WO2011145531A1 - ハイブリッド建設機械およびハイブリッド建設機械の蓄電器容量計測方法 - Google Patents

ハイブリッド建設機械およびハイブリッド建設機械の蓄電器容量計測方法 Download PDF

Info

Publication number
WO2011145531A1
WO2011145531A1 PCT/JP2011/061090 JP2011061090W WO2011145531A1 WO 2011145531 A1 WO2011145531 A1 WO 2011145531A1 JP 2011061090 W JP2011061090 W JP 2011061090W WO 2011145531 A1 WO2011145531 A1 WO 2011145531A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
condition
measurement
capacity
engine
Prior art date
Application number
PCT/JP2011/061090
Other languages
English (en)
French (fr)
Inventor
志文 神保
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to KR1020127027233A priority Critical patent/KR101445956B1/ko
Priority to DE112011101714T priority patent/DE112011101714T5/de
Priority to US13/583,985 priority patent/US20130057305A1/en
Priority to CN201180022481.0A priority patent/CN102884439B/zh
Publication of WO2011145531A1 publication Critical patent/WO2011145531A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/125Locking devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a hybrid construction machine including an engine, a generator motor, and a capacitor, and capable of measuring a capacitor capacity, and a capacitor capacity measuring method of the hybrid construction machine.
  • hybrid vehicles In the field of construction machinery in recent years, hybrid vehicles have been developed in the same way as ordinary vehicles.
  • This type of hybrid construction machine includes an engine, a generator motor, a capacitor, and a work machine.
  • a capacitor may be used as a capacitor.
  • the capacitor is a battery that can be freely charged and discharged, and stores the generated power when the generator motor acts as power generation.
  • the capacitor supplies the electric power stored in the capacitor to a generator motor or an electric motor mounted to drive the work machine and the upper swing body through a driver such as an inverter.
  • Capacitors are subject to deterioration of performance due to heat generation when used for a long period of time or repeatedly overcharged or overdischarged. As the performance deterioration of the capacitor progresses, the power supplied to the electric motor of the hybrid construction machine decreases, and the work capacity decreases. For this reason, the performance deterioration state of the capacitor is grasped, and maintenance such as replacement of the capacitor is performed when the performance deterioration is progressing.
  • Patent Document 1 includes a capacitor mounted on a hybrid construction machine in a state where a capacitor such as a capacitor is mounted on the vehicle, and calculates the capacity of the capacitor to determine the performance deterioration of the capacitor. Are listed.
  • Patent Document 1 discloses a technique for determining performance degradation by measuring a capacity of a capacitor by driving a generator motor at a predetermined rotation speed and a predetermined torque when measuring the capacity of the capacitor.
  • the capacitance measurement is required to be more accurate.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a hybrid construction machine capable of measuring the capacity of a capacitor such as a capacitor more accurately and a method for measuring the capacity of the capacitor of the hybrid construction machine.
  • the present invention provides a measuring unit for measuring the capacity of a capacitor, a first condition that the engine is in a driving state, and fuel supplied to the engine Monitoring the second condition that the adjustment value of the fuel adjustment means for adjusting the amount of the fuel adjustment means is a preset value, and the third condition that the work implement and / or the upper swing body is in a locked state, A monitoring unit that transmits a control signal for starting measurement of the capacity of the battery to the measurement unit when all of the first condition to the third condition are satisfied.
  • the present invention is characterized in that, in the above invention, the second condition is a maximum value within a range in which an adjustment value of the fuel adjustment means can be adjusted.
  • the monitoring unit is set to a work mode in which the engine speed of the engine and the pump absorption torque of the hydraulic pump are controlled in a constant state.
  • a control signal for starting the measurement of the capacity of the battery is transmitted to the measurement unit.
  • the monitoring unit may determine the capacity of the capacitor when at least one of the first condition to the fourth condition is not satisfied during measurement of the capacity of the capacitor. A control signal for stopping the measurement is generated.
  • the present invention in the above invention, further includes a display unit that performs display and instruction regarding at least measurement of the capacity of the capacitor, and a display control unit that causes the display unit to perform guide display regarding at least measurement of the capacity of the capacitor. It is characterized by that.
  • the display control unit causes the screen of the display unit to start measuring the capacity of the capacitor when all of the first condition to the fourth condition are satisfied.
  • the screen is changed to an instruction screen.
  • the present invention is characterized in that, in the above invention, the display control unit displays a progress state of the measurement of the capacity of the capacitor when the measurement unit is measuring the capacity of the capacitor. .
  • the present invention is characterized in that, in the above-mentioned invention, the measurement unit measures the capacity of the capacitor on the condition that a process of removing charge from the capacitor is performed.
  • the first condition is that the engine is in operation
  • the adjustment value of the fuel adjustment means for adjusting the amount of fuel supplied to the engine is a preset set value.
  • the second condition, the third condition that the work implement and / or the upper swing body is in a locked state, and the capacity of the capacitor is determined when all of the first condition to the third condition are satisfied.
  • the monitoring step includes a fourth operation mode in which an engine speed of the engine and a pump absorption torque of the hydraulic pump are controlled in a constant state. And when all of the first condition to the fourth condition are satisfied, a control signal for starting the measurement of the capacity of the battery is transmitted.
  • the monitoring unit sets the preset value that is the first condition that the engine is in operation, and the adjustment value of the fuel adjustment means that adjusts the amount of fuel supplied to the engine.
  • the control signal for starting the measurement of the capacity of the battery is sent to the measurement unit, the engine is driven at the maximum output, and accordingly, the generator motor is also driven at a high speed.
  • the power generation output is stabilized and the lock lever is in the locked state, so that an unstable capacity measurement state due to the operation of the work machine or the like can be avoided, and the capacitor capacity measurement can be performed more accurately.
  • the generator motor since the generator motor is driven at a high speed, the charging time for the capacitor is shortened, and the capacity of the capacitor can be measured in a short time.
  • FIG. 1 is a diagram showing an external configuration of a hybrid construction machine according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an external configuration of a driver seat of the hybrid construction machine shown in FIG.
  • FIG. 3 is a block diagram showing an internal configuration of the hybrid construction machine shown in FIG.
  • FIG. 4 is a block diagram illustrating a configuration of an apparatus and the like related to capacitor capacitance measurement.
  • FIG. 5 is a diagram illustrating an example of a work mode selection screen displayed on the display screen of the monitor.
  • FIG. 6 is a flowchart showing a display control processing procedure by the display control unit.
  • FIG. 7 is a diagram showing display state transition of the monitor screen.
  • FIG. 8 is a flowchart illustrating a monitoring processing procedure by the monitoring unit.
  • FIG. 9 is a flowchart showing a procedure for measuring the capacitance of the capacitor by the measuring unit.
  • FIG. 1 is a diagram showing an external configuration of a hybrid construction machine 1 according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an external configuration of the driver's seat 70 shown in FIG.
  • the hybrid construction machine 1 is a hydraulic excavator.
  • the hybrid construction machine 1 includes an upper swing body 2 and a lower traveling body 3, and the lower traveling body 3 has left and right crawler tracks.
  • a work machine including a boom 4, an arm 5, and a bucket 6 is attached to the upper swing body 2.
  • the boom 4 is operated when the boom cylinder 4a is driven, the arm 5 is operated when the arm cylinder 5a is driven, and the bucket 6 is operated when the bucket cylinder 6a is driven.
  • the hybrid construction machine 1 has a specification for carrying a suspended work
  • a hook for carrying a suspended load is attached to a pin of a link connecting the bucket 6 and the arm 5.
  • the lower traveling body 3 has traveling motors 8 and 9, and the right crawler belt and the left crawler belt rotate respectively by being driven.
  • the upper swing body 2 is rotated via a swing pinion, a swing circle, and the like by driving the swing machinery 114 when the swing motor 113 is electrically driven via the swing controller 112.
  • the engine 12 is a diesel engine, and its output (horsepower; kw) is controlled by adjusting the amount of fuel injected into the cylinder. This adjustment is performed by controlling a governor attached to the fuel injection pump of the engine 12, and the engine controller 14 controls the engine including the control of the governor.
  • the throttle dial 60 is a fuel adjustment dial as fuel adjustment means for defining the fuel injection amount.
  • the throttle dial 60 is not limited to a dial type, and may be a lever type or a button type that can be manually operated.
  • a right operating lever 41 for operating the work implement and a left operating lever 42 for operating the implement / turning operation are provided on the right and left sides of the front side of the driver's seat 70 of the hybrid construction machine 1, respectively.
  • a right operation lever 43 for traveling operation and a left operation lever 44 for traveling operation are provided.
  • a lock lever 26 is provided at the left end of the driver's seat 70.
  • the right operation lever 43 for traveling operation and the left operation lever 44 for traveling operation are operation levers for operating the right crawler track and the left crawler track, respectively, and operate the crawler track according to the operation direction and according to the operation amount. Operate the track at speed.
  • a monitor 50 is provided behind the front right side of the driver's seat 70.
  • the monitor 50 is electrically connected to the controller 16 shown in FIG. 3 and has a monitor screen 51.
  • the monitor 50 is a display device that can display and output various types of information on the monitor screen 51 and perform input operations such as various operation commands to the hybrid construction machine 1.
  • the monitor 50 is provided with an operation button 51a.
  • the operation buttons 51a are composed of a plurality of operation buttons, and various operation command signals of the hybrid construction machine 1 are transmitted to the controller 16 when each button is pressed by an operator or a service person.
  • a work mode selection button is provided as one of the operation buttons 51a.
  • an optimum work mode can be set from a plurality of work modes according to the work content. For example, a “heavy excavation mode (power mode)” that can maintain a large amount of work (the amount of earth and sand excavated per unit time) and a “fuel saving mode (economy mode) that further reduces fuel consumption during light-load work Can be set.
  • the output torque (engine torque) of the engine 12 (see FIG. 3) and the absorption torque (pump absorption torque) of the hydraulic pump 13 (see FIG. 3) driven by the engine 12 are worked. It is selected and controlled according to the mode. This selection / control is performed by transmitting a control signal to the engine 12 or the hydraulic pump 13 by the engine controller 14 (see FIG. 3) or the controller 16, and the engine torque and pump absorption torque corresponding to the set work mode. Are selected and controlled, and control is performed to maintain the engine speed near the matching point where these two torques coincide.
  • FIG. 3 is a block diagram showing an internal configuration of the hybrid construction machine 1 shown in FIG.
  • the controller 16 outputs a rotation command value for setting the engine speed to the target speed n_com to the engine controller 14, and the engine controller 14 obtains the engine target speed n_com from the target torque line. Increase or decrease the fuel injection amount.
  • the engine controller 14 outputs engine data eng_data including the engine torque estimated from the engine speed of the engine 12 and the fuel injection amount to the controller 16.
  • the drive shaft of the hydraulic pump 13 is connected to the output shaft of the engine 12, and the hydraulic pump 13 is driven by the rotation of the engine output shaft.
  • the hydraulic pump 13 is a variable displacement hydraulic pump, and the capacity q (cc / rev) is changed by changing the tilt angle of the swash plate.
  • the hydraulic pump 13 may be a double pump or a tandem pump.
  • the PTO shaft 20 is provided between the engine 12 and the hydraulic pump 13 or the generator motor 21, but the output shaft of the engine 12 and the rotor shaft of the generator motor 21 are coaxial and the rotor of the generator motor 21.
  • the shaft and the input shaft of the hydraulic pump 13 may be coaxial.
  • the engine 12, the generator motor 21, and the hydraulic pump 13 may be arranged in series. Note that the present embodiment can be implemented without using the PTO shaft 20.
  • Pressure oil discharged from the hydraulic pump 13 at a discharge pressure PRp and a flow rate Q (cc / min) is used for a boom operation valve 31, an arm operation valve 32, a bucket operation valve 33, and a right travel operation valve. 35 and the operation valve 36 for left travel.
  • the pump discharge pressure PRp is detected by a hydraulic pressure sensor 17 and a hydraulic pressure detection signal is input to the controller 16.
  • the pressure oil output from the operation valves 31, 32, 33, 35, and 36 is supplied to the boom cylinder 4a, the arm cylinder 5a, the bucket cylinder 6a, the travel motor 8 for right travel, and the travel motor 9 for left travel, respectively.
  • the boom cylinder 4a, the arm cylinder 5a, the bucket cylinder 6a, the traveling motor 8, and the traveling motor 9 are driven, and the right crawler belt and the left crawler belt of the boom 4, the arm 5, the bucket 6, and the lower traveling body 3 are operated.
  • the right operating lever 41 for operating the work implement is an operating lever for operating the boom 4 and the bucket 6, operates the boom 4 and the bucket 6 according to the operation direction, and at a speed corresponding to the operation amount. , Actuate the bucket 6.
  • the operation lever 41 is provided with a sensor 45 that detects an operation direction and an operation amount.
  • the sensor 45 inputs a lever signal indicating the operation direction and the operation amount of the operation lever 41 to the controller 16.
  • the boom lever signal Lb0 indicating the boom raising operation amount and the boom lowering operation amount is generated according to the operation direction and the operation amount with respect to the neutral position of the operation lever 41.
  • a bucket lever signal indicating the bucket excavation operation amount and the bucket dump operation amount according to the operation direction and the operation amount with respect to the neutral position of the operation lever 41. Lbk is input to the controller 16.
  • the pilot pressure (PPC pressure) PRbo corresponding to the operation amount of the operation lever 41 is the operation lever among the pilot ports of the boom operation valve 31.
  • PPC pressure pilot pressure
  • the pilot pressure (PPC pressure) PRbk corresponding to the operation amount of the operation lever 41 is changed to each pilot port of the operation valve 33 for the bucket. Of these, it is added to the pilot port 33a corresponding to the operation direction of the operation lever (bucket excavation direction, bucket dump direction).
  • the left operating lever 42 for operating the work machine and the turning operation is an operating lever for operating the arm 5 and the upper turning body 2, and the arm 5 and the upper turning body 2 are operated according to the operation direction and the operation amount is increased.
  • the arm 5 and the upper swing body 2 are operated at a corresponding speed.
  • the operation lever 42 is provided with a sensor 46 that detects an operation direction and an operation amount.
  • the sensor 46 inputs a lever signal indicating the operation direction and the operation amount of the operation lever 42 to the controller 16.
  • the arm lever signal La indicating the arm excavation operation amount and the arm dump operation amount is generated according to the operation direction and the operation amount with respect to the neutral position of the operation lever 42.
  • the turn indicating the right turn operation amount and the left turn operation amount according to the operation direction and the operation amount with respect to the neutral position of the operation lever 42.
  • a lever signal Lsw is input to the controller 16.
  • the pilot pressure (PPC pressure) PRar corresponding to the operation amount of the operation lever 42 is the operation lever among the pilot ports of the operation valve 32 for the arm. Is added to the pilot port 32a corresponding to the operation direction (arm excavation direction, arm dump direction).
  • the turning lever signal Lsw corresponding to the operation amount (right turning direction, left turning direction) of the operation lever 42 is input to the controller 16. Then, the controller 16 outputs a turning signal SWG_com corresponding to the turning lever signal Lsw to the turning controller 112, and the turning motor 113 is driven to turn.
  • the pilot pressure (PPC pressure) PRcr corresponding to the operation amount of the operation lever 43 is applied to the pilot port 35a of the operation valve 35 for right travel.
  • a pilot pressure (PPC pressure) PRcl corresponding to the operation amount of the operation lever 44 is applied to the pilot port 36a of the left travel operation valve 36.
  • the pilot pressure PRcr and the pilot pressure PRcl are detected by the hydraulic sensors 18 and 19 and input to the controller 16, respectively.
  • Each of the operation valves 31, 32, 33, 35, and 36 is a flow direction control valve, which moves the spool in a direction corresponding to the operation direction of the corresponding operation lever 41 to 44 and adjusts the operation amount of the operation lever 41 to 44.
  • the spool is moved so that the oil passage opens by a corresponding opening area.
  • the pump control valve 15 is operated by the control current pc-epc output from the controller 6, and the pump control valve 15 is operated via the servo piston.
  • the pump control valve 15 prevents the product of the discharge pressure PRp (kg / cm 2 ) of the hydraulic pump 13 and the capacity q (cc / rev) of the hydraulic pump 13 from exceeding the pump absorption torque Tpcom corresponding to the control current pc-epc.
  • the tilt angle of the swash plate of the hydraulic pump 13 is controlled. This control is called PC control.
  • the lock lever 26 is a lever that operates a switching valve 26 a provided between the hydraulic pump 13 and each operation valve 31, 32, 33, 35, 36.
  • the hydraulic pump 13 can be brought into a locked state in which the transmission of the hydraulic pressure from 13 to each operation valve 31, 32, 33, 35, 36 is cut off.
  • the discharge pressure PRp detected by the hydraulic sensor 17 becomes no pressure, and the hydraulic actuator such as the boom cylinder 4a operates according to the operation amount even if the operation levers 41 and 42 and the travel levers 43 and 44 move. There is no.
  • the controller 16 outputs a rotation command value to the engine controller 14 including the governor, and increases or decreases the fuel injection amount so as to obtain the engine target rotation speed according to the current load of the hydraulic pump 13.
  • the rotational speed n of 12 and the torque T are adjusted.
  • the output shaft of the engine 12 is connected to the drive shaft of the hydraulic pump 13 and the drive shaft of the generator motor 21 via the PTO shaft 20.
  • the generator motor 21 performs a power generation operation and an electric operation. That is, the generator motor 21 operates as an electric motor (motor) and also operates as a generator.
  • the generator motor 21 also functions as a starter that starts the engine 12. When the starter switch is turned on, the generator motor 21 is electrically operated, the output shaft of the engine 12 is rotated at a low speed (for example, 400 to 500 rpm), and the engine 12 is started.
  • the engine 12 may be started by an alternator with a starter switch.
  • the generator motor 21 is torque-controlled by an inverter function in the generator controller 110.
  • the inverter function torque-controls the generator motor 21 in accordance with the generator motor command value GEN_com output from the controller 16.
  • the generator controller 110 is electrically connected to the capacitor 22 that is a battery through a DC power supply line.
  • the power source of the controller 16 may be the capacitor 22 or another capacitor (not shown).
  • the capacitor 22 accumulates (charges) the power generated when the generator motor 21 generates power. In addition, the capacitor 22 supplies the power stored in the capacitor 22 as electrostatic capacitance to the generator controller 110.
  • the capacitor 22 (for example, an electric double layer capacitor) is an example of a capacitor, and the capacitor includes a lead storage battery, a nickel hydrogen battery, a lithium ion battery, and the like in addition to the capacitor.
  • the generator motor 21 is provided with a rotation sensor 24 that detects the current actual rotational speed GEN_spd (rpm) of the generator motor 21, that is, the actual rotational speed of the engine 12.
  • a signal indicating the actual rotation speed GEN_spd detected by the rotation sensor 24 is input to the controller 16.
  • the capacitor 22 is provided with a voltage sensor 25 for detecting the voltage BATT_volt of the capacitor 22. A signal indicating the voltage BATT_volt detected by the voltage sensor 25 is input to the controller 16. Further, the capacitor 22 is provided with a temperature sensor 22 a that detects the temperature of the capacitor 22. A value detected by the temperature sensor 22 a is input to the controller 16.
  • the controller 16 outputs the generator motor command value GEN_com to the generator controller 110, and causes the generator motor 21 to generate power or operate.
  • the command value GEN_com for operating the generator motor 21 as a generator is output from the controller 16 to the generator controller 110, a part of the output torque generated by the engine 12 is generated via the PTO shaft 20. Electric power is generated by being transmitted to the drive shaft of the electric motor 21 and absorbing the torque of the engine 12.
  • the AC power generated by the generator motor 21 is converted to DC power by the generator controller 110 and the power is stored (charged) in the capacitor 22 via the DC power line.
  • the generator controller 110 controls the generator motor 21 to operate as a motor. To do. That is, the electric power stored in the capacitor 22 is converted into AC power by the generator controller 110 and supplied to the generator motor 21 to rotate the drive shaft of the generator motor 21. As a result, torque is generated in the generator motor 21, and this torque is transmitted to the PTO shaft 20 via the drive shaft of the generator motor 21 and added to the output torque of the engine 12 (the output of the engine 12 is assisted). ). This added output torque is absorbed by the hydraulic pump 13. In FIG.
  • the PTO shaft 20 is provided between the engine 12 and the hydraulic pump 13 or the generator motor 21, but the output shaft of the engine 12 and the rotor shaft of the generator motor 21 are coaxial,
  • the rotor shaft of the electric motor 21 and the input shaft of the hydraulic pump 13 may be coaxial.
  • the engine 12, the generator motor 21, and the hydraulic pump 13 may be arranged in series. Note that the present embodiment can be implemented without using the PTO shaft 20.
  • the power generation amount (absorption torque amount) and the motor drive amount (assist amount; generated torque amount) of the generator motor 21 change according to the content of the generator motor command value GEN_com.
  • the controller 16 calculates the target rotational speed Ngen_com of the generator motor 21 corresponding to the current engine target rotational speed n_com by the following equation.
  • Ngen_com n_com ⁇ K2 K2 is a reduction ratio of the PTO shaft 20.
  • the generator controller 110 performs rotation speed control or torque control on the generator motor 21.
  • the rotation speed control is control for adjusting the rotation speed of the generator motor 21 so that the target rotation speed can be obtained by giving the target rotation speed as the generator motor command value GEN_com.
  • torque control is control which adjusts the torque of the generator motor 21 so that a target torque can be obtained by giving a target torque as the generator motor command value GEN_com.
  • the controller 16 When performing the rotational speed control, the controller 16 assists the engine 12 with the generator motor 21 when the deviation between the engine target rotational speed and the actual rotational speed of the engine 12 is equal to or greater than a predetermined threshold value.
  • the command value GEN_com is sent to the generator controller 110 to perform assist control.
  • the hybrid construction machine 1 swings the upper swing body 2 with the electric actuator. That is, a turning motor 113 as an electric motor is connected to a drive shaft of the turning machinery 114, and the turning machinery 114 is driven by driving the turning motor 113, and the upper turning body via a swing pinion, a swing circle, or the like. 2 turns.
  • the turning motor 113 performs a power generation operation and an electric operation. That is, the turning motor 113 operates as an electric motor and also operates as a generator.
  • the swing motor 113 operates as an electric motor
  • the upper swing body 2 performs a swing operation.
  • the torque of the upper swing body 2 is absorbed and the swing motor 113 operates as a generator.
  • the turning motor 113 is driven and controlled by the turning controller 112.
  • the turning controller 112 is electrically connected to the capacitor 22 via a DC power supply line and is also electrically connected to the generator motor 21 via the generator controller 110.
  • the turning controller 112 and the generator controller 110 are controlled in accordance with a command output from the controller 16.
  • the current supplied to the swing motor 113 that is, the swing load current SWG_curr indicating the load of the upper swing body 2 is detected by the current sensor 111.
  • the turning load current SWG_curr detected by the current sensor 111 is input to the controller 16.
  • the swing motor lock button 61 shown in FIG. 3 is configured to electrically cut off the current supply to the swing motor 113 by pressing this button. When the operator presses the turning motor lock button 61, the upper turning body 2 cannot turn even if the left operation lever 42 for turning is operated.
  • Capacitor capacity measurement process Before measuring the capacitance of the capacitor, the charge removal process (discharge) stored in the capacitor 22 is performed. Although this charge removal is not necessarily performed, it is preferable to perform this in order to prevent a comparison failure when measuring the capacitor capacity at different dates.
  • the generator controller 110 performs rated constant current control on the generator motor 21 and performs rated constant voltage control on a booster (not shown).
  • the generator controller 110 continues the rated constant voltage control while the capacitor voltage Vcap is higher than the first voltage V1.
  • the value of the first voltage V1 is preferably set as the minimum value of the voltage fluctuation range during the standard operation of the capacitor 22.
  • the capacitor voltage Vcap eventually starts decreasing from the initial value Vcap0.
  • the booster output voltage Vcnv remains at the initial value Vcnv0 while the rated constant voltage control is being performed.
  • the generator controller 110 changes the control content. Specifically, the generator controller 110 performs rated constant current control on the generator motor 21, while the booster output voltage Vcnv performs voltage control that maintains a predetermined ratio with the capacitor voltage Vcap. Do. After the capacitor voltage reaches the first voltage V1, the booster output voltage Vcnv gradually decreases while maintaining the ratio (Vcnv / Vcap) to the capacitor voltage Vcap constant. This ratio is determined, for example, as a value that does not saturate the inductor in the booster and minimizes the booster loss. Thereafter, when the capacitor voltage Vcap drops to the third voltage V3, the generator controller 110 stops the control.
  • FIG. 4 is a block diagram showing an apparatus configuration and the like related to the capacitor capacity measurement of the controller 16 shown in FIG.
  • the controller 16 includes a capacitor capacity measurement control unit 200 and a storage unit 210.
  • the capacitor capacity measurement control unit 200 includes a monitoring unit 201, a measurement unit 202 that performs capacitor capacity measurement processing, and a display control unit 203 that performs display control of the monitor 50 related to the capacitor capacity measurement processing.
  • a serviceman or an operator operates the throttle dial 60, an electrical signal corresponding to the operation amount (rotation amount) of the throttle dial 60 is transmitted to the engine controller 14.
  • the monitoring unit 201 has four conditions for performing capacitor capacitance measurement, that is, Condition 1: Engine 12 is driven Condition 2: Throttle dial 60 is set to maximum Condition 3: Position of lock lever 26 in a locked state (including a locked state by operation of turning motor lock button 61) Condition 4: Processing for determining whether or not all the conditions that the work mode is selected and set to the power mode are satisfied, and a control signal for starting or continuing the capacitor capacitance measurement Transmit to the measuring unit 202.
  • the reason for setting conditions 2 and 4 is that the engine 12 can be driven at a stable rotational speed by setting the throttle dial 60 to the maximum and selecting the work mode as the power mode. Can be rotated at a stable rotational speed.
  • the generator motor 21 performs a stable power generation operation and can perform stable and accurate capacitor capacity measurement.
  • the reason for setting condition 3 is that it is assumed that a service person or an operator moves from the driver's seat 70 when measuring the capacitance of the capacitor. At that time, if the lock lever 26 is not locked, This is to prevent a case where a part of the man's body touches the operation lever and the operation lever moves and the output of the engine 12 fluctuates and accurate capacitor capacity measurement cannot be performed.
  • the monitoring unit 201 uses the determination criteria for starting or continuing the capacitor capacity measurement that all four conditions 1 to 4 are satisfied, but only the conditions 1 to 3 excluding the condition 4 are used. Even if it is established, stable and accurate capacitor capacity measurement can be performed.
  • the work mode is not the power mode but the economy mode is selected. Since the hybrid construction machine 1 is controlled by the controller 16 and the engine controller 14 so that the engine 12 is driven at a constant rotational speed even in the economy mode, the capacitor capacity can be measured stably and accurately. Satisfaction of condition 4 may not be an essential condition.
  • the driving of the engine 12 according to the condition 1 is indispensable for measuring the capacitor capacity, but is not essential for satisfying the condition.
  • the storage unit 210 stores engine driving state data 211, throttle state data 212, lock lever state data 213, and work mode state data 214.
  • the monitoring unit 201 refers to the respective holding state data, and described above. A process for determining whether or not the conditions 1 to 4 are satisfied is performed.
  • the engine driving state data 211 holds the engine speed in the engine data eng_data sent from the engine controller 14, and the monitoring unit 201 determines that the condition 1 is satisfied when the engine speed is a predetermined value or more. .
  • the engine speed can be detected by using a rotation sensor or the like attached to the engine 12.
  • the throttle state data 212 holds the throttle dial value of the throttle dial 60 (data obtained by digitizing an electrical signal), and the monitoring unit 201 determines that the condition 2 is satisfied when the throttle dial value is the maximum value.
  • the lock lever state data 213 holds the discharge pressure PRp, and when the discharge pressure PRp data is 0, it is determined that the condition 3 is satisfied.
  • the position of the lock lever 26 may be detected using a position detection sensor such as a limit switch, and the detection signal may be held in the lock lever state data 213.
  • the work mode state data 214 holds the work mode instructed from the monitor 50, and it is determined that the condition 4 is satisfied when this work mode is the power mode.
  • the work mode selection by the monitor 50 is performed using the work mode selection display screen 52 displayed on the monitor screen 51 as shown in FIG.
  • the work modes include P mode (power mode), E mode (economy mode), L mode (arm crane mode: suspended load mode), B mode (breaker mode), ATT mode (attachment mode), and the like.
  • the P mode and the E mode are modes for performing normal excavation work and the like, and the E mode suppresses the maximum engine output as compared with the P mode.
  • the L mode is a fine operation mode in which the engine speed is reduced (at a medium speed) and slowly moved, such as an arm crane operation for lifting a load suspended from a hook.
  • the B mode is a mode in which work is performed by attaching a breaker for crushing rocks or the like as an attachment, and is a mode in which the engine speed is set at a medium to high speed.
  • the ATT mode is a mode in which work is performed with the engine speed between medium speed and high speed, and is a spare mode when a special attachment such as a grapple is attached.
  • FIG. 6 is a flowchart showing a display control processing procedure by the display control unit 203.
  • FIG. 7 is a diagram showing a state transition of the screen display of the monitor screen 51 by the display control unit 203. 6 and 7, the display control unit 203 first displays the service menu display screen 53 on the monitor screen 51 (step S101).
  • the service menu display screen 53 is a screen for failure diagnosis that is displayed by a serviceman who inputs an ID, a password, and the like by operating the operation button 51a from a main menu screen (not shown).
  • the explanation will be made on the assumption that the capacitor capacity is measured by the operation of the service person.
  • the capacitor capacity measurement is also required by the manager of the hybrid construction machine 1 or the manager of the company that rents the hybrid construction machine 1.
  • the operation may be performed depending on the operation, and is not limited to a specific service person.
  • the state can be changed to the service menu display screen 53 by a special operation of the operation button 51a (for example, an operation of simultaneously pressing a plurality of operation buttons) instead of inputting an ID or a password.
  • a system that displays the service menu display screen 53 using an ID key by an immobilizer instead of inputting an ID or a password may be used.
  • This service menu display screen includes selection items such as capacitor charge removal and capacitor capacitance measurement.
  • the cursor is moved by the operation of the operation button 51a, and it is determined whether or not the item for measuring the capacitor capacity is selected by pressing the operation button 51a corresponding to the check button “Re” on the service menu display screen 53 (step S1). S102).
  • step S102 Yes
  • step S102 Yes
  • step S103 whether or not a condition satisfaction signal indicating that all the conditions 1 to 4 are satisfied is further received from the monitoring unit 201 is determined. Judgment is made (step S103).
  • the condition establishment signal has been received (step S103, Yes)
  • the measurement start instruction display screen 55 is displayed (step S104), the process proceeds to step S106, and the condition establishment signal has not been received (step S103).
  • the condition failure condition display screen 54 is displayed (step S105), and the process proceeds to step S103.
  • the condition item that is not satisfied is displayed on the condition failure display screen 54, and the condition item that is not satisfied is not displayed.
  • guidance content for requesting that a condition item that is not satisfied is displayed on the condition failure satisfaction display screen 54.
  • the measurement start instruction display screen 55 displays that the measurement is ready and a measurement start instruction button “START”.
  • the operation button 51a corresponding to the measurement start instruction button “START” is pressed, the capacitor capacitance measurement is started. Therefore, when the conditions 1 to 4 are not satisfied, the measurement start instruction button “START” is pressed, and the capacitor capacitance measurement cannot be started.
  • the display control unit 203 determines whether or not a measurement start instruction signal is received when the operation button 51a corresponding to the measurement start instruction button “START” is pressed (step S106).
  • the measurement start instruction signal is received (step S106, Yes)
  • the capacitor capacity measurement by the measurement unit 202 is started.
  • the measurement unit 202 sequentially sets the ratio of the elapsed time to the total time required for the capacitor capacity measurement. Calculate.
  • the total time required for measuring the capacitor capacity is stored in advance in a storage unit (not shown) in the controller 16.
  • Progress status display screens 56 and 57 showing the progress of capacitor capacitance measurement are displayed (step S107). If there is no measurement start instruction (step S106, No), the process proceeds to step S103, and processing before the measurement is started. repeat.
  • the progress status display screens 56 and 57 may display the elapsed time as a percentage (%) with the total time required for measuring the capacitor capacity as 100%, or display a bar display or a clock diagram by graphic display.
  • the progress of the capacitor capacity measurement may be visually shown to the service person.
  • the progress state display screen 57 of FIG. 7 when the capacitor capacity measurement is completed, the progress state displayed on the right side of the character being measured becomes 100% display, and this screen is maintained for several seconds. In this case, a buzzer sound may be generated together with the display, and the serviceman may be notified of the end of measurement.
  • the progress state of the capacitor capacity measurement may display a progress state of the capacitor capacity measurement calculated at the time of each charge described later, or the total time required for the capacitor capacity measurement for a plurality of times. The progress state may be displayed.
  • the display control unit 203 performs a process of determining whether or not the final capacitor capacity notification signal has been received from the measurement unit 202, that is, whether or not the capacitor capacity measurement has been completed (step S108).
  • the notification signal of the final capacitor capacity is received (step S108, Yes)
  • the progress state display screen 57 is transited and displayed on the measurement result display screen 58 showing the measurement result (step S111), and the display control process is ended.
  • the notification signal of the final capacitor capacity is not received (step S108, No)
  • it is determined whether or not a condition satisfaction signal is received from the monitoring unit 201 (step S109).
  • step S109 If the condition satisfaction signal is received (step S109, Yes), the process proceeds to step S107, the progress status display screens 56 and 57 are updated, and the condition satisfaction signal is not received (step S109). , No), the condition non-satisfied display screen 54 is displayed to display the condition non-satisfied (step S110), and the process proceeds to step S103 to return to the process before starting the capacitor capacity measurement. As described above, if at least one of the conditions 1 to 4 is not satisfied during the capacitor capacitance measurement, the capacitor capacitance measurement is not accurately performed. Processing for prompting a re-measurement operation is performed.
  • a temperature sensor 26a such as a thermistor is attached to the housing of the capacitor 22 or the capacitor cell constituting the capacitor 22, and the temperature at the time of measuring the capacitor capacity can be detected.
  • the value of the temperature sensor 26a is equal to or lower than 0 ° C. or when the value of the temperature sensor 26a exceeds 25 ° C., the value of the final capacitor capacity corrected by temperature is displayed. .
  • the operation button 51a corresponding to the return button is pressed on the progress state display screens 56 and 57, it is possible to forcibly shift to the measurement start instruction display screen 55 before starting the measurement. That is, when the operation button 51a is pressed, a measurement stop signal is transmitted from the monitor 50 to the controller 16, and the controller 16 transmits a control signal for driving the engine 12 at the idling speed to the engine controller 14 to forcibly measure. You can cancel.
  • FIG. 8 is a flowchart showing a monitoring processing procedure by the monitoring unit 201.
  • the monitoring unit 201 determines whether or not a signal indicating selection of an item for measuring the capacitor capacity has been received from the display control unit 203 (step S201).
  • a signal indicating selection of the capacitor capacity measurement item is received (step S201, Yes)
  • the storage unit 210 is referred to and it is determined whether or not all of the conditions 1 to 4 are satisfied (step S201).
  • Step S202 When all of the conditions 1 to 4 are satisfied (step S202, Yes), a condition satisfaction signal indicating that is generated and output to the measurement unit 202 and the display control unit 203 (step S203).
  • step S202 when all of the conditions 1 to 4 are not satisfied (step S202, No), the measurement unit 202 and display the condition failure signal indicating that the condition is not satisfied, including an unsatisfied item or a satisfaction item. It outputs to the control part 203 (step S204), and the judgment process of step S202 is repeated.
  • the monitoring unit 201 determines whether a measurement start instruction signal is received from the display control unit 203 (step S205). If the measurement start instruction signal is received (step S205, Yes), it is further determined whether or not all of the conditions 1 to 4 are satisfied, similarly to step S202 (step S206). On the other hand, if no measurement start instruction signal has been received (step S205, No), the process returns to step S202 to enter a state before the measurement is started.
  • step S206 when all the conditions are satisfied (step S206, Yes), it is determined whether a notification signal of the final capacitor capacity is received from the measurement unit 202 (step S209). Then, when the notification signal of the final capacitor capacity is received (step S209, Yes), the monitoring process ends. When the notification signal of the final capacitor capacity is not received (No at Step S209), since the capacitor capacity is being measured, the process proceeds to Step S206 and the process of Step 206 is repeated. On the other hand, if all the conditions are not satisfied in step 206 (step S206, No), a condition failure signal is output (step S207), and a capacitor capacity measurement stop instruction signal is output to the measurement unit 202 ( Step S208) and the process returns to Step S202.
  • the monitoring unit 201 can start the measurement of the capacitor capacity while the conditions 1 to 4 are satisfied, and the conditions 1 to 4 even during the measurement of the capacitor capacity. Since the state in which is satisfied is monitored, stable and accurate measurement of the capacitor capacity can be realized.
  • FIG. 9 is a flowchart showing a procedure for measuring the capacitor capacity by the measuring unit 202.
  • the capacitor capacity measurement process by the measurement unit 202 is based on the assumption that the capacitor charge removal process has been performed in advance. As described above, the capacitor charge removal is not necessarily performed, but it is preferable to perform the capacitor capacitance measurement in order to prevent a comparison failure when measuring the capacitor capacitance at different dates.
  • the measurement unit 202 determines whether or not a measurement start instruction signal is received from the display control unit 203 (step S301).
  • step S301 Only when the measurement start instruction signal is received (step S301, Yes), the generator motor 21 is controlled at a constant voltage, and the voltage value of the capacitor 22 is set to the charge start voltage value V0 (step S302). Thereafter, the generator motor 21 is torque controlled to start charging the capacitor 22 and set a timer (not shown) (step S303).
  • the voltage sensor 25 is electrically connected to the capacitor 22 in order to detect the state of the capacitor 22 as a voltage.
  • the measurement unit 202 receives a signal indicating a voltage value from the voltage sensor 25 one by one. Thereafter, it is determined whether or not the voltage value of the capacitor 22 has reached a preset charging end voltage value V1 (step S304). Only when the charging end voltage value V1 has been reached (step S304, Yes), the capacitor 22 is reached. Charging is completed, and data of charging time ⁇ T from the start of charging is acquired from the timer (step S305). And the measurement part 202 resets a timer (step S306).
  • step S307 it is determined whether or not a measurement stop instruction signal is received from the monitoring unit 201 (step S307).
  • the process returns to step S301 and waits for the reception of the measurement start instruction signal.
  • the measurement stop instruction signal is not received (step S307, No)
  • the measurement process is continued and the capacitor capacity is calculated (step S308).
  • the calculation of the capacitor capacity is performed based on the rotation value Ne and torque value Tr of the generator motor 21, the charging start voltage value V0 and the charging end voltage value V1, and the charging time ⁇ T.
  • the rotation value Ne is detected by a rotation sensor 24 attached to the generator motor 21, and the torque value Tr is detected by a torque sensor (not shown) attached to the generator motor 21.
  • the charging start voltage value V0 and the charging end voltage value V1 are detected by a voltage sensor 25 electrically connected to the capacitor 22 as shown in FIG.
  • the power generation energy ⁇ W of the generator motor 21 is supplied to the capacitor 22 as charging energy ⁇ J.
  • the power generation energy ⁇ W can be obtained using the rotation value Ne and the torque value Tr of the generator motor 21.
  • the power generation energy ⁇ W can be obtained by multiplying the rotational value Ne and the torque value Tr.
  • the energy efficiency when energy is supplied from the generator motor 21 to the generator controller 110 is ⁇ and the inverter efficiency in the generator controller 110 is ⁇
  • the charging energy ⁇ J of the capacitor 22 is expressed by the following equation (2) using the capacitance C of the capacitor 22, the charging start voltage value V0 and the charging end voltage value V1 of the capacitor 22.
  • ⁇ J (1/2) ⁇ C ⁇ (V1 ⁇ V0) (2) Then, using the equations (1) and (2), the capacitance C of the capacitor 22 can be calculated.
  • the measurement and calculation of the capacitance C of the capacitor 22 is performed a plurality of times. This is because the capacitance of the capacitor can be measured more accurately by taking into account variations in the measurement results and performing multiple measurements.
  • the measuring unit 202 performs the capacitor capacity measurement and calculation a plurality of times by charging a plurality of times, but the measuring unit 202 determines whether or not the capacitor capacity measurement has been performed a predetermined number of times (for example, 10 times) (step). S309). If the predetermined number of capacitor capacitance measurements have not been performed (No at Step S309), the process returns to Step S302, and the measurement of the capacitor capacitance is repeated until the predetermined number of capacitor capacitance measurements are completed (Steps 302 to 309).
  • a predetermined number of times for example, 10 times
  • the average capacitor capacity is calculated (step S310). That is, a calculation for obtaining the value of the average capacitor capacity for a predetermined number of times is performed. Furthermore, the temperature of the average capacitor capacity is corrected based on the capacitor temperature tc detected by the temperature sensor 22a (step S311).
  • This temperature correction is performed using the relationship between the capacitor temperature tc and the correction coefficient K.
  • the correction coefficient K corresponding to the capacitor temperature tc detected by the temperature sensor 22a is obtained, and the correction is performed by multiplying the average capacitor capacity by this correction coefficient K.
  • the relationship between the capacitor temperature tc and the correction coefficient K is, for example, as follows. Capacitor temperature tc ⁇ Correction coefficient K 0 ° C ⁇ 1.03 25 ° C ⁇ 1.00 40 ° C ⁇ 0.99 60 ° C ⁇ 0.98
  • the correction coefficient K is stored in a predetermined storage unit (memory) of the controller 16, and the correction coefficient K for the capacitor temperature tc is not limited to the above-described one, but is a correction for the assumed capacitor temperature tc.
  • the coefficient K is stored in advance in the storage unit as table data, and an accurate average capacitor capacity can be obtained by reading the correction coefficient K corresponding to the detected capacitor temperature tc from the storage unit. For example, when the capacitor temperature tc is detected as normal temperature (25 ° C.), the display control unit 203 displays the average value of the average capacitor capacity as shown in the measurement result display screen 58 of FIG. 7, and the capacitor temperature tc. When the low temperature (0 ° C.) is detected, the average capacitor capacity is multiplied by the correction coefficient K of 1.03, and the value of the calculation result is displayed on the measurement result display screen 58.
  • the measurement unit 202 generates and outputs a notification signal using the average capacitor capacity whose temperature is corrected as the final capacitor capacity (step S312), and ends the measurement process.
  • one condition is that the lock lever 26 is in the locked state.
  • the controller 16 operates the electromagnetic switch to perform the electrical lock.
  • the operation lever may be an electric lever. That is, the electrically locked state can be realized by using an electric circuit that does not output an electric signal (for example, voltage) corresponding to the operation even when the electric lever is operated.
  • the swing motor lock button 61 may be set as the condition 3.
  • the measurement unit 202 makes a determination to stop the measurement every time the timer is reset, that is, every time measurement ends, but not limited to this, when a measurement stop instruction signal is received from the monitoring unit 201, Measurement stop interrupt processing may be performed in the processing of the measurement unit 202.
  • the display control unit 203 is provided in the controller 16, the display control unit 203 is not limited thereto, and may be provided on the monitor 50 side.
  • the throttle dial 60 is set to the maximum, but the adjustment value may be a preset value instead of the maximum.
  • the capacitor capacity of the capacitor is measured on the assumption that the capacitor charge removal processing of the capacitor is performed.
  • one condition is that the process of removing the capacitor charge is performed.
  • the measurement of the capacitor capacity is started. May be.
  • the display control unit 203 further displays, on the condition failure display screen 54, the condition that the capacitor charge removal process is being performed at the start of the measurement of the capacitor capacity as the same condition as the conditions 1 to 4. It may be. As a result, the capacitor capacity can be measured more accurately.
  • the above-described hybrid construction machine 1 uses the electric energy stored in the capacitor 22 to rotate the upper swing body 2 with an electric actuator.
  • the present invention is not limited thereto, and the upper swing body 2 is hydraulically operated. You may make it make it rotate using a motor.

Abstract

 一層、正確にキャパシタなどの蓄電器の容量計測を行うことができるようにするため、キャパシタ22の容量を計測する計測部202と、エンジンが駆動している状態であることとする第1条件、前記エンジンへ供給する燃料の量を調整するスロットルダイヤル60の調整値が最大値であることとする第2条件、作業機および/または上部旋回体がロック状態であることとする第3条件、作業モードがパワーモードに設定されていることとする第4条件を監視し、前記第1条件~前記第4条件の全ての条件が成立する場合に計測部202に対してキャパシタ22の容量の計測を開始させるための制御信号を送信する監視部202と、を備える。また、表示制御部203は、キャパシタ容量計測開始前またはキャパシタ容量計測中に、全ての条件が成立していない場合に、成立していない条件を表示する画面に遷移させ、計測開始および計測継続を抑制する。

Description

ハイブリッド建設機械およびハイブリッド建設機械の蓄電器容量計測方法
 本発明は、エンジンと発電電動機と蓄電器とを備え、蓄電器容量計測が可能なハイブリッド建設機械およびハイブリッド建設機械の蓄電器容量計測方法に関する。
 近年の建設機械の分野では、一般自動車と同様にハイブリッド車が開発されている。この種のハイブリッド建設機械には、エンジンと発電電動機と蓄電器と作業機とが設けられている。蓄電器としてキャパシタが用いられることがある。キャパシタは、充放電を自由に行うことができる蓄電器であり、発電電動機が発電として作用した場合に、この発電した電力を蓄積する。また、キャパシタは、キャパシタに蓄積された電力を、インバータなどのドライバを介して発電電動機、あるいは作業機や上部旋回体を駆動するために搭載されている電動モータに供給する。
 キャパシタは、長期間の使用や、過充電あるいは過放電を繰り返し行うと、発熱などによって性能劣化が進行する。このキャパシタの性能劣化が進行すると、ハイブリッド建設機械は、電動モータに供給する電力が低下し、作業能力が低下する。このため、キャパシタの性能劣化状態を把握し、性能劣化が進行している場合に、キャパシタを交換するなどのメンテナンスが施される。
 特許文献1には、キャパシタなどの蓄電器を車載した状態で、かつ外部の装置ではなくハイブリッド建設機械に搭載されたシステムを用いて、キャパシタの容量を算出し、キャパシタの性能劣化判定を行うものが記載されている。
国際公開第2009/116495号パンフレット
 ところで、上述した特許文献1では、キャパシタ容量計測時に、発電電動機を所定の回転数および所定のトルクで駆動させてキャパシタの容量計測を行い、性能劣化を判定する技術が開示されている。しかし、キャパシタ容量計測は、一層正確であることが要望されているのが現実である。
 本発明は、上記に鑑みてなされたものであって、一層正確にキャパシタなどの蓄電器の容量計測が可能なハイブリッド建設機械およびハイブリッド建設機械の蓄電器容量計測方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、蓄電器の容量を計測する計測部と、エンジンが駆動している状態であることとする第1条件、前記エンジンへ供給する燃料の量を調整する燃料調整手段の調整値が予め設定された設定値であることとする第2条件、作業機および/または上部旋回体がロック状態であることとする第3条件を監視し、前記第1条件~前記第3条件の全ての条件が成立する場合に前記計測部に対して前記蓄電器の容量の計測を開始させるための制御信号を送信する監視部と、を備えたことを特徴とする。
 また、本発明は、上記の発明において、前記第2条件は、前記燃料調整手段の調整値が調整できる範囲の最大値であることを特徴とする。
 また、本発明は、上記の発明において、前記監視部は、前記エンジンのエンジン回転数および油圧ポンプのポンプ吸収トルクを一定の状態でコントロールするような作業モードが設定されていることを第4条件とし、前記第1条件~前記第4条件の全ての条件が成立する場合に、前記計測部に対して前記蓄電器の容量の計測を開始させるための制御信号を送信することを特徴とする。
 また、本発明は、上記の発明において、前記監視部は、前記蓄電器の容量の計測中に、前記第1条件~前記第4条件の少なくとも1つの条件が成立しない場合に、前記蓄電器の容量の計測を中止させる制御信号を生成することを特徴とする。
 また、本発明は、上記の発明において、少なくとも蓄電器の容量の計測に関する表示および指示を行う表示部と、前記表示部に少なくとも蓄電器の容量の計測に関するガイド表示を行わせる表示制御部と、を備えたことを特徴とする。
 また、本発明は、上記の発明において、前記表示制御部は、前記第1条件~前記第4条件の全ての条件が成立する場合に、前記表示部の画面が蓄電器の容量の計測の開始を指示する画面に遷移させることを特徴とする。
 また、本発明は、上記の発明において、前記表示制御部は、前記計測部が前記蓄電器の容量の計測を行っている際に前記蓄電器の容量の計測の進捗状態を表示することを特徴とする。
 また、本発明は、上記の発明において、前記計測部は、前記蓄電器の電荷抜きの処理が行われていることを条件として前記蓄電器の容量の計測を行うことを特徴とする。
 また、本発明は、エンジンが駆動している状態であることとする第1条件、前記エンジンへ供給する燃料の量を調整する燃料調整手段の調整値が予め設定された設定値であることとする第2条件、作業機および/または上部旋回体がロック状態であることとする第3条件を監視し、前記第1条件~前記第3条件の全ての条件が成立する場合に蓄電器の容量の計測を開始させるための制御信号を送信する監視ステップと、前記蓄電器の容量の計測を開始させるための制御信号を受信した場合に、前記蓄電器の容量の計測を行う計測ステップと、を含むことを特徴とする。
 また、本発明は、上記の発明において、前記監視ステップは、前記エンジンのエンジン回転数および油圧ポンプのポンプ吸収トルクを一定の状態でコントロールするような作業モードが設定されていることを第4条件とし、前記第1条件~前記第4条件の全ての条件が成立する場合に、前記蓄電器の容量の計測を開始させるための制御信号を送信することを特徴とする。
 本発明によれば、監視部が、エンジンが駆動している状態であることとする第1条件、前記エンジンへ供給する燃料の量を調整する燃料調整手段の調整値が予め設定された設定値であることとする第2条件、作業機および/または上部旋回体がロック状態であることとする第3条件を監視し、前記第1条件~前記第3条件の全ての条件が成立する場合に前記計測部に対して前記蓄電器の容量の計測を開始させるための制御信号を送信するようにしているため、エンジンが最高出力の状態で駆動し、それに伴い、発電電動機も高回転で駆動することにより発電出力が安定し、ロックレバーはロック状態であるため、作業機などが動作することによる不安定な容量計測となる状態を回避でき、より正確に蓄電器容量計測を行うことができる。しかも、発電電動機が高回転で駆動するため、蓄電器への充電時間が短くなり、短時間で蓄電器の容量計測を行うことができる。
図1は、この発明の実施の形態であるハイブリッド建設機械の外観構成を示す図である。 図2は、図1に示したハイブリッド建設機械の運転席の外観構成を示す図である。 図3は、図1に示したハイブリッド建設機械の内部構成を示すブロック図である。 図4は、キャパシタ容量計測に関係する装置等の構成を示すブロック図である。 図5は、モニタの表示画面に表示された作業モード選択画面の一例を示す図である。 図6は、表示制御部による表示制御処理手順を示すフローチャートである。 図7は、モニタ画面の表示状態遷移を示す図である。 図8は、監視部による監視処理手順を示すフローチャートである。 図9は、計測部によるキャパシタ容量の計測処理手順を示すフローチャートである。
 以下、図面を参照して、この発明を実施するための形態である蓄電器容量計測が可能なハイブリッド建設機械について説明する。なお、この実施の形態によりこの発明が限定されるものではない。
(全体構成)
 図1は、この発明の実施の形態であるハイブリッド建設機械1の外観構成を示す図である。また、図2は、図1に示した運転席70の外観構成を示す図である。なお、このハイブリッド建設機械1は、油圧ショベルである。
 図1および図2において、ハイブリッド建設機械1は、上部旋回体2と下部走行体3とを備え、下部走行体3は左右の履帯を有する。上部旋回体2にはブーム4、アーム5、バケット6からなる作業機が取り付けられている。ブーム4は、ブームシリンダ4aが駆動することにより作動し、アーム5は、アームシリンダ5aが駆動することにより作動し、バケット6は、バケットシリンダ6aが駆動することにより作動する。なお、ハイブリッド建設機械1が吊り荷作業を行う仕様の場合は、バケット6とアーム5を連結するリンクのピンに、吊り荷を行うためのフックが取り付けられている。また、下部走行体3には、走行モータ8,9を有し、それぞれ駆動することにより右履帯および左履帯がそれぞれ回転する。また、上部旋回体2は、旋回コントローラ112を介して旋回モータ113が電気駆動されることにより旋回マシナリ114が駆動し、スイングピニオン、スイングサークル等を介して旋回する。
 エンジン12は、ディーゼルエンジンであり、その出力(馬力;kw)の制御は、シリンダ内へ噴射する燃料量を調整することで行われる。この調整はエンジン12の燃料噴射ポンプに付設したガバナを制御することで行われ、エンジンコントローラ14は、このガバナの制御を含めたエンジンの制御を行う。なお、スロットルダイヤル60は、燃料噴射量を規定する燃料調整手段としての燃料調整ダイヤルである。なお、スロットルダイヤル60はダイヤル式に限らず、レバー式やボタン式など手動操作できるものであってもよい。
 図2に示すように、ハイブリッド建設機械1の運転席70の前方の右側、左側にはそれぞれ、作業機操作用の右操作レバー41、作業機・旋回操作用の左操作レバー42が設けられているとともに、走行操作用の右操作レバー43、走行操作用の左操作レバー44が設けられている。また、運転席70の左端には、ロックレバー26が設けられている。
 走行操作用の右操作レバー43、走行操作用の左操作レバー44はそれぞれ右履帯、左履帯を作動させるための操作レバーであり、操作方向に応じて履帯を作動させるとともに、操作量に応じた速度で履帯を作動させる。
 また、図2に示すように、運転席70の前方右側奥には、モニタ50が設けられている。モニタ50は、図3に示したコントローラ16に電気的に接続され、モニタ画面51を有する。モニタ50は、各種情報をモニタ画面51に表示出力するとともにハイブリッド建設機械1に対する各種動作指令などの入力操作を行うことができる表示装置である。
 モニタ50には、操作ボタン51aが設けられている。操作ボタン51aは、複数の操作ボタンにより構成されており、各ボタンをオペレータあるいはサービスマンが押圧することにより、ハイブリッド建設機械1の各種動作指令の信号がコントローラ16に発信される。操作ボタン51aの一つとして、作業モード選択ボタンが設けられている。このボタンをオペレータが押圧することにより、複数の作業モードの中から作業内容に応じて最適な作業モードを設定することができる。例えば、大きな作業量(単位時間当たりの土砂の掘削量)を維持することが可能な「重掘削モード(パワーモード)」や、軽負荷作業時に燃費を一段と抑制する「省燃費モード(エコノミーモード)」などを設定することができる。いずれかの作業モードが設定されると、エンジン12(図3参照)の出力トルク(エンジントルク)やエンジン12によって駆動される油圧ポンプ13(図3参照)の吸収トルク(ポンプ吸収トルク)が作業モードに応じて選択・制御される。この選択・制御は、エンジンコントローラ14(図3参照)やコントローラ16によって制御信号がエンジン12あるいは油圧ポンプ13に送信されることにより行われ、設定された作業モードに応じたエンジントルクとポンプ吸収トルクとが選択・制御され、この二つのトルクが一致するマッチング点付近にエンジン回転数を保つような制御が行われる。
(内部構成)
 つぎに、ハイブリッド建設機械1の内部構成について説明する。図3は、図1に示したハイブリッド建設機械1の内部構成を示すブロック図である。図3において、コントローラ16は、エンジンコントローラ14に対して、エンジン回転数を目標回転数n_comにするための回転指令値を出力し、エンジンコントローラ14は、目標トルク線でエンジン目標回転数n_comが得られるように燃料噴射量を増減する。また、エンジンコントローラ14は、エンジン12のエンジン回転数および燃料噴射量から推定されるエンジントルクを含むエンジンデータeng_dataをコントローラ16に出力する。
 エンジン12の出力軸には、油圧ポンプ13の駆動軸が連結されており、エンジン出力軸が回転することにより油圧ポンプ13が駆動する。油圧ポンプ13は可変容量型の油圧ポンプであり、斜板の傾転角が変化することで容量q(cc/rev)が変化する。なお、この油圧ポンプ13は、ダブルポンプあるいはタンデムポンプであってもよい。また、PTO軸20が、エンジン12と油圧ポンプ13あるいは発電電動機21との間に設けられているが、エンジン12の出力軸と発電電動機21のロータ軸を同軸とするとともに、発電電動機21のロータ軸と油圧ポンプ13の入力軸を同軸としてもよい。すなわち、エンジン12と発電電動機21と油圧ポンプ13が直列に配置された構成であってもよい。なお、PTO軸20を用いなくても本実施の形態は実施可能である。
 油圧ポンプ13から吐出圧PRp、流量Q(cc/min)で吐出された圧油は、ブーム用の操作バルブ31、アーム用の操作バルブ32、バケット用の操作バルブ33、右走行用の操作バルブ35、左走行用の操作バルブ36にそれぞれ供給される。ポンプ吐出圧PRpは、油圧センサ17で検出され、油圧検出信号がコントローラ16に入力される。
 操作バルブ31,32,33,35,36から出力された圧油はそれぞれ、ブームシリンダ4a、アームシリンダ5a、バケットシリンダ6a、右走行用の走行モータ8、左走行用の走行モータ9に供給される。これにより、ブームシリンダ4a、アームシリンダ5a、バケットシリンダ6a、走行モータ8、走行モータ9がそれぞれ駆動され、ブーム4、アーム5、バケット6、下部走行体3の右履帯、左履帯が作動する。
 作業機操作用の右操作レバー41は、ブーム4、バケット6を作動させるための操作レバーであり、操作方向に応じてブーム4、バケット6を作動させるとともに、操作量に応じた速度でブーム4、バケット6を作動させる。
 操作レバー41には、操作方向、操作量を検出するセンサ45が設けられている。センサ45は、操作レバー41の操作方向、操作量を示すレバー信号をコントローラ16に入力する。操作レバー41がブーム4を作動させる方向に操作された場合には、操作レバー41の中立位置に対する操作方向、操作量に応じて、ブーム上げ操作量、ブーム下げ操作量を示すブームレバー信号Lb0がコントローラ16に入力される。また、操作レバー41がバケット6を作動させる方向に操作された場合には、操作レバー41の中立位置に対する操作方向、操作量に応じて、バケット掘削操作量、バケットダンプ操作量を示すバケットレバー信号Lbkがコントローラ16に入力される。
 操作レバー41がブーム4を作動させる方向に操作された場合には、操作レバー41の操作量に応じたパイロット圧(PPC圧)PRboが、ブーム用の操作バルブ31の各パイロットポートのうち操作レバーの操作方向(ブーム上げ方向、ブーム下げ方向)に対応するパイロットポート31aに加えられる。
 同様に、操作レバー41がバケット6を作動させる方向に操作された場合には、操作レバー41の操作量に応じたパイロット圧(PPC圧)PRbkが、バケット用の操作バルブ33の各パイロットポートのうち操作レバーの操作方向(バケット掘削方向、バケットダンプ方向)に対応するパイロットポート33aに加えられる。
 作業機・旋回操作用の左操作レバー42は、アーム5、上部旋回体2を作動させるための操作レバーであり、操作方向に応じてアーム5、上部旋回体2を作動させるとともに、操作量に応じた速度でアーム5、上部旋回体2を作動させる。
 操作レバー42には、操作方向、操作量を検出するセンサ46が設けられている。センサ46は、操作レバー42の操作方向、操作量を示すレバー信号をコントローラ16に入力する。操作レバー42がアーム5を作動させる方向に操作された場合には、操作レバー42の中立位置に対する操作方向、操作量に応じて、アーム掘削操作量、アームダンプ操作量を示すアームレバー信号Larがコントローラ16に入力される。また操作レバー42が上部旋回体2を作動させる方向に操作された場合には、操作レバー42の中立位置に対する操作方向、操作量に応じて、右旋回操作量、左旋回操作量を示す旋回レバー信号Lswがコントローラ16に入力される。
 操作レバー42がアーム5を作動させる方向に操作された場合には、操作レバー42の操作量に応じたパイロット圧(PPC圧)PRarが、アーム用の操作バルブ32の各パイロットポートのうち操作レバーの操作方向(アーム掘削方向、アームダンプ方向)に対応するパイロットポート32aに加えられる。
 一方、操作レバー42が上部旋回体2を作動させる方向に操作された場合には、操作レバー42の操作量(右旋回方向、左旋回方向)に応じた旋回レバー信号Lswがコントローラ16に入力され、コントローラ16は旋回レバー信号Lswに対応した旋回信号SWG_comを旋回コントローラ112に出力し、旋回モータ113が旋回駆動する。
 操作レバー43の操作量に応じたパイロット圧(PPC圧)PRcrが、右走行用の操作バルブ35のパイロットポート35aに加えられる。同様に、操作レバー44の操作量に応じたパイロット圧(PPC圧)PRclが、左走行用の操作バルブ36のパイロットポート36aに加えられる。
 パイロット圧PRcrとパイロット圧PRclとは、それぞれ油圧センサ18,19によって検出され、コントローラ16に入力される。
 各操作バルブ31,32,33,35,36は流量方向制御弁であり、対応する操作レバー41~44の操作方向に応じた方向にスプールを移動させるとともに、操作レバー41~44の操作量に応じた開口面積だけ油路が開口するようにスプールを移動させるものである。
 ポンプ制御バルブ15は、コントローラ6から出力される制御電流pc-epcによって動作し、サーボピストンを介してポンプ制御バルブ15は動作する。
 ポンプ制御バルブ15は、油圧ポンプ13の吐出圧PRp(kg/cm)と油圧ポンプ13の容量q(cc/rev)の積が制御電流pc-epcに対応するポンプ吸収トルクTpcomを超えないように、油圧ポンプ13の斜板の傾転角を制御する。この制御は、PC制御と呼ばれている。
 ロックレバー26は、油圧ポンプ13と各操作バルブ31,32,33,35,36との間に設けられた切替弁26aを操作するレバーであり、このロックレバー26を操作することによって、油圧ポンプ13からの油圧を各操作バルブ31,32,33,35,36へ伝達することを切り離すロック状態にすることができる。このロック状態では、油圧センサ17が検出する吐出圧PRpは無圧となり、操作レバー41,42および走行レバー43,44が動いても操作量に応じてブームシリンダ4aなどの油圧アクチュエータが動作することはない。
 コントローラ16は、ガバナを含むエンジンコントローラ14に対して、回転指令値を出力して、現在の油圧ポンプ13の負荷に応じたエンジン目標回転数が得られるように燃料噴射量を増減して、エンジン12の回転数nとトルクTを調整する。
 一方、エンジン12の出力軸は、PTO軸20を介して油圧ポンプ13の駆動軸および発電電動機21の駆動軸に連結される。発電電動機21は発電作用と電動作用を行う。すなわち、発電電動機21は電動機(モータ)として作動し、また発電機としても作動する。また、発電電動機21はエンジン12を始動させるスタータとしても機能する。スタータスイッチがオンされると、発電電動機21が電動作用し、エンジン12の出力軸を低回転(たとえば400~500rpm)で回転させ、エンジン12を始動させる。エンジン12は、スタータスイッチでオルタネータによって始動させてもよい。
 発電電動機21は、発電機コントローラ110内のインバータ機能によってトルク制御される。インバータ機能は、コントローラ16から出力される発電電動機指令値GEN_comに応じて発電電動機21をトルク制御する。
 発電機コントローラ110は、直流電源線を介して蓄電器であるキャパシタ22に電気的に接続されている。なお、コントローラ16の電源は、キャパシタ22であっても、他の図示しない蓄電器であってもよい。
 キャパシタ22は、発電電動機21が発電作用した場合に発電した電力を蓄積する(充電する)。また、キャパシタ22は、キャパシタ22に静電容量として電荷が蓄積された電力を発電機コントローラ110に供給する。なお、キャパシタ22(例えば、電気二重層キャパシタ)は、蓄電器の一例であり、蓄電器には、キャパシタの他、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等も含まれる。
 発電電動機21には発電電動機21の現在の実回転数GEN_spd(rpm)、つまりエンジン12の実回転数を検出する回転センサ24が付設されている。回転センサ24で検出される実回転数GEN_spdを示す信号はコントローラ16に入力される。
 また、キャパシタ22には、キャパシタ22の電圧BATT_voltを検出する電圧センサ25が設けられている。電圧センサ25で検出される電圧BATT_voltを示す信号はコントローラ16に入力される。さらに、キャパシタ22には、キャパシタ22の温度を検出する温度センサ22aが設けられている。温度センサ22aで検出された値は、コントローラ16に入力される。
 また、コントローラ16は、発電機コントローラ110に発電電動機指令値GEN_comを出力し、発電電動機21を発電作用または電動作用させる。コントローラ16から発電機コントローラ110に対して、発電電動機21を発電機として作動させるための指令値GEN_comが出力されると、エンジン12で発生した出力トルクの一部は、PTO軸20を介して発電電動機21の駆動軸に伝達されてエンジン12のトルクを吸収して発電が行われる。そして、発電電動機21で発生した交流電力は発電機コントローラ110で直流電力に変換されて直流電源線を介してキャパシタ22に電力が蓄積される(充電される)。
 また、コントローラ16から発電機コントローラ110に対して、発電電動機21を電動機として作動させるための発電電動機指令値GEN_comが出力されると、発電機コントローラ110は発電電動機21が電動機として作動するように制御する。すなわち、キャパシタ22に蓄積された電力が発電機コントローラ110で交流電力に変換されて発電電動機21に供給され、発電電動機21の駆動軸を回転作動させる。これにより発電電動機21でトルクが発生し、このトルクは、発電電動機21の駆動軸を介してPTO軸20に伝達されて、エンジン12の出力トルクに加算される(エンジン12の出力がアシストされる)。この加算した出力トルクは、油圧ポンプ13で吸収される。なお、図2では、PTO軸20が、エンジン12と油圧ポンプ13あるいは発電電動機21との間に設けられているが、エンジン12の出力軸と発電電動機21のロータ軸を同軸とするとともに、発電電動機21のロータ軸と油圧ポンプ13の入力軸を同軸としてもよい。すなわち、エンジン12と発電電動機21と油圧ポンプ13が直列に配置された構成であってもよい。なお、PTO軸20を用いなくても本実施の形態は実施可能である。
 発電電動機21の発電量(吸収トルク量)、電動量(アシスト量;発生トルク量)は、発電電動機指令値GEN_comの内容に応じて変化する。
 コントローラ16は、現在のエンジン目標回転数n_comに対応する発電電動機21の目標回転数Ngen_comを次式によって演算する。
 Ngen_com=n_com×K2
 ただし、K2は、PTO軸20の減速比である。
 発電機コントローラ110は、発電電動機21に対して回転数制御若しくはトルク制御を行う。ここで、回転数制御とは、発電電動機指令値GEN_comとして目標回転数を与えて目標回転数が得られるように発電電動機21の回転数を調整する制御のことである。また、トルク制御とは、発電電動機指令値GEN_comとして目標トルクを与えて目標トルクが得られるように発電電動機21のトルクを調整する制御のことである。
 コントローラ16は、回転数制御を行う場合、エンジン目標回転数とエンジン12の実際の回転数との偏差が所定のしきい値以上になっている場合、発電電動機21によってエンジン12をアシストする発電電動機指令値GEN_comを発電機コントローラ110に送ってアシスト制御を行う。
 この発電電動機21によるアシストを加えた場合には、エンジン12が加速する。この場合、発電電動機21によるアシストがあるため、アシストがない場合に比べてエンジン回転上昇時の初期の段階で、油圧ポンプ13の吸収トルクが大きくなる。このため操作レバーの動きに対して作業機の動きだしが早くなり、作業効率の低下を抑制でき、オペレータに与える操作感覚の違和感を軽減できる。
 一方、ハイブリッド建設機械1は、上述したように、電動アクチュエータで上部旋回体2を旋回作動させるものである。すなわち、旋回マシナリ114の駆動軸に電動モータとしての旋回モータ113が連結されており、この旋回モータ113が駆動することにより旋回マシナリ114が駆動し、スイングピニオン、スイングサークル等を介して上部旋回体2が旋回する。
 旋回モータ113は、発電作用と電動作用とを行う。つまり、旋回モータ113は、電動機として作動し、また発電機としても作動する。旋回モータ113が電動機として作動したときには上部旋回体2が旋回作動し、上部旋回体2が旋回を停止する際、上部旋回体2のトルクが吸収されて旋回モータ113が発電機として作動する。
 旋回モータ113は、旋回コントローラ112によって駆動制御される。旋回コントローラ112は直流電源線を介してキャパシタ22に電気的に接続されているとともに、発電機コントローラ110を介して発電電動機21に電気的に接続されている。旋回コントローラ112、および発電機コントローラ110は、コントローラ16から出力される指令に応じて制御される。
 旋回モータ113に供給されている電流、つまり上部旋回体2の負荷を示す旋回負荷電流SWG_currは、電流センサ111で検出される。電流センサ111で検出された旋回負荷電流SWG_currは、コントローラ16に入力される。ここで、図3に示した、旋回モータロックボタン61は、このボタンを押すことによって、旋回モータ113への電流供給が電気的に切断されるものである。旋回モータロックボタン61をオペレータが押すことにより、旋回用の左操作レバー42を操作しても上部旋回体2は、旋回することができなくなる。
(キャパシタ容量計測処理)
 キャパシタ容量の計測を行う前に、キャパシタ22に蓄えられている電荷抜き処理(放電)を行う。この電荷抜きは、必ず行わなければならないものではないが、キャパシタ容量の計測を異なる日時に行う場合、比較障害を生じないために、行うほうが望ましい。
 この電荷抜き処理は、まず、発電機コントローラ110は、発電電動機21に対して定格定電流制御を行うとともに、図示しない昇圧器に対して定格定電圧制御を行う。発電機コントローラ110は、キャパシタ電圧Vcapが第1の電圧V1よりも高い間、定格定電圧制御を継続する。第1の電圧V1の値は、キャパシタ22の標準的な動作時における電圧変動範囲の最小値として設定されるのが好ましい。
 発電機コントローラ110が、定格定電圧制御を継続して行っていると、やがてキャパシタ電圧Vcapは、初期値Vcap0から減少し始める。これに対して、昇圧器出力電圧Vcnvは、定格定電圧制御がなされている間、初期値Vcnv0のままである。
 その後、キャパシタ電圧Vcapが第1の電圧V1まで低下した場合、発電機コントローラ110は、制御内容を変更する。具体的には、発電機コントローラ110は、発電電動機21に対して定格定電流制御を行う一方、昇圧器に対しては、昇圧器出力電圧Vcnvがキャパシタ電圧Vcapと所定の比率を保つ電圧制御を行う。キャパシタ電圧が第1の電圧V1に達した時以降、昇圧器出力電圧Vcnvは、キャパシタ電圧Vcapとの比率(Vcnv/Vcap)を一定に保ちながら徐々に低下していく。この比率は、例えば昇圧器内部のインダクタが飽和せず、かつ昇圧器の損失が最小となるような値として定められる。その後、キャパシタ電圧Vcapが第3の電圧V3まで低下した場合、発電機コントローラ110は、制御を停止する。
 つぎに、コントローラ16によるキャパシタ容量計測処理について説明する。図4は、図3に示したコントローラ16のキャパシタ容量計測に関係する装置構成等を示すブロック図である。図4に示すように、コントローラ16は、キャパシタ容量計測制御部200および記憶部210を有する。キャパシタ容量計測制御部200は、監視部201、キャパシタ容量計測処理を行う計測部202、およびキャパシタ容量計測処理に関連する、モニタ50の表示制御を行う表示制御部203を有する。また、スロットルダイヤル60をサービスマンあるいはオペレータが操作することにより、スロットルダイヤル60の操作量(回転量)に応じた電気信号が、エンジンコントローラ14に送信される。
 監視部201は、キャパシタ容量計測を行うための4つの条件、すなわち、
 条件1:エンジン12が駆動していること
 条件2:スロットルダイヤル60が最大に設定されていること
 条件3:ロックレバー26がロック状態(旋回モータロックボタン61の操作によるロック状態を含む)の位置にあること
 条件4:作業モードがパワーモードに選択・設定してあること
の全ての条件が成立しているか否かを判断する処理を行い、キャパシタ容量計測を開始あるいは継続するための制御信号を計測部202に送信する。ここで、条件2,4を設定した理由は、スロットルダイヤル60を最大に設定し、作業モードをパワーモードに選択することによって、安定した回転数でエンジン12が駆動することが可能で発電電動機21も安定した回転数で回転することが可能となる。すわなち、発電電動機21は、安定した発電動作が行われ、安定かつ正確なキャパシタ容量計測を行うことができるからである。また、条件3を設定した理由は、キャパシタ容量計測の際に、運転席70からサービスマンやオペレータが移動することが想定され、その際に、ロックレバー26をロック状態にしておかなければ、サービスマンの体の一部が操作レバーに触れて操作レバーが動き、エンジン12の出力が変動し正確なキャパシタ容量計測を行うことができないことを防止するためである。また、監視部201は、条件1~4の4つの条件の全てが成立していることをキャパシタ容量計測の開始あるいは継続の判断基準としたが、条件4を除いた条件1~3のみの条件成立でも、安定かつ正確なキャパシタ容量計測を行うことができる。例えば、作業モードがパワーモードでなく、エコノミーモードが選択されているとする。ハイブリッド建設機械1は、エコノミーモードであっても、一定の回転数でエンジン12が駆動するようにコントローラ16およびエンジンコントローラ14によって制御されるため、安定かつ正確なキャパシタ容量計測が可能であるから、条件4の成立は、必須条件でなくてもよい。なお、条件1によるエンジン12の駆動は、キャパシタ容量計測には必須であるが、条件の成立には必須ではない。
 記憶部210には、エンジン駆動状態データ211、スロットル状態データ212、ロックレバー状態データ213、および作業モード状態データ214が保持されており、監視部201は、それぞれの保持状態データを参照して上述した条件1~4が成立しているか否かを判断する処理を行う。エンジン駆動状態データ211は、エンジンコントローラ14から送られるエンジンデータeng_data内のエンジン回転数が保持され、監視部201は、エンジン回転数が所定値以上である場合に条件1が成立するものと判断する。エンジン回転数は、エンジン12に取り付けられた回転センサなどを用いて検出することができる。スロットル状態データ212は、スロットルダイヤル60のスロットルダイヤル値(電気信号を数値化したデータ)が保持され、監視部201は、スロットルダイヤル値が最大値のときに条件2を満足するものと判断する。ロックレバー状態データ213には、吐出圧PRpが保持され、吐出圧PRpのデータが0のときに条件3が成立しているものと判断する。なお、ロックレバー26の位置をリミットスイッチなどの位置検出センサを用いて検出し、その検出信号をロックレバー状態データ213に保持してもよい。作業モード状態データ214には、モニタ50から指示された作業モードが保持され、この作業モードがパワーモードのときに条件4が成立するものと判断する。
 なお、モニタ50による作業モードの選択は、図5に示すような作業モード選択表示画面52がモニタ画面51上に表示され、この作業モード選択表示画面52を用いて行われる。ここで、作業モードには、Pモード(パワーモード)、Eモード(エコノミーモード)、Lモード(アームクレーンモード:吊り荷モード)、Bモード(ブレーカモード)、ATTモード(アタッチメントモード)などがある。PモードやEモードは、通常の掘削作業などを行うときのモードであり、Eモードは、Pモードに比してエンジンの最大出力が抑えられている。Lモードは、フックに吊り下げられた荷をリフティングするアームクレーン操作などのようにエンジン回転数を抑えて(中速にして)ゆっくり動かす微操作モードである。Bモードは、岩石などを砕くブレーカをアタッチメントとして付けて作業するモードであり、エンジン回転数を中高速にして作業を行うモードである。ATTモードは、エンジン回転数を中速から高速の間にして作業を行うモードであり、グラップルなどのような特殊なアタッチメントを取り付ける場合の予備のモードである。
(表示制御処理)
 図6は、表示制御部203による表示制御処理手順を示すフローチャートである。また、図7は、表示制御部203によるモニタ画面51の画面表示の状態遷移を示す図である。図6および図7において、まず表示制御部203は、モニタ画面51に、サービスメニュー表示画面53を表示させる(ステップS101)。このサービスメニュー表示画面53は、サービスマンが、図示しないメインメニュー画面から、操作ボタン51aを操作することによってIDやパスワードなどを入力し表示される故障診断用の画面である。ここでは、サービスマンの操作によってキャパシタ容量計測が行われる場面を想定して説明するが、ハイブリッド建設機械1の管理者やハイブリッド建設機械1をレンタルする会社の管理者などによってもキャパシタ容量計測を必要に応じて行ってもよく、特定のサービスマンに限定された操作ではない。また、IDやパスワードなどの入力ではなく、操作ボタン51aの特殊操作(例えば、複数の操作ボタンを同時に押圧する操作)によって、サービスメニュー表示画面53に状態遷移させることもできる。さらに、IDやパスワードの入力ではなく、イモビライザによるIDキーを用いて、サービスメニュー表示画面53を表示させるようなシステムであってもよい。このサービスメニュー表示画面には、キャパシタ電荷抜き、キャパシタ容量計測などの選択項目がある。
 ここで、操作ボタン51aの操作によってカーソルを動かし、サービスメニュー表示画面53のチェックボタン「レ」に対応する操作ボタン51aの押圧によって、キャパシタ容量計測の項目が選択されたか否かを判断する(ステップS102)。キャパシタ容量計測の項目が選択された場合(ステップS102,Yes)、さらに、監視部201から条件1~4の全ての条件が成立していることを示す条件成立信号を受信しているか否かを判断する(ステップS103)。条件成立信号を受信している場合(ステップS103,Yes)には、計測開始指示表示画面55を表示し(ステップS104)、ステップS106に移行し、条件成立信号を受信していない場合(ステップS103,No)には、条件不成立表示画面54を表示し(ステップS105)、ステップS103に移行する。この際、条件不成立表示画面54には、成立していない条件項目を表示し、成立している条件項目は表示しない。そして、条件不成立表示画面54上には、成立していない条件項目を成立させることを依頼するガイダンス内容が表示される。一方、計測開始指示表示画面55には、計測準備ができた旨、および計測開始指示ボタン「START」が表示される。この計測開始指示ボタン「START」に対応する操作ボタン51aが押圧されることによって、キャパシタ容量計測が開始される。したがって、条件1~4が成立していない場合、計測開始指示ボタン「START」を押圧し、キャパシタ容量計測を開始することができない。
 その後、表示制御部203は、計測開始指示ボタン「START」に対応する操作ボタン51aが押圧されたことによる計測開始指示信号を受信したか否かを判断する(ステップS106)。計測開始指示信号の受信があった場合(ステップS106,Yes)には、計測部202によるキャパシタ容量計測が開始されるが、計測部202はキャパシタ容量計測に要する全時間に対する経過時間の比を逐一演算する。キャパシタ容量計測に要する全時間は、あらかじめコントローラ16内の図示しない記憶部に記憶されている。キャパシタ容量計測の進捗状態を示す進捗状態表示画面56,57を表示し(ステップS107)、計測開始指示がない場合(ステップS106,No)には、ステップS103に移行して、計測開始前の処理を繰り返す。進捗状態表示画面56、57は、キャパシタ容量計測に要する全時間を100%として、経過時間を割合表示(%)してもよいし、グラフィック表示によって、バー表示あるいは時計の図を表示して、サービスマンに視覚的にキャパシタ容量計測の進捗状態を示してもよい。図7の進捗状態表示画面57に示すように、キャパシタ容量計測が終了すると、計測中の文字の右側に表示されていた進捗状態が、100%の表示となり、数秒間、この画面を維持する。この場合、表示とともにブザー音が発せられ、計測終了をサービスマンに知らせるようにしてもよい。なお、計測開始指示がない場合とは、一定時間、計測開始指示ボタン「START」に対応する操作ボタン51aが押圧されない場合か、特定の操作ボタン51aを押圧する場合である。なお、キャパシタ容量計測の進捗状態は、後述する1回毎の充電時に算出するキャパシタ容量計測の進捗状態を表示するようにしてもよいし、複数回のキャパシタ容量計測をキャパシタ容量計測に要する全時間として進捗状態を表示するようにしてもよい。
 その後、表示制御部203は、計測部202から、最終キャパシタ容量の通知信号を受信したか否か、すなわちキャパシタ容量計測が終了したか否かを判断する処理を行う(ステップS108)。最終キャパシタ容量の通知信号を受信した場合(ステップS108,Yes)には、進捗状態表示画面57から計測結果を示す計測結果表示画面58に遷移表示し(ステップS111)、表示制御処理を終了する。一方、最終キャパシタ容量の通知信号を受信していない場合(ステップS108,No)には、監視部201から条件成立信号を受信しているか否かを判断する(ステップS109)。条件成立信号を受信している場合(ステップS109,Yes)には、ステップS107に移行して、進捗状態表示画面56,57の更新表示を行い、条件成立信号を受信していない場合(ステップS109,No)には、条件不成立表示画面54に移行して、不成立の条件を表示し(ステップS110)、ステップS103に移行してキャパシタ容量計測開始前の処理に戻る。以上のように、キャパシタ容量計測中に条件1~4のうちの少なくとも1つが成立しない状態となった場合、キャパシタ容量計測が正確に行われないことになるため、計測が中止されて、サービスマンに再計測の操作を促すような処理が行われる。
 なお、キャパシタ22の筐体あるいはキャパシタ22を構成するキャパシタセルに、サーミスタなどの温度センサ26aが取り付けられており、キャパシタ容量計測時の温度を検出することができる。計測結果表示画面58では、温度センサ26aの値が0℃以下の場合、あるいは、温度センサ26aの値が25℃を越えるような場合、最終キャパシタ容量の値が温度補正された値が表示される。
 また、進捗状態表示画面56,57で戻りボタンに対応する操作ボタン51aを押圧すると強制的に計測開始前の計測開始指示表示画面55に移行することができる。すなわち、操作ボタン51aを押圧すると計測中止信号がモニタ50からコントローラ16に送信されてコントローラ16はエンジンコントローラ14に、エンジン12がアイドリング回転数で駆動するような制御信号を送信し、強制的に計測中止を行うことができる。
(監視処理)
 図8は、監視部201による監視処理手順を示すフローチャートである。図8において、監視部201は、表示制御部203からキャパシタ容量計測の項目の選択を示す信号を受信したか否かを判断する(ステップS201)。キャパシタ容量計測の項目の選択を示す信号の受信があった場合(ステップS201,Yes)には、記憶部210を参照して、条件1~4の全てが成立しているか否かを判断する(ステップS202)。条件1~4の全てが成立している場合(ステップS202,Yes)には、その旨を示す条件成立信号を生成し、計測部202および表示制御部203に出力し(ステップS203)、ステップ205に移行する。一方、条件1~4の全てが成立していない場合(ステップS202,No)には、不成立の項目あるいは成立の項目を含み、条件が不成立である旨を示す条件不成立信号を計測部202および表示制御部203に出力し(ステップS204)、ステップS202の判断処理を繰り返す。
 その後、監視部201は、表示制御部203から計測開始指示信号を受信したか否かを判断する(ステップS205)。計測開始指示信号の受信があった場合(ステップS205,Yes)には、さらにステップS202と同様に、条件1~4の全てが成立しているか否かを判断する(ステップS206)。一方、計測開始指示信号の受信がない場合(ステップS205,No)には、ステップS202に戻り、計測開始前の状態になる。
 ステップS206で、全ての条件が成立している場合(ステップS206,Yes)には、計測部202から最終キャパシタ容量の通知信号の受信があったか否かを判断する(ステップS209)。そして、最終キャパシタ容量の通知信号を受信した場合(ステップS209,Yes)には監視処理を終了する。最終キャパシタ容量の通知信号が受信されない場合(ステップS209,No)は、キャパシタ容量の計測中であるため、ステップS206に移行してステップ206の処理を繰り返す。一方、ステップ206で全ての条件が成立しない場合(ステップS206,No)には、条件不成立信号の出力を行い(ステップS207)、さらにキャパシタ容量の計測中止指示信号を計測部202に出力して(ステップS208)、ステップS202に戻る。
 監視部201が、以上のような監視処理を行うことによって、条件1~4が成立した状態でキャパシタ容量の計測開始を行うことができるとともに、キャパシタ容量の計測中であっても条件1~4が成立した状態を監視しているため、安定かつ正確なキャパシタ容量の計測を実現できる。
(計測処理)
 図9は、計測部202によるキャパシタ容量の計測処理手順を示すフローチャートである。なお、この計測部202によるキャパシタ容量の計測処理は、キャパシタの電荷抜き処理が予め行われていることを前提としている。上述したように、このキャパシタ電荷抜きは、必ず行わなければならないものではないが、キャパシタ容量の計測を異なる日時に行う場合、比較障害を生じないために、行うほうが望ましい。図9において、まず、計測部202は、表示制御部203から計測開始指示信号を受信したか否かを判断する(ステップS301)。そして、計測開始指示信号を受信した場合(ステップS301,Yes)に限り、発電電動機21を定電圧制御して、キャパシタ22の電圧値を充電開始電圧値V0に設定する(ステップS302)。その後、発電電動機21をトルク制御して、キャパシタ22への充電開始を行うとともに図示しないタイマをセットする(ステップS303)。
 キャパシタ22の状態を電圧として検出するために、電圧センサ25がキャパシタ22に電気的に接続されている。計測部202は、電圧センサ25から逐一、電圧値を示す信号を受信する。その後、キャパシタ22の電圧値が予め設定される充電終了電圧値V1になったか否かを判断し(ステップS304)、充電終了電圧値V1になった場合(ステップS304,Yes)に限り、キャパシタ22への充電を終了し、充電開始からの充電時間ΔTのデータをタイマから取得する(ステップS305)。そして、計測部202はタイマをリセットする(ステップS306)。
 その後、監視部201から計測中止指示信号を受信したか否かを判断する(ステップS307)。計測中止指示信号を受信した場合(ステップS307,Yes)には、ステップS301に戻り、計測開始指示信号の受信を待つ。一方、計測中止指示信号を受信しない場合(ステップS307,No)には、計測処理を続行し、キャパシタ容量の算出を行う(ステップS308)。
 キャパシタ容量の算出は、発電電動機21の回転数値Neおよびトルク値Trと、充電開始電圧値V0および充電終了電圧値V1と、充電時間ΔTとをもとに行われる。回転数値Neは、発電電動機21に取り付けられた回転センサ24で検出し、トルク値Trは発電電動機21に取り付けられた図示しないトルクセンサで検出される。また、充電開始電圧値V0および充電終了電圧値V1は、図4に示すようにキャパシタ22に電気的に接続された電圧センサ25によって検出される。発電電動機21の発電エネルギーΔWが、キャパシタ22に充電エネルギーΔJとして供給される。発電エネルギーΔWは、発電電動機21の回転数値Neとトルク値Trとを用いて求めることができる。つまり、回転数値Neとトルク値Trの乗算によって、発電エネルギーΔWは求めることができる。そして、発電電動機21から発電機コントローラ110にエネルギーが供給されるときのエネルギー効率をαとし、発電機コントローラ110におけるインバータ効率をβとすると、キャパシタ22の充電エネルギーΔJは、次式(1)で示される。
 ΔJ=ΔW×α-(β×ΔT)             …(1)
 一方、キャパシタ22の充電エネルギーΔJは、キャパシタ22の容量C、キャパシタ22の充電開始電圧値V0と充電終了電圧値V1とを用いて、次式(2)で示される。
 ΔJ=(1/2)・C・(V1-V0)         …(2)
 そして、式(1),(2)を用いると、キャパシタ22の容量Cを算出することができる。
 キャパシタ22の容量Cの計測および算出は複数回行われる。何故ならば、計測結果のばらつきを考慮し、複数回の計測を行うことで一層正確なキャパシタの容量計測を行うためである。計測部202は、複数回の充電によって複数回のキャパシタ容量計測および算出を行うが、計測部202は、所定回数(例えば、10回)のキャパシタ容量計測が行われたか否かを判断する(ステップS309)。所定回数のキャパシタ容量計測が行われていない場合(ステップS309,No)には、ステップS302に戻り、所定回数のキャパシタ容量計測が終了するまでキャパシタ容量の計測が繰り返される(ステップ302~309)。所定回数のキャパシタ容量計測が行われた場合(ステップS309,Yes)には、平均キャパシタ容量を算出する(ステップS310)。つまり、所定回数の平均キャパシタ容量の値を求める演算を行う。さらに、温度センサ22aが検出したキャパシタ温度tcをもとに平均キャパシタ容量を温度補正する(ステップS311)。
 この温度補正は、キャパシタ温度tcと補正係数Kとの関係を用いて行う。温度センサ22aが検出したキャパシタ温度tcに対応する補正係数Kを求め、この補正係数Kを、平均キャパシタ容量に乗算することによって補正される。このキャパシタ温度tcと補正係数Kとの関係は、たとえば次のようになる。
 キャパシタ温度tc → 補正係数K
   0℃      →  1.03
  25℃      →  1.00
  40℃      →  0.99
  60℃      →  0.98
 なお、補正係数Kは、コントローラ16の所定の記憶部(メモリ)に保存されており、キャパシタ温度tcに対する補正係数Kは、上記に代表されるものに限らず、想定されるキャパシタ温度tcに対する補正係数Kを、予めテーブルデータとして記憶部に保存しておき、検出されたキャパシタ温度tcに応じた補正係数Kを記憶部から読み出すことで正確な平均キャパシタ容量を求めることができる。例えば、キャパシタ温度tcが常温(25℃)と検出された場合、表示制御部203は、平均キャパシタ容量のそのままの値を、図7の計測結果表示画面58に示すように表示し、キャパシタ温度tcが低温(0℃)を検出した場合、平均キャパシタ容量は、補正係数Kである1.03が乗じられて、その演算結果の値を計測結果表示画面58に表示する。
 その後、計測部202は、温度補正された平均キャパシタ容量を最終キャパシタ容量として通知信号を生成・出力し(ステップS312)、計測処理を終了する。
 なお、上述した実施の形態では、ロックレバー26がロック状態であることを1つの条件としていたが、油圧ロックのみでなく、コントローラ16が電磁スイッチを作動させて電気的ロックを行うようにしてもよい。操作レバーが電気式レバーの場合もあるからである。つまり、電気的ロックがされた状態とは、電気式レバーが操作されても操作に応じた電気信号(例えば、電圧)を出力しないような電気回路を用いて実現できる。また、図2に示した旋回モータロックボタン61のように電気式スイッチを用いて作業機などの動作をロック状態にする場合には、この旋回モータロックボタン61を条件3としてもよい。
 なお、計測部202は、計測中止の判断を、タイマリセット毎、すなわち各回の計測終了毎に行っているが、これに限らず、監視部201から計測中止指示信号の受信があった場合に、計測部202の処理に、計測中止の割り込み処理を行うようにしてもよい。
 さらに、表示制御部203は、コントローラ16内に設けられているが、これに限らず、モニタ50側に設けるようにしてもよい。
 なお、上述した条件2として、スロットルダイヤル60が最大に設定されていることとしたが、調整値は、最大でなく予め設定された設定値であってもよい。
 また、上述した実施の形態では、好ましくは、蓄電器のキャパシタ電荷抜きの処理が行われていることを前提として蓄電器のキャパシタ容量の計測を行うようにしていたが、監視部201は、計測部202にキャパシタ容量の計測を行う前に、キャパシタ電荷抜きの処理が行われていることを1つの条件とし、この条件を含めてすべての条件が成立した場合に、キャパシタ容量の計測を開始させるようにしてもよい。この場合、さらに表示制御部203は、キャパシタ容量の計測開始にあたり、キャパシタ電荷抜きの処理が行われているとするとの条件を条件1~4と同様な条件として条件不成立表示画面54に表示するようにしてもよい。これにより、一層正確なキャパシタ容量の計測を行うことができる。
 さらに、上述したハイブリッド建設機械1は、キャパシタ22に蓄積された電気エネルギーを用い、電動アクチュエータで上部旋回体2を旋回作動させるものであったが、これに限らず、上部旋回体2を、油圧モータを用いて旋回させるようにしてもよい。
   1 ハイブリッド建設機械
   2     上部旋回体
   3     下部走行体
   4     ブーム
   4a    ブームシリンダ
   5     アーム
   5a    アームシリンダ
   6     バケット
   6a    バケットシリンダ
   8,9   走行モータ
  12     エンジン
  13     油圧ポンプ
  14     エンジンコントローラ
  15     ポンプ制御バルブ
  16     コントローラ
  17~19  油圧センサ
  20     PTO軸
  21     発電電動機
  22     キャパシタ
  22a    温度センサ
  24     回転センサ
  25     電圧センサ
  26     ロックレバー
  26a    切替弁
  31,32,33,35,36  操作バルブ
  31a~36a パイロットポート
  41~44  操作レバー
  45,46  センサ
  50     モニタ
  51     モニタ画面
  51a    操作ボタン
  52     作業モード選択表示画面
  53     サービスメニュー表示画面
  54     条件不成立表示画面
  55     計測開始指示表示画面
  56,57  進捗状態表示画面
  58     計測結果表示画面
  60     スロットルダイヤル
  61     旋回モータロックボタン
  70     運転席
 110     発電電動機コントローラ
 111     電流センサ
 112     旋回コントローラ
 113     旋回モータ
 114     旋回マシナリ
 115     旋回速度センサ

Claims (10)

  1.  蓄電器の容量を計測する計測部と、
     エンジンが駆動している状態であることとする第1条件、前記エンジンへ供給する燃料の量を調整する燃料調整手段の調整値が予め設定された設定値であることとする第2条件、作業機および/または上部旋回体がロック状態であることとする第3条件を監視し、前記第1条件~前記第3条件の全ての条件が成立する場合に前記計測部に対して前記蓄電器の容量の計測を開始させるための制御信号を送信する監視部と、
     を備えたことを特徴とするハイブリッド建設機械。
  2.  前記第2条件は、前記燃料調整手段の調整値が調整できる範囲の最大値であることを特徴とする請求項1に記載のハイブリッド建設機械。
  3.  前記監視部は、前記エンジンのエンジン回転数および油圧ポンプのポンプ吸収トルクを一定の状態でコントロールするような作業モードが設定されていることを第4条件とし、前記第1条件~前記第4条件の全ての条件が成立する場合に、前記計測部に対して前記蓄電器の容量の計測を開始させるための制御信号を送信することを特徴とする請求項1に記載のハイブリッド建設機械。
  4.  前記監視部は、前記蓄電器の容量の計測中に、前記第1条件~前記第4条件の少なくとも1つの条件が成立しない場合に、前記蓄電器の容量の計測を中止させる制御信号を生成することを特徴とする請求項3に記載のハイブリッド建設機械。
  5.  少なくとも蓄電器の容量の計測に関する表示および指示を行う表示部と、
     前記表示部に少なくとも蓄電器の容量の計測に関するガイド表示を行わせる表示制御部と、
     を備えたことを特徴とする請求項3に記載のハイブリッド建設機械。
  6.  前記表示制御部は、前記第1条件~前記第4条件の全ての条件が成立する場合に、前記表示部の画面が蓄電器の容量の計測の開始を指示する画面に遷移させることを特徴とする請求項5に記載のハイブリッド建設機械。
  7.  前記表示制御部は、前記計測部が前記蓄電器の容量の計測を行っている際に前記蓄電器の容量の計測の進捗状態を表示することを特徴とする請求項5に記載のハイブリッド建設機械。
  8.  前記計測部は、前記蓄電器の電荷抜きの処理が行われていることを条件として前記蓄電器の容量の計測を行うことを特徴とする請求項1に記載のハイブリッド建設機械。
  9.  エンジンが駆動している状態であることとする第1条件、前記エンジンへ供給する燃料の量を調整する燃料調整手段の調整値が予め設定された設定値であることとする第2条件、作業機および/または上部旋回体がロック状態であることとする第3条件を監視し、前記第1条件~前記第3条件の全ての条件が成立する場合に蓄電器の容量の計測を開始させるための制御信号を送信する監視ステップと、
     前記蓄電器の容量の計測を開始させるための制御信号を受信した場合に、前記蓄電器の容量の計測を行う計測ステップと、
     を含むことを特徴とするハイブリッド建設機械の蓄電器容量計測方法。
  10.  前記監視ステップは、前記エンジンのエンジン回転数および油圧ポンプのポンプ吸収トルクを一定の状態でコントロールするような作業モードが設定されていることを第4条件とし、前記第1条件~前記第4条件の全ての条件が成立する場合に、前記蓄電器の容量の計測を開始させるための制御信号を送信することを特徴とする請求項9に記載のハイブリッド建設機械の蓄電器容量計測方法。
PCT/JP2011/061090 2010-05-20 2011-05-13 ハイブリッド建設機械およびハイブリッド建設機械の蓄電器容量計測方法 WO2011145531A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127027233A KR101445956B1 (ko) 2010-05-20 2011-05-13 하이브리드 건설 기계 및 하이브리드 건설 기계의 축전기 용량 계측 방법
DE112011101714T DE112011101714T5 (de) 2010-05-20 2011-05-13 Hybridbaumaschine und Verfahren zur Messung einer Kapazität einer elektrischen Speichervorrichtung einer Hybridbaumaschine
US13/583,985 US20130057305A1 (en) 2010-05-20 2011-05-13 Hybrid construction machine and method for measuring capacitance of electricity storage device of hybrid construction machine
CN201180022481.0A CN102884439B (zh) 2010-05-20 2011-05-13 混合动力建筑机械及混合动力建筑机械的蓄电器容量计测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010116803A JP5226733B2 (ja) 2010-05-20 2010-05-20 ハイブリッド建設機械およびハイブリッド建設機械の蓄電器容量計測方法
JP2010-116803 2010-05-20

Publications (1)

Publication Number Publication Date
WO2011145531A1 true WO2011145531A1 (ja) 2011-11-24

Family

ID=44991637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061090 WO2011145531A1 (ja) 2010-05-20 2011-05-13 ハイブリッド建設機械およびハイブリッド建設機械の蓄電器容量計測方法

Country Status (6)

Country Link
US (1) US20130057305A1 (ja)
JP (1) JP5226733B2 (ja)
KR (1) KR101445956B1 (ja)
CN (1) CN102884439B (ja)
DE (1) DE112011101714T5 (ja)
WO (1) WO2011145531A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112672A1 (ko) * 2013-01-21 2014-07-24 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 스윙 로킹장치

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247899B1 (ja) * 2012-02-15 2013-07-24 株式会社小松製作所 蓄電器の充放電制御装置、蓄電器の充放電制御方法、および蓄電器の充放電制御装置を備えたハイブリッド作業機械
KR101888044B1 (ko) * 2012-02-17 2018-08-13 스미토모 겐키 가부시키가이샤 쇼벨 및 쇼벨의 제어방법
JP5236101B1 (ja) * 2012-05-24 2013-07-17 株式会社小松製作所 無限軌道式建設機械
JP2014167219A (ja) * 2013-02-28 2014-09-11 Kayaba Ind Co Ltd ハイブリッド建設機械、コントローラ及び不揮発性メモリの書込処理方法
US9822510B2 (en) * 2013-03-06 2017-11-21 Hitachi Construction Machinery Co., Ltd. Construction machine
JP6073170B2 (ja) * 2013-03-27 2017-02-01 住友建機株式会社 ショベル
CN104619564B (zh) * 2013-07-23 2017-02-22 株式会社小松制作所 混合动力工程机械及混合动力工程机械的信息通知控制方法
JP6324224B2 (ja) * 2014-06-10 2018-05-16 日立建機株式会社 ハイブリッド建設機械
JP6301232B2 (ja) * 2014-10-06 2018-03-28 日立建機株式会社 ハイブリッド式作業機械
JP6665412B2 (ja) * 2015-03-23 2020-03-13 株式会社タダノ 作業機械の調整装置
JP2016217087A (ja) * 2015-05-26 2016-12-22 日立建機株式会社 建設機械
US11066074B2 (en) 2019-08-07 2021-07-20 Caterpillar Inc. Control of an engine of a machine based on detected load requirements of the machine
JP7224314B2 (ja) * 2020-03-04 2023-02-17 ヤンマーパワーテクノロジー株式会社 建設機械

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325834A (ja) * 1991-04-24 1992-11-16 Matsushita Electric Works Ltd 容量表示回路
JP2000013910A (ja) * 1998-06-19 2000-01-14 Honda Motor Co Ltd ハイブリッド駆動車両の制御装置
WO2009116495A1 (ja) * 2008-03-21 2009-09-24 株式会社小松製作所 ハイブリッド建設機械における蓄電装置の劣化状態判定方法および装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289575A (ja) * 1990-03-27 1991-12-19 Aisin Seiki Co Ltd 蓄電池の寿命判定装置
JPH07260907A (ja) * 1994-03-23 1995-10-13 Nippondenso Co Ltd 車両用バッテリの容量検出装置
EP1736789A4 (en) * 2004-03-25 2009-03-04 Nec Corp METHOD AND DEVICES FOR ESTIMATING THE REMAINING CAPACITY OF A MEMORY BATTERY
DE112008000589B4 (de) * 2007-03-23 2015-11-19 Komatsu Ltd. Energieerzeugungssteuerverfahren einer Hybridbaumaschine und Hybridbaumaschine
DE112008000812T5 (de) * 2007-03-29 2010-02-04 Komatsu Ltd. Arbeitsmaschine
JP5384039B2 (ja) * 2008-06-16 2014-01-08 住友重機械工業株式会社 作業機械における蓄電器の内部抵抗の測定方法及び内部抵抗測定装置
EP2383862A4 (en) * 2009-01-28 2017-11-22 Sumitomo Heavy Industries, LTD. Hybrid working machine and electricity storage control apparatus
JP5116787B2 (ja) * 2009-03-05 2013-01-09 住友重機械工業株式会社 ハイブリッド型作業機械
EP2415935A4 (en) * 2009-03-31 2016-09-21 Hitachi Construction Machinery CONSTRUCTION MACHINE AND INDUSTRIAL VEHICLE WITH ELECTRIC POWER SUPPLY SYSTEM
WO2010113223A1 (ja) * 2009-04-01 2010-10-07 住友重機械工業株式会社 ハイブリッド型作業機械
JPWO2011034060A1 (ja) * 2009-09-15 2013-02-14 住友重機械工業株式会社 ハイブリッド型建設機械における制御方法及び制御装置
US8362629B2 (en) * 2010-03-23 2013-01-29 Bucyrus International Inc. Energy management system for heavy equipment
JP2012082644A (ja) * 2010-10-14 2012-04-26 Hitachi Constr Mach Co Ltd 建設機械
US9421873B2 (en) * 2010-10-15 2016-08-23 Hitachi Construction Machinery Co., Ltd. Construction machine
DE102011079469A1 (de) * 2011-07-20 2013-01-24 Ford Global Technologies, Llc Verfahren zum Ermitteln einer Ladeakzeptanz sowie Verfahren zum Laden einer wiederaufladbaren Batterie

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325834A (ja) * 1991-04-24 1992-11-16 Matsushita Electric Works Ltd 容量表示回路
JP2000013910A (ja) * 1998-06-19 2000-01-14 Honda Motor Co Ltd ハイブリッド駆動車両の制御装置
WO2009116495A1 (ja) * 2008-03-21 2009-09-24 株式会社小松製作所 ハイブリッド建設機械における蓄電装置の劣化状態判定方法および装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112672A1 (ko) * 2013-01-21 2014-07-24 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 스윙 로킹장치
GB2525333A (en) * 2013-01-21 2015-10-21 Volvo Constr Equip Ab Swing lock device for construction equipment

Also Published As

Publication number Publication date
KR20120137415A (ko) 2012-12-20
CN102884439B (zh) 2015-03-18
DE112011101714T5 (de) 2013-04-25
JP5226733B2 (ja) 2013-07-03
CN102884439A (zh) 2013-01-16
JP2011242344A (ja) 2011-12-01
US20130057305A1 (en) 2013-03-07
KR101445956B1 (ko) 2014-09-29

Similar Documents

Publication Publication Date Title
JP5226733B2 (ja) ハイブリッド建設機械およびハイブリッド建設機械の蓄電器容量計測方法
US9260032B2 (en) Battery charge/discharge control device, battery charge/discharge control method, and hybrid working machine with battery charge/discharge control device
JP5764310B2 (ja) 動力伝達装置
US8421415B2 (en) Hybrid working machine having battery protecting function
JP5055948B2 (ja) ハイブリッド作業機械
KR101685452B1 (ko) 하이브리드 작업 기계 및 하이브리드 작업 기계의 정보 통지 제어 방법
KR101714948B1 (ko) 건설 기계
JP6944426B2 (ja) 電動式建設機械
JP2000295717A (ja) 畜電器を備えた作業機械
EP2634315B1 (en) Power transmission device
EP2851540B1 (en) Anti-lug and anti-stall control unit
JP2012233312A (ja) ハイブリッド作業機械
EP3369915B1 (en) Work machine and engine stopping control device
JP5285655B2 (ja) 作業車両
WO2022153735A1 (ja) 建設機械

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022481.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8046/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127027233

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13583985

Country of ref document: US

Ref document number: 112011101714

Country of ref document: DE

Ref document number: 1120111017146

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783465

Country of ref document: EP

Kind code of ref document: A1