configuration of the SRAM 410, the same configuration as the SRAM 10 of the first embodiment is denoted by the same reference numeral as the SRAM 10, and the description thereof is omitted.
  • FIG. 27 is an explanatory diagram showing an outline of the configuration of the SRAM 410 on which a plurality of memory cells 12 whose voltage characteristics are adjusted by the voltage characteristic adjusting method according to the fourth embodiment of the present invention.
  • FIG. It is explanatory drawing explaining the outline of a structure of a part.
  • the SRAM 410 is connected to n word lines WL1 to WLn and m bit lines BLL and BLR, and (n ⁇ m) memory cells 12 arranged in a matrix of n rows and m columns and bit lines BLL.
  • a voltage Vddl (for example, 1.0 V) different from the voltage supplied to the voltage application point Vdd can be applied.
  • the column switch 420 is configured as a well-known CMOS switch that is turned on / off by column signals COL, COLB (the column signal COL and the column signal COLB are opposite in phase to each other). , BLR and the sense amplifier 18 are electrically connected, and when the column signal COL is at the L level, it is turned off to release the electrical connection between the bit lines BLL and BLR and the sense amplifier 18.
  • the bit lines BLL and BLR of the SRAM 410 are provided with a precharge circuit 422 that precharges the voltages of the bit lines BLL and BLR to the voltage Vddl of the peripheral circuit.
  • the precharge circuit 422 includes two p-channel MOS transistors whose gates are supplied with a precharge signal PRCHG and whose drains are supplied with the power supply voltage Vddl of the peripheral circuit and whose drains are connected to the bit lines BL and BLB, respectively. And a p-channel MOS transistor whose drain and source are connected to the bit lines BL and BLB, and when the precharge signal PRCHG is at L level (0 V), three p-channel MOS transistors are provided. Turns on and precharges the bit lines BL and BLB to the power supply voltage Vddl of the peripheral circuit. When the precharge signal PRCHG is at the H level (value V1), the three p-channel MOS transistors are turned off.
  • bit line voltages Vbll the voltages of the bit lines BLL and BLR (hereinafter referred to as bit line voltages Vbll.
  • Vblr When Vblr is set to a voltage corresponding to the data to be written, one of the n word lines WL1 to WLn is selected by the row decoder 14 based on the row address signal, and the selected word The voltage of the line WL (hereinafter referred to as the word line voltage Vwl) becomes the value V1.
  • the column decoder 16 selects a set of bit lines BLL and BLR based on the column address signal and inputs the column signal COL so that the column switch 420 of the selected bit line is turned on.
  • the voltages of the output terminals OUTL and OUTR of the memory cell 12 connected to the selected word line WL and bit lines BLL and BLR become voltages corresponding to the bit lines BLL and BLR, so that the memory cell 12 Data can be written.
  • the data read operation from the SRAM 410 is a precharge circuit 422 connected to the bit lines BLL and BLR selected by the column decoder 16 when a signal necessary for the operation such as a row address signal and a column address signal is given.
  • a precharge signal PRCHG (0V) is input to turn on the precharge circuit 422, and a column signal is input so that the column switch 420 connected to the selected bit lines BLl and BLR is turned on. , BLR are once precharged to the voltage Vddl.
  • the precharge signal PRCHG (value V1) is input to the precharge circuit 422 to turn off the precharge circuit 422, and the voltage Vdd is applied to the word line WL selected by the decoder 14 among the n word lines WL1 to WLn. Is applied to the selected memory cell 12 connected to the selected word line WL1 and bit lines BLL and BLR, and the voltage difference between the bit lines BLL and BLR generated corresponding to the voltage difference between the output terminals OUTL and OUTR is used as data. Data can be read through the sense amplifier 18.
  • FIG. 29 is a process diagram showing an example of a voltage characteristic adjustment process for adjusting the voltage characteristic of the SRAM 210. This step is performed with the ground voltage application point Vss of the memory cell 12 fixed at 0V and the substrate voltage Vsub fixed at 0V.
  • a value V1 is applied to the voltage Vdd, a value V1 is applied to each bit line BLL, and 0 V is applied to each bit line BLB, and a data write operation is performed on all the memory cells 12 of the SRAM 410 (step S200).
  • the output terminal OUTL can be set to H level and the output terminal OUTR can be set to L level for all the memory cells 12.
  • a value V5 (for example, 0.5 V) smaller than the value V1 is applied to the voltage Vdd, and a data read operation is performed on all the memory cells 12 (step S210).
  • the threshold voltage of the pass gate transistor PGR of the memory cell 12 is lower than the other transistors (transistors PL, NL, PR, LR, pass gate transistor PGL) of the same memory cell 12, and the current balance between the transistors is not good.
  • the voltage of the output terminal OUTR becomes higher than that of the output terminal OUTL, and the data is inverted.
  • the value V5 is a memory cell in which the current balance between the transistors is not good, and a value obtained by experiment or analysis as the voltage at which the voltages at the output terminals OUTL and OUTR are inverted is used.
  • step S220 shows an example of the bias condition during the process of step S220 and the current flowing through the SRAM 410.
  • the memory cell 12n-1 is a cell in which the current balance between the transistors is not good because the threshold voltage of the pass gate transistor PGR is low, and the data is inverted after executing the process of step S210.
  • the other memory cells except 12n-1 (for example, the memory cell 12n) are assumed to be cells in which data is not inverted even when the process of step S210 is executed. That is, the voltage of the output terminal OUTL of the memory cell 12n-1 is lower than the output terminal OUTR, and the voltage of the output terminal OUTL of the memory cell 12n is higher than the voltage of the output terminal OUR.
  • the output terminal OUTR of the memory cell 12n-1 has a voltage slightly lower than the voltage applied to the voltage Vdd (eg, 2.73 V), but the memory cell 12n- In the other memory cells except 1, the voltage of the output terminal OUTR is 0V, so the voltage of the bit line BLR is a voltage in the vicinity of 0V.
  • a voltage having a value V1 eg, 1.0 V
  • a voltage eg, 2.. 73V
  • 0V is applied to the source
  • 0V is applied to the substrate voltage Vsub.
  • Such a voltage condition is the same as the voltage condition illustrated in FIG.
  • the voltage applied to the word lines WL1 to WLn at this time may be a voltage that can sufficiently inject hot electrons into the insulating layer 22, and may be higher than the voltage V1 and lower than the value V6.
  • step S220 the output terminal OUTL of the memory cell 12n-1 is 0V, but in other memory cells except the memory cell 12n-1, the voltage of the output terminal OUTL is applied to the voltage Vdd. Since the voltage is slightly smaller than the applied voltage (eg, 2.73 V), the voltage of the bit line BLL is equal to the threshold voltage of the p-channel MOS transistor of the precharge circuit 422 than the voltage applied to the word lines WL1 to WLn.
  • step S220 the voltage Vdd is applied to the voltage Vdd, the voltage V0 is applied to each bit line BLL, and the voltage V1 is applied to each bit line BLB to write data to all the memory cells 12 in the SRAM 410.
  • step S230 the output terminal OUTL can be set to L level and the output terminal OUTR can be set to HL level for all the memory cells 12.
  • steps S240 and S250 which are the same processes as steps S210 and S220, are sequentially executed, and this process ends.
  • the processing of step S250 is performed.
  • the hot electrons can be injected in the process to increase the threshold voltage as compared to before injection, and the voltage characteristics of the SRAM 410 can be adjusted.
  • hot electrons can be injected into the pass gate transistors PGL of a plurality of memory cells having a low threshold voltage only by executing the process of step S250 once. Therefore, the voltage characteristic of the SRAM 410 can be adjusted by a simpler method.
  • the value V1 is applied to the voltage Vdd
  • the value V1 is applied to the bit line BLL
  • 0 V is applied to the bit line BLR
  • the data write operation is performed on all the memory cells 12 of the SRAM 410.
  • the value V5 smaller than the value V1 is applied to the voltage Vdd
  • the data read operation is sequentially performed on all the memory cells 12.
  • the voltage Vdd is greater than the value V1.
  • the precharge signal PRCHG value V1 is input to the precharge circuit 422 to turn off the precharge circuit 422 and the column signal COL (0 V) is input to the column switch 420 to all the column switches.
  • the voltage Vwl of all the word lines WL1 to WLn is set to the voltage V1 for a predetermined time tref. It is applied to.
  • hot electrons can be collectively injected into a plurality of pass gate transistors PGR having a low threshold voltage to raise the threshold voltage, and the voltage characteristics of the SRAM 410 can be adjusted by a simpler method.
  • the voltage Vdd is applied to the value V1
  • the bit line BLL is applied with the voltage V1 to the bit line BLR, and the data write operation is executed for all the memory cells 12 of the SRAM 410.
  • the voltage Vdd is set to a value V6 larger than the value V1
  • the precharge circuit 422 is turned off and the column switch 420 is turned off to apply a voltage having a tref value V1 for a predetermined time to the voltages Vwl of all the word lines WL1 to WLn.
  • hot electrons can be injected into a plurality of pass gate transistors PGL having low threshold voltages to raise the threshold voltage, and the voltage characteristics of the SRAM 410 can be adjusted by a simpler method. .
  • the threshold voltage of the pass gate transistor PGR is adjusted by the processing of steps S200 to S220, and the threshold voltage of the pass gate transistor PGL is adjusted in steps S230 to S250. Only one of the threshold voltages of the pass gate transistors PGL and PGR may be adjusted. In this case, when adjusting the threshold voltage of the pass gate transistor PGR, steps S200 to S220 are executed without executing steps S230 to S250, and when adjusting the threshold voltage of the pass gate transistor PGL, step S200 is executed. Steps S230 to S250 may be executed without executing step S220.
  • steps S200 to S250 are executed for all the memory cells 12, but may be executed for some of the memory cells 12.
  • steps S220 and S250 a current generated when hot electrons are injected into the pass gate transistor having a low threshold voltage is supplied to the ground voltage application point Vss through the bit lines BLL and BLR and the other pass gate transistors. Since it is necessary, the processes of steps S200 to S250 may be executed for at least two or more memory cells 12 connected to the same bit lines BLL and BLB.
  • the SRAM 410 whose voltage is to be adjusted is provided with the precharge circuit 422.
  • the precharge circuit 422 is precharged to a voltage (for example, the voltage Vdd) higher than the power supply voltage Vddl of the peripheral circuit. It may be clamped to a voltage lower than the power supply voltage Vddl of the peripheral circuit (for example, voltage (Vddl / 2)), or the precharge circuit 422 may not be provided.
  • the voltage characteristic adjustment process of the present invention is applied to a circuit composed of the transistors PL, PR, NL, and NR having the structure illustrated in FIG. 3 and FIG.
  • the present invention may be applied to a semiconductor device in which the conductivity type is formed on an n-type semiconductor substrate and the transistors NL and NR are formed on an n-type semiconductor substrate and the conductivity type is formed in a p-type well.
  • the memory cell 12 of the SRAM 410 has the inverter INVL composed of the transistors PL and NL and the inverter INVR composed of the transistors PR and NR.
  • the configuration of the inverters INVL and INVR is input. Any device may be used as long as the logic of the voltage input from the terminal is inverted and output from the output terminal. For example, a resistance element having a relatively high resistance value may be used instead of the transistors PL and PR. .
  • the present invention can be used in the semiconductor memory device manufacturing industry, the charge pump manufacturing industry, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Static Random-Access Memory (AREA)
  • Dram (AREA)
  • Semiconductor Memories (AREA)

Abstract

電圧Vddが値V1,基板電圧Vsubが0V,ワード線電圧Vwlが値V1,ビット線電圧Vbllが0V,ビット線電圧Vblrが値V1となるようSRAMのメモリセルの電源電圧印加点や半導体基板,ワード線,ビット線に電圧を印加し(ステップS100)、電源電圧印加点と一方のビット線との間の電圧差を通常の電圧差V1より高い電圧差V1hとすると共にワード線と一方のビット線との間の電圧差を電圧V1hより小さい通常の電圧差V1として、一方のビット線に接続されているパスゲートトランジスタのソース,ドレインとなる拡散層のうちメモリセルを構成するインバータの出力端子に接続されているほうの拡散層近傍の絶縁層へエレクトロンを注入する(ステップS110)。これにより、メモリセルの動作特性の向上を図ることができる。

Description

半導体記憶素子の電圧特性調整方法、半導体記憶装置の電圧特性調整方法およびチャージポンプ並びにチャージポンプの電圧調整方法
 本発明は、半導体素子の電圧特性調整方法、半導体記憶装置の電圧特性調整方法およびチャージポンプ並びにチャージポンプの電圧特性調整方法に関する。
 従来、この種の半導体装置の電圧特性調整方法として、半導体装置を構成する絶縁ゲート型トランジスタのソースとドレインとの間の領域に不純物濃度のピーク値が異なる二つのハロー領域を形成する方法が提案されており、この方法を半導体装置としてラッチを構成する二つのインバータと二つのインバータの出力にソースまたはドレインが接続された二つのアクセストランジスタとを有するSRAM(Static Random Access Memory)セルに適用するものが提案されている(例えば、非特許文献1参照)。この場合、アクセストランジスタのソースとドレインとの間の領域に不純物濃度のピーク値が異なる二つのハロー領域を形成し、不純物濃度のピーク値が高いほうのハロー領域に隣接するソースまたはドレインをインバータの出力に接続し、不純物濃度のピーク値が低いほうのハロー領域に隣接するソースまたはドレインをビット線と接続することにより、ラッチに記憶されているデータと逆のデータを書き込むときには二つのアクセストランジスタのうち低い電圧が印加されたビット線に接続されたアクセストランジスの閾値電圧が二つのアクセストランジスタのうち高い電圧が印加されたビット線に接続されたアクセストランジスタの閾値電圧に比して低くなるから、データを容易に反転させることができ、書き込み特性を向上させることができるとしている。また、半導体装置としては、ゲートとドレインとが接続された接続端子を有するトランジスタのソースを隣接するトランジスタの接続端子に接続することにより複数のトランジスタを直列に多段接続し、接続端子にキャパシタを介してクロック信号を印加しながら始端のトランジスタの接続端子に入力した電源電圧を各トランジスタで昇圧して、終端のトランジスタのソースに接続された出力端子から出力するチャージポンプが提案されている(例えば、非特許文献2参照)。
Jae-Joon Kim,Aditya Bansal,Rahul Rao,Shih-Hsien Lo and Ching-Te Chuang,「Relaxing Conflict Between Read Stability and Writability in 6T SRAMCell Using Asymmetric Transistors」,IEEE ELECTRON DEVICE LETTERS,VOL.30,NO.8,AUGUST 2009,p.852-854 Shinji Noda,Teruyoshi Hatanaka,Mitue Takahashi,Shigeki Sakaiand Ken Takeuchi,「A 1.2V Operation 2.43 Times Higher Power Efficiency Adaptive Charge Pump Circuit with Optimized Vth at Each Pump Stage for Ferroelectric(Fe)-NAND Flash Memories」,Extended Abstract of the 2009 International Conference on Solid State Devices and Materials,Sendai,2009,pp162-163
 しかしながら、上述の電圧特性調整方法では、ハロー領域を形成する必要があるため、こうした電圧特性調整方法をSRAMやチャージポンプに適用すると、製造する際に不純物をドーピングする工程などを追加する必要があり、製造工程が複雑になってしまう。したがって、より簡易な方法でSRAMやチャージポンプの電圧特性を調整して動作特性を向上させることが望まれる。
 本発明の半導体記憶素子の電圧特性調整方法、半導体記憶装置の電圧特性調整方法および本発明のチャージポンプ並びにチャージポンプの電圧調整方法は、より簡易な方法で動作特性の向上を図ることを主目的とする。
 本発明の半導体記憶素子の電圧特性調整方法、半導体記憶装置の電圧特性調整方法およびチャージポンプ並びにチャージポンプの電圧調整方法は、上述の主目的を達成するために以下の手段を採った。
 本発明の半導体記憶素子の電圧特性調整方法は、
 第1入力端子と第1出力端子とを有する第1インバータと、前記第1出力端子に接続された第2入力端子と前記第1入力端子に接続された第2出力端子とを有する第2インバータと、所定の絶縁性を有する第1ゲート絶縁層を有しゲートがワード線に接続されると共にソースまたはドレインの一方が前記第1インバータの第1出力端子に接続されソースまたはドレインの他方が二つのビット線の一方に接続された第1パスゲートトランジスタと、所定の絶縁性能を有する第2ゲート絶縁層を有しゲートが前記ワード線に接続されると共にソースまたはドレインの一方が前記第2インバータの出力端子に接続されソースまたはドレインの他方が前記二つのビット線の他方に接続された第2パスゲートトランジスタと、を備え半導体基板に形成されてなる半導体記憶素子の電圧特性を調整する電圧特性調整方法であって、
 前記半導体記憶素子を通常動作させる際に電源電圧を印加する電源電圧印加点と前記二つのビット線との間の電圧差が前記半導体記憶素子を通常動作させる際の前記電源電圧印加点と前記二つのビット線との間の電圧差より大きい所定の電圧差になるよう前記電源電圧印加点に印加する電圧と前記二つのビット線に印加する電圧を調整する電圧調整ステップ
 を備えることを特徴とする。
 この本発明の半導体記憶素子の電圧特性調整方法では、半導体記憶素子を通常動作させる際に電源電圧を印加する電源電圧印加点と二つのビット線との間の電圧差が半導体記憶素子を通常動作させる際の電源電圧印加点と二つのビット線との間の電圧差より大きい所定の電圧差になるよう電源電圧印加点に印加する電圧と二つのビット線に印加する電圧を調整する。これにより、第1パスゲートトランジスタまたは第2パスゲートトランジスタのいずれかにおいて、接続されているビット線の電圧が接続されている出力端子の電圧より低いときの閾値電圧より接続されているビット線の電圧が接続されている出力端子の電圧より高いときの閾値電圧を高くすることができる。一旦電圧調整ステップを実行すると、こうしたパスゲートトランジスタの状態は、電源電圧印加点,二つのビット線への電圧の印加を中断した後も維持されるため、半導体記憶素子に記憶されているデータを二つのビット線を介して読み出す際の読み出し特性やデータを二つのビット線を介して半導体記憶素子に書き込む際の書き込み特性などの半導体記憶素子の動作特性の向上を図ることができる。
 こうした本発明の半導体記憶素子の電圧調整方法において、前記電圧調整ステップを実行する前に実行され、前記半導体記憶素子を通常動作させる際に前記ビット線に印加する電圧としての第1ビット電圧および該第1ビット電圧より低い第2ビット電圧のうち前記第1ビット電圧を前記二つのビット線のうちの一方に印加すると共に前記第2ビット電圧を前記二つのビット線のうちの他方に印加した状態で、前記ワード線に前記半導体記憶素子を通常動作させる際に前記第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオンする電圧としての通常動作時オン制御電圧を印加する書き込みステップ、を備えるものとすることもできる。こうすれば、第1インバータの第1出力端子の電圧および第2インバータの第2出力端子の電圧をビット線の電圧に応じた電圧にした状態で、
電圧調整ステップを実行することができ、より適正に半導体記憶素子の動作特性の向上を図ることができる。
 また、本発明の半導体記憶素子の電圧調整方法において、前記電圧調整ステップを実行する前に実行され、前記ワード線に前記半導体記憶素子を通常動作させる際に前記第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオフする電圧としての通常動作時オフ制御電圧を印加すると共に前記半導体基板に前記半導体記憶素子を通常動作させる際に印加する電圧としての通常動作時基板電圧を印加した状態で前記電源電圧印加点に前記半導体記憶素子を通常動作させる際に印加する電源電圧より低い所定の低電圧を印加する低電源電圧印加ステップを備えるものとすることもできる。こうすれば、第1インバータの第1出力端子の電圧および第2インバータの第1出力端子の電圧を第1インバータと第2インバータとの電流駆動力のばらつきを反映した電圧とした後で、電圧調整ステップを実行することができ、より適正に、半導体記憶素子の動作特性の向上を図ることができる。この場合、前記低電源電圧印加ステップと前記電圧調整ステップとの間に実行され、前記二つのビット線を電気的に浮遊した状態にすると共に前記半導体基板に前記通常動作時基板電圧を印加した状態で、前記ワード線に前記半導体記憶素子を通常動作させる際に前記第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオンする電圧としての通常動作時オン制御電圧を印加する読み出しステップ、を備えるものとすることもできる。こうすれば、第1インバータの第1出力端子の電圧および第2インバータの第1出力端子の電圧を第1インバータ,第2インバータ,第1パスゲートトランジスタ,第2パスゲートトランジスタの電流駆動力のばらつきを反映した電圧にした後で、電圧調整ステップを実行することができ、より適正に半導体記憶素子の動作特性の向上を図ることができる。
 そして、本発明の半導体記憶素子の電圧調整方法において、前記電圧調整ステップは、前記電源電圧印加点と前記二つのビット線との間の電圧差が前記所定の電圧差になると共に前記ワード線と前記二つのビット線との間の電圧差が前記所定の電圧差より小さい所定の低電圧差となるよう前記電源電圧印加点に印加する電圧と前記二つのビット線に印加する電圧と前記ワード線に印加する電圧とを調整するステップであるものとすることもできる。この場合、前記電圧調整ステップは、前記ワード線に前記半導体記憶素子を通常動作させる際に前記第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオンする電圧としての通常動作時オン制御電圧を印加し、前記半導体記憶素子を通常動作させる際に前記ビット線に印加する電圧としての第1ビット電圧および該第1ビット電圧より低い第2ビット電圧のうち前記第2ビット電圧を前記二つのビット線に印加し、前記電源電圧印加点に前記半導体記憶素子を通常動作させる際に印加する電源電圧より高く前記通常動作時オン制御電圧より高い所定の高電源電圧を印加するステップである、ものとすることもできる。こうすれば、第1インバータの第1出力端子および第2インバータの第2出力端子のうち電圧の高いほうに接続された第1パスゲートトランジスタまたは第2パスゲートトランジスタについて、接続されているビット線の電圧が接続されている出力端子の電圧より低いときの閾値電圧より接続されているビット線の電圧が出力端子の電圧より高いときの閾値電圧を高くすることができ、半導体記憶素子の動作特性の向上を図ることができる。この場合において、前記電圧調整ステップは、前記半導体基板に印加されている電圧が前記半導体記憶素子を通常動作する際に前記半導体基板に印加する通常基板電圧より低い電圧になるよう前記半導体基板に印加する電圧を調整した状態で、前記ワード線に前記通常動作時オン制御電圧を印加し、前記第2ビット電圧を前記二つのビット線に印加し、前記電源電圧印加点に前記所定の高電源電圧を印加するステップである、ものとすることもできる。こうすれば、第1インバータの第1出力端子および第2インバータの第2出力端子のうち電圧の高いほうの電圧を半導体基板に通常基板電圧を印加した場合より高くすることができるから、接続されているビット線の電圧が接続されている出力端子の電圧より高いときの閾値電圧をより高くすることができ、動作特性をより向上させることができる。
 さらに、本発明の半導体記憶素子の電圧調整方法において、前記電圧調整ステップは、前記電源電圧印加点と前記二つのビット線との間の電圧差が前記所定の電圧差になると共に前記ワード線と前記二つのビット線との間の電圧差が前記所定の電圧差以上の所定の高電圧差となるよう前記電源電圧印加点に印加する電圧と前記二つのビット線に印加する電圧と前記ワード線に印加する電圧とを調整するステップであるものとすることもできる。この場合、前記電圧調整ステップは、前記ワード線に前記半導体記憶素子を通常動作させる際に前記第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオフする電圧としての通常動作時オフ制御電圧以下の所定のオフ電圧を印加し、前記半導体記憶素子を通常動作させる際に前記ビット線に印加する電圧としての第1ビット電圧および該第1ビット電圧より低い第2ビット電圧のうち前記第1ビット電圧より高い所定の高ビット電圧を前記二つのビット線に印加し、前記電源電圧印加点に前記半導体記憶素子を通常動作させる際に印加する電源電圧より低い所定の低電源電圧を印加するステップである、ものとすることもできる。こうすれば、第1インバータの第1出力端子および第2インバータの第2出力端子のうち電圧の低いほうに接続された第1パスゲートトランジスタまたは第2パスゲートトランジスタについて、接続されているビット線の電圧が接続されている出力端子の電圧より低いときの閾値電圧より接続されているビット線の電圧が出力端子の電圧より高いときの閾値電圧を高くすることができ、半導体記憶素子の動作特性の向上を図ることができる。
 本発明のチャージポンプは、
 第1の入力端子と、第2の入力端子と、第3の入力端子と、出力端子と、接続端子を有しゲートが所定の絶縁性能を有する絶縁層上に形成されると共にソースおよびドレインのうちの一方とゲートとが前記接続端子に接続されてなるトランジスタのソースを隣接するトランジスタの前記接続端子と接続することによりトランジスタがn個(nは、値2以上の整数)に亘って直列に接続されてなり前記n個のトランジスタのうち始端のトランジスタの接続端子が前記第1の入力端子と接続されると共に前記n個のトランジスタのうち終端のトランジスタのソースが前記出力端子と接続された多段トランジスタ回路と、前記多段トランジスタ回路のn個のトランジスタのうち前記始端のトランジスタを除く(n-1)個のトランジスタの接続端子に一端が接続された(n-1)個のキャパシタを有し隣り合うキャパシタの前記一端と異なる他端が交互に前記第2の入力端子または前記第3の入力端子に接続されてなるキャパシタ回路と、前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に電圧またはクロック信号を供給可能な入力信号供給回路と、通常動作する際に前記第1の入力端子に電源電圧が供給された状態で前記第2の入力端子にクロック信号が入力されると共に前記第3の入力端子に前記クロック信号を反転させた反転クロック信号が入力されるよう前記入力信号供給回路を制御する制御回路と、を備えるチャージポンプにおいて、
 n個の制御用端子を有し、該制御用端子のそれぞれに電圧を供給する制御用電圧供給回路と、
 前記n個の制御用端子から前記多段トランジスタ回路のn個のトランジスタの接続端子およびゲートへの電圧の供給をオンオフするn個のスイッチング素子と、
 を備え、
 前記制御回路は、前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に所定の低電圧の電圧が入力されると共に前記n個のスイッチング素子のうち隣り合う二つのスイッチング素子をオンし残余のスイッチング素子をオフした状態で、前記オンしている二つのスイッチング素子に接続された制御用端子のうち一方の制御用端子に前記所定の低電圧以下の電圧が印加されると共に前記オンしている二つのスイッチング素子に接続された制御用端子のうち他方の制御用端子に前記所定の低電圧より高い所定の高電圧が印加されるよう前記入力信号供給回路と前記制御用電圧供給回路と前記n個のスイッチング素子とを制御する回路である
 ことを要旨とする。
 この本発明のチャージポンプでは、通常動作する際に第1の入力端子に電源電圧が供給された状態で第2の入力端子にクロック信号が入力されると共に第3の入力端子に前記クロック信号を反転させた反転クロック信号が入力されるよう入力信号供給回路を制御する。これにより、第1の入力端子に入力された電源電圧を昇圧して出力端子から出力することができる。そして、第1の入力端子および第2の入力端子および第3の入力端子に所定の低電圧の電圧が入力されると共にn個のスイッチング素子のうち隣り合う二つのスイッチング素子をオンし残余のスイッチング素子をオフした状態で、オンしている二つのスイッチング素子に接続された制御用端子のうち一方の制御用端子に所定の低電圧以下の電圧が印加されると共にオンしている二つのスイッチング素子に接続された制御用端子のうち他方の制御用端子に所定の低電圧より高い所定の高電圧が印加されるよう入力信号供給回路と制御用電圧供給回路とn個のスイッチング素子とを制御する。これにより、オンしている二つのスイッチング素子に接続された多段トランジスタ回路の二つのトランジスタのうち多段トランジスタ回路の始端側のトランジスタについて、始端側のトランジスタの接続端子の電圧より終端側のトランジスタの接続端子の電圧が高いときの閾値電圧を始端側のトランジスタの接続端子の電圧より終端側のトランジスタの接続端子の電圧が低いときの閾値電圧より低くすることができる。こうしたトランジスタの状態は、第1の入力端子,第2の入力端子,第3の入力端子への電圧の供給を中断した後も維持されるため、第1の入力端子の電圧を昇圧して出力端子から出力する際の多段トランジスタ回路を構成するトランジスタの昇圧効率の向上、すなわち、動作特性の向上を図ることができる。
 こうした本発明のチャージポンプにおいて、前記制御回路は、前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に所定の低電圧の電圧が入力されると共に前記n個のスイッチング素子のうち隣り合う二つのスイッチング素子をオンし残余のスイッチング素子をオフした状態で、前記オンしている二つのスイッチング素子に接続された制御用端子のうち前記多段トランジスタ回路の始端のトランジスタ側の制御用端子に前記所定の低電圧以下の電圧が印加されると共に前記オンしている二つのスイッチング素子に接続された接続端子のうち前記多段トランジスタ回路の終端のトランジスタ側の制御用端子に前記所定の低電圧より高い所定の高電圧が印加されるよう前記入力信号供給回路と前記n個のスイッチング素子と前記制御用電圧供給回路とを制御する回路であるものとすることもできるし、前記制御回路は、前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に所定の低電圧の電圧が入力されると共に前記n個のスイッチング素子のうち隣り合う二つのスイッチング素子をオンし残余のスイッチング素子をオフした状態で、前記オンしている二つのスイッチング素子に接続された制御用端子のうち前記多段トランジスタ回路の始端のトランジスタ側の制御用端子に前記所定の低電圧より高い所定の高電圧が印加されると共に前記オンしている二つのスイッチング素子に接続された接続端子のうち前記多段トランジスタ回路の終端のトランジスタ側の制御用端子に前記所定の低電圧以下の電圧が印加されるよう前記入力信号供給回路と前記n個のスイッチング素子と前記制御用電圧供給回路とを制御する回路であるものとすることもできる。
 本発明のチャージポンプの電圧特性調整方法は、
 第1の入力端子と、第2の入力端子と、第3の入力端子と、出力端子と、接続端子を有しゲートが所定の絶縁性能を有する絶縁層上に形成されると共にソースおよびドレインのうちの一方とゲートとが前記接続端子に接続されてなるトランジスタのソースを隣接するトランジスタの前記接続端子と接続することによりトランジスタがn個(nは、値2以上の整数)に亘って直列に接続されてなり前記n個のトランジスタのうち始端のトランジスタの接続端子が前記第1の入力端子と接続されると共に前記n個のトランジスタのうち終端のトランジスタのソースが前記出力端子と接続された多段トランジスタ回路と、前記多段トランジスタ回路のn個のトランジスタのうち前記始端のトランジスタを除く(n-1)個のトランジスタの接続端子に一端が接続された(n-1)個のキャパシタを有し隣り合うキャパシタの前記一端と異なる他端が交互に前記第2の入力端子または前記第3の入力端子に接続されてなるキャパシタ回路と、前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に電圧またはクロック信号を供給可能な入力信号供給回路と、n個の制御用端子を有し該制御用端子のそれぞれに電圧を供給する制御用電圧供給回路と、前記n個の制御用端子から前記多段トランジスタ回路のn個のトランジスタの接続端子およびゲートへの電圧の供給をオンオフするn個のスイッチング素子と、を備え、通常動作する際に前記n個のスイッチング素子がオフされると共に前記第1の入力端子に電源電圧が供給された状態で前記第2の入力端子にクロック信号が入力されると共に前記第3の入力端子に前記クロック信号を反転させた反転クロック信号が入力されるよう前記入力信号供給回路と前記n個のスイッチング素子とを制御するチャージポンプの電圧特性を調整する電圧特性調整方法であって、
 前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に所定の低電圧の電圧が入力されると共に前記n個のスイッチング素子のうち隣り合う二つのスイッチング素子をオンし残余のスイッチング素子をオフした状態で、前記オンしている二つのスイッチング素子に接続された制御用端子のうち一方の制御用端子に前記所定の低電圧以下の電圧が印加されると共に前記オンしている二つのスイッチング素子に接続された制御用端子のうち他方の制御用端子に前記所定の低電圧より高い所定の高電圧が印加されるよう前記入力信号供給回路と前記制御用電圧供給回路と前記n個のスイッチング素子とを制御する、
 ことを特徴する。
 この本発明のチャージポンプの電圧特性調整方法では、第1の入力端子および第2の入力端子および第3の入力端子に所定の低電圧の電圧が入力されると共にn個のスイッチング素子のうち隣り合う二つのスイッチング素子をオンし残余のスイッチング素子をオフした状態で、オンしている二つのスイッチング素子に接続された制御用端子のうち一方の制御用端子に所定の低電圧以下の電圧が印加されると共にオンしている二つのスイッチング素子に接続された制御用端子のうち他方の制御用端子に所定の低電圧より高い所定の高電圧が印加されるよう入力信号供給回路と制御用電圧供給回路とn個のスイッチング素子とを制御する。これにより、オンしている二つのスイッチング素子に接続された多段トランジスタ回路の二つのトランジスタのうち多段トランジスタ回路の始端側のトランジスタについて、始端側のトランジスタの接続端子の電圧より終端側のトランジスタの接続端子の電圧が高いときの閾値電圧を始端側のトランジスタの接続端子の電圧より終端側のトランジスタの接続端子の電圧が低いときの閾値電圧より低くすることができる。こうしたトランジスタの状態は、第1の入力端子,第2の入力端子,第3の入力端子への電圧の供給を中断した後も維持されるため、第1の入力端子の電圧を昇圧して出力端子から出力する際の多段トランジスタ回路を構成するトランジスタの昇圧効率の向上、すなわち、動作特性の向上を図ることができる。
 本発明の半導体記憶装置の電圧特性調整方法は、
 第1入力端子と第1出力端子とを有する第1インバータと前記第1出力端子に接続された第2入力端子と前記第1入力端子に接続された第2出力端子とを有する第2インバータと所定の絶縁性を有する第1ゲート絶縁層を有しソースまたはドレインの一方が前記第1インバータの第1出力端子に接続された第1パスゲートトランジスタと所定の絶縁性を有する第2ゲート絶縁層を有しソースまたはドレインの一方が前記第2インバータの出力端子に接続された第2パスゲートトランジスタとを有するn個(nは、2以上の整数)の半導体記憶素子と、前記n個の半導体記憶素子の前記第1パスゲートトランジスタのゲートおよび前記第2パスゲートトランジスタのゲートに接続されたn個のワード線と、前記第1パスゲートトランジスタのソースまたはドレインの他方に接続された第1ビット線と、前記第2パスゲートトランジスタのソースまたはドレインの他方に接続された第2ビット線と、を備える半導体記憶装置の電圧特性を調整する電圧特性調整方法であって、
 前記半導体記憶素子を通常動作させる際に電源電圧を印加する電源電圧印加点と前記半導体記憶素子の第1パスゲートトランジスタおよび前記第2パスゲートトランジスタに接続されているワード線と前記第1ビット線と前記第2ビット線との間のそれぞれの電圧差が、前記半導体記憶素子に通常データを書き込む際の前記電源電圧印加点と前記ワード線と前記二つのビット線との間の電圧差になるよう前記半導体素子の電源電圧印加点に印加する電圧と前記第1ビット線に印加する電圧と前記第2ビット線に印加する電圧と前記ワード線に印加する電圧とを調整する書き込み動作を前記n個の半導体記憶素子のうち少なくとも二つの半導体記憶素子に対して実行する第1ステップと、
 前記第1ステップが実行された後に、前記電源電圧印加点に前記半導体記憶素子を通常動作させる際に前記電源電圧印加点に印加する電圧である通常電源電圧より低い電圧が印加された状態で、前記ワード線に前記半導体記憶素子の第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオンする電圧である通常オン電圧が印加されるよう前記半導体素子の電源電圧印加点に印加する電圧と前記ワード線に印加する電圧とを調整する低電源電圧読み出し動作を前記少なくとも二つの半導体記憶素子に対して実行する第2ステップと、
 前記第2ステップが実行された後に、前記少なくとも二つの半導体記憶素子の電源電圧印加点に前記通常電源電圧より高い電圧が印加された状態で、前記少なくとも二つの半導体記憶素子の第1パスゲートトランジスタおよび第2パスゲートトランジスタに接続されているワード線に前記通常オン電圧以上前記通常電源電圧未満の電圧が印加されるよう前記少なくとも二つの半導体素子の電源電圧印加点に印加する電圧と前記少なくとも二つの半導体素子に接続されているワード線に印加する電圧とを調整する第3ステップと、
 を備えることを要旨とする。
 この本発明の半導体記憶装置の電圧特性調整方法では、半導体記憶素子を通常動作させる際に電源電圧を印加する電源電圧印加点と半導体記憶素子の第1パスゲートトランジスタおよび第2パスゲートトランジスタに接続されているワード線と第1ビット線と第2ビット線との間のそれぞれの電圧差が、半導体記憶素子に通常データを書き込む際の電源電圧印加点とワード線と第1ビット線と第2ビット線との間の電圧差になるよう半導体記憶素子の電源電圧印加点に印加する電圧と第1ビット線に印加する電圧と第2ビット線に印加する電圧とワード線に印加する電圧とを調整する書き込み動作をn個の半導体記憶素子のうち少なくとも二つの半導体記憶素子に対して実行する。これにより、n個の半導体記憶素子のうち少なくとも二つの半導体記憶素子に対して第1インバータの第1出力端子または第2インバータの第2出力端子の電圧を第1ビット線に印加する電圧および第2ビットに印加する電圧に対応した電圧にすることができる。そして、第1ステップが実行された後に、電源電圧印加点に半導体記憶素子を通常動作させる際に電源電圧印加点に印加する電圧である通常電源電圧より低い電圧が印加された状態で、ワード線に半導体記憶素子の第1パスゲートトランジスタおよび第2パスゲートトランジスタをオンする電圧である通常オン電圧が印加されるよう半導体記憶素子の電源電圧印加点に印加する電圧とワード線に印加する電圧とを調整する低電源電圧読み出し動作を少なくとも二つの半導体記憶素子に対して実行する。半導体記憶素子の第1インバータや第2インバータの電流駆動力に比して第1パスゲートトランジスタや第2パスゲートトランジスタの電流駆動力が高い場合、つまり、第1パスゲートトランジスタや第2パスゲートトランジスタの閾値電圧が低い場合、第2ステップを実行すると、第1インバータの第1出力端子の電圧および第2インバータの第2出力端子の電圧が第1ステップを実行した後のそれぞれの電圧と異なるものとなり、つまり、記憶しているデータが反転する。したがって、第1ステップ,第2ステップを順に実行することにより、少なくとも二つの半導体記憶素子のうち閾値電圧が低いパスゲートトランジスタを有する半導体記憶素子が記憶しているデータのみを反転させることができる。さらに、第2ステップが実行された後に、少なくとも二つの半導体記憶素子の電源電圧印加点に通常電源電圧より高い電圧が印加された状態で、少なくとも二つの半導体記憶素子の第1パスゲートトランジスタおよび第2パスゲートトランジスタに接続されているワード線に通常オン電圧以上通常電源電圧未満の電圧が印加されるよう少なくとも二つの半導体記憶素子の電源電圧印加点に印加する電圧と少なくとも二つの半導体記憶素子に接続されている少なくとも2個のワード線に印加する電圧とを調整する。これにより、記憶しているデータが反転している半導体記憶素子の第1インバータの第1出力端子および第2インバータの第2出力端子のうち電圧が高い方の出力端子に接続されたパスゲートトランジスタ(第1パスゲートトランジスタまたは第2パスゲートトランジスタ)の絶縁層に電子を注入して閾値電圧をより高くすることができる。これにより、半導体記憶装置の電圧特性を向上させることができる。
 こうした本発明の半導体記憶装置の電圧特性調整方法において、前記第1ステップの書き込み動作は、前記電源電圧印加点に前記通常電源電圧を印加すると共に前記ワード線に前記通常オン電圧を印加した状態で、前記半導体記憶素子を通常動作させる際に前記ビット線に印加する電圧である第1ビット電圧および該第1ビット電圧より低い第2ビット電圧のうち前記第1ビット電圧を前記第1ビット線および前記第2ビット線のうちの一方に印加すると共に前記第2ビット電圧を前記第1ビット線および前記第2ビット線のうちの他方に印加するよう前記半導体記憶素子の電源電圧印加点に印加する電圧と前記前記第1ビット線に印加する電圧と前記第2ビット線に印加する電圧と前記ワード線に印加する電圧とを調整する動作である、ものとすることもできる。この場合において、前記第3ステップが実行された後に、前記電源電圧印加点に前記通常電源電圧を印加すると共に前記ワード線に前記通常オン電圧を印加した状態で、前記第1ビット電圧を前記第1ビット線および前記第2ビット線のうちの他方に印加すると共に前記第2ビット電圧を前記第1ビット線および前記第2ビット線のうちの一方に印加するよう前記半導体記憶素子の電源電圧印加点に印加する電圧と前記前記第1ビット線に印加する電圧と前記第2ビット線に印加する電圧と前記ワード線に印加する電圧とを調整する第3ステップ実行後書き込み動作を前記n個の半導体記憶素子にうち少なくとも二つの半導体記憶素子に対して実行する第4ステップを備え、前記第4ステップを実行した後に前記第2ステップと前記第3ステップとを実行するものとすることもできる。こうすれば、第1パスゲートトランジスタまたは第2パスゲートトランジスタのどちらの閾値電圧が低いときでも、閾値電圧が低いトランジスタの絶縁層に電子を注入して閾値電圧をより高くすることができ、半導体記憶装置の電圧特性の向上を図ることができる。
 第1~第4ステップを実行する態様の本発明の半導体記憶装置の電圧特性調整方法において、前記第1ステップは、前記書き込み動作を前記n個の半導体記憶素子に実行するステップであり、前記第2ステップは、前記低電源電圧読み出し動作を前記n個の半導体記憶素子に実行するステップであり、前記第3ステップは、前記n個の半導体記憶素子の電源電圧印加点に前記通常電源電圧より高い電圧が印加された状態で、前記n個のワード線に前記通常オン電圧以上前記通常電源電圧未満の電圧が印加されるよう前記n個の半導体記憶素子の電源電圧印加点に印加する電圧と前記n個のワード線に印加する電圧とを調整するステップであり、前記第4ステップは、前記第3ステップ実行後書き込み動作を前記n個の半導体記憶素子に実行するステップであるものとすることもできる。こうすれば、n個の半導体記憶素子のうち第1パスゲートトランジスタ,第2パスゲートトランジスタの閾値電圧が低い半導体記憶素子の閾値電圧をより高くすることができ、半導体記憶装置の電圧特性の向上を図ることができる。
本発明の第1実施例としての電圧特性調整方法により電圧特性が調整されるメモリセル12を複数搭載したSRAM(Static Random Access Memory)10の構成の概略を示す説明図である。 メモリセル12の構成の概略を示す回路図である。 トランジスタNL,NR,パスゲートトランジスタPGL,PGRの構成の一例を示す説明図である。 トランジスタPL,PRの構成の一例を示す説明図である。 SRAM10の電圧特性を調整する電圧特性調整工程の一例を示す工程図である。 ステップS110の処理におけるパスゲートトランジスタPGRの状態を説明するための説明図である。 絶縁層22にホットエレクトロンが注入されたトランジスタのゲート電圧Vgとドレインからソースへ流れるドレイン電流Idと閾値電圧との関係を説明するための説明図である。 データの読み出し動作を実行している最中のメモリセル12の状態を説明するための説明図である。 データの書き込み動作を実行している最中のメモリセル12の状態を説明するための説明図である。 第2実施例のSRAM10の電圧特性を調整する電圧特性調整工程の一例を示す工程図である。 ステップS110Bの処理におけるパスゲートトランジスタPGLの状態を説明するための説明図である。 絶縁層22にホールが注入されたトランジスタのゲート電圧Vgとドレイン電流Idと閾値電圧との関係を説明するための説明図である。 第3実施例のSRAM10の電圧特性を調整する電圧特性調整工程の一例を示す工程図である。 変形例のSRAM210の構成の概略を示す説明図である。 変形例のメモリセル212の構成の概略を示す回路図である。 本発明の一実施例としてのチャージポンプ100の構成の概略を示す説明図である。 トランジスタTr1~Trnの構成の一例を示す説明図である。 チャージポンプ100の電圧特性を調整している際の様子を説明するための説明図である。 電圧特性を調整している際のトランジスタTr2の状態を説明するための説明図である。 絶縁層122にホールが注入されたトランジスタのゲート電圧Vgとドレインからソースへ流れるドレイン電流Idと閾値電圧との関係を示す説明図である。 ホールを注入したトランジスタTr2でクロック信号CLKが立ち上がっているときの様子を説明するための説明図である。 ホールを注入したトランジスタTr2でクロック信号CLKが立ち下がっているときの様子を説明するための説明図である。 変形例の電圧特性調整方法により電圧特性を調整している際のトランジスタTr2の状態を説明するための説明図である。 絶縁層122にホットエレクトロンが注入されたトランジスタのゲート電圧Vgとドレインからソースへ流れるドレイン電流Idと閾値電圧との関係を説明するための説明図である。 エレクトロンを注入したトランジスタTr2でクロック信号CLKが立ち上がっているときの様子を説明するための説明図である。 エレクトロンを注入したトランジスタTr2でクロック信号CLKが立ち下がっているときの様子を説明するための説明図である。 本発明の第4実施例としての電圧特性調整方法により電圧特性が調整されるメモリセル12を複数搭載したSRAM410の構成の概略を示す説明図である。 SRAM410の要部の構成の概略を説明する説明図である。 SRAM410の電圧特性を調整する電圧特性調整工程の一例を示す工程図である。 ステップS220の処理を実行している最中のバイアス条件とSRAM410を流れる電流の一例を示す説明図である。
 次に、本発明を実施するための形態を実施例を用いて説明する。
 図1は、本発明の第1実施例としての電圧特性調整方法により電圧特性が調整されるメモリセル12を複数搭載したSRAM(Static Random Access Memory)10の構成の概略を示す説明図である。SRAM10は、マトリックス状に配置された複数のワード線WLと複数のビット線BLL,BLRに接続された複数のメモリセル12と、行アドレス信号が与えられたときに与えられた行アドレス信号に対応するワード線WLを選択する行デコーダ14と、列アドレス信号が与えられたときに与えられた列アドレス信号に対応する1組のビット線BLL,BLRを選択する列デコーダ16と、メモリセル12からビット線BLL,BLRに出力された信号を増幅する複数のセンスアンプ18と、選択されたビット線BLL,BLRとデータが入出力される図示しないデータ線とを接続する列選択回路19と、を備える。各メモリセル12については、行方向に配置された複数のメモリセル12が同一のワード線WLに接続され、列方向に配置された複数のメモリセル12が1組のビット線BLL,BLRに接続されている。
 図2は、メモリセル12の構成の概略を示す回路図である。メモリセル12は、入力端子INLにゲート同士が接続されると共に出力端子OUTLにドレイン同士が接続されたpチャネルMOSトランジスタPL,nチャネルMOSトランジスタNL(以下、トランジスタPL,NLという)を有するインバータINVLと、入力端子INRにゲート同士が接続されると共に出力端子OUTRにドレイン同士が接続されたpチャネルMOSトランジスタPR,nチャネルMOSトランジスタNR(以下、トランジスタPR,NRという)を有し入力端子INRがインバータINVLの出力端子OUTLに接続されると共に出力端子OUTRがインバータINVLの入力端子INLに接続されたインバータINVRと、ゲートがワード線WLに接続されオンしたときにビット線BLLと出力端子OUTLとを電気的に接続しオフしたときにビット線BLLと出力端子OUTLとの電気的な接続を解除するnチャネルMOSトランジスタPGL(以下、パスゲートトランジスタPGLという)と、ゲートがワード線WLに接続されオンしたときにビット線BLRを出力端子OUTRと電気的に接続しオフしたときにビット線BLRと出力端子OUTRとの電気的な接続を解除するnチャネルMOSトランジスタPGR(以下、パスゲートトランジスタPGRという)とから構成されている。インバータINVL,INVRでは、トランジスタPL,PRはソースが通常動作する際に電源電圧が印加される電源電圧印加点Vddに接続されており、トランジスタNL,NRはソースが通常動作する際に接地電圧Vssが印加される接地電圧印加点Vssに接続されている。
 ここで、インバータINVL,INVRを構成するトランジスタPL,PR,NL,NR,パスゲートトランジスタPGL,PGRの構造について説明する。トランジスタNL,NR,パスゲートトランジスタPGL,PGRは、図3に示すように、周知のnチャネルMOSトランジスタとして構成されており、導電型がp型となるよう調整されたシリコン(Si)などの半導体材料により形成された半導体基板20上に二酸化シリコン(SiO2)などの絶縁性能が高い材料により形成された絶縁層22と、絶縁層22上に形成されポリシリコンなどの金属材料により形成されゲートとなるゲート電極24と、半導体基板20の絶縁層22の下方の領域を挟むように半導体基板20に形成されソースまたはドレインとして機能する導電型がn型の二つの拡散層26,28とを備える。また、トランジスタPL,PRは、図4に示すように、周知のpチャネルMOSトランジスタとして構成されており、半導体基板20に形成された導電型がn型となるよう調整されたウェル30上に二酸化シリコン(SiO2)などの絶縁性能が高い材料により形成された絶縁層32と、絶縁層32上に形成されポリシリコンなどの金属材料により形成されゲートとなるゲート電極34と、ウェル30の絶縁層32の下方の領域を挟むようにウェル30に形成されソースまたはドレインとして機能する導電型がp型の拡散層36,38とを備える。トランジスタPL,PR,NL,NR,パスゲートトランジスタPGL,PGRは、同一の半導体基板20上に形成されており、トランジスタPL,PRとトランジスタNL,NR,パスゲートトランジスタPGL,PGRとの間は、図示しない絶縁性能が高い酸化膜などで素子分離されている。
 こうして構成されたSRAM10では、ウェル30が電源電圧印加点Vddに接続されており、電源電圧印加点Vddに印加する電圧を電圧Vdd,接地電圧印加点Vssに印加する電圧を接地電圧Vss,半導体基板20に印加する電圧を基板電圧Vsubとすると、基本的には、電圧Vddが値V1(例えば、1.0V),接地電圧Vssが0V,基板電圧Vsubが0Vになるよう電源電圧印加点Vddや接地電圧印加点Vss,半導体基板20に電圧に印加される。こうした電圧の印加は、全てのメモリセル12に対して一括して行なわれる。そして、メモリセル12では、電源電圧印加点Vddや接地電圧印加点Vss,半導体基板20に上述の電圧を印加した状態で、データの書き込み動作や読み出し動作,データ保持動作などにより、出力端子OUTLが電圧の高い状態(以下、Hレベルという)のときには出力端子OUTRが電圧の低い状態(以下、Lレベルという)となり、出力端子OUTLがLレベルのときには出力端子OUTRがHレベルとなる双安定状態を持つ回路として機能する。なお、出力端子OUTL,OUTRの電圧が、HレベルからLレベルに変化したり、LレベルからHレベルに変化することを「レベルが反転する」というものとした。
 SRAM10へのデータの書き込み動作は、具体的には、行アドレス信号,列アドレス信号など動作に必要な信号が与えられると共にビット線BLL,BLRの電圧(以下、ビット線電圧Vbll,Vblrという)が書き込むべきデータに対応する電圧にされると、行アドレス信号に基づいて行デコーダ14により1本のワード線WLが選択されてワード線WLの電圧(以下、ワード線電圧Vwlという)が値V1となると共に入力された列アドレス信号に基づいて列デコーダ16により1組のビット線BLL,BLRが選択され、選択されたワード線WL,ビット線BLL,BLRに接続されたメモリセル12において出力端子OUTL,OUTRの電圧をビット線BLL,BLRに対応する電圧にすることで行なわれる。また、SRAM10からのデータの読み出し動作は、行アドレス信号,列アドレス信号など動作に必要な信号が与えられると共にビット線BLL,BLRを電源電圧印加点Vddに印加する電圧Vdd(値V1)にプリチャージした状態で電気的に浮遊状態にすると、行デコーダ14,列デコーダ16により選択されたワード線WL,ビット線BLL,BLRに接続されたメモリセル12において出力端子OUTL,VRの電圧差に対応して生じるビット線BLL,BLRの電圧差をデータとして読み出すことで行なわれる。さらに、データ保持動作は、全てのワード線WL,ビット線BLL,BLRを非選択状態にしてパスゲートトランジスタPGL,PGRがオフしてメモリセル12の出力端子OUTL,OUTRの電圧をデータとして保持することで行なわれる。
 続いて、こうして構成されたSRAM10電圧特性を調整する方法について説明する。図5は、SRAM10の電圧特性を調整する電圧特性調整工程の一例を示す工程図である。この工程は、メモリセル12の接地電圧印加点Vssを0Vに固定した状態で行なわれる。
 最初に、SRAM10の選択された1本のワード線WLに接続された複数のメモリセル12に対して、電圧Vddが値V1,基板電圧Vsubが0V,ワード線電圧Vwlが値V1,ビット線電圧Vbllが0V,ビット線電圧Vblrが値V1となるようメモリセル12の電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加する(ステップS100)。こうした処理により、複数のメモリセル12の出力端子OUTLをLレベルにすると共に出力端子OUTRをHレベルにすることができ、複数のメモリセル12に一括してデータを書き込むことができる。
 続いて、電圧Vddが値V1より高い値V1h(例えば、3.0V),基板電圧Vsubが0Vより低い値Vsub1(例えば、-4.0V),ステップS100の処理で選択したワード線WLのワード線電圧Vwlが値V1,ビット線電圧Vbllおよびビット線電圧Vblrが0Vとなるよう複数のメモリセルの電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加する(ステップS110)。このように、電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加する理由を以下に説明する。
 図6は、ステップS110の処理におけるパスゲートトランジスタPGRの状態を説明するための説明図である。パスゲートトランジスタPGRでは、図示するように、ドレインに印加されている電圧からソースに印加されている電圧を減じたドレイン電圧Vdが通常より高くなっているため、半導体基板20のドレイン近傍で衝突電離(Impact Ionization)によりホットエレクトロンが生じ、ゲートに印加されている電圧からソースに印加されている電圧を減じた電圧がゲート電圧Vgがドレイン電圧Vdより低いため生じたエレクトロンが絶縁層22のドレイン端近傍の位置に注入される。絶縁層22にホットエレクトロンが注入されたトランジスタのゲート電圧Vgとドレインからソースへ流れるドレイン電流Idと閾値電圧との関係を図7に示す。こうしたトランジスタでは、図示するように、二つの拡散層26,28のうちホットエレクトロンが注入された絶縁層22のエレクトロン注入領域に隣接する拡散層をソースにした場合の閾値電圧Vth_sが二つの拡散層26,28のうちエレクトロン注入領域に隣接する拡散層をドレインにした場合より閾値電圧Vth_dより高くなり、閾値電圧Vth_s,Vth_dは、いずれも絶縁層22にホットエレクトロンを注入しない場合の閾値電圧Vthより高くなる。したがって、ステップS110の処理により、ワード線WLのワード線電圧Vwlが値V1とした状態で、電圧Vddを値V1h,ビット線電圧Vblrを0Vとすることにより、電源電圧印加点Vddとビット線BLRとの間の電圧差を通常の電圧差V1より高い電圧差V1hとすると共にワード線WLとビット線BLRとの間の電圧差を電圧V1hより小さい通常の電圧差V1となり、パスゲートトランジスタPGRのソースまたはドレインとなる二つの拡散層のうちインバータINVRの出力端子OUTRに接続されているほうの拡散層近傍の絶縁層22にホットエレクトロンが注入される。これにより、パスゲートトランジスタPGRにおいて、ビット線BLRに接続されている拡散層をドレインとした場合の閾値電圧のほうがビット線BLRに接続されている拡散層をソースとした場合の閾値電圧より高くなる。したがって、値V1hは、電源電圧印加点Vddとビット線BLRとの間の電圧差によりインバータINVRの出力端子OUTRに接続されているほうの拡散層近傍の絶縁層22にホットエレクトロンを注入可能な電圧として予め実験や解析などにより求めた電圧を用いるものとした。
 ここで、メモリセル12におけるデータの読み出し動作を考えると、読み出し時はビット線BLL,BLRの電圧が値V1にプリチャージされた状態で浮遊させた後にパスゲートトランジスタPGL,PGRをオンするが、インバータINVLの出力端子OUTLがHレベル,インバータINVRの出力端子OUTRがLレベルのデータを保持している場合には、図8に示すように、ビット線BLRに接続されている拡散層がドレインとなり、ビット線BLRから出力端子OUTRに電流が流れる。このとき、パスゲートトランジスタPGRの閾値電圧が低いとビット線BLRから出力端子OUTRにより多くの電流が流れて出力端子OUTRの電圧がLレベルからHレベルに反転しやすい状態となるため、パスゲートトランジスタPGRの閾値電圧はより高いほうが出力端子OUTRの電圧が反転しづらくなり読み出し特性が向上する。また、データ書き込み動作を考えると、出力端子OUTLがLレベル,出力端子OUTRがHレベルの状態を出力端子OUTLがHレベル,出力端子OUTRがLレベルの状態にしてデータを反転させる場合、すなわち、ビット線BLRに接続されている拡散層をソースにする場合には、図9に示すように、出力端子OUTRからビット線BLRに電流を流して出力端子OUTRを素早くLレベルに引き下げる必要があるため、パスゲートトランジスタPGRの閾値電圧はより低いほうが出力端子OUTRの電圧を素早く反転させることができ、書き込み特性が向上する。上述したように、ステップS110の処理を実行すると、パスゲートトランジスタPGRにおいて、ビット線BLRに接続されている拡散層をドレインとした場合の閾値電圧のほうがビット線BLRに接続されている拡散層をソースとした場合の閾値電圧より高くなるから、絶縁層22にエレクトロンを注入しない場合に比してデータの読み出し特性の向上を図ることができる。このとき、ビット線BLRに接続されている拡散層をソースにした場合の閾値電圧Vth_dは、エレクトロンを注入する前の閾値電圧Vthよりさほど高くならないから、データの書き込み特性を顕著に劣化させることなく、読み出し特性を向上させることができる。これにより、メモリセル12の動作特性の向上を図ることができる。このように、電源電圧印加点Vddとビット線BLRとの間の電圧差を通常の電圧差V1より高い電圧差V1hとすると共にワード線WLとビット線BLRとの間の電圧差を電圧V1hより小さい通常の電圧差V1とすることにより、メモリセル12の動作特性の向上を図ることができる。ステップS110の処理では、電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに印加する電圧を調整するだけでメモリセル12のデータの読み出し特性や書き込み特性を向上させることができるから、メモリセル12に不純物をドーピングする工程などを追加するものに比して簡易な方法でメモリセル12の動作特性の向上を図ることができる。また、ステップS110の処理は、複数のメモリセル12に対して1度で実行することができるから、より簡易な方法でSRAM10全体についてデータの読み出し特性を向上させることができる。また、基板電圧Vsubを通常動作する際に印加する電圧である0Vより低くしているから、出力端子OUTRの電圧をより高くすることができ、絶縁層22へのホットエレクトロンの注入量をより多くすることができ、ビット線BLRに接続されている拡散層をドレインとした場合の閾値電圧をより高くすることができる。さらに、ステップS110の処理を実行する前に、ステップS100の処理を実行することにより、パスゲートトランジスタPGL,PGRのうちいずれの絶縁層にエレクトロンを注入するか選択することができ、より適正に動作特性の向上を図ることができる。
 続いて、ステップS100,S110の処理で選択されたメモリセル12に対して、電圧Vddが値V1,基板電圧Vsubが0V,ワード線電圧Vwlが値V1,ビット線電圧Vbllが値V1,ビット線電圧Vblrが0Vとなるようメモリセルの電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加して、複数のメモリセル12の出力端子OUTLをHレベルにすると共に出力端子OUTRをLレベルにして複数のメモリセル12に一括してデータを書き込み(ステップS120)、その後、ステップS110の処理と同じ処理であるステップS130の処理を実行する。こうした処理により、パスゲートトランジスタPGLのソースまたはドレインとなる二つの拡散層のうち、インバータINVLの出力端子OUTLに接続されているほうの拡散層近傍の絶縁層22にホットエレクトロンを注入することができ、パスゲートトランジスタPGLにおいて、ビット線BLLに接続されている拡散層をドレインとした場合の閾値電圧をビット線BLLに接続されている拡散層をソースとした場合の閾値電圧より高くすることができ、メモリセル12の読み出し特性の向上を図ることができる。また、ビット線BLLに接続されている拡散層をドレインとした場合の閾値電圧をビット線BLLに接続されている拡散層をソースとした場合の閾値電圧より高くすることができるから、データの書き込み動作や読み出し動作の際に1本のワード線WLが選択されるとワード線WLに接続された全てのメモリセル12のパスゲートトランジスタPGL,PGRがオンになるために列データ16により選択されていないビット線BLL,BLRに接続されているメモリセル12において記憶されているデータが反転する現象であるハーフセレクトディスターブが生じることを抑制することができる。
 以上説明した第1実施例のSRAM10の電圧特性調整方法によれば、電源電圧印加点Vddとビット線BLRとの間の電圧差を通常の電圧差V1より高い電圧差V1hとすると共にワード線WLとビット線BLRとの間の電圧差を電圧V1hより小さい通常の電圧差V1とすることにより、より簡易な方法でメモリセル12の動作特性の向上を図ることができる。また、基板電圧Vsubを通常動作する際に印加する電圧である0Vより低くしているから、出力端子OUTRの電圧をより高くすることができ、絶縁層22へのホットエレクトロンの注入量をより多くすることができ、ビット線BLRに接続されている拡散層をドレインとした場合の閾値電圧をより高くすることができる。さらに、ステップS110の処理を実行する前に、ステップS100の処理を実行することにより、パスゲートトランジスタPGL,PGRのうちいずれの絶縁層にエレクトロンを注入するか選択することができ、より適正に動作特性の向上を図ることができる。
 第1実施例のSRAM10の電圧特性調整方法では、ステップS100,S110の処理で、基板電圧Vsubを0Vより小さい値Vsub1(例えば、-4.0V)にするものとしたが、基板電圧Vsubは、ビット線BLL,BLRに印加している電圧以下の電圧にすればよく、例えば、0Vに設定するものとしてもよい。
 第1実施例のSRAM10の電圧特性調整方法では、ステップS100,S110の処理を実行してパスゲートトランジスタPGRの閾値電圧を調整した後に、ステップS120,S130を実行してパスゲートトランジスタPGLの閾値電圧を調整したが、ステップS120,S130の処理を実行せずにステップS100,S110の処理のみを実行してパスゲートトランジスタPGRの閾値電圧のみ調整するものしてもよいし、ステップS100,S110の処理を実行せずにステップS120,S130の処理のみを実行してパスゲートトランジスタPGLの閾値電圧のみ調整するものしてもよい。また、ステップS100,S120,S130の処理を実行せずにステップS110の処理だけを実行してもよい。この場合、パスゲートトランジスタPGL,PGRのうちどちらの絶縁層にエレクトロンを注入するかを選択することができないが、パスゲートトランジスタPGL,PGRのうちの一方の絶縁層にはエレクトロンを注入することができるから、動作特性の向上を図ることができる。
 次に、本発明の第2実施例としてのSRAM10の電圧特性を調整する電圧特性調整方法について説明する。第2実施例の電圧特性調整工程は、図5に示した電圧特性調整工程とステップS110,S130の工程に代えてステップS110B,S130Bの工程を実行する点を除いて同一であるため、同一の工程には同一の符号を付し、その説明を省略する。
 図10は、第2実施例のSRAM10の電圧特性を調整する電圧特性調整工程の一例を示す工程図である。この工程では、まず、ステップS100の処理を実行して選択したワード線WLに接続されているメモリセル12の出力端子OUTLをLレベルにすると共に出力端子OUTRをHレベルにし、その後、電圧Vddが値V1,基板電圧Vsubが0V,ワード線電圧Vwlがワード線WLを通常オフする際のオフ電圧より低い値Vwll(例えば、-0.5Vなど),ビット線電圧Vbllおよびビット線電圧Vblrが値V4(例えば、2.5V)となるようSRAM10の選択されたワード線WLに接続されているメモリセル12の電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加する(ステップS110B)。このように、電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加する理由は、以下の通りである。
 図11は、ステップS110Bの処理におけるパスゲートトランジスタPGLの状態を説明するための説明図である。パスゲートトランジスタPGLでは、図示するように、ドレインとソースとの間の電圧差が比較的大きく、ゲートに印加されている電圧に対してドレインに印加されている電圧が高くなっているため、トランジスタがオフ状態している状態でゲート下のドレイン端に高い電界がかかることによりドレイン近傍で生じるGIDL(Gate Induced Drain Leakage)電流で、ホールが絶縁層22のドレイン端近傍の位置に注入される。絶縁層22にホールが注入されたトランジスタのゲート電圧Vgとドレイン電流Idと閾値電圧との関係を図12に示す。こうしたトランジスタでは、図示するように、二つの拡散層26,28のうちホールが注入された絶縁層22のホール注入領域に隣接する拡散層をソースにした場合の閾値電圧Vth_sのほうが二つの拡散層26,28のうちホール注入領域に隣接する拡散層をドレインにした場合の閾値電圧Vth_dより低くなり、閾値電圧Vth_s,Vth_dは、いずれも絶縁層22にホールを注入しない場合の閾値電圧Vthより低くなる。ステップS110Bの処理により、ワード線WLのワード線電圧Vwlが値Vwllとした状態で、電圧Vddを値V1,ビット線電圧Vbllを値V4とすることにより、電源電圧印加点Vddとビット線BLL,BLRとの間の電圧差を通常の電圧差V1より高い電圧差V4とすると共にワード線WLとビット線BLRとの間の電圧差を通常の電圧差V1より大きい電圧差(V1+Vwll)とすることにより、パスゲートトランジスタPGLのソースまたはドレインとなる二つの拡散層のうちビット線BLLに接続されているほうの拡散層近傍の絶縁層22にホールを注入する。これにより、パスゲートトランジスタPGLにおいて、ビット線BLLに接続されている拡散層をソースとした場合の閾値電圧をビット線BLLに接続されている拡散層をドレインとした場合の閾値電圧より低くすることができる。上述したように、パスゲートトランジスタPGLの閾値電圧がより低いほうが出力端子OUTLの電圧を素早く反転させることができ、書き込み特性が向上するから、ステップS110Bの処理を実行することにより、書き込み特性の向上を図ることができる。このとき、ビット線BLLに接続されている拡散層をドレインにした場合の閾値電圧Vth_dは、エレクトロンを注入する前の閾値電圧Vthよりさほど低くならないから、データの読み出し特性を顕著に劣化させることなく、書き込み特性を向上させることができる。そして、電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに印加する電圧を調整するだけでメモリセル12のデータの書き込み特性を向上させることができるから、メモリセル12に不純物をドーピングする工程などを追加するものに比して簡易な方法でメモリセル12のデータの書き込み特性を向上させることができる。
 続いて、ステップS100,S110Bの処理を行なったメモリセル12に対して、電圧Vddが値V1,基板電圧Vsubが0V,ワード線電圧Vwlが値V1,ビット線電圧Vbllが値V1,ビット線電圧Vblrが0Vとなるようメモリセルの電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加して、メモリセル12の出力端子OUTLをHレベルにすると共に出力端子OUTRをLレベルにして(ステップS120)、ステップS110Bの処理と同じ処理であるステップS130Bの処理を実行する。こうした処理により、パスゲートトランジスタPGRのソースまたはドレインとなる二つの拡散層のうち、ビット線BLRに接続されているほうの拡散層近傍の絶縁層22にホールを注入することができ、パスゲートトランジスタPGRにおいて、ビット線BLRに接続されている拡散層をソースとした場合の閾値電圧をビット線BLRに接続されている拡散層をドレインとした場合の閾値電圧より低くすることができ、こうしたホールの注入を行なわないものに比して、メモリセル12の書き込み特性の向上を図ることができる。
 以上説明した第2実施例のSRAM10の電圧特性調整方法によれば、電源電圧印加点Vddとビット線BLL,BLRとの間の電圧差を通常の電圧差V1より高い電圧差V4とすると共にワード線WLとビット線BLL,BLRとの間の電圧差を通常の電圧差V1より大きい電圧差(V1+Vwll)とすることにより、より簡易な方法でメモリセル12の書き込み特性の向上を図ることができる。さらに、ステップS110Bの処理を実行する前に、ステップS100の処理を実行することにより、パスゲートトランジスタPGL,PGRのうちいずれの絶縁層にホールを注入するか選択することができ、より適正に動作特性の向上を図ることができる。
 第2実施例のSRAM10の電圧特性調整方法では、ステップS100,S110Bの処理を実行してパスゲートトランジスタPGRの閾値電圧を調整した後に、ステップS120,S130Bを実行してパスゲートトランジスタPGLの閾値電圧を調整したが、ステップS120,S130Bの処理を実行せずにステップS100,S110Bの処理のみを実行してパスゲートトランジスタPGRの閾値電圧のみ調整するものしてもよいし、ステップS100,S110Bの処理を実行せずにステップS120,S130Bの処理のみを実行してパスゲートトランジスタPGLの閾値電圧のみ調整するものしてもよい。また、ステップS100,S120B,S130の処理を実行せずにステップS110Bの処理だけを実行してもよい。この場合、パスゲートトランジスタPGL,PGRのうちどちらの絶縁層にホールを注入するかを選択することができないが、パスゲートトランジスタPGL,PGRのうちの一方の絶縁層にはホールを注入することができるから、動作特性の向上を図ることができる。
 第2実施例のSRAM10の電圧特性調整方法では、ステップS100~S130Bの処理を実行することによりパスゲートトランジスタPGRの閾値電圧を調整するものとしたが、ステップS100~S130Bの処理に代えて、電圧Vddが0V,基板電圧Vsubが0V,ワード線電圧Vwlが値Vwll(例えば、-0.5Vなど),ビット線電圧Vbllおよびビット線電圧Vblrが値V4(例えば、2.5V)となるよう電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加する処理を実行するものとしてもよい。こうすれば、パスゲートトランジスタPGL,PGRの双方にホールを注入することができるから、より簡易な方法でホールを注入することができ、SRAM10の動作特性の向上を図ることができる。
 次に、本発明の第3実施例としてのSRAM10の電圧特性を調整する方法について説明する。図13は、第3実施例のSRAM10の電圧特性を調整する電圧特性調整工程の一例を示す工程図である。この工程は、メモリセル12の接地電圧印加点Vssを0Vに固定した状態で行なわれる。
 この工程では、最初に、選択した1本のワード線WLに接続された複数のメモリセル12に対して、基板電圧Vsub,ワード線電圧Vwl,ビット線電圧Vbll,Vblrが全て0Vとなるようメモリセル12の半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加した状態で、電圧Vddを0Vから値V1より低い値V2(例えば、0.6V)となるよう電源電圧印加点Vddに電圧を印加する(ステップS100C)。ここで、値V2は、電圧Vddを0Vから徐々に上げたときにトランジスタPL,PR,NL,NRの閾値電圧のばらつきにより出力端子OUTL,OUTRのレベルがHレベル,Lレベルのいずれかに固定される電圧として予め実験や解析などにより求めたものを用いるものとした。こうした処理により、トランジスタPL,PR,NL,NRのうち閾値電圧がより低いトランジスタが先にオンし、どのトランジスタが先にオンするかで出力端子OUTL,OUTRの電圧が決まる。例えば、トランジスタPR,NLの閾値電圧がトランジスタPL,NRより低いと、トランジスタPR,NLが先にオンとなりメモリセル12の出力端子OUTLがHレベル、出力端子OUTRがLレベルとなる。以下、説明のため、ステップS100Bの処理が実行された後は、メモリセル12の出力端子OUTLがHレベル、出力端子OUTRがLレベルとなっているものとする。このようにステップS100Bの処理を実行することにより、メモリセル12を構成するトランジスタPL,PR,NL,NRの閾値電圧のばらつきを反映したデータがメモリセル12に保持される。
 続いて、ワード線電圧Vwlおよび基板電圧Vsubを0Vにすると共に電源電圧印加点Vddの電圧Vddを値V2とし、ビット線電圧Vbll,Vblrが値V2になるようビット線BLL,BLRをプリチャージした後にビット線BLL,BLRを電気的に浮遊状態にし、その後、ワード線電圧Vwlが値V1となるようワード線WLに電圧を印加して、データの読み出しを実行し(ステップS105C)、図5に例示した電圧特性調整工程のステップS110の処理と同様に、1本のワード線WLに接続されている複数のメモリセル12について、電圧Vddが値V1h,基板電圧Vsubが0Vより低い値Vsub1,ワード線電圧Vwlが値V1,ビット線電圧Vbllおよびビット線電圧Vblrが0Vとなるようメモリセル12の電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加する(ステップS110)。ステップS105Cの処理を実行する理由は以下の通りである。例えば、パスゲートトランジスタPGRの閾値電圧とトランジスタPLの閾値電圧とトランジスタNRの閾値電圧がより低いと、データを読み出す際に、出力端子OUTLはLレベル,出力端子OUTRはHレベルになりやすい。したがって、ステップS105Cの読み出し動作を実行することにより、出力端子OUTL,OUTRのうち閾値電圧が低いパスゲートトランジスタPGRに接続されている出力端子の電圧をなるべくHレベルとするためである。こうした状態で、ステップS110を実行することにより、出力端子OUTL,OUTRのうちHレベルになっている出力端子に接続されたパスゲートトランジスタPGL,PGRにエレクトロンを注入するから、エレクトロンを注入されたパスゲートトランジスタのデータを読み出す際の閾値電圧を高くすることができる。これにより、メモリセル12における読み出し特性の向上を図ることができる。
 以上説明した第3実施例のSRAM10の電圧特性調整方法によれば、基板電圧Vsub,ワード線電圧Vwl,ビット線電圧Vbll,Vblrが全て0Vとなるようメモリセル12の半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加した状態で、電圧Vddを0Vから値V1より低い値V2となるよう電源電圧印加点Vddに電圧を印加し、その後、ワード線電圧Vwlが値V1となるようワード線WLに電圧を印加してデータの読み出しを実行し、さらに、その後に、電圧Vddが値V1h,基板電圧Vsubが0Vより低い値Vsub1,ワード線電圧Vwlが値V1,ビット線電圧Vbllおよびビット線電圧Vblrが0VとなるようSRAM10のメモリセルの電源電圧印加点Vddや半導体基板20,ワード線WL,ビット線BLL,BLRに電圧を印加することにより、メモリセル12のおける読み出し特性の向上を図ることができる。
 第3実施例のSRAM10の電圧特性調整方法では、ステップS105Cの処理とステップS110の処理とを1回ずつ実行するものとしたが、ステップS105Cの処理とステップS110の処理とを複数回に亘って実行するものとしてもよい。ステップS105Cの処理を実行する度に、パスゲートトランジスタPGL,PGRのうちデータの読み出し動作を実行する際に閾値電圧を高くすべきほうのパスゲートトランジスタに出力された出力端子の電圧がHレベルになって、その後のステップS110の処理で読み出し動作を実行する際に閾値電圧を高くすべきほうのパスゲートトランジスタにエレクトロンが注入されるから、一方のパスゲートトランジスタの閾値電圧のみが上がり過ぎるのを抑制することができる。
 第3実施例のSRAM10の電圧特性調整方法では、ステップS105Cの処理の後に図2に例示した電圧特性調整工程のステップS110の処理と同じ処理を実行するものとしたが、ステップS110の処理に代えて図10に例示した電圧特性調整工程のステップS110Bと同じ処理を実行するものとしてもよい。こうすれば、SRAM10の書き込み特性の向上を図ることができる。
 第1~第3実施例の電圧特性調整工程では、SRAM10の選択されたワード線WLに接続されたメモリセル12に対して一括して上述の電圧調整工程を行なうものとしたが、SRAM10の全てのメモリセル12に対して一括して行ってもよいし、SRAM10をいくつかのブロックに分けてブロック毎に行なうものとしてもよいし、全てのメモリセル12の一部のみについて上述の電圧特性調整工程を行なうものとしてもよい。
 第1~第3実施例では、本発明の電圧特性調整工程を図3,図4に例示した構造のトランジスタPL,PR,NL,NRから構成される回路に適用するものとしたが、トランジスタPL,PRが導電型がn型の半導体基板上に形成されてトランジスタNL,NRがn型の半導体基板に形成された導電型がp型のウェルに形成されているものに適用してもよい。
 第1~第3実施例では、SRAM10のメモリセル12をトランジスタPL,NLにより構成されるインバータINVLとトランジスタPR,NRにより構成されるインバータINVRとを有するものとしたが、インバータINVL,INVRの構成としては入力端子から入力された電圧の論理を反転させて出力端子から出力するものであれば如何なるものとしてもよく、例えば、トランジスタPL,PRに代えて比較的抵抗値の高い抵抗素子を用いるものとしてもよい。
 第1~第3実施例では、本発明の電圧特性調整方法をSRAM10に適用するものとしたが、図14に例示するように、複数のワード線WLおよびビット線BLL,BLRに加えて複数の読み出し用ワード線RWLと読み出し用ビット線RBLに接続された複数のメモリセル212と、行アドレス信号が与えられたときにワード線WLまたは読み出し用ワード線RWLを選択する行デコーダ214と、列アドレス信号が与えられたときに与えられた列アドレス信号に対応する1組のビット線BLL,BLRまたは1本の読み出し用ビット線RBLを選択する列デコーダ216と、メモリセル212から読み出し用ビット線RBLに出力された信号を増幅する複数のセンスアンプ218と、選択されたビット線BLL,BLR,読み出し用ビット線RBLとデータが入出力される図示しないデータ線とを接続する列選択回路219と、を備えるSRAM210に適用するものとしてもよい。ここで、メモリセル212の構成とSRAM210の動作について説明する。図15は、変形例のメモリセル212の構成の概略を示す回路図である。メモリセル212は、メモリセル12の構成に、さらに、入力端子INRにゲートが接続されソースが接地電圧印加点Vssに接続されたnチャネルMOSトランジスタRN(以下、トランジスタRNという)と、ゲートが読み出し用ワード線RWLに接続されソースが読み出し用ビット線RBLに接続されると共にドレインがトランジスタRNのドレインに接続されたnチャネルMOSトランジスタRPG(以下、読み出し用パスゲートトランジスタRPGという)と、を備える。こうして構成されたSRAM210では、データの書き込み動作については、全ての読み出し用ワード線RWLを非選択状態(電圧を0V)にして読み出し用パスゲートトランジスタRPGをオフした状態で上述のSRAM10と同様に行なわれる。また、データの読み出し動作については、全てのワード線WLを非選択状態にして、行デコーダ14,列デコーダ16により選択された読み出し用ワード線RWL,読み出し用ビット線RBLに接続されたメモリセル212において出力端子OUTLの電圧に対応して生じる読み出し用ビット線RBLの電圧をデータとして読み出すことで行なわれる。さらに、データ保持動作については、全てのワード線WL,読み出し用ワード線RWL,ビット線BLL,BLR,読み出し用ビット線RBLを非選択状態にしてパスゲートトランジスタPGL,PGR,読み出し用パスゲートトランジスタRPGをオフしてメモリセル12の出力端子OUTL,OUTRの電圧をデータとして保持することで行なわれる。こうしたSRAM210では、全ての読み出し用ビット線RBLを非選択状態にして図5,図10,図13に例示した電圧特性調整工程を実行することで、メモリセル212の動作特性の向上を図ることができる。
 図16は、本発明の一実施例としてのチャージポンプ100の構成の概略を示す説明図である。チャージポンプ100は、3つの入力端子IN1~IN3と、出力端子OUTと、n個のトランジスタTr1~Trnが直列接続されて構成された多段トランジスタ回路110と、多段トランジスタ回路110の各トランジスタTrのうち始端のトランジスタTr1を除くトランジスタTr2~Trnに接続される(n-1)個のキャパシタC1~Cn-1を有するキャパシタ回路130と、多段トランジスタ回路110のトランジスタTr1~Trnに接続されたn個のスイッチSW1~SWnと、スイッチSW1~Swnに接続されたn個の制御用端子Tv1~Tvnのそれぞれに電圧を供給する制御用電圧供給回路140と、3つの入力端子IN1~IN3に個別に電圧またはクロック信号を供給すると共にスイッチSW1~SWnのオンオフの制御と制御用電圧供給回路140から制御用端子Tv1~Tvnへ供給される電圧の制御とを実行する制御回路150と、を備える。
 多段トランジスタ回路110のトランジスタTr1~Trnは、ソースおよびドレインのうちの一方とゲートとが接続された接続端子Tcをそれぞれ有し、ソースおよびドレインの他方と隣接するトランジスタの接続端子Tcとが接続されることにより互いに直列に接続されており、始端のトランジスタTr1の接続端子Tcは入力端子IN1に接続されており、終端のトランジスタTrnのソースは出力端子OUTに接続されている。トランジスタTr1~Trnは、図17に示すように、周知のnチャネルMOSトランジスタとして構成されており、導電型がp型となるよう調整されたシリコン(Si)などの半導体材料により形成された半導体基板120上に二酸化シリコン(SiO2)などの絶縁性能が高い材料により形成された絶縁層122と、絶縁層122上に形成されポリシリコンなどの金属材料により形成されたゲート電極124と、半導体基板120の絶縁層122の下方の領域を挟むように半導体基板120に形成されソースまたはドレインとして機能する導電型がn型の二つの拡散層126,128とから構成されている。
 キャパシタ回路130のキャパシタC1~Cn-1は、トランジスタTr1~Trnのうち始端のトランジスタTr1を除くトランジスタTr2~Trnの接続端子Tcと入力端子IN2または入力端子IN3との間に接続されており、入力端子IN2に接続されているキャパシタの隣のキャパシタは入力端子IN3に接続されるよう、交互に入力端子IN2,IN3のいずれかに接続されている。
 スイッチSW1~SWnは、制御用端子Tv1~Tvnから多段トランジスタ回路110のトランジスタTr1~Trnの各接続端子Tcおよびゲートへの電圧の供給をオンオフするよう制御用端子Tv1~TvnとトランジスタTr1~Trnの各接続端子Tcおよびゲートとの間に接続されている。
 こうして構成されたチャージポンプ100では、通常動作する際には、スイッチSW1~SWnの全てがオフされると共に制御回路150から入力端子IN1に電源電圧Vdd(例えば、3Vなど)が供給された状態で入力端子IN2へクロック信号CLKが入力されると共に入力端子IN3へクロック信号CLKの電圧の論理を反転させた反転クロック信号CLKBが入力されると、入力端子INからの電源電圧Vddを予め定められた所定電圧(例えば、20Vなど)まで昇圧して出力端子OUTから出力する。
 続いて、こうして構成されたチャージポンプ100の電圧特性を調整する方法について説明する。図18は、チャージポンプ100の電圧特性を調整している際の様子を説明するための説明図である。チャージポンプ100の電圧特性を調整する際には、制御回路150は、制御回路150から入力端子IN1~IN2を0Vにした状態でn個のスイッチSW1~SWnのうち隣り合う二つのスイッチが順次オンするようスイッチSW1~SWnを制御し(例えば、スイッチSW1およびスイッチSW2,スイッチSW2およびスイッチSW3,スイッチSW3とスイッチSW4など)、オンしている二つのスイッチに接続されている制御用端子のうち多段トランジスタ回路110の始端のトランジスタTr1側の制御用端子(例えば、スイッチSW2およびスイッチSW3がオンしているときには制御用端子Tv2)に値V5の電圧が印加されると共に多段トランジスタ回路110の終端のトランジスタTrn側の制御用端子(例えば、スイッチSW2およびスイッチSW3がオンしているときには制御用端子Tv3)に電源電圧Vddより高い所定高電圧VH(例えば、2.0V)が印加されるよう制御用電圧供給回路140を制御する。ここで、こうした電圧を印加する理由について説明する。
 図19は、図18のトランジスタTr2の状態を説明するための説明図である。トランジスタTr2では、図示するように、ゲートに印加されている電圧に対してドレインに印加されている電圧が高くなっているため、トランジスタがオフ状態している状態でゲート下のドレイン端に高い電界がかかることによりドレイン近傍で生じるGIDL(Gate Induced Drain Leakage)電流で、ホールが絶縁層122のドレイン端近傍の位置に注入される。このように絶縁層122にホールが注入されたトランジスタのゲート電圧Vgとドレインからソースへ流れるドレイン電流Idと閾値電圧との関係を図20に示す。こうしたトランジスタでは、図示するように、二つの拡散層126,128のうちホールが注入された絶縁層122のホール注入領域に隣接する拡散層をソースにした場合の閾値電圧Vth_sのほうが二つの拡散層126,128のうちホール注入領域に隣接する拡散層をドレインにした場合より閾値電圧Vth_dより低くなり、閾値電圧Vth_s,Vth_sは、いずれも絶縁層122にホールを注入しない場合の閾値電圧より低くなる。つまり、トランジスタTr2のソースまたはドレインとなる二つの拡散層のうち、トランジスタTr3の接続端子Tcに接続されているほうの拡散層近傍の絶縁層122にホールが注入されるため、トランジスタTr2において、トランジスタTr3の接続端子Tcに接続されている拡散層をソースとした場合の閾値電圧のほうがトランジスタTr3の接続端子Tcに接続されている拡散層をドレインとした場合の閾値電圧より低くなる。図21,図22は、こうしてホールを注入したトランジスタTr2で昇圧動作を行なっているときの様子を説明するための説明図である。クロック信号CLKが立ち上がると、トランジスタTr2からトランジスタTr3に向かう方向に電流が流れてキャパシタC2を充電する。このとき、トランジスタTr2において、トランジスタTr3の接続端子Tcに接続されている拡散層がソースとなるため、トランジスタTr2にホールを注入しない場合に比してトランジスタTr2の閾値電圧が低くなりトランジスタTr2に流れる電流が大きくなり、キャパシタC2の充電が促進されてトランジスタTr3の接続端子Tcの電圧がより大きく上昇する。すなわち、1回のクロック信号CLKの立ち上がりでトランジスタTr3の接続端子Tcの電圧をより大きく昇圧することができる。クロック信号CLKが立ち下がると、図22に例示するように、トランジスタTr2の接続端子Tcの電圧が下がり、トランジスタTr2の接続端子Tcに接続されている拡散層がソースとなるため、クロック信号CLKが立ち上がっている場合よりトランジスタTr2の閾値電圧が高くなりトランジスタTr2を流れる電流が小さくなり、キャパシタC2の放電が抑制されてトランジスタTr3の接続端子Tcの電圧の降下が抑制される。すなわち、1回のクロック信号CLKの立ち下がりによる昇圧後のトランジスタTr3の接続端子Tcの電圧降下が抑制される。すなわち、チャージポンプ100の昇圧効率の向上、すなわち、動作特性の向上を図ることができる。このように、入力端子IN1~IN2を0Vにした状態でn個のスイッチSW1~SWnのうち隣り合う二つのスイッチが順次オンするようスイッチSW1~SWnを制御すると共にオンしている二つのスイッチに接続されている制御用端子のうち多段トランジスタ回路110の始端のトランジスタTr1側の制御用端子に値V5の電圧が印加されると共に多段トランジスタ回路110の終端のトランジスタTrn側の制御用端子に電源電圧Vddより高い所定高電圧VHが印加されるよう制御用電圧供給回路140を制御してチャージポンプ100の電圧特性を調整することにより、チャージポンプ100の動作特性の向上を図ることができる。
 以上説明した本発明の実施例のチャージポンプ100によれば、入力端子IN1~IN2を0Vにした状態でn個のスイッチSW1~SWnのうち隣り合う二つのスイッチがオンするようスイッチSW1~SWnを制御し、オンしている二つのスイッチに接続されている制御用端子のうち多段トランジスタ回路110の始端のトランジスタTr1側の制御用端子に値V5の電圧が印加されると共に多段トランジスタ回路110の終端のトランジスタTrn側の制御用端子に電源電圧Vddより高い所定高電圧VHが印加されるよう制御用電圧供給回路140を制御することにより、チャージポンプ100の電圧特性の向上を図ることができ、チャージポンプ100の動作特性の向上を図ることができる。
 実施例のチャージポンプ100では、チャージポンプの電圧特性を調整する際に、入力端子IN1~IN2を0Vにした状態でn個のスイッチSW1~SWnのうち隣り合う二つのスイッチがオンするようスイッチSW1~SWnを制御し、オンしている二つのスイッチに接続されている制御用端子のうち多段トランジスタ回路110の始端のトランジスタTr1側の制御用端子に値V5の電圧が印加されると共に多段トランジスタ回路110の終端のトランジスタTrn側の制御用端子に電源電圧Vddより高い所定高電圧VHが印加されるよう制御用電圧供給回路140を制御するものとしたが、オンしている二つのスイッチに接続されている制御用端子のうち多段トランジスタ回路110の始端のトランジスタTr1側の制御用端子に電源電圧Vddより高い所定高電圧VHが印加されると共に多段トランジスタ回路110の終端のトランジスタTrn側の制御用端子に値V5の電圧が印加されるよう制御用電圧供給回路140を制御するものとしてもよい。図23は、図18において、制御用端子Tv2に所定高電圧VHを供給すると共に制御用端子Tv3に値V5の電圧を供給したときのトランジスタTr2の状態を説明するための説明図である。トランジスタTr2では、図示するように、ドレインに印加されている電圧からソースに印加されている電圧を減じたドレイン電圧Vdが高くなっているため、半導体基板20のドレイン近傍で衝突電離(Impact Ionization)によりホットエレクトロンが生じ、ゲートに印加されている電圧からソースに印加されている電圧を減じた電圧がゲート電圧Vgがドレイン電圧Vdより低いため生じたエレクトロンが絶縁層122のドレイン端近傍の位置に注入される。絶縁層122にホットエレクトロンが注入されたトランジスタのゲート電圧Vgとドレインからソースへ流れるドレイン電流Idと閾値電圧との関係を図24に示す。こうしたトランジスタでは、図示するように、二つの拡散層26,28のうちホットエレクトロンが注入された絶縁層122のエレクトロン注入領域に隣接する拡散層をソースにした場合の閾値電圧Vth_sが二つの拡散層26,28のうちエレクトロン注入領域に隣接する拡散層をドレインにした場合より閾値電圧Vth_dより高くなり、閾値電圧Vth_s,Vth_dは、いずれも絶縁層122にホットエレクトロンを注入しない場合の閾値電圧より高くなる。図25,図26は、こうしてエレクトロンを注入したトランジスタTr2で昇圧動作を行なっているときの様子を説明するための説明図である。クロック信号CLKが立ち上がったときには、図25に例示するように、トランジスタTr2の拡散層のうちトランジスタTr3の接続端子Tcに接続されている拡散層がソースとなるため、トランジスタTr2の閾値電圧はトランジスタTr2にエレクトロンを注入しない場合とほぼ同程度であり、クロック信号CLKが立ち下がったときには、図26に例示するように、トランジスタTr2の接続端子Tcの電圧が下がりトランジスタTr2の接続端子Tcに接続されている拡散層がソースとなるため、クロック信号CLKが立ち上がっている場合よりトランジスタTr2の閾値電圧が高くなる。これにより、チャージポンプ100の昇圧効率の向上、すなわち、動作特性の向上を図ることができる。
 実施例のチャージポンプ100では、多段トランジスタ回路110のトランジスタTr1~Trnと制御用端子Tv1~TvnとをスイッチSW1~Swnを介して接続されているものとしたが、多段トランジスタ回路110のトランジスタTr1~Trnと制御用端子Tv1~Tvnとの間はオンおよびオフが可能な素子であれば如何なるもので接続してもよく、例えば、ゲートに入力する電圧に応じてオンオフするトランジスタを用いるものとしてもよい。
 実施例では、チャージポンプ100を、図19に例示するように、導電型がp型の半導体基板120に形成されるトランジスタから構成されるものとしたが、導電型がn型の半導体基板に形成されたトランジスタから構成されるものとしてもよい。
 実施例では、チャージポンプの形態として説明したが、こうしたチャージポンプにおける電圧特性調整方法の形態としてもよい。
 次に、本発明の第4実施例としてのSRAM410の電圧特性を調整する方法について説明する。ここで、電圧特性の調整の対象となるSRAM410の構成は、ビット線BLL,BLRとセンスアンプ18との間にコラムスイッチ420が設けられている点やメモリセル12の電源電圧印加点Vddに供給する電圧と異なる電圧を周辺回路(行デコーダ14、列デコーダ16、センスアンプ18、列選択回路19)の電源電圧に印加できる点、ビット線BLL,BLRの電圧を周辺回路の電源電圧にプリチャージするプリチャージ回路422が設けられている点を除いて、第1実施例のSRAM10と同一の構成となっている。したがって、SRAM410の構成のうちに、第1実施例のSRAM10と同一の構成にはSRAM10と同一の符号を付し、その説明を省略する。
 図27は、本発明の第4実施例としての電圧特性調整方法により電圧特性が調整されるメモリセル12を複数搭載したSRAM410の構成の概略を示す説明図であり、図28は、SRAM410の要部の構成の概略を説明する説明図である。SRAM410は、n個のワード線WL1~WLnとm個のビット線BLL,BLRとに接続されn行m列のマトリックス状に配置された(n×m)個のメモリセル12と、ビット線BLL,BLRとセンスアンプ18との間にビット線BLL,BLRとセンスアンプ18との電気的な接続や接続の解除を行なうコラムスイッチ420と、を備え、周辺回路の電源電圧としてメモリセル12の電源電圧印加点Vddに供給する電圧と異なる電圧Vddl(例えば、1.0Vなど)を印加することができるよう構成されている。
 コラムスイッチ420は、コラム信号COL,COLB(コラム信号COLとコラム信号COLBとは互いに逆相)によりオンオフする周知のCMOSスイッチとして構成され、コラム信号COLがHレベルであるときにはオンしてビット線BLL,BLRとセンスアンプ18とを電気的に接続し、コラム信号COLがLレベルであるときにはオフしてビット線BLL,BLRとセンスアンプ18との電気的な接続を解除する。
 SRAM410のビット線BLL,BLRには、ビット線BLL,BLRの電圧を周辺回路の電圧Vddlにプリチャージするプリチャージ回路422が設けられている。プリチャージ回路422は、ゲートにプリチャージ信号PRCHGが入力されドレインに周辺回路の電源電圧Vddlが印加されると共にドレインがビット線BL,BLBにそれぞれ接続される2個のpチャネルMOSトランジスタと、ゲートにプリチャージ信号PRCHGが入力されドレイン,ソースがビット線BL,BLBに接続されたpチャネルMOSトランジスタとを備え、プリチャージ信号PRCHGがLレベル(0V)であるときには3個のpチャネルMOSトランジスタをオンしてビット線BL,BLBを周辺回路の電源電圧Vddlにプリチャージし、プリチャージ信号PRCHGがHレベル(値V1)であるときには3個のpチャネルMOSトランジスタをオフする。
 こうして構成されたSRAM410へのデータの書き込み動作は、具体的には、行アドレス信号,列アドレス信号など動作に必要な信号が与えられると共にビット線BLL,BLRの電圧(以下、ビット線電圧Vbll,Vblrという)が書き込むべきデータに対応する電圧にされると、行アドレス信号に基づいて行デコーダ14によりn個のワード線WL1~WLnのうち1個のワード線WLが選択され、選択されたワード線WLの電圧(以下、ワード線電圧Vwlという)が値V1となる。一方で、列アドレス信号に基づいて列デコーダ16により1組のビット線BLL,BLRが選択されると共に選択されたビット線のコラムスイッチ420がオンにされるようコラム信号COLを入力する。こうした動作により、選択されたワード線WL,ビット線BLL,BLRに接続されたメモリセル12の出力端子OUTL,OUTRの電圧がビット線BLL,BLRに対応する電圧になることで、メモリセル12にデータを書き込むことができる。
 また、SRAM410からのデータの読み出し動作は、行アドレス信号,列アドレス信号など動作に必要な信号が与えられると、列デコーダ16により選択されたビット線BLL,BLRに接続されているプリチャージ回路422にプリチャージ信号PRCHG(0V)を入力してプリチャージ回路422をオンすると共に選択されたビット線BLl,BLRに接続されているコラムスイッチ420がオンされるようコラム信号を入力し、ビット線BLL,BLRを電圧Vddlに一旦プリチャージする。その後、プリチャージ回路422にプリチャージ信号PRCHG(値V1)を入力してプリチャージ回路422をオフして、n個のワード線WL1~WLnのうちデコーダ14により選択されたワード線WLに電圧Vddを印加することにより、選択されたワード線WL1、ビット線BLL,BLRに接続されたメモリセル12において出力端子OUTL,OUTRの電圧差に対応して生じるビット線BLL,BLRの電圧差をデータとしてセンスアンプ18を介して読み出すことができる。
 続いて、こうして構成されたSRAM410の電圧特性を調整する方法について説明する。図29は、SRAM210の電圧特性を調整する電圧特性調整工程の一例を示す工程図である。この工程は、メモリセルの12の接地電圧印加点Vssを0Vに固定し、基板電圧Vsubを0Vに固定した状態で行なわれる。
 最初に、電圧Vddに値V1、各ビット線BLLに値V1,各ビット線BLBに0Vを印加してSRAM410の全てのメモリセル12に対して、データの書き込み動作を実行する(ステップS200)。こうした動作により、全てのメモリセル12に対して出力端子OUTLをHレベルにし、出力端子OUTRをLレベルにすることができる。
 続いて、電圧Vddに値V1より小さい値V5(例えば、0.5V)を印加して、全てのメモリセル12に対してデータの読み出し動作を実行する(ステップS210)。このとき、メモリセル12のパスゲートトランジスタPGRの閾値電圧が同一のメモリセル12の他のトランジスタ(トランジスタPL,NL,PR,LR,パスゲートトランジスタPGL)より低くトランジスタ間の電流のバランスが良好でない場合、出力端子OUTRの電圧が出力端子OUTLより高くなり、データが反転する。こうしたデータの反転は、全てのメモリセル12のうちトランジスタ間の電流のバランスが良好でないメモリセルでのみ生じるから、ステップS210の処理により、トランジスタ間の電流のバランスが良好でないメモリセルのデータを反転させることができる。したがって、値V5は、トランジスタ間の電流のバランスが良好でないメモリセルで、出力端子OUTL,OUTRの電圧が反転する電圧として実験や解析などにより求めたものを用いるものとした。
 次に、電圧Vddを値V1より大きい値V6(例えば、3.2V)にした状態で、プリチャージ回路422にプリチャージ信号PRCHG(値V1)を入力してプリチャージ回路422をオフすると共にコラムスイッチ420にコラム信号COL(0V)を入力して全てのコラムスイッチ420をオフして、全てのワード線WL1~WLnの電圧Vwlに所定時間trefの間値V1を印加する(ステップS220)。ステップS220の処理を実行している最中のバイアス条件とSRAM410を流れる電流の一例を図30に示す。図中、メモリセル12n-1はパスゲートトランジスタPGRの閾値電圧が低いためにトランジスタ間の電流のバランスが良好でなくステップS210の処理を実行した後にデータが反転したセルであるものとし、メモリセル12n-1を除く他のメモリセル(例えば、メモリセル12n)は、ステップS210の処理を実行してもデータが反転せずに保持されたセルであるものとした。つまり、メモリセル12n-1の出力端子OUTLの電圧は出力端子OUTRより低く、メモリセル12nの出力端子OUTLの電圧は出力端子OURの電圧より高いものとした。ステップS220の処理を実行している最中、メモリセル12n-1の出力端子OUTRは電圧が電圧Vddに印加された電圧より若干小さい電圧(例えば、2.73V)であるが、メモリセル12n-1を除く他のメモリセルでは出力端子OUTRの電圧が0Vであるため、ビット線BLRの電圧は0V近傍の電圧となる。このとき、メモリセル12n-1のパスゲートトランジスタPGRは、ゲートに値V1(例えば、1.0V)の電圧が印加され、ドレインに電圧Vddに印加された電圧より若干小さい電圧(例えば、2.73Vなど)の電圧が印加され、ソースに0Vが印加され、基板電圧Vsubに0Vが印加された状態になっている。このような電圧条件は、図6に例示した電圧条件と基板電圧Vsubに0Vを印加されている点を除いて同じであるから、パスゲートトランジスタPGRのドレイン近傍で衝突電離によりホットエレクトロンが生じ、生じたホットエレクトロンは絶縁層22のドレイン端近傍の位置に注入される。これにより、パスゲートトランジスタPGRの閾値電圧をホットエレクトロンを注入する前より高くすることができ、トランジスタ間の電流のバランスを良好なものとすることができる。この処理では、ステップS220の処理を1度実行するだけで、閾値電圧が低い複数のメモリセルのパスゲートトランジスタPGRに一括にホットエレクトロンを注入することができる。したがって、より簡易な方法で、SRAM410の電圧特性を調整することができる。なお、所定時間trefは、絶縁層22にホットエレクトロンを注入することによりパスゲートトランジスタPGRの閾値電圧を十分に上昇させることが可能な時間として実験や解析などにより求めたものを用いるものとした。また、このときのワード線WL1~WLnに印加する電圧は、ホットエレクトロンを絶縁層22に十分に注入可能な電圧であればよく、電圧V1より高く値V6より低い電圧であるとしてもよい。
 こうしてステップS220の処理を実行している最中、メモリセル12n-1の出力端子OUTLは0Vであるが、メモリセル12n-1を除く他のメモリセルでは出力端子OUTLの電圧が電圧Vddに印加された電圧より若干小さい電圧(例えば、2.73V)であるため、ビット線BLLの電圧がワード線WL1~WLnに印加されている電圧よりプリチャージ回路422のpチャネルMOSトランジスタの閾値電圧分だけ高くなると、プリチャージ回路422のpチャネルMOSトランジスタにリーク電流が流れてビット線BLLの電圧が周辺回路の電源電圧(値V1)にプリチャージされるため、各メモリセル12のパスゲートトランジスタPGLに流れる電流が過大になるのが抑制される。したがって、メモリセル12n-1の出力端子OUTLの上昇が抑制され、出力端子OUTRの電圧の下降が抑制されてパスゲートトランジスタPGRへのホットエレクトロンの注入を継続することができる。
 ステップS220が終了したら、次に、電圧Vddに値V1、各ビット線BLLに0V,各ビット線BLBに値V1の電圧を印加してSRAM410の全てのメモリセル12に対して、データの書き込み動作を実行する(ステップS230)。こうした動作により、全てのメモリセル12に対して出力端子OUTLをLレベルにし、出力端子OUTRをHLレベルにすることができる。
 次に、ステップS210とステップS220と同じ処理であるステップS240,S250の処理を順次実行して、本処理を終了する。こうした処理により、パスゲートトランジスタPGLの閾値電圧が低いためにトランジスタ間の電流のバランスが良好でなくステップS240の処理を実行した後にデータが反転したセルのパスゲートトランジスタPGLに対して、ステップS250の処理でホットエレクトロンを注入して閾値電圧を注入前に比して上昇させることができ、SRAM410の電圧特性を調整することができる。この場合、ステップS250の処理を1度実行するだけで、閾値電圧が低い複数のメモリセルのパスゲートトランジスタPGLに一括にホットエレクトロンを注入することができる。したがって、より簡易な方法で、SRAM410の電圧特性を調整することができる。
 以上説明した第4実施例のSRAM410では、電圧Vddに値V1、ビット線BLLに値V1,ビット線BLRに0Vを印加してSRAM410の全てのメモリセル12に対して、データの書き込み動作を実行し、書き込み動作の後に、電圧Vddに値V1より小さい値V5を印加して、全てのメモリセル12に対して順次データの読み出し動作を実行し、読み出し動作の後に、電圧Vddを値V1より大きい値V6にした状態で、プリチャージ回路422にプリチャージ信号PRCHG(値V1)を入力してプリチャージ回路422をオフすると共にコラムスイッチ420にコラム信号COL(0V)を入力して全てのコラムスイッチ420をオフして、全てのワード線WL1~WLnの電圧Vwlに所定時間trefの間値V1の電圧を印加する。これにより、複数の閾値電圧が低いパスゲートトランジスタPGRに対して一括してホットエレクトロンを注入して閾値電圧を上昇させることができ、より簡易な方法で、SRAM410の電圧特性を調整することができる。さらに、電圧Vddに値V1、ビット線BLLに0V,ビット線BLRに値V1の電圧を印加してSRAM410の全てのメモリセル12に対して、データの書き込み動作を実行し、書き込み動作の後に、電圧Vddに値V1より小さい値V5を印加して、全てのメモリセル12に対して順次データの読み出し動作を実行し、読み出し動作の後に、電圧Vddを値V1より大きい値V6にした状態で、プリチャージ回路422をオフすると共にコラムスイッチ420をオフして、全てのワード線WL1~WLnの電圧Vwlに所定時間tref値V1の電圧を印加する。これにより、複数の閾値電圧が低いパスゲートトランジスタPGLに対して一括してホットエレクトロンを注入して閾値電圧を上昇させることができ、より簡易な方法で、SRAM410の電圧特性を調整することができる。
 第4実施例のSRAM410の電圧調整方法では、ステップS200~S220の処理でパスゲートトランジスタPGRの閾値電圧を調整し、ステップS230~S250でパスゲートトランジスタPGLの閾値電圧を調整するものとしたが、パスゲートトランジスタPGL,PGRのいずれか一方の閾値電圧のみ調整するものとしてもよい。この場合、パスゲートトランジスタPGRの閾値電圧を調整する際にはステップS230~S250を実行せずにステップS200~S220の処理を実行し、パスゲートトランジスタPGLの閾値電圧を調整する際にはステップS200~ステップS220の処理を実行せずに、ステップS230~S250の処理を実行するものとすればよい。
 第4実施例のSRAM410の電圧調整方法では、全てのメモリセル12に対してステップS200~S250の処理を実行するものとしたが、一部のメモリセル12に対して実行するものとしてもよい。この場合、ステップS220,S250の処理で、閾値電圧の低いパスゲートトランジスタにホットエレクトロンを注入する際に生じる電流をビット線BLL,BLRおよび他のパスゲートトランジスタを介して接地電圧印加点Vssへ流す必要があるため、同一のビット線BLL,BLBに接続された少なくとも2以上のメモリセル12に対してステップS200~S250の処理を実行すればよい。
 第4実施例では、電圧を調整する対象となるSRAM410をプリチャージ回路422を備えるものとしたが、プリチャージ回路422を周辺回路の電源電圧Vddlより高い電圧(例えば、電圧Vddなど)にプリチャージするものとしてもよいし、周辺回路の電源電圧Vddl未満の電圧(例えば、電圧(Vddl/2)など)にクランプするものとしてもよいし、こうしたプリチャージ回路422を備えていないものとしてもよい。
 第4実施例では、本発明の電圧特性調整工程を図3,図4に例示した構造のトランジスタPL,PR,NL,NRから構成される回路に適用するものとしたが、トランジスタPL,PRが導電型がn型の半導体基板上に形成されてトランジスタNL,NRがn型の半導体基板に形成された導電型がp型のウェルに形成されているものに適用してもよい。
 第4実施例では、SRAM410のメモリセル12をトランジスタPL,NLにより構成されるインバータINVLとトランジスタPR,NRにより構成されるインバータINVRとを有するものとしたが、インバータINVL,INVRの構成としては入力端子から入力された電圧の論理を反転させて出力端子から出力するものであれば如何なるものとしてもよく、例えば、トランジスタPL,PRに代えて比較的抵抗値の高い抵抗素子を用いるものとしてもよい。
 以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
 本発明は、半導体記憶素子の製造産業やチャージポンプの製造産業などに利用可能である。

Claims (17)

  1.  第1入力端子と第1出力端子とを有する第1インバータと、前記第1出力端子に接続された第2入力端子と前記第1入力端子に接続された第2出力端子とを有する第2インバータと、所定の絶縁性を有する第1ゲート絶縁層を有しゲートがワード線に接続されると共にソースまたはドレインの一方が前記第1インバータの第1出力端子に接続されソースまたはドレインの他方が二つのビット線の一方に接続された第1パスゲートトランジスタと、所定の絶縁性能を有する第2ゲート絶縁層を有しゲートが前記ワード線に接続されると共にソースまたはドレインの一方が前記第2インバータの出力端子に接続されソースまたはドレインの他方が前記二つのビット線の他方に接続された第2パスゲートトランジスタと、を備え半導体基板に形成されてなる半導体記憶素子の電圧特性を調整する電圧特性調整方法であって、
     前記半導体記憶素子を通常動作させる際に電源電圧を印加する電源電圧印加点と前記二つのビット線との間の電圧差が前記半導体記憶素子を通常動作させる際の前記電源電圧印加点と前記二つのビット線との間の電圧差より大きい所定の電圧差になるよう前記電源電圧印加点に印加する電圧と前記二つのビット線に印加する電圧を調整する電圧調整ステップ
     を備えることを特徴とする半導体記憶素子の電圧特性調整方法。
  2.  請求項1記載の半導体記憶素子の電圧特性調整方法であって、
     前記電圧調整ステップを実行する前に実行され、前記半導体記憶素子を通常動作させる際に前記ビット線に印加する電圧としての第1ビット電圧および該第1ビット電圧より低い第2ビット電圧のうち前記第1ビット電圧を前記二つのビット線のうちの一方に印加すると共に前記第2ビット電圧を前記二つのビット線のうちの他方に印加した状態で、前記ワード線に前記半導体記憶素子を通常動作させる際に前記第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオンする電圧としての通常動作時オン制御電圧を印加する書き込みステップ、
     を備える半導体記憶素子の電圧特性調整方法。
  3.  請求項1記載の半導体記憶素子の電圧特性調整方法であって、
     前記電圧調整ステップを実行する前に実行され、前記ワード線に前記半導体記憶素子を通常動作させる際に前記第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオフする電圧としての通常動作時オフ制御電圧を印加すると共に前記半導体基板に前記半導体記憶素子を通常動作させる際に印加する電圧としての通常動作時基板電圧を印加した状態で前記電源電圧印加点に前記半導体記憶素子を通常動作させる際に印加する電源電圧より低い所定の低電圧を印加する低電源電圧印加ステップ、
     を備える半導体記憶素子の電圧特性調整方法。
  4.  請求項3記載の半導体記憶素子の電圧特性調整方法であって、
     前記低電源電圧印加ステップと前記電圧調整ステップとの間に実行され、前記二つのビット線を電気的に浮遊した状態にすると共に前記半導体基板に前記通常動作時基板電圧を印加した状態で、前記ワード線に前記半導体記憶素子を通常動作させる際に前記第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオンする電圧としての通常動作時オン制御電圧を印加する読み出しステップ、
     を備える半導体記憶素子の電圧特性調整方法。
  5.  請求項1ないし4いずれか1つの請求項に記載の半導体記憶素子の電圧特性調整方法であって、
     前記電圧調整ステップは、前記電源電圧印加点と前記二つのビット線との間の電圧差が前記所定の電圧差になると共に前記ワード線と前記二つのビット線との間の電圧差が前記所定の電圧差より小さい所定の低電圧差となるよう前記電源電圧印加点に印加する電圧と前記二つのビット線に印加する電圧と前記ワード線に印加する電圧とを調整するステップである、
     半導体記憶素子の電圧特性調整方法。
  6.  請求項5記載の半導体記憶素子の電圧特性調整方法であって、
     前記電圧調整ステップは、前記ワード線に前記半導体記憶素子を通常動作させる際に前記第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオンする電圧としての通常動作時オン制御電圧を印加し、前記半導体記憶素子を通常動作させる際に前記ビット線に印加する電圧としての第1ビット電圧および該第1ビット電圧より低い第2ビット電圧のうち前記第2ビット電圧を前記二つのビット線に印加し、前記電源電圧印加点に前記半導体記憶素子を通常動作させる際に印加する電源電圧より高く前記通常動作時オン制御電圧より高い所定の高電源電圧を印加するステップである、
     半導体記憶素子の電圧特性調整方法。
  7.  請求項6記載の半導体記憶素子の電圧特性調整方法であって、
     前記電圧調整ステップは、前記半導体基板に印加されている電圧が前記半導体記憶素子を通常動作する際に前記半導体基板に印加する通常基板電圧より低い電圧になるよう前記半導体基板に印加する電圧を調整した状態で、前記ワード線に前記通常動作時オン制御電圧を印加し、前記第2ビット電圧を前記二つのビット線に印加し、前記電源電圧印加点に前記所定の高電源電圧を印加するステップである、
     半導体記憶素子の電圧特性調整方法。
  8.  請求項1ないし4いずれか1つの請求項に記載の半導体記憶素子の電圧特性調整方法であって、
     前記電圧調整ステップは、前記電源電圧印加点と前記二つのビット線との間の電圧差が前記所定の電圧差になると共に前記ワード線と前記二つのビット線との間の電圧差が前記所定の電圧差以上の所定の高電圧差となるよう前記電源電圧印加点に印加する電圧と前記二つのビット線に印加する電圧と前記ワード線に印加する電圧とを調整するステップである、
     半導体記憶素子の電圧特性調整方法。
  9.  請求項8記載の半導体記憶素子の電圧特性調整方法であって、
     前記電圧調整ステップは、前記ワード線に前記半導体記憶素子を通常動作させる際に前記第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオフする電圧としての通常動作時オフ制御電圧以下の所定のオフ電圧を印加し、前記半導体記憶素子を通常動作させる際に前記ビット線に印加する電圧としての第1ビット電圧および該第1ビット電圧より低い第2ビット電圧のうち前記第1ビット電圧より高い所定の高ビット電圧を前記二つのビット線に印加し、前記電源電圧印加点に前記半導体記憶素子を通常動作させる際に印加する電源電圧より低い所定の低電源電圧を印加するステップである、
     半導体記憶素子の電圧特性調整方法。
  10.  第1の入力端子と、第2の入力端子と、第3の入力端子と、出力端子と、接続端子を有しゲートが所定の絶縁性能を有する絶縁層上に形成されると共にソースおよびドレインのうちの一方とゲートとが前記接続端子に接続されてなるトランジスタのソースを隣接するトランジスタの前記接続端子と接続することによりトランジスタがn個(nは、値2以上の整数)に亘って直列に接続されてなり前記n個のトランジスタのうち始端のトランジスタの接続端子が前記第1の入力端子と接続されると共に前記n個のトランジスタのうち終端のトランジスタのソースが前記出力端子と接続された多段トランジスタ回路と、前記多段トランジスタ回路のn個のトランジスタのうち前記始端のトランジスタを除く(n-1)個のトランジスタの接続端子に一端が接続された(n-1)個のキャパシタを有し隣り合うキャパシタの前記一端と異なる他端が交互に前記第2の入力端子または前記第3の入力端子に接続されてなるキャパシタ回路と、前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に電圧またはクロック信号を供給可能な入力信号供給回路と、通常動作する際に前記第1の入力端子に電源電圧が供給された状態で前記第2の入力端子にクロック信号が入力されると共に前記第3の入力端子に前記クロック信号を反転させた反転クロック信号が入力されるよう前記入力信号供給回路を制御する制御回路と、を備えるチャージポンプにおいて、
     n個の制御用端子を有し、該制御用端子のそれぞれに電圧を供給する制御用電圧供給回路と、
     前記n個の制御用端子から前記多段トランジスタ回路のn個のトランジスタの接続端子およびゲートへの電圧の供給をオンオフするn個のスイッチング素子と、
     を備え、
     前記制御回路は、前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に所定の低電圧の電圧が入力されると共に前記n個のスイッチング素子のうち隣り合う二つのスイッチング素子をオンし残余のスイッチング素子をオフした状態で、前記オンしている二つのスイッチング素子に接続された制御用端子のうち一方の制御用端子に前記所定の低電圧以下の電圧が印加されると共に前記オンしている二つのスイッチング素子に接続された制御用端子のうち他方の制御用端子に前記所定の低電圧より高い所定の高電圧が印加されるよう前記入力信号供給回路と前記制御用電圧供給回路と前記n個のスイッチング素子とを制御する回路である
     チャージポンプ。
  11.  請求項10記載のチャージポンプであって、
     前記制御回路は、前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に所定の低電圧の電圧が入力されると共に前記n個のスイッチング素子のうち隣り合う二つのスイッチング素子をオンし残余のスイッチング素子をオフした状態で、前記オンしている二つのスイッチング素子に接続された制御用端子のうち前記多段トランジスタ回路の始端のトランジスタ側の制御用端子に前記所定の低電圧以下の電圧が印加されると共に前記オンしている二つのスイッチング素子に接続された接続端子のうち前記多段トランジスタ回路の終端のトランジスタ側の制御用端子に前記所定の低電圧より高い所定の高電圧が印加されるよう前記入力信号供給回路と前記n個のスイッチング素子と前記制御用電圧供給回路とを制御する回路である
     チャージポンプ。
  12.  請求項10記載のチャージポンプであって、
     前記制御回路は、前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に所定の低電圧の電圧が入力されると共に前記n個のスイッチング素子のうち隣り合う二つのスイッチング素子をオンし残余のスイッチング素子をオフした状態で、前記オンしている二つのスイッチング素子に接続された制御用端子のうち前記多段トランジスタ回路の始端のトランジスタ側の制御用端子に前記所定の低電圧より高い所定の高電圧が印加されると共に前記オンしている二つのスイッチング素子に接続された接続端子のうち前記多段トランジスタ回路の終端のトランジスタ側の制御用端子に前記所定の低電圧以下の電圧が印加されるよう前記入力信号供給回路と前記n個のスイッチング素子と前記制御用電圧供給回路とを制御する回路である
     チャージポンプ。
  13.  第1の入力端子と、第2の入力端子と、第3の入力端子と、出力端子と、接続端子を有しゲートが所定の絶縁性能を有する絶縁層上に形成されると共にソースおよびドレインのうちの一方とゲートとが前記接続端子に接続されてなるトランジスタのソースを隣接するトランジスタの前記接続端子と接続することによりトランジスタがn個(nは、値2以上の整数)に亘って直列に接続されてなり前記n個のトランジスタのうち始端のトランジスタの接続端子が前記第1の入力端子と接続されると共に前記n個のトランジスタのうち終端のトランジスタのソースが前記出力端子と接続された多段トランジスタ回路と、前記多段トランジスタ回路のn個のトランジスタのうち前記始端のトランジスタを除く(n-1)個のトランジスタの接続端子に一端が接続された(n-1)個のキャパシタを有し隣り合うキャパシタの前記一端と異なる他端が交互に前記第2の入力端子または前記第3の入力端子に接続されてなるキャパシタ回路と、前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に電圧またはクロック信号を供給可能な入力信号供給回路と、n個の制御用端子を有し該制御用端子のそれぞれに電圧を供給する制御用電圧供給回路と、前記n個の制御用端子から前記多段トランジスタ回路のn個のトランジスタの接続端子およびゲートへの電圧の供給をオンオフするn個のスイッチング素子と、を備え、通常動作する際に前記n個のスイッチング素子がオフされると共に前記第1の入力端子に電源電圧が供給された状態で前記第2の入力端子にクロック信号が入力されると共に前記第3の入力端子に前記クロック信号を反転させた反転クロック信号が入力されるよう前記入力信号供給回路と前記n個のスイッチング素子とを制御するチャージポンプの電圧特性を調整する電圧特性調整方法であって、
     前記第1の入力端子および前記第2の入力端子および前記第3の入力端子に所定の低電圧の電圧が入力されると共に前記n個のスイッチング素子のうち隣り合う二つのスイッチング素子をオンし残余のスイッチング素子をオフした状態で、前記オンしている二つのスイッチング素子に接続された制御用端子のうち一方の制御用端子に前記所定の低電圧以下の電圧が印加されると共に前記オンしている二つのスイッチング素子に接続された制御用端子のうち他方の制御用端子に前記所定の低電圧より高い所定の高電圧が印加されるよう前記入力信号供給回路と前記制御用電圧供給回路と前記n個のスイッチング素子とを制御する、
     ことを特徴するチャージポンプの電圧特性調整方法。
  14.  第1入力端子と第1出力端子とを有する第1インバータと前記第1出力端子に接続された第2入力端子と前記第1入力端子に接続された第2出力端子とを有する第2インバータと所定の絶縁性を有する第1ゲート絶縁層を有しソースまたはドレインの一方が前記第1インバータの第1出力端子に接続された第1パスゲートトランジスタと所定の絶縁性を有する第2ゲート絶縁層を有しソースまたはドレインの一方が前記第2インバータの出力端子に接続された第2パスゲートトランジスタとを有するn個(nは、2以上の整数)の半導体記憶素子と、前記n個の半導体記憶素子の前記第1パスゲートトランジスタのゲートおよび前記第2パスゲートトランジスタのゲートに接続されたn個のワード線と、前記第1パスゲートトランジスタのソースまたはドレインの他方に接続された第1ビット線と、前記第2パスゲートトランジスタのソースまたはドレインの他方に接続された第2ビット線と、を備える半導体記憶装置の電圧特性を調整する電圧特性調整方法であって、
     前記半導体記憶素子を通常動作させる際に電源電圧を印加する電源電圧印加点と前記半導体記憶素子の第1パスゲートトランジスタおよび前記第2パスゲートトランジスタに接続されているワード線と前記第1ビット線と前記第2ビット線との間のそれぞれの電圧差が、前記半導体記憶素子に通常データを書き込む際の前記電源電圧印加点と前記ワード線と前記二つのビット線との間の電圧差になるよう前記半導体素子の電源電圧印加点に印加する電圧と前記第1ビット線に印加する電圧と前記第2ビット線に印加する電圧と前記ワード線に印加する電圧とを調整する書き込み動作を前記n個の半導体記憶素子のうち少なくとも二つの半導体記憶素子に対して実行する第1ステップと、
     前記第1ステップが実行された後に、前記電源電圧印加点に前記半導体記憶素子を通常動作させる際に前記電源電圧印加点に印加する電圧である通常電源電圧より低い電圧が印加された状態で、前記ワード線に前記半導体記憶素子の第1パスゲートトランジスタおよび前記第2パスゲートトランジスタをオンする電圧である通常オン電圧が印加されるよう前記半導体素子の電源電圧印加点に印加する電圧と前記ワード線に印加する電圧とを調整する低電源電圧読み出し動作を前記少なくとも二つの半導体記憶素子に対して実行する第2ステップと、
     前記第2ステップが実行された後に、前記少なくとも二つの半導体記憶素子の電源電圧印加点に前記通常電源電圧より高い電圧が印加された状態で、前記少なくとも二つの半導体記憶素子の第1パスゲートトランジスタおよび第2パスゲートトランジスタに接続されているワード線に前記通常オン電圧以上前記通常電源電圧未満の電圧が印加されるよう前記少なくとも二つの半導体素子の電源電圧印加点に印加する電圧と前記少なくとも二つの半導体素子に接続されているワード線に印加する電圧とを調整する第3ステップと、
     を備える半導体記憶装置の電圧特性調整方法。
  15.  請求項14記載の半導体記憶装置の電圧特性調整方法であって、
     前記第1ステップの書き込み動作は、前記電源電圧印加点に前記通常電源電圧を印加すると共に前記ワード線に前記通常オン電圧を印加した状態で、前記半導体記憶素子を通常動作させる際に前記ビット線に印加する電圧である第1ビット電圧および該第1ビット電圧より低い第2ビット電圧のうち前記第1ビット電圧を前記第1ビット線および前記第2ビット線のうちの一方に印加すると共に前記第2ビット電圧を前記第1ビット線および前記第2ビット線のうちの他方に印加するよう前記半導体記憶素子の電源電圧印加点に印加する電圧と前記前記第1ビット線に印加する電圧と前記第2ビット線に印加する電圧と前記ワード線に印加する電圧とを調整する動作である、
     半導体記憶装置の電圧特性調整方法。
  16.  請求項15記載の半導体記憶装置の電圧特性調整方法であって、
     前記第3ステップが実行された後に、前記電源電圧印加点に前記通常電源電圧を印加すると共に前記ワード線に前記通常オン電圧を印加した状態で、前記第1ビット電圧を前記第1ビット線および前記第2ビット線のうちの他方に印加すると共に前記第2ビット電圧を前記第1ビット線および前記第2ビット線のうちの一方に印加するよう前記半導体記憶素子の電源電圧印加点に印加する電圧と前記前記第1ビット線に印加する電圧と前記第2ビット線に印加する電圧と前記ワード線に印加する電圧とを調整する第3ステップ実行後書き込み動作を前記n個の半導体記憶素子にうち少なくとも二つの半導体記憶素子に対して実行する第4ステップ
     を備え、
     前記第4ステップを実行した後に前記第2ステップと前記第3ステップとを実行する
     半導体記憶装置の電圧特性調整方法。
  17.  請求項16記載の半導体記憶装置の電圧特性調整方法であって、
     前記第1ステップは、前記書き込み動作を前記n個の半導体記憶素子に実行するステップであり、
     前記第2ステップは、前記低電源電圧読み出し動作を前記n個の半導体記憶素子に実行するステップであり、
     前記第3ステップは、前記n個の半導体記憶素子の電源電圧印加点に前記通常電源電圧より高い電圧が印加された状態で、前記n個のワード線に前記通常オン電圧以上前記通常電源電圧未満の電圧が印加されるよう前記n個の半導体記憶素子の電源電圧印加点に印加する電圧と前記n個のワード線に印加する電圧とを調整するステップであり、
     前記第4ステップは、前記第3ステップ実行後書き込み動作を前記n個の半導体記憶素子に実行するステップである
     半導体記憶装置の電圧特性調整方法。
PCT/JP2011/061761 2010-05-24 2011-05-23 半導体記憶素子の電圧特性調整方法、半導体記憶装置の電圧特性調整方法およびチャージポンプ並びにチャージポンプの電圧調整方法 WO2011148898A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/699,158 US20130114355A1 (en) 2010-05-24 2011-05-23 Method for adjusting voltage characteristics of semiconductor memory element, method for adjusting voltage characteristics of semiconductor memory device, charge pump and method for adjusting voltage of charge pump
JP2012517256A JPWO2011148898A1 (ja) 2010-05-24 2011-05-23 半導体記憶素子の電圧特性調整方法、半導体記憶装置の電圧特性調整方法およびチャージポンプ並びにチャージポンプの電圧調整方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010118100 2010-05-24
JP2010-118100 2010-05-24

Publications (1)

Publication Number Publication Date
WO2011148898A1 true WO2011148898A1 (ja) 2011-12-01

Family

ID=45003888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061761 WO2011148898A1 (ja) 2010-05-24 2011-05-23 半導体記憶素子の電圧特性調整方法、半導体記憶装置の電圧特性調整方法およびチャージポンプ並びにチャージポンプの電圧調整方法

Country Status (3)

Country Link
US (1) US20130114355A1 (ja)
JP (1) JPWO2011148898A1 (ja)
WO (1) WO2011148898A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181674A1 (en) 2014-05-25 2015-12-03 Ramot At Tel Aviv University Ltd. Multiple state electrostatically formed nanowire transistors
US10515969B2 (en) 2016-11-17 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
JP7108386B2 (ja) * 2017-08-24 2022-07-28 住友化学株式会社 電荷トラップ評価方法
CN113053921B (zh) * 2021-03-12 2022-09-27 武汉华星光电半导体显示技术有限公司 一种阵列基板、显示面板以及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153277A (ja) * 1993-12-01 1995-06-16 Nec Corp スタティックランダムアクセスメモリ
JPH08263991A (ja) * 1995-03-23 1996-10-11 Citizen Watch Co Ltd 半導体不揮発性記憶装置の高電圧発生回路
JP2003242790A (ja) * 2002-02-13 2003-08-29 Seiko Epson Corp 不揮発性半導体記憶装置
JP2004127499A (ja) * 2002-09-30 2004-04-22 Agere Systems Inc スタティック・ランダム・アクセス・メモリの初期状態を決定する方法
JP2004349311A (ja) * 2003-05-20 2004-12-09 Sharp Corp 半導体記憶装置
JP2005276315A (ja) * 2004-03-24 2005-10-06 Kawasaki Microelectronics Kk 半導体集積回路の使用方法および半導体集積回路
JP2006127737A (ja) * 2004-09-30 2006-05-18 Nscore:Kk 不揮発性メモリ回路
JP2007004911A (ja) * 2005-06-24 2007-01-11 Sharp Corp 半導体記憶装置
JP2010049770A (ja) * 2008-08-25 2010-03-04 Toshiba Corp 半導体記憶装置、及びそれを用いたトリミング方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153277A (ja) * 1993-12-01 1995-06-16 Nec Corp スタティックランダムアクセスメモリ
JPH08263991A (ja) * 1995-03-23 1996-10-11 Citizen Watch Co Ltd 半導体不揮発性記憶装置の高電圧発生回路
JP2003242790A (ja) * 2002-02-13 2003-08-29 Seiko Epson Corp 不揮発性半導体記憶装置
JP2004127499A (ja) * 2002-09-30 2004-04-22 Agere Systems Inc スタティック・ランダム・アクセス・メモリの初期状態を決定する方法
JP2004349311A (ja) * 2003-05-20 2004-12-09 Sharp Corp 半導体記憶装置
JP2005276315A (ja) * 2004-03-24 2005-10-06 Kawasaki Microelectronics Kk 半導体集積回路の使用方法および半導体集積回路
JP2006127737A (ja) * 2004-09-30 2006-05-18 Nscore:Kk 不揮発性メモリ回路
JP2007004911A (ja) * 2005-06-24 2007-01-11 Sharp Corp 半導体記憶装置
JP2010049770A (ja) * 2008-08-25 2010-03-04 Toshiba Corp 半導体記憶装置、及びそれを用いたトリミング方法

Also Published As

Publication number Publication date
US20130114355A1 (en) 2013-05-09
JPWO2011148898A1 (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
US11908515B2 (en) 2T-1R architecture for resistive ram
US8018788B2 (en) Static memory device and static random access memory device
US7289354B2 (en) Memory array with a delayed wordline boost
US7301838B2 (en) Sense amplifier circuitry and architecture to write data into and/or read from memory cells
US7385840B2 (en) SRAM cell with independent static noise margin, trip voltage, and read current optimization
US6643163B2 (en) Semiconductor device
WO2004057621A1 (ja) Cmis型半導体不揮発記憶回路
US20100110774A1 (en) Sram device
WO2011148898A1 (ja) 半導体記憶素子の電圧特性調整方法、半導体記憶装置の電圧特性調整方法およびチャージポンプ並びにチャージポンプの電圧調整方法
JP2002198444A (ja) Pmosドライバーを備えた無負荷4tsramセル
US8520454B2 (en) SRAM device capable of independently controlling a double-gate selection transistor for maintaining an optimal read margin and read speed
JP2016126811A (ja) 半導体記憶装置とその駆動方法
US8743628B2 (en) Line driver circuits, methods, and apparatuses
US10468075B2 (en) Memory architecture having first and second voltages
TWI796112B (zh) 控制電路、讀取開關驅動電路及控制位元線預充電電路的方法
JP5331204B2 (ja) ラッチ回路の電圧特性調整方法および半導体装置の電圧特性調整方法並びにラッチ回路の電圧特性調整器
US8970256B2 (en) Sense amplifier
JP2013062765A (ja) スタティックランダムアクセスメモリセルの電圧特性調整方法。
JP6146178B2 (ja) 不揮発性メモリ
US8509002B2 (en) Semiconductor memory device and method of driving the same
JP2007280570A (ja) 半導体メモリデバイスおよびその動作方法
US9466342B2 (en) Transistors with source and word line voltage adjusting circuitry for controlling leakage currents and its method thereof
CN118116429A (zh) 字线控制电路及磁随机存取存储器
JP2005222620A (ja) 半導体記憶装置
JP2012059341A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786597

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517256

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13699158

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11786597

Country of ref document: EP

Kind code of ref document: A1