WO2011140793A1 - 多级气动马达 - Google Patents

多级气动马达 Download PDF

Info

Publication number
WO2011140793A1
WO2011140793A1 PCT/CN2010/078715 CN2010078715W WO2011140793A1 WO 2011140793 A1 WO2011140793 A1 WO 2011140793A1 CN 2010078715 W CN2010078715 W CN 2010078715W WO 2011140793 A1 WO2011140793 A1 WO 2011140793A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
motor
gear
air motor
power output
Prior art date
Application number
PCT/CN2010/078715
Other languages
English (en)
French (fr)
Inventor
冯春保
Original Assignee
石家庄中煤装备制造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄中煤装备制造股份有限公司 filed Critical 石家庄中煤装备制造股份有限公司
Priority to EP10851297.1A priority Critical patent/EP2570590B1/en
Priority to AU2010353176A priority patent/AU2010353176B2/en
Priority to US13/697,602 priority patent/US20130055884A1/en
Priority to RU2012148187/06A priority patent/RU2012148187A/ru
Publication of WO2011140793A1 publication Critical patent/WO2011140793A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • F01C1/14Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F01C1/18Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/02Control of, monitoring of, or safety arrangements for, machines or engines specially adapted for several machines or engines connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/02Arrangements for drive of co-operating members, e.g. for rotary piston and casing of toothed-gearing type

Definitions

  • the invention relates to a pneumatic motor, belonging to the field of mechanical engineering, and is applied to industrial and mining work places, in particular to an energy-saving and high-efficiency multi-stage air motor.
  • the air motor is a kind of mechanical equipment that uses compressed air as the power source. It is widely used for its advantages of lightness and safety. Especially in the workplace where power is not allowed as the power source, its application is more extensive and necessary.
  • the air motors currently in use are single-stage motors. Among them, there are various structural forms of air motors, including gear motors, ram motors, vane motors and screw motors. The most widely used in coal mining and other industries are gear-type air motors.
  • the single-stage gear type air motor is provided with a pair of intermeshing gears inside the casing, wherein the gear shaft of one gear is a power output shaft, and is connected with a reducer and the like to output power.
  • the housing of the gear type air motor is respectively provided with an inlet and an outlet of compressed gas, and when the compressed gas passes through the gear type air motor, the motor gear is rotated to form a power output.
  • the working efficiency of the single-stage air motor is relatively low at present.
  • the working efficiency of the general air motor is not more than 30%.
  • the current air motor energy loss rate is about 70%, which causes a great waste of energy; and when this gas with a large energy is discharged from the motor casing, It will generate a lot of noise, even whistling, which is polluting to the workers and the environment, and does not meet the current needs of low carbon and energy saving.
  • the present invention provides the following technical solutions, so that the efficiency of the air motor is greatly improved, and the noise is significantly reduced.
  • the invention provides a multi-stage air motor, comprising a casing, a power output main shaft, and an air inlet and an exhaust port on the casing, wherein two or two stages are installed in the casing.
  • a pneumatic motor of a level or higher a first stage air motor of the two or more stages of air motors is in communication with the air inlet, and a last stage air motor is in communication with the air outlet, the power gas is from the After the air inlet enters the housing, the first stage air motor is pushed, and then the second stage air motor is pushed, such that the first stage is followed by one stage, and finally the housing is discharged from the exhaust port, each stage
  • Each of the air motors has a power output shaft, and the power output shaft of each stage of the air motor is connected to the power output main shaft, and the power generated by each stage of the air motor is superimposed by the power output. Total axis output.
  • the power output shaft of each stage of the air motor is transmitted to the power output total shaft at the same speed, so that the power generated by each stage of the air motor is positively superimposed by the power Output total axis output.
  • the air motor is a gear motor, a vane motor, a plunger motor or a screw motor.
  • the housing is provided with a first stage air motor composed of a pair of first stage motor gears, and a second stage air motor composed of a pair of second stage motor gears.
  • a gear shaft of the first stage motor gear is the power output shaft of the first stage air motor
  • a gear shaft of the second stage motor gear is the power output shaft of the second stage air motor
  • the power output shaft of the first stage air motor, the power output shaft of the second stage air motor, and the power output main shaft are the same shaft, the first stage motor gear and the a second stage motor gear having the same number of teeth and a modulus, the length of the first stage motor gear being less than the length of the second stage motor gear, such that the speed of the power output shaft of the first stage air motor The speed of the power take-off shaft of the second stage air motor is the same.
  • a first-stage air motor composed of a pair of first-stage motor gears
  • a second-stage air motor composed of a pair of second-stage motor gears
  • a pair are disposed in the casing.
  • a third stage air motor composed of a third stage motor gear, the power output shaft of the first stage air motor, the second stage air motor and the third stage air motor is coupled to the power output main shaft through a transmission gear.
  • first stage air motor, the second stage air motor and the third stage air motor are arranged circularly around the power output main shaft.
  • the power An output total shaft is located at a center of the air motor of each stage, and a gear shaft of each of the motor gears is the power output shaft of each stage of the air motor, and the transmission gear includes: disposed at each stage a driving gear on the power output shaft of the air motor is simultaneously engaged with the driving gear of each stage of the air motor The power output is a driven gear on the main shaft.
  • the driving gear on the power output shaft of each stage of the air motor is a gear formed on the power output shaft, so that the power output shaft of each stage of the air motor becomes a driving gear shaft.
  • the drive gears on the drive gear shaft of each stage have the same modulus and number of teeth.
  • the first stage air motor, the second stage air motor and the third stage air motor are arranged in a straight line.
  • a gear shaft of each of the motor gears is the power output shaft of each stage of the air motor
  • the transmission gear includes Three first stage driving gears disposed on the power output shaft of each stage of the air motor, two first stage driven gears simultaneously meshing with the first stage driving gear of the adjacent air motor, and two Two two-stage driving gear shafts coaxially with the first-stage driven gears respectively, and one second-stage driven gear that simultaneously meshes with the two second-stage driving gear shafts, and the one-stage passive gear is installed in the Power output on the main shaft.
  • the modulus and the number of teeth of the three primary driving gears are the same, the modulus and the number of teeth of the two primary driving gears are the same, and the modulus and the number of teeth of the two secondary driving gear shafts are the same.
  • the first stage motor gear, the second stage motor gear and the third stage motor gear have the same number of teeth and gear length, and the gear modulus is increased step by step, so that the air motor of each stage is The speed of the PTO shaft is the same.
  • the first stage motor gear, the second stage motor gear, and the third stage motor gear have the same number of teeth and modulus, and the gear length is increased step by step, so that the power output of the air motor of each stage is The speed of the shaft is the same.
  • the first stage motor gear, the second stage motor gear, and the third stage motor gear have the same modulus and gear length, and the number of gear teeth is increased step by step, so that the power of the air motor of each stage is The output shaft has the same speed.
  • the first stage air motor, the second stage air motor and the third stage air motor are arranged circularly around the power output total axis
  • the power output main shaft is located at a center of the air motor of each stage, and a gear shaft of each of the motor gears is the power output shaft of each stage of the air motor, and the transmission gear includes the
  • Each of the transmission gears of the motor gears of the respective stages has different reduction ratios, a driven gear mounted on the main shaft of the power output, and the speeds of the air motors of the stages are transmitted to the output shaft.
  • a multi-stage air motor is arranged in the casing, and the power on the power output shaft of the multi-stage air motor is superimposed and output through a power output main shaft, that is, a plurality of air motors are connected in series and superimposed to fully utilize the compression.
  • the gas energy of the air minimizes the energy of the gas discharged from the air motor, and fully utilizes the energy of the compressed air, thereby improving the working efficiency of the air motor and reducing the noise of the exhaust gas.
  • the efficiency of the three-stage pneumatic gear motor given by the present invention can be increased by 40% to 50% compared with the efficiency of the existing single-stage pneumatic gear motor, and the noise can be reduced by at least 10 decibels on the existing basis. .
  • the working principle of the above-mentioned multi-stage air motor according to the present invention is: after the compressed air enters the multi-stage motor housing, the pressure of the gas decreases and the volume increases after passing through the first-stage air motor, according to the gas state equation, Considering the temperature change, the pressure of the gas is inversely proportional to the volume of the gas, ie the gas pressure drops and the gas volume will increase.
  • the invention fully considers the change of gas pressure and volume between the multi-stage motors, and adopts various methods to realize the same rotation speed of the motor of each stage to the power output main shaft, so as to minimize mutual interference between the motors of the respective stages. To achieve a positive superposition of the power between the air motors at all levels, so that the total output power is greatly improved .
  • FIG. 1 is a schematic structural view of a two-stage pneumatic gear motor according to the present invention.
  • FIG. 2 is a schematic structural view of a three-stage pneumatic gear motor according to the present invention.
  • Figure 3 is a plan view of Figure 2;
  • FIG. 4 is a schematic structural view of another three-stage pneumatic gear motor of the present invention.
  • Figure 5 is a plan view of Figure 4.
  • FIG. 1 shows a structure of a two-stage pneumatic gear motor according to the present invention, which includes a housing 1, a power output main shaft 2, and the housing 1 is provided with a port 3 and an exhaust port 4, characterized in that a two-stage pneumatic gear motor is mounted in the housing 1, and a pair of first-stage motor gears 111 constitute a first-stage pneumatic gear motor 11, a pair of second stages
  • the motor gear 121 constitutes a second stage pneumatic gear motor 12, the first stage pneumatic gear motor 11 is in communication with the air inlet 3, and the last stage pneumatic gear motor is the second stage pneumatic gear motor 12 and the row
  • the gas port 4 is connected, the motive gas enters the casing 1 from the air inlet 3, and then the first stage pneumatic gear motor 11 is pushed, then the second stage pneumatic gear motor 12 is pushed, and finally discharged from the exhaust port 4.
  • the housing 1, the first stage of the pneumatic gear motor 11 has a power output shaft 112, and the second stage of the pneumatic gear motor has a power output shaft 122, the power of the first stage of the pneumatic gear motor 11 Output shaft 112 and the power output shaft of the second stage pneumatic gear motor 12 122 is connected to the power output main shaft 2, so that the power generated by the pneumatic gear motor of each stage is superimposed and output by the power output main shaft 2.
  • the pneumatic gear motor of each stage has a power output shaft, and the power output shaft of each stage of the pneumatic gear motor is connected with the power output main shaft, so that the pneumatic gear of each stage
  • the power generated by the motor is superimposed and output by the power output main shaft, thereby fully utilizing the energy of the compressed gas, improving the efficiency of the air motor, and the speed and pressure of the fully utilized compressed gas after being discharged out of the casing relative to the present
  • the technology is greatly reduced, thereby reducing the noise of the air motor.
  • the power output shaft of the pneumatic gear motor of each stage is transmitted to the power output total shaft at the same speed, so that the power generated by the pneumatic gear motor of each stage is positively superimposed The power output total shaft output.
  • one gear shaft of the first stage motor gear 111 is the power output shaft 112 of the first stage pneumatic gear motor 11
  • one gear shaft of the second stage motor gear 121 is the second stage.
  • a power output shaft 122 of the pneumatic gear motor 12 the power output shaft 112 of the first stage pneumatic gear motor 11 and the power output shaft 122 and the power output shaft 2 of the second stage pneumatic gear motor 12 are The same shaft, and the first stage motor gear 111 and the second stage motor gear 121 have the same number of teeth and modulus, and the length of the first stage motor gear 111 is smaller than the length of the second stage motor gear 121 The rotation speed of the power output shaft 112 of the first stage pneumatic gear motor 11 is the same as the rotation speed of the power output shaft 122 of the second stage pneumatic gear motor 12.
  • the length of the first stage motor gear 111 and the length of the second stage motor gear 121 may be inversely proportional to the pressure and volume of the compressed gas, and then combined with the pressure of the compressed gas through the two-stage pneumatic gear motor.
  • the value is determined specifically. This can only be obtained by simple mathematical calculations, and those skilled in the art can perform calculations, and therefore will not be described again.
  • Embodiment 1 has been described with a pneumatic gear motor, those skilled in the art will recognize that other types of air motors may be used, and the embodiment of the two-stage gear motor realizes the first in terms of the length relationship of the motor gears.
  • the stage motor and the second stage motor transmit the same speed to the power output main shaft to achieve a positive superposition of the power of the two-stage motor, but those skilled in the art know that the modulus or the number of teeth of the motor gear can also be changed, or Simultaneous change of the modulus and the number of teeth, so that the two-stage gear motor transmits the same speed to the power output main shaft; in addition, the speed of the two-stage gear motor can be transmitted to the power output main shaft through the shifting mechanism, and the invention is realized.
  • the purpose of the invention is realized.
  • FIG. 2 and FIG. 3 show the structure of a three-stage pneumatic gear motor according to the present invention, which includes a housing 1, a power output main shaft 2, and the housing 1 An air inlet 3 and an exhaust port 4 are provided, and a first-stage pneumatic gear motor 11 and a first-stage pneumatic gear motor 11 composed of a pair of first-stage motor gears 111 are mounted in the housing 1 .
  • a second stage pneumatic gear motor 12 composed of a pair of second stage motor gears 121
  • a third stage pneumatic gear motor 13 composed of a pair of third stage motor gears 131, the first stage pneumatic gear motor 11 and the intake air
  • the port 3 is connected, and the last stage pneumatic gear motor, that is, the third stage pneumatic gear motor 13 is in communication with the exhaust port 4, and the motive gas enters the casing 1 from the air inlet 3 and then pushes the first stage pneumatic gear motor.
  • the second stage pneumatic gear motor 12 is then pushed, such that the first stage is followed by one stage, and finally the housing 1 is discharged from the exhaust port 4 via the third stage pneumatic gear motor 13, the first stage of the pneumatic
  • the gear motor 11 has a power output shaft 112, and the second stage has the pneumatic gear motor 12 belt
  • the power output shaft 122 and the power output shaft 132 of the third stage of the pneumatic gear motor 13 are connected to the power output main shaft 2, so that the power generated by each stage of the pneumatic gear motor is superimposed by the Power output total shaft 2 output.
  • the first stage air motor 11, the second stage air motor 12 and the third stage air motor 13 are arranged circularly around the power output main shaft 2, power
  • the output total shaft 2 is located at the center of the air motor of each stage, and a gear shaft of each of the motor gears is the power output shaft of each stage of the air motor.
  • the power take-off shaft of the first stage air motor, the second stage air motor, and the third stage air motor is coupled to the power output main shaft 2 through a transmission gear.
  • the transmission gear includes driving gears 113, 123, 133 disposed on the power output shafts 112, 122, 132 of each stage of the air motor, and the driving gear 113 of each stage of the air motor, 123, 133 simultaneous engagement in the installation
  • the power output is a driven gear 21 on the main shaft 2.
  • said The driving gears 113, 123, 133 may be formed together with the power output shaft of each stage of the air motor, so that the power output shaft of each stage of the air motor becomes a driving gear shaft.
  • the drive gears 113, 123, 133 on the drive gear shaft of each stage have the same modulus and number of teeth.
  • Embodiment 3 It is also a three-stage pneumatic gear motor with a circular arrangement.
  • the structure and the arrangement of the motors of each stage are the same as those shown in FIG. 2 and FIG. 3, and the power output shaft and the power output total shaft of each stage of the air motor.
  • the transmission and connection relationship are the same as those of the above-mentioned Embodiment 2, and the difference from Embodiment 2 is that the speed of the power output shaft of each stage of the pneumatic gear motor is the same, and the present embodiment passes the first stage motor gear.
  • the second-stage motor gear 121 and the third-stage motor gear 131 have the same modulus and number of teeth, and the gear length is gradually increased to achieve the same rotational speed of the power output shaft of each stage of the motor.
  • the specific proportional relationship between the gear lengths of the motor gears 111, 121, and 131 of each stage can be inversely proportional to the volume and pressure of the power gas, and the value of the pressure of the power gas flowing through each stage of the motor, through simple mathematics. The calculation can be obtained.
  • Embodiment 4 It is also a three-stage pneumatic gear motor with a circular arrangement.
  • the structure and the arrangement of the motors of each stage are the same as those shown in FIG. 2 and FIG. 3, and the power output shaft and the power output total shaft of each stage of the air motor.
  • the transmission and connection relationship are the same as those of the second embodiment described above, and the difference from the second embodiment is that the speed of the power output shaft of each stage of the pneumatic gear motor is the same, and the first stage motor gear is adopted in this embodiment. 111.
  • the second stage motor gear 121 and the third stage motor gear 131 have the same modulus and gear length, and the number of teeth is increased step by step to achieve the same rotational speed of the power output shaft of each stage motor.
  • the specific proportional relationship between the number of teeth between the motor gears 111, 121, and 131 of each stage can be inversely proportional to the volume and pressure of the power gas, and the value of the pressure of the power gas flowing through each stage of the motor, through simple mathematical calculations. inferred.
  • Embodiment 2 Embodiment 3, and Embodiment 4 are described with a pneumatic gear motor, but those skilled in the art will recognize that other types of air motors may be used; although the three-stage gear motors of the above embodiments are In order to adjust the rotational speed of the power output shaft of each gear motor, and then through the driving gear with the same modulus and the same number of teeth, the rotation speed of each motor to the power output main shaft is the same, so that the power of each level is positively superimposed. However, those skilled in the art know that the rotation speed of the three-stage gear motor to the power output main shaft can be the same by other adjustment and transmission modes to achieve the object of the present invention.
  • the following embodiment 8 is one of them. An implementation.
  • FIG. 4 and FIG. 5 show the structure of a three-stage pneumatic gear motor according to the present invention, which includes a housing 1, a power output main shaft 2, and the housing 1 An air inlet 3 and an exhaust port 4 are provided, and a first-stage pneumatic gear motor 11 and a first-stage pneumatic gear motor 11 composed of a pair of first-stage motor gears 111 are mounted in the housing 1 .
  • a second stage pneumatic gear motor 12 composed of a pair of second stage motor gears 121
  • a third stage pneumatic gear motor 13 composed of a pair of third stage motor gears 131, the first stage pneumatic gear motor 11 and the intake air
  • the port 3 is connected, and the last stage pneumatic gear motor, that is, the third stage pneumatic gear motor 13 is in communication with the exhaust port 4, and the motive gas enters the casing 1 from the air inlet 3 and then pushes the first stage pneumatic gear motor.
  • the second stage pneumatic gear motor 12 is then pushed, such that the first stage is followed by one stage, and finally the housing 1 is discharged from the exhaust port 4 via the third stage pneumatic gear motor 13, the first stage of the pneumatic
  • the gear motor 11 has a power output shaft 112, and the second stage has the pneumatic gear motor 12 belt
  • the power output shaft 122 and the power output shaft 132 of the third stage of the pneumatic gear motor 13 are connected to the power output main shaft 2, so that the power generated by each stage of the pneumatic gear motor is superimposed by the Power output total shaft 2 output.
  • the first stage air motor 11, the second stage air motor 12 and the third stage air motor 13 are arranged in a straight line.
  • a gear shaft of each of the motor gears is the power output shaft of each stage of the air motor
  • Two primary driven gears 61, 62, two secondary drive gear shafts 71, 72 coaxial with the two primary driven gears 61, 62, and two of the secondary drive gear shafts 71, 72 is a secondary driven gear 21 that is simultaneously engaged, and the one secondary driven gear 21 is mounted on the power output main shaft 2.
  • Each of the primary drive gears 113, 123, 133 has the same modulus and number of teeth, and the two primary drive gears 61, 62 have the same modulus and number of teeth, and the two secondary drive gear shafts 71, 72 The modulus and the number of teeth are the same.
  • Embodiment 6 A three-stage pneumatic gear motor which is also a linear arrangement, the structure and the arrangement of the three-stage motor are the same as those shown in FIG. 2 and FIG. 3, and the power output shaft and the power output total shaft of each stage of the air motor.
  • the transmission and connection relationship are the same as those of the above-mentioned Embodiment 5, and the difference from Embodiment 5 is that the speed of the power output shaft of each stage of the pneumatic gear motor is the same, and the present embodiment passes the first stage motor gear.
  • the second-stage motor gear 121 and the third-stage motor gear 131 have the same modulus and number of teeth, and the gear length is gradually increased to achieve the same rotational speed of the power output shaft of each stage of the motor.
  • the specific proportional relationship between the gear lengths of the motor gears 111, 121, and 131 of each stage can be inversely proportional to the volume and pressure of the power gas, and the specific value of the pressure of the power gas flowing through each stage of the motor. Mathematical calculations can be drawn.
  • Embodiment 7 It is also a linear-arranged three-stage pneumatic gear motor.
  • the structure and the configuration of the three-stage motor are the same as those shown in FIG. 4 and FIG. 5, and the power output shaft and the power output total shaft of each stage of the air motor.
  • the transmission and connection relationship is the same as that of the above-mentioned Embodiment 5, and is different from Embodiment 5 in that the speed of the power output shaft of each stage of the pneumatic gear motor is the same, and the present embodiment passes the first stage motor gear 111.
  • the modulus of the second-stage motor gear 121 and the third-stage motor gear 131 are the same as the gear length, and the number of teeth is increased step by step to achieve the same rotational speed of the power output shaft of each stage of the motor.
  • the specific proportional relationship between the number of teeth between the motor gears 111, 121, and 131 can be inversely proportional to the volume and pressure of the power gas, and the specific value of the pressure of the power gas flowing through each stage of the motor, through simple mathematics. The calculation can be obtained.
  • Embodiment 5, Embodiment 6, and Embodiment 7, although described with a pneumatic gear motor, are known to those skilled in the art, and may be other forms of air motor; the three-stage gear motor of each of the above embodiments, although In order to adjust the rotational speeds of the power output shafts of the gear motors of the various stages, and through the connection mode of the transmission gears, the rotation speeds of the motors transmitted to the power output main shaft are the same, thereby realizing the positive superposition of the power of the motors of the respective stages.
  • the rotation speeds of the three-stage gear motor to the power output main shaft can be the same by other adjustment methods and transmission modes to achieve the object of the present invention.
  • Embodiment 8 This embodiment is a circular-arranged three-stage pneumatic gear motor.
  • the arrangement of the air motors of the various stages is the same as that shown in FIG. 3 of the above-mentioned Embodiment 2, that is, the air motors of the various stages are arranged around the power output total axis.
  • the power output main shaft is located in the center of each stage of the motor.
  • the transmission gear includes respective transmission gears of different speed reduction ratios of the motor gears of the respective stages, and a driven gear 21 mounted on the power output total shaft 2, whereby, the rotational speeds of the pneumatic motors of the respective stages transmitted to the output main shaft 2 are made uniform, and the object of the invention is achieved.
  • the The last transmission gear of each stage of the air motor has the same modulus, and the number of teeth may be the same or different, so that the motor gears of the respective stages have different reduction ratios in the respective transmission gears.
  • the last drive gear can simultaneously mesh with the driven gear 21 on the output main shaft 2.
  • the motor gears of each stage pass before the last transmission gear
  • Each of the transmission gears of different speed reduction ratios has adjusted the rotation speed to the same; when the number of teeth of the last transmission gear is different, the motor gears of each stage pass before the last transmission gear
  • the respective transmission gears of different speed reduction ratios have not adjusted the rotation speed to the same, and must pass the above
  • the number of teeth of the last transmission gear is adjusted to adjust the rotational speed transmitted to the output main shaft 2 to be the same.
  • the two transmission and speed control modes can realize that the air motor of each stage is transmitted to the output main shaft 2 The same speed on the same purpose.
  • the above various embodiments of the present invention can improve the overall efficiency of the air motor, save energy, and reduce noise, achieving the object of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gear Transmission (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

多级气动马达 技术领域
本发明涉及一种气动马达,属于机械工程领域,应用于工矿作业场所,尤其涉及一种节能、高效的多级气动马达。
背景技术
气动马达是一种以压缩空气为动力源的机械设备,以轻便、安全等优势得到广泛应用,尤其是在不允许用电作为动力源的作业场所其应用更加广泛,且也是必须的。目前使用的气动马达,均为单级马达。其中,气动马达的结构形式也有多种,包括齿轮式马达、柱塞式马达、叶片式马达和螺杆式马达等,在煤矿开采等行业中应用最多的是齿轮式气动马达。单级的齿轮式气动马达是在壳体内部设置一对互相啮合的齿轮,其中一个齿轮的齿轮轴为动力输出轴,与减速器等设备连接,输出动力。齿轮式气动马达的壳体上分别设置有压缩气体的进口和出口,压缩气体在通过齿轮式气动马达时,推动马达齿轮旋转,形成动力输出。但是目前单级气动马达的工作效率都比较低,一般气动马达的工作效率不大于30%,压缩气体通过一对马达齿轮后即从出气口直接排放到大气中,这些从出气口排放的气体还具有很大的能量,这样能量损耗大、效率低,目前的气动马达能量损失率大约为70%,造成能量的极大浪费;而且将这种还具有很大能量的气体排出马达壳体时,会产生很大的噪音,甚至啸叫,对作业人员和环境都是污染,不符合当前低碳和节能环保的需要。
技术问题
为了解决上述现有技术的单级气动马达效率低、能量损耗大和噪音大等问题或者至少之一,本发明提供了以下技术解决方案,使得气动马达的效率大大提高,同时噪音明显下降。
技术解决方案
本发明提供的一种多级气动马达,包括壳体,动力输出总轴,所述壳体上设有进气口和排气口,其特征在于,在所述壳体内安装有两级或者两级以上的气动马达,所述两级或者两级以上的气动马达中的第一级气动马达与所述进气口连通,最后一级气动马达与所述排气口连通,动力气体从所述进气口进入所述壳体后推动第一级气动马达,之后再推动第二级气动马达,如此一级接着一级,最后从所述排气口排出所述壳体,每一级所述气动马达均带有动力输出轴,每一级所述气动马达的所述动力输出轴与所述动力输出总轴连接,将每一级所述气动马达产生的动力相叠加后由所述动力输出总轴输出。
优选地,每一级所述气动马达的所述动力输出轴,传递到所述动力输出总轴上的转速相同,使每一级所述气动马达产生的动力正向相叠加后由所述动力输出总轴输出。
所述气动马达为齿轮马达,叶片马达,柱塞马达或者螺杆马达。
优选地,当所述气动马达为齿轮马达时,所述壳体内设置有一对第一级马达齿轮组成的第一级气动马达,和一对第二级马达齿轮组成的第二级气动马达,所述第一级马达齿轮的一齿轮轴为所述第一级气动马达的所述动力输出轴,所述第二级马达齿轮的一齿轮轴为所述第二级气动马达的所述动力输出轴,所述第一级气动马达的所述动力输出轴、所述第二级气动马达的所述动力输出轴和所述动力输出总轴为同一根轴,所述第一级马达齿轮和所述第二级马达齿轮,齿数和模数相同,所述第一级马达齿轮的长度小于所述第二级马达齿轮的长度,使所述第一级气动马达的所述动力输出轴的转速与所述第二级气动马达的所述动力输出轴的转速相同。
优选地,当所述气动马达为齿轮马达时,所述壳体内设置有一对第一级马达齿轮组成的第一级气动马达、一对第二级马达齿轮组成的第二级气动马达和一对第三级马达齿轮组成的第三级气动马达,所述第一级气动马达、第二级气动马达和第三级气动马达的所述动力输出轴通过传动齿轮与所述动力输出总轴连接。
进一步,所述的第一级气动马达、第二级气动马达和第三级气动马达,环绕所述动力输出总轴圆形布置, 所述动力 输出总轴位于所述各级气动马达的中央,每一级所述马达齿轮的一齿轮轴为每一级所述气动马达的所述动力输出轴,所述传动齿轮包括,设置在每一级所述气动马达所述动力输出轴上的主动齿轮,与每一级所述气动马达的所述主动齿轮同时啮合的安装在 所述动力 输出总轴上的 被动齿轮。
优选地,设置在 每一级所述气动马达所述动力输出轴上的主动齿轮为成型在所述动力输出轴上的齿轮,使每一级所述气动马达的所述动力输出轴成为主动齿轮轴, 各级的所述主动齿轮轴上的所述主动齿轮的模数和齿数相同。
或者,所述的第一级气动马达、第二级气动马达和第三级气动马达,呈直线型布置, 每一级所述马达齿轮的一齿轮轴为每一级所述气动马达的所述动力输出轴, 所述传动齿轮包括, 设置在每一级所述气动马达的所述动力输出轴上的三个一级主动齿轮,与相邻所述气动马达的所述一级主动齿轮同时啮合的两个一级被动齿轮,与两个所述一级被动齿轮分别同轴的两个二级主动齿轮轴,与两个所述二级主动齿轮轴同时啮合的一个二级被动齿轮,所述的一个二级被动齿轮安装在所述动力输出总轴上。
进一步,三个所述一级主动齿轮的模数和齿数相同,两个所述一级被动齿轮的模数和齿数相同,两个所述二级主动齿轮轴的模数和齿数相同。
优选地,所述的第一级马达齿轮、第二级马达齿轮和第三级马达齿轮,齿数和齿轮长度相同,齿轮模数逐级增大,使每一级的所述气动马达的所述动力输出轴的转速相同。
或者,所述的第一级马达齿轮、第二级马达齿轮和第三级马达齿轮,齿数和模数相同,齿轮长度逐级增大,使每一级的所述气动马达的所述动力输出轴的转速相同。
或者,所述的第一级马达齿轮、第二级马达齿轮和第三级马达齿轮,模数和齿轮长度相同,齿轮齿数逐级增大,使每一级的所述气动马达的所述动力输出轴的转速相同。
优选地,所述的第一级气动马达、第二级气动马达和第三级气动马达,环绕所述动力输出总轴圆形布置, 所述动力 输出总轴位于所述各级气动马达的中央,每一级所述马达齿轮的一齿轮轴为每一级所述气动马达的所述动力输出轴,所述 传动齿轮包括 所述 各级马达齿轮各自不同减速比的各个传动齿轮,安装在所述动力输出总轴上的被动齿轮,且各级所述气动马达传递到所述输出总轴上的转速相同。
有益效果
根据本发明提供的上述多级气动马达, 在壳体内设置有多级气动马达,且多级气动马达的动力输出轴上的动力叠加后通过一根动力输出总轴输出,也就是将多个气动马达串联起来并叠加使用,充分利用了压缩空气的气体能量,使排出气动马达的气体能量降到最低,将压缩空气的能量充分利用,从而提高了气动马达的工作效率,降低了排出气体的噪音。通过实验,本发明给出的三级气动齿轮马达的效率相对于现有的单级气动齿轮马达的效率,能够提高40%~50%,而噪音可以在现有的基础上至少再降低10分贝。
本发明所述的上述多级气动马达的工作原理是:压缩空气进入多级马达壳体后,每经过一级气动马达后,气体的压力下降而体积增大,则根据气体状态方程,在不考虑温度变化的情况下,气体的压力与气体的体积成反比,即气体压力下降而气体体积将会增大。本发明正是充分考虑了气体压力和体积在多级马达之间的变化,采用多种方法实现各级马达传递给动力输出总轴的转速基本相同,以便尽量减少各级马达之间的相互干涉,实现各级气动马达之间动力的正向叠加,使总输出动力大大提高 。
附图说明
图1为本发明一种二级气动齿轮马达的结构示意图;
图2为本发明一种三级气动齿轮马达的结构示意图;
图3为图2的俯视图;
图4为本发明另一种三级气动齿轮马达的结构示意图;
图5为图4的俯视图。
本发明的实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明并不限于下面公开的具体实施例的限制。
实施例1:图1示出了根据本发明的一种二级气动齿轮马达的结构,所述二级气动马达,包括壳体1,动力输出总轴2,所述壳体1上设有进气口3和排气口4,其特征在于,在所述壳体1内安装有两级气动齿轮马达,一对第一级马达齿轮111组成第一级气动齿轮马达11,一对第二级马达齿轮121组成第二级气动齿轮马达12,所述第一级气动齿轮马达11与所述进气口3连通,最后一级气动齿轮马达即所述第二级气动齿轮马达12与所述排气口4连通,动力气体从所述进气口3进入所述壳体1后推动第一级气动齿轮马达11,之后再推动第二级气动齿轮马达12,最后从所述排气口4排出所述壳体1,第一级所述气动齿轮马达11带有动力输出轴112,第二级所述气动齿轮马达带有动力输出轴122,第一级所述气动齿轮马达11的所述动力输出轴112和第二级所述气动齿轮马达12的所述动力输出轴122与所述动力输出总轴2连接,使每一级所述气动齿轮马达产生的动力相叠加后由所述动力输出总轴2输出。这样,则每一级所述气动齿轮马达均带有动力输出轴,且每一级所述气动齿轮马达的所述动力输出轴与所述动力输出总轴连接,使每一级所述气动齿轮马达所产生的动力相叠加后由所述动力输出总轴输出,从而充分利用压缩气体的能量,提高了气动马达的效率,而且被充分利用的压缩气体排出壳体后的速度和压力相对于现有技术都大为减小,从而减小了气动马达的噪音。
优选地,每一级所述气动齿轮马达的所述动力输出轴,传递到所述动力输出总轴上的转速相同,则使每一级所述气动齿轮马达产生的动力正向相叠加后由所述动力输出总轴输出。这可以最大限度地利用动力气体,尽量提高气动马达的效率。本实施中,所述第一级马达齿轮111的一个齿轮轴为所述第一级气动齿轮马达11的动力输出轴112,所述第二级马达齿轮121的一个齿轮轴为所述第二级气动齿轮马达12的动力输出轴122,所述第一级气动齿轮马达11的所述动力输出轴112及所述第二级气动齿轮马达12的所述动力输出轴122和动力输出总轴2为同一根轴,且所述第一级马达齿轮111和所述第二级马达齿轮121,齿数和模数相同,所述第一级马达齿轮111的长度小于所述第二级马达齿轮121的长度,以便使所述第一级气动齿轮马达11的所述动力输出轴112的转速与所述第二级气动齿轮马达12的所述动力输出轴122的转速相同。至于,第一级马达齿轮111的长度和第二级马达齿轮121的长度间的具体关系,可以根据压缩气体的压力和体积成反比的关系,再结合压缩气体的压力经两级气动齿轮马达后的数值来具体确定。这只需要通过简单的数学计算就可以得出,本领域的技术人员均可以进行计算,故不再赘述。
上述实施例1虽然是以气动齿轮马达进行了说明,但是本领域的技术人员知道,可以是其他形式的气动马达,而且上述两级齿轮马达的实施例虽然以马达齿轮的长度关系来实现第一级马达和第二级马达传递给动力输出总轴的转速相同、从而实现两级马达的动力正向叠加,但是本领域的技术人员知道,也可以通过马达齿轮的模数或者齿数的变化,或者模数和齿数的同时变化,来实现两级齿轮马达传递给动力输出总轴的转速相同;此外,还可以通过变速机构来实现两级齿轮马达传递给动力输出总轴的转速相同,实现本发明的发明目的。
实施例2:图2和图3示出了根据本发明的一种三级气动齿轮马达的结构,所述三级气动齿轮马达,包括壳体1,动力输出总轴2,所述壳体1上设有进气口3和排气口4,其特征在于,在所述壳体1内安装有三级气动齿轮马达,一对第一级马达齿轮111组成的第一级气动齿轮马达11,一对第二级马达齿轮121组成的第二级气动齿轮马达12,一对第三级马达齿轮131组成的第三级气动齿轮马达13,所述第一级气动齿轮马达11与所述进气口3连通,最后一级气动齿轮马达即第三级气动齿轮马达13与所述排气口4连通,动力气体从所述进气口3进入所述壳体1后推动第一级气动齿轮马达11,之后再推动第二级气动齿轮马达12,如此一级接着一级,最后经第三级气动齿轮马达13后从所述排气口4排出所述壳体1,第一级所述气动齿轮马达11带有动力输出轴112,第二级所述气动齿轮马达12带有动力输出轴122,第三级所述气动齿轮马达13带有动力输出轴132,第一级所述气动齿轮马达11的所述动力输出轴112、第二级所述气动齿轮马达12的所述动力输出轴122和第三级所述气动齿轮马达13的所述动力输出轴132与所述动力输出总轴2连接,使每一级所述气动齿轮马达产生的动力相叠加后由所述动力输出总轴2输出。从而充分利用压缩气体的能量,提高了气动马达的效率;降低了被排出气体的速度和压力,减小了气动马达的噪音。
优选地,如图2和图3所示,所述的第一级气动马达11、第二级气动马达12和第三级气动马达13,环绕所述动力输出总轴2圆形布置, 所述动力 输出总轴2位于所述各级气动马达的中央,每一级所述马达齿轮的一齿轮轴为每一级所述气动马达的所述动力输出轴, 所述第一级气动马达、第二级气动马达和第三级气动马达的所述动力输出轴通过传动齿轮与所述动力输出总轴2连接。本实施例中, 所述传动齿轮包括,设置在每一级所述气动马达所述动力输出轴112、122、132上的主动齿轮113、123、133,与每一级所述气动马达的所述主动齿轮113、123、133同时啮合的安装在 所述动力 输出总轴2上的 被动齿轮21。进一步,所述 主动齿轮113、123、133可以和每一级所述气动马达所述动力输出轴一起成型,使每一级所述气动马达的所述动力输出轴成为主动齿轮轴, 各级马达的所述主动齿轮轴上的所述 主动齿轮113、123、133的 模数和齿数相同。
在此种结构及各级马达的布置方式下,为实现每一级的所述气动马达的所述动力输出轴传递到动力输出总轴的转速相同,只需要实现每一级的动力输出轴的转速相同即可,如此,则可以通过第一级马达齿轮111、第二级马达齿轮121和第三级马达齿轮131的齿数和齿轮长度相同,而齿轮模数逐级增大,来实现各级马达的动力输出轴的转速相同。至于各级马达齿轮111、121、131之间齿轮模数的具体比例关系,可以根据动力气体的体积和压力成反比,以及动力气体流经每一级马达后压力的数值,通过简单的数学计算就可以得出,本领域技术人员均可以计算得出,不再赘述。
实施例3:也为一种圆形布置的三级气动齿轮马达,其结构及各级马达的布置形式与图2和图3所示相同,各级气动马达的动力输出轴和动力输出总轴的传动和连接关系,也与上述实施例2相同,与实施例2的不同点在于:实现每一级气动齿轮马达的动力输出轴的转速相同的方式不同,本实施例通过第一级马达齿轮111、第二级马达齿轮121和第三级马达齿轮131的模数和齿数相同,而齿轮长度逐级增大,来实现各级马达的动力输出轴的转速相同。同理,各级马达齿轮111、121、131之间齿轮长度的具体比例关系,可以根据动力气体的体积和压力成反比,以及动力气体流经每一级马达后压力的数值,通过简单的数学计算就可以得出。
实施例4:也为一种圆形布置的三级气动齿轮马达,其结构及各级马达的布置形式与图2和图3所示相同,各级气动马达的动力输出轴和动力输出总轴的传动和连接关系,与上述实施例2也相同,与实施例2的不同点在于:实现每一级气动齿轮马达的动力输出轴的转速相同的方式不同,本实施例通过第一级马达齿轮111、第二级马达齿轮121和第三级马达齿轮131的模数和齿轮长度相同,而齿数逐级增大,来实现各级马达的动力输出轴的转速相同。同理,各级马达齿轮111、121、131之间齿数的具体比例关系,可以根据动力气体的体积和压力成反比,以及动力气体流经每一级马达后压力的数值,通过简单的数学计算得出。
上述实施例2、实施例3和实施例4,虽然是以气动齿轮马达进行了说明,但是本领域的技术人员知道,可以是其他形式的气动马达;上述各实施例的三级齿轮马达,虽然以调整各级齿轮马达的动力输出轴的转速相同,再通过模数和齿数相同的主动齿轮,来实现各级马达传递到动力输出总轴的转速相同,从而实现各级马达的动力正向叠加,但是本领域的技术人员知道,也可以通过其他调整和传动方式,来实现三级齿轮马达传递给动力输出总轴的转速相同,以实现本发明的发明目的,下述实施例8就是其中的一种实现方式。
实施例5:图4和图5示出了根据本发明的一种三级气动齿轮马达的结构,所述三级气动齿轮马达,包括壳体1,动力输出总轴2,所述壳体1上设有进气口3和排气口4,其特征在于,在所述壳体1内安装有三级气动齿轮马达,一对第一级马达齿轮111组成的第一级气动齿轮马达11,一对第二级马达齿轮121组成的第二级气动齿轮马达12,一对第三级马达齿轮131组成的第三级气动齿轮马达13,所述第一级气动齿轮马达11与所述进气口3连通,最后一级气动齿轮马达即第三级气动齿轮马达13与所述排气口4连通,动力气体从所述进气口3进入所述壳体1后推动第一级气动齿轮马达11,之后再推动第二级气动齿轮马达12,如此一级接着一级,最后经第三级气动齿轮马达13后从所述排气口4排出所述壳体1,第一级所述气动齿轮马达11带有动力输出轴112,第二级所述气动齿轮马达12带有动力输出轴122,第三级所述气动齿轮马达13带有动力输出轴132,第一级所述气动齿轮马达11的所述动力输出轴112、第二级所述气动齿轮马达12的所述动力输出轴122和第三级所述气动齿轮马达13的所述动力输出轴132与所述动力输出总轴2连接,使每一级所述气动齿轮马达产生的动力相叠加后由所述动力输出总轴2输出。从而充分利用动力气体的能量,提高了气动马达的效率;同时,降低被排出气体的速度和压力,减小了气动马达的噪音。
如图4和图5所示,所述的第一级气动马达11、第二级气动马达12和第三级气动马达13,呈直线型布置, 每一级所述马达齿轮的一齿轮轴为每一级所述气动马达的所述动力输出轴, 所述第一级气动马达、第二级气动马达和第三级气动马达的所述动力输出轴112、122、132通过传动齿轮与所述动力输出总轴2连接,所述传动齿轮包括, 设置在每一级所述气动马达的所述动力输出轴112、122、132上的三个一级主动齿轮113、123、133,与相邻所述气动马达的所述一级主动齿轮同时啮合的两个一级被动齿轮61、62,与两个所述一级被动齿轮61、62分别同轴的两个二级主动齿轮轴71、72,与两个所述二级主动齿轮轴71、72同时啮合的一个二级被动齿轮21,所述的一个二级被动齿轮21安装在所述动力输出总轴2上。优选地, 各个所述一级主动齿轮113、123、133的模数和齿数相同,两个所述一级被动齿轮61、62的模数和齿数相同,两个所述二级主动齿轮轴71、72的模数和齿数相同。
在上述结构及各级马达的布置方式下,为实现每一级的所述气动马达的所述动力输出轴112、122、132最后传递到动力输出总轴2上的转速相同,只需要实现每一级的动力输出轴112、122、132的转速相同即可。如此,则可以通过第一级马达齿轮111、第二级马达齿轮121和第三级马达齿轮131的齿数和齿轮长度相同,而齿轮模数逐级增大,来实现各级马达的动力输出轴的转速相同。至于各级马达齿轮111、121、131之间齿轮模数的具体比例关系,可以根据动力气体的体积和压力成反比,以及动力气体流经每一级马达后压力的具体数值,通过简单的数学计算就可得出,本领域技术人员均可计算得出。
实施例6:也为一种直线型布置的三级气动齿轮马达,其结构和三级马达的布置形式与图2和图3所示相同,各级气动马达的动力输出轴和动力输出总轴的传动和连接关系,与上述实施例5也相同,与实施例5的不同点在于:实现每一级气动齿轮马达的动力输出轴的转速相同的方式不同,本实施例通过第一级马达齿轮111、第二级马达齿轮121和第三级马达齿轮131的模数和齿数相同,而齿轮长度逐级增大,来实现各级马达的动力输出轴的转速相同。同理,各级马达齿轮111、121、131之间齿轮长度的具体比例关系,可以根据动力气体的体积和压力成反比,以及动力气体流经每一级马达后压力的具体数值,通过简单的数学计算就可以得出。
实施例7:也为一种直线型布置的三级气动齿轮马达,其结构和三级马达的布置形式与图4和图5所示相同,各级气动马达的动力输出轴和动力输出总轴的传动和连接关系,与上述实施例5相同,与实施例5的不同点在于:实现每一级气动齿轮马达的动力输出轴的转速相同的方式不同,本实施例通过第一级马达齿轮111、第二级马达齿轮121和第三级马达齿轮131的模数和齿轮长度相同,而齿数逐级增大,来实现各级马达的动力输出轴的转速相同。同理,各级马达齿轮111、121、131之间齿数的具体比例关系,可以根据动力气体的体积和压力成反比,以及动力气体流经每一级马达后压力的具体数值,通过简单的数学计算就可以得出。
上述实施例5、实施例6和实施例7,虽然是以气动齿轮马达进行了说明,但是本领域的技术人员知道,可以是其他形式的气动马达;上述各实施例的三级齿轮马达,虽然以调整各级齿轮马达的动力输出轴的转速相同,再通过所述的传动齿轮的连接方式,来实现各级马达传递到动力输出总轴的转速相同,从而实现各级马达的动力正向叠加,但是本领域域的技术人员知道,也可以通过其他调整方式和传动方式,来实现三级齿轮马达传递到动力输出总轴的转速相同,以实现本发明的发明目的。
实施例8:本实施例为一种圆形布置的三级气动齿轮马达,各级气动马达的排布和上述实施例2的图3所示相同,即各级气动马达围绕动力输出总轴呈圆形布置,动力输出总轴位于各级马达的中央。与上述实施例2不同的是: 所述 传动齿轮包括 所述 各级马达齿轮各自不同减速比的各个传动齿轮和安装在所述动力输出总轴 2 上的被动齿轮 21 , 从而达到各级气动马达传递到输出总轴2上的转速一致,实现本发明的发明目的。本实施例中,可以设定 所述 各级气动马达的所述最后一个传动齿轮的模数相同,而齿数可以相同、也可以不同,这样,则所述 各级马达齿轮的各自不同减速比的各个传动齿轮中的 最后一个传动齿轮可同时与所述 输出总轴 2 上的被动齿轮 21 啮合。当 所述最后一个传动齿轮的齿数相同时,则在该最后一个传动齿轮之前各级所述马达齿轮通过 各自不同减速比的各个传动齿轮已经将转速调整到相同;当 所述最后一个传动齿轮的齿数不相同时,则在该最后一个传动齿轮之前各级所述马达齿轮通过 各自不同减速比的各个传动齿轮还没有将转速调整到相同,须通过所述 最后一个传动齿轮的齿数关系来调整传递给所述输出总轴2的转速相同。该两种传动和调速方式,均可以实现 各级所述气动马达传递到所述输出总轴 2 上的转速相同的目的。
工业实用性
本发明的上述各个实施例均可以提高气动马达的整体效率、节约能源,并降低噪音,实现本发明的发明目的。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

1 、一种多级气动马达,包括壳体,动力输出总轴,所述壳体上设有进气口和排气口,其特征在于,在所述壳体内安装有两级或者两级以上的气动马达,所述两级或者两级以上的气动马达中的第一级气动马达与所述进气口连通,最后一级气动马达与所述排气口连通,动力气体从所述进气口进入所述壳体后推动第一级气动马达,之后再推动第二级气动马达,如此一级接着一级,最后从所述排气口排出所述壳体,每一级所述气动马达均带有动力输出轴,每一级所述气动马达的所述动力输出轴与所述动力输出总轴连接,将每一级所述气动马达产生的动力相叠加后由所述动力输出总轴输出。
2 、根据权利要求1所述的多级气动马达,其特征在于,每一级所述气动马达的所述动力输出轴,传递到所述动力输出总轴上的转速相同,使每一级所述气动马达产生的动力正向相叠加后由所述动力输出总轴输出。
3 、根据权利要求2所述的多级气动马达,其特征在于,所述气动马达为齿轮马达,叶片马达,柱塞马达或者螺杆马达。
4 、根据权利要求3所述的多级气动马达,其特征在于,当所述气动马达为齿轮马达时,所述壳体内设置有一对第一级马达齿轮组成的第一级气动马达,和一对第二级马达齿轮组成的第二级气动马达,所述第一级马达齿轮的一齿轮轴为所述第一级气动马达的所述动力输出轴,所述第二级马达齿轮的一齿轮轴为所述第二级气动马达的所述动力输出轴,所述第一级气动马达的所述动力输出轴、所述第二级气动马达的所述动力输出轴和所述动力输出总轴为同一根轴,所述第一级马达齿轮和所述第二级马达齿轮,齿数和模数相同,所述第一级马达齿轮的长度小于所述第二级马达齿轮的长度,使所述第一级气动马达的所述动力输出轴的转速与所述第二级气动马达的所述动力输出轴的转速相同。
5 、根据权利要求3所述的多级气动马达,其特征在于,当所述气动马达为齿轮马达时,所述壳体内设置有一对第一级马达齿轮组成的第一级气动马达、一对第二级马达齿轮组成的第二级气动马达和一对第三级马达齿轮组成的第三级气动马达,所述第一级气动马达、第二级气动马达和第三级气动马达的所述动力输出轴通过传动齿轮与所述动力输出总轴连接。
6 、根据权利要求5所述的多级气动马达,其特征在于,所述的第一级气动马达、第二级气动马达和第三级气动马达,环绕所述动力输出总轴圆形布置, 所述动力 输出总轴位于所述各级气动马达的中央,每一级所述马达齿轮的一齿轮轴为每一级所述气动马达的所述动力输出轴,所述传动齿轮包括,设置在每一级所述气动马达所述动力输出轴上的主动齿轮,与每一级所述气动马达的所述主动齿轮同时啮合的安装在 所述动力 输出总轴上的 被动齿轮。
7 、根据权利要求6所述的多级气动马达,其特征在于,设置在 每一级所述气动马达所述动力输出轴上的所述主动齿轮为成型在所述动力输出轴上的齿轮,使每一级所述气动马达的所述动力输出轴成为主动齿轮轴, 各级的所述主动齿轮轴上的所述主动齿轮模数和齿数相同。
8 、根据权利要求5所述的多级气动马达,其特征在于,所述的第一级气动马达、第二级气动马达和第三级气动马达,呈直线型布置, 每一级所述马达齿轮的一齿轮轴为每一级所述气动马达的所述动力输出轴, 所述传动齿轮包括, 设置在每一级所述气动马达的所述动力输出轴上的三个一级主动齿轮,与相邻所述气动马达的所述一级主动齿轮同时啮合的两个一级被动齿轮,与两个所述一级被动齿轮分别同轴的两个二级主动齿轮轴,与两个所述二级主动齿轮轴同时啮合的一个二级被动齿轮,所述的一个二级被动齿轮安装在所述动力输出总轴上。
9 、根据权利要求8所述的多级气动马达,其特征在于,三个所述一级主动齿轮的模数和齿数相同,两个所述一级被动齿轮的模数和齿数相同,两个所述二级主动齿轮轴的模数和齿数相同。
10 、根据权利要求7或者9所述的多级气动马达,其特征在于,所述的第一级马达齿轮、第二级马达齿轮和第三级马达齿轮,齿数和齿轮长度相同,齿轮模数逐级增大,使每一级的所述气动马达的所述动力输出轴的转速相同。
11 、根据权利要求7或者9所述的多级气动马达,其特征在于,所述的第一级马达齿轮、第二级马达齿轮和第三级马达齿轮,齿数和模数相同,齿轮长度逐级增大,使每一级的所述气动马达的所述动力输出轴的转速相同。
12 、根据权利要求7或者9所述的多级气动马达,其特征在于,所述的第一级马达齿轮、第二级马达齿轮和第三级马达齿轮,模数和齿轮长度相同,齿轮齿数逐级增大,使每一级的所述气动马达的所述动力输出轴的转速相同。
13、根据权利要求5所述的多级气动马达,其特征在于,所述的第一级气动马达、第二级气动马达和第三级气动马达,环绕所述动力输出总轴圆形布置, 所述动力输出总轴位于所述各级气动马达的中央,每一级所述马达齿轮的一齿轮轴为每一级所述气动马达的所述动力输出轴,所述传动齿轮包括所述各级马达齿轮各自不同减速比的各个传动齿轮,安装在所述动力输出总轴上的被动齿轮,且各级所述气动马达传递到所述输出总轴上的转速相同。
PCT/CN2010/078715 2010-05-13 2010-11-15 多级气动马达 WO2011140793A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10851297.1A EP2570590B1 (en) 2010-05-13 2010-11-15 Multistage pneumatic motor
AU2010353176A AU2010353176B2 (en) 2010-05-13 2010-11-15 Multistage pneumatic motor
US13/697,602 US20130055884A1 (en) 2010-05-13 2010-11-15 Multistage pneumatic motor
RU2012148187/06A RU2012148187A (ru) 2010-05-13 2010-11-15 Многоконтурный пневматический мотор

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010170599.5 2010-05-13
CN201010170599.5A CN101852091A (zh) 2010-05-13 2010-05-13 一种节能高效的气动马达

Publications (1)

Publication Number Publication Date
WO2011140793A1 true WO2011140793A1 (zh) 2011-11-17

Family

ID=42803757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078715 WO2011140793A1 (zh) 2010-05-13 2010-11-15 多级气动马达

Country Status (6)

Country Link
US (1) US20130055884A1 (zh)
EP (1) EP2570590B1 (zh)
CN (3) CN101852091A (zh)
AU (1) AU2010353176B2 (zh)
RU (1) RU2012148187A (zh)
WO (1) WO2011140793A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852091A (zh) * 2010-05-13 2010-10-06 石家庄中煤装备制造有限公司 一种节能高效的气动马达
US10641239B2 (en) 2016-05-09 2020-05-05 Sunnyco Inc. Pneumatic engine and related methods
US10465518B2 (en) * 2016-05-09 2019-11-05 Sunnyco Inc. Pneumatic engine and related methods
CN110159351B (zh) * 2019-06-03 2024-04-23 鹤飞机械有限公司 内曲线齿轮式气动马达执行器
CN111120299A (zh) * 2019-12-11 2020-05-08 清远市高新精旺新能源研究院有限公司 一种输送低黏度废液齿轮泵
CN112535911B (zh) * 2020-08-28 2022-10-18 深圳中科飞测科技股份有限公司 光学设备及其工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2631428A (en) * 1946-08-28 1953-03-17 Arthur H Nelson Multiple fluid-operated rotary gear motors with treatment between stages
GB999459A (en) * 1961-04-19 1965-07-28 Erich Martin Improvements in and relating to multi-stage rotary engines
CN2702088Y (zh) * 2004-03-26 2005-05-25 朱妙睿 同轴多节单螺杆式空气压缩机
CN101852091A (zh) * 2010-05-13 2010-10-06 石家庄中煤装备制造有限公司 一种节能高效的气动马达
CN201696097U (zh) * 2010-05-13 2011-01-05 石家庄中煤装备制造有限公司 一种节能高效的气动马达

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1223876A (en) * 1916-01-05 1917-04-24 Morris A Heimann Motor and support for display-forms and the like.
US2463349A (en) * 1948-01-20 1949-03-01 Rawlings R Baner Electric motor assembly
US3015283A (en) * 1958-11-24 1962-01-02 Bayer Ag Gear pumps and motors
US3724427A (en) * 1971-06-15 1973-04-03 K Sauder Rotary internal combustion engine
US3782340A (en) * 1972-02-04 1974-01-01 J Nam Gear-type rotary engine
US4386893A (en) * 1981-05-04 1983-06-07 Deere & Company Gear pump or motor with a shaftless gear
US4668159A (en) * 1985-07-19 1987-05-26 Biordo Jose M Compressed rotative motor
SU1722239A4 (ru) * 1990-04-17 1992-03-23 И.Ф.Суслов Силова многоагрегатна установка
DE4216989C2 (de) * 1992-05-22 1998-06-04 Gottfried Baehr Motor mit sehr hohem Drehmoment
CN1041647C (zh) * 1995-09-05 1999-01-13 夏琼辉 燃烧火药旋转发动机
DE19849805C1 (de) * 1998-10-29 2000-03-09 Voith Turbo Kg Baureihe für Zahnradmotoren mit unterschiedlich theoretisch abgebbarem Drehmoment und Verfahren zur Herstellung der einzelnen Zahnradmotoren der Baureihe
JP2002031199A (ja) * 2000-07-18 2002-01-31 Honda Motor Co Ltd 変速機
US6450448B1 (en) * 2001-08-17 2002-09-17 Toshimi Suzuki Airplane wheel unit
WO2005005781A1 (en) * 2003-07-14 2005-01-20 Elthom Enterprises Limited Volume screw machine of rotary type
WO2009034421A1 (en) * 2007-09-13 2009-03-19 Ecole polytechnique fédérale de Lausanne (EPFL) A multistage hydro-pneumatic motor-compressor
CN101761360A (zh) * 2008-12-24 2010-06-30 徐开文 多段式齿轮动力装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2631428A (en) * 1946-08-28 1953-03-17 Arthur H Nelson Multiple fluid-operated rotary gear motors with treatment between stages
GB999459A (en) * 1961-04-19 1965-07-28 Erich Martin Improvements in and relating to multi-stage rotary engines
CN2702088Y (zh) * 2004-03-26 2005-05-25 朱妙睿 同轴多节单螺杆式空气压缩机
CN101852091A (zh) * 2010-05-13 2010-10-06 石家庄中煤装备制造有限公司 一种节能高效的气动马达
CN201696097U (zh) * 2010-05-13 2011-01-05 石家庄中煤装备制造有限公司 一种节能高效的气动马达

Also Published As

Publication number Publication date
AU2010353176A1 (en) 2012-12-06
AU2010353176B2 (en) 2013-10-17
CN102003215A (zh) 2011-04-06
EP2570590A4 (en) 2017-05-17
EP2570590A1 (en) 2013-03-20
US20130055884A1 (en) 2013-03-07
EP2570590B1 (en) 2018-07-11
CN102003215B (zh) 2013-05-15
CN101852091A (zh) 2010-10-06
RU2012148187A (ru) 2014-06-20
CN201843645U (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2011140793A1 (zh) 多级气动马达
CN202082348U (zh) 一种偏航减速器
WO2014134765A1 (zh) 刚性内外齿廓包齿减速器
AU2018406349B2 (en) Multi-stage roots dry vacuum pump
WO2018014481A1 (zh) 汽车及其传动系统
CN115370816B (zh) 一种阀门智能执行装置的减速机构
CN2856587Y (zh) 双曲柄双摆线平动行星齿轮减速机
CN2512948Y (zh) 双平副柔性传动装置
CN212616132U (zh) 一种行星差动减速机构及减速器
CN220416121U (zh) 减速传动装置及压裂泵动力驱动系统
CN221162165U (zh) 一种高适配度的集成电驱动桥
CN201696097U (zh) 一种节能高效的气动马达
CN219827662U (zh) 一种多级齿轮变速装置
CN218971418U (zh) 一种涡旋盘及真空泵
CN217926981U (zh) 一种二级联动的啮合式减速器
CN111350800A (zh) 一种改进型行星齿轮差速器
CN211819909U (zh) 一种节能型二级空压机
CN217099653U (zh) 四轮驱动系统及工程机械
CN220250022U (zh) 一种高效换热器
CN215981089U (zh) 少齿差气马达执行器
CN220500396U (zh) 一种同轴式单电机三档序列换档电驱桥系统
CN213332236U (zh) 一种斜齿轮行星减速机
CN218495180U (zh) 空调压缩机棉被以及空调
CN208935279U (zh) 一种功率分流的汽车驱动桥减速机构
CN201152345Y (zh) 变频电机调节的行星齿轮变速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010851297

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13697602

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010353176

Country of ref document: AU

Date of ref document: 20101115

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012148187

Country of ref document: RU

Kind code of ref document: A