WO2022050438A1 - 세슘 납 할라이드 페로브스카이트 입자의 제조방법 - Google Patents

세슘 납 할라이드 페로브스카이트 입자의 제조방법 Download PDF

Info

Publication number
WO2022050438A1
WO2022050438A1 PCT/KR2020/011825 KR2020011825W WO2022050438A1 WO 2022050438 A1 WO2022050438 A1 WO 2022050438A1 KR 2020011825 W KR2020011825 W KR 2020011825W WO 2022050438 A1 WO2022050438 A1 WO 2022050438A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead halide
cesium
solution
reaction vessel
halide perovskite
Prior art date
Application number
PCT/KR2020/011825
Other languages
English (en)
French (fr)
Inventor
임현식
김형상
조상은
홍성수
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2022050438A1 publication Critical patent/WO2022050438A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/04Bromides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/02Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using electric fields, e.g. electrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a method for producing perovskite particles, and more particularly, to a method for producing cesium lead halide perovskite particles.
  • the demand for the development of a light emitting material having excellent color purity in order to realize a color closer to a natural color is gradually increasing.
  • the efficiency of the light emitting material is high, but the color purity is lowered due to the wide emission spectrum, which is insufficient to realize natural colors of high color purity.
  • quantum dots have the characteristic of being able to control the emission color according to the size of quantum dots by synthesizing the semiconductor material in the bulk to a size smaller than the size at which quantum confinement occurs. That is, according to the size distribution of the synthesized quantum dots, the distribution of the emission spectrum also has a structural disadvantage that increases at the same time.
  • the advantage of nano-ization of a semiconductor material lies in that it is possible to reduce the probability that excitons physically disappear from light emission by manufacturing semiconductor particles having a size smaller than the exciton diffusion distance of the semiconductor material. That is, there is an advantage in that the exciton binding energy of the semiconductor material can be increased through nanoization of the semiconductor material, and thus the luminous efficiency of the semiconductor material can be increased.
  • metal halide-based perovskite materials have low exciton binding energy due to their high dielectric constant, so that excitons are easily separated at room temperature to create free electrons and free holes. Therefore, applications to photoelectric devices such as solar cells that generate electricity by receiving light are being actively studied.
  • the bulk metal halide-based perovskite has a disadvantage in that excitons are easily separated at room temperature, thereby reducing luminous efficiency. Accordingly, there is an urgent need to develop a technology capable of manufacturing nano-particled metal halide-based perovskite in a large capacity.
  • the technical problem of the present invention for solving the above-mentioned problems is to provide a method for producing perovskite particles capable of producing large-capacity cesium lead halide perovskite nanoparticles with a simple process.
  • the present invention for achieving the above-described technical problem, preparing a perovskite precursor solution by mixing a first solution containing cesium carbonate and a second solution containing lead halide; Filling the perovskite precursor solution in a reaction vessel in which a spiral tube filled with a heat-conducting solution is separately disposed therein; reacting the cesium carbonate and the lead halide in the perovskite precursor solution by applying microwaves to the reaction vessel; and isolating and purifying the product produced by the reaction to obtain cesium lead halide perovskite particles.
  • the cesium carbonate and the lead halide in the perovskite precursor solution may be included in a molar ratio of 1:4 to 1:5.
  • first solution and the second solution may further include at least one of oleic acid and oleylamine.
  • the heat conduction solution may be ethylene glycol.
  • one end and the other end of the spiral tube are formed to protrude from the inside of the reaction vessel to the outside at one side and the other side of the reaction vessel, respectively, and may be fixedly arranged integrally with the reaction vessel.
  • one end and the other end of the spiral tube may be further provided with a sealing stopper so that the heat-conducting solution can be preserved in the spiral tube.
  • the microwave application may be performed for 1 minute to 10 minutes at a power of 200W to 1000W.
  • the average temperature in the reaction vessel may be 140 °C to 190 °C.
  • the selective solvent may include at least one of cyclohexane and alkyl acetate.
  • the selective solvent includes cyclohexane and alkyl acetate, and may include the cyclohexane and alkyl acetate in a volume ratio of 1:1 to 1:9.
  • FIG. 1 is a flowchart for explaining the preparation of cesium lead halide perovskite particles according to an embodiment of the present invention.
  • FIG. 2A is a cross-sectional view of a reaction vessel according to an embodiment of the present invention
  • FIG. 2B is a photograph of the reaction vessel manufactured according to an embodiment of the present invention.
  • FIG. 3 is a photograph of observing a solution containing cesium lead halide perovskite particles according to the present invention.
  • FIG. 4 is a graph showing a temperature change due to micro application of a reaction vessel according to an embodiment of the present invention.
  • FIG. 5 is a graph showing the PL spectrum measurement results of the cesium lead halide perovskite particles prepared in Preparation Examples 1 and 2 and Comparative Examples 1 and 2 according to the present invention.
  • FIG. 6 is a graph showing XRD (X-ray diffraction) data of the cesium lead halide perovskite particles prepared in Preparation Examples 1 and 2 and Comparative Examples 1 and 2 according to the present invention.
  • a first solution containing cesium carbonate (Cs 2 CO 3 ) and a second solution containing lead halide are mixed to prepare a perovskite precursor solution (S100).
  • the first solution and the second solution may be solutions in which the cesium carbonate and the lead halide are dissolved in a solvent, respectively.
  • the lead halide may include at least one selected from the group consisting of lead iodide (PbI 2 ), lead bromide (PbBr, PbBr 2 ), and lead chloride (PbCl, PbCl 2 ).
  • the first solution and the second solution may further include at least one of oleic acid and oleylamine.
  • the oleic acid is a surfactant and an anode ligand, and may be ligand-bonded with cesium or lead, which are cations, in the first solution or the second solution.
  • the oleylamine may be a surfactant and an amphoteric ligand, and may be ligand-bonded with an anion halogen (I, Br, or Cl) in the first solution or the second solution.
  • the cesium lead halide perovskite produced has a structure in which a ligand is bound to the particle surface. Accordingly, the stability of the particles is improved. In addition, dispersibility in a solution containing a non-polar solvent may be improved due to the hydrophobic alkyl group of the ligand.
  • the first solution and the second solution may be in a mixed solution state stirred for 30 minutes to 90 minutes at a speed of 600 rpm to 1000 rpm within a temperature range of 100 °C to 150 °C. Thereafter, the first solution and the second solution are completely cooled at room temperature and then mixed to prepare a perovskite precursor solution.
  • the molar ratio of cesium carbonate and lead halide in the perovskite precursor solution may be 1:4 to 1:5.
  • this range is satisfied, it is possible to obtain nanocrystalline perovskite particles having a stable tetragonal structure.
  • the molar ratio of cesium carbonate and lead halide in the perovskite precursor solution is less than 1: 4 or exceeds 1: 5, the structure of the synthesized perovskite particles may be unstable and the size distribution is not uniform or bulk Perovskite can be prepared.
  • the perovskite precursor solution is filled in a reaction vessel in which a spiral tube filled with a heat conduction solution is separately disposed therein (S200).
  • FIG. 2A is a cross-sectional view of a reaction vessel according to an embodiment of the present invention
  • FIG. 2B is a photograph of the reaction vessel manufactured according to an embodiment of the present invention.
  • a spiral tube 20 filled with a heat-conducting solution is separated therein.
  • the spiral tube 20 is disposed inside the reaction vessel 10, but since it is separately disposed, even if the perovskite precursor solution is filled in the reaction vessel 10, it cannot be mixed with the heat conduction solution in the spiral tube 20.
  • one end 21 and the other end 21 ′ of the spiral tube 20 are connected to one side and the other side of the reaction vessel 10 from the inside of the reaction vessel 10 to the outside, respectively. It is formed to protrude and may be fixedly disposed integrally with the reaction vessel.
  • one end 21 and the other end 21 ′ of the spiral tube 20 may further include a sealing stopper so that the heat conductive solution can be preserved in the spiral tube 20 .
  • the sealing cap may be coupled to the spiral tube in the form of an interference fit or a bolt-nut.
  • a heat-conducting solution is filled in the spiral tube 20 .
  • the heat-conducting solution may include polar molecules capable of generating heat when microwaves are applied.
  • the polar molecule may be ethylene glycol, and in the case of ethyl glycol, the rate of temperature increase according to the microwave application time is constant, making it possible to obtain nanocrystalline perovskite particles having a stable tetragonal structure.
  • the microwave when the microwave is applied to the reaction vessel 10 , heat is uniformly supplied throughout the reaction vessel 10 from the spiral tube 20 . Accordingly, the synthesis occurs at a uniform temperature throughout the perovskite precursor solution filled in the reaction vessel 10, and it is possible to prepare perovskite particles having a uniform size distribution.
  • the synthesis was carried out using a container such as a beaker. In the case of a beaker, a heat source such as a hot plate was placed on one side of the beaker to apply heat to the solution. In this case, there is inevitably a temperature difference between the part to which heat is directly applied and the other part far from the heat source.
  • the reaction vessel 10 manufactured according to the present invention is provided with a spiral tube 20 capable of evenly propagating heat throughout the interior of the vessel, it is possible to increase the capacity. Accordingly, there is an effect that can mass-produce perovskite particles having a uniform size distribution.
  • microwaves are applied to the reaction vessel to react the cesium carbonate and the lead halide in the perovskite precursor solution ( S300 ).
  • the microwave application may be performed for 1 minute to 10 minutes at a power of 200 W to 1000 W.
  • the microwave power is less than 200 W or the application time is less than 1 minute, the heating temperature is low, so perovskite synthesis may be difficult. can be lowered
  • the average temperature in the reaction vessel may be around 190 °C. If the average temperature in the reaction vessel is less than 140 °C, the synthesis of cesium carbonate and lead halide may not be properly performed, so that the yield of perovskite particles may be low.
  • the average temperature in the reaction vessel greatly exceeds 190 °C, the content of by-products in the solution after the reaction may increase.
  • the product can be isolated using conventional filtration, precipitation or centrifugation.
  • the separation and purification includes centrifuging the product produced by the reaction and redispersing the centrifuged product from the centrifuged product in a selective solvent to form a by-product contained in the separation product.
  • it may include purifying the unreacted cesium carbonate and the lead halide.
  • Centrifugation may be performed for 1 minute to 60 minutes at a speed of 5,000 rpm to 10,000 rpm. After centrifugation, the solution is divided into a supernatant and a lower layer.
  • the separated material refers to the lower layer solution containing the cesium lead halide perovskite particles produced by the reaction after decanting the supernatant in the form of a precipitate.
  • the separation may be redispersed in a selective solvent.
  • the selective solvent refers to a solvent capable of dissolving by-products or unreacted cesium carbonate and lead halide without dissolving the final product, cesium lead halide perovskite particles.
  • the selective solvent may include at least one of cyclohexane and alkyl acetate.
  • the alkyl acetate may include at least one of ethyl acetate and methyl acetate.
  • the selective solvent includes cyclohexane and alkyl acetate, and may include the cyclohexane and alkyl acetate in a volume ratio of 1:1 to 1:9.
  • the alkyl acetate may include at least one of ethyl acetate and methyl acetate.
  • the concentration of alkyl acetate is increased, so that aggregation of the perovskite particles occurs, and the probability of obtaining perovskite particles with non-uniform size distribution increases. , the bond between the perovskite and the ligand may be broken.
  • FIG. 3 is a photograph of observing a solution containing cesium lead halide perovskite particles according to the present invention. Referring to FIG. 3 , it can be seen that the particles of cesium lead halide perovskite according to the present invention exhibit good luminescence properties when observed with the naked eye.
  • a perovskite precursor solution is filled in a reaction vessel in which a spiral tube filled with a heat conduction solution is separately disposed therein, and then a microwave is applied to the reaction vessel to synthesize the precursor solution.
  • a first solution containing cesium carbonate and a second solution containing lead halide are prepared so that the molar ratio of cesium carbonate to lead bromide is 1:5.
  • the first solution is cesium carbonate (Cs 2 CO 3 , 99.9%) 1 mmol (mmol) of 0.326 g, 1-octadeccene (C 18 H 36 , 90%) as a solvent in 60 ml of oleic acid as a surfactant (oleic acid, C 18 H 32 O 2 , 90%) 10 mmol (mmol) of 3.53 ml and oleylamine (C 18 H 37 N, 70%) of 10 mmol (mmol) of 4.7 ml are added.
  • the second solution is a lead halide, lead bromide (PbBr 2 ⁇ 98%) 5 mmol (mmol) of 1.835 g of 1-octadeccene (1-octadeccene, C 18 H 36 , 90%) as a solvent in 60 ml of the interface
  • the prepared precursor solution was filled in a reaction vessel (see FIG. 2A ) in which a spiral tube filled with ethylene glycol as a heat conduction solution was separately disposed therein.
  • reaction vessel was placed in a microwave oven (model: LG MW25B) and microwaves were applied at 800 W of power for 5 minutes to react the precursor solution, and then the reaction vessel was cooled in an ice bath.
  • a microwave oven model: LG MW25B
  • the cooled solution was centrifuged at a speed of 4000 rpm for 5 minutes, and then the supernatant was decanted to separate the lower layer. Thereafter, the separated material was redispersed in a selective solvent mixed in a ratio of cyclohexane: ethyl acetate 1: 2 to obtain a cesium lead halide perovskite (CsPbBr 3 ) nanocrystal.
  • CsPbBr 3 cesium lead halide perovskite
  • Cesium lead halide perovskite particles were prepared under the same conditions as in Preparation Example 1 described above, except that the molar ratio of cesium carbonate: lead bromide was 1: 4.
  • Cesium lead halide perovskite particles were prepared under the same conditions as in Preparation Example 1 described above, except that the molar ratio of cesium carbonate:lead bromide was 1:3.
  • Cesium lead halide perovskite particles were prepared under the same conditions as in Preparation Example 1, except that the molar ratio of cesium carbonate: lead bromide was 1: 2.
  • the temperature of the reaction vessel was checked at 30 second intervals while the micro was applied at 30 second intervals.
  • FIG. 4 is a graph showing a temperature change due to microwave application of a reaction vessel according to an embodiment of the present invention. Referring to FIG. 4 , as microwaves were applied to the spiral tube filled with ethylene glycol, which is a heat transfer solution, it was confirmed that the temperature increase over time was constant throughout the vessel.
  • ethylene glycol which is a heat transfer solution
  • PL spectra of the cesium lead halide perovskite particles prepared in Preparation Examples 1 and 2 and Comparative Examples 1 and 2 described above were measured.
  • a JASCO V-770 UV-vis spectrophotometer and a 6W 365 nm hand UV lamp-detector (CCS 200, Thorlabs) were used. The results are shown in FIG. 5 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Luminescent Compositions (AREA)

Abstract

세슘 납 할라이드 페로브스카이트 입자의 제조방법이 개시된다. 페로브스카이트 전구체 용액을 제조한 후 열전도 용액이 충전된 나선형관이 내부에 분리 배치된 반응 용기에 상기 페로브스카이트 전구체 용액을 충전한다. 이후, 상기 반응 용기에 마이크로파를 인가하여 상기 페로브스카이트 전구체 용액 내의 상기 탄산세슘 및 상기 할로겐화 납을 반응시킨 뒤, 반응에 의해 생성된 생성물을 분리 및 정제하여 세슘 납 할라이드 페로브스카이트 입자를 수득한다. 이에, 간단한 공정으로 페로브스카이트 전구체 용액에 균일하게 열을 가해 균일한 크기 분포를 갖는 세슘 납 할라이드 페로브스카이트 나노입자를 대용량 제조할 수 있다.

Description

세슘 납 할라이드 페로브스카이트 입자의 제조방법
본 발명은 페로브스카이트 입자의 제조방법에 관한 것으로, 더욱 상세하게는 세슘 납 할라이드 페로브스카이트 입자의 제조방법에 관한 것이다.
발광 디스플레이 기술이 발달함에 따라서 점점 더 천연색에 가까운 색상의 구현을 위해 색순도가 우수한 발광체의 개발에 대한 수요가 점차 늘어나고 있다. 현재 사용중인 유기물 기반의 유기발광 디스플레이의 경우, 발광체의 효율이 높은 반면 발광 스펙트럼이 넓어서 색순도가 저하되어 고색순도의 천연색을 구현하기에 부족한 단점이 있다.
이를 보완하기 위해서, 발광 스펙트럼이 더 좁은 양자점(quantum dot) 발광체가 개발 되었고, 유기물 기반의 발광체 대비 고색순도의 천연색을 더 잘 구현할 수 있다는 측면에서 최근 각광을 받고 있다. 기본적으로 양자점은 벌크 상의 반도체 물질을 나노화 하여 양자구속현상(quantum confinement)이 일어나는 크기 이하로 합성하여, 그 크기에 따라서 발광 색상을 조절할 수 있는 특징을 가진다. 즉, 합성되는 양자점의 크기 분포에 따라서 발광 스펙트럼의 분포도 동시에 증가하는 구조적인 단점을 가지고 있다.
반도체 물질의 나노화의 장점은 반도체 물질이 가지는 엑시톤 확산거리보다 작은 크기를 갖는 반도체 입자를 제조함으로써 물리적으로 엑시톤이 비발광 소멸되는 확률을 줄일 수 있는 데 있다. 즉 반도체 물질의 나노화를 통해서 엑시톤 결합 에너지가 높아져 반도체 물질의 발광 효율을 높일 수 있는 장점이 있다.
최근 ABX3 구조를 갖는 금속 할라이드계 페로브스카이트 소재에 대한 연구가 활발히 진행되고 있으며, 이러한 금속 할라이드계 페로브스카이트 소재를 이용한 발광체 연구가 진행 중에 있다.
금속 할라이드계 페로브스카이트 소재의 경우, 높은 유전상수로 인해 낮은 엑시톤 결합에너지를 가져 상온에서 엑시톤이 쉽게 분리되어 자유전자와 자유홀을 생성할 수 있는 것으로 알려져 있다. 따라서 빛을 받아 전기를 생성하는 태양전지와 같은 광전소자로의 응용이 활발히 연구되고 있다.
반면, 벌크상의 금속 할라이드계 페로브스카이트는 상온에서 엑시톤이 쉽게 분리되어 발광효율이 저하되는 단점이 있다. 이에, 나노 입자화된 금속 할라이드계 페로브스카이트를 대용량으로 제조할 수 있는 기술 개발이 절실한 상황이다.
상술한 문제점을 해결하기 위한 본 발명의 기술적 과제는 간단한 공정으로 대용량의 세슘 납 할라이드 페로브스카이트 나노입자를 제조할 수 있는 페로브스카이트 입자의 제조방법을 제공하는데 있다.
상술한 기술적 과제를 달성하기 위한 본 발명은, 탄산세슘을 포함하는 제1용액 및 할로겐화 납을 포함하는 제2용액을 혼합하여 페로브스카이트 전구체 용액을 제조하는 단계; 열전도 용액이 충전된 나선형관이 내부에 분리 배치된 반응 용기에 상기 페로브스카이트 전구체 용액을 충전하는 단계; 상기 반응 용기에 마이크로파를 인가하여 상기 페로브스카이트 전구체 용액 내의 상기 탄산세슘 및 상기 할로겐화 납을 반응시키는 단계; 및 상기 반응에 의해 생성된 생성물을 분리 및 정제하여 세슘 납 할라이드 페로브스카이트 입자를 수득하는 단계를 포함한다.
또한, 상기 페로브스카이트 전구체 용액 내 상기 탄산세슘과 상기 할로겐화 납은 1 : 4 내지 1 : 5 의 몰비로 포함될 수 있다.
또한, 상기 제1용액 및 상기 제2용액은 올레산 및 올레일아민 중 적어도 하나를 더 포함할 있다.
또한, 상기 열전도 용액은 에틸렌 글리콜일 수 있다.
또한, 상기 나선형관의 일단과 타단이 상기 반응 용기의 일측부 및 타측부에 각각 상기 반응 용기의 내부로부터 외부로 돌출 형성되어 상기 반응 용기와 일체로 고정 배치될 수 있다.
또한, 상기 나선형관의 일단 및 타단에는 상기 열전도 용액이 상기 나선형관 내에 보존될 수 있도록 밀폐마개가 더 구비될 수 있다.
또한, 상기 탄산세슘 및 상기 할로겐화 납을 반응시키는 단계에서, 상기 마이크로파 인가는 200W 내지 1000W의 전력으로 1분 내지 10분 동안 수행될 수 있다. 이때, 상기 반응 용기 내 평균 온도는 140 ℃ 내지 190 ℃ 일 수 있다.
또한, 상기 세슘 납 할라이드 페로브스카이트 입자를 수득하는 단계는, 상기 반응에 의해 생성된 생성물을 원심 분리하는 단계; 및 상기 원심 분리된 생성물 중 분리물을 선택성 용매에 재분산시켜 분리물에 함유된 부산물 또는 미반응된 상기 탄산세슘 및 상기 할로겐화 납을 정제하는 단계를 포함할 수 있다.
또한, 상기 선택성 용매는 사이클로헥산 및 알킬 아세테이트 중 적어도 하나를 포함할 수 있다. 또한,
상기 선택성 용매는 사이클로헥산 및 알킬 아세테이트를 포함하며, 상기 사이클로헥산 및 알킬 아세테이트를 1 : 1 내지 1 : 9 의 부피비로 포함할 수 있다.
상술한 본 발명에 따르면, 간단한 공정으로 페로브스카이트 전구체 용액에 균일하게 열을 가해 균일한 크기 분포를 갖는 세슘 납 할라이드 페로브스카이트 나노입자를 제조할 수 있다.
도 1은 본 발명의 실시예에 따른 세슘 납 할라이드 페로브스카이트 입자의 제조를 설명하기 위한 순서도이다.
도 2a는 본 발명의 실시예에 따른 반응 용기의 단면도이고, 도 2b는 본 발명의 실시예에 따라 제작된 반응 용기의 사진이다.
도 3은 본 발명에 따른 세슘 납 할라이드 페로브스카이트 입자를 포함하는 용액을 관찰한 사진이다.
도 4는 본 발명의 실시예에 따른 반응 용기의 마이크로 인가에 의한 온도 변화를 나타낸 그래프이다.
도 5는 본 발명에 따른 제조예 1 및 2와 비교예 1 및 2에서 제조된 세슘 납 할라이드 페로브스카이트 입자의 PL 스펙트럼 측정 결과를 나타낸 그래프이다.
도 6은 본 발명에 따른 제조예 1 및 2와 비교예 1 및 2에서 제조된 세슘 납 할라이드 페로브스카이트 입자의 XRD (X-ray diffraction) 데이터를 나타낸 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시 예를 보다 상세하게 설명하고자 한다.
도 1은 본 발명의 실시예에 따라 세슘 납 할라이드 페로브스카이트(CsPbX3, X = Br, I, 또는 Cl)의 제조를 설명하기 위한 순서도다.
도 1을 참조하면, 탄산세슘(Cs2CO3)을 포함하는 제1용액 및 할로겐화 납을 포함하는 제2용액을 혼합하여 페로브스카이트 전구체 용액을 제조한다(S100).
상기 제1용액 및 제2용액은 각각 상기 탄산세슘 및 상기 할로겐화 납이 용매에 용해된 용액일 수 있다. 할로겐화 납은 요오드화납(PbI2), 브롬화납(PbBr, PbBr2), 및 염화납(PbCl, PbCl2)으로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
상기 제1용액 및 상기 제2용액은 올레산(oleic acid) 및 올레일아민(oleylamine) 중 적어도 하나를 더 포함할 수 있다. 상기 올레산은 계면활성제이자 음극성 리간드로 상기 제1용액 또는 제2용액 내에서 양이온인 세슘 또는 납과 리간드 결합될 수 있다. 또한, 상기 올레일아민은 계면활성제이자 양극성 리간드로 상기 제1용액 또는 제2용액 내에서 음이온인 할로겐(I, Br, 또는 Cl)과 리간드 결합될 수 있다. 이와 같이 제1용액 및 제2용액에 올레산 및 올레일아민 중 적어도 하나를 더 포함 포함할 경우 제조되는 세슘 납 할라이드 페로브스카이트의 입자 표면에 리간드가 결합된 구조를 갖게 된다. 이에, 입자의 안정성이 향상된다. 또한, 리간드가 갖고 있는 소수성 알킬기로 인해 비극성 용매를 포함하는 용액 내의 분산성이 향상될 수 있다.
상기 제1용액 및 상기 제2용액은 100 ℃ 내지 150 ℃의 온도 범위 내에서 600 rpm 내지 1000 rpm의 속도로 30분 내지 90분 동안 교반된 혼합 용액상태일 수 있다. 이후, 제1용액 및 제2용액을 상온에서 완전히 냉각시킨 뒤 혼합하여 페로브스카이트 전구체 용액을 제조한다.
이때, 상기 페로브스카이트 전구체 용액의 탄산세슘과 할로겐화 납의 몰비가 1 : 4 내지 1 : 5 일 수 있다. 이 범위를 만족할 경우 안정적인 정방계 구조를 갖는 나노결정 상태의 페로브스카이트 입자를 수득할 수 있다. 상기 페로브스카이트 전구체 용액 내의 탄산세슘과 할로겐화 납의 몰비가 1 : 4 미만이거나 1 : 5를 초과할 경우 합성되는 페로브스카이트 입자들의 구조가 불안정할 수 있고 크기 분포가 균일하지 않거나 벌크 형태의 페로브스카이트가 제조될 수 있다.
이어서 열전도 용액이 충전된 나선형관이 내부에 분리 배치된 반응 용기에 상기 페로브스카이트 전구체 용액을 충전한다(S200).
도 2a는 본 발명의 실시예에 따른 반응 용기의 단면도이고, 도 2b는 본 발명의 실시예에 따라 제작된 반응 용기의 사진이다.
도 2a 및 도 2b를 참조하면, 본 발명의 실시예에 따라 제작된 반응용기(10)는 내부에 열전도 용액이 충전된 나선형관(20)이 분리 배치된다. 이때, 나선형관(20)은 반응용기(10) 내부에 배치되지만 분리 배치되므로 반응용기(10)에 페로브스카이트 전구체 용액이 충전된다 하더라도 나선형관(20) 내의 열전도 용액과 섞일 수 없다.
이때, 도 2a 및 도 2b와 같이 상기 나선형관(20)의 일단(21)과 타단(21’)이 반응 용기(10)의 일측부 및 타측부에 각각 반응 용기(10)의 내부로부터 외부로 돌출 형성되어 상기 반응 용기와 일체로 고정 배치될 수 있다. 또한, 상기 나선형관(20)의 일단(21) 및 타단(21‘)에는 상기 열전도 용액이 상기 나선형관(20) 내에 보존될 수 있도록 밀폐마개가 더 구비될 수 있다. 상기 밀폐마개는 상기 나선형관과 억지끼움 또는 볼트-너트의 형태로 결합될 수 있다.
상기 나선형관(20) 내에는 열전도 용액이 충전된다. 상기 열전도 용액은 마이크로파 인가 시 열이 발생될 수 있는 극성분자를 포함할 수 있다. 극성분자는 에틸렌 글리콜일 수 있으며 에틸 글리콜의 경우 마이크로파 인가 시간에 따른 온도 상승 속도가 일정해 안정적인 정방계 구조의 나노결정 페로브스카이트 입자를 수득할 수 있게 한다.
따라서, 상기 반응용기(10)에 마이크로파 인가 시 나선형관(20)으로부터 반응용기(10) 전반에 걸쳐 균일하게 열을 공급하게 된다. 이에, 반응 용기(10) 내부에 충전되는 페로브스카이트 전구체 용액 전반에 걸쳐 균일한 온도로 합성이 일어나 균일한 크기 분포를 갖는 페로브스카이트 입자의 제조가 가능해진다. 기존의 용액 방법을 이용한 페로브스카이트의 경우 비이커와 같은 용기를 이용해 합성을 진행했다. 비이커의 경우 핫플레이트와 같은 열원을 비이커의 일면에 배치시켜 용액에 열을 인가했다. 이 경우 열이 직접적으로 가해지는 일부분과 열원과 먼 타부분의 온도차가 생길 수 밖에 없다. 또한, 이러한 이유로 용기를 크게 만들 경우 온도차가 더 커질 수 밖에 없어 용량 또한 제한적이다. 이에 반해, 본 발명에 따라 제조되는 반응용기(10)는 용기 내부 전반에 걸쳐 열을 고루 전파할 수 있는 나선형관(20)이 구비되므로 대용량화가 가능해진다. 이에, 균일한 크기 분포를 갖는 페로브스카이트 입자를 대량 생산할 수 있는 효과가 있다.
다시 도 1을 참조하면, 상기 반응 용기에 마이크로파를 인가하여 상기 페로브스카이트 전구체 용액 내의 상기 탄산세슘 및 상기 할로겐화 납을 반응시킨다(S300).
상기 반응 용기에 마이크로파를 인가하면 유전가열 (dielectric heating)에 의해 나선형관 내 열전도 용액에 포함된 극성 분자를 진동시킨다. 이에, 나선형관이 가열되어 반응 용기 내 충전된 페로브스카이트 전구체 용액 내의 탄산세슘 및 할로겐화 납이 반응하여 세슘 납 할라이드 페로브스카이트(CsPbX3, X = I, Br, 또는 Cl) 입자가 합성된다.
또한, 상기 마이크로파 인가는 200 W 내지 1000 W의 전력으로 1분 내지 10분 동안 수행될 수 있다. 마이크로파의 전력이 200 W 미만이거나 인가 시간이 1분 미만일 경우 가열 온도가 낮아 페로브스카이트 합성이 어려울 수 있고, 전력이 1000 W 초과하거나 인가 시간이 10분 초과일 경우 전력 또는 시간 대비 합성 효율이 낮아질 수 있다. 기술된 범위 내의 전력 및 시간에서 마이크로파가 인가될 경우, 반응 용기 내 평균 온도는 190 ℃ 내외 일 수 있다. 반응 용기 내 평균 온도가 140 ℃ 미만일 경우, 탄산세슘과 할로겐화납의 합성이 제대로 이루어지지 않아 페로브스카이트 입자 수득률이 낮아질 수 있다. 또한, 반응 용기 내 평균 온도가 190 ℃ 를 많이 초과할 경우 반응 후 용액 내 부산물 함량이 높아질 수 있다.
이후, 반응에 의해 생성된 생성물을 분리 및 정제하여 세슘 납 할라이드 페로브스카이트 입자를 수득한다(S400).
상기 생성물은 일반적인 여과, 침전 또는 원심 분리를 이용하여 분리될 수 있다.
한편, 분리 과정에 있어 원심 분리를 이용할 경우, 상기 분리 및 정제는 반응에 의해 생성된 생성물을 원심 분리하는 단계 및 상기 원심 분리된 생성물 중 분리물을 선택성 용매에 재분산시켜 분리물에 함유된 부산물 또는 미반응된 상기 탄산세슘 및 상기 할로겐화 납을 정제하는 단계를 포함할 수 있다.
원심 분리는 5,000 rpm 내지 10,000 rpm의 속도로 1분 내지 60분 동안 수행될 수 있다. 원심 분리 후에 용액이 상층액 및 하층액으로 나뉘게 된다. 여기서 분리물은 상층액을 따라내고 반응에 의해 생성된 세슘 납 할라이드 페로브스카이트 입자가 침전물 형태로 포함된 하층액을 뜻한다.
이후, 정제 단계를 수행한다. 상기 분리물 내 남아있는 세슘 납 할라이드 페로브스카이트 입자 외에 부산물 또는 미반응된 상기 탄산세슘과 상기 할로겐화 납을 정제하기 위해 분리물을 선택성 용매에 재분산시켜 수행될 수 있다. 여기서, 선택성 용매는 최종 생성물인 세슘 납 할라이드 페로브스카이트 입자는 용해시키지 않고 부산물 또는 미반응된 탄산세슘과 할로겐 납을 용해시킬 수 있는 용매를 뜻한다. 선택성 용매는 사이클로헥산(cyclohexane) 및 알킬 아세테이트 중 적어도 하나를 포함할 수 있다. 상기 알킬 아세테이트는 에틸 아세테이트(ethyl acetate) 및 메틸 아세테이트(methyl acetate) 중 적어도 하나를 포함할 수 있다. 이와 같이 분리된 분리물을 재분산 정제함으로써, 수득하고자 하는 세슘 납 할라이드 페로브스카이트 입자의 순도를 향상시킬 수 있다.
또한, 상기 선택성 용매는 사이클로헥산 및 알킬 아세테이트를 포함하며, 상기 사이클로헥산 및 알킬 아세테이트를 1 : 1 내지 1 : 9 의 부피비로 포함할 수 있다. 이때, 상기 알킬 아세테이트는 에틸 아세테이트 및 메틸 아세테이트 중 적어도 하나를 포함할 수 있다. 상기 사이클로헥산 및 알킬 아세테이트를 1 : 1 미만의 부피비로 포함할 경우 정제 효과가 떨어질 수 있다. 또한, 사이클로헥산 및 알킬 아세테이트를 1 : 9 초과의 부피비로 포함할 경우 알킬 아세테이트의 농도가 높아져 페로브스카이트 입자들의 응집이 일어나 크기 분포가 균일하지 못한 페로브스카이트 입자를 수득할 확률이 높아지고, 페로브스카이트와 상기 리간드의 결합이 깨질 수 있다.
도 3은 본 발명에 따른 세슘 납 할라이드 페로브스카이트 입자를 포함하는 용액을 관찰한 사진이다. 도 3을 참조하면 육안으로 관찰 시 본 발명에 따른 세슘 납 할라이드 페로브스카이트의 입자는 발광 특성을 잘 나타냄을 알 수 있다.
상술한 본 발명에 따르면, 열전도 용액이 충전된 나선형관이 내부에 분리 배치된 반응 용기에 페로브스카이트 전구체 용액을 충전한 뒤, 반응 용기에 마이크로파를 인가하여 전구체 용액을 합성시킨다. 이를 통해 간단한 공정으로 크기 분포가 균일한 페로브스카이트 나노입자를 대용량으로 제조할 수 있다.
이하, 본 발명의 제조예 및 실험예를 통해서 본 발명에 따른 제조 방법 및 이를 통해서 제조된 세슘 납 할라이드 페로브스카이트 입자의 특성에 대해 구체적으로 설명한다. 하기 제조예 및 실험예는 예시일 뿐, 본 발명이 하기 제조예 및 실험예에 한정되는 것은 아니다.
<제조예 1>
탄산세슘 : 브로민화납의 몰비가 1 : 5가 되도록 탄산세슘을 포함하는 제1용액 및 할로겐화 납을 포함하는 제2용액을 준비한다. 제1용액은 탄산세슘(Cs2CO3, 99.9%) 1 밀리몰(mmol)인 0.326g을 용매인 1-옥타데센(1-octadeccene, C18H36, 90%) 60 ml에 계면활성제인 올레산(oleic acid, C18H32O2, 90%) 10 밀리몰(mmol)인 3.53 ml 과 올레일아민(oleylamine, C18H37N, 70%) 10 밀리몰(mmol)인 4.7 ml을 첨가하여 용량 100 ml 용기에 넣어 120℃ 의 핫플레이트에서 800 rpm 으로 60분 동안 용해시켜 준비했다. 또한, 제2용액은 할로겐화 납인 브로민화납(PbBr2≥98%) 5 밀리몰(mmol)인 1.835g을 용매인 1-옥타데센(1-octadeccene, C18H36, 90%) 60 ml에 계면활성제인 올레산(oleic acid, C18H32O2, 90%) 10 밀리몰(mmol)인 3.53 ml 과 올레일아민(oleylamine, C18H37N, 70%) 20 밀리몰(mmol)인 9.4 ml을 첨가하여 용량 100 ml 용기에 넣어 120℃ 의 핫플레이트에서 800 rpm 으로 60분 동안 용해시켜 준비했다.
다음으로, 상기 제1용액 및 제2용액을 상온에서 완전히 냉각시킨 후 제1용액 및 제2용액을 혼합하여 페로브스카이트 전구체 용액을 제조했다.
다음으로, 열전도 용액인 에틸렌 글리콜(ethylene glydol)이 충전된 나선형관이 내부에 분리 배치된 반응 용기(도 2a 참조)에 제조된 상기 전구체 용액을 충전했다.
이후, 반응용기를 전자레인지(model : LG MW25B)에 넣어 800 W의 전력으로 5분 동안 마이크로파를 인가해 전구체 용액을 반응시킨 뒤 반응 용기를 냉각 배스(ice bath)에서 냉각시켰다.
마지막으로, 냉각된 용액을 4000 rpm의 속도로 5분 동안 원심 분리한 뒤 상층액을 따라내어 하층액 분리했다. 이후, 분리물을 사이클로헥산 : 에틸 아세테이트 1: 2의 비율로 섞은 선택성 용매에 재분산시켜 정제를 한 뒤 세슘 납 할라이드 페로브스카이트(CsPbBr3) 나노결정을 수득했다.
<제조예 2>
탄산세슘 : 브로민화납의 몰비가 1 : 4인 것을 제외하곤, 전술된 제조예 1과 동일한 조건에서 세슘 납 할라이드 페로브스카이트 입자를 제조했다.
<비교예 1>
탄산세슘 : 브로민화납의 몰비가 1 : 3인 것을 제외하곤, 전술된 제조예 1과 동일한 조건에서 세슘 납 할라이드 페로브스카이트 입자를 제조했다.
<비교예 2>
탄산세슘 : 브로민화납의 몰비가 1 : 2인 것을 제외하곤, 전술된 제조예 1과 동일한 조건에서 세슘 납 할라이드 페로브스카이트 입자를 제조했다.
<실험예 1 - 반응용기 승온 효과 실험>
제조예 1의 마이크로 인가 시 30 초 간격으로 마이크로가 인가되는 동안 30초 간격으로 반응 용기의 온도를 체크했다.
도 4는 본 발명의 실시예에 따른 반응 용기의 마이크로파 인가에 의한 온도 변화를 나타낸 그래프이다. 도 4를 참조하면, 열전달 용액인 에틸렌 글리콜이 채워진 나선형관에 마이크로파가 인가되면서 용기 전반에 걸쳐 시간에 따른 온도 상승이 일정한 것을 확인했다.
<실험예 2 - PL 스펙트럼 측정>
전술된 제조예 1 및 2와 비교예 1 및 2에서 제조된 세슘 납 할라이드 페로브스카이트 입자의 PL 스펙스럼을 측정했다. PL 스펙트럼 측정 기기기는 JASCO V-770 UV-vis spectrophotometer 와 6W 365 nm hand UV램프(UV lamp)-detector(CCS 200, Thorlabs)가 사용되었다. 그 결과는 도 5에 나타냈다.
도 5를 참조하면, 제조예 1 및 2의 경우 비교예 1 및 2와 비교하여 PL 값이 높게 나타나고 동일한 파장에서 피크값이 나타남을 알 수 있다. 이를 통해, 제조예 1 및 2의 경우 균일한 크기 분포를 갖는 나노 결정 형태의 입자가 제조됐음을 알 수 있다. 반면, 비교예 1 및 2의 경우 제조예 1 및 2와 비교하여 PL 값이 낮으며 피크 값 또한 제조예 1 및 2와 상이한 것을 알 수 있다. 즉, 제조예 1 및 2는 벌크 형태 또는 불균일한 크기 분포를 갖는 입자들로 제조되었음을 알 수 있다.
<실험예 3 - X선 회절 (X-ray diffraction)을 이용한 구조 분석>
전술된 제조예 1 및 2와 비교예 1 및 2에서 제조된 세슘 납 할라이드 페로브스카이트 입자의 구조를 확인하기 위해 XRD(X-ray diffraction) 데이터을 측정했다. XRD (Rigaku, Goniometer, Smart lab)를 사용하여 측정하였다. 그 결과, 도 6에 나타난 바와 같이, 제조예 1 및 2의 경우 사방정계의 구조를 나타내는 피크들이 다른 결정구조나 조성비 관련 피크 없이 선명하게 나타났다. 반면, 비교예 1 및 2의 경우 사방정계의 구조들을 나타내는 피크들이 나타나기는 하나 다른 결정구조나 조성비 관련 피크가 많은 것을 알 수 있다. 이를 통해 제조예 1 및 2의 경우 크기의 분포가 균일한 세슘 납 할라이드 페로브스카이트 입자가 제조됐음을 알 수 있다.

Claims (11)

  1. 탄산세슘을 포함하는 제1용액 및 할로겐화 납을 포함하는 제2용액을 혼합하여 페로브스카이트 전구체 용액을 제조하는 단계;
    열전도 용액이 충전된 나선형관이 내부에 분리 배치된 반응 용기에 상기 페로브스카이트 전구체 용액을 충전하는 단계;
    상기 반응 용기에 마이크로파를 인가하여 상기 페로브스카이트 전구체 용액 내의 상기 탄산세슘 및 상기 할로겐화 납을 반응시키는 단계; 및
    상기 반응에 의해 생성된 생성물을 분리 및 정제하여 세슘 납 할라이드 페로브스카이트 입자를 수득하는 단계;를 포함하는 세슘 납 할라이드 페로브스카이트 입자의 제조방법.
  2. 제1항에 있어서,
    상기 페로브스카이트 전구체 용액 내 상기 탄산세슘과 상기 할로겐화 납은 1 : 4 내지 1 : 5 의 몰비로 포함되는 세슘 납 할라이드 페로브스카이트 입자의 제조방법.
  3. 제1항에 있어서,
    상기 제1용액 및 상기 제2용액은 올레산 및 올레일아민 중 적어도 하나를 더 포함하는 세슘 납 할라이드 페로브스카이트 입자의 제조방법.
  4. 제1항에 있어서,
    상기 열전도 용액은 에틸렌 글리콜인 세슘 납 할라이드 페로브스카이트 입자의 제조방법.
  5. 제1항에 있어서,
    상기 나선형관의 일단과 타단이 상기 반응 용기의 일측부 및 타측부에 각각 상기 반응 용기의 내부로부터 외부로 돌출 형성되어 상기 반응 용기와 일체로 고정 배치되는 세슘 납 할라이드 페로브스카이트 입자의 제조방법.
  6. 제1항에 있어서,
    상기 나선형관의 일단 및 타단에는 상기 열전도 용액이 상기 나선형관 내에 보존될 수 있도록 밀폐마개가 더 구비되는 세슘 납 할라이드 페로브스카이트 입자의 제조방법.
  7. 제1항에 있어서,
    상기 탄산세슘 및 상기 할로겐화 납을 반응시키는 단계에서, 상기 마이크로파 인가는 200W 내지 1000W의 전력으로 1분 내지 10분 동안 수행하는 세슘 납 할라이드 페로브스카이트 입자의 제조방법.
  8. 제7항에 있어서,
    상기 반응 용기 내 평균 온도는 140 ℃ 내지 190 ℃ 인 세슘 납 할라이드 페로브스카이트 입자의 제조방법.
  9. 제1항에 있어서,
    상기 세슘 납 할라이드 페로브스카이트 입자를 수득하는 단계는,
    상기 반응에 의해 생성된 생성물을 원심 분리하는 단계; 및
    상기 원심 분리된 생성물 중 분리물을 선택성 용매에 재분산시켜 분리물에 함유된 부산물 또는 미반응된 상기 탄산세슘 및 상기 할로겐화 납을 정제하는 단계;를 포함하는 세슘 납 할라이드 페로브스카이트 입자의 제조방법.
  10. 제9항에 있어서,
    상기 선택성 용매는 사이클로헥산 및 알킬 아세테이트 중 적어도 하나를 포함하는 세슘 납 할라이드 페로브스카이트 입자의 제조방법.
  11. 제9항에 있어서,
    상기 선택성 용매는 사이클로헥산 및 알킬 아세테이트를 포함하며, 상기 사이클로헥산 및 알킬 아세테이트를 1 : 1 내지 1 : 9 의 부피비로 포함하는 세슘 납 할라이드 페로브스카이트 입자의 제조방법.
PCT/KR2020/011825 2020-09-02 2020-09-03 세슘 납 할라이드 페로브스카이트 입자의 제조방법 WO2022050438A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0111777 2020-09-02
KR1020200111777A KR102401044B1 (ko) 2020-09-02 2020-09-02 세슘 납 할라이드 페로브스카이트 입자의 제조방법

Publications (1)

Publication Number Publication Date
WO2022050438A1 true WO2022050438A1 (ko) 2022-03-10

Family

ID=80491979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011825 WO2022050438A1 (ko) 2020-09-02 2020-09-03 세슘 납 할라이드 페로브스카이트 입자의 제조방법

Country Status (2)

Country Link
KR (1) KR102401044B1 (ko)
WO (1) WO2022050438A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671458A (zh) * 2022-03-18 2022-06-28 江苏理工学院 一种钙钛矿材料的制备方法与应用
CN114735746A (zh) * 2022-05-16 2022-07-12 浙江大学 一种微米级三维416型钙钛矿结构及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778666A (en) * 1986-12-04 1988-10-18 Mobil Oil Corporation Crystallization method employing microwave radiation
KR100318550B1 (ko) * 1993-10-28 2002-08-14 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 배치마이크로파반응장치
KR100402157B1 (ko) * 1996-10-24 2004-02-05 주식회사 엘지화학 연속공정에 의한 결정성 페로브스카이트 화합물의 미립자 제조방법
CN1546927A (zh) * 2003-12-17 2004-11-17 华南理工大学 储热式热泵空调装置的储热器及其储热材料的制备方法
CN108083325A (zh) * 2017-11-24 2018-05-29 宁波工程学院 一种CsPbBr3纳米晶及基于微波法合成不同维度CsPbBr3纳米晶的方法
CN108117095A (zh) * 2017-11-24 2018-06-05 宁波工程学院 一种CsPbBr3纳米棒及基于微波法合成不同尺寸CsPbBr3纳米棒的方法
JP6600759B2 (ja) * 2017-03-13 2019-10-30 住友化学株式会社 ペロブスカイト化合物を含む混合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110526214A (zh) * 2019-08-16 2019-12-03 中国地质大学(北京) 纳米材料及纳米材料修饰的玻碳电极的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778666A (en) * 1986-12-04 1988-10-18 Mobil Oil Corporation Crystallization method employing microwave radiation
KR100318550B1 (ko) * 1993-10-28 2002-08-14 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 배치마이크로파반응장치
KR100402157B1 (ko) * 1996-10-24 2004-02-05 주식회사 엘지화학 연속공정에 의한 결정성 페로브스카이트 화합물의 미립자 제조방법
CN1546927A (zh) * 2003-12-17 2004-11-17 华南理工大学 储热式热泵空调装置的储热器及其储热材料的制备方法
JP6600759B2 (ja) * 2017-03-13 2019-10-30 住友化学株式会社 ペロブスカイト化合物を含む混合物
CN108083325A (zh) * 2017-11-24 2018-05-29 宁波工程学院 一种CsPbBr3纳米晶及基于微波法合成不同维度CsPbBr3纳米晶的方法
CN108117095A (zh) * 2017-11-24 2018-06-05 宁波工程学院 一种CsPbBr3纳米棒及基于微波法合成不同尺寸CsPbBr3纳米棒的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAN QI, HU HUICHENG, ZOU YATAO, CHEN MIN, WU LINZHONG, YANG DI, YUAN XIAOLEI, FAN JIAN, SUN BAOQUAN, ZHANG QIAO: "Microwave-assisted synthesis of high-quality ''all-inorganic'' CsPbX 3 (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes", J. MATER. CHEM. C CITE J. MATER. CHEM. C, 9 September 2017 (2017-09-09), pages 10947 - 10954, XP055907551, Retrieved from the Internet <URL:https://pubs.rsc.org/en/content/articlepdf/2017/tc/c7tc03774k> DOI: 10.1039/C7TC03774K *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671458A (zh) * 2022-03-18 2022-06-28 江苏理工学院 一种钙钛矿材料的制备方法与应用
CN114735746A (zh) * 2022-05-16 2022-07-12 浙江大学 一种微米级三维416型钙钛矿结构及其制备方法和应用

Also Published As

Publication number Publication date
KR20220030500A (ko) 2022-03-11
KR102401044B1 (ko) 2022-05-23

Similar Documents

Publication Publication Date Title
WO2022050438A1 (ko) 세슘 납 할라이드 페로브스카이트 입자의 제조방법
Morozova et al. Silicon quantum dots: synthesis, encapsulation, and application in light-emitting diodes
Ziegler et al. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs
CN104024370B (zh) 具有纳米晶体核和纳米晶体壳的带绝缘体涂层的半导体结构
WO2016111483A1 (ko) 양자점 복합체 및 이를 포함하는 광전소자
WO2018056632A1 (en) Hybrid organic/inorganic quantum dot composite and method for preparing the same
Chen et al. In situ growth of ultrasmall cesium lead bromine quantum dots in a mesoporous silica matrix and their application in flexible light-emitting diodes
WO2011140700A1 (zh) 硒化铅量子点的制备方法
Tang et al. One-step preparation of silica microspheres with super-stable ultralong room temperature phosphorescence
US20100210450A1 (en) Tungsten comprising nanomaterials and related nanotechnology
KR101250859B1 (ko) 다층 양자점 및 그 다층 양자점을 적용한 발광소자
TW201507195A (zh) 具有熔合絕緣體塗層之半導體結構之網絡
WO2011008064A9 (ko) 양자점 함유 입자 및 이의 제조 방법
WO2017215093A1 (zh) 水溶性量子点、制备方法及量子点薄膜制备方法
WO2012121515A2 (ko) 셀레늄화구리인듐 나노입자 및 그의 제조 방법
CN112680213A (zh) 一种正硅酸乙酯包覆的钙钛矿纳米晶的制备方法
KR20170097824A (ko) 고 비표면적의 나노 금속산화물 지지체를 이용한 양자점 제조 방법 및 그에 의해 제조된 양자점
Song et al. Enhancing the stability and water resistance of CsPbBr 3 perovskite nanocrystals by using tetrafluoride and zinc oxide as protective capsules
CN113845142B (zh) 一种铯铅碘钙钛矿纳米晶及其制备方法和应用
Yang et al. Alloyed green-emitting CdZnSeS/ZnS quantum dots with dense protective layers for stable lighting and display applications
He et al. ZnO/SiO2 encapsulation of perovskite nanocrystals for efficient and stable light-emitting diodes
KR20180097201A (ko) 금속산화막이 껍질로 형성된 연속적 결정성장 구조의 양자점 합성 방법 및 이에 의해 제조된 양자점
Xu et al. Highly efficient silica coated perovskite nanocrystals with the assistance of ionic liquids for warm white LEDs
WO2013094934A1 (en) Method of fabricating silicon carbide powder
WO2013042861A1 (en) Nano particle, nano particle complex having the same and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952537

Country of ref document: EP

Kind code of ref document: A1