WO2011142111A1 - 照明装置及びその製造方法 - Google Patents

照明装置及びその製造方法 Download PDF

Info

Publication number
WO2011142111A1
WO2011142111A1 PCT/JP2011/002568 JP2011002568W WO2011142111A1 WO 2011142111 A1 WO2011142111 A1 WO 2011142111A1 JP 2011002568 W JP2011002568 W JP 2011002568W WO 2011142111 A1 WO2011142111 A1 WO 2011142111A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
mounting substrate
lighting device
heat
circuit element
Prior art date
Application number
PCT/JP2011/002568
Other languages
English (en)
French (fr)
Inventor
和人 茂原
勝史 炭崎
俊彦 谷口
恒美 吉野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011142111A1 publication Critical patent/WO2011142111A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/04Combinations of cameras with non-electronic flash apparatus; Non-electronic flash units
    • G03B15/0442Constructional details of the flash apparatus; Arrangement of lamps, reflectors, or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/04Combinations of cameras with non-electronic flash apparatus; Non-electronic flash units
    • G03B15/0478Combinations of photographic apparatus with percussion type flash ignition systems
    • G03B15/0484Constructional details of the flash apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Definitions

  • the present invention relates to an illuminating device using an LED used as auxiliary light as a light source when taking a picture with a portable device (for example, a mobile phone equipped with a digital still camera or a camera module) equipped with an image sensor, and a method for manufacturing the same. .
  • a flash device using a xenon discharge tube as a light source has been generally used as an auxiliary light source for taking a picture with a portable device (for example, a digital still camera).
  • a portable device for example, a digital still camera.
  • imaging devices such as CCD (charge coupled device) and CMOS (complementary metal oxide semiconductor) image sensors
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • an LED 1 As an illuminating device using an LED as a light source, as shown in FIG. 8 (cross-sectional view of a conventional illuminating device), an LED 1 provided with a top 2 that transmits light emitted inside, and a drive circuit element that drives the LED 1 3, other circuit elements 4 (capacitors, coils, ICs, etc.), a connector 8 that connects the camera unit (camera system control unit) and the digital control unit, and a mounting substrate 5. It is known that the LED 1, the drive circuit element 3, and the circuit element 4 are mounted on the front surface 6 side, and the connector 8 is mounted on the other surface 7 side.
  • a digital still camera as shown in FIG. 9 (perspective view of a conventional portable device (digital still camera)) is known.
  • the external appearance of the digital still camera (hereinafter referred to as “DSC”) is as follows.
  • An optical panel 11 is fitted in the light emission window 10 of the front cover 9, a photographing lens 12 is provided, and a mode dial 13 and a shutter are provided on the upper part of the DSC main body.
  • a button 14 is provided.
  • the DSC includes a camera system control unit and the illumination device.
  • An illumination device includes an LED provided with a top portion that transmits light emitted inside, a drive circuit element that drives the LED, and a mounting board on which the LED and the driving circuit element are mounted.
  • the LED is mounted on one surface side, and at least the LED is covered with a heat radiation insulating material on the one surface side except the top.
  • the LED is mounted on one surface side of the mounting substrate, and at least the LED is covered with the heat radiation insulating material on the one surface side except for the top. Therefore, since the top part of the LED is not covered with the heat-dissipating insulating material, light can be emitted from the top part, and since the LED is covered with the heat-dissipating insulating material other than the top part (for example, the outer periphery, etc.) Heat generated from the LED can be sufficiently dissipated through the substance.
  • the manufacturing method of the illuminating device includes an LED provided with a top for transmitting light emitted therein, a drive circuit element for driving the LED, and a mounting substrate on which the LED and the drive circuit element are mounted.
  • a method for manufacturing a lighting device using a mold provided with a cavity in which a mounting substrate on which an LED and a drive circuit element are mounted is provided, and a concave portion for projecting the top of the LED out of the cavity is used.
  • the mounting substrate is disposed in the cavity of the mold so that the top of the LED protrudes from the recess of the mold and is outside the cavity of the mold, and is melted in the cavity.
  • the lighting device is filled by filling the heat radiation insulating resin and curing the resin.
  • the lighting device manufactured in this way is covered with a heat dissipation insulating material over at least the outer periphery other than the top of the LED and the one surface on which the LED of the mounting board is mounted, the heat dissipation insulating material is interposed through the heat dissipation insulating material.
  • the heat generated from the LED can be sufficiently dissipated.
  • another manufacturing method of the lighting device includes an LED provided with a top portion that transmits light emitted inside, a drive circuit element that drives the LED, and a mounting in which the LED and the drive circuit element are mounted.
  • the heat sink insulating resin is filled in the cavity with the mounting substrate disposed in the cavity of the optical panel case so that the top of the LED is in close contact with the optical panel.
  • the lighting device is manufactured by covering with at least the outer periphery other than the top portion of the LED and the one surface on which the LED of the mounting substrate is mounted with the heat radiation insulating resin. Therefore, in this manufacturing method, the resin coating of the lighting device can be performed without using a molding tool such as a mold.
  • the lighting device manufactured in this way is covered with a heat dissipation insulating material across at least the outer periphery other than the top of the LED and the one surface on which the LED of the mounting board is mounted, the heat dissipation insulating material is The heat generated from the LED can be sufficiently dissipated.
  • FIG. 1 is a circuit diagram of a portable device according to Embodiment 1 of the present invention.
  • FIG. 2A is a cross-sectional view of the lighting device for explaining the manufacturing method of the lighting device according to Embodiment 1 of the present invention.
  • FIG. 2B is a cross-sectional view in which an illumination device is arranged in a cavity formed by a mold.
  • FIG. 2C is a diagram showing a state where molten heat insulating resin is injected into the mold.
  • FIG. 2D is a view showing a state where the lighting device is taken out from the mold after the heat radiation insulating resin is cured.
  • FIG. 2A is a cross-sectional view of the lighting device for explaining the manufacturing method of the lighting device according to Embodiment 1 of the present invention.
  • FIG. 2B is a cross-sectional view in which an illumination device is arranged in a cavity formed by a mold.
  • FIG. 2C is a diagram showing a state where molten heat insul
  • FIG. 3A is a diagram illustrating a state before the manufactured illumination device is attached to the digital still camera in a situation where the illumination device according to Embodiment 1 of the present invention is attached to the front case of the digital still camera.
  • FIG. 3B is a diagram illustrating a state in which the manufactured lighting device is attached to a digital still camera.
  • FIG. 4A is a cross-sectional view of the lighting device for illustrating the method of manufacturing the lighting device according to Embodiment 2 of the present invention.
  • FIG. 4B is a cross-sectional view of an optical panel case with an optical panel, for illustrating a method for manufacturing a lighting apparatus according to Embodiment 2 of the present invention.
  • FIG. 4C is a diagram illustrating a state in which the illumination device is disposed in the optical panel case.
  • FIG. 4D is a diagram illustrating a state in which the illumination device with the optical panel case attached is arranged in a cavity formed by a mold.
  • FIG. 4E is a diagram showing a state where molten heat insulating resin is injected into the mold.
  • FIG. 4F is a diagram illustrating a state where the lighting device is taken out from the mold after the heat radiation insulating resin is cured.
  • FIG. 5A is a diagram illustrating a state before the manufactured illumination device is attached to the digital still camera in a situation where the illumination device according to Embodiment 2 of the present invention is attached to the front case of the digital still camera.
  • FIG. 5A is a diagram illustrating a state before the manufactured illumination device is attached to the digital still camera in a situation where the illumination device according to Embodiment 2 of the present invention is attached to the front case of the digital still camera.
  • FIG. 5B is a diagram illustrating a state in which the manufactured lighting device is attached to a digital still camera.
  • FIG. 6A is a cross-sectional view of the metal plate according to the present embodiment in the configuration of the lighting apparatus according to Embodiment 3 of the present invention.
  • 6B is a cross-sectional view of a lighting device that is resin-molded with the metal plate of FIG. 6A.
  • FIG. 7A is a cross-sectional view of the metal plate according to the present embodiment in the configuration of the lighting apparatus according to Embodiment 4 of the present invention.
  • FIG. 7B is a cross-sectional view of a lighting device that is resin-molded with the metal plate of FIG. 7A.
  • FIG. 8 is a cross-sectional view of a conventional lighting device.
  • FIG. 9 is a perspective view of a conventional portable device (digital still camera).
  • FIG. 1 is a circuit diagram of a portable device (digital still camera (DSC)) including a lighting device according to the present invention.
  • 2A to 2D are views for explaining a manufacturing method (resin filling step) of the lighting device according to Embodiment 1 of the present invention, in which FIG. 2A is a cross-sectional view of a conventional lighting device, and FIG. 2B is a cavity by a mold.
  • FIG. 2C is a diagram showing a state in which a molten heat-dissipating insulating resin is injected into the mold, and FIG.
  • FIG. 2D is a drawing of the lighting device from the mold after the heat-dissipating insulating resin is cured.
  • FIG. 3A and 3B are views showing a situation in which the illumination device according to Embodiment 1 of the present invention is attached to the front case of the DSC, and FIG. 3A is a state before the manufactured illumination device is attached to the digital still camera.
  • FIG. 3B is a diagram illustrating a state in which the manufactured lighting device is attached to a digital still camera.
  • the portable device according to the present embodiment is a conventional digital still camera (DSC) as shown in FIG. 9, but the DSC includes the illumination device according to the present invention and is provided on the back surface of the front cover 9. Is provided with a metal vapor deposition film or a metal thin plate so as to be in contact with the lighting device.
  • DSC digital still camera
  • the same reference numerals are assigned to the same components as those in the conventional example.
  • the illumination device includes an LED 1 provided with a top 2 that transmits light emitted inside, a drive circuit element 3 that drives the LED 1, and other circuit elements 4 (capacitors, coils, ICs, and the like). Etc.), a connector 8 for connecting the camera unit (camera system control unit 15) and the digital control unit 16, and a mounting substrate 5.
  • the LED 1, the drive circuit element 3 and the circuit element 4 are mounted on the one surface 6 side of the mounting substrate 5, and the connector 8 is mounted on the other surface 7 side.
  • the one surface 6 side of the mounting substrate 5 is covered with a heat-dissipating insulating material across at least the outer periphery other than the top portion 2 of the LED 1 and the one surface 6 of the mounting substrate 5.
  • the LED1 is configured so that it can be illuminated. Specifically, the entire LED 1 has a cylindrical body, and a top portion 2 that transmits light is provided at the upper end of the LED 1. A light emitting unit that emits light is provided so as to be surrounded by the cylindrical body, and the light emitted from the light emitting unit is configured to be illuminated by being transmitted through the top 2.
  • the drive circuit element 3 is configured to drive the LED 1, and more specifically, is an element that constitutes a drive circuit in which a driver for driving the LED 1 is built.
  • the circuit element 4 is a circuit element other than the drive circuit element 3.
  • an IC such as a digital control unit 16 and a DC-DC converter, and the IC are driven. It consists of OSC.
  • the connector 8 is configured to electrically connect the digital control unit 16 of the lighting device to the camera unit (camera system control unit 15). When the DSC is operated, the lighting device is also operated by the connector 8.
  • the mounting substrate 5 has a circuit wiring portion 5a on one surface 6 side, a circuit wiring portion 5b on the other surface 7 side, and a substrate body 5c in the gap between the circuit wiring portions 5a and 5b.
  • the LED 1, the drive circuit element 3, and the circuit element 4 are mounted on the circuit wiring portion 5 a on the one surface 6 side of the mounting substrate 5 and covered with a heat-dissipating insulating material. More specifically, the heat-dissipating insulating material is coated across the outer periphery of the LED 1 and the one surface 6 of the mounting substrate 5 except for the top 2 of the LED 1. Further, the drive circuit element 3 and the circuit element 4 are continuously covered from the outer periphery of the LED 1.
  • a connector 8 is mounted on the circuit wiring portion 5 b on the other surface 7 side of the mounting substrate 5. Further, except for a part of the mounting substrate 5 including the connector 8, the heat dissipation insulating material is continuously coated from the outer periphery of the LED 1.
  • the heat radiation insulating material is composed of a heat radiation insulation resin 17 containing an inorganic filler in a base resin (thermoplastic resin or thermosetting resin).
  • the heat radiation insulating resin 17 is made of polyamide, nylon, polyethylene, polystyrene, or other thermoplastic resin such as alumina (Al 2 O 3 ), magnesia (MgO), silicon nitride (Si 3 N 4 ), boron nitride (BN).
  • thermoplastic resin such as alumina (Al 2 O 3 ), magnesia (MgO), silicon nitride (Si 3 N 4 ), boron nitride (BN).
  • Inorganic materials such as aluminum nitride (AlN), silicon carbide (SiC), silicon dioxide (SiO 2 ) and other inorganic fillers, or epoxy-based, phenol-based, isocyanate-based thermosetting resins, etc. It consists of a resin material mixed with one or more fillers.
  • the element temperature is 90 ° C. when a current of 1 A is applied to an LED (OSRAM: LUW-C9SP) for 1 minute in consideration of continuous light emission.
  • OSRAM organic light-sensitive diode
  • the element temperature must be 120 ° C. or less.
  • the device temperature is increased by 90 ° C. when the device is used at an environmental temperature of 40 ° C., the device temperature reaches 130 ° C., so that the heat radiation drop temperature needs to be 10 ° C. or higher. Therefore, the thermal conductivity of only the base resin has no room of several degrees C, and it is necessary to incorporate an inorganic filler and to have a thermal conductivity of at least 1 W / m ⁇ K in consideration of variation.
  • the insulating property of the heat radiation insulating resin 17 will be described.
  • the voltage handled in the circuit is 10 V or less, so the circuit wiring portion (wiring pattern) on the substrate according to JIS regulations.
  • the standard of the insulation distance between them is 1.6 mm / 100V. Therefore, using this value as a reference value, for example, when the allowable value of leakage current between circuit wiring parts (wiring patterns) is set to 1 ⁇ A, the insulating property of the heat radiation insulating resin used is about 10 8 ⁇ ⁇ cm or more is desirable.
  • the circuit wiring part of the mounting board actually used is covered with a coverlay, it is necessary to consider the insulation around the solder part to which the component is fixed. do not have to.
  • the mode dial 13 is used to select and set, for example, a strobe shooting mode for still images or a torch shooting mode for moving images, and the shutter button 14 is pressed, the shooting lens 12 is adjusted and the shooting mode operation is performed.
  • the illumination device operates, and light emission is emitted from the light emission window 10 toward the subject.
  • a predetermined photographing mode for example, a strobe photographing mode
  • the LED 1 emits light in synchronization with the signal of the serial clock line (SCL) from the camera system control unit 15 as shown in FIG.
  • Light emission conditions such as current and light emission time are transmitted to the digital control unit 16 of the lighting device via the serial data line (SDA) and stored in the digital control unit 16.
  • SDA serial data line
  • an operation signal corresponding to the flash photography mode is applied from the camera system control unit 15 to the digital control unit 16 of the illumination device via the flash line.
  • the digital control unit 16 drives the boosting circuit unit to boost the battery power source to an arbitrary voltage and apply it to the LED 1.
  • the CMOS of the drive circuit (LED driver circuit unit) is turned on, and an arbitrary light emission current is allowed to flow for an arbitrary light emission time, thereby causing the LED 1 to emit light.
  • the basic operation of the torch shooting mode which is another shooting mode, is the same as that of the flash shooting mode except that the emission current and the emission time are different.
  • the heat dissipation insulating resin 17 having heat dissipation and insulation properties continuously drives the drive circuit element 3 and the circuit element 4 from the outer periphery of the LED 1 on the one surface 6 of the mounting substrate 5.
  • the side surface of the mounting substrate 5 and the other surface 7 are also covered.
  • the heat generated from the LED 1 and the drive circuit element 3 can be efficiently and sufficiently dissipated through the heat insulating resin 17.
  • the covering of the lighting device with the heat-dissipating insulating resin 17 does not increase the volume of the entire lighting device, the color temperature and light quantity of the LED 1 are prevented from changing while realizing a small volume suitable for a portable device (for example, this DSC). In addition, a highly accurate and reproducible captured image can be obtained.
  • the manufacturing method of the lighting device according to the present embodiment is a manufacturing method of the lighting device having the conventional configuration shown in FIG. 8, and is provided with a cavity 23 in which the mounting substrate 5 on which the LED 1 and the drive circuit element 3 are mounted is disposed.
  • a mold provided with a recess 21 for projecting the top portion 2 of the LED 1 out of the cavity 23 is used, and the mounting substrate 5 is cavityd so that the top portion 2 of the LED 1 projects out of the recess portion 21 of the mold and is out of the cavity 23.
  • a conventional lighting device includes an LED 1 provided with a top 2 for transmitting light emitted therein, a drive circuit element 3 for driving the LED 1, other circuit elements 4 (a capacitor, a coil, an IC, etc.), and a camera unit.
  • the connector 8 which connects the (camera system control part 15) and the digital control part 16, and the mounting substrate 5 are provided.
  • the LED 1, the drive circuit element 3 and the circuit element 4 are mounted on the one surface 6 side of the mounting substrate 5, and the connector 8 is mounted on the other surface 7 side.
  • Such an illumination device is placed in a mold as shown in FIG. 2B.
  • the mold is composed of a pair of upper and lower cores in which the upper part 19 of the mold core and the lower part 20 of the mold core are in contact with each other. Further, the upper part 19 and the lower part 20 of the mold core are in contact with each other, thereby forming a cavity 23 in the mold.
  • the upper portion 19 of the mold core is provided with a spool 18 for injecting the molten heat-dissipating insulating resin 17 and a storage portion 22 for storing the connector 8.
  • the lower part 20 of the mold core is provided with a concave part 21 for projecting the top part 2 of the LED 1.
  • the mounting board 5 is arranged so that the one surface 6 side of the mounting board 5 faces downward (toward the lower part 20 side of the mold core) with respect to the cavity 23.
  • the mounting substrate 5 is installed so that the LED 1, the drive circuit element 3, and the circuit element 4 mounted on the one surface 6 of the mounting substrate 5 are positioned in the cavity 23.
  • the top portion 2 of the LED 1 is fitted into the concave portion 21 of the lower portion 20 of the mold core, and the connector 8 is accommodated in the accommodating portion 22 of the upper portion 19 of the mold core. To touch.
  • the molten heat-dissipating insulating resin 17 is extruded and injected from the spool 18 provided on the upper portion 19 of the mold core, and the top portion 2 (light emission) of the LED 1 is injected.
  • Part) and part of the mounting substrate 5 including the connector 8 are filled in so as to cover them.
  • the thermal conductivity of the base resin is about 0.2 W / m ⁇ K, but it is approximately proportional to the filler amount (% by weight) by dispersing the inorganic filler.
  • the thermal conductivity can be several W / m ⁇ K to several tens W / m ⁇ K.
  • the amount of filler is increased, the thermal conductivity becomes high, and the heat dissipation increases while the moldability decreases.
  • the melt viscosity as the heat radiation insulating resin is 20 Pa ⁇ S or less.
  • the filler density is increased to have a thermal conductivity of 1 W / m ⁇ K or more, and the melt viscosity as a heat-dissipating resin is 20 Pa ⁇ S or less to optimize moldability. It is necessary to plan.
  • thermosetting resin can also be molded. Therefore, emphasis is placed on the thermal conductivity, the amount of inorganic filler is set to 50% by weight or more in the thermosetting resin such as epoxy, and the dissolution viscosity is increased. It can be made larger.
  • the mold is opened, and the resin-coated lighting device is taken out.
  • the lighting device manufactured in this way is attached to the inside of the DSC. Specifically, as shown in FIGS. 3A and 3B, the optical panel 11 is fitted into the light emission window 10 of the front cover 9 of the DSC, and the top portion 2 (light emission portion) of the LED 1 so as to face the optical panel 11. To fix.
  • the screw 24 is used to fix the lighting device to the mounting dowel 26 of the front cover 9 of the DSC through (through) the mounting substrate 5 or the fixing plate 25 of the lighting device. To do.
  • the driving circuit element 3 and the circuit element 4 are continuously formed from the outer periphery of the LED 1 on the one surface 6 of the mounting substrate 5 of the lighting device by using a mold.
  • the side surface of the mounting substrate 5 and the other surface 7 can be covered with the heat radiation insulating resin 17.
  • the lighting device manufactured in this way can sufficiently dissipate heat generated from the LED 1 and the drive circuit element 3 via the heat dissipation insulating resin 17.
  • the metal vapor deposition film A and the metal thin plate A are provided on the back surface of the front cover 9 of the DSC, particularly in the portion in contact with the module (illumination device), the components in the module are interposed via the metal vapor deposition film A or the metal thin plate A. Heat generated by the LEDs 1 and the drive circuit elements 3 can be radiated more efficiently.
  • FIG. 4A to 4F are diagrams for explaining a manufacturing method (resin filling step) of the lighting device according to Embodiment 2 of the present invention, in which FIG. 4A is a cross-sectional view of a conventional lighting device, and FIG. 4C is a cross-sectional view of the optical panel case, FIG. 4C is a diagram showing a state in which the conventional illumination device is disposed in the optical panel case, and FIG. 4D is a state in which the conventional illumination device to which the optical panel case is attached is disposed in the cavity by the mold.
  • FIG. 4A is a cross-sectional view of a conventional lighting device
  • FIG. 4C is a cross-sectional view of the optical panel case
  • FIG. 4C is a diagram showing a state in which the conventional illumination device is disposed in the optical panel case
  • FIG. 4D is a state in which the conventional illumination device to which the optical panel case is attached is disposed in the cavity by the mold.
  • FIG. 4E is a diagram showing a state in which a molten heat-dissipating insulating resin is injected into the mold
  • FIG. 4F is a diagram showing a state in which the lighting device is taken out from the mold after the heat-dissipating insulating resin is cured.
  • 5A and 5B are attachment diagrams of the illumination device according to Embodiment 2 of the present invention to the front case of the DSC (digital still camera), and FIG. 5A is a diagram before the manufactured illumination device is attached to the DSC.
  • FIG. 5B is a diagram showing a state where the manufactured lighting device is attached to the DSC.
  • the manufacturing method of the lighting device according to the present embodiment is a manufacturing method of the lighting device having the conventional configuration shown in FIG. 8, in which a cavity is provided in which the mounting substrate 5 on which the LED 1 and the drive circuit element 3 are mounted is disposed.
  • an optical panel case 28 provided with an opening 30a corresponding to the top 2 of the LED 1 and the optical panel 11 mounted so as to close the opening 30a is used, and the top 2 of the LED 1 is in close contact with the optical panel 11.
  • the step of filling the cavity with the heat radiation insulating resin 17 and the resin 17 are cured, so that at least other than the top 2 of the LED 1 A step of covering the outer periphery and one surface 6 of the mounting substrate 5 with a heat insulating resin 17.
  • an optical panel case 28 as shown in FIG. 4B is attached to the conventional illumination device shown in FIG. 4A (see FIG. 4C).
  • the optical panel case 28 is an optical panel case 28 in which a pair of upper and lower upper members 29 and 30 are fitted to form a hollow portion 27 therein.
  • the upper member 29 of the optical panel case 28 is provided with a through hole 31 so that a part of the mounting substrate 5 including the connector 8 is disposed outside the cavity 27, and a molten heat radiation insulating resin 17 is injected therein.
  • An injection hole 32 is provided.
  • the lower member 30 of the optical panel case 28 is provided with an opening 30a corresponding to the top 2 of the LED 1.
  • the one surface 6 side of the mounting substrate 5 faces downward (facing the lower member 30 side).
  • the mounting substrate 5 is arranged so as to be. Specifically, the mounting substrate 5 is installed so that the LED 1, the drive circuit element 3, and the circuit element 4 mounted on the one surface 6 of the mounting substrate 5 are positioned in the cavity 27 by the optical panel case 28. Further, the top portion 2 of the LED 1 faces the opening 30 a of the lower member 30 of the optical panel case 28, and a part of the mounting substrate 5 including the connector 8 extends from the through hole 31 of the upper member 29 of the optical panel case 28 to the cavity portion 27.
  • the upper member 29 of the optical panel case 28 is fitted to the lower member 30 so as to be located outside. Further, the optical panel 11 is attached to the opening 30 a of the optical panel case 28 so as to close the opening 30 a of the optical panel case 28 and to be in close contact with the top 2 of the LED 1.
  • the mold as used in the first embodiment is used, and the illuminating device to which the optical panel case 28 is attached is disposed in the cavity by the mold as shown in FIG. 4D. .
  • the heat-dissipating insulating resin 17 melted from the injection hole 32 of the optical panel case 28 to the cavity 27 through the spool 18 of the upper portion 19 of the mold core, for example, by injection molding. And is filled so that a resin coating is formed except for a part of the mounting substrate 5 including the top 2 of the LED 1 and the connector 8.
  • the heat radiation insulating resin 17 is cured (for example, solidified), as shown in FIG. 4F, the mold is opened, and the lighting device with the resin-coated modular optical panel case 28 is taken out.
  • the lighting device manufactured in this way is attached to the inside of the DSC. Specifically, as shown in FIGS. 5A and 5B, the optical panel 11 attached to the optical panel case 28 of the manufactured illumination device is fitted into the light emitting window 10 of the front cover 9 of the DSC. Then, a metal plate 33 is provided so as to press the lighting device against the front cover 9 of the DSC from above the lighting device (on the other surface 7 side of the mounting substrate 5), and the mounting dowel 26 of the screw 24 and the front cover 9 of the DSC. Then, the lighting device is pressed by the metal plate 33 and fixed to the front cover 9 of the DSC.
  • the optical panel case 28 equipped with the optical panel 11 is attached to the lighting device before the conventional lighting device is covered with the heat radiation insulating resin 17.
  • the mold is used to inject the heat insulating resin 17
  • the heat insulating resin 17 melted from the injection hole 32 of the optical panel case 28 is not required.
  • the lighting device can be resin-coated.
  • the metal plate 33 presses the lighting device against the front cover 9 of the DSC, so that the fixation between the DSC and the lighting device can be strengthened. It is fixed in contact with the optical panel case 28 of the lighting device. For this reason, it has a certain heat dissipation effect with respect to the heat generated from the lighting device (LED 1 and drive circuit element 3 and the like).
  • FIG. 6A is a cross-sectional view of the metal plate according to the present embodiment
  • FIG. 6B is resin-molded with the metal plate. It is sectional drawing of an illuminating device.
  • the lighting device according to the present embodiment has a metal plate 35 on a flat plate provided with a countersunk-shaped fixed through hole 34, as shown in FIG. 6B.
  • a metal plate 35 on a flat plate provided with a countersunk-shaped fixed through hole 34, as shown in FIG. 6B.
  • it is manufactured by using the mold or the like in the first embodiment so as to be fixed away from the other surface 7 side of the mounting substrate 5.
  • the other surface 7 side of the lighting device according to the first embodiment is covered with the heat dissipation insulating resin 17.
  • the plate 35 is further covered, and the countersunk hole 34 of the metal plate 35 and the heat radiation insulating resin 17 are engaged with each other.
  • the heat-dissipating insulating resin 17 is cured, the countersink-shaped heat dissipation is filled and cured.
  • the insulating resin 17 and the metal plate 35 are engaged and fixed. Therefore, the heat generated from the LED 1 and the drive circuit element 3 can be radiated more efficiently through the metal plate 35 with excellent heat dissipation fixed in this manner. Specifically, the heat generated from the LED 1 and the drive circuit element 3 is transmitted to the other surface 7 side of the mounting substrate, and the heat transmitted to the other surface side is dissipated by the heat insulating resin 17 covering the other surface 7 side. . Since the heat radiation is efficiently radiated by the metal plate 35 covered with the heat radiation insulating resin 17, heat radiation from the LED 1 and the drive circuit element 3 can be improved.
  • FIG. 7A is a cross-sectional view of the metal plate according to the present embodiment
  • FIG. 7B is resin-molded with the metal plate. It is sectional drawing of an illuminating device.
  • the lighting device according to this embodiment is provided with a countersunk-shaped fixed through hole 34 and a flat metal plate 37 provided with a convex portion 36, as shown in FIG. It is manufactured by using a mold or the like so that the projection 36 of the metal plate 37 comes into contact with and is fixed to the other surface 7 of the mounting substrate 5 of the lighting device by the heat radiation insulating resin 17.
  • the illuminating device according to the present embodiment is a projection on a part of the metal plate 35 obtained by changing the design of the metal plate 35 in the illuminating device according to the third embodiment (see, for example, FIG. 6A).
  • the convex part 36 contacts and is fixed in the location of the same electric potential at the other surface 7 side of the mounting substrate 5.
  • the convex portion 36 of the metal plate 37 is formed on the other surface 7 of the mounting substrate 5 when the heat radiation insulating resin 17 is cured.
  • the countersink-shaped heat-dissipating insulating resin 17 filled with the fixed through-hole 34 and hardened in contact with the countersink and the countersunk-shaped fixed through-hole 34 of the metal plate 37 are engaged with each other.
  • the plate 37 is firmly fixed to the mounting substrate 5.
  • the heat radiation insulating resin 17 and the convex part 36 of the metal plate 37 are fixed in contact with the other surface 7 of the mounting substrate 5, not only the heat radiation insulating resin 17 but also the metal plate 37 having excellent heat radiation properties are interposed.
  • the rate of heat dissipation from the LED 1 and the drive circuit element 3 can be increased, and the heat dissipation effect can be improved.
  • the convex portion 36 of the metal plate 37 contacts the other surface 7 of the mounting substrate 5
  • the convex portion 36 of the metal plate 37 is brought into contact with a portion where the heat generation amount of the circuit wiring portion 5 b on the other surface 7 of the mounting substrate 5 is large. By doing so, a greater heat dissipation effect can be obtained.
  • the driving circuit element 3 and the circuit element 4 from the outer periphery of the LED 1 on the one surface 6 of the mounting substrate 5 are covered with the heat-dissipating insulating resin 17. 5 and the other surface 7 are continuously covered with the heat radiation insulating resin 17.
  • the drive circuit element 3 and the circuit element 4 on the one surface 6 of the mounting substrate 5, the side surface and the other surface 7 of the mounting substrate 5 are not continuously covered with the heat radiation insulating resin 17 from the outer periphery of the LED 1, that is, the outer periphery of the LED 1.
  • the structure covered with the heat-radiating insulating resin 17 without being continuous may be used. Specifically, the outer periphery of the LED 1, the drive circuit element 3, the circuit element 4, the side surface of the mounting substrate 5, and the other surface 7 may be coated with the heat-insulating insulating resin 17 discontinuously.
  • the lighting device includes an LED provided with a top for transmitting light emitted therein, a drive circuit element for driving the LED, and a mounting substrate on which the LED and the drive circuit element are mounted.
  • the LED is mounted on one surface side of the mounting substrate, and at least one of the LEDs is covered with a heat dissipation insulating material on the one surface side except the top.
  • the LED is mounted on one surface side of the mounting substrate, and at least the LED is covered with the heat radiation insulating material on the one surface side except for the top. Therefore, since the top part of the LED is not covered with the heat-dissipating insulating material, light can be emitted from the top part, and since the LED is covered with the heat-dissipating insulating material other than the top part (for example, the outer periphery, etc.) Heat generated from the LED can be sufficiently dissipated through the substance.
  • one surface side of the mounting substrate is covered with a heat dissipation insulating material.
  • the lighting device having such a configuration, since one surface (the surface on which the LED is mounted) side of the mounting substrate is coated with the heat insulating material, the heat generated from the LED or the like is generated through the heat insulating material on the mounting substrate. Sufficient heat can be released from one surface side.
  • the one surface side is covered with a heat radiation insulating material. Heat generated from circuit elements and other circuit elements can be sufficiently dissipated.
  • the other surface side of the mounting substrate is covered with a heat radiation insulating material.
  • the other surface side of the mounting substrate is coated with the heat dissipation insulating material, not only the one surface side of the mounting substrate but also the heat dissipation insulating material on the other surface side, the LED, etc.
  • the heat generated from can be dissipated more. More specifically, an LED or the like mounted on one surface side of the mounting substrate (for example, if a driving circuit element or other circuit element serving as a heat source is mounted on one surface side, the driving circuit element or other circuit element) Heat is transmitted from one surface side of the mounting board to the other surface side, and the heat transmitted to the other surface side can be radiated through the heat insulating material covering the other surface side.
  • a drive circuit element or other circuit element serving as a heat source is mounted on the other surface side of the mounting substrate, the other surface side is covered with a heat-dissipating insulating material. Heat generated from circuit elements and other circuit elements can be sufficiently dissipated.
  • the lighting device according to the present invention includes a metal plate provided so as to further cover a heat radiation insulating material covering the other surface side of the mounting substrate.
  • the other surface side of the mounting substrate is covered with the heat dissipation insulating material, and the heat dissipation insulating material is further covered with the metal plate. Therefore, heat generated from the LED and the drive circuit element is transmitted from one surface side of the mounting substrate to the other surface side, and the heat transmitted to the other surface side is dissipated by the heat insulating material covering the other surface side, Since the heat is sufficiently radiated by the metal plate coated with the heat radiation insulating material, the heat radiation of the heat generated from the LED and the drive circuit element can be enhanced.
  • the metal plate may be provided with a through hole that engages with the heat-dissipating insulating material, or with a through hole and a convex portion that contacts the other surface of the mounting substrate. preferable.
  • the other surface side of the mounting substrate is coated with the heat dissipation insulating material, the metal plate is further covered with the heat dissipation insulating material, and the metal plate is engaged with the heat dissipation insulating material.
  • a through hole or a convex portion that contacts the through hole and the other surface of the mounting substrate is provided. Therefore, the through hole of the metal plate and the heat radiation insulating material are engaged, and the metal plate and the heat radiation insulating material are firmly adhered and fixed to each other, so that the thermal conductivity is improved.
  • the heat dissipation of heat generation can be further improved.
  • the heat generated from the LED and the drive circuit element is transmitted from one surface side of the mounting board to the other surface side, and is transmitted to the other surface side.
  • the heat can be radiated not only through the heat-dissipating insulating material covering the other surface side but also directly through the metal plate.
  • the heat dissipation insulating material is made of a heat dissipation insulating resin containing an inorganic filler in a thermoplastic resin or a thermosetting resin.
  • the heat radiation insulating material is made of a heat radiation insulation resin containing an inorganic filler in a thermoplastic resin or a thermosetting resin, it is possible to efficiently dissipate heat generated from the LED and the drive circuit element.
  • the mounting substrate can be insulated.
  • the manufacturing method of the illuminating device includes an LED provided with a top for transmitting light emitted therein, a drive circuit element for driving the LED, and a mounting substrate on which the LED and the drive circuit element are mounted.
  • a method for manufacturing a lighting device using a mold provided with a cavity in which a mounting substrate on which an LED and a drive circuit element are mounted is provided, and a concave portion for projecting the top of the LED out of the cavity is used.
  • the mounting substrate is disposed in the cavity of the mold so that the top of the LED protrudes from the recess of the mold and is outside the cavity of the mold, and is melted in the cavity.
  • the lighting device is filled by filling the heat radiation insulating resin and curing the resin.
  • the lighting device manufactured in this way is covered with a heat dissipation insulating material over at least the outer periphery other than the top of the LED and the one surface on which the LED of the mounting board is mounted, the heat dissipation insulating material is interposed through the heat dissipation insulating material.
  • the heat generated from the LED can be sufficiently dissipated.
  • another manufacturing method of the lighting device includes an LED provided with a top portion that transmits light emitted inside, a drive circuit element that drives the LED, and a mounting in which the LED and the drive circuit element are mounted.
  • the heat sink insulating resin is filled in the cavity with the mounting substrate disposed in the cavity of the optical panel case so that the top of the LED is in close contact with the optical panel.
  • the lighting device is manufactured by covering with at least the outer periphery other than the top portion of the LED and the one surface on which the LED of the mounting substrate is mounted with the heat radiation insulating resin. Therefore, in this manufacturing method, the resin coating of the lighting device can be performed without using a molding tool such as a mold.
  • the lighting device manufactured in this way is covered with a heat dissipation insulating material across at least the outer periphery other than the top of the LED and the one surface on which the LED of the mounting board is mounted, the heat dissipation insulating material is The heat generated from the LED can be sufficiently dissipated.
  • the lighting device and the manufacturing method thereof according to the present invention provide a portable device (for example, a digital device) that needs to efficiently and efficiently dissipate an LED and a drive circuit element (a drive circuit element incorporating an LED driver) while realizing a small volume. It can be applied to applications such as a still camera and a mobile phone equipped with a camera module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Stroboscope Apparatuses (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Studio Devices (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明の照明装置は、内部で発光した光を透過させる頂部が設けられたLEDと、LEDを駆動させる駆動回路素子と、LED及び駆動回路素子が一表面側に実装された実装基板とを備え、少なくともLEDの頂部以外の外周と実装基板の一表面とに跨って放熱絶縁物質が被覆されていることを特徴とする。

Description

照明装置及びその製造方法
 本発明は、撮像素子を備えた携帯機器(例えばデジタルスチルカメラやカメラモジュールを備えた携帯電話機等)で写真撮影を行う際に補助光として用いられるLEDを光源とした照明装置及びその製造方法に関する。
 従来、携帯機器(例えばデジタルスチルカメラ)等による写真撮影の補助光源としては、一般的にキセノン放電管を光源とする閃光装置が用いられていた。しかしながら、近年、携帯機器等におけるカメラ部(カメラシステム制御部等)のデジタル化が進むにつれ、撮像素子(CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)によるイメージセンサ等)が用いられることによって、カメラの連続撮影機能や動画撮影機能が可能となった。携帯機器等における照明装置においては、従来の静止画撮影に適していたキセノン放電管を光源とする照明装置よりも、静止画撮影と動画撮影に適したLEDを光源とする照明装置が主流となりつつある。
 LEDを光源とする照明装置としては、図8(従来の照明装置の断面図)に示すように、内部で発光した光を透過させる頂部2が設けられたLED1と、LED1を駆動させる駆動回路素子3と、その他の回路素子4(コンデンサやコイルやIC等)と、カメラ部(カメラシステム制御部)とデジタル制御部とを接続するコネクタ8と、実装基板5とを備え、実装基板5の一表面6側には、LED1及び駆動回路素子3及び回路素子4が実装され、他表面7側には、コネクタ8が実装されたものが知られている。
 また、携帯機器としては、例えば、図9(従来の携帯機器(デジタルスチルカメラ)の斜視図)に示すようなデジタルスチルカメラが知られている。該デジタルスチルカメラ(以下、「DSC」と言う)の外観は、前カバー9の発光窓10に光学パネル11が嵌入され、また撮影レンズ12を備えると共に、DSCの本体上部にモードダイヤル13、シャッターボタン14を備える。また、DSCの内部には、カメラシステム制御部と上記照明装置とを備えている。
 上記構成からなるDSCにおけるLEDの電流特性としては、一般的に、大光量を必要とする静止画撮影時に、大電流がLEDに一時的に流され、また動画撮影時に、任意電流がLEDに連続して流され続けるという特性がある。そのため、これらの一時的な大電流あるいは連続的な任意電流に伴う消費電力によって、とりわけ、LED1、及び、LED1を駆動させる駆動回路素子3は発熱を生じる。しかしながら、上記構成からなる照明装置では、LED1や駆動回路素子3からの発熱は、実装基板5の一表面6(接触面)から実装基板5の他表面7へ放熱されるものの、それだけでは放熱が十分になされていないという問題があった。さらに、このような不十分な放熱という問題は、例えばLEDの発光の色温度や光量が変化して精度の高い再現性のある撮影画像が得られないといった二次的な問題を惹起させ得る。
 上記問題点に対して、一般的に主熱源であるLEDの発熱を抑えるに当たり、LEDの直下にだけ放熱樹脂を介し金属板やヒートシンクを用いて放熱を施したり(例えば特許文献1)、またLEDが一表面に実装される基板の裏面に放熱板を付設すること(例えば特許文献2)が知られている。
 しかしながら、上記特許文献1や特許文献2の技術では、LEDの直下にだけ放熱樹脂を採用したり、あるいは、LEDが一表面に実装された基板の裏面に放熱板を採用しているだけで、LEDからの発熱の放熱が不十分であった。さらに、主熱源であるLEDだけでなくLEDを駆動させる駆動回路素子からも発熱が生じることを鑑みると、上記特許文献1や特許文献2の技術では、駆動回路素子には何ら放熱策が講じられておらず、駆動回路素子からの発熱の放熱は十分ではなかった。その結果、上記問題点で指摘したように、例えば、発熱されたLEDは照射光の色温度を変化させたり、また、発熱された駆動回路素子はLED電流を変化させ照射光量を変化させるため、精度の高い再現性のある撮影画像が得られないという二次的な問題が惹起されることとなる。
特開2007-173791号公報 特開2006-243310号公報
 本発明に係る照明装置は、内部で発光した光を透過させる頂部が設けられたLEDと、LEDを駆動させる駆動回路素子と、LED及び駆動回路素子が実装された実装基板とを備え、実装基板の一表面側にLEDが実装され、一表面側において少なくともLEDがその頂部を除いて放熱絶縁物質により被覆されていることを特徴とする。
 かかる構成からなる照明装置によれば、実装基板の一表面側にLEDが実装され、一表面側において少なくともLEDがその頂部を除いて放熱絶縁物質により被覆されている。よって、LEDの頂部は放熱絶縁物質で被覆されていないため、発光を頂部からなすことができるとともに、LEDはその頂部以外(例えば外周等)が放熱絶縁物質で被覆されているため、当該放熱絶縁物質を介し、LEDからの発熱を十分に放熱できる。
 本発明に係る照明装置の製造方法は、内部で発光した光を透過させる頂部が設けられたLEDと、LEDを駆動させる駆動回路素子と、LED及び駆動回路素子が実装された実装基板とを備えた照明装置の製造方法であって、LED及び駆動回路素子を実装した実装基板を配置するキャビティを設け、且つ、LEDの頂部をキャビティ外に突出させる凹部を設けた金型を使用し、LEDの頂部が金型の凹部から突出してキャビティ外となるように実装基板をキャビティ内に配置した状態でキャビティ内に溶融された放熱絶縁樹脂を充填する工程と、樹脂を硬化させることで、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁樹脂で被覆する工程とを含むことを特徴とする。
 かかる構成からなる照明装置の製造方法によれば、LEDの頂部が金型の凹部から突出して金型のキャビティ外となるように実装基板を金型のキャビティ内に配置した状態でキャビティ内に溶融された放熱絶縁樹脂を充填し、樹脂を硬化させることで、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁樹脂で被覆することによって、照明装置が製造される。このようにして製造された照明装置は、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁物質が被覆されているため、該放熱絶縁物質を介して、LEDからの発熱を十分に放熱できる。
 また、本発明に係る照明装置の他の製造方法は、内部で発光した光を透過させる頂部が設けられたLEDと、LEDを駆動させる駆動回路素子と、LED及び駆動回路素子が実装された実装基板とを備える照明装置の製造方法であって、LED及び駆動回路素子を実装した実装基板を配置する空洞部を設け、且つ、LEDの頂部に対応した開口部を設け、該開口部を閉塞するように光学パネルが装着された光学パネルケースを使用し、LEDの頂部が光学パネルに密着するように実装基板を光学パネルケースの空洞部に配置した状態で空洞部に溶融された放熱絶縁樹脂を充填する工程と、樹脂を硬化させることで、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁樹脂で被覆する工程とを含むことを特徴とする。
 かかる構成からなる照明装置の製造方法によれば、LEDの頂部が光学パネルに密着するように実装基板を光学パネルケースの空洞部に配置した状態で空洞部に溶融された放熱絶縁樹脂を充填し、樹脂を硬化させることで、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁樹脂で被覆することによって、照明装置が製造される。そのため、本製造方法では、金型等の成形具を用いなくとも、照明装置の樹脂被覆ができる。また、このようにして製造された照明装置は、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁物質が被覆されているため、該放熱絶縁物質を介して、LEDからの発熱を十分に放熱できる。
図1は本発明の実施の形態1に係る携帯機器における回路図である。 図2Aは本発明の実施形態1に係る照明装置の製造方法を説明するための、照明装置の断面図である。 図2Bは金型によるキャビティに照明装置を配置した断面図である。 図2Cは溶融された放熱絶縁樹脂を金型に注入している状態を示す図である。 図2Dは放熱絶縁樹脂が硬化後、金型から照明装置を取り出した状態を示す図である。 図3Aは本発明の実施形態1に係る照明装置をデジタルスチルカメラの前ケースへ取り付ける状況において、製造された照明装置をデジタルスチルカメラに取り付ける前の状態を示す図である。 図3Bは製造された照明装置をデジタルスチルカメラに取り付けた状態を示す図である。 図4Aは本発明の実施の形態2に係る照明装置の製造方法を説明するための、照明装置の断面図である。 図4Bは本発明の実施の形態2に係る照明装置の製造方法を説明するための、光学パネル付きの光学パネルケースの断面図である。 図4Cは光学パネルケース内に照明装置を配置した状態を示す図である。 図4Dは光学パネルケースを取り付けた照明装置を金型によるキャビティに配置した状態を示す図である。 図4Eは溶融された放熱絶縁樹脂を金型に注入している状態を示す図である。 図4Fは放熱絶縁樹脂が硬化後、金型から照明装置を取り出した状態を示す図である。 図5Aは本発明の実施形態2に係る照明装置をデジタルスチルカメラの前ケースへ取り付ける状況において、製造された照明装置をデジタルスチルカメラに取り付ける前の状態を示す図である。 図5Bは製造された照明装置をデジタルスチルカメラに取り付けた状態を示す図である。 図6Aは本発明の実施の形態3に係る照明装置の構成における、本実施形態に係る金属板の断面図である。 図6Bは図6Aの金属板を備えて樹脂成形された照明装置の断面図である。 図7Aは本発明の実施の形態4に係る照明装置の構成における、本実施形態に係る金属板の断面図である。 図7Bは図7Aの金属板を備えて樹脂成形された照明装置の断面図である。 図8は従来の照明装置の断面図である。 図9は従来の携帯機器(デジタルスチルカメラ)の斜視図である。
 (実施の形態1)
 以下、本発明に係る照明装置の実施の形態1について、図面を参照しつつ説明する。図1は、本発明に係る照明装置を備えた携帯機器(デジタルスチルカメラ(DSC))における回路図である。図2A~2Dは、本発明の実施形態1に係る照明装置の製造方法(樹脂充填工程)を説明する図であって、図2Aは従来の照明装置の断面図、図2Bは金型によるキャビティに従来の照明装置を配置した断面図、図2Cは溶融された放熱絶縁樹脂を金型に注入している状態を示す図、図2Dは放熱絶縁樹脂が硬化後、金型から照明装置を取り出した状態を示す図である。また図3A、3Bは、本発明の実施形態1に係る照明装置をDSCの前ケースへ取り付ける状況を示した図であって、図3Aは製造された照明装置をデジタルスチルカメラに取り付ける前の状態、図3Bは製造された照明装置をデジタルスチルカメラに取り付けた状態を示す図である。
 本実施形態に係る携帯機器は、図9に示すような従来のデジタルスチルカメラ(DSC)であるが、本DSCの内部には、本発明に係る照明装置を備え、また前カバー9裏面部には、照明装置と接するように金属蒸着膜あるいは金属薄板が設けられている。なお、実施の形態において従来例と同じ構成には同じ参照符号を付す。
 照明装置は、例えば図2Dに示すように、内部で発光した光を透過させる頂部2が設けられたLED1と、LED1を駆動させる駆動回路素子3と、その他の回路素子4(コンデンサやコイルやIC等)と、カメラ部(カメラシステム制御部15)とデジタル制御部16とを接続するコネクタ8と、実装基板5とを備えている。実装基板5の一表面6側にはLED1及び駆動回路素子3及び回路素子4が実装され、また、他表面7側にはコネクタ8が実装されてなる。さらに、実装基板5の一表面6側は、少なくともLED1の頂部2以外の外周と実装基板5の一表面6とに跨って放熱絶縁物質で被覆される。
 LED1は、照明ができるように構成される。具体的には、LED1は、全体が筒状体をなし、その上端に光を透過する頂部2が設けられる。その筒状体に囲まれるようにして、光を発光する発光部が設けられ、発光部から発光された光は、頂部2を透過することで照明をなすように構成される。
 駆動回路素子3は、LED1を駆動させるように構成され、具体的には、LED1を駆動するドライバーが内蔵された駆動回路を構成する素子である。
 回路素子4は、駆動回路素子3を除くその他の回路素子であって、例えば図1に示すように、コンデンサやコイルの他、デジタル制御部16やDC-DCコンバータといったIC、該ICを駆動させるOSC等からなる。
 コネクタ8は、照明装置のデジタル制御部16をカメラ部(カメラシステム制御部15)に電気的に接続するように構成される。DSCを操作すると、コネクタ8によって、それに伴って照明装置も動作する。
 実装基板5は、一表面6側に回路配線部5a、他表面7側に回路配線部5bが設けられ、また両回路配線部5a,5bの間隙に基板本体5cが設けられてなる。また、実装基板5の一表面6側の回路配線部5aには、LED1と駆動回路素子3と回路素子4とが実装され、放熱絶縁物質が被覆される。より具体的には、放熱絶縁物質が、LED1の頂部2を除いて、LED1の外周と実装基板5の一表面6とに跨って被覆される。また、駆動回路素子3と回路素子4とがLED1の外周から連続して被覆される。実装基板5の他表面7側の回路配線部5bには、コネクタ8が実装される。またコネクタ8を含む実装基板5の一部を除いて、LED1の外周から連続して放熱絶縁物質が被覆される。
 放熱絶縁物質は、本実施形態では、基材樹脂(熱可塑性樹脂又は熱硬化樹脂)に無機フィラーを含有した放熱絶縁樹脂17からなる。
 放熱絶縁樹脂17は、ポリアミド系、ナイロン系、ポリエチレン系、ポリスチレン系等の熱可塑性樹脂にアルミナ(Al)、マグネシア(MgO)、窒化ケイ素(Si)、窒化ホウ素(BN)、窒化アルミニウム(AlN)、炭化ケイ素(SiC)、二酸化ケイ素(SiO)等の無機フィラーを一種以上粉混入した樹脂材料、またはエポキシ系、フェノール系、イソシアネート系等の熱硬化性樹脂に上記無機フィラーを一種以上粉混入した樹脂材料からなる。
 放熱絶縁樹脂17の放熱性については、本出願人が行った実験によれば、連続発光を考慮しLED(OSRAM:LUW-C9SP)に1Aの電流を1分間印加したとき、素子温度は90℃上昇した。つまり、カメラ製品において環境温度40℃での使用に対するカメラ構成樹脂部材(例えばポリカーボネート)への影響を考慮すると素子温度を120℃以下にしなければならない。環境温度40℃で使用して素子温度が90℃上昇すると、素子温度は130℃に達するため、放熱降下温度を10℃以上にする必要がある。よって、基材樹脂だけの熱伝導率だけでは数℃と余裕がなく、バラツキを考慮すれば無機フィラーを混入し、最低1W/m・Kの熱伝導率を有する必要がある。
 また、放熱絶縁樹脂17の絶縁性について説明すると、一般的に、LEDを用いた照明装置の場合、回路で扱う電圧は10V以下であるため、JIS規定による基板上の回路配線部(配線パターン)間の絶縁距離の目安は1.6mm/100Vである。よって、この値を参考値として、例えば、回路配線部(配線パターン)間の漏れ電流の許容値を1μAに設定した場合、使用する放熱絶縁樹脂の絶縁性は体積抵抗値で約10Ω・cm以上が望ましいこととなる。しかしながら、実際に用いる実装基板の回路配線部はカバーレイで覆われているため、部品固着する半田部分の周辺の絶縁性には配慮する必要があるものの、放熱絶縁樹脂の絶縁性に関しては殆ど心配する必要はない。
 以上の構成からなる本実施形態に係るDSC及び照明装置について、図面を参照しつつ、動作の説明を行う。まず、DSCによる撮影動作について、図1及び図9を参照して説明する。モードダイヤル13によって、例えば静止画対応としてストロボ撮影モードまたは動画対応としてトーチ撮影モードのいずれかを選択設定し、シャッターボタン14を押し込むと、撮影レンズ12のピント調節がされた後、撮影モードの動作に同期して照明装置が作動し、発光窓10から被写体に向け発光が照射される。
 続いて、照明装置の一連の動作について説明する。DSCのモードダイヤル13で所定の撮影モード(例えばストロボ撮影モード)が設定されると、図1に示すように、カメラシステム制御部15からシリアルクロックライン(SCL)の信号に同期してLED1の発光電流や発光時間等の発光条件がシリアルデーターライン(SDA)を介して照明装置のデジタル制御部16に伝達され、デジタル制御部16に記憶される。次にシャッターボタン14の押し込みにより、カメラシステム制御部15からストロボ撮影モードに対応する作動信号がフラッシュラインを介し照明装置のデジタル制御部16に印加される。その結果、デジタル制御部16は昇圧回路部を駆動し電池電源を任意電圧まで昇圧してLED1に印加する。同時に発光条件に基づき、駆動回路(LEDドライバー回路部)のCMOSがONとなり、任意発光電流が任意発光時間の間流されることによって、LED1を発光させる。尚、他の撮影モードであるトーチ撮影モードも発光電流と発光時間が異なる点を除けば、上記ストロボ撮影モードと基本動作は同じである。
 以上のような照明装置によれば、放熱性と絶縁性のある放熱絶縁樹脂17が、実装基板5の一表面6において、LED1の外周から連続的に駆動回路素子3及び回路素子4を全体的に被覆し、また、実装基板5の側面及び他表面7をも被覆している。このため、放熱絶縁樹脂17を介して、LED1及び駆動回路素子3からの発熱を効率的且つ十分に放熱することができる。さらに、放熱絶縁樹脂17による照明装置の被覆は、照明装置全体としての容積が拡大しないため、携帯機器(例えば本DSC)に適した小容積を実現しつつ、LED1の色温度や光量変化を防止し、精度の高い再現性のある撮影画像を得ることができる。
 次に、上記実施の形態1に係る照明装置の製造方法について、図2A~2D及び図3A、3Bを参照しつつ説明する。
 本実施形態に係る照明装置の製造方法は、図8で示した従来の構成を備える照明装置の製造方法であって、LED1及び駆動回路素子3を実装した実装基板5を配置するキャビティ23を設け、且つ、LED1の頂部2をキャビティ23外に突出させる凹部21を設けた金型を使用し、LED1の頂部2が金型の凹部21に突出してキャビティ23外となるように実装基板5をキャビティ23内に配置した状態でキャビティ23内に溶融された放熱絶縁樹脂17を充填する工程と、樹脂17を硬化させることで、少なくともLED1の頂部2以外の外周と実装基板5の一表面6とに跨って放熱絶縁樹脂17で被覆する工程とを含む。
 本製造方法について具体的に説明すると、図2Aに示すような従来の照明装置を用いて、製造がなされる。従来の照明装置は、内部で発光した光を透過させる頂部2が設けられたLED1と、LED1を駆動させる駆動回路素子3と、その他の回路素子4(コンデンサやコイルやIC等)と、カメラ部(カメラシステム制御部15)とデジタル制御部16とを接続するコネクタ8と、実装基板5とを備えている。実装基板5の一表面6側にはLED1及び駆動回路素子3及び回路素子4が実装され、また、他表面7側にはコネクタ8が実装されてなる。
 このような照明装置を、図2Bに示すように、金型に配置する。具体的には、金型は、金型コアの上部19と金型コアの下部20とが接離してなる上下一対のコアから構成される。また金型コアの上部19と下部20とが接することで、金型内にキャビティ23を形成する。さらに、金型コアの上部19には、溶融された放熱絶縁樹脂17を注入するスプール18及びコネクタ8を収納する収納部22が設けられる。金型コアの下部20には、LED1の頂部2を突出させる凹部21が設けられる。
 このような金型を使用して、キャビティ23に対して、実装基板5の一表面6側が下向き(金型コアの下部20側向き)となるように、実装基板5を配置する。具体的には、実装基板5の一表面6に実装されたLED1と駆動回路素子3と回路素子4とがキャビティ23内に位置するように実装基板5を設置する。また、LED1の頂部2が金型コアの下部20の凹部21に嵌入し、コネクタ8が金型コアの上部19の収納部22に収納されるようにして、金型コアの上部19を下部20に対して接させる。
 続いて、図2Cに示すように、例えば射出成形法を用いて、金型コアの上部19に設けられたスプール18から、溶融された放熱絶縁樹脂17を押し出し注入し、LED1の頂部2(発光部)とコネクタ8を含む実装基板5の一部を除いて、被覆するように充填する。
 ここで、放熱絶縁樹脂17の成形性について説明する。一般的に基材樹脂(熱可塑性樹脂、熱硬化樹脂)の熱伝導率は0.2W/m・K程度であるが、無機フィラーを分散することにより、そのフィラー量(重量%)に略比例して熱伝導率は数W/m・K~数10W/m・Kにすることができる。しかし、フィラー量を増やすと高熱伝導率となり、放熱性が増す一方で成形性を低下させる。そのため、成形性を考慮すれば、例えば射出成形法(典型的には、熱可塑性樹脂の加工に使用)では、放熱絶縁樹脂としての溶解粘度を20Pa・S以下にすることが望ましい。例えば2種類の粒径の異なるアルミナのフィラーを用いフィラー密度を高くして1W/m・K以上の熱伝導率を有しつつ放熱樹脂としての溶解粘度を20Pa・S以下にして成形性の最適化を図る必要がある。一方、圧縮成形法を用いた場合は、熱硬化樹脂も成形可能なので、熱伝導性の方を重視し、エポキシ系等の熱硬化樹脂に無機フィラー量を50重量%以上にして、溶解粘度を大きくして成形することが可能である。
 上記のように充填した放熱絶縁樹脂17が硬化(例えば凝固)後、図2Dに示すように、金型を開いて、樹脂被覆されモジュール化された照明装置を取り出す。
 このようにして製造された照明装置は、DSCの内部に取り付けられる。具体的には、図3A及び図3Bに示すように、DSCの前カバー9の発光窓10に光学パネル11を嵌入させて、その光学パネル11と対面するようにLED1の頂部2(発光部)を固定する。DSCの前カバー9に照明装置を固定するに際しては、ビス24を用いて、照明装置の実装基板5又は固定板25を介して(貫通させて)、DSCの前カバー9の取り付けダボ26に固定する。
 以上のような照明装置の製造方法によれば、金型を用いて、照明装置の実装基板5の一表面6において、LED1の外周から連続的に駆動回路素子3及び回路素子4を全体的に放熱絶縁樹脂17で被覆し、また、実装基板5の側面及び他表面7をも放熱絶縁樹脂17で被覆できる。また、このようにして製造された照明装置は、放熱絶縁樹脂17を介して、LED1及び駆動回路素子3からの発熱を十分に放熱できる。また、DSCの前カバー9裏面部の特にモジュール(照明装置)と接する部分に金属蒸着膜Aや金属薄板Aが設けられているため、金属蒸着膜A又は金属薄板Aを介して、モジュール内部品(例えばLED1及び駆動回路素子3)の発熱をより効率よく放熱できる。
 (実施の形態2)
 次に、本発明に係る照明装置の製造方法の実施の形態2について、図面を参照しつつ、説明する。図4A~4Fは本発明の実施の形態2に係る照明装置の製造方法(樹脂充填工程)を説明する図であって、図4Aは従来の照明装置の断面図、図4Bは光学パネル付きの光学パネルケースの断面図、図4Cは光学パネルケース内に従来の照明装置を配置した状態を示す図、図4Dは光学パネルケースを取り付けた従来の照明装置を金型によるキャビティに配置した状態を示す図、図4Eは溶融された放熱絶縁樹脂を金型に注入している状態を示す図、図4Fは放熱絶縁樹脂が硬化後、金型から照明装置を取り出した状態を示す図である。また、図5A、5Bは、本発明の実施の形態2に係る照明装置のDSC(デジタルスチルカメラ)の前ケースへの取り付け図であって、図5Aは製造された照明装置をDSCに取り付ける前の状態、図5Bは製造された照明装置をDSCに取り付けた状態を示す図である。
 本実施形態に係る照明装置の製造方法は、図8で示した従来の構成を備える照明装置の製造方法であって、LED1及び駆動回路素子3を実装した実装基板5を配置する空洞部を設け、且つ、LED1の頂部2に対応した開口部30aを設け、該開口部30aを閉塞するように光学パネル11が装着された光学パネルケース28を使用し、LED1の頂部2が光学パネル11に密着するように実装基板5を光学パネルケース28の空洞部に配置した状態で空洞部に溶融された放熱絶縁樹脂17を充填する工程と、樹脂17を硬化させることで、少なくともLED1の頂部2以外の外周と実装基板5の一表面6とに跨って放熱絶縁樹脂17で被覆する工程とを含む。
 本製造方法について具体的に説明すると、図4Aに示す従来の照明装置に対して、図4Bに示すような光学パネルケース28を取り付ける(図4Cを参照)。光学パネルケース28は、上下一対からなる上部材29と下部材30とを嵌合させて、内部に空洞部27を形成する光学パネルケース28である。光学パネルケース28の上部材29には、コネクタ8を含む実装基板5の一部が空洞部27外に配置されるように貫通穴31が設けられるとともに、溶融された放熱絶縁樹脂17を注入する注入穴32が設けられる。また光学パネルケース28の下部材30には、LED1の頂部2に対応した開口部30aが設けられてなる。
 このような光学パネルケース28を使用して、光学パネルケース28の上部材29と下部材30によって形成される空洞部27において、実装基板5の一表面6側が下向き(下部材30側向き)となるように、実装基板5を配置する。具体的には、実装基板5の一表面6に実装されたLED1と駆動回路素子3と回路素子4とが光学パネルケース28による空洞部27に位置するように実装基板5を設置する。また、LED1の頂部2が光学パネルケース28の下部材30の開口部30aに対向し、コネクタ8を含む実装基板5の一部が光学パネルケース28の上部材29の貫通穴31から空洞部27外に位置するようにして、光学パネルケース28の上部材29を下部材30に嵌合させる。また、光学パネルケース28の開口部30aを閉塞し、且つ、LED1の頂部2に密着するようにして、光学パネルケース28の開口部30aに対して、光学パネル11を取り付ける。
 続いて、本実施形態では、例えば上記実施の形態1で用いたような金型を利用し、光学パネルケース28を取り付けた照明装置を、図4Dに示すように、金型によるキャビティに配置する。その上で、図4Eに示すように、例えば射出成形法によって、金型コアの上部19のスプール18を介し、光学パネルケース28の注入穴32から空洞部27に、溶融された放熱絶縁樹脂17を押し出し注入し、LED1の頂部2とコネクタ8を含む実装基板5の一部を除いて、樹脂被覆がなされるように充填する。放熱絶縁樹脂17が硬化(例えば凝固)後、図4Fに示すように、金型を開いて、樹脂被覆されたモジュール化された光学パネルケース28付きの照明装置を取り出す。
 このようにして製造された照明装置は、DSCの内部に取り付けられる。具体的には、図5A及び図5Bに示すように、DSCの前カバー9の発光窓10に対して、上記製造された照明装置の光学パネルケース28に装着された光学パネル11を嵌入する。そして、照明装置の上方(実装基板5の他表面7側)から照明装置をDSCの前カバー9に押さえ付けるようにして金属板33を設け、ビス24とDSCの前カバー9の取り付けダボ26とによって、照明装置を金属板33で押さえつけてDSCの前カバー9に固定する。
 以上のような照明装置の製造方法によれば、放熱絶縁樹脂17で従来の照明装置を被覆する前に、光学パネル11を装着した光学パネルケース28を照明装置に取り付けている。このため、本実施形態では、金型を用いて、放熱絶縁樹脂17の注入をしているものの、金型を要さずとも、光学パネルケース28の注入穴32から溶融された放熱絶縁樹脂17を注入して、照明装置を樹脂被覆することができる。また、DSCに照明装置を取り付けるに当たっては、DSCの前カバー9に対して、金属板33が照明装置を押さえつけているため、DSCと照明装置との固着を強固にできるとともに、金属板33は、照明装置の光学パネルケース28と接して固定されている。このため、照明装置(LED1及び駆動回路素子3等)からの発熱に対して一定の放熱効果を有する。
 (実施の形態3)
 次に、本発明に係る照明装置の実施の形態3について、図面を参照しつつ、説明する。図6A、6Bは、本発明の実施の形態3に係る照明装置の構成図であって、図6Aは本実施形態に係る金属板の断面図、図6Bは金属板を備えて樹脂成形された照明装置の断面図である。
 本実施形態に係る照明装置は、図6Aに示すように、皿穴状の固定貫通穴34を設けた平板上の金属板35が、図6Bに示すように、放熱絶縁樹脂17によって照明装置の実装基板5の他表面7側から離間して固着されるように、例えば上記実施の形態1における金型等を用いて、製造されてなる。換言すれば、本実施の形態に係る照明装置は、実施の形態1に係る照明装置(例えば図2Dを参照)の他表面7側が放熱絶縁樹脂17で被覆され、その放熱絶縁樹脂17を、金属板35がさらに被覆するようにしてなり、金属板35の皿穴状の固定貫通穴34と放熱絶縁樹脂17とは互いに係合されてなる。
 以上の照明装置によれば、金属板35に皿穴の固定貫通穴34を設けているため、放熱絶縁樹脂17が硬化したとき、固定貫通穴34を充填して硬化された皿穴状の放熱絶縁樹脂17と金属板35とが係合して固定される。よって、このようにして固定された放熱性に優れた金属板35を介して、LED1及び駆動回路素子3からの発熱をより効率良く放熱できる。具体的には、LED1及び駆動回路素子3からの発熱が、実装基板の他表面7側に伝わり、その他表面側に伝わった熱は、他表面7側を被覆した放熱絶縁樹脂17によって放熱される。該放熱は、放熱絶縁樹脂17を被覆した金属板35によって効率良く放熱されることとなるため、LED1及び駆動回路素子3からの発熱の放熱性を高めることができる。
 (実施の形態4)
 次に、本発明に係る照明装置の実施の形態4について、図面を参照しつつ、説明する。図7A、7Bは、本発明の実施の形態4に係る照明装置の構成図であって、図7Aは本実施形態に係る金属板の断面図、図7Bは金属板を備えて樹脂成形された照明装置の断面図である。
 本実施形態に係る照明装置は、図7Aに示すように、皿穴状の固定貫通穴34を設け、且つ、凸部36を設けた平板上の金属板37が、図7Bに示すように、放熱絶縁樹脂17によって照明装置の実装基板5の他表面7に金属板37の凸部36が接触して固着されるように、金型等を利用して、製造されてなる。換言すれば、本実施の形態に係る照明装置は、実施の形態3に係る照明装置(例えば図6Aを参照)において、金属板35を設計変更してなる、金属板35の一部に凸部36を設けた金属板37を備えてなり、凸部36が実装基板5の他表面7側の同電位の箇所で接触して固定されてなる。
 以上の照明装置によれば、金属板37に皿穴状の固定貫通穴34を設けているため、放熱絶縁樹脂17が硬化したとき、金属板37の凸部36が実装基板5の他表面7に接触した状態で、固定貫通穴34を充填して硬化された皿穴状の放熱絶縁樹脂17と金属板37の皿穴状の固定貫通穴34とが係合され、放熱絶縁樹脂17と金属板37とは実装基板5に対して強固に固定される。よって、放熱絶縁樹脂17と金属板37の凸部36とが実装基板5の他表面7に接触して固定されるため、放熱絶縁樹脂17だけでなく、放熱性に優れた金属板37を介して、LED1及び駆動回路素子3からの発熱の発散速度を早め、放熱効果を向上できる。さらに、金属板37の凸部36が実装基板5の他表面7に接触するに際し、実装基板5の他表面7における回路配線部5bの発熱量の大きい箇所に金属板37の凸部36を接触させれば、より大きい放熱効果を得ることができる。
 尚、実施の形態1から実施の形態4に係る照明装置では、放熱絶縁樹脂17による被覆に当たり、実装基板5の一表面6においてLED1の外周から駆動回路素子3及び回路素子4、また、実装基板5の側面及び他表面7が連続的に放熱絶縁樹脂17で被覆される構成を採用している。しかし、実装基板5の一表面6における駆動回路素子3及び回路素子4、実装基板5の側面及び他表面7はLED1の外周から連続的に放熱絶縁樹脂17で被覆されず、つまり、LED1の外周から連続しないで放熱絶縁樹脂17で被覆される構成であっても良い。具体的には、LED1の外周、駆動回路素子3、回路素子4、実装基板5の側面、他表面7が各々、互いに非連続的に放熱絶縁樹脂17で被覆されても良い。
 以上説明したように、本発明に係る照明装置は、内部で発光した光を透過させる頂部が設けられたLEDと、LEDを駆動させる駆動回路素子と、LED及び駆動回路素子が実装された実装基板とを備え、実装基板の一表面側にLEDが実装され、一表面側において少なくともLEDがその頂部を除いて放熱絶縁物質により被覆されていることを特徴とする。
 かかる構成からなる照明装置によれば、実装基板の一表面側にLEDが実装され、一表面側において少なくともLEDがその頂部を除いて放熱絶縁物質により被覆されている。よって、LEDの頂部は放熱絶縁物質で被覆されていないため、発光を頂部からなすことができるとともに、LEDはその頂部以外(例えば外周等)が放熱絶縁物質で被覆されているため、当該放熱絶縁物質を介し、LEDからの発熱を十分に放熱できる。
 また、本発明に係る照明装置は、実装基板の一表面側が放熱絶縁物質により被覆されていることが好ましい。
 かかる構成からなる照明装置によれば、実装基板の一表面(LEDを実装した面)側が放熱絶縁物質で被覆されているため、該放熱絶縁物質を介して、LED等からの発熱を実装基板の一表面側から十分に放熱できる。また、例えば駆動回路素子やその他熱源となる回路素子が実装基板の一表面側に実装されている場合、当該一表面側が放熱絶縁物質で被覆されているため、該放熱絶縁物質を介して、駆動回路素子やその他の回路素子からの発熱を十分に放熱できる。
 また、本発明に係る照明装置は、実装基板の他表面側が放熱絶縁物質により被覆されていることが好ましい。
 かかる構成からなる照明装置によれば、実装基板の他表面側が放熱絶縁物質で被覆されているため、実装基板の一表面側だけでなく、他表面側における放熱絶縁物質をも介して、LED等からの発熱をより放熱できる。より具体的には、実装基板の一表面側に実装されたLED等(例えば一表面側に駆動回路素子やその他熱源となる回路素子が実装されていれば、当該駆動回路素子やその他の回路素子を含む)からの発熱が実装基板の一表面側から他表面側に伝わり、該他表面側に伝わった熱を、他表面側を被覆した放熱絶縁物質を介して、放熱できる。また、例えば駆動回路素子やその他熱源となる回路素子が実装基板の他表面側に実装されている場合、当該他表面側が放熱絶縁物質で被覆されているため、該放熱絶縁物質を介して、駆動回路素子やその他の回路素子からの発熱を十分に放熱できる。
 また、本発明に係る照明装置は、実装基板の他表面側を被覆した放熱絶縁物質をさらに被覆するようにして設けられた金属板を備えることが好ましい。
 かかる構成からなる照明装置によれば、実装基板の他表面側が放熱絶縁物質で被覆され、該放熱絶縁物質をさらに金属板が被覆している。よって、LED及び駆動回路素子からの発熱が実装基板の一表面側から他表面側に伝わり、その他表面側に伝わった熱は、他表面側を被覆した放熱絶縁物質によって放熱され、該放熱は、放熱絶縁物質を被覆した金属板によって十分に放熱されることとなるため、LED及び駆動回路素子からの発熱の放熱性を高めることができる。
 また、本発明に係る照明装置は、金属板には、放熱絶縁物質と係合する貫通穴が設けられ、又は、貫通穴及び実装基板の他表面に接触する凸部が設けられてなることが好ましい。
 かかる構成からなる照明装置によれば、実装基板の他表面側が放熱絶縁物質で被覆され、該放熱絶縁物質を金属板がさらに被覆しており、また金属板には、放熱絶縁物質と係合する貫通穴、あるいは、貫通穴及び実装基板の他表面に接触する凸部が設けられている。よって、金属板の貫通穴と放熱絶縁物質とが係合して、金属板と放熱絶縁物質とが互いに強固に密着固定され、熱伝導性が高められることとなるため、LED及び駆動回路素子からの発熱の放熱性をより高めることができる。また、金属板の凸部が実装基板の他表面に接触して設けられる場合には、LED及び駆動回路素子からの発熱が実装基板の一表面側から他表面側に伝わり、その他表面側に伝わった熱は、他表面側を被覆する放熱絶縁物質だけでなく金属板をも直接的に介して、放熱できる。
 また、本発明に係る照明装置は、放熱絶縁物質が熱可塑性樹脂又は熱硬化樹脂に無機フィラーを含有した放熱絶縁樹脂からなることが好ましい。
 かかる構成からなる照明装置によれば、放熱絶縁物質が熱可塑性樹脂又は熱硬化樹脂に無機フィラーを含有した放熱絶縁樹脂からなるため、LEDや駆動回路素子からの発熱の放熱を効率よく行うことができるとともに、実装基板の絶縁もできる。
 本発明に係る照明装置の製造方法は、内部で発光した光を透過させる頂部が設けられたLEDと、LEDを駆動させる駆動回路素子と、LED及び駆動回路素子が実装された実装基板とを備えた照明装置の製造方法であって、LED及び駆動回路素子を実装した実装基板を配置するキャビティを設け、且つ、LEDの頂部をキャビティ外に突出させる凹部を設けた金型を使用し、LEDの頂部が金型の凹部から突出してキャビティ外となるように実装基板をキャビティ内に配置した状態でキャビティ内に溶融された放熱絶縁樹脂を充填する工程と、樹脂を硬化させることで、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁樹脂で被覆する工程とを含むことを特徴とする。
 かかる構成からなる照明装置の製造方法によれば、LEDの頂部が金型の凹部から突出して金型のキャビティ外となるように実装基板を金型のキャビティ内に配置した状態でキャビティ内に溶融された放熱絶縁樹脂を充填し、樹脂を硬化させることで、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁樹脂で被覆することによって、照明装置が製造される。このようにして製造された照明装置は、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁物質が被覆されているため、該放熱絶縁物質を介して、LEDからの発熱を十分に放熱できる。
 また、本発明に係る照明装置の他の製造方法は、内部で発光した光を透過させる頂部が設けられたLEDと、LEDを駆動させる駆動回路素子と、LED及び駆動回路素子が実装された実装基板とを備える照明装置の製造方法であって、LED及び駆動回路素子を実装した実装基板を配置する空洞部を設け、且つ、LEDの頂部に対応した開口部を設け、該開口部を閉塞するように光学パネルが装着された光学パネルケースを使用し、LEDの頂部が光学パネルに密着するように実装基板を光学パネルケースの空洞部に配置した状態で空洞部に溶融された放熱絶縁樹脂を充填する工程と、樹脂を硬化させることで、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁樹脂で被覆する工程とを含むことを特徴とする。
 かかる構成からなる照明装置の製造方法によれば、LEDの頂部が光学パネルに密着するように実装基板を光学パネルケースの空洞部に配置した状態で空洞部に溶融された放熱絶縁樹脂を充填し、樹脂を硬化させることで、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁樹脂で被覆することによって、照明装置が製造される。そのため、本製造方法では、金型等の成形具を用いなくとも、照明装置の樹脂被覆ができる。また、このようにして製造された照明装置は、少なくともLEDの頂部以外の外周と実装基板のLEDが実装された一表面とに跨って放熱絶縁物質が被覆されているため、該放熱絶縁物質を介して、LEDからの発熱を十分に放熱できる。
 本発明に係る照明装置及びその製造方法は、小容積を実現しつつLED及び駆動回路素子(LEDドライバーが内蔵された駆動回路素子)を一体で効率よく放熱することが必要な携帯機器(例えばデジタルスチルカメラ、カメラモジュールを備える携帯電話機等)の用途に適応できる。
 1  LED
 2  LEDの頂部
 3  駆動回路素子
 4  回路素子
 5  実装基板
 6  実装基板の一表面
 7  実装基板の他表面
 8  コネクタ
 11  光学パネル
 17  放熱絶縁物質(放熱絶縁樹脂)
 18  スプール
 19  金型コアの上部
 20  金型コアの下部
 21  凹部
 23  キャビティ
 27  空洞部
 28  光学パネルケース
 30a  開口部
 31  貫通穴
 33  金属板
 36  凸部

Claims (8)

  1. 内部で発光した光を透過させる頂部が設けられたLEDと、前記LEDを駆動させる駆動回路素子と、前記LED及び前記駆動回路素子が実装された実装基板とを備え、前記実装基板の一表面側に前記LEDが実装され、前記一表面側において少なくとも前記LEDがその頂部を除いて放熱絶縁物質により被覆されていることを特徴とする照明装置。
  2. 前記実装基板の一表面側が前記放熱絶縁物質により被覆されていることを特徴とする請求項1に記載の照明装置。
  3. 前記実装基板の他表面側が前記放熱絶縁物質により被覆されていることを特徴とする請求項1に記載の照明装置。
  4. 前記実装基板の他表面側を被覆した放熱絶縁物質をさらに被覆するようにして設けられた金属板を備えることを特徴とする請求項3に記載の照明装置。
  5. 前記金属板には、前記放熱絶縁物質と係合する貫通穴が設けられ、又は、前記貫通穴及び前記実装基板の他表面に接触する凸部が設けられてなることを特徴とする請求項4に記載の照明装置。
  6. 前記放熱絶縁物質が熱可塑性樹脂又は熱硬化樹脂に無機フィラーを含有した放熱絶縁樹脂からなることを特徴とする請求項1に記載の照明装置。
  7. 内部で発光した光を透過させる頂部が設けられたLEDと、前記LEDを駆動させる駆動回路素子と、前記LED及び前記駆動回路素子が実装された実装基板とを備えた照明装置の製造方法であって、前記LED及び前記駆動回路素子を実装した前記実装基板を配置するキャビティを設け、且つ、前記LEDの頂部をキャビティ外に突出させる凹部を設けた金型を使用し、前記LEDの頂部が前記金型の凹部から突出してキャビティ外となるように前記実装基板をキャビティ内に配置した状態でキャビティ内に溶融された放熱絶縁樹脂を充填する工程と、前記樹脂を硬化させることで、少なくとも前記LEDの頂部以外の外周と前記実装基板の前記LEDが実装された一表面とに跨って前記放熱絶縁樹脂で被覆する工程とを含むことを特徴とする照明装置の製造方法。
  8. 内部で発光した光を透過させる頂部が設けられたLEDと、前記LEDを駆動させる駆動回路素子と、前記LED及び前記駆動回路素子が実装された実装基板とを備える照明装置の製造方法であって、前記LED及び前記駆動回路素子を実装した前記実装基板を配置する空洞部を設け、且つ、前記LEDの頂部に対応した開口部を設け、前記開口部を閉塞するように光学パネルが装着された光学パネルケースを使用し、前記LEDの頂部が前記光学パネルに密着するように前記実装基板を前記光学パネルケースの前記空洞部に配置した状態で前記空洞部に溶融された放熱絶縁樹脂を充填する工程と、前記樹脂を硬化させることで、少なくとも前記LEDの頂部以外の外周と前記実装基板の前記LEDが実装された一表面とに跨って前記放熱絶縁樹脂で被覆する工程とを含むことを特徴とする照明装置の製造方法。
PCT/JP2011/002568 2010-05-10 2011-05-09 照明装置及びその製造方法 WO2011142111A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-107845 2010-05-10
JP2010107845A JP2011238420A (ja) 2010-05-10 2010-05-10 照明装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011142111A1 true WO2011142111A1 (ja) 2011-11-17

Family

ID=44914171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002568 WO2011142111A1 (ja) 2010-05-10 2011-05-09 照明装置及びその製造方法

Country Status (2)

Country Link
JP (1) JP2011238420A (ja)
WO (1) WO2011142111A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211746A (ja) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 撮像装置
US10764988B2 (en) 2018-05-31 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. Imaging device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045206A1 (ja) * 2013-09-25 2015-04-02 パナソニックIpマネジメント株式会社 照明ユニット
JP6225941B2 (ja) 2015-04-17 2017-11-08 第一精工株式会社 電気コネクタ及び電気コネクタ装置
JP6811939B2 (ja) * 2017-03-21 2021-01-13 東芝ライテック株式会社 車両用照明装置および車両用灯具

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059335A (ja) * 2001-08-13 2003-02-28 Eitekkusu Kk Led照明装置
JP2007180319A (ja) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd 発光モジュールとその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059335A (ja) * 2001-08-13 2003-02-28 Eitekkusu Kk Led照明装置
JP2007180319A (ja) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd 発光モジュールとその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211746A (ja) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 撮像装置
US10764988B2 (en) 2018-05-31 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. Imaging device

Also Published As

Publication number Publication date
JP2011238420A (ja) 2011-11-24

Similar Documents

Publication Publication Date Title
WO2011142111A1 (ja) 照明装置及びその製造方法
US9585239B2 (en) Methods of manufacturing lighting assembly with thermal overmolding
US9301385B2 (en) Electronic unit
JP5361122B2 (ja) 放射線放出構成エレメント
TW200537051A (en) LED mounting module, LED module, manufacturing method of LED mounting module, and manufacturing method of LED module
WO2012099251A1 (ja) 照明装置及びホルダの製造方法
JP2006286347A (ja) 面状照明装置
EP2668443A2 (en) Led lighting system
CN209524440U (zh) 车辆用照明装置及车辆用灯具
CN109314169B (zh) 包括热能管理的照明组件
JP6811939B2 (ja) 車両用照明装置および車両用灯具
JP2019106259A (ja) 車両用照明装置、車両用照明装置の製造方法、および車両用灯具
JP2010287871A (ja) 発光装置
JP2009231351A (ja) 電子部品の封止構造
JP7209214B2 (ja) 車両用照明装置、および車両用灯具
JP2019036406A (ja) 車両用照明装置および車両用灯具
KR20070073317A (ko) 발광 다이오드 장치
JP6811940B2 (ja) 車両用照明装置および車両用灯具
JP2016106352A (ja) 車両用照明装置
CN109855040A (zh) 车辆用照明装置及其制造方法、以及车辆用灯具
JP2019117694A (ja) 車両用照明装置、車両用照明装置の製造方法、および車両用灯具
CN110118337B (zh) 车辆用照明装置、车辆用灯具及灯座的制造方法
JP2023078614A (ja) 車両用照明装置、および車両用灯具
KR200311513Y1 (ko) 카메라용 플래시 장치
KR200311515Y1 (ko) 카메라용 플래시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780370

Country of ref document: EP

Kind code of ref document: A1