WO2011145267A1 - 拡散剤組成物、不純物拡散層の形成方法、および太陽電池 - Google Patents

拡散剤組成物、不純物拡散層の形成方法、および太陽電池 Download PDF

Info

Publication number
WO2011145267A1
WO2011145267A1 PCT/JP2011/002147 JP2011002147W WO2011145267A1 WO 2011145267 A1 WO2011145267 A1 WO 2011145267A1 JP 2011002147 W JP2011002147 W JP 2011002147W WO 2011145267 A1 WO2011145267 A1 WO 2011145267A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
diffusing agent
agent composition
impurity diffusion
semiconductor substrate
Prior art date
Application number
PCT/JP2011/002147
Other languages
English (en)
French (fr)
Inventor
敦史 室田
平井 隆昭
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to KR1020127030239A priority Critical patent/KR101794374B1/ko
Priority to US13/696,907 priority patent/US9870924B2/en
Priority to EP11783206.3A priority patent/EP2573800B1/en
Priority to CN201180019567.8A priority patent/CN102859658B/zh
Publication of WO2011145267A1 publication Critical patent/WO2011145267A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • H01L21/208
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/228Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/38Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
    • H01L21/388Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/182Intermixing or interdiffusion or disordering of III-V heterostructures, e.g. IILD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a diffusing agent composition, a method for forming an impurity diffusion layer, and a solar cell.
  • a diffusing agent containing a P-type or N-type impurity diffusion component is applied to the surface of the semiconductor substrate.
  • the impurity diffusion component is diffused from the diffusing agent into the semiconductor substrate to form an impurity diffusion layer.
  • Patent Document 1 discloses a boron diffusion coating liquid (diffusing agent composition) for application to a screen printing method.
  • a semiconductor substrate frequently used for solar cells is a silicon substrate, and fine irregularities of about 2 ⁇ m called texture are formed on the surface of the silicon substrate. Therefore, when the diffusing agent composition is applied to the surface of the semiconductor substrate, the diffusing agent composition on the convex portion may flow into the concave portion, and the convex portion may be exposed. Alternatively, when the diffusing agent composition flows into the recess, the layer thickness of the diffusing agent composition becomes non-uniform, and when the diffusing agent composition shrinks by heating, cracks occur, or the layer of the diffusing agent composition floats from the substrate As a result, the diffusion efficiency of the impurity diffusion component may be reduced. Therefore, the diffusing agent composition is required to be uniformly applied to the surface of the semiconductor substrate, that is, to have high coating film formability.
  • the diffusing agent composition to be applied to the spray coating method has high coating film forming ability, which is a basic requirement for the diffusing agent composition, and is less likely to cause clogging of the spray nozzle, that is, discharge stability. It is required to have high performance.
  • the present invention has been made in view of such circumstances, and the object thereof is a diffusing agent composition that has excellent coating film forming properties and ejection stability and can be suitably used for spray coating methods, and the diffusing agent composition.
  • An object of the present invention is to provide a method for forming an impurity diffusion layer using an object and a solar cell.
  • an aspect of the present invention is a diffusing agent composition
  • the diffusing agent composition is a diffusing agent composition used for forming an impurity diffusing agent layer on a semiconductor substrate, and includes an impurity Diffusion component (A), silicon compound (B), solvent (C1) having a boiling point of 100 ° C. or lower, solvent (C2) having a boiling point of 120 to 180 ° C., and solvent having a boiling point of 240 to 300 ° C. And a solvent (C) containing C3).
  • Another aspect of the present invention is a method for forming an impurity diffusion layer.
  • the impurity diffusion layer is formed by printing the diffusing agent composition of the above aspect by spray coating to form a predetermined pattern of the impurity diffusing agent layer. And a diffusion step of diffusing the impurity diffusion component (A) of the diffusing agent composition into the semiconductor substrate.
  • the impurity diffusion layer can be formed with higher accuracy.
  • Still another embodiment of the present invention is a solar cell, and the solar cell includes a semiconductor substrate having an impurity diffusion layer formed by the impurity diffusion layer forming method of the above embodiment.
  • a diffusing agent composition that has excellent coating film formability and ejection stability and can be suitably used for spray coating, a method for forming an impurity diffusion layer using the diffusing agent composition, and A solar cell can be provided.
  • 1A to 1D are process cross-sectional views for explaining a method for manufacturing a solar cell including a method for forming an impurity diffusion layer according to an embodiment.
  • 2A to 2D are process cross-sectional views for explaining a method for manufacturing a solar cell including a method for forming an impurity diffusion layer according to an embodiment.
  • the diffusing agent composition according to the present embodiment is a diffusing agent composition used for forming an impurity diffusing agent layer on a semiconductor substrate, and preferably used for forming an impurity diffusing agent layer by spray coating. It is a composition.
  • the diffusing agent composition according to the present embodiment includes an impurity diffusion component (A), a silicon compound (B), a solvent (C1) having a boiling point of 100 ° C. or lower, and a solvent having a boiling point of 120 to 180 ° C. (C2) and a solvent (C) including a solvent (C3) having a boiling point of 240 to 300 ° C.
  • A impurity diffusion component
  • B silicon compound
  • C1 having a boiling point of 100 ° C. or lower
  • C3 solvent having a boiling point of 240 to 300 ° C.
  • the impurity diffusion component (A) is a compound generally used as a dopant for the production of solar cells.
  • the impurity diffusion component (A) is a P-type impurity diffusion component containing a Group III (Group 13) element compound or an N-type impurity diffusion component containing a Group V (Group 15) element compound.
  • a P-type or N-type impurity diffusion layer can be formed in the semiconductor substrate.
  • a P-type impurity diffusion component containing a Group III element compound can form a P-type impurity diffusion layer in an N-type semiconductor substrate in the step of forming an electrode in a solar cell.
  • a P + -type (high-concentration P-type) impurity diffusion layer can be formed therein.
  • the group III element compound contained in the impurity diffusion component (A) include B 2 O 3 and Al 2 O 3 , and the impurity diffusion component (A) contains one or more of these compounds.
  • the N-type impurity diffusion component containing the compound of the group V element can form an N-type impurity diffusion layer in the P-type semiconductor substrate in the step of forming the electrode in the solar cell.
  • An N + type (high concentration N type) impurity diffusion layer can be formed in the semiconductor substrate.
  • Examples of the group V element compound contained in the impurity diffusion component (A) include P 2 O 5 , Bi 2 O 3 , Sb (OCH 2 CH 3 ) 3 , SbCl 3 , As (OC 4 H 9 ) 3 and the like. Is mentioned.
  • the concentration of the impurity diffusion component (A) is appropriately adjusted according to the thickness of the impurity diffusion layer formed on the semiconductor substrate.
  • the impurity diffusion component (A) is preferably contained in an amount of 0.1% by mass or more, more preferably 1.0% by mass or more, based on the total mass of the diffusing agent composition.
  • the silicon compound (B) is not particularly limited as long as it is a conventionally known compound used for forming a silicon-based coating on a semiconductor substrate.
  • the silicon compound (B) for example, at least one selected from the group consisting of SiO 2 fine particles and a reaction product obtained by hydrolysis of alkoxysilane (hereinafter, appropriately referred to as a hydrolysis product of alkoxysilane). Can be mentioned.
  • a hydrolysis product of alkoxysilane a reaction product obtained by hydrolysis of alkoxysilane.
  • the average particle size of the SiO 2 fine particles is preferably 1 ⁇ m or less. When the average particle diameter exceeds 1 ⁇ m, when the diffusing agent composition is applied using a spray coating apparatus, the passage of the diffusing agent composition through the spray nozzle may be hindered. Specific examples of the SiO 2 fine particles include fumed silica.
  • the alkoxysilane used as the starting material of the hydrolysis product is a Si-containing compound represented by the following general formula (1).
  • R 1 n Si (OR 2 ) 4-n (1)
  • R 1 is a hydrogen atom, an alkyl group, or an aryl group
  • R 2 is an alkyl group or an aryl group
  • n represents an integer of 0, 1, or 2.
  • a plurality of R 1 when R 1 is plural can be the same or different
  • (OR 2) is the case of multiple multiple (OR 2) 's may be the same or different.
  • R 1 is an alkyl group
  • a linear or branched alkyl group having 1 to 20 carbon atoms is preferable, and a linear or branched alkyl group having 1 to 4 carbon atoms is more preferable.
  • At least one of R 1 is preferably an alkyl group or an aryl group.
  • the aryl group is, for example, a phenyl group.
  • R 2 is an alkyl group
  • a linear or branched alkyl group having 1 to 5 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is more preferable from the viewpoint of hydrolysis rate.
  • n is preferably 0.
  • the aryl group is, for example, a phenyl group.
  • alkoxysilane (i) when n in the general formula (1) is 0 is represented by the following general formula (2), for example.
  • R ⁇ 21 >, R ⁇ 22 >, R ⁇ 23 > and R ⁇ 24 > represent the same alkyl group or aryl group as said R ⁇ 2 > each independently.
  • alkoxysilane (ii) when n in the general formula (1) is 1 is represented by the following general formula (3), for example.
  • R 31 represents the same hydrogen atom, alkyl group or aryl group as R 1 above.
  • R 32 , R 33 , and R 34 each independently represent the same alkyl group or aryl group as R 2 described above.
  • alkoxysilane (iii) when n is 2 in the general formula (1) is represented by the following general formula (4), for example.
  • R 41 and R 42 represents R 1 above and the same hydrogen atom, an alkyl group or an aryl group. However, at least one of R 41 and R 42 represents an alkyl group or an aryl group.
  • R 43 and R 44 each independently represent the same alkyl group or aryl group as R 2 described above.
  • alkoxysilane (i) examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, and triethoxy.
  • alkoxysilane (ii) examples include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltripentyloxysilane, ethyltrimethoxysilane, ethyltripropoxysilane, ethyltripentyloxysilane, ethyltripentylsilane.
  • alkoxysilane (iii) include methyldimethoxysilane, methylmethoxyethoxysilane, methyldiethoxysilane, methylmethoxypropoxysilane, methylmethoxypentyloxysilane, methylmethoxyphenyloxysilane, ethyldipropoxysilane, ethylmethoxypropoxy.
  • the alkoxysilane used for obtaining the hydrolysis product can be appropriately selected from the above alkoxysilanes (i) to (iii).
  • alkoxysilane (i) is particularly preferable.
  • a more preferable combination is a combination of alkoxysilane (i) and alkoxysilane (ii).
  • the proportions used are preferably in the range of 10-60 mol% for alkoxysilane (i) and 90-40 mol% for alkoxysilane (ii).
  • the alkoxysilane (i) is in the range of 15 to 50 mol% and the alkoxysilane (ii) is in the range of 85 to 50 mol%.
  • R 31 in the general formula (3) is preferably an alkyl group or an aryl group, and more preferably an alkyl group.
  • the hydrolysis product is prepared by, for example, a method of hydrolyzing one or more selected from the above alkoxysilanes (i) to (iii) in the presence of an acid catalyst, water, and an organic solvent. be able to.
  • an organic acid or an inorganic acid can be used.
  • the inorganic acid sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid and the like can be used, among which phosphoric acid and nitric acid are preferable.
  • the organic acid formic acid, oxalic acid, fumaric acid, maleic acid, glacial acetic acid, acetic anhydride, propionic acid, n-butyric acid and other carboxylic acids, and organic acids having a sulfur-containing acid residue can be used.
  • organic acids having a sulfur-containing acid residue include organic sulfonic acids, and examples of esterified products thereof include organic sulfates and organic sulfites.
  • an organic sulfonic acid for example, a compound represented by the following general formula (5) is particularly preferable.
  • R 13 -X (5) [In the above formula (5), R 13 is a hydrocarbon group which may have a substituent, and X is a sulfonic acid group. ]
  • the hydrocarbon group as R 13 is preferably a hydrocarbon group having 1 to 20 carbon atoms.
  • This hydrocarbon group may be saturated or unsaturated, and may be linear, branched or cyclic.
  • the hydrocarbon group of R 13 is cyclic, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, and an anthryl group is preferable, and among them, a phenyl group is preferable.
  • One or more hydrocarbon groups having 1 to 20 carbon atoms may be bonded as a substituent to the aromatic ring in the aromatic hydrocarbon group.
  • the hydrocarbon group as a substituent on the aromatic ring may be saturated or unsaturated, and may be linear, branched or cyclic.
  • the hydrocarbon group as R 13 may have one or a plurality of substituents, such as a halogen atom such as a fluorine atom, a sulfonic acid group, a carboxyl group, a hydroxyl group, An amino group, a cyano group, etc. are mentioned.
  • a halogen atom such as a fluorine atom
  • a sulfonic acid group such as a carboxyl group, a hydroxyl group, An amino group, a cyano group, etc.
  • organic sulfonic acid represented by the general formula (5) nonafluorobutanesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, dodecylbenzenesulfonic acid, or these are particularly preferable from the viewpoint of the shape improvement effect at the bottom of the resist pattern. A mixture or the like is preferred.
  • the acid catalyst acts as a catalyst for hydrolyzing the alkoxysilane in the presence of water.
  • the amount of the acid catalyst used is 1 to 1000 ppm, particularly 5 to 800 ppm, in the hydrolysis reaction. It is preferable to prepare so that it may become this range.
  • the amount of water added is determined according to the hydrolysis rate to be obtained because the hydrolysis rate of the siloxane polymer changes accordingly.
  • organic solvent in the reaction system of the hydrolysis reaction examples include methanol, ethanol, propanol, isopropanol (IPA), monohydric alcohols such as n-butanol, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate.
  • IPA isopropanol
  • Alkylcarboxylic acid esters such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, hexanetriol and other polyhydric alcohols, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol mono Butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether , Diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, monoethers of polyhydric alcohols such as propylene glycol monobutyl ether or their monoacetates, methyl acetate, ethyl acetate, acetic acid Esters such as butyl, ketones such as acetone, methyl ethyl ketone,
  • a siloxane polymer is obtained by hydrolyzing alkoxysilane in such a reaction system.
  • the hydrolysis reaction is usually completed in about 5 to 100 hours, but in order to shorten the reaction time, it is preferable to heat in a temperature range not exceeding 80 ° C.
  • a reaction solution containing the synthesized siloxane polymer and the organic solvent used for the reaction is obtained.
  • the siloxane polymer can be obtained by separating from an organic solvent by a conventionally known method and drying.
  • the compounding amount of the silicon compound (B) in the diffusing agent composition according to the present embodiment is preferably 2 to 10% by mass in terms of SiO 2 with respect to the total mass of the diffusing agent composition.
  • the solvent (C) includes a solvent (C1) having a boiling point of 100 ° C. or lower, a solvent (C2) having a boiling point of 120 to 180 ° C., and a solvent (C3) having a boiling point of 240 to 300 ° C. .
  • solvent (C1) to (C3) will be described.
  • the solvent (C1) is a solvent having a boiling point of 100 ° C. or lower, and may be any solvent as long as the boiling point at normal pressure meets this condition.
  • the impurity diffusing component (A) can be in a dissolved state in the diffusing agent composition, and the drying rate of the diffusing agent composition is increased, so that the pattern after coating is improved. Bleeding and spreading can be prevented.
  • a solvent (C1) examples include methanol (boiling point: 64.7 ° C.), ethanol (boiling point: 78.4 ° C.), ethyl acetate (boiling point: 77.1 ° C.), methyl acetate (boiling point: 56 0.9 ° C), methyl ethyl ketone (boiling point: 79.5 ° C), acetone (boiling point: 56.5 ° C), and the like. These solvents may be used alone or in combination of two or more. As the solvent (C1), ethanol is particularly preferable.
  • the solvent (C1) is preferably contained so as to be 70% by mass or more with respect to the total mass of the solvent (C) of the diffusing agent composition, and is further contained so as to be 70 to 80% by mass. Is preferred. When the solvent (C1) is less than 70% by mass, there is a possibility that a desired amount of the impurity diffusion component (A) cannot be dissolved.
  • the solvent (C1) is preferably contained so as to be 50 to 70% by mass with respect to the total mass of the diffusing agent composition.
  • the solvent (C2) is a solvent having a boiling point of 120 to 180 ° C., that is, 120 ° C. or more and 180 ° C. or less, and may be any solvent as long as the boiling point at normal pressure meets this condition.
  • the coating film formability of the diffusing agent composition is improved, and the occurrence of uneven coating of the diffusing agent composition layer (impurity diffusing agent layer) formed after coating can be prevented. .
  • Such a solvent (C2) include propylene glycol monomethyl ether (PGME) (boiling point: 120 ° C.), propylene glycol monoethyl ether (boiling point: 132 ° C.), propylene glycol monobutyl ether (boiling point: 170 ° C.), Examples thereof include propylene glycol monopropyl ether (boiling point: 150 ° C.) and 3-methoxybutyl acetate (boiling point: 171 ° C.).
  • PGME propylene glycol monomethyl ether
  • 132 ° C. propylene glycol monoethyl ether
  • propylene glycol monobutyl ether propylene glycol monobutyl ether
  • examples thereof include propylene glycol monopropyl ether (boiling point: 150 ° C.) and 3-methoxybutyl acetate (boiling point: 171 ° C.).
  • glycols
  • the solvent (C2) is preferably contained in an amount of 10% by mass or more, more preferably 10 to 20% by mass, based on the total mass of the solvent components of the diffusing agent composition. .
  • the solvent (C2) is preferably contained so as to be 5 to 20% by mass with respect to the total mass of the diffusing agent composition.
  • the solvent (C3) is a solvent having a boiling point of 240 to 300 ° C., that is, 240 ° C. or more and 300 ° C. or less, and any solvent may be used as long as the boiling point at normal pressure meets this condition.
  • the solvent (C3) it is possible to suppress excessive drying of the diffusing agent composition, thereby preventing clogging of the spray nozzle.
  • the discharge stability of the diffusing agent composition is improved, and a stable impurity diffusing agent layer can be formed by spray coating.
  • impurity diffusion performance improves by adding a solvent (C3).
  • a solvent (C3) examples include tripropylene glycol monomethyl ether (TPGM) (boiling point: 242 ° C.), texanol (boiling point: 244 ° C.), glycerin (boiling point: 290 ° C.), triethylene glycol monobutyl ether ( Boiling point: 271 ° C.).
  • TPGM tripropylene glycol monomethyl ether
  • texanol texanol
  • glycerin boiling point: 290 ° C.
  • triethylene glycol monobutyl ether Boiling point: 271 ° C.
  • glycols are preferable because the viscosity of the solvent is suitable for use.
  • These solvents may be used alone or in combination of two or more.
  • the solvent (C3) is preferably contained in an amount of 10% by mass or more, more preferably 10 to 20% by mass, based on the total mass of the solvent components of the diffusing agent composition. . When the solvent (C3) is 10% by mass or more, the effect of improving the ejection stability can be sufficiently obtained.
  • the solvent (C3) is preferably contained so as to be 5 to 20% by mass with respect to the total mass of the diffusing agent composition.
  • the diffusing agent composition according to the present embodiment may contain a general surfactant, antifoaming agent, or the like as the other component (D).
  • a surfactant by including a surfactant, it is possible to improve coating properties, planarization properties, and development properties, and to reduce the occurrence of uneven coating of the diffusing agent composition layer formed after coating.
  • Conventionally known surfactants can be used as such surfactants, and silicone surfactants are preferred.
  • the surfactant is preferably contained in the range of 500 to 3000 ppm by mass, particularly 600 to 2500 ppm by mass with respect to the entire diffusing agent composition.
  • Surfactants may be used alone or in combination.
  • the diffusing agent composition may contain additives such as polypropylene glycol (PPG) and dipropylene glycol (DPG), which are diffusion aids for the impurity diffusing component (A), as the other component (D). .
  • PPG polypropylene glycol
  • DPG dipropylene glycol
  • the concentration of metal impurities (other than the metal components contained in the impurity diffusion component (A), silicon compound (B), and solvent (C) described above) contained in the diffusing agent composition according to the present embodiment is 500 ppb or less. It is preferable that Thereby, the fall of the efficiency of the photovoltaic effect which arises by containing metal impurities can be suppressed.
  • the diffusing agent composition according to the present embodiment can be prepared by mixing the above-described components by a conventionally known method in an arbitrary order so as to form a uniform solution. At this time, it is preferable to prepare so that the total solid content concentration is 6% by mass or less. By setting such a concentration, the pattern formed after ejection can be adjusted to an appropriate thickness.
  • FIGS. 1A to 2D a method of forming a P-type impurity diffusion layer on an N-type semiconductor substrate using a spray coating method, and a semiconductor in which the impurity diffusion layer is formed thereby A method for manufacturing a solar cell provided with a substrate will be described.
  • 1A to 1D and FIGS. 2A to 2D are steps for explaining a method for manufacturing a solar cell including a method for forming an impurity diffusion layer according to an embodiment. It is sectional drawing.
  • the above-described diffusing agent composition containing a P-type impurity diffusion component (A) is printed on an N-type semiconductor substrate by spray coating, and the impurity diffusion of a predetermined pattern is performed.
  • an N-type semiconductor substrate 1 such as a silicon substrate is prepared.
  • a texture portion 1a having a fine concavo-convex structure is formed on one main surface of the semiconductor substrate 1 using a known wet etching method. Reflection of light on the surface of the semiconductor substrate 1 is prevented by the texture portion 1a.
  • the diffusing agent composition 2 containing the P-type impurity diffusion component (A) is applied to the main surface of the semiconductor substrate 1 on the textured portion 1a side.
  • the diffusing agent composition 2 is applied to the surface of the semiconductor substrate 1 by a spray coating method. That is, Using an arbitrary spray coating apparatus, the diffusing agent composition 2 is discharged from the spray nozzle of the spray coating apparatus, and the diffusing agent composition 2 is sprayed onto the surface of the semiconductor substrate 1, thereby diffusing to the surface of the semiconductor substrate 1. Agent composition 2 is printed. After forming the impurity diffusing agent layer having a predetermined pattern in this way, the diffusing agent composition 2 applied using a known means such as an oven is dried.
  • the semiconductor substrate 1 coated with the diffusing agent composition 2 is placed in an electric furnace and baked. After firing, the P-type impurity diffusion component (A) in the diffusing agent composition 2 is diffused from the surface of the semiconductor substrate 1 into the semiconductor substrate 1 in an electric furnace. Instead of the electric furnace, the semiconductor substrate 1 may be heated by conventional laser irradiation. In this way, the P-type impurity diffusion component (A) is diffused into the semiconductor substrate 1 to form the P-type impurity diffusion layer 3.
  • the diffusing agent composition 2 is removed by a known etching method.
  • a silicon nitride film SiN film
  • CVD method chemical vapor deposition method
  • a passivation film 4 made of a film is formed. This passivation film 4 also functions as an antireflection film.
  • the surface electrode 5 is patterned on the main surface of the semiconductor substrate 1 on the side of the passivation film 4 by screen printing, for example, silver (Ag) paste.
  • the surface electrode 5 is patterned to increase the efficiency of the solar cell.
  • the back electrode 6 is formed on the other main surface of the semiconductor substrate 1 by, for example, screen printing an aluminum (Al) paste.
  • the semiconductor substrate 1 on which the back electrode 6 is formed is placed in an electric furnace and baked, and then the aluminum on which the back electrode 6 is formed is transferred into the semiconductor substrate 1. To diffuse. Thereby, the electrical resistance on the back electrode 6 side can be reduced.
  • solar cell 10 according to the present embodiment can be manufactured.
  • the diffusing agent composition according to the present embodiment is a diffusing agent composition used for forming an impurity diffusing agent layer on a semiconductor substrate, and includes an impurity diffusing component (A) and a silicon compound ( B), a solvent (C1) having a boiling point of 100 ° C. or lower, a solvent (C2) having a boiling point of 120 to 180 ° C., and a solvent (C3) having a boiling point of 240 to 300 ° C .; Contains.
  • the coating agent formability and discharge stability which were excellent in the diffusing agent composition can be given.
  • the diffusing agent composition can have excellent diffusion performance.
  • the diffusing agent composition according to the present embodiment has such excellent coating film forming property and ejection stability, it can be suitably used for forming an impurity diffusing agent layer by spray coating. And when an impurity diffusion layer is formed using this diffusing agent composition excellent in coating film formability, ejection stability, and diffusibility, the impurity diffusion layer can be formed with higher accuracy. Furthermore, since it is possible to form an impurity diffusion layer with higher accuracy by using this diffusing agent composition, the reliability of a solar cell including such an impurity diffusion layer can be improved.
  • the diffusing agent composition according to the above-described embodiment can be suitably employed in the spray coating method, but is a spin-on method, an ink jet printing method, a roll coat printing method, a screen printing method, a relief printing method, an intaglio printing method. It is also possible to employ other printing methods such as an offset printing method.
  • Table 1 shows the components and content ratios of the diffusing agent compositions according to Examples I-1 to I-4 and Comparative Examples I-1 to I-5.
  • the unit of each numerical value in the table is% by mass, and the ratio of each component is the ratio to the total mass of the diffusing agent composition.
  • the content ratio of the silicon compound (B) is a value in terms of SiO 2 .
  • Example I-1 ⁇ Creation of dopant liquid> B 2 O 3 as an impurity diffusion component (A) was added to ethanol, heated and stirred for 3 hours in a 60 ° C. hot water bath, and B 2 O 3 was dissolved in ethanol to prepare a dopant solution.
  • the dopant solution was prepared such that the B 2 O 3 concentration was 10%.
  • additive solution Polypropylene glycol (trade name: Sannix PP-4000, manufactured by Sanyo Chemical Industries, Ltd.) as additive (D) is diluted 2-fold with ethanol to give an ethanol solution (additive solution) having a polypropylene glycol concentration of 50% It was created.
  • ⁇ Creation of diffusing agent composition Mixing the above-mentioned dopant solution, coating stock solution, and additive solution, ethanol as solvent (C1), propylene glycol monomethyl ether as solvent (C2), and methylpropylene triglycol as solvent (C3)
  • a diffusing agent composition was prepared by adding a solvent (C) containing company-made (corresponding to TPGM) to the mixed solution.
  • the SiO 2 solid content concentration was 8.1% by mass
  • the B 2 O 3 solid content concentration was 1.9% by mass
  • the additive concentration was 7.0% by mass.
  • Example I-2 A diffusing agent composition was prepared in the same manner as in Example I-1.
  • the SiO 2 solid content concentration is 7.0% by mass
  • the B 2 O 3 solid content concentration is 2.2% by mass
  • Example I-3 A diffusing agent composition was prepared in the same manner as in Example I-1.
  • the SiO 2 solid content concentration is 7.0% by mass
  • the B 2 O 3 solid content concentration is 2.2% by mass
  • Example I-4 A diffusing agent composition was prepared in the same manner as in Example I-1.
  • the SiO 2 solid content concentration was 7.0% by mass
  • the B 2 O 3 solid content concentration was 2.2% by mass
  • the solvent (C3) was replaced with methylpropylene triglycol to obtain texanol.
  • Example I-1 A diffusing agent composition was prepared in the same manner as in Example I-1.
  • the composition of the solvent (C) was ethanol only as the solvent (C1).
  • Example I-2 A diffusing agent composition was prepared in the same manner as in Example I-1.
  • Example I-3 A diffusing agent composition was prepared in the same manner as in Example I-1.
  • Example I-4 A diffusing agent composition was prepared in the same manner as in Example I-1.
  • the SiO 2 solid content concentration was 7.0% by mass, and the B 2 O 3 solid content concentration was 2.2% by mass.
  • Example I-5 A diffusing agent composition was prepared in the same manner as in Example I-1.
  • the SiO 2 solid content concentration was 7.0% by mass, and the B 2 O 3 solid content concentration was 2.2% by mass.
  • the composition of the solvent (C) is ethanol as the solvent (C1), hexylene glycol (boiling point: 198 ° C.) as a comparative solvent with respect to the solvent (C2), and methylpropylene triglycol as the solvent (C3).
  • the diffusing agent composition of each example and each comparative example was applied to an N-type semiconductor substrate using a general spray coating apparatus.
  • the application conditions are as follows. Specifically, a two-fluid nozzle (SUJ1A: manufactured by Spraying Systems Co., Ltd.) was used as the nozzle, and was applied at a discharge rate of 0.1 g / min, an air flow rate of 20 L / min, and a scanning speed of 400 mm / s.
  • the temperature was 23 ° C. and the humidity was 40%.
  • the nozzle clogging of the spray coating device was observed, and the discharge stability of the diffusing agent composition was evaluated.
  • the semiconductor substrate was placed on a hot plate and baked at 150 ° C. for 5 minutes.
  • the cross section of the semiconductor substrate and the coating film was photographed using an SEM (scanning electron microscope), the shape of the coating film formed on the surface of the semiconductor substrate was observed in the SEM photograph image, and the coating film of the diffusing agent composition
  • the formability was evaluated.
  • the case where the entire surface of the semiconductor substrate was coated with the coating film of the diffusing agent composition was marked with “ ⁇ ”, and the case where a part of the surface of the semiconductor substrate was exposed was marked with “X”.
  • the evaluation results are shown in Table 1. In Comparative Example I-1, no coating film could be formed due to nozzle clogging, so the coating film shape was not observed.
  • Comparative Examples I-3 and I-4 containing the solvent (C1) and the solvent (C2) but not the solvent (C3) contain the solvent (C1), the solvent (C2), and the solvent (C3). Since the discharge stability was improved in the examples, it is predicted that the solvent (C3) contributes to the improvement of the discharge stability. This is compared to Comparative Example I-1 containing no solvent (C2) and solvent (C3) and Comparative Examples I-3 and I-4 containing solvent (C2) but no solvent (C3). Further, it is also predicted that the ejection stability was improved in Comparative Examples I-2 and I-5 containing the solvent (C3) but not containing the solvent (C2).
  • the diffusing agent composition is required to uniformly diffuse to a predetermined region of the semiconductor substrate and reduce the resistance value of the diffusion region to a desired value, that is, to have high diffusibility. Therefore, the diffusibility of the diffusing agent composition according to the present embodiment was evaluated.
  • Table 2 shows the components and content ratios of the diffusing agent compositions according to Examples II-1 to II-4 and Comparative Example II-1. The unit of each numerical value in the table is% by mass, and the ratio of each component is the ratio to the total mass of the diffusing agent composition.
  • the content ratio of the silicon compound (B) is a value in terms of SiO 2 .
  • Abbreviations in Table 2 are the same as those in Table 1.
  • Example II-1 A diffusing agent composition was prepared in the same manner as in Example I-1.
  • the SiO 2 solid content concentration is 7.0% by mass
  • the B 2 O 3 solid content concentration is 2.2% by mass
  • Example II-2 A diffusing agent composition was prepared in the same manner as Example II-1.
  • Example II-3 A diffusing agent composition was prepared in the same manner as Example II-1.
  • Example II-4 A diffusing agent composition was prepared in the same manner as Example II-1.
  • Example II-1 A diffusing agent composition was prepared in the same manner as Example II-1.
  • the diffusing agent compositions of the examples and comparative examples were spray-coated on the surface of the N-type semiconductor substrate.
  • the semiconductor substrate was placed on a hot plate and baked at 150 ° C. for 5 minutes.
  • the semiconductor substrate is placed in an electric furnace, and the semiconductor substrate is baked by heating at 600 ° C. for 30 minutes in an O 2 atmosphere.
  • impurity diffusion is performed by heating at 1000 ° C. for 30 minutes in an N 2 atmosphere.
  • Component (A) was thermally diffused.
  • the semiconductor substrate was immersed in a 50% HF solution for 1 minute, and the oxide film formed on the surface of the semiconductor substrate was peeled off by thermal diffusion.
  • the sheet resistance value of the impurity diffusion layer formed on the semiconductor substrate was measured by a four-probe method using a sheet resistance measuring instrument (VR-70: manufactured by Kokusai Electric Co., Ltd.). Table 2 shows the measurement results of the sheet resistance value ( ⁇ / sq.).
  • the present invention can be used for a diffusing agent composition, a method for forming an impurity diffusion layer, and a solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 拡散剤組成物は、半導体基板への不純物拡散剤層の形成に用いられる拡散剤組成物であって、不純物拡散成分(A)と、ケイ素化合物(B)と、沸点が100℃以下である溶剤(C1)、沸点が120~180℃である溶剤(C2)、および沸点が240~300℃である溶剤(C3)を含む溶剤(C)と、を含有する。

Description

拡散剤組成物、不純物拡散層の形成方法、および太陽電池
 本発明は、拡散剤組成物、不純物拡散層の形成方法、および太陽電池に関するものである。
 一般に太陽電池の製造において、半導体基板中にP型やN型の不純物拡散層を形成する場合には、P型やN型の不純物拡散成分を含む拡散剤を半導体基板表面に塗布し、塗布された拡散剤から不純物拡散成分を半導体基板中に拡散させて、不純物拡散層を形成している。
 拡散剤を半導体基板表面に塗布する方法としては、スピンコート法が多く用いられているが、スクリーン印刷法などの他の方法を採用する試みもなされている。また、これにともなって、種々の方法に適用可能な拡散剤が求められるようになった。例えば、特許文献1には、スクリーン印刷法に適用するためのホウ素拡散用塗布液(拡散剤組成物)が開示されている。
特開2007-35719号公報
 一般に、太陽電池に多用されている半導体基板はシリコン基板であり、当該シリコン基板の表面にはテクスチャと呼ばれる2μm程度の細かい凹凸が形成されている。そのため、半導体基板の表面に拡散剤組成物を塗布すると、凸部上の拡散剤組成物が凹部に流れ込んでしまい、凸部が露出してしまう可能性があった。あるいは、拡散剤組成物が凹部に流れ込むことで拡散剤組成物の層厚が不均一となり、拡散剤組成物が加熱により収縮した際にクラックが生じたり、拡散剤組成物の層が基板から浮き上がって不純物拡散成分の拡散効率が低下してしまう可能性があった。そのため、拡散剤組成物には、半導体基板表面に均一に塗布できること、すなわち塗膜形成性が高いことが求められている。
 また、拡散剤を半導体基板表面に塗布する他の方法として、スプレー塗布法を採用する試みもなされている。スプレー塗布法に適用するための拡散剤組成物には、拡散剤組成物に対する基本的な要求である塗膜形成性が高いことに加えて、スプレーノズルの目詰まりを起こしにくいこと、すなわち吐出安定性が高いことが求められる。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、優れた塗膜形成性および吐出安定性を有し、スプレー塗布法に好適に採用可能な拡散剤組成物、当該拡散剤組成物を用いた不純物拡散層の形成方法、および太陽電池を提供することにある。
 上記課題を解決するために、本発明のある態様は拡散剤組成物であり、この拡散剤組成物は、半導体基板への不純物拡散剤層の形成に用いられる拡散剤組成物であって、不純物拡散成分(A)と、ケイ素化合物(B)と、沸点が100℃以下である溶剤(C1)、沸点が120~180℃である溶剤(C2)、および沸点が240~300℃である溶剤(C3)を含む溶剤(C)と、を含有することを特徴とする。
 この態様によれば、優れた塗膜形成性および吐出安定性を有し、スプレー塗布法に好適に採用可能な拡散剤組成物を得ることができる。
 本発明の他の態様は不純物拡散層の形成方法であり、この不純物拡散層の形成方法は、上記態様の拡散剤組成物をスプレー塗布により印刷して所定パターンの不純物拡散剤層を形成するパターン形成工程と、拡散剤組成物の不純物拡散成分(A)を半導体基板に拡散させる拡散工程と、を含むことを特徴とする。
 この態様によれば、より高精度に不純物拡散層を形成することができる。
 本発明のさらに他の態様は太陽電池であり、この太陽電池は、上記態様の不純物拡散層の形成方法により不純物拡散層が形成された半導体基板を備えたことを特徴とする。
 この態様によれば、より信頼性の高い太陽電池を得ることができる。
 本発明によれば、優れた塗膜形成性および吐出安定性を有し、スプレー塗布法に好適に採用可能な拡散剤組成物、当該拡散剤組成物を用いた不純物拡散層の形成方法、および太陽電池を提供することができる。
図1(A)~図1(D)は、実施の形態に係る不純物拡散層の形成方法を含む太陽電池の製造方法を説明するための工程断面図である。 図2(A)~図2(D)は、実施の形態に係る不純物拡散層の形成方法を含む太陽電池の製造方法を説明するための工程断面図である。
 以下、本発明を好適な実施の形態をもとに説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本実施の形態に係る拡散剤組成物は、半導体基板への不純物拡散剤層の形成に用いられる拡散剤組成物であって、好ましくは、スプレー塗布による不純物拡散剤層の形成に用いられる拡散剤組成物である。そして、本実施の形態に係る拡散剤組成物は、不純物拡散成分(A)と、ケイ素化合物(B)と、沸点が100℃以下である溶剤(C1)、沸点が120~180℃である溶剤(C2)、および沸点が240~300℃である溶剤(C3)を含む溶剤(C)と、を含有する。以下、本実施の形態に係る拡散剤組成物の各成分について詳細に説明する。
≪不純物拡散成分(A)≫
 不純物拡散成分(A)は、一般にドーパントとして太陽電池の製造に用いられる化合物である。不純物拡散成分(A)は、III族(13族)元素の化合物を含むP型の不純物拡散成分、またはV族(15族)元素の化合物を含むN型の不純物拡散成分であり、太陽電池における電極を形成する工程において、半導体基板内にP型またはN型の不純物拡散層(不純物拡散領域)を形成することができる。III族元素の化合物を含むP型の不純物拡散成分は、太陽電池における電極を形成する工程において、N型の半導体基板内にP型の不純物拡散層を形成することができ、P型の半導体基板内にP型(高濃度P型)の不純物拡散層を形成することができる。不純物拡散成分(A)に含まれるIII族元素の化合物としては、例えば、B、Alなどが挙げられ、不純物拡散成分(A)にはこれらの化合物が1種類以上含まれる。また、V族元素の化合物を含むN型の不純物拡散成分は、太陽電池における電極を形成する工程において、P型の半導体基板内にN型の不純物拡散層を形成することができ、N型の半導体基板内にN型(高濃度N型)の不純物拡散層を形成することができる。不純物拡散成分(A)に含まれるV族元素の化合物としては、例えば、P、Bi、Sb(OCHCH、SbCl、As(OCなどが挙げられる。
 不純物拡散成分(A)の濃度は、半導体基板に形成される不純物拡散層の層厚などに応じて適宜調整される。たとえば、不純物拡散成分(A)は、拡散剤組成物の全質量に対して0.1質量%以上含まれることが好ましく、1.0質量%以上含まれることがさらに好ましい。また、不純物拡散成分(A)は、拡散剤組成物の全質量に対して10質量%以下含まれることが好ましい。
≪ケイ素化合物(B)≫
 ケイ素化合物(B)は、半導体基板上へのケイ素系被覆形成に用いられる従来公知の化合物であればよく、特に限定されない。ケイ素化合物(B)としては、例えば、SiO微粒子、およびアルコキシシランを加水分解して得られる反応生成物(以下、適宜、アルコキシシランの加水分解生成物という)からなる群から選ばれる少なくとも1種を挙げることができる。以下、SiO微粒子、およびアルコキシシランの加水分解生成物のそれぞれについて説明する。
<SiO微粒子>
 SiO微粒子の大きさは、平均粒径が1μm以下であることが好ましい。平均粒径が1μmを上回ると、スプレー塗布装置を用いて拡散剤組成物を塗布する場合に、スプレーノズルにおける拡散剤組成物の通過が妨げられるおそれがある。SiO微粒子の具体例としては、ヒュームドシリカなどが挙げられる。
<アルコキシシランの加水分解生成物>
 加水分解生成物の出発材料となるアルコキシシランは、下記一般式(1)で表されるSi含有化合物である。
 R Si(OR4-n     (1)
[式(1)中、Rは水素原子、アルキル基、またはアリール基であり、Rはアルキル基またはアリール基であり、nは0、1、または2の整数を表す。Rが複数の場合は複数のRは同じでも異なってもよく、(OR)が複数の場合は複数の(OR)は同じでも異なってもよい。]
 Rがアルキル基の場合には、炭素数1~20の直鎖状または分岐状のアルキル基が好ましく、炭素数1~4の直鎖状または分岐状のアルキル基がより好ましい。Rのうち少なくとも1つはアルキル基またはアリール基であることが好ましい。アリール基は、例えばフェニル基である。
 Rがアルキル基の場合には、炭素数1~5の直鎖状または分岐状のアルキル基が好ましく、加水分解速度の点から炭素数1~3のアルキル基がより好ましい。nは好ましくは0である。アリール基は、例えばフェニル基である。
 上記一般式(1)におけるnが0の場合のアルコキシシラン(i)は、例えば下記一般式(2)で表される。
 Si(OR21(OR22(OR23(OR24     (2)
[上記式(2)中、R21、R22、R23、およびR24は、それぞれ独立に上記Rと同じアルキル基またはアリール基を表す。a、b、c、およびdは、0≦a≦4、0≦b≦4、0≦c≦4、0≦d≦4であって、かつa+b+c+d=4の条件を満たす整数である。]
 上記一般式(1)におけるnが1の場合のアルコキシシラン(ii)は、例えば下記一般式(3)で表される。
 R31Si(OR32(OR33(OR34     (3)
[上記式(3)中、R31は、上記Rと同じ水素原子、アルキル基、またはアリール基を表す。R32、R33、およびR34は、それぞれ独立に上記Rと同じアルキル基またはアリール基を表す。e、f、およびgは、0≦e≦3、0≦f≦3、0≦g≦3であって、かつe+f+g=3の条件を満たす整数である。]
 上記一般式(1)におけるnが2の場合のアルコキシシラン(iii)は、例えば下記一般式(4)で表される。
 R4142Si(OR43(OR44     (4)
[上記式(4)中、R41およびR42は、上記Rと同じ水素原子、アルキル基、またはアリール基を表す。ただし、R41およびR42のうちの少なくとも1つはアルキル基またはアリール基を表す。R43およびR44は、それぞれ独立に上記Rと同じアルキル基またはアリール基を表す。hおよびiは、0≦h≦2、0≦i≦2であって、かつh+i=2の条件を満たす整数である。]
 アルコキシシラン(i)の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシラン等のテトラアルコキシシランが挙げられ、中でもテトラメトキシシラン、テトラエトキシシランが好ましい。
 アルコキシシラン(ii)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、メチルモノメトキシジエトキシシラン、エチルモノメトキシジエトキシシラン、プロピルモノメトキシジエトキシシラン、ブチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、プロピルメトキシエトキシプロポキシシラン、ブチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等が挙げられ、中でもメチルトリアルコキシシラン(特にメチルトリメトキシシラン、メチルトリエトキシシラン)が好ましい。
 アルコキシシラン(iii)の具体例としては、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が挙げられ、中でもメチルジメトキシシラン、メチルジエトキシシランが好ましい。
 上記加水分解生成物を得るために用いるアルコキシシランは、上記アルコキシシラン(i)~(iii)の中から適宜選択することができる。アルコキシシランとしては、アルコキシシラン(i)が特に好ましい。また、これらのアルコキシシランを混合して用いる場合、より好ましい組み合わせはアルコキシシラン(i)とアルコキシシラン(ii)との組み合わせである。アルコキシシラン(i)とアルコキシシラン(ii)とを用いる場合、これらの使用割合はアルコキシシラン(i)が10~60モル%で、アルコキシシラン(ii)が90~40モル%の範囲内が好ましく、アルコキシシラン(i)が15~50モル%で、アルコキシシラン(ii)が85~50モル%の範囲内がより好ましい。またアルコキシシラン(ii)は、上記一般式(3)におけるR31が好ましくはアルキル基またはアリール基であり、より好ましくはアルキル基である。
 上記加水分解生成物は、例えば、上記アルコキシシラン(i)~(iii)の中から選ばれる1種または2種以上を、酸触媒、水、有機溶剤の存在下で加水分解する方法で調製することができる。
 酸触媒は有機酸、無機酸のいずれも使用することができる。無機酸としては、硫酸、リン酸、硝酸、塩酸等を使用することができ、中でも、リン酸、硝酸が好適である。有機酸としては、ギ酸、シュウ酸、フマル酸、マレイン酸、氷酢酸、無水酢酸、プロピオン酸、n-酪酸等のカルボン酸、および硫黄含有酸残基を有する有機酸を使用することができる。硫黄含有酸残基を有する有機酸としては、有機スルホン酸などが挙げられ、それらのエステル化物としては有機硫酸エステル、有機亜硫酸エステル等が挙げられる。これらの中で、特に有機スルホン酸、例えば、下記一般式(5)で表される化合物が好ましい。
 R13-X     (5)
[上記式(5)中、R13は、置換基を有していてもよい炭化水素基であり、Xはスルホン酸基である。]
 上記一般式(5)において、R13としての炭化水素基は、炭素数1~20の炭化水素基が好ましい。この炭化水素基は、飽和のものでも不飽和のものでもよいし、直鎖状、枝分かれ状、環状のいずれであってもよい。R13の炭化水素基が環状の場合、例えばフェニル基、ナフチル基、アントリル基等の芳香族炭化水素基が好ましく、中でもフェニル基が好ましい。この芳香族炭化水素基における芳香環には、置換基として炭素数1~20の炭化水素基が1個または複数個結合していてもよい。当該芳香環上の置換基としての炭化水素基は、飽和のものでも不飽和のものでもよいし、直鎖状、枝分かれ状、環状のいずれであってもよい。また、R13としての炭化水素基は、1個または複数個の置換基を有していてもよく、この置換基としては、例えばフッ素原子等のハロゲン原子、スルホン酸基、カルボキシル基、水酸基、アミノ基、シアノ基等が挙げられる。上記一般式(5)で表わされる有機スルホン酸としては、レジストパターン下部の形状改善効果の点から、特にノナフルオロブタンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ドデシルベンゼンスルホン酸、またはこれらの混合物等が好ましい。
 上記酸触媒は、水の存在下でアルコキシシランを加水分解する際の触媒として作用するが、使用する酸触媒の量は、加水分解反応の反応系中の濃度が1~1000ppm、特に5~800ppmの範囲になるように調製することが好ましい。水の添加量は、これによってシロキサンポリマーの加水分解率が変わるので、得ようとする加水分解率に応じて決められる。
 加水分解反応の反応系における有機溶剤は、例えばメタノール、エタノール、プロパノール、イソプロパノール(IPA)、n-ブタノールのような一価アルコール、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネートのようなアルキルカルボン酸エステル、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価アルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等の多価アルコールのモノエーテル類あるいはこれらのモノアセテート類、酢酸メチル、酢酸エチル、酢酸ブチルのようなエステル類、アセトン、メチルエチルケトン、メチルイソアミルケトンのようなケトン類、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテルのような多価アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類等が挙げられる。これらの有機溶剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 このような反応系でアルコキシシランを加水分解反応させることによりシロキサンポリマーが得られる。当該加水分解反応は、通常5~100時間程度で完了するが、反応時間を短縮させるには、80℃を超えない温度範囲で加熱することが好ましい。
 反応終了後、合成されたシロキサンポリマーと、反応に用いた有機溶剤を含む反応溶液が得られる。シロキサンポリマーは、従来公知の方法により有機溶媒と分離し、乾燥することにより得ることができる。
 本実施の形態に係る拡散剤組成物におけるケイ素化合物(B)の配合量は、拡散剤組成物の全質量に対して、SiO換算で2~10質量%であることが好ましい。上記範囲で配合することにより拡散剤組成物の被膜にクラックが発生することを抑制することができ、また良好な不純物の拡散効果が得られる。
≪溶剤(C)≫
 溶剤(C)(溶剤成分)は、沸点が100℃以下である溶剤(C1)、沸点が120~180℃である溶剤(C2)、および沸点が240~300℃である溶剤(C3)を含む。以下、各溶剤(C1)~(C3)のそれぞれについて説明する。
<溶剤(C1)>
 溶剤(C1)は、沸点が100℃以下の溶剤であり、常圧での沸点がこの条件にあてはまるものであれば、いかなる溶剤であってもよい。溶剤(C1)を含むことで、拡散剤組成物中で不純物拡散成分(A)が溶解した状態とすることができ、また、拡散剤組成物の乾燥速度が速くなって、塗布後のパターンの滲みや広がりを防止することができる。このような溶剤(C1)の具体例としては、メタノール(沸点:64.7℃)、エタノール(沸点:78.4℃)、酢酸エチル(沸点:77.1℃)、酢酸メチル(沸点:56.9℃)、メチルエチルケトン(沸点:79.5℃)、アセトン(沸点:56.5℃)等を挙げることができる。これらの溶剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。溶剤(C1)としては、特にエタノールが好ましい。
 溶剤(C1)は、拡散剤組成物の溶剤(C)の全質量に対して、70質量%以上となるように含まれることが好ましく、さらに、70~80質量%となるように含まれることが好ましい。溶剤(C1)が70質量%未満の場合には、所望量の不純物拡散成分(A)を溶解できない可能性がある。また、溶剤(C1)は、拡散剤組成物の全質量に対して、50~70質量%となるように含まれることが好ましい。
<溶剤(C2)>
 溶剤(C2)は、沸点が120~180℃、すなわち120℃以上かつ180℃以下の溶剤であり、常圧での沸点がこの条件にあてはまるものであればいかなる溶剤であってもよい。溶剤(C2)を含むことで、拡散剤組成物の塗膜形成性が向上して、塗布後に形成される拡散剤組成物層(不純物拡散剤層)の塗りムラの発生を防止することができる。このような溶剤(C2)の具体例としては、プロピレングリコールモノメチルエーテル(PGME)(沸点:120℃)、プロピレングリコールモノエチルエーテル(沸点:132℃)、プロピレングリコールモノブチルエーテル(沸点:170℃)、プロピレングリコールモノプロピルエーテル(沸点:150℃)、3-メトキシブチルアセテート(沸点:171℃)等を挙げることができる。これらの溶剤の中でもグリコール類は、溶剤の粘度が用途に適しているため好ましい。これらの溶剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 溶剤(C2)は、拡散剤組成物の溶剤成分の全質量に対して、10質量%以上となるように含まれることが好ましく、さらに、10~20質量%となるように含まれることが好ましい。溶剤(C2)が10質量%以上の場合には、塗膜形成性の向上効果を十分に得ることができる。また、溶剤(C2)は、拡散剤組成物の全質量に対して、5~20質量%となるように含まれることが好ましい。
<溶剤(C3)>
 溶剤(C3)は、沸点が240~300℃、すなわち240℃以上かつ300℃以下の溶剤であり、常圧での沸点がこの条件にあてはまるものであればいかなる溶剤であってもよい。溶剤(C3)を含むことで、拡散剤組成物の過度の乾燥を抑えることができ、これによりスプレーノズルの目詰まりを防ぐことができる。その結果、拡散剤組成物の吐出安定性が向上して、スプレー塗布法による安定的な不純物拡散剤層の形成が可能となる。また、溶剤(C3)を添加することで不純物拡散性能が向上する。これは、溶剤(C3)が有する、不純物拡散成分(A)中の不純物化合物の還元機能によるものであると推測される。このような溶剤(C3)の具体例としては、トリプロピレングリコールモノメチルエーテル(TPGM)(沸点:242℃)、テキサノール(沸点:244℃)、グリセリン(沸点:290℃)、トリエチレングリコールモノブチルエーテル(沸点:271℃)等を挙げることができる。これらの溶剤の中でもグリコール類は、溶剤の粘度が用途に適しているため好ましい。これらの溶剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 溶剤(C3)は、拡散剤組成物の溶剤成分の全質量に対して、10質量%以上となるように含まれることが好ましく、さらに、10~20質量%となるように含まれることが好ましい。溶剤(C3)が10質量%以上の場合には、吐出安定性の向上効果を十分に得ることができる。また、溶剤(C3)は、拡散剤組成物の全質量に対して、5~20質量%となるように含まれることが好ましい。
≪その他の成分(D)≫
 本実施の形態に係る拡散剤組成物は、その他の成分(D)として一般的な界面活性剤や消泡剤等を含有してもよい。例えば、界面活性剤を含むことによって、塗布性、平坦化性、展開性を向上させることができ、塗布後に形成される拡散剤組成物層の塗りムラの発生を減少させることができる。このような界面活性剤として、従来公知のものを用いることができるが、シリコーン系の界面活性剤が好ましい。また、界面活性剤は、拡散剤組成物全体に対し、500~3000質量ppm、特に600~2500質量ppmの範囲で含まれることが好ましい。さらに2000質量ppm以下であると、拡散処理後の拡散剤組成物層の剥離性に優れるため、より好ましい。界面活性剤は単独で用いてもよく、組み合わせて用いてもよい。
 また、拡散剤組成物は、その他の成分(D)として、不純物拡散成分(A)の拡散助剤であるポリプロピレングリコール(PPG)やジプロピレングリコール(DPG)等の添加剤を含有してもよい。
 本実施の形態に係る拡散剤組成物中に含まれる金属不純物(上述した不純物拡散成分(A)、ケイ素化合物(B)、および溶剤(C)に含まれる金属成分以外)の濃度は、500ppb以下であることが好ましい。これにより、金属不純物の含有によって生じる光起電力効果の効率の低下を抑えることができる。
≪拡散剤組成物の調製方法≫
 本実施の形態に係る拡散剤組成物は、上述した各成分を従来公知の方法により、任意の順番で、均一な溶液となるように混合することにより調製することができる。この際、全固形分濃度が6質量%以下になるように調製することが好ましい。このような濃度にすることにより、吐出後に形成されるパターンを適切な厚さに調整することができる。
≪不純物拡散層の形成方法、および太陽電池の製造方法≫
 図1(A)~図2(D)を参照して、N型の半導体基板にスプレー塗布法を用いてP型の不純物拡散層を形成する方法と、これにより不純物拡散層が形成された半導体基板を備えた太陽電池の製造方法について説明する。図1(A)~図1(D)、および図2(A)~図2(D)は、実施の形態に係る不純物拡散層の形成方法を含む太陽電池の製造方法を説明するための工程断面図である。
 本実施の形態に係る不純物拡散層の形成方法は、N型の半導体基板にP型の不純物拡散成分(A)を含有する上述の拡散剤組成物をスプレー塗布により印刷して所定パターンの不純物拡散剤層を形成するパターン形成工程と、拡散剤組成物の不純物拡散成分(A)を半導体基板に拡散させる拡散工程と、を含む。
 まず、図1(A)に示すように、シリコン基板などのN型の半導体基板1を用意する。そして、図1(B)に示すように、周知のウェットエッチング法を用いて、半導体基板1の一方の主表面に、微細な凹凸構造を有するテクスチャ部1aを形成する。このテクスチャ部1aによって、半導体基板1表面の光の反射が防止される。続いて、図1(C)に示すように、半導体基板1のテクスチャ部1a側の主表面に、P型の不純物拡散成分(A)を含有する上述の拡散剤組成物2を塗布する。
 拡散剤組成物2は、スプレー塗布法により半導体基板1の表面に塗布される。すなわち、
任意のスプレー塗布装置を用いて、当該スプレー塗布装置のスプレーノズルから拡散剤組成物2を吐出して、拡散剤組成物2を半導体基板1の表面に吹き付けることで、半導体基板1の表面に拡散剤組成物2を印刷する。このようにして所定パターンの不純物拡散剤層を形成した後、オーブンなどの周知の手段を用いて塗布した拡散剤組成物2を乾燥させる。
 次に、図1(D)に示すように、拡散剤組成物2が塗布された半導体基板1を電気炉内に載置して焼成する。焼成の後、電気炉内で拡散剤組成物2中のP型の不純物拡散成分(A)を半導体基板1の表面から半導体基板1内に拡散させる。なお、電気炉に代えて、慣用のレーザーの照射により半導体基板1を加熱してもよい。このようにして、P型の不純物拡散成分(A)が半導体基板1内に拡散してP型不純物拡散層3が形成される。
 次に、図2(A)に示すように、周知のエッチング法により、拡散剤組成物2を除去する。そして、図2(B)に示すように、周知の化学気相成長法(CVD法)、例えばプラズマCVD法を用いて、半導体基板1のテクスチャ部1a側の主表面に、シリコン窒化膜(SiN膜)からなるパッシベーション膜4を形成する。このパッシベーション膜4は、反射防止膜としても機能する。
 次に、図2(C)に示すように、例えば銀(Ag)ペーストをスクリーン印刷することにより、半導体基板1のパッシベーション膜4側の主表面に表面電極5をパターニングする。表面電極5は、太陽電池の効率が高まるようにパターン形成される。また、例えばアルミニウム(Al)ペーストをスクリーン印刷することにより、半導体基板1の他方の主表面に裏面電極6を形成する。
 次に、図2(D)に示すように、裏面電極6が形成された半導体基板1を電気炉内に載置して焼成した後、裏面電極6を形成しているアルミニウムを半導体基板1内に拡散させる。これにより、裏面電極6側の電気抵抗を低減することができる。以上の工程により、本実施の形態に係る太陽電池10を製造することができる。
 以上説明したように、本実施の形態に係る拡散剤組成物は、半導体基板への不純物拡散剤層の形成に用いられる拡散剤組成物であって、不純物拡散成分(A)と、ケイ素化合物(B)と、沸点が100℃以下である溶剤(C1)、沸点が120~180℃である溶剤(C2)、および沸点が240~300℃である溶剤(C3)を含む溶剤(C)と、を含有している。これにより、拡散剤組成物に優れた塗膜形成性および吐出安定性をもたせることができる。また、拡散剤組成物に優れた拡散性能をもたせることができる。さらに、本実施の形態に係る拡散剤組成物は、このように優れた塗膜形成性および吐出安定性を備えているため、スプレー塗布による不純物拡散剤層の形成に好適に用いることができる。そして、塗膜形成性、吐出安定性、および拡散性に優れたこの拡散剤組成物を用いて不純物拡散層を形成した場合には、より高精度に不純物拡散層を形成することができる。さらに、この拡散剤組成物を用いることでより精度の高い不純物拡散層の形成が可能となるため、そのような不純物拡散層を含む太陽電池の信頼性を向上させることができる。
 本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更などの変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれるものである。上述の実施の形態と以下の変形例との組合せによって生じる新たな実施の形態は、組み合わされる実施の形態および変形例それぞれの効果をあわせもつ。
 上述の実施の形態に係る拡散剤組成物は、スプレー塗布法に好適に採用可能なものであるが、スピンオン法、インクジェット印刷法、ロールコート印刷法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法などの他の印刷法に採用することもできる。
 以下、本発明の実施例を説明するが、これら実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。
≪評価試験I.塗膜形成性および吐出安定性の評価≫
 実施例I-1~I-4、比較例I-1~I-5に係る拡散剤組成物の成分および含有比を表1に示す。表中の各数値の単位は質量%であり、各成分の割合は拡散剤組成物の全質量に対する割合である。なお、ケイ素化合物(B)の含有比は、SiO換算での値である。
Figure JPOXMLDOC01-appb-T000001
 表1中の略語は以下の化合物を示す。
 PPG:ポリプロピレングリコール
 EtOH:エタノール
 PGME:プロピレングリコールモノメチルエーテル
 HG:ヘキシレングリコール
 MFTG:メチルプロピレントリグリコール
(実施例I-1)
<ドーパント液の作成>
 エタノールに不純物拡散成分(A)としてのBを添加し、60℃の湯浴にて3時間加熱攪拌してBをエタノールに溶解させて、ドーパント液を作成した。ドーパント液は、B濃度が10%となるように調製した。
<塗布原液の作成>
 エタノール、ケイ素化合物(B)としてのテトラエトキシシラン、および濃塩酸を混合して、SiO系被膜形成用塗布液(塗布原液)を作成した。
<添加剤溶液の作成>
 添加剤(D)としてのポリプロピレングリコール(商品名:サンニックス・PP-4000、三洋化成工業株式会社製)をエタノールで2倍希釈し、ポリプロピレングリコール濃度が50%であるエタノール溶液(添加剤溶液)を作成した。
<拡散剤組成物の作成>
 上述のドーパント液、塗布原液、および添加剤溶液を混合し、溶剤(C1)としてのエタノール、溶剤(C2)としてのプロピレングリコールモノメチルエーテル、および溶剤(C3)としてのメチルプロピレントリグリコール(日本乳化剤株式会社製、TPGMに相当)を含む溶剤(C)を混合液に添加して拡散剤組成物を調製した。拡散剤組成物におけるSiO固形分濃度は8.1質量%、B固形分濃度は1.9質量%、添加剤濃度は7.0質量%とした。溶剤(C)の組成比は、溶剤(C1):溶剤(C2):溶剤(C3)=8:1:1とした。
(実施例I-2)
 実施例I-1と同様にして、拡散剤組成物を調製した。SiO固形分濃度は7.0質量%、B固形分濃度は2.2質量%、溶剤(C)の組成比は、溶剤(C1):溶剤(C2):溶剤(C3)=7:2:1とした。
(実施例I-3)
 実施例I-1と同様にして、拡散剤組成物を調製した。SiO固形分濃度は7.0質量%、B固形分濃度は2.2質量%、溶剤(C)の組成比は、溶剤(C1):溶剤(C2):溶剤(C3)=7:1:2とした。
(実施例I-4)
 実施例I-1と同様にして、拡散剤組成物を調製した。SiO固形分濃度は7.0質量%、B固形分濃度は2.2質量%、溶剤(C3)をメチルプロピレントリグリコールに替えてテキサノールとした。
(比較例I-1)
 実施例I-1と同様にして、拡散剤組成物を調製した。溶剤(C)の組成は、溶剤(C1)としてのエタノールのみとした。
(比較例I-2)
 実施例I-1と同様にして、拡散剤組成物を調製した。溶剤(C)の組成は、溶剤(C1)としてのエタノール、および溶剤(C3)としてのメチルプロピレントリグリコールとし、その組成比を溶剤(C1):溶剤(C3)=8:2とした。
(比較例I-3)
 実施例I-1と同様にして、拡散剤組成物を調製した。溶剤(C)の組成は、溶剤(C1)としてのエタノール、および溶剤(C2)としてのプロピレングリコールモノメチルエーテルとし、その組成比を溶剤(C1):溶剤(C2)=8:2とした。
(比較例I-4)
 実施例I-1と同様にして、拡散剤組成物を調製した。SiO固形分濃度は7.0質量%、B固形分濃度は2.2質量%とした。また、溶剤(C)の組成は、溶剤(C1)としてのエタノール、および溶剤(C2)としてのプロピレングリコールモノメチルエーテルとし、その組成比を溶剤(C1):溶剤(C2)=8:2とした。
(比較例I-5)
 実施例I-1と同様にして、拡散剤組成物を調製した。SiO固形分濃度は7.0質量%、B固形分濃度は2.2質量%とした。また、溶剤(C)の組成は、溶剤(C1)としてのエタノール、溶剤(C2)に対する比較溶剤としてのヘキシレングリコール(沸点:198℃)、および溶剤(C3)としてのメチルプロピレントリグリコールとし、その組成比を溶剤(C1):比較溶剤:溶剤(C3)=8:1:1とした。
<ノズル詰まりおよび塗膜形状の観察>
 各実施例および各比較例の拡散剤組成物を、一般的なスプレー塗布装置を用いてN型半導体基板に塗布した。塗布条件は次の通りである。すなわち、ノズルは2流体ノズル(SUJ1A:スプレーイングシステムス社製)を使用し、吐出量:0.1g/min、エア流量:20L/min、スキャン速度:400mm/sで塗布した。また、温度:23℃、湿度:40%とした。そして、スプレー塗布装置のノズル詰まりを観察して、拡散剤組成物の吐出安定性を評価した。ノズル先端に拡散剤組成物の結晶物の発生が見られないか、発生した結晶物が極少量であって、長時間(例えば、1時間以上)の塗膜形成が可能であると推定された場合を「○」とし、ノズル先端に結晶物の発生が見られ、長時間(例えば、1時間以上)の塗膜形成が困難であると推定された場合を「△」とし、結晶物の発生によって塗膜形成が不可能であった場合を「×」とした。評価結果を表1に示す。なお、前記「長時間の塗膜形成が困難である」ことの判断基準は、当業者が実験等によって適宜設定することができる。
 また、拡散剤組成物の塗膜を形成した後、半導体基板をホットプレート上に載置して、150℃で5分間ベーク処理を施した。次いで、SEM(走査型電子顕微鏡)を用いて半導体基板および塗膜の断面を撮影し、SEM写真像において半導体基板表面に形成された塗膜の形状を観察して、拡散剤組成物の塗膜形成性を評価した。半導体基板表面全域が拡散剤組成物の塗膜で被覆されていた場合を「○」とし、半導体基板表面の一部が露出していた場合を「×」とした。評価結果を表1に示す。なお、比較例I-1は、ノズル詰まりによって塗膜を形成できなかったため、塗膜形状の観察は実施しなかった。
<評価>
 表1に示すように、溶剤(C2)、溶剤(C3)を含まない比較例I-1では、吐出安定性が著しく低く、そのため塗膜を形成できなかった(すなわち、塗膜形成性も低かった)。また、溶剤(C2)を含まない比較例I-2,I-5では、塗膜形成性が低かった。また、溶剤(C3)を含まない比較例I-3,I-4では、吐出安定性が低かった。これに対し、溶剤(C1)、溶剤(C2)、および溶剤(C3)を含む実施例では、いずれも良好な吐出安定性と塗膜形成性を有していることが確認された。
 溶剤(C1)、溶剤(C3)を含むが溶剤(C2)を含まない比較例I-2,I-5に対して溶剤(C1)、溶剤(C2)、および溶剤(C3)を含む実施例で塗膜形成性が向上していたことから、溶剤(C2)が塗膜形成性の向上に寄与していることが予測される。このことは、溶剤(C2)、溶剤(C3)を含まない比較例I-1と、溶剤(C3)を含むが溶剤(C2)を含まない比較例I-2,I-5とに対して、溶剤(C2)を含むが溶剤(C3)を含まない比較例I-3,I-4で塗膜形成性が向上していたことからも予測される。
 また、溶剤(C1)、溶剤(C2)を含むが溶剤(C3)を含まない比較例I-3,I-4に対して溶剤(C1)、溶剤(C2)、および溶剤(C3)を含む実施例で吐出安定性が向上したことから、溶剤(C3)が吐出安定性の向上に寄与していることが予測される。このことは、溶剤(C2)、溶剤(C3)を含まない比較例I-1と、溶剤(C2)を含むが溶剤(C3)を含まない比較例I-3,I-4とに対して、溶剤(C3)を含むが溶剤(C2)を含まない比較例I-2,I-5で吐出安定性が向上したことからも予測される。
≪評価試験II.拡散性の評価≫
 拡散剤組成物には、半導体基板の所定の領域に均一に拡散して拡散領域の抵抗値を所望の値まで低減できること、すなわち拡散性が高いことが求められる。そこで、本実施の形態に係る拡散剤組成物の拡散性を評価した。実施例II-1~II-4、比較例II-1に係る拡散剤組成物の成分および含有比を表2に示す。表中の各数値の単位は質量%であり、各成分の割合は拡散剤組成物の全質量に対する割合である。なお、ケイ素化合物(B)の含有比は、SiO換算での値である。また、表2中の略語は表1と同様である。
Figure JPOXMLDOC01-appb-T000002
(実施例II-1)
 実施例I-1と同様にして、拡散剤組成物を調製した。SiO固形分濃度は7.0質量%、B固形分濃度は2.2質量%、溶剤(C)の組成比は、溶剤(C1):溶剤(C2):溶剤(C3)=7:2:1とした。
(実施例II-2)
 実施例II-1と同様にして、拡散剤組成物を調製した。溶剤(C)の組成比は、溶剤(C1):溶剤(C2):溶剤(C3)=7:1:2とした。
(実施例II-3)
 実施例II-1と同様にして、拡散剤組成物を調製した。溶剤(C3)をメチルプロピレントリグリコールに替えてテキサノールとし、溶剤(C)の組成比は、溶剤(C1):溶剤(C2):溶剤(C3)=8:1:1とした。
(実施例II-4)
 実施例II-1と同様にして、拡散剤組成物を調製した。溶剤(C3)をメチルプロピレントリグリコールに替えてグリセリンとし、溶剤(C)の組成比は、溶剤(C1):溶剤(C2):溶剤(C3)=8:1:1とした。
(比較例II-1)
 実施例II-1と同様にして、拡散剤組成物を調製した。溶剤(C)の組成は、溶剤(C1)としてのエタノール、および溶剤(C2)としてのプロピレングリコールモノメチルエーテルとし、その組成比を溶剤(C1):溶剤(C2)=8:2とした。
<シート抵抗値の測定>
 評価試験Iと同様にして、各実施例および比較例の拡散剤組成物をN型半導体基板の表面にスプレー塗布した。次いで、半導体基板をホットプレート上に載置して、150℃で5分間ベーク処理を施した。続いて、半導体基板を電気炉内に載置し、O雰囲気下、600℃で30分間加熱して半導体基板を焼成し、その後、N雰囲気下、1000℃で30分間加熱して不純物拡散成分(A)を熱拡散させた。そして、50%濃度のHF溶液に半導体基板を1分間浸漬して、熱拡散によって半導体基板表面に形成された酸化膜を剥離した。半導体基板に形成された不純物拡散層のシート抵抗値を、シート抵抗測定器(VR-70:国際電気株式会社製)を用いて四探針法により測定した。シート抵抗値(Ω/sq.)の測定結果を表2に示す。
<評価>
 表2に示すように、いずれの実施例も比較例II-1と比べて低いシート抵抗値を示した。また、実施例II-1と実施例II-2との比較から、溶剤(C2)に対して溶剤(C3)の含有量が多い方が、シート抵抗値をより低減することができると予想される。
 1 半導体基板、 1a テクスチャ部、 2 拡散剤組成物、 3 P型不純物拡散層、 4 パッシベーション膜、 5 表面電極、 6 裏面電極、 10 太陽電池。
 本発明は、拡散剤組成物、不純物拡散層の形成方法、および太陽電池に利用することができる。

Claims (8)

  1.  半導体基板への不純物拡散剤層の形成に用いられる拡散剤組成物であって、
     不純物拡散成分(A)と、
     ケイ素化合物(B)と、
     沸点が100℃以下である溶剤(C1)、沸点が120~180℃である溶剤(C2)、および沸点が240~300℃である溶剤(C3)を含む溶剤(C)と、
    を含有することを特徴とする拡散剤組成物。
  2.  前記溶剤(C1)を拡散剤組成物の溶剤成分の全質量に対して70質量%以上となるように含み、前記溶剤(C2)を拡散剤組成物の溶剤成分の全質量に対して10質量%以上となるように含み、前記溶剤(C3)を拡散剤組成物の溶剤成分の全質量に対して10質量%以上となるように含む請求項1に記載の拡散剤組成物。
  3.  前記不純物拡散成分(A)は、III族元素の化合物またはV族元素の化合物を含む請求項1または2に記載の拡散剤組成物。
  4.  スプレー塗布による不純物拡散剤層の形成に用いられる請求項1に記載の拡散剤組成物。
  5.  前記溶剤(C2)、および前記溶剤(C3)は、グリコール類である請求項1に記載の拡散剤組成物。
  6.  前記ケイ素化合物(B)は、SiO微粒子、および下記一般式(1)で表されるアルコキシシランを加水分解して得られる反応生成物からなる群から選ばれる少なくとも1種である請求項1に記載の拡散剤組成物。
     R Si(OR4-n     (1)
    [式(1)中、Rは水素原子、アルキル基、またはアリール基であり、Rはアルキル基またはアリール基であり、nは0、1、または2の整数を表す。Rが複数の場合は複数のRは同じでも異なってもよく、(OR)が複数の場合は複数の(OR)は同じでも異なってもよい。]
  7.  半導体基板に、請求項1に記載の拡散剤組成物をスプレー塗布により印刷して所定パターンの不純物拡散剤層を形成するパターン形成工程と、
     前記拡散剤組成物の不純物拡散成分(A)を前記半導体基板に拡散させる拡散工程と、
    を含むことを特徴とする不純物拡散層の形成方法。
  8.  請求項7に記載の不純物拡散層の形成方法により不純物拡散層が形成された半導体基板を備えたことを特徴とする太陽電池。
PCT/JP2011/002147 2010-05-17 2011-04-12 拡散剤組成物、不純物拡散層の形成方法、および太陽電池 WO2011145267A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127030239A KR101794374B1 (ko) 2010-05-17 2011-04-12 확산제 조성물, 불순물 확산층의 형성 방법, 및 태양 전지
US13/696,907 US9870924B2 (en) 2010-05-17 2011-04-12 Diffusion agent composition, method of forming impurity diffusion layer, and solar cell
EP11783206.3A EP2573800B1 (en) 2010-05-17 2011-04-12 Diffusion agent composition and method of forming an impurity diffusion layer
CN201180019567.8A CN102859658B (zh) 2010-05-17 2011-04-12 扩散剂组合物、杂质扩散层的形成方法、和太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-113536 2010-05-17
JP2010113536A JP5679545B2 (ja) 2010-05-17 2010-05-17 拡散剤組成物、不純物拡散層の形成方法、および太陽電池

Publications (1)

Publication Number Publication Date
WO2011145267A1 true WO2011145267A1 (ja) 2011-11-24

Family

ID=44991390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002147 WO2011145267A1 (ja) 2010-05-17 2011-04-12 拡散剤組成物、不純物拡散層の形成方法、および太陽電池

Country Status (7)

Country Link
US (1) US9870924B2 (ja)
EP (1) EP2573800B1 (ja)
JP (1) JP5679545B2 (ja)
KR (1) KR101794374B1 (ja)
CN (1) CN102859658B (ja)
TW (1) TWI539611B (ja)
WO (1) WO2011145267A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125252A1 (ja) * 2012-02-23 2013-08-29 日立化成株式会社 不純物拡散層形成組成物、不純物拡散層付き半導体基板の製造方法及び太陽電池素子の製造方法
JP2015225901A (ja) * 2014-05-26 2015-12-14 東京応化工業株式会社 拡散剤組成物及び不純物拡散層の形成方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5357442B2 (ja) * 2008-04-09 2013-12-04 東京応化工業株式会社 インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法
JP6099437B2 (ja) * 2013-03-07 2017-03-22 東京応化工業株式会社 拡散剤組成物、及び不純物拡散層の形成方法
JP6003791B2 (ja) * 2013-05-01 2016-10-05 信越化学工業株式会社 太陽電池の製造方法
US9620354B2 (en) * 2014-10-03 2017-04-11 Tokyo Ohka Kogyo Co., Ltd. Method for manufacturing semiconductor substrate with diffusion agent composition
US20180025912A1 (en) * 2015-02-25 2018-01-25 Toray Industries, Inc. P-type impurity-diffusing composition, method for manufacturing semiconductor device using said composition, solar cell, and method for manufacturing said solar cell
JP6672034B2 (ja) * 2016-03-24 2020-03-25 東京応化工業株式会社 不純物拡散剤組成物、及び半導体基板の製造方法
JP6609213B2 (ja) * 2016-03-30 2019-11-20 東京応化工業株式会社 半導体基板の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181009A (ja) * 1995-12-26 1997-07-11 Tokyo Ohka Kogyo Co Ltd ホウ素拡散用塗布液
JP2007035719A (ja) 2005-07-22 2007-02-08 Nippon Synthetic Chem Ind Co Ltd:The ホウ素拡散用塗布液
WO2009120437A1 (en) * 2008-03-24 2009-10-01 Honeywell International Inc. Methods for forming doped regions in semiconductor substrates using non-contact printing processes and dopant-comprising inks for forming such doped regions using non-contact printing processes
JP2009253145A (ja) * 2008-04-09 2009-10-29 Tokyo Ohka Kogyo Co Ltd 拡散層形成時の前処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366929A (ja) * 1986-09-08 1988-03-25 Tokyo Ohka Kogyo Co Ltd アンチモン拡散用シリカ系被膜形成組成物
JP2005038997A (ja) * 2003-07-18 2005-02-10 Sharp Corp 太陽電池の製造方法
CN100573928C (zh) * 2007-10-08 2009-12-23 苏州阿特斯阳光电力科技有限公司 一种制造太阳能电池的磷扩散方法
KR101631711B1 (ko) 2008-03-21 2016-06-17 신에쓰 가가꾸 고교 가부시끼가이샤 확산용 인 페이스트 및 그것을 이용한 태양 전지의 제조 방법
JP5357442B2 (ja) * 2008-04-09 2013-12-04 東京応化工業株式会社 インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181009A (ja) * 1995-12-26 1997-07-11 Tokyo Ohka Kogyo Co Ltd ホウ素拡散用塗布液
JP2007035719A (ja) 2005-07-22 2007-02-08 Nippon Synthetic Chem Ind Co Ltd:The ホウ素拡散用塗布液
WO2009120437A1 (en) * 2008-03-24 2009-10-01 Honeywell International Inc. Methods for forming doped regions in semiconductor substrates using non-contact printing processes and dopant-comprising inks for forming such doped regions using non-contact printing processes
JP2009253145A (ja) * 2008-04-09 2009-10-29 Tokyo Ohka Kogyo Co Ltd 拡散層形成時の前処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125252A1 (ja) * 2012-02-23 2013-08-29 日立化成株式会社 不純物拡散層形成組成物、不純物拡散層付き半導体基板の製造方法及び太陽電池素子の製造方法
JP2015225901A (ja) * 2014-05-26 2015-12-14 東京応化工業株式会社 拡散剤組成物及び不純物拡散層の形成方法

Also Published As

Publication number Publication date
US20130061922A1 (en) 2013-03-14
EP2573800A1 (en) 2013-03-27
EP2573800B1 (en) 2017-11-08
JP5679545B2 (ja) 2015-03-04
KR101794374B1 (ko) 2017-11-06
US9870924B2 (en) 2018-01-16
TWI539611B (zh) 2016-06-21
CN102859658B (zh) 2015-09-09
EP2573800A4 (en) 2014-11-26
JP2011243706A (ja) 2011-12-01
KR20130098157A (ko) 2013-09-04
CN102859658A (zh) 2013-01-02
TW201205837A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP5679545B2 (ja) 拡散剤組成物、不純物拡散層の形成方法、および太陽電池
JP5357442B2 (ja) インクジェット用拡散剤組成物、当該組成物を用いた電極及び太陽電池の製造方法
JP5681402B2 (ja) 拡散剤組成物および不純物拡散層の形成方法
JP5555469B2 (ja) 拡散剤組成物、および不純物拡散層の形成方法
JP5666267B2 (ja) 塗布型拡散剤組成物
JP2011187894A (ja) リンドーパント拡散用塗布液、それにより形成された塗布膜および太陽電池の製造方法
JP6022243B2 (ja) 拡散剤組成物および不純物拡散層の形成方法
JP6099437B2 (ja) 拡散剤組成物、及び不純物拡散層の形成方法
JP5991846B2 (ja) 膜形成用組成物、拡散剤組成物、膜形成用組成物の製造方法、及び拡散剤組成物の製造方法
JP6310649B2 (ja) 不純物拡散成分の拡散方法、及び太陽電池の製造方法
JP2017069247A (ja) 絶縁性ペーストおよびその製造方法並びに太陽電池素子の製造方法
JP7172994B2 (ja) 不純物拡散組成物、それを用いた半導体素子の製造方法および太陽電池の製造方法
JP6108781B2 (ja) 不純物拡散成分の拡散方法、及び太陽電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019567.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13696907

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127030239

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011783206

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011783206

Country of ref document: EP