WO2011140700A1 - 硒化铅量子点的制备方法 - Google Patents

硒化铅量子点的制备方法 Download PDF

Info

Publication number
WO2011140700A1
WO2011140700A1 PCT/CN2010/072594 CN2010072594W WO2011140700A1 WO 2011140700 A1 WO2011140700 A1 WO 2011140700A1 CN 2010072594 W CN2010072594 W CN 2010072594W WO 2011140700 A1 WO2011140700 A1 WO 2011140700A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
quantum dots
toluene
lead selenide
selenium
Prior art date
Application number
PCT/CN2010/072594
Other languages
English (en)
French (fr)
Inventor
周明杰
王春
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to EP10851207.0A priority Critical patent/EP2570383B1/en
Priority to PCT/CN2010/072594 priority patent/WO2011140700A1/zh
Priority to US13/696,378 priority patent/US20130048922A1/en
Priority to JP2013505303A priority patent/JP5537731B2/ja
Priority to CN201080064180.XA priority patent/CN102971255B/zh
Publication of WO2011140700A1 publication Critical patent/WO2011140700A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/02Oxides
    • C01G21/06Lead monoxide [PbO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the invention belongs to the technical field of preparation of nano materials, and in particular relates to a preparation method of lead selenide quantum dots.
  • Quantum dots mean particle sizes between 1-10
  • the ultrafine particles between nm are "artificial molecules" that are combined by 103-105 atoms.
  • Theoretical analysis shows that when the semiconductor material is gradually reduced from the bulk phase to a certain critical dimension, the feature size of the material is comparable to or smaller than the electron's De Broglie wavelength or electron mean free path in three dimensions.
  • the motion in the material is limited by three dimensions, that is, the energy of the electron is quantized in three dimensions, and the material whose electron is restricted in three dimensions is called a quantum dot. Due to its radius less than or close to the exciton Bohr radius, quantum dots have unique quantum size effects and surface effects, making them have broad application prospects in luminescent materials and photosensors.
  • Lead-selenide (PbSe) quantum dots are used as an important semiconductor quantum dot material in optoelectronics, biophysics, and fluorescence microscopy. Due to the narrow band gap, lead selenide can be used to produce photodetectors, photo resistors, light emitters, and jet lasers. Lead selenide can also be used as a diode laser source in the mid-infrared and far-infrared spectral regions. It can also be widely used in air pollution detection, non-invasive medical diagnosis, automatic detection of exhaust gas and waste liquid.
  • the organometallic method is one of the classical methods commonly used to prepare lead selenide quantum dots.
  • organic lead compounds, selenium powder, etc. are used as raw materials, trioctylphosphine oxide (TOPO), trioctylphosphine (TOP), tetrabutylphosphoric acid (TBP) and the like are solvents/surfactants, and lead selenide quantum dots are prepared under anhydrous oxygen-free and high temperature conditions.
  • TOPO trioctylphosphine oxide
  • TOP trioctylphosphine
  • TBP tetrabutylphosphoric acid
  • lead selenide quantum dots are prepared under anhydrous oxygen-free and high temperature conditions.
  • the organic solvents such as TOPO, TOP and TBP used in this method are flammable, explosive, expensive and highly toxic, and comprehensive. High cost is not conducive to mass production.
  • the technical problem to be solved by the present invention is to provide a preparation method of a lead selenide quantum dot which is simple in operation, low in experimental conditions and low in raw material cost, so as to solve the conventional method for preparing a lead selenide quantum dot with high comprehensive cost and experiment. Conditions such as harsh conditions.
  • a technical solution to solve the technical problem of the present invention is to provide a method for preparing a lead selenide quantum dot, which comprises the following steps:
  • Step 1 mixing selenium powder with octadecene, heating and stirring, completely dissolving and keeping the selenium powder, and then cooling to room temperature to obtain a stock solution of selenium;
  • Step 2 mixing the lead compound, oleic acid, octadecene and benzophenone to form a lead stock solution, and then maintaining the temperature at 130 ° C -190 ° C;
  • Step 3 quickly add the selenium stock solution in the first step to the lead storage solution in the second step, the reaction temperature is maintained at 100 ° C - 160 ° C, and the lead selenide quantum dots are initially prepared after the reaction is cooled;
  • Step 4 adding the initially prepared lead selenide quantum dots to a mixed solution of toluene and methanol, centrifuging the mixed solution, removing the supernatant, and obtaining a precipitate, which is dissolved in toluene to obtain pure lead selenide. Quantum dot transparent solution.
  • the holding time is 5-10 minutes.
  • the lead compound, oleic acid, octadecene and benzophenone are heated and stirred and dissolved under the protection of an inert gas; the inert gas is argon, and the stirring is magnetic stirring.
  • the lead compound is lead oxide or lead acetate.
  • the reaction time was 300 seconds.
  • the volume ratio of toluene to methanol is 1:3.
  • the mixed solution is centrifuged to remove the supernatant, and this operation is repeated at least three times.
  • the preparation method of the present invention uses a simple lead compound and selenium powder as raw materials to prepare lead selenide quantum dots of different particle sizes and morphologies by simply controlling the reaction conditions, and the method of the present invention avoids the use of tri-n-octylphosphine ( Flammable, explosive, expensive and toxic compounds such as TOP) or tri-n-butylphosphine (TBP), safe, simple, and reproducible, no need for a glove box, low cost, and the obtained lead selenide quantum dots It is evenly distributed and has good monodispersity (the size distribution of lead selenide quantum dots is less than 10%).
  • tri-n-octylphosphine Flammable, explosive, expensive and toxic compounds such as TOP
  • TBP tri-n-butylphosphine
  • FIG. 1 is a flow chart of a method for preparing a lead selenide quantum dot according to the present invention
  • 2 is a transmission electron micrograph of a lead selenide quantum dot obtained under the conditions of a reaction temperature of 100 ° C, a Pb and Se precursor molar ratio of 3:1, and a reaction time of 5 minutes;
  • Figure 3 is a reaction temperature of 130 ° C, Pb and Se precursor molar ratio of 2:1, reaction time of 5 Transmission electron micrograph of lead selenide quantum dots obtained under minute conditions;
  • Figure 4 is a reaction temperature of 160 ° C, Pb and Se precursor molar ratio of 1:1, reaction time of 5 Transmission electron micrograph of lead selenide quantum dots obtained under minute conditions.
  • FIG. 1 shows a flow of a method for preparing a lead selenide quantum dot according to an embodiment of the present invention.
  • the preparation method includes the following steps:
  • Step S01 mixing selenium powder with octadecene, heating and stirring, completely dissolving the selenium powder, keeping warm, and then cooling to room temperature to obtain a stock solution of selenium;
  • Step S02 mixing lead compound, oleic acid, octadecene and benzophenone to form a lead storage solution, and then maintaining the temperature at 130 ° C -190 ° C;
  • Step S03 Quickly adding the stock solution of selenium in step S01 to the lead storage liquid in step S02, maintaining the reaction temperature at about 100 ° C - 160 ° C, and initially preparing lead selenide quantum dots after the reaction is cooled;
  • Step S04 adding the initially prepared lead selenide quantum dots to a mixed solution of toluene and methanol, centrifuging the mixed solution, removing the supernatant, and obtaining a precipitate, which is dissolved in toluene to obtain pure lead selenide. Quantum dot transparent solution.
  • the holding time is 5 to 10 minutes.
  • the lead compound, oleic acid, octadecene and benzophenone are heated and stirred and dissolved under the protection of an inert gas; the inert gas is argon, and the stirring is magnetic stirring.
  • the lead compound is lead oxide or lead acetate.
  • the reaction time is 300 seconds.
  • the volume ratio of toluene to methanol is 1:3.
  • the mixed solution is centrifuged by repeated operations and the supernatant is removed at least three times.
  • the preparation method of the present invention uses simple lead compounds (such as lead oxide, lead acetate, etc.) and selenium powder as raw materials to prepare lead selenide quantum dots of different particle sizes and morphologies by simply controlling the reaction conditions, and the method of the present invention Avoid the use of flammable, explosive, expensive and toxic compounds such as tri-n-octylphosphine (TOP) or tri-n-butylphosphine (TBP). It is safe, easy, and reproducible. It does not require a glove box and is low in cost.
  • the obtained lead selenide quantum dots are uniformly distributed and have good monodispersity (the size distribution of lead selenide quantum dots is less than 10%). As shown in FIG. 2 to FIG. 4, FIG.
  • FIG. 2 is a transmission electron micrograph of a lead selenide quantum dot obtained under the conditions of a reaction temperature of 100 ° C, a Pb and Se precursor molar ratio of 3:1, and a reaction time of 5 minutes.
  • Figure 3 shows that the reaction temperature is 130 ° C, the Pb and Se precursor molar ratio is 2:1, and the reaction time is 5 Transmission electron micrograph of lead selenide quantum dots obtained under minute conditions;
  • Figure 4 shows that the reaction temperature is 160 ° C, the molar ratio of Pb and Se precursor is 1:1, and the reaction time is 5 Transmission electron micrograph of lead selenide quantum dots obtained under minute conditions.
  • the lead selenide quantum dots synthesized by the above preparation method can be used as a solar cell, a light-emitting diode, a light-emitting device, or the like.
  • Lead selenide quantum dots obtained by different precursor molar ratios, reaction temperatures, lead precursors are exemplified below by various examples.
  • Step 1 Add 3mMol (mmol) of selenium powder and 5ml of octadecene (ODE) to a 25ml three-necked flask, heat to 200°C-220°C, stir evenly to completely dissolve the selenium powder, and keep it for 5-10 minutes. Cooling to room temperature to prepare a stock solution of selenium;
  • ODE octadecene
  • Step 2 Add 1 mMol (mmol) of lead oxide (PbO), 5 mMol of oleic acid (OA), 10 mL of octadecene (ODE), and 5 mMol of benzophenone to a 25 mL three-necked flask under argon. Heated to 130 ° C under protection, fully dissolved under vigorous magnetic stirring to form a lead stock solution, maintaining the temperature at 130 ° C;
  • PbO lead oxide
  • OA oleic acid
  • ODE octadecene
  • Step 3 Using a needle tube to extract the selenium stock solution, so that the molar ratio of Pb to Se in the solution is 3:1, and quickly add to the lead storage liquid at 130 ° C. After the injection, the temperature generally drops by 30 ° C, and the reaction temperature is maintained at 100. Around °C, when the reaction time is 300 seconds, the heater power is turned off, and after cooling, the lead selenide quantum dots are obtained;
  • Step 4 adding the lead selenide quantum dot to a mixed solution of toluene and methanol (the volume ratio of toluene to methanol is 1:3), centrifuging the mixed solution, removing the supernatant, and then adding toluene and methanol again.
  • the mixed solution volume ratio of toluene to methanol: 1:3) was repeated twice, and finally a precipitate was obtained, which was dissolved in toluene to obtain a pure lead selenide quantum dot transparent solution.
  • Step 1 2mMol selenium powder and 5ml octadecene (ODE) are added to a 25ml three-necked flask, heated to 200 ° C -220 ° C, evenly stirred to completely dissolve the selenium powder, kept for 5-10 minutes, cooled to room temperature, a stock solution of selenium;
  • ODE octadecene
  • Step 2 Add 1 mMol of lead oxide (PbO), 5 mMol of oleic acid (OA), 10 mL of octadecene (ODE), and 5 mMol of benzophenone to a 25 mL three-necked flask and heat under argon. 160 ° C, under strong magnetic stirring to fully dissolve to form a lead stock solution, the temperature is maintained at 160 ° C;
  • Step 3 Using a needle tube to extract the selenium stock solution, so that the molar ratio of Pb to Se in the solution is 2:1, and quickly add to the lead storage liquid at 160 ° C. After the injection, the temperature generally drops by 30 ° C, and the reaction temperature is maintained at 130. Around °C, when the reaction time is 300 seconds, the power is turned off and cooled to obtain lead selenide quantum dots;
  • Step 4 adding the lead selenide quantum dot to a mixed solution of toluene and methanol (the volume ratio of toluene to methanol is 1:3), centrifuging the mixed solution, removing the supernatant, and then adding toluene and methanol again.
  • the mixed solution volume ratio of toluene to methanol: 1:3) was repeated twice, and finally a precipitate was obtained, which was dissolved in toluene to prepare a lead selenide quantum dot transparent solution.
  • Step 1 Add 1mMol selenium powder and 5ml of octadecene (ODE) to a 25ml three-necked flask, heat to 200°C-220°C, stir evenly to completely dissolve the selenium powder, keep it for 5-10 minutes, and cool to room temperature. Preparing a stock solution of selenium;
  • ODE octadecene
  • Step 2 Add 1 mMol of lead oxide (PbO), 5 mMol of oleic acid (OA), 10 mL of octadecene (ODE), and 5 mMol of benzophenone to 25 In a three-necked flask of mL, heated to 190 ° C under argon gas, fully dissolved under vigorous magnetic stirring to form a lead stock solution, maintaining the temperature at 190 ° C;
  • PbO lead oxide
  • OA oleic acid
  • ODE octadecene
  • Step 3 Using a needle tube to extract the selenium stock solution, so that the molar ratio of Pb to Se in the solution is 1:1, and quickly add to the lead storage liquid at 190 ° C. After the injection, the temperature generally drops by 30 ° C, and the reaction temperature is maintained at 160. Around °C, when the reaction time is 300 seconds, the power is turned off and cooled to obtain lead selenide quantum dots;
  • Step 4 adding the lead selenide quantum dot to a mixed solution of toluene and methanol (the volume ratio of toluene to methanol is 1:3), centrifuging the mixed solution, removing the supernatant, and then adding toluene and methanol again.
  • the mixed solution volume ratio of toluene to methanol: 1:3) was repeated twice, and finally a precipitate was obtained, which was dissolved in toluene to prepare a lead selenide quantum dot transparent solution.
  • Step 1 Add 3 mMol selenium powder and 5 ml octadecene (ODE) to 25 In a ml three-necked flask, heat to 200 ° C -220 ° C, evenly stir to completely dissolve the selenium powder, keep warm for 5-10 minutes, cool to room temperature, and obtain a stock solution of selenium;
  • ODE octadecene
  • Step two will be 1 mMol lead acetate, 3mMol oleic acid (OA), 5mL octadecene (ODE) was added to a 25mL three-necked flask, heated to 130 ° C under argon protection, and fully dissolved under strong magnetic stirring to form lead. Stock solution, keeping the temperature at 130 ° C;
  • Step 3 Using a needle tube to extract the selenium stock solution, so that the molar ratio of Pb to Se in the solution is 3:1, and quickly add to the lead storage liquid at 130 ° C. After the injection, the temperature generally drops by 30 ° C, and the reaction temperature is maintained at 100. Around °C, when the reaction time is 300 seconds, the heater power is turned off, and after cooling, the lead selenide quantum dots are obtained;
  • Step 4 adding the lead selenide quantum dot to a mixed solution of toluene and methanol (the volume ratio of toluene to methanol is 1:3), centrifuging the mixed solution, removing the supernatant, and then adding toluene and methanol again.
  • the mixed solution volume ratio of toluene to methanol: 1:3) was repeated twice, and finally a precipitate was obtained, which was dissolved in toluene to obtain a pure lead selenide quantum dot transparent solution.
  • Step 1 Add 2mMol selenium powder and 5 ml octadecene (ODE) to 25 In a ml three-necked flask, heat to 200 ° C -220 ° C, evenly stir to completely dissolve the selenium powder, keep warm for 5-10 minutes, cool to room temperature, and obtain a stock solution of selenium;
  • ODE octadecene
  • Step 2 Add 1 mMol of lead acetate, 3 mMol of oleic acid (OA), 5 mL of octadecene (ODE) to a 25 mL three-necked flask, heat to 160 ° C under argon atmosphere, and subject to vigorous magnetic stirring. Fully dissolve the lead forming stock solution and keep the temperature at 160 ° C;
  • OA oleic acid
  • ODE octadecene
  • Step 3 Using a needle tube to extract the selenium stock solution, so that the molar ratio of Pb to Se in the solution is 2:1, and quickly add to the lead storage liquid at 160 ° C. After the injection, the temperature generally drops by 30 ° C, and the reaction temperature is maintained at 130. Around °C, when the reaction time is 300 seconds, the power is turned off and cooled to obtain lead selenide quantum dots;
  • Step 4 adding the lead selenide quantum dot to a mixed solution of toluene and methanol (the volume ratio of toluene to methanol is 1:3), centrifuging the mixed solution, removing the supernatant, and then adding toluene and methanol again.
  • the mixed solution volume ratio of toluene to methanol: 1:3) was repeated twice, and finally a precipitate was obtained, which was dissolved in toluene to prepare a lead selenide quantum dot transparent solution.
  • Step 1 Add 1mMol of selenium powder and 5ml of octadecene (ODE) to 25 In a ml three-necked flask, heat to 200 ° C -220 ° C, evenly stir to completely dissolve the selenium powder, keep warm for 5-10 minutes, cool to room temperature, and obtain a stock solution of selenium;
  • ODE octadecene
  • Step 2 Add 1 mMol of lead acetate, 3 mMol of oleic acid (OA), 5 mL of octadecene (ODE) to a 25 mL three-necked flask, heat to 190 ° C under argon atmosphere, and subject to vigorous magnetic stirring. Fully dissolve the lead forming stock solution and keep the temperature at 190 ° C;
  • Step 3 Using a needle tube to extract the selenium stock solution, so that the molar ratio of Pb to Se in the solution is 1:1, and quickly add to the lead storage liquid at 190 ° C. After the injection, the temperature generally drops by 30 ° C, and the reaction temperature is maintained at 160. Around °C, when the reaction time is 300 seconds, the power is turned off and cooled to obtain lead selenide quantum dots;
  • Step 4 adding the lead selenide quantum dot to a mixed solution of toluene and methanol (the volume ratio of toluene to methanol is 1:3), centrifuging the mixed solution, removing the supernatant, and then adding toluene and methanol again.
  • the mixed solution volume ratio of toluene to methanol: 1:3) was repeated twice, and finally a precipitate was obtained, which was dissolved in toluene to prepare a lead selenide quantum dot transparent solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Luminescent Compositions (AREA)

Description

硒化铅量子点的制备方法 技术领域
本发明属于纳米材料的制备技术领域,具体涉及一种硒化铅量子点的制备方法。
背景技术
量子点是指颗粒尺寸在1-10 nm之间的超微粒子,是由103-105个原子结合起来的“人工分子”。理论分析表明,当半导体材料从体相逐渐减小至一定临界尺寸以后,材料的特征尺寸在三个维度上都与电子的德布罗意波长或电子平均自由程相比拟或更小,电子在材料中的运动受到了三维限制,也就是说电子的能量在三个维度上都是量子化的,称这种电子在三个维度上都受限制的材料叫量子点。量子点由于其半径小于或者接近激子波尔半径,因而具有特有的量子尺寸效应和表面效应,使其在发光材料、光敏传感器等方面具有广阔的应用前景。硒化铅(PbSe)量子点作为一种重要的半导体量子点材料可应用于光电子学、生物物理学、荧光显微镜学中。由于禁带宽度窄,硒化铅可用于生产光检波器、光电阻器、光发射器以及喷射激光等, 硒化铅也可作为中红外、远红外光谱区域的二极管激光源,还可广泛应用于大气污染检测,非侵入的医学诊断,废气、废液的自动化检测等。
有机金属法是制备硒化铅量子点常用的经典方法之一。通常以有机铅化合物、硒粉等为原料,三辛基氧化膦 (TOPO)、三辛基膦 (TOP)、四丁基磷酸 (TBP)等为溶剂/表面活性剂,在无水无氧及高温条件下制备硒化铅量子点。虽然这种合成线路可以得到单分散性很好的高质量的硒化铅量子点,但是这中方法所使用的TOPO、TOP、TBP等有机溶剂易燃、易爆、昂贵且毒性较强,综合成本高昂,不利于大规模生产。
技术问题
本发明所要解决的技术问题是提供一种操作简单、实验条件要求不高以及所用原料成本低的硒化铅量子点的制备方法以解决传统的硒化铅量子点的制备方法综合成本高以及实验条件苛刻等问题。
技术解决方案
解决本发明技术问题的技术方案是:提供一种硒化铅量子点的制备方法,其包括如下步骤:
步骤一:将硒粉与十八碳烯混合,加热搅拌后使硒粉完全溶解、保温,然后冷却至室温,制得硒的储备液;
步骤二:将铅的化合物、油酸、十八烯以及二苯甲酮混合溶解形成铅的储备液,然后保温度持在130℃-190℃;
步骤三:将步骤一中的硒的储备液快速加入到步骤二中的铅的储备液中,反应温度维持在100℃-160℃,在反应冷却后初步制得硒化铅量子点;
步骤四:将初步制得的硒化铅量子点加入到甲苯与甲醇的混合溶液中,将该混合溶液离心,除掉上清液后,得到沉淀,用甲苯溶解,制得纯的硒化铅量子点透明溶液。
在所述步骤一中,保温时间为5-10分钟。在所述步骤二中,所述铅的化合物、油酸、十八烯以及二苯甲酮是在惰性气体保护下加热搅拌并溶解的;所述惰性气体为氩气,所述搅拌为磁力搅拌。在所述步骤二中,所述铅的化合物为氧化铅或者醋酸铅。在所述步骤三中,反应时间为300秒。在所述步骤四中,甲苯与甲醇的体积比为1:3。在所述步骤四中,将该混合溶液离心,除掉上清液,此操作至少重复三次。
有益效果
本发明的制备方法用简单的铅的化合物和硒粉作为原料,通过简单地控制反应条件来制备不同粒径和形貌的硒化铅量子点,本发明的方法避免使用三正辛基膦(TOP)或三正丁基膦(TBP)等易燃、易爆、昂贵且毒性大的化合物,操作安全、简便、重复性好,无需使用手套箱,成本低,所得到的硒化铅量子点分布均匀且有很好的单分散性(硒化铅量子点的尺寸分布小于10%)。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明硒化铅量子点的制备方法的流程图;
图2为在反应温度为100℃,Pb和Se前驱物摩尔比为3:1,反应时间为5分钟的条件下所获得的硒化铅量子点透射电镜图;
图3为在反应温度为130℃,Pb和Se前驱物摩尔比为2:1,反应时间为5 分钟的条件下所获得的硒化铅量子点透射电镜图;
图4为在反应温度为160℃,Pb和Se前驱物摩尔比为1:1,反应时间为5 分钟的条件下所获得的硒化铅量子点透射电镜图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1显示了本发明实施例的硒化铅量子点的制备方法的流程,该制备方法包括如下步骤:
步骤S01:将硒粉与十八碳烯混合,加热搅拌后使硒粉完全溶解,保温,然后冷却至室温,制得硒的储备液;
步骤S02:将铅的化合物、油酸、十八烯以及二苯甲酮混合溶解形成铅的储备液,然后保温度持在130℃-190℃;
步骤S03:将步骤S01中的硒的储备液快速加入到步骤S02中的铅的储备液中,反应温度维持在100℃-160℃左右,在反应冷却后初步制得硒化铅量子点;
步骤S04:将初步制得的硒化铅量子点加入到甲苯与甲醇的混合溶液中,将该混合溶液离心,除掉上清液后,得到沉淀,用甲苯溶解,制得纯的硒化铅量子点透明溶液。
在本发明的制备方法中,在所述步骤S01中,保温时间为5-10分钟。在所述步骤S02中,所述铅的化合物、油酸、十八烯以及二苯甲酮是在惰性气体保护下加热搅拌并溶解的;所述惰性气体为氩气,所述搅拌为磁力搅拌。在所述步骤S02中,所述铅的化合物为氧化铅或者醋酸铅。在所述步骤S03中,反应时间为300秒。在所述步骤S04中,甲苯与甲醇的体积比为1:3。在所述步骤S04中,重复操作离心该混合溶液并除掉上清液至少三次。
本发明的制备方法用简单的铅的化合物(如氧化铅、醋酸铅等)和硒粉作为原料,通过简单地控制反应条件来制备不同粒径和形貌的硒化铅量子点,本发明的方法避免使用三正辛基膦(TOP)或三正丁基膦(TBP)等易燃、易爆、昂贵且毒性大的化合物,操作安全、简便、重复性好,无需使用手套箱,成本低,所得到的硒化铅量子点分布均匀且有很好的单分散性(硒化铅量子点的尺寸分布小于10%)。如图2至图4所示,图2为在反应温度为100℃,Pb和Se前驱物摩尔比为3:1,反应时间为5分钟的条件下所获得的硒化铅量子点透射电镜图;图3为在反应温度为130℃,Pb和Se前驱物摩尔比为2:1,反应时间为5 分钟的条件下所获得的硒化铅量子点透射电镜图;图4为在反应温度为160℃,Pb和Se前驱物摩尔比为1:1,反应时间为5 分钟的条件下所获得的硒化铅量子点透射电镜图。
通过以上制备方法合成的硒化铅量子点可作为太阳能电池、发光二级管、光发射器件等。
以下通过多个实施例来举例说明通过不同前驱物摩尔比、反应温度、铅的前驱物情况下所获得的硒化铅量子点。
实施例1:
步骤一、将3mMol(毫摩尔)硒粉与5ml十八碳烯(ODE)加入到25ml三颈瓶中,加热到200℃-220℃,均匀搅拌使得硒粉完全溶解,保温5-10分钟,冷却至室温,制得硒的储备液;
步骤二、将1mMol(毫摩尔)的氧化铅(PbO)、5mMol的油酸(OA)、10mL十八烯(ODE)以及5mMol的二苯甲酮加入到25mL的三颈烧瓶中,在氩气保护下加热到130℃,在剧烈的磁力搅拌下使其充分溶解形成铅的储备液,将温度保持在130℃;
步骤三、用针管抽取硒的储备液,使溶液中Pb和Se摩尔比为3:1,快速加入到130℃的铅储备液中,在注入后温度一般会下降30℃,反应温度维持在100℃左右,在反应时间为300秒的时候,关闭加热器电源,冷却后,即制得硒化铅量子点;
步骤四、将制得硒化铅量子点加入到甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3)中,离心混合溶液,除掉上清液后,再次加入甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3),重复两次,最后得到沉淀,用甲苯溶解,制得纯净的硒化铅量子点透明溶液。
实施例2:
步骤一、将2mMol硒粉与5ml十八碳烯(ODE)加入到25ml三颈瓶中,加热到200℃-220℃,均匀搅拌使得硒粉完全溶解,保温5-10分钟,冷却至室温,制得硒的储备液;
步骤二、将1mMol的氧化铅(PbO)、5mMol的油酸(OA)、10mL十八烯(ODE)以及5mMol的二苯甲酮加入到25mL的三颈烧瓶中,在氩气保护下加热到160℃,在剧烈的磁力搅拌下使其充分溶解形成铅的储备液,将温度保持在160℃;
步骤三、用针管抽取硒的储备液,使溶液中Pb和Se摩尔比为2:1,快速加入到160℃的铅储备液中,在注入后温度一般会下降30℃,反应温度维持在130℃左右,在反应时间为300秒的时候,关闭电源,冷却,即制得硒化铅量子点;
步骤四、将制得硒化铅量子点加入到甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3)中,离心混合溶液,除掉上清液后,再次加入甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3),重复两次,最后得到沉淀,用甲苯溶解,制得硒化铅量子点透明溶液。
实施例3:
步骤一、将1mMol硒粉与5ml的十八碳烯(ODE)加入到25ml三颈瓶中,加热到200℃-220℃,均匀搅拌使得硒粉完全溶解,保温5-10分钟,冷却至室温,制得硒的储备液;
步骤二、将1mMol的氧化铅(PbO)、5mMol油酸(OA)、10mL十八烯(ODE)以及5mMol的二苯甲酮加入到25 mL的三颈烧瓶中,在氩气保护下加热到190℃,在剧烈的磁力搅拌下使其充分溶解形成铅的储备液,将温度保持在190℃;
步骤三、用针管抽取硒的储备液,使溶液中Pb和Se摩尔比为1:1,快速加入到190℃的铅储备液中,在注入后温度一般会下降30℃,反应温度维持在160℃左右,在反应时间为300秒的时候,关闭电源,冷却,即制得硒化铅量子点;
步骤四、将制得硒化铅量子点加入到甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3)中,离心混合溶液,除掉上清液后,再次加入甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3),重复两次,最后得到沉淀,用甲苯溶解,制得硒化铅量子点透明溶液。
实施例4:
步骤一、将3 mMol硒粉与5 ml十八碳烯(ODE)加入到25 ml三颈瓶中,加热到200℃-220℃,均匀搅拌使得硒粉完全溶解,保温5-10分钟,冷却至室温,制得硒的储备液;
步骤二、将1 mMol的醋酸铅、3mMol油酸(OA)、5mL十八烯(ODE)加入到25mL的三颈烧瓶中,在氩气保护下加热到130℃,在剧烈的磁力搅拌下使其充分溶解形成铅的储备液,将温度保持在130℃;
步骤三、用针管抽取硒的储备液,使溶液中Pb和Se摩尔比为3:1,快速加入到130℃的铅储备液中,在注入后温度一般会下降30℃,反应温度维持在100℃左右,在反应时间为300秒的时候,关闭加热器电源,冷却后,即制得硒化铅量子点;
步骤四、将制得硒化铅量子点加入到甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3)中,离心混合溶液,除掉上清液后,再次加入甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3),重复两次,最后得到沉淀,用甲苯溶解,制得纯净的硒化铅量子点透明溶液。
实施例5:
步骤一、将2mMol硒粉与5 ml十八碳烯(ODE)加入到25 ml三颈瓶中,加热到200℃-220℃,均匀搅拌使得硒粉完全溶解,保温5-10分钟,冷却至室温,制得硒的储备液;
步骤二、将1mMol的醋酸铅、3mMol的油酸(OA)、5mL十八烯(ODE)加入到25mL的三颈烧瓶中,在氩气保护下加热到160℃,在剧烈的磁力搅拌下使其充分溶解形成铅的储备液,将温度保持在160℃;
步骤三、用针管抽取硒的储备液,使溶液中Pb和Se摩尔比为2:1,快速加入到160℃的铅储备液中,在注入后温度一般会下降30℃,反应温度维持在130℃左右,在反应时间为300秒的时候,关闭电源,冷却,即制得硒化铅量子点;
步骤四、将制得硒化铅量子点加入到甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3)中,离心混合溶液,除掉上清液后,再次加入甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3),重复两次,最后得到沉淀,用甲苯溶解,制得硒化铅量子点透明溶液。
实施例6:
步骤一、将1mMol的硒粉与5ml十八碳烯(ODE)加入到25 ml三颈瓶中,加热到200℃-220℃,均匀搅拌使得硒粉完全溶解,保温5-10分钟,冷却至室温,制得硒的储备液;
步骤二、将1mMol的醋酸铅、3mMol的油酸(OA)、5mL十八烯(ODE)加入到25mL的三颈烧瓶中,在氩气保护下加热到190℃,在剧烈的磁力搅拌下使其充分溶解形成铅的储备液,将温度保持在190℃;
步骤三、用针管抽取硒的储备液,使溶液中Pb和Se摩尔比为1:1,快速加入到190℃的铅储备液中,在注入后温度一般会下降30℃,反应温度维持在160℃左右,在反应时间为300秒的时候,关闭电源,冷却,即制得硒化铅量子点;
步骤四、将制得硒化铅量子点加入到甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3)中,离心混合溶液,除掉上清液后,再次加入甲苯与甲醇的混合溶液(甲苯与甲醇的体积比为1:3),重复两次,最后得到沉淀,用甲苯溶解,制得硒化铅量子点透明溶液。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种硒化铅量子点的制备方法,其包括如下步骤:
    步骤一:将硒粉与十八碳烯混合,加热搅拌后使硒粉完全溶解、保温,然后冷却至室温,制得硒的储备液;
    步骤二:将铅的化合物、油酸、十八烯以及二苯甲酮混合溶解形成铅的储备液,然后保温度持在130℃-190℃;
    步骤三:将步骤一中的硒的储备液快速加入到步骤二中的铅的储备液中,反应温度维持在100℃-160℃,在反应冷却后初步制得硒化铅量子点;
    步骤四:将初步制得的硒化铅量子点加入到甲苯与甲醇的混合溶液中,将该混合溶液离心,除掉上清液后,得到沉淀,用甲苯溶解,制得纯的硒化铅量子点透明溶液。
  2. 如权利要求1所述的制备方法,其特征在于:在所述步骤一中,保温时间为5-10分钟。
  3. 如权利要求1所述的制备方法,其特征在于:在所述步骤二中,所述铅的化合物、油酸、十八烯以及二苯甲酮是在惰性气体保护下加热搅拌并溶解的。
  4. 如权利要求3所述的制备方法,其特征在于:所述惰性气体为氩气,所述搅拌为磁力搅拌。
  5. 如权利要求1或3所述的制备方法,其特征在于:在所述步骤二中,所述铅的化合物为氧化铅或者醋酸铅。
  6. 如权利要求1所述的制备方法,其特征在于:在所述步骤三中,反应时间为300秒。
  7. 如权利要求1所述的制备方法,其特征在于:在所述步骤四中,甲苯与甲醇的体积比为1:3。
  8. 如权利要求1所述的制备方法,其特征在于:在所述步骤四中,将该混合溶液离心,除掉上清液,此操作至少重复三次。
PCT/CN2010/072594 2010-05-11 2010-05-11 硒化铅量子点的制备方法 WO2011140700A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10851207.0A EP2570383B1 (en) 2010-05-11 2010-05-11 Method for preparing quantum dots of lead selenide
PCT/CN2010/072594 WO2011140700A1 (zh) 2010-05-11 2010-05-11 硒化铅量子点的制备方法
US13/696,378 US20130048922A1 (en) 2010-05-11 2010-05-11 Method for preparing quantum dots of lead selenide
JP2013505303A JP5537731B2 (ja) 2010-05-11 2010-05-11 セレン化鉛量子ドットの製造方法
CN201080064180.XA CN102971255B (zh) 2010-05-11 2010-05-11 硒化铅量子点的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/072594 WO2011140700A1 (zh) 2010-05-11 2010-05-11 硒化铅量子点的制备方法

Publications (1)

Publication Number Publication Date
WO2011140700A1 true WO2011140700A1 (zh) 2011-11-17

Family

ID=44913833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072594 WO2011140700A1 (zh) 2010-05-11 2010-05-11 硒化铅量子点的制备方法

Country Status (5)

Country Link
US (1) US20130048922A1 (zh)
EP (1) EP2570383B1 (zh)
JP (1) JP5537731B2 (zh)
CN (1) CN102971255B (zh)
WO (1) WO2011140700A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130201A (zh) * 2013-02-22 2013-06-05 合肥京东方光电科技有限公司 一种硒化锌荧光纳米颗粒及其制备方法
CN103275724A (zh) * 2013-05-31 2013-09-04 合肥京东方光电科技有限公司 一种荧光纳米颗粒的制备方法
CN103626139A (zh) * 2013-11-28 2014-03-12 天津大学 纳秒脉冲激光诱导局部过饱和合成硒化铅量子点的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9067787B2 (en) * 2010-06-16 2015-06-30 The United States Of America, As Represented By The Secretary Of The Navy Method for the formation of PbSe nanowires in non-coordinating solvent
US9505618B2 (en) 2013-11-27 2016-11-29 Ana G. Méndez University System Synthesis and characterization of lead selenide capped with a benzoate ligand
US9759652B2 (en) * 2015-02-28 2017-09-12 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Quantum dot light emitting diodes for multiplex gas sensing
CN109713134A (zh) * 2019-01-08 2019-05-03 长春工业大学 一种掺杂PbSe量子点的光敏聚合物有源层薄膜制备方法
KR20210122564A (ko) 2020-04-01 2021-10-12 주식회사 엘지화학 양자점의 정제 방법
CN111682118B (zh) * 2020-06-24 2023-06-09 合肥福纳科技有限公司 量子点的制备方法、光敏层和太阳能电池器件
CN114620693B (zh) * 2022-03-04 2023-08-22 浙大城市学院 基于疏水合成体系的硒化铅纳米棒可控生长方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070183A (zh) * 2007-05-24 2007-11-14 上海大学 纳米硒化铅的电子束辐照合成方法
US20090084307A1 (en) * 2004-07-23 2009-04-02 University Of Florida Research Foundation, Inc. One-Pot Synthesis of High-Quality Metal Chalcogenide Nanocrystals Without Precursor Injection
WO2009120688A1 (en) * 2008-03-24 2009-10-01 University Of Rochester Magic size nanoclusters and methods of preparing same
WO2010029508A2 (en) * 2008-09-11 2010-03-18 Centre National De La Recherche Scientifique -Cnrs Process for manufacturing colloidal materials, colloidal materials and their uses

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2454355C (en) * 2001-07-30 2011-05-10 The Board Of Trustees Of The University Of Arkansas High quality colloidal nanocrystals and methods of preparing the same in non-coordinating solvents
JP2004243507A (ja) * 2002-12-19 2004-09-02 Hitachi Software Eng Co Ltd 半導体ナノ粒子及びその製造方法
US7575699B2 (en) * 2004-09-20 2009-08-18 The Regents Of The University Of California Method for synthesis of colloidal nanoparticles
GB2472541B (en) * 2005-08-12 2011-03-23 Nanoco Technologies Ltd Nanoparticles
GB0522027D0 (en) * 2005-10-28 2005-12-07 Nanoco Technologies Ltd Controlled preparation of nanoparticle materials
CN100384741C (zh) * 2006-08-24 2008-04-30 同济大学 杯芳烃调控溶剂热体系制备铅的硫属化合物纳米材料的方法
US8313714B2 (en) * 2007-04-13 2012-11-20 William Marsh Rice University Synthesis of uniform nanoparticle shapes with high selectivity
WO2009045177A1 (en) * 2007-10-05 2009-04-09 Agency For Science, Technology And Research Methods of forming a nanocrystal
KR101462653B1 (ko) * 2008-05-20 2014-11-17 삼성전자 주식회사 카르벤 유도체를 이용한 나노입자 제조방법
RU2381304C1 (ru) * 2008-08-21 2010-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт прикладной акустики" Способ синтеза полупроводниковых квантовых точек
US8642991B2 (en) * 2008-11-11 2014-02-04 Samsung Electronics Co., Ltd. Photosensitive quantum dot, composition comprising the same and method of forming quantum dot-containing pattern using the composition
WO2010083431A1 (en) * 2009-01-16 2010-07-22 University Of Utah Research Foundation Low-temperature synthesis of colloidal nanocrystals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084307A1 (en) * 2004-07-23 2009-04-02 University Of Florida Research Foundation, Inc. One-Pot Synthesis of High-Quality Metal Chalcogenide Nanocrystals Without Precursor Injection
CN101070183A (zh) * 2007-05-24 2007-11-14 上海大学 纳米硒化铅的电子束辐照合成方法
WO2009120688A1 (en) * 2008-03-24 2009-10-01 University Of Rochester Magic size nanoclusters and methods of preparing same
WO2010029508A2 (en) * 2008-09-11 2010-03-18 Centre National De La Recherche Scientifique -Cnrs Process for manufacturing colloidal materials, colloidal materials and their uses

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2570383A4 *
YU, WILLIAM W. ET AL.: "Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent", CHEM. MATER., vol. 16, no. 17, 17 July 2004 (2004-07-17), pages 3318 - 3322, XP008092382 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130201A (zh) * 2013-02-22 2013-06-05 合肥京东方光电科技有限公司 一种硒化锌荧光纳米颗粒及其制备方法
WO2014127585A1 (zh) * 2013-02-22 2014-08-28 合肥京东方光电科技有限公司 一种硒化锌荧光纳米颗粒及其制备方法
CN103275724A (zh) * 2013-05-31 2013-09-04 合肥京东方光电科技有限公司 一种荧光纳米颗粒的制备方法
CN103275724B (zh) * 2013-05-31 2015-03-11 合肥京东方光电科技有限公司 一种荧光纳米颗粒的制备方法
US9273244B2 (en) 2013-05-31 2016-03-01 Boe Technology Group Co., Ltd. Method of preparing fluorescent nanoparticles
CN103626139A (zh) * 2013-11-28 2014-03-12 天津大学 纳秒脉冲激光诱导局部过饱和合成硒化铅量子点的方法

Also Published As

Publication number Publication date
EP2570383A1 (en) 2013-03-20
EP2570383A4 (en) 2014-06-25
JP2013525244A (ja) 2013-06-20
US20130048922A1 (en) 2013-02-28
CN102971255A (zh) 2013-03-13
CN102971255B (zh) 2014-04-16
JP5537731B2 (ja) 2014-07-02
EP2570383B1 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2011140700A1 (zh) 硒化铅量子点的制备方法
Zang et al. Strong yellow emission of ZnO hollow nanospheres fabricated using polystyrene spheres as templates
TW201947015A (zh) Ii-ii-vi合金量子點、包括其的器件和量子點組合物及其製備方法
WO2010024724A2 (ru) Способ синтеза полупроводниковых квантовых точек
CN103421495A (zh) 有机功能化的发光碳量子点及其制备方法和用途
WO2017067451A1 (zh) 一种高质量胶质无镉量子点的合成方法
Zhang et al. Enhancing stability and luminescence quantum yield of CsPbBr3 quantum dots by embedded in borosilicate glass
Shi et al. Efficient bottom-up synthesis of graphene quantum dots at an atomically precise level
CN111185196A (zh) 一种具有竹叶状硫化铋纳米片状催化材料及其制备方法和应用
WO2012121515A2 (ko) 셀레늄화구리인듐 나노입자 및 그의 제조 방법
Li et al. A review on the synthesis methods of CdSeS-based nanostructures
Chen et al. Synthesis of CuInZnS quantum dots for cell labelling applications
Wang et al. Direct synthesis of high-quality perovskite nanocrystals on a flexible substrate and deterministic transfer
WO2022050438A1 (ko) 세슘 납 할라이드 페로브스카이트 입자의 제조방법
Kim et al. Fabrication of visible-light sensitized ZnTe/ZnSe (core/shell) type-II quantum dots
Pan et al. Fabrication and photoluminescence properties of large-scale hierarchical CdS dendrites
Li et al. Synthesis and properties of aligned ZnO microtube arrays
CN110040777B (zh) 一种单斜相六边形铜锑硫纳米片及铜锑硫纳米片可控的制备方法
CN107936942B (zh) 一种碳包覆的碳钆量子点及其制备方法
WO2014127585A1 (zh) 一种硒化锌荧光纳米颗粒及其制备方法
JP2012144587A (ja) 化合物半導体粒子の製造方法
CN104445088B (zh) 一种硫化物和氮化物量子点的制备方法
Jing et al. Synthesis of octahedral Cu2O microcrystals assisted with mixed cationic/anionic surfactants
Pan et al. Synthesis of cadmium chalcogenide nanotubes at room temperature
JP3987932B2 (ja) リン化インジウムで被覆された窒化インジウムナノワイヤーの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064180.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505303

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13696378

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010851207

Country of ref document: EP