WO2011138900A1 - 映像符号化制御方法および装置 - Google Patents

映像符号化制御方法および装置 Download PDF

Info

Publication number
WO2011138900A1
WO2011138900A1 PCT/JP2011/059727 JP2011059727W WO2011138900A1 WO 2011138900 A1 WO2011138900 A1 WO 2011138900A1 JP 2011059727 W JP2011059727 W JP 2011059727W WO 2011138900 A1 WO2011138900 A1 WO 2011138900A1
Authority
WO
WIPO (PCT)
Prior art keywords
decoding
code amount
encoding
generated code
side buffer
Prior art date
Application number
PCT/JP2011/059727
Other languages
English (en)
French (fr)
Inventor
清水 淳
尚紀 小野
正樹 北原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2012513784A priority Critical patent/JP5584757B2/ja
Priority to EP11777419.0A priority patent/EP2568704A4/en
Priority to CN2011800221704A priority patent/CN102860010A/zh
Priority to KR1020127028198A priority patent/KR101389127B1/ko
Priority to BR112012027960-2A priority patent/BR112012027960A2/ja
Priority to RU2012146549/08A priority patent/RU2534370C2/ru
Priority to US13/695,768 priority patent/US9179154B2/en
Priority to CA2798008A priority patent/CA2798008C/en
Publication of WO2011138900A1 publication Critical patent/WO2011138900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/164Feedback from the receiver or from the transmission channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/152Data rate or code amount at the encoder output by measuring the fullness of the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • the present invention relates to a technology for encoding video, and more particularly to a video encoding technology for preventing deterioration of image quality while suppressing a generated code amount of a picture to be encoded so that an underflow of a decoding side buffer does not occur. It is.
  • This application claims priority based on Japanese Patent Application No. 2010-106104 for which it applied on May 6, 2010, and uses the content here.
  • the decoder accumulates the received encoded data in a buffer until it is decoded and displayed.
  • the decoded encoded data is extracted from the buffer.
  • Overflow is when the encoded data reaches the decoder at a faster pace than it is decoded and displayed.
  • the received code amount is larger than the code amount extracted from the buffer, which may exceed the buffer capacity on the decoder side.
  • the receiving speed of the necessary encoded data can be delayed by intentionally using unnecessary data (stuffing or filler), and overflow can be prevented.
  • Underflow is a state in which necessary encoded data cannot be received when decoding and displaying.
  • Underflow countermeasures include setting a target code amount so that underflow does not occur and controlling the generated code amount, and a method using picture skip that prevents underflow by reducing the number of encoded pictures. There is. Both methods prevent underflow by suppressing the amount of generated codes.
  • FIG. 7 shows the flow of an underflow prevention method in conventional video coding.
  • B (t) B (0) + R * t ⁇ G (i)
  • B (0) is the initial value of the decoding side buffer occupation amount
  • R is the bit rate
  • G (i) is the generated code amount of the picture at time i.
  • the state in which the possibility of underflow increases is when the generated code amount is large relative to the bit rate.
  • Fig. 8 shows an example of buffer occupancy transition on the decoding side.
  • the portion A is a portion in which a picture is skipped because underflow (indicated by a broken line) occurs, and the portion B is in a position where the buffer occupancy is low after skipping a picture. Is the part that is kept low.
  • Patent Document 1 takes a method of preferentially skipping B pictures that are not referenced by other pictures.
  • a B picture originally has a small amount of generated code and a limited number of insertions, it takes time for the decoding side buffer occupation amount to return to an appropriate position even if it is skipped. This means that the generated code amount is suppressed and the state where the image quality is deteriorated continues for a long time.
  • the present invention solves the problem that when the decoding buffer occupancy is reduced, the conventional method causes significant degradation of the decoded image for a while, and the picture to be encoded after underflow detection of the decoding buffer is detected.
  • the purpose is to prevent image quality degradation.
  • the present invention provides a video encoding control method for controlling encoding of an input video signal. Detecting underflow in the decoding buffer; and A process of suppressing the generated code amount by skipping or encoding the encoding target picture with the minimum generated code amount when underflow of the decoding side buffer is detected; A step of comparing the current decoding side buffer occupancy with a predetermined decoding side buffer occupancy threshold after suppressing the generated code amount; A step of performing control to continuously suppress the generated code amount of the encoding target picture by the process of suppressing the generated code amount until the decoding-side buffer occupancy exceeds the threshold based on the comparison result.
  • a video encoding control method is provided.
  • the present invention also provides a video encoding control method for controlling encoding of an input video signal. Detecting underflow in the decoding buffer; and A process of calculating a period for suppressing the generated code amount from a predetermined decoding-side buffer occupancy threshold and an encoding bit rate when underflow of the decoding-side buffer is detected; And a process of performing control to continuously suppress the generated code amount of the encoding target picture by encoding the encoding target picture with the skipped or minimum generated code amount only during the calculated period.
  • a control method is also provided.
  • the present invention also provides a video encoding control apparatus that controls encoding of an input video signal.
  • a video encoding control device characterized by the above.
  • the present invention also provides a video encoding control apparatus that controls encoding of an input video signal.
  • a control device is also provided.
  • the present invention it is possible to suppress the generated code amount until the occupied amount of the decoding side buffer exceeds the threshold value, and it is not necessary to keep suppressing the generated code amount to prevent underflow after underflow detection, thereby improving the image quality.
  • the present invention performs a process of minimizing the amount of generated code such as picture skip for a certain period in order to return the decoding side buffer to an appropriate position. The amount of generated code is minimized until a predetermined threshold value of the decoding buffer position is exceeded.
  • FIG. 1 is a flowchart of video encoding control showing an outline of the present invention.
  • the decoding side buffer is tested as before (step S1). If there is no problem with the test result, the process is continued. if, When underflow is detected, a process for suppressing the generated code amount is performed by skipping or encoding the encoding target picture with the minimum generated code amount as in the conventional technique (step S2).
  • step S3 it is confirmed whether or not the decoding-side buffer occupation amount exceeds a preset threshold value. If it is still below the threshold, the input picture next to the current encoding target picture is set as a new encoding target picture, and the generated code amount is suppressed (step S2). This process is repeated until the decoding buffer occupation amount exceeds a preset threshold value.
  • a threshold for stopping the generated code amount suppression means such as picture skip is set, and the occupation amount of the decoding side buffer is set to the threshold Until the generated code amount suppression means continues to suppress the generated code amount.
  • the occupancy of the decoding buffer exceeds the threshold, the normal encoding process is resumed.
  • the threshold set in advance is meaningless if it is too low, but if it is too high, the generated code amount suppression period becomes longer.
  • ⁇ Half the maximum buffer size (for example, about 40% to 60%) -The initial buffer position at the start of decoding of the encoded stream may be considered.
  • FIG. 2 is a diagram illustrating an example of a device configuration according to the embodiment of the present invention. 2 except for the encoding control unit 112, the conventional MPEG-2, H.264, etc. H.264 is almost the same as other video encoding apparatuses.
  • the prediction signal generation unit 101 generates a prediction signal from the residual between the input video signal and the inter-frame prediction signal.
  • This prediction signal is input to the orthogonal transform unit 102, and a transform coefficient by orthogonal transform such as DCT transform is output.
  • the transform coefficient is input to the quantization unit 103, and is quantized by the quantization unit 103 according to the quantization step size set from the quantization control unit 113.
  • the quantized transform coefficient is input to the information source encoding unit 104 and is entropy encoded by the information source encoding unit 104.
  • the encoded data output from the information source encoding unit 104 is stored in the encoded data buffer 115 via the switch unit 114.
  • the quantized transform coefficient is inversely quantized by the inverse quantization unit 105 and inversely orthogonally transformed by the inverse orthogonal transform unit 106 to generate a decoded prediction signal.
  • This decoded prediction signal is added to the inter-frame prediction signal by the adder 107 to generate a decoded signal.
  • the decoded signal is clipped by the clipping unit 108 and stored in the frame memory 109 for use as a reference image in predictive coding of the subsequent frame.
  • the motion detection unit 110 performs motion detection on the input video signal by motion search, and outputs the obtained motion vector to the motion compensation unit 111 and the information source encoding unit 104.
  • the information source encoding unit 104 performs entropy encoding on the motion vector.
  • the motion compensation unit 111 refers to the frame memory 109 according to the motion vector and generates an inter-frame prediction signal.
  • underflow detection is performed after encoding processing, and picture skip is assumed as processing for suppressing the amount of generated code.
  • the encoding control unit 112 receives the encoding bit rate and the generated code amount sent from the encoded data buffer 115 as input, and calculates the occupancy amount of the decoding side buffer. If an underflow of the decoding side buffer is detected, the encoded data buffer discard information is output to the switch unit 114, and the encoded data of the corresponding picture is discarded by opening the switch, and the picture is skipped. . This switch continues to open until the occupancy of the decoding buffer exceeds the threshold, and continues picture skipping. When the occupancy of the decoding side buffer exceeds the threshold value, the switch is closed and the encoded data generated by the information source encoding unit 114 is sent to the encoded data buffer 115.
  • FIG. 3 is a processing flowchart of this embodiment.
  • the encoding target picture is encoded (step S10).
  • the decoding side buffer is tested (step S11). If there is no problem with the test result, the process of the encoding target picture is terminated. If underflow has occurred, the encoded data, which is the encoding result of the encoding target picture, is discarded, and a threshold value for the occupation amount of the decoding side buffer is set (step S12).
  • the encoding target picture is discarded (step S13), and encoded data corresponding to picture skip is generated (step S14).
  • the occupancy of the decoding buffer is compared with the threshold (step S15).
  • the input picture next to the current encoding target picture is set as a new encoding target picture, and the encoding target picture is discarded again (step S13).
  • encoded data for picture skip is generated (step S14). If the comparison result is larger than the threshold value, the generated code amount suppression process by the present encoding control is terminated.
  • FIG. 4 shows an example of the transition of the decoding side buffer occupation amount according to the present embodiment.
  • picture skip is continued until time t + n when the decoding buffer occupation amount exceeds the threshold value VBVth. Since the generated code amount of picture skip may be considered to be almost 0, the occupation amount of the decoding side buffer increases with the gradient of the bit rate from time t to t + n.
  • picture skipping is repeatedly performed until the decoding-side buffer occupancy exceeds the threshold, but the number of picture skips can also be calculated first from the occupancy and threshold at the time of underflow detection. Assume that the buffer position at the time of underflow detection is B (t0), the bit rate is R, the code amount generated at the time of picture skip is Gs, and the preset threshold is Bth.
  • n (Bth ⁇ B (t0)) / (R ⁇ Gs)
  • a natural number exceeding n obtained from the above equation may be used as the number of picture skips.
  • n (Bth ⁇ B (t0)) / R It becomes.
  • FIG. 5 shows a processing flowchart in this case (modified example).
  • the encoding target picture is encoded (step S20).
  • the decoding side buffer is tested (step S21). If there is no problem with the test result, the processing of the encoding target picture is terminated. If an underflow has occurred, the encoded data that is the encoding result of the encoding target picture is discarded (step S22).
  • step S23 the processing for calculating the number of picture skips is performed according to the above-described equation for obtaining n (step S23), the encoding target picture of the calculated number of skipped pictures is discarded (step S24), and the encoding of the specified number of picture skips is performed. Data is generated (step S25). Thereafter, the generated code amount suppression process by the present encoding control is terminated.
  • picture skip is used as the generated code amount suppression means.
  • (i) the maximum quantization step size and quantization matrix, (ii) macroblock skip, etc. Encoding, etc. can be used.
  • FIG. 6 shows a configuration diagram of an embodiment in the case where dummy data having a minimum generated code amount is inserted instead of picture skip.
  • the picture skip is realized by discarding the encoded data.
  • the encoded data generated by the dummy data generation unit 120 is inserted. .
  • the other parts are the same as the example shown in FIG.
  • encoding is performed once and whether or not underflow occurs, but the amount of generated code can be estimated without encoding and the occurrence of underflow can be detected. In this case, it is not necessary to discard the encoded data.
  • a threshold value of the decoding side buffer occupancy for example, a value approximately half of the buffer size on the decoding side, or decoding immediately before starting decoding on reception of encoded data of the first picture on the decoding side Using the buffer position of the side buffer is appropriate because it is neither too high nor too low.
  • the overflow of the decoding side buffer is not taken into consideration. To cope with the overflow, it is necessary to determine the overflow from the maximum buffer size information and take a countermeasure.
  • the above video encoding control processing can be realized by a computer and a software program, and the program can be recorded on a computer-readable recording medium or provided through a network.
  • the generated code amount can be suppressed until the decoding buffer occupancy exceeds the threshold, and it is not necessary to keep the generated code amount suppressed to prevent underflow after underflow detection, and the image quality is improved. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

 入力した映像信号の符号化を制御する映像符号化制御方法において、復号側バッファのアンダーフローを検出する過程と、復号側バッファのアンダーフローを検出した際、符号化対象ピクチャをスキップまたは最小発生符号量で符号化することにより、発生符号量を抑制する過程と、前記発生符号量を抑制した後、予め与えられた復号側バッファ占有量の閾値と現在の復号側バッファ占有量とを比較する過程と、前記比較結果により、復号側バッファ占有量が前記閾値を超えるまで、前記発生符号量を抑制する過程により符号化対象ピクチャの発生符号量を抑制し続ける制御を行う過程とを有する。

Description

映像符号化制御方法および装置
 本発明は、映像を符号化する技術に関し、特に、復号側バッファのアンダーフローが生じないように符号化対象ピクチャの発生符号量を抑制しつつ、画質の劣化を防止する映像符号化技術に関するものである。
 本願は、2010年5月6日に出願された特願2010-106104号に基づき優先権を主張し、その内容をここに援用する。
 通常、デコーダでは、復号・表示されるまで、受信した符号化データをバッファに蓄積する。復号した符号化データは、バッファから引き抜かれる。
 映像を符号化する際、このデコーダ側のバッファ状態を考慮して符号化を行わなければ、映像を復号できない可能性がある。そこで、符号化時に仮想デコーダバッファでの検定を行い、復号できることを保証する。
 デコーダバッファの異常状態には、オーバーフローとアンダーフローがある。
 オーバーフローは、復号・表示するよりも速いペースで符号化データがデコーダに届く場合である。復号・表示するよりも速いペースで符号化データを受信した場合、バッファから引き抜かれる符号量よりも、受信する符号量の方が多くなり、デコーダ側のバッファ容量を上回る可能性がある。通常、デコーダバッファのオーバーフローの対策として、意図的に無駄なデータ(スタッフィングやフィラー)を入れることで必要な符号化データの受信速度を遅らせ、オーバーフローを防止できる。
 これに対し、アンダーフローは、復号・表示する際に、必要な符号化データが受信できていない状態である。アンダーフロー対策としては、アンダーフローが発生しないように目標符号量の設定を行い、発生符号量を制御する方法と、符号化ピクチャ数を減らすことによりアンダーフローを防止するピクチャスキップを利用する方法とがある。どちらの方法も、発生符号量を抑制することでアンダーフローを防止している。
 例えば、特許文献1に記載されている方法では、復号側バッファ検定により、アンダーフローが発生したかどうかの検定を行い、アンダーフローが発生した場合には、符号化データをスキップ符号化データに置き換える。
 図7に、従来の映像符号化におけるアンダーフロー防止方法の流れを示す。
 まず最初に、復号側バッファ検定により、アンダーフローが発生するかどうかを確認する(ステップS100)。アンダーフローが検出された場合、発生符号量抑制処理により発生符号量を抑制する(ステップS101)。
 発生符号量の抑制には、目標符号量とのずれを少なく制御する方法や、アンダーフローを検出したピクチャをスキップする方法、発生符号量が最小となるダミーの符号化データを生成する方法などがある。
 アンダーフロー発生の検出は、符号化前もしくは符号化後に行う。
 符号化後にアンダーフローを検出する場合、アンダーフローが検出されたピクチャの符号化ストリームを破棄する必要がある。
 なお、時刻tのピクチャの復号直前の復号側バッファの占有量は、次式にて計算できる。
  B(t)=B(0)+R*t-ΣG(i)
 ここで、B(0)は復号側バッファ占有量の初期値、Rはビットレート、G(i)は時刻iのピクチャの発生符号量である。
特開2005-72742号公報
 アンダーフローが発生する可能性が高まる状態、すなわち、デコーダバッファ占有量が低下する原因は、ビットレートに対し、発生符号量が多い場合である。
 図8に、復号側のバッファ占有量推移の例を示す。図8において、Aの部分は、アンダーフロー(破線で示す)が発生したため、ピクチャをスキップした部分であり、Bの部分は、ピクチャスキップ後、バッファ占有量が低い位置にあるため、発生符号量が低く抑えられている部分である。
 バッファ占有量の位置が低い場合、アンダーフローを発生させないために、発生符号量を少なく抑える必要がある。しかし、テクスチャを含むような複雑な映像が続く場合、発生符号量を極端に抑えると符号化歪みが顕著になる。この状態は、複雑な映像シーンが終わり、復号側バッファ占有量が適正な位置に戻るまで継続する。
 従来の方法では、復号側バッファ占有量が低下した場合に、しばらくの間、復号画像の劣化が顕著になるという問題がある。
 特許文献1に記載されている技術では、この問題を解決するため、他のピクチャから参照されないBピクチャを優先的にスキップさせる方法を取っている。
 しかし、もともとBピクチャは発生符号量が少ないうえ、挿入枚数が限られているため、スキップしても復号側バッファ占有量が適切な位置に戻るまでに時間がかかる。このことは、発生符号量が抑制され、画質が劣化した状態が長く続くことを意味している。
 本発明は、復号側バッファ占有量が低下した場合、従来の方法では、しばらくの間、復号画像の劣化が顕著になるという問題を解決し、復号側バッファのアンダーフロー検出後の符号化対象ピクチャの画質劣化を防止することを目的とする。
 上記目的を達成するために、本発明は、入力した映像信号の符号化を制御する映像符号化制御方法において、
 復号側バッファのアンダーフローを検出する過程と、
 復号側バッファのアンダーフローを検出した際、符号化対象ピクチャをスキップまたは最小発生符号量で符号化することにより、発生符号量を抑制する過程と、
 前記発生符号量を抑制した後、予め与えられた復号側バッファ占有量の閾値と現在の復号側バッファ占有量とを比較する過程と、
 前記比較結果により、復号側バッファ占有量が前記閾値を超えるまで、前記発生符号量を抑制する過程により符号化対象ピクチャの発生符号量を抑制し続ける制御を行う過程とを有する
 ことを特徴とする映像符号化制御方法を提供する。
 本発明はまた、入力した映像信号の符号化を制御する映像符号化制御方法において、
 復号側バッファのアンダーフローを検出する過程と、
 復号側バッファのアンダーフローを検出した際、予め与えられた復号側バッファ占有量の閾値と符号化ビットレートとから発生符号量を抑制する期間を算出する過程と、
 前記算出した期間だけ、符号化対象ピクチャをスキップまたは最小発生符号量で符号化することにより、符号化対象ピクチャの発生符号量を抑制し続ける制御を行う過程とを有する
 ことを特徴とする映像符号化制御方法も提供する。
 本発明はまた、入力した映像信号の符号化を制御する映像符号化制御装置において、
 復号側バッファのアンダーフローを検出する手段と、
 符号化対象ピクチャをスキップまたは最小発生符号量で符号化することにより、発生符号量を抑制する手段と、
 予め与えられた復号側バッファ占有量の閾値と現在の復号側バッファ占有量とを比較する手段と、
 復号側バッファのアンダーフローを検出した際、復号側バッファ占有量が前記閾値を超えるまで、前記発生符号量を抑制する手段により符号化対象ピクチャの発生符号量を抑制し続ける制御手段とを備える
 ことを特徴とする映像符号化制御装置も提供する。
 本発明はまた、入力した映像信号の符号化を制御する映像符号化制御装置において、
 復号側バッファのアンダーフローを検出する手段と、
 符号化対象ピクチャをスキップまたは最小発生符号量で符号化することにより、発生符号量を抑制する手段と、
 予め与えられた復号側バッファ占有量の閾値と符号化ビットレートとから発生符号量を抑制する期間を算出する手段と、
 復号側バッファのアンダーフローを検出した際、前記算出した期間だけ前記発生符号量を抑制する手段により符号化対象ピクチャの発生符号量を抑制し続ける制御手段とを備える
 ことを特徴とする映像符号化制御装置も提供する。
 本発明により、復号側バッファの占有量が閾値を超えるまで発生符号量を抑制でき、アンダーフロー検出後、アンダーフロー防止のために発生符号量をずっと抑え続ける必要がなくなり、画質が向上する。
本発明の概要を示す映像符号化制御のフローチャートである。 本発明の実施例に係る装置構成の例を示す図である。 同実施例の処理フローチャートである。 同実施例による復号側バッファ占有量の推移の例を示す図である。 他の実施例の処理フローチャートである。 他の実施例に係る装置構成の例を示す図である。 従来の映像符号化におけるアンダーフロー防止方法の流れを示す図である。 従来技術における復号側バッファ占有量の推移の例を示す図である。
 最初に、本発明の概要を述べる。
 復号側バッファ占有量が低下した場合、しばらくの間、復号画像の劣化が顕著になるのは、復号側バッファ位置(すなわち、占有量)が低いことで発生符号量が抑制されているためである。
 そこで、本発明は、復号側バッファを適正な位置に戻すため、一定期間、ピクチャスキップなどの発生符号量を最小化する処理を行う。発生符号量を最小化するのは、予め設定した復号側バッファ位置の閾値を超えるまでの間である。
 図1は、本発明の概要を示す映像符号化制御のフローチャートである。
 最初に、従来通り、復号側バッファの検定を行う(ステップS1)。検定の結果が問題なければ、そのまま処理を継続する。もし、
 アンダーフローを検出した場合には、従来技術と同様に符号化対象ピクチャをスキップまたは最小発生符号量で符号化することにより、発生符号量を抑制する処理を行う(ステップS2)。
 続いて、復号側バッファ占有量が予め設定した閾値を上回っているかを確認する(ステップS3)。
 もし、まだ閾値より下回っている場合には、現在の符号化対象ピクチャの次の入力ピクチャを新たな符号化対象ピクチャとし、発生符号量を抑制する処理を行う(ステップS2)。
 この処理を、復号側バッファ占有量が予め設定した閾値を上回るまで繰り返す。
 以上のように、本発明では、復号側バッファのアンダーフローを検出する閾値とは別に、ピクチャスキップなどの発生符号量抑制手段を停止するための閾値を設定し、復号側バッファの占有量が閾値を超えるまで、発生符号量抑制手段による発生符号量の抑制を継続して実行する。復号側バッファの占有量が閾値を超えた時点で、通常の符号化処理に戻る。
 このような方法を取ることで、短期的に集中して発生符号量を抑制することができ、復号側バッファのアンダーフロー検出後の符号化対象ピクチャの画質劣化を防止できる。
 予め設定する閾値は、低すぎては意味がないが、高すぎても発生符号量の抑制期間が長くなる。この閾値として、
・最大バッファサイズの半分(例えば40%~60%程度)
・符号化ストリームの復号開始時の初期バッファ位置
 などが考えられる。
 以下、本発明の具体的な実施の形態について、図面を用いて説明する。
 図2は、本発明の実施例の装置構成の例を示す図である。図2において、特に符号化制御部112以外は、従来のMPEG-2、H.264その他の映像符号化を行う装置とほぼ同様である。
 予測信号生成部101は、入力映像信号とフレーム間予測信号との残差から予測信号を生成する。
 この予測信号は直交変換部102に入力され、DCT変換等の直交変換による変換係数が出力される。
 変換係数は、量子化部103に入力され、量子化部103で、量子化制御部113から設定された量子化ステップサイズに従って量子化される。
 この量子化された変換係数は、情報源符号化部104に入力され、情報源符号化部104においてエントロピ符号化される。
 情報源符号化部104から出力される符号化データは、スイッチ部114を介して符号化データバッファ115に格納される。
 一方、量子化された変換係数は、逆量子化部105で逆量子化され、逆直交変換部106で逆直交変換されて、復号予測信号が生成される。
 この復号予測信号は、加算器107でフレーム間予測信号と加算され、復号信号が生成される。
 復号信号は、クリッピング部108でクリッピングされ、続くフレームの予測符号化における参照画像として用いるために、フレームメモリ109に格納される。
 動き検出部110は、入力映像信号について動き探索により動き検出を行い、求まった動きベクトルを動き補償部111と情報源符号化部104へ出力する。
 情報源符号化部104では、動きベクトルについてエントロピ符号化する。
 動き補償部111では、動きベクトルに従ってフレームメモリ109を参照し、フレーム間予測信号を生成する。
 本実施例では、符号化処理後にアンダーフロー検出を行い、発生符号量の抑制処理として、ピクチャスキップを想定している。
 符号化制御部112では、符号化ビットレートと符号化データバッファ115から送られる発生符号量を入力とし、復号側バッファの占有量を計算する。
 もし、復号側バッファのアンダーフローが検出された場合、スイッチ部114に対して符号化データバッファ破棄情報を出力し、スイッチを開くことで該当するピクチャの符号化データを破棄し、ピクチャスキップとする。このスイッチは、復号側バッファの占有量が閾値を超えるまで開き続け、ピクチャスキップを継続する。
 復号側バッファの占有量が閾値を超えた時点で、スイッチを閉じ、情報源符号化部114で生成された符号化データが、符号化データバッファ115に送られる。
 図3は、本実施例の処理フローチャートである。
 まず、符号化対象ピクチャを符号化する(ステップS10)。次に、復号側バッファの検定を行う(ステップS11)。その検定結果が問題ない場合には、符号化対象ピクチャの処理を終了する。
 もし、アンダーフローが発生している場合には、符号化対象ピクチャの符号化結果である符号化データを破棄し、復号側バッファの占有量の閾値を設定する(ステップS12)。
 続いて、符号化対象ピクチャを破棄し(ステップS13)、ピクチャスキップに対応する符号化データを生成する(ステップS14)。
 その後、復号側バッファの占有量と閾値を比較する(ステップS15)。
 比較した結果、復号側バッファの占有量が閾値以下である場合には、現在の符号化対象ピクチャの次の入力ピクチャを新たな符号化対象ピクチャとし、再び符号化対象ピクチャの破棄(ステップS13)とピクチャスキップの符号化データの生成(ステップS14)を行う。
 比較した結果が閾値より大きくなっている場合には、本符号化制御による発生符号量の抑制処理を終了する。
 図4に、本実施例による復号側バッファ占有量の推移の例を示す。
 本実施例では、時刻tでアンダーフローを検出した場合、復号側バッファの占有量が閾値VBVthを超える時刻t+nまでの間、ピクチャスキップを継続する。
 ピクチャスキップの発生符号量はほとんど0と考えてよいため、時刻tからt+nの間、ビットレートの傾きで復号側バッファの占有量が上昇する。
 本実施例では、復号側バッファ占有量が閾値を上回るまで繰り返しピクチャスキップを行っているが、アンダーフロー検出時の占有量と閾値から、ピクチャスキップ数を先に算出することもできる。
 アンダーフロー検出時のバッファ位置をB(t0)、ビットレートをR、ピクチャスキップ時に発生する符号量をGs、予め設定した閾値をBthとする。
 n=(Bth-B(t0))/(R-Gs)
 上式から求められるnを超える自然数を、ピクチャスキップの枚数とすればよい。
 なお、ピクチャスキップ時の発生符号量が0の場合には、
 n=(Bth-B(t0))/R
となる。
 図5に、この場合(変形例)の処理フローチャートを示す。
 まず、符号化対象ピクチャを符号化する(ステップS20)。
 次に、復号側バッファの検定を行う(ステップS21)。その検定結果が問題ない場合には、符号化対象ピクチャの処理を終了する。
 もし、アンダーフローが発生している場合には、符号化対象ピクチャの符号化結果である符号化データを破棄する(ステップS22)。
 続いて、上述したnを求める式により、ピクチャスキップ枚数の算出処理を行い(ステップS23)、算出したピクチャスキップ枚数の符号化対象ピクチャを破棄し(ステップS24)、指定枚数のピクチャスキップの符号化データを生成する(ステップS25)。
 その後、本符号化制御による発生符号量の抑制処理を終了する。
 以上のように、この変形例では、図3の実施例と異なり、繰り返し処理の代わりに、ピクチャスキップ枚数の算出処理(S23)の後、指定枚数の符号化対象ピクチャを破棄し(S24)、指定枚数のピクチャスキップを行う(S25)。
 なお、ピクチャスキップ枚数を算出するのではなく、ピクチャスキップ等により発生符号量を抑制する時間的な期間を算出することによっても同様な結果が得られる。換言すれば、ピクチャ枚数と期間とは、ここでは実質的に同義である。
 なお、本実施例では、発生符号量抑制手段としてピクチャスキップを利用したが、(i)最大量子化ステップサイズや量子化マトリクス、(ii)マクロブロックスキップなど発生符号量が最小となるモードでの符号化、などを利用できる。
 図6に、ピクチャスキップの変わりに最小発生符号量となるダミーデータを挿入する場合の実施例の構成図を示す。
 図2では、符号化データを破棄することでピクチャスキップを実現していたが、この例では、符号化データを破棄する代わりに、ダミーデータ生成部120で生成した符号化データを挿入している。他の部分については、前述した図2に示す例と同様である。
 また、上記実施例では、一度符号化を行い、アンダーフローが発生するかどうかを確認しているが、符号化をしないで発生符号量を推定し、アンダーフローの発生を検出することもできる。この場合、符号化データの破棄は不要となる。
 以上の実施例で用いる復号側バッファ占有量の閾値としては、例えば復号側のバッファサイズの略半分の値、または、復号側において先頭ピクチャの符号化データを受信し、復号を開始する直前の復号側バッファのバッファ位置を用いるのが、高過ぎも低過ぎもしないため適当である。
 なお、本実施例では、復号側バッファのオーバーフローを考慮していない。
 オーバーフローに対応するには、最大バッファサイズ情報から、オーバーフローを判定し、対応をする必要がある。
 以上の映像符号化制御の処理は、コンピュータとソフトウェアプログラムとによっても実現することができ、そのプログラムをコンピュータ読み取り可能な記録媒体に記録することも、ネットワークを通して提供することも可能である。
本発明によれば、復号側バッファの占有量が閾値を超えるまで発生符号量を抑制でき、アンダーフロー検出後、アンダーフロー防止のために発生符号量をずっと抑え続ける必要がなくなり、画質が向上する。
 101 予測信号生成部
 102 直交変換部
 103 量子化部
 104 情報源符号化部
 105 逆量子化部
 106 逆直交変換部
 107 加算器
 108 クリッピング部
 109 フレームメモリ
 110 動き検出部
 111 動き補償部
 112 符号化制御部
 113 量子化制御部
 114 スイッチ部
 115 符号化データバッファ
 120 ダミーデータ生成部

Claims (10)

  1.  入力した映像信号の符号化を制御する映像符号化制御方法において、
     復号側バッファのアンダーフローを検出する過程と、
     復号側バッファのアンダーフローを検出した際、符号化対象ピクチャをスキップまたは最小発生符号量で符号化することにより、発生符号量を抑制する過程と、
     前記発生符号量を抑制した後、予め与えられた復号側バッファ占有量の閾値と現在の復号側バッファ占有量とを比較する過程と、
     前記比較結果により、復号側バッファ占有量が前記閾値を超えるまで、前記発生符号量を抑制する過程により符号化対象ピクチャの発生符号量を抑制し続ける制御を行う過程とを有する
     ことを特徴とする映像符号化制御方法。
  2.  入力した映像信号の符号化を制御する映像符号化制御方法において、
     復号側バッファのアンダーフローを検出する過程と、
     復号側バッファのアンダーフローを検出した際、予め与えられた復号側バッファ占有量の閾値と符号化ビットレートとから発生符号量を抑制する期間を算出する過程と、
     前記算出した期間だけ、符号化対象ピクチャをスキップまたは最小発生符号量で符号化することにより、符号化対象ピクチャの発生符号量を抑制し続ける制御を行う過程とを有する
     ことを特徴とする映像符号化制御方法。
  3.  請求項1に記載の映像符号化制御方法において、
     前記復号側バッファ占有量の閾値として、復号側のバッファサイズの略半分の値、および、復号側において先頭ピクチャの符号化データを受信し、復号を開始する直前の復号側バッファのバッファ位置、のうちのいずれかを用いる
     ことを特徴とする映像符号化制御方法。
  4.  請求項2に記載の映像符号化制御方法において、
     前記復号側バッファ占有量の閾値として、復号側のバッファサイズの略半分の値、および、復号側において先頭ピクチャの符号化データを受信し、復号を開始する直前の復号側バッファのバッファ位置、のうちのいずれかを用いる
     ことを特徴とする映像符号化制御方法。
  5.  入力した映像信号の符号化を制御する映像符号化制御装置において、
     復号側バッファのアンダーフローを検出する手段と、
     符号化対象ピクチャをスキップまたは最小発生符号量で符号化することにより、発生符号量を抑制する手段と、
     予め与えられた復号側バッファ占有量の閾値と現在の復号側バッファ占有量とを比較する手段と、
     復号側バッファのアンダーフローを検出した際、復号側バッファ占有量が前記閾値を超えるまで、前記発生符号量を抑制する手段により符号化対象ピクチャの発生符号量を抑制し続ける制御手段とを備える
     ことを特徴とする映像符号化制御装置。
  6.  入力した映像信号の符号化を制御する映像符号化制御装置において、
     復号側バッファのアンダーフローを検出する手段と、
     符号化対象ピクチャをスキップまたは最小発生符号量で符号化することにより、発生符号量を抑制する手段と、
     予め与えられた復号側バッファ占有量の閾値と符号化ビットレートとから発生符号量を抑制する期間を算出する手段と、
     復号側バッファのアンダーフローを検出した際、前記算出した期間だけ前記発生符号量を抑制する手段により符号化対象ピクチャの発生符号量を抑制し続ける制御手段とを備える
     ことを特徴とする映像符号化制御装置。
  7.  請求項1に記載の映像符号化制御方法を、コンピュータに実行させるための映像符号化制御プログラム。
  8.  請求項2に記載の映像符号化制御方法を、コンピュータに実行させるための映像符号化制御プログラム。
  9.  請求項1に記載の映像符号化制御方法を、コンピュータに実行させるための映像符号化制御プログラムを記録したコンピュータ読み取り可能な記録媒体。
  10.  請求項2に記載の映像符号化制御方法を、コンピュータに実行させるための映像符号化制御プログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2011/059727 2010-05-06 2011-04-20 映像符号化制御方法および装置 WO2011138900A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012513784A JP5584757B2 (ja) 2010-05-06 2011-04-20 映像符号化制御方法および装置
EP11777419.0A EP2568704A4 (en) 2010-05-06 2011-04-20 METHOD AND DEVICE FOR CONTROLLING VIDEO CODING
CN2011800221704A CN102860010A (zh) 2010-05-06 2011-04-20 视频编码控制方法及装置
KR1020127028198A KR101389127B1 (ko) 2010-05-06 2011-04-20 영상 부호화 제어 방법 및 장치
BR112012027960-2A BR112012027960A2 (ja) 2010-05-06 2011-04-20 The image coding control method and a device
RU2012146549/08A RU2534370C2 (ru) 2010-05-06 2011-04-20 Способ и устройство управления кодированием видео
US13/695,768 US9179154B2 (en) 2010-05-06 2011-04-20 Video encoding control method and apparatus
CA2798008A CA2798008C (en) 2010-05-06 2011-04-20 Method for controlling video encoding if a decoder underflow condition is detected

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-106104 2010-05-06
JP2010106104 2010-05-06

Publications (1)

Publication Number Publication Date
WO2011138900A1 true WO2011138900A1 (ja) 2011-11-10

Family

ID=44903752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059727 WO2011138900A1 (ja) 2010-05-06 2011-04-20 映像符号化制御方法および装置

Country Status (10)

Country Link
US (1) US9179154B2 (ja)
EP (1) EP2568704A4 (ja)
JP (2) JP5584757B2 (ja)
KR (1) KR101389127B1 (ja)
CN (1) CN102860010A (ja)
BR (1) BR112012027960A2 (ja)
CA (1) CA2798008C (ja)
RU (1) RU2534370C2 (ja)
TW (1) TWI458355B (ja)
WO (1) WO2011138900A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211386A (ja) * 2014-04-28 2015-11-24 富士通株式会社 動画像符号化装置、動画像符号化方法及び動画像符号化用コンピュータプログラム
JPWO2021182512A1 (ja) * 2020-03-11 2021-09-16

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201614356D0 (en) 2016-08-23 2016-10-05 Microsoft Technology Licensing Llc Media buffering
US11070827B2 (en) * 2017-10-11 2021-07-20 Sony Corporation Transmission apparatus, transmission method, and program
CN114339406B (zh) * 2022-01-27 2023-01-24 重庆紫光华山智安科技有限公司 送解码速度调整方法、系统、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304311A (ja) * 1997-04-23 1998-11-13 Matsushita Electric Ind Co Ltd 映像符号化装置及び映像復号化装置
JP2000209584A (ja) * 1999-01-13 2000-07-28 Nec Eng Ltd こま落とし制御回路
JP2003092759A (ja) * 2001-09-17 2003-03-28 Toshiba Corp 動画像符号化装置
JP2003125400A (ja) * 2001-10-10 2003-04-25 Toshiba Corp 動画像を符号化する方法及び装置及びプログラム並びに動画像音声多重化の方法及び装置
JP2005072742A (ja) 2003-08-21 2005-03-17 Sony Corp 符号化装置及び符号化方法
JP2006180036A (ja) * 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd 動画符号化伝送制御装置および動画符号化伝送制御方法

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134476A (en) 1990-03-30 1992-07-28 At&T Bell Laboratories Video signal encoding with bit rate control
US5461420A (en) 1992-09-18 1995-10-24 Sony Corporation Apparatus for coding and decoding a digital video signal derived from a motion picture film source
US5786858A (en) 1993-01-19 1998-07-28 Sony Corporation Method of encoding image signal, apparatus for encoding image signal, method of decoding image signal, apparatus for decoding image signal, and image signal recording medium
EP0892562A3 (en) 1993-04-09 1999-01-27 Sony Corporation Picture encoding method, picture encoding apparatus and picture recording medium
JP3224465B2 (ja) 1993-12-22 2001-10-29 シャープ株式会社 画像符号化装置
KR950030491A (ko) 1994-04-30 1995-11-24 배순훈 부호화기
JP3911035B2 (ja) 1994-08-31 2007-05-09 ソニー株式会社 動画像符号化方法及び動画像符号化装置
US5606369A (en) * 1994-12-28 1997-02-25 U.S. Philips Corporation Buffering for digital video signal encoders using joint bit-rate control
WO1996020575A2 (en) 1994-12-28 1996-07-04 Philips Electronics N.V. Buffer management in variable bit-rate compression systems
KR0181067B1 (ko) * 1995-10-31 1999-05-01 배순훈 호환성을 갖는 동영상 부호화기
KR970032066A (ko) * 1995-11-29 1997-06-26 배순훈 엠팩-2의 레이트 및 버퍼 제어장치
KR100495716B1 (ko) * 1996-04-12 2005-11-25 소니 가부시끼 가이샤 화상인코딩장치와방법및화상인코딩프로그램이기록된매체
JP4345024B2 (ja) 1996-04-12 2009-10-14 ソニー株式会社 画像符号化装置、画像符号化方法及び画像符号化プログラムを記録した記録媒体
US5805228A (en) * 1996-08-09 1998-09-08 U.S. Robotics Access Corp. Video encoder/decoder system
US5831678A (en) * 1996-08-09 1998-11-03 U.S. Robotics Access Corp. Video encoder/decoder system
US5864681A (en) * 1996-08-09 1999-01-26 U.S. Robotics Access Corp. Video encoder/decoder system
US6072830A (en) * 1996-08-09 2000-06-06 U.S. Robotics Access Corp. Method for generating a compressed video signal
JPH10210475A (ja) 1997-01-22 1998-08-07 Matsushita Electric Ind Co Ltd 画像符号化装置
US5982436A (en) 1997-03-28 1999-11-09 Philips Electronics North America Corp. Method for seamless splicing in a video encoder
US6101195A (en) * 1997-05-28 2000-08-08 Sarnoff Corporation Timing correction method and apparatus
JPH11112601A (ja) 1997-10-07 1999-04-23 Oki Electric Ind Co Ltd 伝送品質の制御方法
US6563549B1 (en) 1998-04-03 2003-05-13 Sarnoff Corporation Method and apparatus for adaptively encoding an information stream
US6859496B1 (en) 1998-05-29 2005-02-22 International Business Machines Corporation Adaptively encoding multiple streams of video data in parallel for multiplexing onto a constant bit rate channel
US6310915B1 (en) * 1998-11-20 2001-10-30 Harmonic Inc. Video transcoder with bitstream look ahead for rate control and statistical multiplexing
US6493402B1 (en) 1999-05-27 2002-12-10 Zenith Electronics Corporation Mode control for trellis decoder
US6529558B1 (en) 1999-05-27 2003-03-04 Zenith Electronics Corporation Coding and decoding a signal modified in accordance with the feedback states of an encoder
KR100634660B1 (ko) 1999-09-13 2006-10-16 마츠시타 덴끼 산교 가부시키가이샤 부호화장치 및 부호화방법
GB2356998A (en) * 1999-12-02 2001-06-06 Sony Uk Ltd Video signal processing
US6873658B2 (en) * 1999-12-20 2005-03-29 Texas Instruments Incorporated Digital still camera system and method
US6754279B2 (en) * 1999-12-20 2004-06-22 Texas Instruments Incorporated Digital still camera system and method
US6933970B2 (en) * 1999-12-20 2005-08-23 Texas Instruments Incorporated Digital still camera system and method
US6791609B2 (en) * 1999-12-20 2004-09-14 Texas Instruments Incorporated Digital still camera system and method
US6829016B2 (en) * 1999-12-20 2004-12-07 Texas Instruments Incorporated Digital still camera system and method
US7330209B2 (en) * 1999-12-20 2008-02-12 Texas Instruments Incorporated Digital still camera system and complementary-color-filtered array interpolation method
US20020135683A1 (en) * 1999-12-20 2002-09-26 Hideo Tamama Digital still camera system and method
US6678332B1 (en) * 2000-01-04 2004-01-13 Emc Corporation Seamless splicing of encoded MPEG video and audio
US6792047B1 (en) * 2000-01-04 2004-09-14 Emc Corporation Real time processing and streaming of spliced encoded MPEG video and associated audio
US6300973B1 (en) 2000-01-13 2001-10-09 Meir Feder Method and system for multimedia communication control
US6522693B1 (en) 2000-02-23 2003-02-18 International Business Machines Corporation System and method for reencoding segments of buffer constrained video streams
JP3889552B2 (ja) 2000-06-09 2007-03-07 パイオニア株式会社 符号量割り当て装置および方法
JP2002010261A (ja) 2000-06-16 2002-01-11 Nec Corp 画像符号化方式変換装置
US20050193408A1 (en) 2000-07-24 2005-09-01 Vivcom, Inc. Generating, transporting, processing, storing and presenting segmentation information for audio-visual programs
US20050210145A1 (en) 2000-07-24 2005-09-22 Vivcom, Inc. Delivering and processing multimedia bookmark
JP4428680B2 (ja) 2000-11-06 2010-03-10 パナソニック株式会社 映像信号符号化方法および映像信号符号化装置
AUPR133700A0 (en) * 2000-11-09 2000-11-30 Mediaware Solutions Pty Ltd Transition templates for compressed digital video and method of generating same
US6990144B2 (en) * 2000-12-11 2006-01-24 Sony Corporation System and method for overrun catch-up in a real-time software
US20030222998A1 (en) * 2000-12-20 2003-12-04 Satoru Yamauchi Digital still camera system and method
US7023924B1 (en) * 2000-12-28 2006-04-04 Emc Corporation Method of pausing an MPEG coded video stream
EP1231793A1 (en) 2001-02-09 2002-08-14 STMicroelectronics S.r.l. A process for changing the syntax, resolution and bitrate of MPEG bitstreams, a system and a computer program product therefor
EP1231794A1 (en) 2001-02-09 2002-08-14 STMicroelectronics S.r.l. A process for changing the resolution of MPEG bitstreams, a system and a computer program product therefor
US8107524B2 (en) * 2001-03-30 2012-01-31 Vixs Systems, Inc. Adaptive bandwidth footprint matching for multiple compressed video streams in a fixed bandwidth network
WO2002096120A1 (en) * 2001-05-25 2002-11-28 Centre For Signal Processing, Nanyang Technological University Bit rate control for video compression
JP3866538B2 (ja) * 2001-06-29 2007-01-10 株式会社東芝 動画像符号化方法及び装置
US6804301B2 (en) 2001-08-15 2004-10-12 General Instrument Corporation First pass encoding of I and P-frame complexity for compressed digital video
US7356079B2 (en) 2001-11-21 2008-04-08 Vixs Systems Inc. Method and system for rate control during video transcoding
HU228607B1 (hu) * 2001-11-30 2013-04-29 Sony Corp Eljárás és berendezés adatáram konverziójára, eljárás és berendezés adatrögzítésre és adatrögzítési közeg
AU2003280512A1 (en) 2002-07-01 2004-01-19 E G Technology Inc. Efficient compression and transport of video over a network
US7099389B1 (en) 2002-12-10 2006-08-29 Tut Systems, Inc. Rate control with picture-based lookahead window
WO2004105253A1 (ja) * 2003-05-21 2004-12-02 Sony Corporation データ処理装置、符号化装置および符号化方法、復号装置および復号方法、並びにプログラム
JP2005080004A (ja) 2003-09-01 2005-03-24 Sony Corp 動画像符号化装置
US7724827B2 (en) 2003-09-07 2010-05-25 Microsoft Corporation Multi-layer run level encoding and decoding
US7839930B2 (en) 2003-11-13 2010-11-23 Microsoft Corporation Signaling valid entry points in a video stream
US7609762B2 (en) 2003-09-07 2009-10-27 Microsoft Corporation Signaling for entry point frames with predicted first field
US7346106B1 (en) 2003-12-30 2008-03-18 Apple Inc. Robust multi-pass variable bit rate encoding
US20050201471A1 (en) 2004-02-13 2005-09-15 Nokia Corporation Picture decoding method
JP4418762B2 (ja) 2004-05-07 2010-02-24 キヤノン株式会社 画像符号化装置及び画像復号装置及びそれらの制御方法、並びに、コンピュータプログラム及びコンピュータ可読記憶媒体
JP3846488B2 (ja) * 2004-05-10 2006-11-15 セイコーエプソン株式会社 画像データ圧縮装置、エンコーダ、電子機器及び画像データ圧縮方法
US8005139B2 (en) 2004-06-27 2011-08-23 Apple Inc. Encoding with visual masking
KR100909541B1 (ko) 2004-06-27 2009-07-27 애플 인크. 멀티-패스 비디오 인코딩 방법
CN101036389B (zh) * 2004-09-02 2012-05-02 索尼株式会社 内容接收器、视频/音频输出定时控制方法和内容提供系统
US7543073B2 (en) 2004-12-10 2009-06-02 Microsoft Corporation System and process for performing an exponentially weighted moving average on streaming data to establish a moving average bit rate
JP2006295535A (ja) 2005-04-11 2006-10-26 Toshiba Corp 動画像符号化装置および方法
US20060256868A1 (en) 2005-05-16 2006-11-16 Ensequence, Inc. Methods and systems for repositioning mpeg image content without recoding
JP4040052B2 (ja) * 2005-05-24 2008-01-30 株式会社日立国際電気 画像データ圧縮装置
US20070025441A1 (en) 2005-07-28 2007-02-01 Nokia Corporation Method, module, device and system for rate control provision for video encoders capable of variable bit rate encoding
JP4492484B2 (ja) 2005-08-22 2010-06-30 ソニー株式会社 情報処理装置および情報処理方法、記録媒体、並びに、プログラム
US9113147B2 (en) 2005-09-27 2015-08-18 Qualcomm Incorporated Scalability techniques based on content information
US7826536B2 (en) 2005-12-29 2010-11-02 Nokia Corporation Tune in time reduction
JP4254784B2 (ja) 2006-01-31 2009-04-15 Kddi株式会社 動画像符号化装置、方法及びプログラム
JP4584871B2 (ja) 2006-06-09 2010-11-24 パナソニック株式会社 画像符号化記録装置および画像符号化記録方法
WO2008039857A2 (en) 2006-09-26 2008-04-03 Dilithium Networks Pty Ltd. Method and apparatus for compressed video bitstream conversion with reduced-algorithmic-delay
JP4609411B2 (ja) 2006-10-24 2011-01-12 日本ビクター株式会社 動画像符号化装置及び動画像符号化プログラム
US8711929B2 (en) 2006-11-01 2014-04-29 Skyfire Labs, Inc. Network-based dynamic encoding
KR100846512B1 (ko) 2006-12-28 2008-07-17 삼성전자주식회사 영상의 부호화, 복호화 방법 및 장치
CN101637025B (zh) * 2007-03-14 2016-03-23 日本电信电话株式会社 量化控制方法和量化控制装置
JP2008252562A (ja) 2007-03-30 2008-10-16 Renesas Technology Corp 動画像符号化制御方法および動画像符号化装置
JP2008258858A (ja) 2007-04-04 2008-10-23 Victor Co Of Japan Ltd 動画像符号化装置
JP2011507351A (ja) * 2007-12-05 2011-03-03 オンライブ インコーポレイテッド 通信チャンネルにわたるパケットロスの影響を減少するためのビデオ圧縮システム及び方法
CA2707710C (en) * 2007-12-05 2016-09-20 Onlive, Inc. Video compression system and method for compensating for bandwidth limitations of a communication channel
US20090161766A1 (en) 2007-12-21 2009-06-25 Novafora, Inc. System and Method for Processing Video Content Having Redundant Pixel Values
JP4577357B2 (ja) * 2007-12-27 2010-11-10 ソニー株式会社 符号化装置及び方法、並びにプログラム
JP4676508B2 (ja) 2008-04-16 2011-04-27 日本電信電話株式会社 量子化マトリクス切り換え方法,映像符号化装置および映像符号化プログラム
EP2403248B1 (en) 2009-02-27 2018-07-04 Fujitsu Limited Moving picture encoding device, moving picture encoding method, and moving picture encoding computer program
TWI387314B (zh) 2009-03-10 2013-02-21 Univ Nat Central Image processing apparatus and method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304311A (ja) * 1997-04-23 1998-11-13 Matsushita Electric Ind Co Ltd 映像符号化装置及び映像復号化装置
JP2000209584A (ja) * 1999-01-13 2000-07-28 Nec Eng Ltd こま落とし制御回路
JP2003092759A (ja) * 2001-09-17 2003-03-28 Toshiba Corp 動画像符号化装置
JP2003125400A (ja) * 2001-10-10 2003-04-25 Toshiba Corp 動画像を符号化する方法及び装置及びプログラム並びに動画像音声多重化の方法及び装置
JP2005072742A (ja) 2003-08-21 2005-03-17 Sony Corp 符号化装置及び符号化方法
JP2006180036A (ja) * 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd 動画符号化伝送制御装置および動画符号化伝送制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2568704A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211386A (ja) * 2014-04-28 2015-11-24 富士通株式会社 動画像符号化装置、動画像符号化方法及び動画像符号化用コンピュータプログラム
JPWO2021182512A1 (ja) * 2020-03-11 2021-09-16
WO2021182512A1 (ja) * 2020-03-11 2021-09-16 日本電気株式会社 通信制御システム及び通信制御方法

Also Published As

Publication number Publication date
CA2798008C (en) 2015-10-20
BR112012027960A2 (ja) 2018-05-08
CN102860010A (zh) 2013-01-02
JPWO2011138900A1 (ja) 2013-07-22
US9179154B2 (en) 2015-11-03
KR101389127B1 (ko) 2014-04-28
TWI458355B (zh) 2014-10-21
JP2014135741A (ja) 2014-07-24
RU2534370C2 (ru) 2014-11-27
US20130058396A1 (en) 2013-03-07
CA2798008A1 (en) 2011-11-10
JP5650856B2 (ja) 2015-01-07
JP5584757B2 (ja) 2014-09-03
KR20130025892A (ko) 2013-03-12
TW201206199A (en) 2012-02-01
EP2568704A4 (en) 2013-12-18
RU2012146549A (ru) 2014-05-10
EP2568704A1 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5650856B2 (ja) 映像符号化制御方法および装置
US9179149B2 (en) Video encoding control method, video encoding apparatus, and video encoding program
EP2084906A1 (en) Deblocking filtering apparatus and method
KR100727994B1 (ko) 깜박거림 현상 감소를 위한 동영상 프레임의 코딩 방법 및장치
JP2004297768A (ja) 映像信号符号化装置、および映像信号符号化方法
JP4828950B2 (ja) 動画像復号装置
US9179165B2 (en) Video encoding control method, video encoding apparatus and video encoding program
US6509929B1 (en) Apparatus and method for coding a moving picture
US8503805B2 (en) Method and apparatus for encoding and decoding image adaptive to buffer status
JP4643437B2 (ja) 情報処理装置
JP2004523985A (ja) ビデオ符号化方法及びこれに対応する符号化装置
JP4644097B2 (ja) 動画像符号化プログラム、プログラム記憶媒体、および符号化装置。
JP5580887B2 (ja) 符号量制御方法および装置
JP5189618B2 (ja) 映像符号化方法,映像符号化装置および映像符号化プログラム
JP2009246489A (ja) 映像信号切替装置
JP4849441B2 (ja) 動画像符号化装置
JP2005080004A (ja) 動画像符号化装置
JP4293112B2 (ja) 画像符号化装置と方法
JP2010034939A (ja) 動画像符号化装置および動画像符号化方法
JPH1066075A (ja) 復号開始制御装置及び復号装置
JP2002016928A (ja) 動画像符号化方法及び復号化方法並びに装置
JP2002300586A (ja) 符号化用画像信号のための電子透かし情報挿入方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022170.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777419

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012513784

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127028198

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2798008

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2011777419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012146549

Country of ref document: RU

Ref document number: 2011777419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13695768

Country of ref document: US

Ref document number: 9397/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012027960

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012027960

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121030