WO2011136188A1 - 排水処理方法、システムおよび汚濁物分解活性測定方法 - Google Patents

排水処理方法、システムおよび汚濁物分解活性測定方法 Download PDF

Info

Publication number
WO2011136188A1
WO2011136188A1 PCT/JP2011/060089 JP2011060089W WO2011136188A1 WO 2011136188 A1 WO2011136188 A1 WO 2011136188A1 JP 2011060089 W JP2011060089 W JP 2011060089W WO 2011136188 A1 WO2011136188 A1 WO 2011136188A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
tank
storage tank
aeration
treatment
Prior art date
Application number
PCT/JP2011/060089
Other languages
English (en)
French (fr)
Inventor
鐐三 入江
Original Assignee
Irie Ryozo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Irie Ryozo filed Critical Irie Ryozo
Priority to JP2012512836A priority Critical patent/JP5654005B2/ja
Priority to KR1020127028123A priority patent/KR101536392B1/ko
Priority to AU2011246164A priority patent/AU2011246164B9/en
Priority to US13/643,402 priority patent/US20130092628A1/en
Priority to EP11774969.7A priority patent/EP2565166B1/en
Priority to SG2012079273A priority patent/SG185044A1/en
Priority to CN201180020900.7A priority patent/CN102858695B/zh
Publication of WO2011136188A1 publication Critical patent/WO2011136188A1/ja
Priority to US15/164,209 priority patent/US20160272523A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • C02F3/1284Mixing devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/343Biological treatment of water, waste water, or sewage characterised by the microorganisms used for digestion of grease, fat, oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/347Use of yeasts or fungi
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/348Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the way or the form in which the microorganisms are added or dosed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an efficient wastewater treatment method. More specifically, the present invention relates to a wastewater treatment method using an activated sludge method, a wastewater treatment system, and a method for measuring a pollutant decomposition activity of activated sludge microorganisms.
  • Wastewater such as sewage and domestic wastewater, experimental wastewater, factory wastewater, livestock wastewater, sludge treated water, etc. are mainly treated by three methods.
  • the continuous treatment called “standard method” as shown in FIG. 1 is used for various wastewater treatments, mainly sewage treatment, the first treatment tank 2a is anaerobically treated, the second treatment tank 3a and the second treatment tank Aeration is performed in the three treatment tanks 4a.
  • raw water 1a is transferred to a first batch tank (treatment tank) 2a and a second batch tank 3a equipped with an aeration device, a stirring device, and a drainage device.
  • aeration device for example, activated sludge treatment, sludge settled on the bottom of both batch tanks is extracted and transferred to the first surplus sludge tank 8a, and this sludge is further concentrated and stored in the second surplus sludge tank 9a. It is taken out, dehydrated, and then landfilled or incinerated.
  • the supernatant of the batch tank is pumped up by the drainage device and discharged into the river as discharge water 7a.
  • the raw water 1a is often introduced into a treatment tank or the like after averaging the quality and concentration of the influent wastewater in the adjustment tank in advance.
  • any of the above wastewater treatment using the activated sludge method improves the quality of the discharged water (treated water) after sewage treatment (treated water), stabilizes the treatment efficiency, and produces sludge with the treatment.
  • Reduced foaming, scum during processing scum; floating scum collected on the surface of the sewage treatment tank that collects solids and oils and fats, aeration is prevented by the generation of gas, reducing the function of the treatment tank
  • suppression of bulking and the like has been demanded.
  • ammonia and hydrogen sulfide are generated due to a decrease in the activity of activated sludge bacteria during the treatment with activated sludge.
  • a floating substance called is generated, which causes troubles such as flowing into the effluent as it is, and the processing efficiency is greatly reduced, and the quality of the effluent water may be lowered.
  • the components (inflowing water-containing substances) and the composition of pollutants in the waste liquid to be treated such as sewage and waste liquid flowing into the treatment system change on a daily basis.
  • a growth inhibitory substance that inhibits the activity of activated sludge growth of activated sludge microorganisms constantly flows in.
  • the growth inhibitory substance flows into the treatment system the growth of the pollutant-decomposable activated sludge bacteria / microorganisms is inhibited, and the pollutant-decomposability may be lowered.
  • a method of circulating a sludge by installing a culture tank in a treatment system is generally performed, but there are cases where the sludge reduction effect is small although the installation cost and the management cost increase.
  • the sludge reduction method is the “cultivation method” in which a culture tank is installed to increase the degradability of activated sludge; the “addition method” in which activated sludge with high degradability is constantly added to the treatment tank; “Mill method” to pulverize and return to treatment tank; “Ozone method” for blowing ozone into sludge and return to treatment tank; “Ultrasonic method” for ultrasonic treatment of sludge to return to treatment tank; sludge with water jet Methods such as the “water jet method” that pulverizes and returns to the treatment tank are known.
  • these sludge reduction methods require enormous costs for the introduction and maintenance of new equipment.
  • Patent Document 1 in order to improve the treatment efficiency in the manure treatment tank, a method of adding a silicon compound or a magnesium compound to the treatment tank, a method of administering a nutrient such as peptone, and the treatment tank Only a method for adding an activated sludge inoculum has been proposed, but the purpose has not yet been achieved except for the treatment with manure.
  • the present inventor has found that manure is decomposed by Bacillus bacteria (combination of A strain and B strain described later), and these Bacillus bacteria qualitatively show starch / oil degradability and mainly contain muscle protein. It has been found that the removal rate of suspended solids (SS; suspended solids) in a cooked meat medium (manufactured by Nissui Pharmaceutical Co., Ltd.) as a component is about 80% or more (Non-patent Document 1). The cooked meat medium manufactured by Nissui Pharmaceutical Co., Ltd. is currently discontinued.
  • Non-Patent Documents 1 to 3 Also in the case of sewage treatment, the present inventors have found that the presence of a silicon compound and a magnesium compound is important for reducing the amount of sludge generated during the treatment and reducing the generation of malodor. In addition, it has been found that Bacillus bacteria having both degradability of starch and oil and fat, as well as degradability of the suspension in Cooktomete medium are important for the degradation of pollutants.
  • Non-Patent Documents 1 to 3 only propose the use of microorganisms with high treatment capacity and efficiency improvement by a treatment method in response to attempts to reduce the amount of discharged sludge to be incinerated or landfilled. It is no exaggeration to say that there is still no method and technology for sludge reduction.
  • Patent Document 2 The inventor has also found that when foaming, scum, bulking or the like occurs during sewage treatment, it is effective to eliminate these by adding a nutrient (Patent Document 2).
  • the present invention achieves improvement in water quality (treated water quality) and reduction in sludge after wastewater treatment at a low cost without significant modification of the wastewater treatment facility used in the conventional activated sludge method.
  • Wastewater treatment method, wastewater treatment system for efficiently treating wastewater such as sewage, and the activity of decomposing pollutants of activated sludge microorganisms (removal of BOD components and suspended substances [SS], which are indicators of the degree of water pollution) Rate) is intended to provide a measurement method.
  • the present invention provides a method for eliminating the sludge decomposition activity reduction of the activated sludge treatment microorganism group, further improving the treatment capacity to increase the treatment efficiency, and reducing excess sludge. It is an object.
  • Non-Patent Documents 1 and 2 it has been reported that when starch-degrading, fat-degrading, and muscle protein-degrading bacteria grow in activated sludge and sewage-treated activated sludge, the quality of the treated water is improved, sludge is reduced, and malodor is reduced.
  • Non-Patent Documents 1 and 2 it was reported that the addition of a silicon compound or a magnesium compound is necessary for the growth and maintenance of bacteria with high degradability of pollutants (Non-Patent Documents 1 to 3).
  • bacteria with high degradability of pollutants grow, scum and foaming may occur, and it has been found that the addition of peptone is effective in solving these problems (patent document) 2).
  • the high pollutant-degrading strains that emerged are mutant strains derived from the added seed strains as judged from the analysis of the 16S rDNA base sequence and the gene phylogenetic tree.
  • the non-specificity of the enzyme is considered to have improved. That is, the mutant strain derived from the added seed strain is considered to be a strain in which the enzyme production ability is induced. “Enzyme production ability was induced” means that the enzyme itself was mutated to improve the enzyme activity, and it was considered that the protease activity and the substrate non-specificity of the protease were particularly improved.
  • the present inventor needs to maintain an appropriate amount of sludge returned in addition to the addition of a processing accelerator and an appropriate amount of aeration. I found something.
  • the treated water BOD is 57% or more; the suspended solid [SS] removal rate is 67% or more; the total nitrogen [TN] is 15% or more;
  • the removal rate similar to the conventional one was shown by the amount of compound [TP].
  • the inventors have completed the present invention based on such knowledge.
  • the wastewater treatment method of the present invention includes “a wastewater treatment method ( ⁇ )” as a first aspect and “a wastewater treatment method ( ⁇ )” as a second aspect as follows.
  • the waste water treatment method ( ⁇ ) is performed in the first sludge return process Va: the first surplus sludge tank with aeration / stirring or the sludge storage tank 12a.
  • Va the first surplus sludge tank with aeration / stirring or the sludge storage tank 12a.
  • the step of returning to the treatment tank, batch tank or anaerobic tank is carried out, and the number of Bacillus bacteria in the treatment tank, batch tank or anaerobic tank to which the sludge has been returned is 2.0 ⁇ 10 5 to
  • the activated sludge treatment is performed while maintaining at 22.5 ⁇ 10 5 cfu / mL.
  • the second sludge return step Wa aeration / stirring is performed in order to avoid a decrease in activity due to the influence of growth inhibitors and the like.
  • the second surplus sludge tank or the concentrated sludge storage tank 13a it is preferable to carry out a step of returning the aerated and agitated sludge to the first surplus sludge tank or the sludge storage tank 12a with aeration and agitation.
  • a nitrogen source to any one or more tanks of 13a, and the nitrogen source is preferably one or more of urea, ammonium sulfate, ammonium chloride, and ammonium nitrate.
  • the wastewater treatment method ( ⁇ ) of the present invention is at least the following steps (1) to (5):
  • Step (1) Aeration tank 10 equipped with an aeration apparatus and an agitation apparatus is supplied with sewage or waste liquid 1 having a biochemical oxygen demand [BOD] of 80 mg / L or more in a state where seed flora 2 is added, and aeration And aeration step of obtaining a stirring treatment liquid 11 by stirring;
  • Step (3) A storage / return step in which the precipitated sludge 22 obtained in step (2) is extracted, the precipitated sludge 22 is stored in the sludge storage tank 30, and a part thereof is returned to the aeration tank 10;
  • the sludge storage tank 30 and / or the concentrated sludge storage tank 50 is provided with at least an aeration apparatus among the aeration apparatus and the stirring apparatus, and the sludge storage tank 30 with the apparatus and / or the concentrated sludge storage
  • the sludge flocculant and nutrients are added to one or more of the aeration tank 10, the sludge storage tank 30 with the device, and the concentrated sludge storage tank 50 with the device, and the sludge flocculant And waste water treatment while maintaining the number of bacteria of the genus Bacillus in the tank to which the nutrient is added at 2.0 ⁇ 10 5 to 111 ⁇ 10 5 cfu / mL.
  • the aeration tank 10 is connected in series with two or more tanks, and the first treatment tank 12 is subjected to anaerobic treatment in which only agitation is performed without aeration.
  • the seed flora 2 may be added after 13 and aerated and stirred.
  • the aeration tank 10 as shown in FIG. 5 can also be used as the sludge precipitation tank 20 by temporarily stopping the functions of aeration and stirring.
  • High pollutant content that has starch degradability and oil decomposability, and the removal rate of suspended solids [SS] contained in each of the cooked meat media (Oxoid) and (Difco) having the following composition is 70% or more and 60% or more It is preferable that the inoculum 2 is induced in the degradable flora; Composition of cook tome medium (Oxoid) (per liter): 73.0 g of myocardium (dry), 10.0 g of peptone, 10.0 g of Lab-Remco powder, 5.0 g of sodium chloride, and 2.0 g of glucose; and Cook to meat medium (Difco) ) Composition (per liter): 98.0 g of bovine heart muscle (dry), 20.0 g of proteose peptone, 2.0 g of glucose, and 5.0 g of sodium chloride.
  • the pollutant highly degradable flora has a removal rate of SS of 80% or more contained in the cooked meat medium (Oxoid).
  • the inoculum 2 includes strain A (Bacillus thuringiensis; international deposit number: FERM BP-11280), strain B (Bacillus subtilis); international deposit number: FERM BP-11281) and C strain (Bacillus subtilis); international deposit number: FERM BP-11282 is preferred.
  • the above-mentioned highly degradable bacterial flora is strain D (Bacillus subtilis); international deposit number: FERM BP-11283; E strain (Bacillus subtilis); international deposit number: FERM BP-11284. ) And F strain (Bacillus subtilis); international deposit number: FERM BP-11285), or at least one Bacillus bacterium, and , G strain (Penicillium tubatum; International deposit number: FERM BP-11289) and H strain (Geotrichum silvicola); International deposit number: FERM BP-11287), I strain ( Pichia fermentans; International deposit number: FERM BP-112 6) and J strain (Pichia Gu Irii el Monde good [Pichia guilliermondii]; International deposit number: it is preferable and at least one yeast selected from the group consisting of FERM BP-11288).
  • the sludge flocculant contains an aluminum compound, a silicon compound and / or a magnesium compound, and aluminum oxide [Al 2 O 3 ] per 1 g / L of suspended material [MLSS] in a tank to which the sludge flocculant is added. 0.01 to 0.5 g of an aluminum compound converted in terms of 0.01; 0.01 to 2 g of a silicon compound converted in terms of silicon dioxide [SiO 2 ]; and 0.01 to 0.5 g of a magnesium compound converted in terms of magnesium oxide [MgO] 1 cubic meter [m 3 ] per day for each tank).
  • the nutrient is peptone and / or dry yeast extract, and 0.8 to 70 mg peptone and 0.1 to 10 mg dry yeast extract per 1 g / L MLSS in the aeration tank 10 to which the nutrient is added; Per 1 ml / L of MLSS in the above-mentioned sludge storage tank 30 with the device, 3.5 to 250 mg of peptone, 0.7 to 45 mg of dry yeast extract; MLSS 1 g / L in the above-concentrated sludge storage tank 50 with the device to which the nutrient is added It is preferable to add 2.0 to 150 mg of peptone and 0.4 to 25 mg of yeast extract (however, 1 cubic meter [m 3 ] per day for each tank).
  • the nitrogen source converted to N 2 is 0.1 to 15 g per MLSS 1 g / L in the sludge storage tank 30 with the apparatus; 1 per MLSS 1 g / L in the concentrated sludge storage tank 50 with the apparatus. It is preferable to add at ⁇ 150 mg (however, 1 cubic meter [m 3 ] in each tank and per day).
  • the wastewater treatment system of the present invention is provided with at least an aeration device among the aeration device and the agitation device in the sludge storage tank 30 and / or the concentrated sludge storage tank 50 when the wastewater treatment is performed using the activated sludge method described above.
  • the apparatus-equipped sludge storage tank 30 and / or the apparatus-concentrated sludge storage tank 50 is disposed, and the sludge return (I) and / or (II) is performed.
  • the sludge flocculant and nutrients are added to one or more of the concentrated sludge storage tanks 50 with the device, and the number of bacteria belonging to the genus Bacillus in the tank to which the sludge flocculant and the nutrients are added is 2. It is characterized in that the waste water is treated while being maintained at 0 ⁇ 10 5 to 111 ⁇ 10 5 cfu / mL.
  • the aeration tank 10 is connected in series with two or more tanks, and the first treatment tank 12 performs anaerobic treatment in which only agitation is performed without aeration, and the second tank treatment.
  • the seed flora 2 may be added after the tank 13 and aerated and stirred.
  • the aerated tank 10 may be used as the sludge sedimentation tank 20 by temporarily stopping the functions of the aerated and stirred. Good.
  • the sludge flocculant and nutrient in the wastewater treatment system of the present invention are the same as the sludge flocculant and nutrient preferably used in the wastewater treatment method ( ⁇ ) of the present invention, and the amount to be added is also the wastewater treatment method of the present invention.
  • the nitrogen source to be added to the sludge storage tank 30 with the device and / or the concentrated sludge storage tank 50 with the device together with the sludge flocculant and the nutrient is also used. It is the same.
  • the wastewater treatment method ( ⁇ ) of the present invention a significant increase in the amount of wastewater that can be treated compared to conventional treatment methods (annual removal rate is BOD 57% or more of treated water, SS [suspended material] 67% As mentioned above, TN more than 15%) is possible, surprisingly reduced surplus sludge generation (50%), remarkable reduction of sludge conversion rate (about -60%), aeration and storage of surplus sludge It has extremely excellent effects such as a great reduction in the power required for centrifugation, a significant improvement in the quality of the discharged water, and a significant reduction in the generation of malodor from the surroundings of the treatment facility.
  • the pollutant-degrading microorganism group (mainly Bacillus spp.) Added as an inoculum during the treatment operation disappears after a lapse of a certain time, and the pollutant decomposition It has been found that higher performance is induced by the pollutant-degrading microorganism group.
  • the present inventors have found that this pollutant-degrading microorganism group includes naturally occurring molds and yeasts.
  • the wastewater treatment method ( ⁇ ) of the present invention can provide a wastewater treatment method, a wastewater treatment system, and a method for measuring the activity of decomposing pollutants of activated sludge microorganisms, which have the following effects (1) to (10). .
  • Inoculum is induced in pollutant highly degradable flora:
  • the wastewater treatment method ( ⁇ ) of the present invention not only the inoculum is induced in the flora with high degradability of pollutants, but also when no inoculum is added (however, the degradability of soil and manure is degradable) Even if there is a high Bacillus genus bacteria, and it flows and dominates and efficient treatment is performed), it is induced by a flora with high degradability of pollutants (compared to the case of adding inoculum) It may take some time; Non-Patent Document 2).
  • the wastewater treatment method of the present invention is carried out using A strain, B strain and C strain as the inoculum (detailed in the examples), the pollutant decomposition activity is maintained at the same level as these inoculums. Induced by species' flora (Bacillus bacteria, mold, yeast). Since there are a plurality of types of microorganisms contained in the flora (that is, the susceptibility to growth inhibitory substances is different), growth inhibition is difficult to occur as a whole.
  • Treated water BOD can be improved by 57% or more; SS removal rate by 67% or more; Total nitrogen [TN] can be improved by 15% or more.
  • the treatment of the total phosphorus compound amount [TP] is maintained as it is. If the quality of treated water can be improved as in the present invention, adverse effects on the environment can be suppressed.
  • the cost saved per yen is 1.42 million yen / year. From April 2009 to March 2010 (the full year 2009), the processing cost can be estimated to be 1.76 million yen / year when calculated as a sludge reduction rate of 62%.
  • the weight of “dried sludge” is measured according to the suspended solids measurement method (JIS K010214.1).
  • This suspended matter measurement method uses a glass fiber filter (pore size: 1 ⁇ m; diameter: 20-50 nm) to filter a fixed volume (200 mL) of sludge suspension water and dry at 105-110 ° C. for 1 hour. Allow to cool in a desiccator (about 1 hour) and calculate its weight according to the following formula.
  • Amount of dry suspended matter (mg / L) [Suspended matter + Filter paper weight (mg)-Filter paper weight] x 1000 / sample (mL)
  • [suspended substance + filter paper weight (mg) ⁇ filter paper weight] is in the range of 20 to 40 mg.
  • “Concentrated sludge” refers to sludge that has been extracted from the sedimentation tank sludge and concentrated (low water content).
  • the“ sludge conversion rate design value ” is calculated from values obtained by experiments by treatment facility construction companies in accordance with the sewage treatment method, and is described in the tender documents. The legal basis of 40% or less is unclear (perhaps the standard value by the sewerage organization), but the upper limit of the sludge conversion rate is thought to be 40%.
  • the effective sludge conversion rate is calculated from the value obtained by operating the treatment facility by a facility management company (consignment of management by the local government).
  • the sludge conversion rate is calculated by the following formula.
  • Sludge conversion rate (%) 100 x increased sludge weight (dry matter kg) / removed BOD amount (kg)
  • FIG. 1 is a diagram schematically showing a basic configuration of a wastewater treatment tank in a conventional continuous wastewater treatment facility.
  • FIG. 2 is a diagram schematically showing a basic configuration of a conventional batch-type waste water treatment tank.
  • FIG. 3 is a diagram schematically showing a basic configuration of a conventional OD type waste water treatment tank.
  • FIG. 4 is a diagram schematically showing the flow of sludge return and excess sludge treatment in the wastewater treatment method ( ⁇ ) of the present invention, and can be applied to any of FIGS.
  • FIG. 5 is a diagram schematically showing the configuration of each tank used in the wastewater treatment method ( ⁇ ) of the present invention.
  • FIG. 5 is a diagram schematically showing an aspect in which the aeration tank 10 of FIG. 5 is connected to a plurality of processing tanks corresponding to the continuous processing.
  • FIG. 7 is a diagram schematically showing the configuration of each tank of the wastewater treatment method ( ⁇ ) used in the examples.
  • Each of the sludge storage tank 30 and the concentrated sludge storage tank 50 includes an aeration apparatus and a stirring apparatus. ing.
  • the return of the agitation treated storage sludge 31 from the sludge storage tank 30 to the batch tank 70 is “sludge return (i)”
  • the return of the agitation treatment concentrated storage sludge 51 from the concentrated sludge storage tank 50 to the batch tank 70 is “sludge” Return (ii) "
  • Returning the agitation-treated concentrated storage sludge 51 from the concentrated sludge storage tank 50 to the sludge storage tank 30 is also referred to as” sludge return (iii) ".
  • FIG. 7 is the same as the aspect of the batch type process which combined FIG. 2 and FIG. FIG. 8 shows the 16S rDNA base sequence (1,510 bp) of C strain, D strain, E strain or F strain.
  • R represents A (adenine) or G (guanine).
  • sequence of 19 bases at the beginning (5 ′ end) and 16 bases at the 3 ′ end of the base sequence indicates base sequences corresponding to the sequences of the 9F primer and the 1510R primer, respectively.
  • ⁇ Wastewater treatment method ( ⁇ )> When sewage such as sewage and domestic sewage, experimental effluent, factory effluent, livestock effluent, sludge treated water, etc. is treated using activated sludge, it can be treated regardless of whether it is continuous, batch or OD.
  • the activity of activated sludge microorganisms decreases with progress, and foul odors such as ammonia and hydrogen sulfide, and floating substances called foaming and scum are generated, causing problems such as flowing into the effluent as it is. As a result, the treatment efficiency is greatly reduced, and the water quality of the discharged water is lowered.
  • the raw water 1a (drainage) put into the treatment tank (2a and 3a in Fig. 2) often contains substances that inhibit the growth of activated sludge microorganisms. Is drastically reduced, which is thought to reduce the progress and efficiency of wastewater treatment.
  • sludge is extracted from each treatment tank to the excess sludge tank / sludge storage tank, and after a predetermined amount has accumulated, the sludge is carried out through further processing such as concentration and dehydration. This drawing is automatically performed for a certain time.
  • the amount of excess sludge withdrawn is about 10 to 25% of the amount of wastewater being treated in each treatment tank. Efficiency is good at ⁇ 17%.
  • the following sludge return in an amount commensurate with this sludge extraction is performed in parallel.
  • the “first surplus sludge tank with aeration / agitation or sludge storage tank 12a” for example, at least an aeration apparatus and an agitation apparatus equipped with an aeration apparatus and aeration / agitation
  • the aerated and agitated sludge is returned from the first surplus sludge tank 8a, etc.) to the treatment tank (aeration tank or anaerobic tank) ("first sludge return process" Va).
  • the number of microorganisms having high degradability of pollutants in the treatment tank (using the pollutant-degrading Bacillus genus as an index) is maintained at 2.0 ⁇ 10 5 to 22.5 ⁇ 10 5 cfu / mL.
  • Activated sludge treatment can be carried out stably.
  • the return amount in the first sludge return step is preferably about 10 to 30%, usually about 15 to 17% of the inflow of raw water in the standard method (as in the batch method).
  • This first sludge return process is one of the features of the wastewater treatment method ( ⁇ ) of the present invention, and is the number of pollutant degradable microorganisms having a high pollutant decomposing activity in the batch tank (contaminant degrading Bacillus genus). It is important to increase the efficiency of the wastewater treatment by treating the activated sludge while maintaining the bacteria at an index of 2.0 ⁇ 10 5 to 22.5 ⁇ 10 5 cfu / mL. In the case of the standard method or OD method, a route for returning the sludge precipitated in the settling tank directly to the treatment tank is required, and a return capacity of 0.15 to 1.5 times the amount of inflow raw water is required.
  • the “second surplus sludge tank with aeration / stirring or the concentrated sludge storage tank 13a” (for example, the second surplus sludge tank 9a aerated / stirred, etc.)
  • the first surplus sludge tank or sludge storage tank 12a with aeration / stirring (for example, the first surplus sludge tank 8a aerated / stirred, etc.)
  • the return amount of the second sludge return step is 15 to 60% amount / week, preferably 15 to 25% amount / week of the sludge amount in the tank 12a.
  • the number of Bacillus bacteria as an index is about 7.5.
  • the number of Bacillus bacteria as an index is about 7.5.
  • filamentous fungi often spread and growth inhibition may occur in the activated sludge treated microorganism group.
  • the return of sludge from the tank 13a to the tank 12a works extremely effectively in suppressing the growth of filamentous fungi.
  • the activated sludge treatment microorganism group has a new and stronger pollutant decomposition activity as compared with the inoculum. Furthermore, the present inventors have found a remarkable fact that contaminants are reduced by carrying out the second sludge return process.
  • the bacterial indicator of the microorganism group having high degradability of pollutants in the treatment tank is 2.0 ⁇ the number of bacteria using the pollutant-degrading Bacillus subtilis as an index. Treat activated sludge at 10 5 to 22.5 ⁇ 10 5 cfu / mL.
  • indicator bacteria of the genus Bacillus include Bacillus subtilis A strain, Bacillus subtilis B strain and Bacillus subtilis C strain, which are inoculums; Bacillus subtilis D strain, which details the isolation method and the like in the examples Bacillus subtilis E strain, Bacillus subtilis F strain, etc. were used. It was found that A strain + B strain, C strain, D strain, E strain, and F strain were pollutant-degrading strains by the method described in Example 3.
  • the amount of aeration in the tank 12a is ORP (oxidation / reduction potential) 140 to 280 mV when DO [dissolved oxygen amount] is 1 mg / L.
  • ORP oxidation / reduction potential
  • the aeration of the tank 13a is simple enough to ventilate, and the aeration rate is 0 mg / L for DO and OR-100 to -300 mV.
  • FIG. 4 is a schematic diagram showing only the sludge return flow of the wastewater treatment method ( ⁇ ) of the present invention.
  • This wastewater treatment method ( ⁇ ) is a normal continuous treatment method (FIG. 1), batch treatment. The operation method of the processing when applied to the method (FIG. 2) and the OD processing method (FIG. 3) will be described.
  • the remainder of the sludge extraction Xa is sent to the sludge concentration tank 10a, and after standing, the supernatant water is drawn and concentrated and sent to the sludge storage tank 11a. Then, the supernatant water is further drawn out and concentrated, and then carried out as unloaded sludge 14a.
  • the sedimentation tank 6a, the first surplus sludge tank (or sludge) Storage tank) 8a, second surplus sludge tank (or concentrated sludge storage tank) 9a, sludge concentration tank 10a and sludge storage tank (or concentrated sludge storage tank) 11a are equipped with an aeration device and a stirring device. And equipment for returning sludge from tank 11a to tank 2a; tank 11a to tank 10a; tank 9a to tank 2a; tank 8a to tank 2a; and tank 9a to tank 8a ) Is not prepared.
  • the wastewater treatment method ( ⁇ ) of the present invention As an operation method of treatment when the wastewater treatment method ( ⁇ ) of the present invention is applied to this continuous treatment method, for example, by installing an aeration device and / or a stirring device in the concentrated sludge storage tank 11a, The sludge aerated and stirred in the tank 11a is returned to the first treatment tank 2a.
  • the amount of sludge returned is 5 to 15% / day with respect to the amount of raw water 1a (inflow amount).
  • the amount of sludge returned From the amount of sludge returned Ya from the settling tank 6a to the first treatment tank 2a, the amount of sludge returned is 3 to A 6-fold amount is subtracted (this subtraction amount may vary depending on the MLSS concentration in the first treatment tank 2a). And it is preferable to add an appropriate amount of any one or more of a flocculant, a nutrient and a nitrogen source which will be described later.
  • the raw water 1a is alternately received in the first batch tank 2a and the second batch tank 3a at intervals of 6 hours, and aeration and stirring are performed during the 6 hours (one cycle). Therefore, it is usually performed in 4 cycles per day, and the aeration and agitation time is an appropriate number of times, for example, aeration and agitation is 2 to 3 times / cycle, the aeration time is about 1.5 hours ⁇ 2 / cycle, and the agitation time is about 1.5 hours ⁇ 2 / cycle. While aeration and agitation are stopped, sludge is settled and treated water is discharged in 4 to 5 hours. At the same time, sludge is extracted.
  • the raw water 1a is led to the OD tank 5a (Fig. 3: Normally elliptical, equipped with aeration and stirring devices at two locations, and the tank is configured so that the raw water can circulate). And it goes around the tank 5a while being aerated and agitated after half a lap. Part of the tank water (suspended water) in the OD tank 5a is led to the precipitation tank 6a, and after solid-liquid separation, the supernatant water is discharged as sterilized discharge water 7a. The sediment (sludge) is withdrawn (Xa), and a part thereof is returned to the OD tank 5a.
  • Fig. 3 Normally elliptical, equipped with aeration and stirring devices at two locations, and the tank is configured so that the raw water can circulate. And it goes around the tank 5a while being aerated and agitated after half a lap.
  • Part of the tank water (suspended water) in the OD tank 5a is led to the precipitation tank
  • the remainder of the extracted sludge is concentrated by drawing the supernatant water in the sludge concentration tank 10a, and then sent to the sludge storage tank 11a, where the supernatant water is drawn, concentrated and carried out as the discharged sludge 14a.
  • the wastewater treatment method ( ⁇ ) of the present invention is applied to this OD type treatment method, for example, by installing an aeration device and / or a stirring device in the concentrated sludge storage tank 11a,
  • the sludge that has been aerated and stirred in the tank 11a is returned to the OD tank 5a.
  • the amount of sludge returned is 5-15% / day of the amount of raw water 1a (inflow), and the amount of sludge returned Ya from the settling tank 6a to the OD tank 5a is 3-6 times the amount of sludge returned.
  • Subtract the amount (this amount may vary depending on the MLSS concentration in the OD tank 5a).
  • the treatment accelerator used is sufficiently effective even with a silicon compound or a magnesium compound (each alone), but a mixture comprising a silicon compound, a magnesium compound, an aluminum compound, peptone, and a dry yeast extract provides a better effect. Furthermore, a further effect is observed when a nitrogen source is added to a mixture comprising a silicon compound, a magnesium compound, an aluminum compound, peptone and a dry yeast extract.
  • the addition frequency is once or twice a week, and the added processing accelerator is adsorbed on the floc immediately after the addition. Therefore, it is concentrated 30 to 70 times, usually about 50 times in the floc, and acts on the microorganism group.
  • a growth inhibition / shock state occurs in the activated sludge treatment microorganism group in each treatment tank and / or the tank 12a, it can be additionally added each time to restore the growth of the activated sludge treatment microorganism group.
  • a nitrogen source to the tank 12a and / or 13a because it is particularly effective for the growth of contaminant-degrading microorganisms.
  • Nitrogen sources used include peptone, yeast extract, and / or nitrogen compounds such as urea, ammonium sulfate, ammonium nitrate, and ammonium chloride, and one or more return sludges from the storage sludge tanks 12a and 13a.
  • the treatment accelerator and the nitrogen source are used in combination, it is effective for the growth of the pollutant-degrading microorganism group and also has a great effect for the induction of a new pollutant-degrading microorganism group.
  • ⁇ Wastewater treatment method ( ⁇ )> The wastewater treatment method ( ⁇ ) of the present invention, as shown in FIG. 5, at least when the wastewater treatment is performed using the activated sludge method including the above steps (1) to (5).
  • the sludge return tank (30) and / or the concentrated sludge tank 50 is provided with at least the aeration apparatus of the aeration apparatus and the agitation apparatus, and the sludge is returned (I) and / or (II); Adding a sludge flocculant and a nutrient to one or more of the aeration tank 10, the sludge storage tank 30 with the device, and the concentrated sludge storage tank 50 with the device; Keeping the number of bacteria of the genus Bacillus in the tank to which the sludge flocculant and the nutrient have been added at 2.0 ⁇ 10 5 to 111 ⁇ 10 5 cfu / mL; The waste water treatment is performed.
  • the pollutant / sludge is efficiently decomposed by the strain / microorganism group having high starch degradability, fat degradability, and protein degradability.
  • the combination of strains A (starch + oil degradable) and B (oil + fat degradable) deposited internationally, and strains C to F are starch degradable and fat degradable.
  • -Proteolytic properties, especially strains A + B and C to F are highly proteolytic.
  • the G strain and the H to J strains have high starch degradability and oil decomposability, and the proteolytic properties are inferior to those of the A strain + B strain and the C strain to F strain.
  • the number of bacteria of the genus Bacillus in the tank to which the sludge flocculant and nutrients are added is set to 2.0 ⁇ 10 5 to 111 ⁇ 10 5 cfu / Must be kept in mL.
  • the lower limit of the number of bacteria is a numerical value obtained by analyzing the bacterial flora of each sewage treatment plant and taking into account the sludge conversion rate and the number of bacteria belonging to the genus Bacillus in the literature. Almost the same numerical value is obtained in the experimental sewage treatment facility currently underway.
  • Activated sludge is generated when microorganisms that existed in sewage / drainage explode and propagate due to the decomposition of organic matter and the supply of oxygen (aeration), thereby causing organic contamination in sewage / drainage. Although it is said that it will be reduced (treated), the actual situation is that the amount of sludge generated is high and the sludge treatment costs increase, which is a problem of the activated sludge method.
  • activated sludge method wastewater treatment using activated sludge is generally referred to as “activated sludge method”.
  • the activated sludge method is further subdivided according to the method of supplying oxygen to microorganisms (not depending on the method temporarily) and the process of separating the activated sludge mixed in water thereafter.
  • a water tank for supplying oxygen is referred to as an aeration tank 10.
  • activated sludge is put in a water tank (aeration tank 10) made of reinforced concrete or steel plate, and air is sent by a blower (air bubbles may come out from the bottom of the tank). . If the sewage or waste liquid 1 is made to flow into the tank little by little, the pollutant contained in the sewage or the waste liquid 1 becomes a “food” for microorganisms (for example, inoculum 2). Since the amount of water containing activated sludge overflows by the same amount as the influent sewage or waste liquid 1, it flows into another aquarium.
  • the sludge settling tank 20 This is called the sludge settling tank 20, and the activated sludge has a specific gravity slightly higher than that of water, so it sinks to the bottom. This is caused to flow into the sludge storage tank 30 with a pump or the like, temporarily storing the sludge, and returning this sludge to the aeration tank 10 (this is referred to as “sludge return”). Use a series of equipment designed to do this continuously.
  • Such an activated sludge method typically includes at least the following steps (1) to (5) as shown in FIG.
  • Step (1) Aeration tank 10 equipped with an aeration apparatus and an agitation apparatus is supplied with sewage or waste liquid 1 having a biochemical oxygen demand [BOD] of 80 mg / L or more in a state where seed flora 2 is added, and aeration And an aeration step of obtaining a stirring treatment liquid 11 by stirring.
  • BOD biochemical oxygen demand
  • Step (2) The stirring treatment liquid 11 obtained in the step (1) is allowed to flow into the sludge settling tank 20 and left to stand to separate into the supernatant liquid 21 and the precipitated sludge 22, and then the supernatant liquid 21 is removed. Separation process to drain out of the system as discharge water 23.
  • Step (3) A storage / return step in which the precipitated sludge 22 obtained in step (2) is extracted, the precipitated sludge 22 is stored in the sludge storage tank 30, and a part thereof is returned to the aeration tank 10.
  • Step (4) A concentration step in which the stored sludge obtained in step (3) is concentrated by the sludge concentration tank 40 and / or the centrifugal concentrator 60.
  • Process (5) A storage / carrying-out process in which the concentrated sludge obtained in the process (4) is stored in the concentrated sludge storage tank 50 and a part thereof is carried out of the system.
  • wastewater is introduced into first and second batch tanks 70 equipped with an aeration device, a stirring device, and a drainage device in a treatment facility for four tanks, and activated sludge treatment is performed.
  • the sludge settled on the bottom surface of both batch tanks 70 is extracted and transferred to sludge storage tank 30 (also referred to as first surplus sludge tank), and this sludge is further concentrated to concentrate sludge storage tank 50 ( It is also referred to as the second surplus sludge tank.) It is stored and taken out as appropriate, and after dehydration, it is landfilled and incinerated.
  • the supernatant liquid of the batch tank 70 is pumped up by the drainage device and discharged into the river.
  • the normal raw wastewater is often introduced into the post-treatment tank after the water quality and concentration of the influent wastewater are averaged in advance in the adjustment tank.
  • “Sewage or waste liquid / supernatant liquid / discharged water” “Sewage or effluent 1” (also referred to herein simply as “drainage”, “raw water”, “raw wastewater” or “sewage”) has a biochemical oxygen demand (BOD) of 80 mg / L or more.
  • the sewage may contain manure and pig urine.
  • the BOD of sewage, manure, and pig urine is preferably 80 to 600 mg / L; 7,000 to 12,000 mg / L and 20,000 to 40,000 mg / L, respectively.
  • the “supernatant liquid 21” preferably has a BOD of 1% or less of the BOD of “sewage or waste liquid 1”.
  • the aeration tank 10 is provided with an aeration device and a stirring device.
  • two or more aeration tanks 10 are connected in series, and the first treatment tank 12 is subjected to anaerobic treatment in which only agitation is performed without aeration, and the second treatment tank 13. It may be an embodiment corresponding to a conventional continuous treatment in which the seed flora 2 is added thereafter and aerated and stirred.
  • the aeration tank 10 can also be used as the sludge settling tank 20 by temporarily stopping the functions of aeration and stirring.
  • Inoculum flora It is preferable to use A strain, B strain and C strain as “inoculum flora 2” added to the aeration tank 10.
  • the wastewater treatment method of the present invention is carried out using a combination of Bacillus bacteria and microorganisms other than Bacillus bacteria (for example, mold, yeast, etc.) as a seed flora, sludge reduction (dry weight; conventional ratio) It is possible to make it 50% or more, and the sludge reduction rate in 2007 was 62.75% (the sludge conversion rate was 28.376%).
  • Non-Patent Document 2 when an experimental plant is used, the sludge conversion rate was 15.3% (note that the residence time is 12 to 15 hours and the water temperature is 12 to 24 ° C. ). From this value, it is estimated that sludge reduction of 80% or more can be achieved compared to the treatment facility with a sludge conversion rate of 90%. From this, it is thought that sludge reduction 50% or more is possible without adding seed flora, but this value was obtained using an experimental plant (4 tanks total 3.6m 3 ). Yes, it is easier to reduce sludge than when using a real machine. This is because when growth inhibition occurs in the experimental plant, operations such as aeration adjustment and sludge extraction are easy, and the effects of growth inhibition can be kept low.
  • the seed flora 2 is induced by the pollutant highly degradable flora after a predetermined time has elapsed after the wastewater treatment method of the present invention is carried out.
  • This pollutant highly degradable flora has starch degradability and fat degradability, and the removal rate of suspended solids (SS) contained in each of the cook tome mediums (Oxoid) and (Difco) having the following composition is 70%.
  • the removal rate of SS contained in the cooked meat medium (Oxoid) is 80% or more.
  • Cookmeet medium (Oxoid) and (Difco)
  • “COOKED MEAT MEDIUM” (OXOID code: CM0081) manufactured by Oxoid
  • “Difco (trademark) Cooked Medium Medium” (catalog No. 226730) manufactured by Difco, respectively. Use.
  • the composition per liter of cook tome medium is 73.0 g for myocardium (dry), 10.0 g for peptone, 10.0 g for Lab-Remco powder, 5.0 g for sodium chloride, and 2.0 g for glucose.
  • the composition per liter of the cooked meat medium is 98.0 g of bovine heart muscle (dried), 20.0 g of proteose peptone, 2.0 g of glucose, and 5.0 g of sodium chloride.
  • proteolytic properties In general, in order to evaluate proteolytic properties, it is indicated by degradability of albumin, casein, gelatin or the like. However, when casein or gelatin was used for the evaluation of proteolytic properties, there were many degradable strains and it was difficult to obtain an index for degrading pollutants. Introduced sex assessment.
  • the pollutant highly degradable flora includes at least one Bacillus bacterium selected from the group consisting of D strain, E strain, and F strain when the A to C strains are used as the seed flora, or the Bacillus It is preferable to include at least one genus bacterium and at least one yeast selected from the group consisting of G and / or H, I and J strains which are molds.
  • strains are capable of degrading the cook tome medium, for example, bacteria of the genus Clostridium, bacteria of the genus Bacteroid, bacteria of the genus Serratia and the like. These pollutant highly degradable flora are also described in detail in the Examples.
  • the sludge flocculant and nutrient are added to the aeration tank 10 and the sludge storage tank 30 with the apparatus and / or the concentrated sludge storage tank 50 with the apparatus, which includes at least the aeration apparatus and the agitation apparatus.
  • the flocculant and nutrients are collectively referred to simply as “treatment accelerator”), and the efficiency of wastewater treatment can be increased.
  • a nitrogen source is also added to the sludge storage tank 30 with the device and / or the concentrated sludge storage tank 50 with the device together with the sludge flocculant and the nutrient.
  • the sludge flocculant preferably contains an aluminum compound and a silicon compound and / or a magnesium compound; the nutrient is preferably peptone and / or dry yeast extract; the nitrogen source is urea, ammonium sulfate, ammonium chloride And at least one selected from the group consisting of ammonium nitrate.
  • MLSS means activated sludge floating in the sewage in the aeration tank.
  • the wastewater treatment system of the present invention when wastewater treatment using the activated sludge method described above, -The sludge return tank (30) and / or the concentrated sludge tank 50 is provided with at least the aeration apparatus of the aeration apparatus and the agitation apparatus, and the sludge is returned (I) and / or (II); Adding a sludge flocculant and a nutrient to one or more of the aeration tank 10, the sludge reservoir 30 with the device and the concentrated sludge reservoir 50 with the device; and the sludge flocculant and the nutrient Keeping the number of bacteria of the genus Bacillus in the tank with the addition of 2.0 ⁇ 10 5 to 111 ⁇ 10 5 cfu / mL; It is characterized by performing wastewater treatment.
  • the aeration tank 10 used in the waste water treatment system is connected in series with two or more tanks, and the first treatment tank 12 performs anaerobic treatment in which only agitation is performed without aeration.
  • An embodiment corresponding to a conventional continuous process in which the seed flora 2 is added after the eye treatment tank 13 and aerated and stirred is also possible.
  • the aeration tank 10 can also be used as the sludge settling tank 20 by temporarily stopping the functions of aeration and stirring.
  • the compound used for the sludge flocculant and the nutrient for the wastewater treatment system and the amount added thereof, and the compound used as a nitrogen source added together with the treatment accelerator and the amount added thereof are the same as those described above.
  • the method for measuring the activity of decomposing the sludge microorganisms of the activated sludge microorganism according to the present invention includes the dry weight (X) of SS after inoculating and cultivating the above cooked meat medium and separately cultivating the above cooked meat medium without inoculating it.
  • SS removal rate (%) ⁇ (Y ⁇ X) / Y ⁇ ⁇ 100
  • SS removal rate (i) Is used to calculate the SS removal rate in the cook-meet medium, thereby measuring the pollutant degradation performance of the activated sludge microorganisms contained in the seed flora or the pollutant highly degradable flora. At this time, it is preferable to consider starch degradability and oil decomposability together.
  • the removal rate of the BOD component can be measured according to the method described in JIS K 0102/16. The method will be briefly described below.
  • the test water is diluted in half steps, and a fixed amount (eg 40 mL) of test water is added to two bottles of the initial concentration, and the space is filled with dilution water.
  • a fixed amount eg 40 mL
  • the sewage treatment facility used in the example has two batches each provided with an aeration device, a stirring device, and a treated water extraction device.
  • Tank 70 each maximum capacity: 365 m 3
  • sludge storage tank 30 maximum capacity: 40 m 3
  • concentrated sludge storage tank 50 maximum capacity: 20 m 3
  • centrifugal concentrator 60 concentrate sludge up to 4.5 times
  • This sewage treatment facility is equipped with only a device for returning sludge from the sludge storage tank 31 to the batch tank 70 (normally, a batch treatment facility does not have a device for returning sludge), and the sludge storage tank 30
  • the concentrated sludge storage tank 50 was not provided with any of an aeration apparatus, a stirring apparatus, and a treated water extraction apparatus.
  • an aeration device and a stirring device were newly installed in the sludge storage tank 30 and the concentrated sludge storage tank 50, respectively.
  • a pipe was attached to the tank, and the stirring apparatus was used as an auxiliary for the main purpose of air stirring.
  • aeration cannot be normally performed when the MLSS concentration in the concentrated sludge storage tank 50 is 15,000 mg / L or more.
  • raw water The inflow of sewage or waste liquid 1 (hereinafter also referred to as “raw water”) was 184.8m 3 / day (2005) to 184.9m 3 / day (2009), and the residence time was about 4 days. It was. This raw water inflow was switched at 6-hour intervals and operated at 4 cycles per day. During each cycle, aeration and agitation were performed twice (total 6 hours), precipitation was performed for 3 hours, and the supernatant liquid 21 was discharged. This is because the sludge sedimentation was the best when operated under these conditions.
  • the aeration amount of the batch tank 70 is 50 to 300 mV (normally 100 to 280 mV) in ORP; the aeration amount of the sludge storage tank 30 is -50 to 300 mV (normally 100 to 280 mV) in ORP; the concentrated sludge storage tank
  • the aeration amount of 50 was ⁇ 350 to ⁇ 100 mV (usually ⁇ 300 to ⁇ 100 mV) by ORP.
  • the centrifugal concentrator 60 that concentrates the sludge in the sludge storage tank 30 concentrated the sludge average of 3 m 3 / day in the sludge storage tank 30 to 1 m 3 / day in 2005 (2009). ) in the sludge of 4.2 ⁇ 4.8m 3 / day was concentrated in 1m 3 / day.
  • Sludge return (i) is 15 to 50% (usually 70% at maximum) for the conventional standard method and 10 to 30% for the batch method, compared to the inflow of raw water. About 11 to 16% (corresponding to 2.7 to 4.1% with respect to the tank capacity of the batch tank 70).
  • sludge return (iii) is equivalent to 1.6 to 6% of the raw water inflow (7.5 to 30% of the capacity of the sludge storage tank 30) in a facility equipped with a sludge concentrator.
  • the average was 1.6 to 2.8% / time / twice a week (corresponding to 7.5 to 12.5% / time / twice a week with respect to the tank capacity of the sludge storage tank 30). (See JP 2000-189991 A and JP 10-216789 A).
  • Example 1 that is, the first surplus sludge tank 12a and the second surplus sludge tank 13a that can be aerated and agitated and the first sludge returned to the batch activated sludge treatment apparatus shown in FIG. An apparatus that enables the process Va was installed and used.
  • Comparative Example 1 the results from the beginning of January 2005 to the end of December 2005 using the batch activated sludge treatment apparatus shown in FIG. 2 are shown.
  • the first surplus sludge tank 8a and the second surplus sludge tank 9a in Comparative Example 1 do not have an aeration / stirring device. During this period, a device capable of returning sludge from the first surplus sludge tank 9a used in the sludge return process to the batch tank was provided.
  • the sewage from Nagatoro, Nakano, Nagano Prefecture flows into the first batch tank 2a and the second batch tank 3a, which are treatment tanks with a maximum capacity of 365 m 3 , so that the maximum volume is maintained at 340 m 3.
  • Bacillus thuringiensis A strain, Bacillus subtilis B strain and Bacillus subtilis C strain were added to the first batch tank 2a, the second batch tank 3a and the first surplus sludge tank 8a.
  • the amount of treated sewage was about 185 m 3 / day.
  • the maximum amount of the first sludge return process Va which is 16% of the inflow of raw water, was performed.
  • the total aeration time (annual and per day) in the treatment tank is shown in Table 4.
  • the ORP was maintained at 100 to 270 mV (with DO of 1.0 to 1.1 mg / L).
  • Table 5 shows the amount of sludge carried out, sludge reduction rate, and sludge conversion rate as indicators of degradability of pollutants.
  • Table 6 shows measured values of the number of microorganisms (the number of bacteria belonging to the genus Bacillus) in the first batch tank 2a and the first surplus sludge tank 8a of Example 1.
  • the concentration of both batch tanks MLSS was adjusted by increasing / decreasing the amount of sludge withdrawing mainly for the purpose of maintaining sedimentation.
  • the concentration of both batch tanks MLSS was 2,700-4,300 mg / L (in Comparative Example 1, the concentration of both batches MLSS 1,250-2,150 mg / mL).
  • Example 1 the BOD and SS removal rates were significantly improved as compared with Comparative Example 1 in spite of a significant increase in the amount of BOD inflow in the waste water.
  • Example 1 As compared with Comparative Example 1, the sludge weight reduction rate was 62.745%, which was extremely high in Example 1. In Comparative Example 1, the degradability was low even though the number of bacteria belonging to the genus Bacillus was about 6 ⁇ 10 5 cfu / mL before addition of the inoculum.
  • Example 2 As Example 2, the wastewater treatment method ( ⁇ ) of the present invention was performed from January to December 2008 in the same manner as in Example 1. During this time, the sludge returned to the first surplus sludge tank 12a from the second surplus sludge tank 13a aerated and agitated was returned at 25% of the sludge amount in the first surplus sludge tank / week (second sludge in FIG. 4). A return process Wa) was performed.
  • Table 10 shows sludge discharge amount, sludge reduction rate, and sludge conversion rate as indicators of degradability of pollutants.
  • Table 11 shows the measured values of the number of microorganisms (the number of bacteria belonging to the genus Bacillus) in the first batch tank 2a and the first excess sludge tank 12a of Example 2.
  • the concentration of both batch tanks MLSS was adjusted by increasing / decreasing the amount of sludge withdrawing mainly for the purpose of maintaining sedimentation.
  • the concentration of both batch tanks MLSS was 2,300-4,200 mg / L (in Comparative Example 1, the concentration of both batches MLSS 1,250-2,150 mg / mL).
  • the sludge return (second sludge return step Wa) and the second surplus sludge tank 12a from the second excess sludge tank 13a and the second aeration amount are not particularly changed.
  • the sludge return (first sludge return step Va) from the surplus sludge tank 12a to the first batch tank 2a and the second batch tank 3a quickly recovered the number of bacteria belonging to the genus Bacillus, enabling stable treatment operation.
  • Example 3 As Example 3, the waste water treatment method ( ⁇ ) of the present invention was carried out from January to December 2009 in the same manner as in Example 2 except that a treatment accelerator and a nutrient were further added. That is, Example 3 implements the preferable aspect of the waste water treatment method ( ⁇ ) of the present invention. During this period, the sludge returned to the first excess sludge tank 12a from the aerated and stirred second excess sludge tank 13a is 25% of the sludge amount in the first excess sludge tank / week (second sludge return process in FIG. 4). Wa) was performed.
  • Example 3 450 g of SiO 2 , 230 g of Al 2 O 3 , and MgO as a processing accelerator (flocculating agent) and a nutrient for each batch tank (first batch tank 2a and second batch tank 3a). 680 g, 17.6 g of peptone, and 3.5 g of dry yeast extract were added twice / week. The added processing accelerator was adsorbed on the floc immediately after the addition. The processing accelerator is concentrated about 50 times in the floc.
  • Table 12 shows raw water inflow, BOD and SS inflow and removal rates (annual average), and inflow TN, TP amounts and removal rates are shown in Table 13.
  • the total aeration time (annual and per day) in the treatment tank is shown in Table 14.
  • Table 15 shows the amount of sludge carried out, sludge reduction rate, and sludge conversion rate as indicators of pollutant degradability.
  • Table 16 shows the measured values of the number of microorganisms (the number of bacteria belonging to the genus Bacillus) in the first batch tank 2a and the first surplus sludge tank 12a of Example 3.
  • concentration of both batches MLSS was adjusted by increasing or decreasing the sludge extraction amount. mg / mL).
  • mold and yeast having extremely high starch degradability, fat decomposability, and cellulose degradability were found from the first excess sludge tank 12a. It is inferred that those that naturally flew from the atmosphere or originally contained in the raw water obtained high sludge substance resolution in the first surplus sludge tank 12a.
  • the return of the first surplus sludge in the wastewater treatment method of the present invention weakened the growth of filamentous fungi in the batch tank, and the growth was not recognized from the middle stage of operation.
  • a mold identified as Penicillium turbatum was isolated from the first surplus sludge tank 12a. Identified from 28S rDNA base sequence and phylogenetic tree. Penicillium terbatam is known as an antibiotic-producing bacterium, and it is thought that this suppresses the growth of the invading filamentous fungus.
  • This bacterium has strong starch-degrading properties, oil- and fat-degrading properties, and cellulose-degrading properties, and contributes to the degradation of pollutants in concert with strains D, E, and F, which are Bacillus bacteria.
  • strains D, E, and F which are Bacillus bacteria.
  • This mold is deposited internationally as Penicillium terbatam G strain. Isolation used the method described above and appeared during the bacterial analysis and fished.
  • yeasts also have strong starch-degrading properties, oil-degrading properties, and cellulose-degrading properties, and contribute to the degradation of pollutants in concert with the D, E, and F strains that are Bacillus bacteria.
  • sludge return (i) is 5-15m 3 / day (automatic operation) per batch tank, and sludge return (iii) is 1-5m 3 / inspection Hours and twice a week (manual operation).
  • Sludge return (i) returned 10 to 15m 3 (maximum allowable amount for this facility) and improved treatment.
  • Sludge return (iii) was 3-5m 3 (maximum allowable amount at this facility).
  • Sludge return (ii) was carried out intermittently from January to June 2007, but the sludge concentration in the concentrated sludge storage tank 50 was so large that it was difficult to return due to insufficient lift of the return pump. It was. However, the effectiveness of sludge return (ii) has been confirmed.
  • Sludge return (i) was effective when operated in each batch tank at 10 m 3 or more / day from July 2008, and further effective at 15 m 3 / day (maximum allowable amount at this facility). Especially when the growth inhibitor flows in, this sludge return (i) has been stably effective in recovering and maintaining degradable bacteria in the batch tank 70.
  • sludge flocculant an aluminum compound, a silicon compound, and a magnesium compound were added; as a nutrient (organic compound), peptone and dry yeast extract were added; and a nitrogen source was added.
  • FIG. 7 shows the amounts of treatment accelerator and nitrogen source added to each batch tank 70 (Table 18), sludge storage tank 30 (Table 19), and concentrated sludge storage tank 50 (Table 20).
  • the addition amount of each of the aluminum compound, silicon compound, and magnesium compound was described in terms of oxide weight.
  • the addition amount of the nitrogen source was described in terms of N 2 .
  • the added processing accelerator is adsorbed on the floc immediately after the addition. Flock is easily collected by centrifugation and filtration operations, and when the sludge having an MLSS concentration of 5,000 mg / L has a water content of 75%, the occupied volume is about 20 mL. That is, the added processing accelerator is concentrated 50 times or more in the floc. In addition, when sewage (drainage containing pollutants) is aerated, pollutants are aggregated and fine suspensions are formed. This suspended material is called "floc".
  • the nitrogen source added to the sludge storage tank 30 was more effective than the batch tank 70 for the growth of pollutant-degrading microorganisms.
  • the addition concentrations of peptone and dry yeast extract were as low as 0.055 mg / L peptone and 0.011 mg / L dry yeast extract in the batch tank, but an effect was observed on the growth of degradable microorganisms. Since peptone and dry yeast extract are adsorbed by the water floc in the tank, the concentration is 50 times or more in the floc where the microorganism grows, and it is considered that the effect is exhibited.
  • the treatment accelerator for the sludge storage tank 30 was determined from July 2008 and was continuously added in the same amount. In the sludge storage tank 30, the residence time was 24 hours, but it showed an effect on sludge reduction.
  • Stable treatment was possible with the addition amount after July 2008, degradable bacteria grew stably, and the amount of sludge generated was continuously reduced. It was also effective in improving sludge settling and decomposing pollutants. As can be seen in Table 21, stable detection was also possible from around May 2009, including the number of degradable microorganisms. From around July 2009, sludge decomposition and improved treatment water quality were observed.
  • the sewage treatment facility used in the examples was excellent in removing BOD components, removing TN, and removing TP.
  • BOD components Bacillus bacteria, (a-2) Rhodococcus rubber, (a-3) Micrococcus luteus and (b) mold and yeast
  • A-1 In addition to Bacillus bacteria, (a-4) Alcaligenes faecalis, (a-5) Paracoccus bacteria And (a-6) bacteria belonging to the genus Rhodobacter contribute to the removal of TN, (a-6) bacteria belonging to the genus Rhodobacter, (a-7) sphingo Bacteria belonging to the genus [Sphingobacterium] and (a-8) Rhizobium loti are thought to contribute.
  • Bacteria Bacillus bacteria Table 21 summarizes the number of detected Bacillus bacteria by year.
  • the average number of bacteria belonging to the genus Bacillus in December 2006 at the experimental facility was 5.5 ⁇ 10 5 cfu / mL in the batch tank.
  • 3 strains of A strain, B strain and C strain (concentration of about 1: 1: 3) are added to each batch tank as a seed flora 2 to a concentration of 2.5 ⁇ 10 6 cfu / mL. did.
  • E strains B. subtilis
  • F strains B. subtilis
  • Table 21 which have a 16S rDNA base sequence and the same base sequence and length as C strain, were also released in 2007.
  • sludge decomposition progressed markedly in the concentrated sludge storage tank 50 (from October 2007 to January 2008, MLSS in the concentrated sludge storage tank 50 (17,000-18,000mg / L immediately after concentration) ) Decreased to 9,500-15,500 mg / L).
  • the D strain, E strain and F strain are estimated to be mutant strains in which the inoculum C strain was induced to an enzyme-producing strain with higher degradability of pollutants.
  • the degradability of these Bacillus bacteria is thought to be based on starch degradability, fat degradability, and protein degradability.
  • the difference in pollutant degradability is that the strain or group of strains has starch degradability and fat degradability.
  • Table 22 shows the removal rate of suspended solids [SS] in the cooked meat medium of the activated sludge dilutions of strains A to F and sewage treatment facilities.
  • C strain is a strain isolated from a well-treated manure treatment facility and exhibits starch degradability, fat degradability, and muscular proteolytic properties (Table 24).
  • B. thuringiensis In the sewage treatment facility used in the examples, the appearance of B. thuringiensis was as low as 0.25 ⁇ 10 5 cfu / mL or less. In April 2007, B.thuringiensis was 1 ⁇ 10 4 cfu / mL or less. B. thuringiensis can be easily identified from the shape of the colony and the size of the bacterial cells ( ⁇ 1 ⁇ m or more).
  • B strain Discrimination between ⁇ ⁇ ⁇ B strain and C strain (both B. subtilis) depended on the shape of the colony, cooked meat medium degradability and 16S rDNA analysis.
  • the B strain is a gene phylogenetic tree based on the 16S rDNA base sequence, which has an older origin than the B. subtilis standard strain (ATCC 6051, AJ276351) and can be easily identified.
  • the C strain has a 16S rDNA base sequence (base number 1,510 bp; Fig. 8) and the 276th base is "R" ("A" or "G”: C strain has a 16S rDNA portion.
  • the corresponding base of the B. subtilus standard strain is “A” (16S rDNA portion)
  • the C strain is 9 bases (“GAGTTTGAT") longer than the 16S rDNA base sequence of the B. subtilus standard strain at the tip (5 'end), and the B. subtilis standard strain is 16 bases longer at the end (3' end).
  • C strain can be easily identified from these genetic analyses.
  • the D strain, E strain and F strain were identified by having the same base sequence and length as the C strain, the shape of the cultured colonies, and the difference in cooked meat degradability (Table 21). C strain, D strain, E strain and F strain were found to be very closely related.
  • MLSS which had been increasing in the concentrated sludge storage tank 50 from May to August 2007, was decomposed to about 17,500 mg / L from October 2007 to January 2008. It decreased to 9,500-15,500 mg / L in about 30 days (reduction of about 10,000 ppm / L). After the emergence of more highly degradable strains D, E and F, significant sludge reduction was observed.
  • the sludge in the sludge storage tank 30 was concentrated by a centrifugal concentrator 60 from about January 2007 to January 2008, about 3 to 3.5 times, and thereafter about 4.2 to 4.8 times. Since July 2009, the MLSS concentration in the concentrated sludge storage tank 50 is about 3.1 times or less than that of the sludge storage tank 30, and it has been found that the sludge is also decomposed in the concentrated sludge storage tank 50. When comparing the concentration of Bacillus bacteria, it was found that Bacillus bacteria increased by about 4.8 times.
  • the number of bacteria belonging to the genus Bacillus is not proportional to the MLSS concentration, and is 1.1 to 1.2 times that of a batch tank in a sludge storage tank corresponding to the sludge storage tank 30.
  • Isolation of activated sludge bacteria Distilled 8 g of Nutrient Broth (Oxoid, Code: CM0001), 7 g of glucose, 4 g of Peptone-P (Oxoid, Code: LP0049), 2 g of dry yeast extract (Bacto, Code: 212750) and 15 g of agar Dissolved in 1,000 mL of water and sterilized at 121 ° C. for 15 minutes. A flat medium was prepared by dispensing 20 mL each into a sterilized ⁇ 9 cm petri dish.
  • the cells were cultured at 32 ° C for 4 to 5 days and colonies were observed.
  • test tube As a blank, a non-inoculated test tube was similarly cultured with shaking.
  • the suspension was collected by filtration using a ⁇ 55 mm glass fiber filter (GS25 manufactured by Advantech) or GF / A manufactured by Whatman, and dried at 125 ° C. for 2.5 hours to measure the dry matter weight of the suspended material.
  • GS25 manufactured by Advantech
  • GF / A manufactured by Whatman
  • the A strain (B. thuringiensis) and the B strain (B. subtilis) cannot decompose manure alone, but exhibit severe degradability when they coexist (see Table 24 and Non-Patent Document 1). From these SS removal rates, if it shows an SS removal rate of 70% or more by Oxoid and 60% or more by Difco, and it has starch degradability and oil degradability, it is determined as a highly degradable strain of contaminants. did.
  • a strain + B strain, A strain + B.subtilis T and C strains satisfy this condition, and D strain, E strain and F strain can be judged to be highly degradable in pollutants.
  • activated sludge bacteria are the main constituent of sewage sludge, but in fact, the undegraded pollutant contained in the sewage is considered to be the main constituent of sewage sludge. Since most of the sewage pollutants are derived from organisms, they consist of starch, fats and proteins, and human waste is considered to account for more than half of the undegraded pollutants. Strain A, B strain, A strain + B strain, and C strain isolated from manure treatment facility were measured for starch degradability, fat decomposability, and SS removal rate in cook tome medium.
  • A-2) Rhodococcus rubber Polyhydroxyalkanoic acid degradability, vegetable oil degradability, various cyclic hydrocarbons (cyclododecane, etc.) degradability, higher hydrocarbon ether compound decomposability, methyl-t-butyl ether degradability, secondary alkylsulfate degradability, etc.
  • a wide variety of synthetic compound assimilation properties are known. It is thought that it contributes to the removal of detergents, fats and oils, and other polymer compounds.
  • Alcaligenes faecalis Shows nitrate ion availability and denitrification. Further, the BOD component is consumed with denitrification. A light colored transparent colony with a unique shape is formed and can be easily identified. Throughout the year, in July 2009, the batch tank 70 accounted for about 25% of the total bacterial count, and the sludge storage tank 30 accounted for about 50% of the total bacterial count.
  • Rhizobium loti It is related to phosphate metabolism and is considered to be involved in phosphate removal. In the batch tank 70, ⁇ 1 ⁇ 10 5 cfu / mL or less was observed, and in the sludge storage tank 30, 1 ⁇ 10 5 to 4 ⁇ 10 5 cfu / mL were observed. (A-7) It may be difficult to distinguish from the genus Sphingpbacterium sp.
  • the strain G (Penicillium turbatum) has been detected from the sludge storage tank 30 at the time of counting the number of bacteria from around May 2009. In September 2009, 5 ⁇ 10 5 cfu / mL, 2.5 ⁇ 10 4 cfu / mL was detected in the batch tank 70. A series of isolated strains were identified as Penicillium turbatum from the homology of the 28S rDNA base sequence and the gene phylogenetic tree. Strong starch degradability, fat decomposability, and cellulose degradability. P. turbatum is known to produce antibiotics. At the sewage treatment facility, the viability of the invading filamentous fungi became weak in the batch tank from around January 2009, and it became impossible to grow after May 2009 (many fungi are being decomposed).
  • (B-2) Yeasts Yeasts were confirmed to be alive from around August 2008 with a sludge speculum in the sludge storage tank 30. Isolation from the sludge storage tank 30 was attempted in March 2009 and June 2009. In March, the I strain (Pichia fermentans) and J strain (Pichia guilliermondii) were isolated, and in June the H strain (Galactomyces geotrichum). / Geotrichum silvicola; sexual and asexual relationship).
  • H, I and J all showed strong starch degradability, fat and oil decomposability, and cellulose degradability.
  • the total number of H strains, I strains and J strains was 1 ⁇ 10 3 cfu / mL in the sludge storage tank 30, about 20% for H strains, about 20% for I strains, J The shares accounted for about 60%. It was identified from the homology of the 26S rDNA base sequence and the phylogenetic tree.
  • Isolation medium of yeast is 5 g of potato starch, 5 g of soluble starch, 5 g of glucose, 5 g of nutrient broth (Oxoid, code: CM0001), 4 g of peptone-P (Oxoid, code: LP0049), dry yeast 2 g of extract (manufactured by Bacto, code: 212750) and 16 g of agar were suspended in 1,000 mL of distilled water, adjusted to pH 3.8 with citric acid, and sterilized at 115 ° C. for 3 minutes to prepare a flat medium.
  • 0.1 mL of the water in the sludge storage tank 30 was expanded and cultured from a colony grown by culturing for 6 days and cultured.
  • Each strain that was fished was purified three times by the dilution method to obtain a pure strain.
  • the medium used for culturing the strains that were fished was the nutrient broth-glucose medium described in (Note 6).
  • the stock solution was diluted to 2 ⁇ 10 12 cells / L, and 500 mL was added to each batch tank (inoculum concentration: about 2.5 ⁇ 10 6 cfu / mL).
  • inoculum concentration 8 ⁇ 10 10 cells / L was prepared and added (inoculum concentration: about 2 ⁇ 10 6 cells / mL).
  • the inoculum prepared in this manner generates heat at about 40 ° C. during culture, and the sporulated culture does not rapidly return to vegetative cells even when cultured at 32 ° C. in a nutrient medium.
  • germination started about 25 days later.
  • the number of Bacillus bacteria was 5 ⁇ 10 5 cfu / mL and 6 ⁇ 10 5 cfu / mL in each batch tank, and 7 ⁇ 10 5 cfu / mL in the sludge storage tank 30.
  • SS removal rate is 41% for Oxoid, 28% for Difco, and after inoculation in October 2009, 80% for Oxoid and 82% for Difco (Table 22)
  • the degradability of pollutants became significantly higher in 2009 (Tables 2, 5, 7, 10, 12, 15).
  • Agar flat medium containing soluble starch is: Nutrient broth (Oxoid, Code: CM-1) 8g, Peptone-P (Oxoid, Code: LP0049) 4g, Glucose 2g, Soluble starch 5g, Dry yeast extract (Bacto, code: 212750) 2 g and 15 g of agar were dissolved in 1,000 mL of distilled water, sterilized at 121 ° C. for 15 minutes, dispensed 20 mL each in a pre-sterilized petri dish, and cooled.
  • Lugol's solution for Gram staining was prepared by dissolving 0.2 g of iodine and 0.4 g of potassium iodide in 60 mL of distilled water, and stored in a brown bottle.
  • Liquid a Nutrient broth (Oxoid, Code: CM-1) 8 g, Glucose 7 g, Peptone-P (Oxoid, Code: LP0049) 4 g, Dry yeast extract (Bacto, Code: 212750) 2 g And 15 g of agar was dissolved in 1,000 mL of distilled water and sterilized at 121 ° C. for 15 minutes.
  • Agar flat medium containing cellulose powder is 8 g of nutrient broth (Oxoid, code: CM-1), 7 g of glucose, 4 g of peptone-P (Oxoid, code: LP0049), dry yeast extract (Bacto) , Code: 212750) 2 g, 1 g of cellulose powder and 16 g of agar were dissolved in 1,000 mL of distilled water and sterilized at 121 ° C. for 15 minutes. After sterilization, 20 mL each was dispensed into a petri dish previously sterilized and cooled.
  • the efficiency improvement methods described are applicable not only to sewage treatment but also to livestock wastewater treatment, human waste treatment, and other food factory wastewater treatment, and can be applied to improve the efficiency of wastewater treatment in various fields.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

活性汚泥処理微生物群の活性低下を排除し、さらにはその処理能力を大幅に向上させて処理効率を高めるとともに、余剰汚泥物を減量化する方法を提供する。本発明の排水処理方法は、原水(1a)を活性汚泥処理する際、第一汚泥返送工程(Va)(曝気・撹拌付きの第一余剰汚泥槽もしくは汚泥貯留槽(12a)において、曝気・撹拌した汚泥を、処理槽,回分槽もしくは嫌気槽に返送する工程;および/または、曝気・撹拌付きの第二余剰汚泥槽もしくは濃縮汚泥貯留槽(13a)において、曝気・撹拌した汚泥を、処理槽,回分槽もしくは嫌気槽に返送する工程)を実施し、かつ、該汚泥を返送された処理槽中,回分槽中または嫌気槽中のバチルス属菌数を、2.0×105~22.5×105cfu/mLに維持しながら活性汚泥処理することを特徴とする。

Description

[規則37.2に基づきISAが決定した発明の名称] 排水処理方法、システムおよび汚濁物分解活性測定方法
 本発明は、効率的な排水処理方法に関する。さらに詳細には、本発明は、活性汚泥法を利用した排水処理方法,排水処理システムおよび活性汚泥微生物の汚濁物分解活性測定方法に関する。
 下水や生活排水等の汚水,実験排水,工場排水,家畜排水,汚泥処理水などの排水は、主に三種類の方法で処理される。
 すなわち、図1に示すような“標準法”と呼ばれる連続式処理は、各種排水処理、主に下水処理に用いられており、第一処理槽2aは嫌気処理し、第二処理槽3aおよび第三処理槽4aで曝気するものである。図2に示す回分式処理方法と呼ばれる処理方式、および、楕円形の大きな水路を造って原水を流し、原水の流入個所と中間の個所で間欠的に曝気と撹拌を行うOD式処理方法(図3)の三種類に大きく分類され、それぞれ使用排水(原水1a)の種類や処理量,建設費に合わせて建設され、実施されている。
 例えば、回分式処理方法(図2)の場合、四槽の処理設備において、原水1aを曝気装置および撹拌装置ならびに排水装置を備えた第一回分槽(処理槽)2aおよび第二回分槽3aに導入、活性汚泥処理し、両回分槽の底面に沈殿した汚泥を汚泥引抜きして第一余剰汚泥槽8aに移送し、さらにこの汚泥を濃縮して第二余剰汚泥槽9aに貯蔵、適宜搬出して脱水後埋め立て、焼却等に付される。
 一方、回分槽の上澄み液は排水装置により汲み上げられ、放流水7aとして河川に放流する。なお、通常、原水1aは、予め調整槽において、流入排水の水質と濃度を平均化した後、処理槽等に導入されることが多い。
 このように、活性汚泥法を利用した上記排水処理のいずれも、下水処理した後の放流水(処理水)の水質(処理水質)の向上,処理効率の安定化,処理に伴って発生する汚泥の減量化,処理時の発泡・スカム(scum;下水処理槽の水面に浮上した固形物や油脂分の集まった浮きカスで、ガスが発生することによって曝気が妨げられ、処理槽の機能が減じ、悪臭が発生する)・バルキング等の抑制が従来求められてきた。
 従来の排水処理が抱える問題点のうち、このように活性汚泥による処理の途中で活性汚泥細菌類の活性が低下することによって、アンモニアや硫化水素が発生し、悪臭を発したり、発泡やスカムと呼ばれる浮遊物が発生し、そのまま放流水へ流れ込んだりする等の支障を来たして、処理効率が大きく低下するとともに、放流水の水質が低下する場合がある。
 すなわち、従来の下水処理では、処理システム内へ流入する汚水や廃液等の処理すべき廃液中の汚濁物の成分(流入水含有物質)やその組成は日常的に変化し、「活性汚泥法」の観点で見ると、活性汚泥の活性(活性汚泥微生物の生育)を阻害する生育阻害物質は恒常的に流入している。処理システム内に生育阻害物質が流入すると、汚濁物分解性の活性汚泥細菌類/微生物類の生育が阻害され、汚濁物分解性が低くなる場合がある。
 その原因は色々考えられるが、中でも処理槽(回分槽)2aおよび3aに投入される原水1aがしばしば活性汚泥微生物群の生育阻害物質を含んでおり、そのため活性汚泥処理能力が急激に低下し、排水処理の進行を大きく低下させている。
 他方、各処理槽および余剰汚泥貯留槽の曝気に要する電力使用量が大きく、排水処理コストの削減に大きな障害となっている。
 また、処理槽から引抜かれ、(遠心)脱水後焼却、埋め立て処理へ回される余剰汚泥量は、仮に排水処理能力の向上によっても、増えこそすれ、減ることは従来の処理方法ではまったく有り得なかった。すなわち、余剰汚泥を処理する各種の費用は増加する一方である。そのために、余剰汚泥を遠心分離・脱水するための電気代,排出した汚泥の焼却・埋め立て費用,そのための運送費用等々は増加する一方である。
 改善策として、処理システムに培養槽を設置して汚泥を循環させる方法が一般的に行われているが、設置費用と管理費が嵩む割に、汚泥減量化効果が小さい場合がある。
 汚泥減量化の方法は、培養槽を設置して活性汚泥の汚濁物分解性を高める"培養法";分解性の高い活性汚泥を処理槽に恒常的に添加する"添加法";汚泥をミルで粉砕して処理槽に戻す"ミル法";汚泥にオゾンを吹き込んで処理槽に戻す"オゾン法";汚泥を超音波処理して処理槽に戻す"超音波法";ウォータージェットで汚泥を粉砕して処理槽に戻す"ウォータージェット法"などの方法が知られている。しかしながら、これらの汚泥減量化方法では、新たな設備の導入や維持に莫大な費用が掛かる。
 このような背景の下、特許文献1において、屎尿処理槽における処理効率を向上させるために、処理槽にケイ素化合物やマグネシウム化合物を添加する方法,ペプトン等の栄養剤を投与する方法,処理槽に活性汚泥用種菌を追加する方法が提案されているのみであるが、屎尿処理以外では未だ充分にその目的を達していない。
 一方、下水含有汚濁物や屎尿分解性菌株に関する報告は従来ほとんど知られていない。
 本発明者は、屎尿がバチルス属細菌類(後述するA株とB株との組み合わせ)で分解され、これらのバチルス属細菌類は定性的にデンプン・油脂分解性を示し、筋肉性タンパク質を主成分とするクックトミート培地(日水製薬(株)製)の懸濁物質〔SS;suspended solid〕の除去率が約80%以上であることを見出している(非特許文献1)。なお、日水製薬(株)製のクックトミート培地は現在、製造中止となっている。
 さらに本発明者は、屎尿処理の際、ケイ素化合物とマグネシウム化合物とを処理槽に添加すると屎尿分解性バチルス属細菌類が優占化し、効率的に屎尿分解が起こり、悪臭の発生が低減化することを見出している(非特許文献1~3)。そして下水処理の場合も、ケイ素化合物およびマグネシウム化合物の存在が、処理に伴って発生する汚泥の減量化および悪臭発生の低減化に重要であることを見出した。また、汚濁物分解にはデンプン分解性および油脂分解性に加え、クックトミート培地中の懸濁物分解性を兼ね備えたバチルス属細菌が重要であることを見出している。
 しかしながら、非特許文献1~3において、焼却または埋め立てされる排出汚泥を減量化する試みに対して、処理能力の高い微生物菌株の使用と処理方法による効率化が提案されているに過ぎず、大幅な汚泥減量化の方法や技術は未だ存在しないと言っても過言ではない。
 なお、本発明者は、下水処理の際、発泡・スカム・バルキング等が発生すると、栄養剤を添加することによって、これらの解消に効果的であることも見出している(特許文献2)。
特開第2002-86181号公報 国際公開第2006/115199号パンフレット
村上および入江他,好気性し尿処理槽におけるBacillis spp.の優占化とそれらの生化学的性質,水環境学会誌,18(2),97-108頁,1995年 入江鐐三および高塚秀樹,Bacillus属細菌の増加/優占化による下水処理改善に関する研究,防菌防黴,27巻(7),431-440頁,1999年 土井幸夫,李文生,入江鐐三,田端信一郎および建石耕一,効率的無臭合併処理浄化槽に優占する細菌相とそれらの生化学的性質,防菌防黴,26巻(2),53-63頁,1998年
 本発明は、従来の活性汚泥法で使用されている排水処理施設の大幅な改造を行わずに低コストで、排水処理された後の水の水質(処理水質)の向上および汚泥減量化を達成し、下水等の排水を効率的に処理する排水処理方法,排水処理システムおよび活性汚泥微生物の汚濁物分解活性(水域の清濁の程度を示す指標であるBOD成分および懸濁物質〔SS〕の除去率)測定方法を提供することを目的としている。
 すなわち、本発明は、活性汚泥処理微生物群の汚濁物分解活性低下を排除し、さらにはその処理能力を大幅に向上させて処理効率を高めるとともに、余剰汚泥物を減量化する方法を提供することを目的としている。
 上述の通り、下水処理は、その処理費用が高騰を続け、汚泥発生量の低減化・悪臭低減化・汚泥脱水の効率化などが望まれている。さらに、環境問題から処理後の水質の向上と安定化も望まれている。
 従来、活性汚泥法等で用いられる汚濁物分解性微生物類に関する研究はほとんど知られておらず、汚濁物分解性の高い微生物を選択的に下水処理槽や汚泥貯留槽で培養する技術も知られていない。また、処理システム内に生育阻害物質が流入して、汚濁物分解性の活性汚泥細菌類/微生物類の生育が阻害される「生育阻害」は下水処理効率化の難点であり、この生育阻害の解決方法も知られていない。
 本発明者は1991年から、人畜の屎尿処理や下水処理(生活雑排水および食品工場廃水の処理を含む。以下、同様。)で働く活性汚泥微生物を研究し、本発明を完成するに至った。
 通説として汚泥は活性汚泥微生物からなると考えられているが、本発明者は未分解汚濁物を多量に含んでいるとの見解を示している。事実、デンプン分解性・油脂分解性・筋肉タンパク質分解性細菌類が、屎尿処理や下水処理活性汚泥中に生育すると処理水質は向上し、汚泥減量化が見られ、悪臭が低減化することを報告している(非特許文献1,2)。この際、汚濁物分解性の高い細菌類の生育・維持にケイ素化合物やマグネシウム化合物の添加が必要であることを報告した(非特許文献1~3)。さらに、汚濁物分解性の高い細菌類が生育する際、スカムや発泡を起こす場合があり、ペプトンの添加が、これらの問題を解消するために有効であることを見出し既に特許出願した(特許文献2)。
 その後、平成18年(2006年)12月~平成21年(2009年)12月まで3年間、下水処理の効率化試験を行い、処理促進剤として、ケイ素化合物およびマグネシウム化合物とペプトンとに加えて、アルミニウム化合物および乾燥酵母エキスを添加すると、活性汚泥微生物生育阻害物質が流入した際、活性汚泥微生物のショック状態が解消し、汚濁物分解性細菌叢が回復し、加えて汚濁物分解性がさらに高い細菌叢が出現するという高い効果を奏することを見出した。
 さらに、出現した高い汚濁物分解性菌株は、16S rDNA塩基配列の解析および遺伝子系統樹から判断して、添加した種菌株から誘導された変異株であって、各種酵素活性が向上し、さらに各種酵素の非特異性が向上したと考えられる。すなわち、添加した種菌株から誘導された変異株は、酵素生産能が誘導された菌株であると考えられる。「酵素生産能が誘導された」とは、酵素自体が変異して酵素活性が向上したことを意味し、特にプロテアーゼ活性とプロテアーゼの基質非特異性が向上したと考えられる。
 汚濁物分解性の高い細菌株の出現・生育・維持に加えて、デンプン分解性・油脂分解性・セルロース分解性を示すカビや酵母が出現し、一定数を維持することができた。
 出現したカビの中にはG株があり、このG株は抗生物質生産性を有し、またG株の生育が見られるようになるにしたがって、処理槽で糸状菌類の生育が見られなくなった。
 本発明者は、上記の汚濁物分解性の高い微生物類の生育・維持のために、処理促進剤の添加に加えて適切な汚泥返送量を保つこと,適切な曝気量を保つことが必要である事を見出した。
 以上に従って下水処理施設を管理すると、年間平均従来比で、処理水BODが57%以上;懸濁物質〔SS〕除去率が67%以上;トータル窒素〔T-N〕が15%以上;全リン化合物量〔T-P〕で従来と同様の除去率を示した。さらに、汚泥発生量を、乾燥重量で従来比50%削減;汚泥転換率(=100×増加汚泥乾燥重量/除去BOD量)で従来比約60%低減化した(減量化できた)。
 また、添加する処理促進剤については、ケイ素化合物やマグネシウム化合物が知られているが、アルミニウム化合物の添加効果は知られていなかった。一方、発泡やスカムの発生時、ペプトンの添加がそれらの解消に効果があることを見出したが、乾燥酵母エキスの添加で、発泡やスカム解消に効果を示し、活性汚泥微生物に対する生育阻害の回復に卓越した効果が見られることを、本発明者は新しく見出した。
 汚濁物分解性細菌として種菌を加える事が知られているが、効果は長続きしない。また、添加した種菌から、より汚濁物分解性の高い菌株への誘導は知られていない。
 加えて、カビや酵母など、デンプン分解性・油脂分解性・セルロース分解性の強い微生物の生育が処理槽,汚泥貯留槽,濃縮汚泥貯留槽で確認された例は、これまでの下水処理では知られていない。
 本発明者らは、このような知見に基づき、本発明を完成するに至った。
 すなわち、本発明の排水処理方法は、以下のように、第一の態様として「排水処理方法(α)」および第二の態様として「排水処理方法(β)」を包含するものである。
 排水処理方法(α)は、図1~4に示すように、原水1aを活性汚泥処理する際、第一汚泥返送工程Va:曝気・撹拌付きの第一余剰汚泥槽もしくは汚泥貯留槽12aにおいて、曝気・撹拌した汚泥を、処理槽,回分槽もしくは嫌気槽に返送する工程;および/または、曝気・撹拌付きの第二余剰汚泥槽もしくは濃縮汚泥貯留槽13aにおいて、曝気・撹拌した汚泥を、処理槽,回分槽もしくは嫌気槽に返送する工程を実施し、かつ、該汚泥を返送された処理槽中,回分槽中または嫌気槽中のバチルス属菌数を、2.0×105~22.5×105cfu/mLに維持しながら活性汚泥処理することを特徴とする。
 上記方法(α)において、第一汚泥返送工程Vaを実施する際、生育阻害剤などの影響を受けて活性が低下するのを回避するために、さらに、第二汚泥返送工程Wa:曝気・撹拌付きの第二余剰汚泥槽もしくは濃縮汚泥貯留槽13aにおいて、曝気・撹拌した汚泥を、曝気・撹拌付きの第一余剰汚泥槽もしくは汚泥貯留槽12aに返送する工程を実施することが好ましい。
 第一処理槽または第一回分槽2a;第二処理槽または第二回分槽3a;第三処理槽4a;OD槽5a;第一余剰汚泥槽または汚泥貯留槽8a;第二余剰汚泥槽または濃縮汚泥貯留槽9a;汚泥濃縮槽10a;汚泥貯留槽または濃縮汚泥貯留槽11a;曝気・撹拌付きの第一余剰汚泥槽もしくは汚泥貯留槽12a;および、曝気・撹拌付きの第二余剰汚泥槽もしくは濃縮汚泥貯留槽13aのいずれか一槽以上に、処理促進剤を添加するのが好ましく、該処理促進剤は、ケイ素化合物,マグネシウム化合物,アルミニウム化合物,ペプトンおよび乾燥酵母エキスからなる群より選択される一種または二種以上であるのが好ましい。
 第一余剰汚泥槽または汚泥貯留槽8a;第二余剰汚泥槽または濃縮汚泥貯留槽9a;
 汚泥濃縮槽10a;汚泥貯留槽または濃縮汚泥貯留槽11a;曝気・撹拌付きの第一余剰汚泥槽もしくは汚泥貯留槽12a;および、曝気・撹拌付きの第二余剰汚泥槽もしくは濃縮汚泥貯留槽13aのいずれか一槽以上に、窒素源を添加するのが好ましく、該窒素源は、尿素,硫酸アンモニウム,塩化アンモニウムおよび硝酸アンモニウムのいずれか一種以上であるのが好ましい。
 一方、本発明の排水処理方法(β)は、図5に示すように、少なくとも、下記工程(1)~(5):
 工程(1):曝気装置および撹拌装置を備える曝気槽10に、種菌叢2を添加した状態で、生物化学的酸素要求量〔BOD〕が80mg/L以上の汚水または廃液1を流入させ、曝気および撹拌することによって、撹拌処理液11を得る曝気工程;
 工程(2):工程(1)で得られた撹拌処理液11を汚泥沈殿槽20に流入させ、静置することによって、上澄み液21と沈殿汚泥22とに分離した後、該上澄み液21を放流水23として系外に排水する分離工程;
 工程(3):工程(2)で得られた沈殿汚泥22を引き抜き、汚泥貯留槽30に沈殿汚泥22を貯留し、その一部を上記曝気槽10に返送する貯留・返送工程;
 工程(4):工程(3)で得られた貯留汚泥を、汚泥濃縮槽40および/または遠心濃縮機60で濃縮する濃縮工程;ならびに
 工程(5):工程(4)で得られた濃縮汚泥を、濃縮汚泥貯留槽50に貯留し、その一部を系外に搬出する貯留・搬出工程
を含む活性汚泥法を用いて排水処理する際に、
 汚泥貯留槽30および/または濃縮汚泥貯留槽50に、曝気装置および撹拌装置のうち少なくとも曝気装置を備え付けて、装置付き汚泥貯留槽30および/または装置付き濃縮汚泥貯留槽50を配設し、下記汚泥返送(I),(II):
 汚泥返送(I):該装置付き汚泥貯留槽30で、曝気するか、もしくは曝気・撹拌することによって得られる撹拌処理貯留汚泥31を引き抜き、上記曝気槽10に返送すること;および/または
 汚泥返送(II):該装置付き濃縮汚泥貯留槽50で、曝気するか、もしくは曝気・撹拌することによって得られる撹拌処理濃縮貯留汚泥51を引き抜き、上記曝気槽10および/または該装置付き汚泥貯留槽30に返送すること
を行い、該曝気槽10,該装置付き汚泥貯留槽30および該装置付き濃縮汚泥貯留槽50のうち1槽以上に、汚泥凝集剤および栄養剤を添加するとともに、該汚泥凝集剤および該栄養剤を添加した槽中のバチルス属の細菌数を、2.0×105~111×105cfu/mLに保持しつつ排水処理することを特徴とする。
 図6に示すように、上記曝気槽10は、2槽以上直列に連結し、第一槽目の処理槽12では曝気せずに撹拌のみを行う嫌気処理を施し、第二槽目の処理槽13以降で種菌叢2を添加し、曝気および撹拌してもよい。
 図5に示すような、上記曝気槽10は、その曝気および撹拌の機能を一時的に停止させることによって、上記汚泥沈殿槽20を兼用することができる。
 デンプン分解性および油脂分解性を有し、かつ下記組成のクックトミート培地(Oxoid)および(Difco)それぞれに含まれる懸濁物質〔SS〕の除去率が70%以上および60%以上である汚濁物高分解性菌叢に、上記種菌叢2が誘導されることが好ましい;
 クックトミート培地(Oxoid)の組成(1Lあたり):心筋(乾燥)が73.0g,ペプトンが10.0g,ラブ-レムコ末が10.0g,塩化ナトリウムが5.0g,およびブドウ糖が2.0g;ならびにクックトミート培地(Difco)の組成(1Lあたり):牛心筋(乾燥)が98.0g,プロテオースペプトンが20.0g,ブドウ糖が2.0g,および塩化ナトリウムが5.0gである。
 上記汚濁物高分解性菌叢は、上記クックトミート培地(Oxoid)に含まれるSSの除去率が80%以上であることがより好ましい。
 上記種菌叢2は、A株(バチルス・シューリンジエンシス[Bacillus thuringiensis];国際寄託番号:FERM BP-11280),B株(バチルス・ズブチリス[Bacillus subtilis];国際寄託番号:FERM BP-11281)およびC株(バチルス・ズブチリス[Bacillus subtilis];国際寄託番号:FERM BP-11282)であることが好ましい。
 上記汚濁物高分解性菌叢は、D株(バチルス・ズブチリス[Bacillus subtilis];国際寄託番号:FERM BP-11283),E株(バチルス・ズブチリス[Bacillus subtilis];国際寄託番号:FERM BP-11284)およびF株(バチルス・ズブチリス[Bacillus subtilis];国際寄託番号:FERM BP-11285)からなる群から選択される少なくとも1種のバチルス属細菌を含むか;あるいは
 該バチルス属細菌を少なくとも1種と、G株(ペニシリウム・ターバタム[Penicillium tubatum];国際寄託番号:FERM BP-11289)のカビおよび/またはH株(ジェオトリカム・シルビコーラ[Geotrichum silvicola];国際寄託番号:FERM BP-11287),I株(ピチア・フェルメンタンス[Pichia fermentans];国際寄託番号:FERM BP-11286)およびJ株(ピチア・グイリイエルモンデイイ[Pichia guilliermondii];国際寄託番号:FERM BP-11288)からなる群から選択される少なくとも1種の酵母とを含むことが好ましい。
 上記汚泥凝集剤は、アルミニウム化合物と、ケイ素化合物および/またはマグネシウム化合物とを含み、該汚泥凝集剤を添加する槽中の懸濁物質〔MLSS〕1g/Lあたり、酸化アルミニウム〔Al23〕で換算したアルミニウム化合物を、0.01~0.5g;二酸化ケイ素〔SiO2〕で換算したケイ素化合物を、0.01~2g;および酸化マグネシウム〔MgO〕で換算したマグネシウム化合物を、0.01~0.5gで添加(ただし、各槽の1立方メートル〔m3〕かつ1日あたり)するのが好ましい。
 上記栄養剤は、ペプトンおよび/または乾燥酵母エキスであり、該栄養剤を添加した曝気槽10中のMLSS1g/Lあたり、ペプトンを0.8~70mg,乾燥酵母エキスを0.1~10mg;該栄養剤を添加した上記の装置付き汚泥貯留槽30中のMLSS1g/Lあたり、ペプトンを3.5~250mg,乾燥酵母エキスを0.7~45mg;該栄養剤を添加した上記の装置付き濃縮汚泥貯留槽50中のMLSS1g/Lあたり、ペプトンを2.0~150mg,酵母エキスを0.4~25mgで添加(ただし、各槽の1立方メートル〔m3〕かつ1日あたり)するのが好ましい。
 上記の装置付き汚泥貯留槽30および/または上記の装置付き濃縮汚泥貯留槽50に、上記汚泥凝集剤と上記栄養剤とともに、尿素,硫酸アンモニウム,塩化アンモニウムおよび硝酸アンモニウムからなる群から選択される1種以上の窒素源を添加し、N2で換算した窒素源を、該装置付き汚泥貯留槽30中のMLSS1g/Lあたり、0.1~15g;該装置付き濃縮汚泥貯留槽50中のMLSS1g/Lあたり、1~150mgで添加(ただし、各槽の1立方メートル〔m3〕かつ1日あたり)するのが好ましい。
 また、本発明の排水処理システムは、上述した活性汚泥法を用いて排水処理する際に、汚泥貯留槽30および/または濃縮汚泥貯留槽50に、曝気装置および撹拌装置のうち少なくとも曝気装置を備え付けて、装置付き汚泥貯留槽30および/または装置付き濃縮汚泥貯留槽50を配設し、上記汚泥返送(I)および/または(II)を行い、該曝気槽10,該装置付き汚泥貯留槽30および該装置付き濃縮汚泥貯留槽50のうち1槽以上に、汚泥凝集剤および栄養剤を添加するとともに、該汚泥凝集剤および該栄養剤を添加した槽中のバチルス属の細菌数を、2.0×105~111×105cfu/mLに保持しつつ排水処理することを特徴とする。
 本発明の排水処理システムにおいて、上記曝気槽10は、2槽以上直列に連結し、第一槽目の処理槽12では曝気せずに撹拌のみを行う嫌気処理を施し、第二槽目の処理槽13以降で種菌叢2を添加し、曝気および撹拌してもよく、該曝気槽10は、その曝気および撹拌の機能を一時的に停止させることによって、上記汚泥沈殿槽20を兼用してもよい。
 本発明の排水処理システムにおける汚泥凝集剤および栄養剤は、本発明の排水処理方法(β)で用いることが好ましい汚泥凝集剤および栄養剤と同様であり、添加する量も本発明の排水処理方法(β)の場合と同様である。また、該装置付き汚泥貯留槽30および/または該装置付き濃縮汚泥貯留槽50に、汚泥凝集剤と栄養剤とともに添加する窒素源およびその添加量も、本発明の排水処理方法(β)の場合と同様である。
 さらに、本発明の活性汚泥微生物の汚濁物分解活性測定方法は、上記クックトミート培地に植菌し培養した後のSSの乾燥重量(X)と、別途、上記クックトミート培地に植菌せずに培養した後のSSの乾燥重量(Y)とから、下記式(i):
   SS除去率(%)={(Y-X)/Y}×100 …(i)
を用いてSS除去率を算出することによって、上記種菌叢または上記汚濁物高分解性菌叢に含まれる活性汚泥微生物の汚濁物分解性能を測定することを特徴とする。
 本発明の排水処理方法(α)によって、従来の処理方法に比べて、処理可能排水量の大幅な増加(年間にして、除去率が、処理水のBOD57%以上、SS〔懸濁物質〕67%以上、T-N15%以上)が可能となり、余剰汚泥の発生量の驚くべき減量化(50%)と、汚泥転換率の顕著な減少(約-60%)、曝気および貯蔵された余剰汚泥の遠心分離に要する電力の大きな軽減、放流水の水質の大幅な向上、処理設備周辺からの悪臭発生の大幅低下という極めて優れた効果を有する。さらに、本発明の排水処理方法(α)を実施することによって、その処理運転中に種菌として加えた汚濁物分解性微生物群(バチルス属菌主体)は一定時間経過後全て消失し、汚濁物分解性能が一層高い汚濁物分解性微生物群に誘導されることを見出した。この汚濁物分解性微生物群には、自然由来のカビ、酵母菌も含まれていることを見出した。
 さらに、本発明の排水処理方法(β)は、下記(1)~(10)に係る効果を有する排水処理方法,排水処理システムおよび活性汚泥微生物の汚濁物分解活性測定方法を提供することができる。
 (1)種菌が汚濁物高分解性菌叢に誘導される:
 本発明の排水処理法(β)を実施することによって、種菌が汚濁物分解性の高い菌叢に誘導されるのみならず、種菌を添加しない場合(ただし、土壌や屎尿等に汚濁物分解性の高いバチルス属細菌が存在し、流入して優占化し効率的な処理が行われる場合)であっても、汚濁物分解性の高い菌叢に誘導される(種菌を添加した場合に比べて多少時間を要することがある;非特許文献2)。
 さらに、種菌としてA株,B株およびC株を用いて、本発明の排水処理法を実施した場合(実施例で詳述する)、汚濁物分解活性がこれら種菌と同じレベルを維持する、複数種の菌叢(バチルス属細菌・カビ・酵母)に誘導される。菌叢に含まれる微生物の種類が複数あることから(すなわち、生育阻害物質に対する感受性がそれぞれ違うことから)、全体として生育阻害が起こりづらい。
 (2)汚泥減量化:
 汚泥発生量を、乾燥重量で従来比50%以上減少させ、汚泥転換率(=100×増加汚泥乾燥重量/除去BOD量)で従来比約60%以上減少させることができる。
 (3)処理水水質の向上:
 年間平均、従来比で、処理水BODを57%以上;SS除去率を67%以上;トータル窒素〔T-N〕を15%以上向上することができる。なお、全リン化合物量〔T-P〕の処理は現状を維持する。本発明のように処理水質を向上させることができると、環境に与える悪い影響を抑制することができる。
 (4)悪臭成分発生の抑制:
 処理槽や汚泥貯留槽からアンモニア,硫化水素などの悪臭成分の発生を抑制することができる。その結果、施設の無修理期間(修理間隔)を延長することができるから、施設管理費を節約することができる。
 (5)電気消費量の節約:
 流入BOD量が経時的に増加しても、上記のように高効率かつ高品質で排水処理できるため、従来と同程度の品質の処理水を求める場合は、電気消費量をそのまま維持または抑制することができる。
 (6)施設改修がほぼ不必要:
 従来の施設の大幅な改修を必要としない。すなわち、従来の下水処理施設の無改造または小幅な改造で本発明の排水処理方法(β)を実施でき、その結果、従来に比して汚泥減量化が可能である。
 (7)糸状菌類の生育の抑制:
 糸状菌類の生育が抑制されることで、発泡やスカムの発生が抑制でき、良好な汚泥沈降性が維持でき、施設の管理が容易である。
 (8)下水汚泥処理経費の削減:
 実施例でも詳述するように、平成21年(2009年)の下水処理量は185m3/日、汚泥減量化率が対平成17年(2005年)比で50.1%であって、発生汚泥量が大幅に減量化し、対平成17年比除去BOD量は35.92%増、除去SS重量は60.85%増にもかかわらず、減量化した乾物汚泥重量が7.458tに相当した。この乾物汚泥量は、濃縮汚泥(実施例で使用した下水処理施設の濃縮汚泥のMLSS含量は約2%であり、含水率は約98%である。)に換算して3.0m3ローリー124台分に相当し、運搬費62万円、脱水ケーキ(含水率85%:含水率(%)=(水分重量/水分+MLSS重量)×100)50m3に当たり処理費用は約80万円、計142万円に当たり、節減した費用は142万円/年に当たる。平成21年4月から平成22年(2009年度通期)3月予測汚泥減量化率62%として計算すると節約できる処理費は176万円/年と予測できる。
 なお、「乾燥汚泥」の重量は、懸濁物質測定法(JIS K010214.1)に従って測定する。この懸濁物質測定法は、ガラス繊維製フィルタ(孔径:1μm;径:20~50nm)を用いて、一定容量(200mL)の汚泥懸濁水を濾過し、105~110℃で1時間乾燥してデシケータ内で放冷し(約1時間)、その重量を下記式に従って算出する。
 乾燥懸濁物質量(mg/L)=[懸濁物質+濾紙重量(mg)-濾紙重量]×1000/試料(mL)
 式中、[懸濁物質+濾紙重量(mg)-濾紙重量]は20~40mgの範囲である。
 通常の業務で槽内のMLSSを測定するときは、MLSS計(光の散乱現象を用いてMLSS濃度(mg/L)を測定する)を用いて測定する。
 なお、「濃縮汚泥」は、沈殿槽汚泥から水分を引抜いて濃縮した(水分含量の低い)汚泥をいう。
 (9)様々な排水に適用可能:
 下水処理のみならず、畜産排水処理,屎尿処理,食品工場排水処理に代表されるその他の排水処理にも適用可能であることから、種々の分野で応用可能である。
 (10)汚泥転換率の減少化:
 汚泥転換率設計値が40%の施設であって、かつ汚泥転換率実効値が90%以上の施設である場合、汚泥転換率を35%以下に低減することができる。
 ここで「汚泥転換率設計値」は、下水処理方式に従って処理施設建設各社が実験して得た値から算出したものであり、入札書類等に記載されている。40%以下の法的な根拠は不明であるが(おそらく下水道事業団による基準値と思われる)汚泥転換率上限が40%になっていると考えられる。
 「汚泥転換率実効値」は、処理施設を施設管理業者(地方自治体が管理を委託する。)が運転して得た値から算出する。
 なお、汚泥転換率は次式で算出される。
  汚泥転換率(%)=100×増加汚泥重量(乾物kg)/除去BOD量(kg)
図1は、従来の連続式排水処理設備における排水処理槽の基本構成を模式的に示した図である。 図2は、従来の回分式排水処理槽の基本構成を模式的に示した図である。 図3は、従来のOD式排水処理槽の基本構成を模式的に示した図である。 図4は、本発明の排水処理方法(α)における汚泥の返送および余剰汚泥処理の流れを模式的示した図であり、図1~3のいずれにも適用できる。 図5は、本発明の排水処理方法(β)に用いる各槽の構成を模式的に示した図である。図中、(a)および(b)はそれぞれ、撹拌処理貯留汚泥31を遠心濃縮機60で濃縮してもよく、または、撹拌処理貯留汚泥31を汚泥濃縮槽40に流入させてもよいことを示す。なお、図5の曝気槽10を、図6に示すような連続式処理に対応させた態様は、図1と図4とを組み合わせた連続式処理の態様と同じものである。 図6は、図5の曝気槽10が、連続式処理に対応して、処理槽が複数個連なっている態様を模式的に示した図である。 図7は、実施例で用いた排水処理方法(β)の各槽の構成を模式的に示した図であり、汚泥貯留槽30および濃縮汚泥貯留槽50それぞれは、曝気装置および撹拌装置を備えている。以下、汚泥貯留槽30から回分槽70への撹拌処理貯留汚泥31の返送を「汚泥返送(i)」;濃縮汚泥貯留槽50から回分槽70への撹拌処理濃縮貯留汚泥51の返送を「汚泥返送(ii)」;濃縮汚泥貯留槽50から汚泥貯留槽30への撹拌処理濃縮貯留汚泥51の返送を「汚泥返送(iii)」ともいう。
 なお、図7の態様は、図2と図4とを組み合わせた回分式処理の態様と同じものである。
図8は、C株,D株,E株またはF株の16S rDNA塩基配列(1,510 bp)を示す。なお、図中の「R」は、A(アデニン)またはG(グアニン)を表す。また、該塩基配列の先頭(5'末端)19塩基および3'末端の16塩基の配列は、それぞれ9Fプライマーおよび1510Rプライマーの配列に対応した塩基配列を示している。
 以下、添付した図1~4を参照しつつ、本発明の排水処理方法(α)をさらに詳細に説明する。
             <排水処理方法(α)>
 下水や生活排水等の汚水・実験排水・工場排水・家畜排水・汚泥処理水などの排水を活性汚泥を用いて処理するときは、連続式・回分式・OD式のいずれを問わず、処理の進行とともに活性汚泥微生物の活動が低下して、アンモニア,硫化水素などの悪臭、発泡やスカムとよばれる浮遊物が発生し、そのまま放流水へ流れ込む等の支障をきたしている。これによって処理効率が大きく低下するとともに、放流排水の水質が低下する。これらの原因は色々考えられるが、中でも処理槽(図2において2aおよび3a)に投入される原水1a(排水)がしばしば活性汚泥微生物群の生育阻害物質を含んでおり、そのために活性汚泥処理能力が急激に低下し、排水処理の進行・効率を低下させていると考えられる。
 通常、排水処理運転中に、各処理槽から余剰汚泥槽・汚泥貯留槽への汚泥の引抜が行われ、所定量が蓄積した後、さらに濃縮・脱水等の処理を経て汚泥が搬出される。この引抜は一定時間自動で行われている。
 本発明の排水処理方法(α)においては、いずれのタイプの活性汚泥処理を用いる場合においても、余剰汚泥の引抜量は、各処理槽において処理中の排水量の10~25%程度であり、15~17%程度で効率が良い。通常、次に述べる、この汚泥引抜きに見合った量の汚泥返送を並行して実施する。
 図4に示すように、汚泥引き抜きに先立ち、「曝気・撹拌付きの 第一余剰汚泥槽 もしくは 汚泥貯留槽12a」(例えば、曝気装置および撹拌装置のうち少なくとも曝気装置を備え付けて、曝気・撹拌した第一余剰汚泥槽8aなど)から処理槽(曝気槽や嫌気槽)へ、曝気・撹拌された汚泥を返送する(「第一汚泥返送工程」Va)。これによって、処理槽中の汚濁物分解性の高い微生物数を(汚濁物分解性のバチルス属菌を指標として)、2.0×105~22.5×105cfu/mLに維持しながら活性汚泥処理を安定的に実施することができる。第一汚泥返送工程の返送量は、標準法の場合(回分法の場合と同じく)、原水の流入量の10~30%程度、通常15~17%程度が好ましい。この第一汚泥返送工程は、本発明の排水処理方法(α)の特徴の一つである、回分槽中において高い汚濁物分解活性を持った汚濁分解性微生物数(汚濁物分解性のバチルス属菌を指標として)を、2.0×105~22.5×105cfu/mLに維持しながら活性汚泥処理することにより、排水処理の効率を高くする上で重要である。標準法やOD方式の場合には、沈殿槽で沈殿する汚泥を直接処理槽に返送する経路が必要で、流入原水量の0.15倍~1.5倍量の返送能力が必要である。
 本発明の排水処理方法(α)において、さらに、「曝気・撹拌付きの 第二余剰汚泥槽 もしくは 濃縮汚泥貯留槽13a」(例えば、曝気・撹拌した第二余剰汚泥槽9aなど)から「曝気・撹拌付きの 第一余剰汚泥槽 もしくは 汚泥貯留槽12a」(例えば、曝気・撹拌した第一余剰汚泥槽8aなど)へ汚泥返送(図4において「第二汚泥返送工程」Wa)を行う。この第二汚泥返送工程の返送量は、該槽12a中の汚泥量の15~60%量/週、好ましくは15~25%量/週である。この第二汚泥返送工程は、各処理槽および/または該槽12aにおいて活性汚泥処理微生物群に生育阻害が発生したときに、例えば該槽12aにおいて、指標としてのバチルス属細菌数が約7.5×105cfu/mL以下に減少したとき、活性汚泥処理微生物群の再生・回復に極めて有効である。さらに、活性汚泥処理運転中に、しばしば糸状菌が蔓延し、活性汚泥処理微生物群に生育阻害が発生することがある。このときにもこの該槽13aから該槽12aへの汚泥返送が糸状菌の生育を抑制することに極めて有効に働くことを見出したのである。これによって、活性汚泥処理微生物群に種菌に比べて新たな、かつ、より強い汚濁物分解活性が生じることを見出したのである。さらに、この第二汚泥返送工程を実施することによって、汚濁物が減少するという顕著な事実を見出したのである。
 本発明の排水処理方法(α)において、処理槽中の汚濁物分解性の高い微生物群の細菌類の指標菌株は、汚濁物分解性のバチルス・ズブチリスを指標としてその菌数を2.0×105~22.5×105cfu/mLで活性汚泥処理する。バチルス属菌の指標菌の例としては、種菌であるバチルス・シューリンジエンシスA株,バチルス・ズブチリスB株およびバチルス・ズブチリスC株;実施例において単離方法等を詳述したバチルス・ズブチリスD株,バチルス・ズブチリスE株,バチルス・ズブチリスF株等を用いた。A株+B株,C株,D株,E株,F株は実施例3に記載した方法で汚濁物分解性菌株であることを見出した。
 上記槽12aの曝気量は、DO〔溶存酸素量〕が1mg/Lのとき、ORP〔酸化・還元電位〕140~280mVである。なお、上記槽13aの曝気は通気を行う程度の簡単なものであり、通気量は、DOが0mg/Lで、ORPが-100~-300mVである。
 従来の方法において、第一および第二余剰汚泥槽,汚泥貯留槽,汚泥濃縮槽および濃縮汚泥貯留槽のいずれも曝気された例はない。
 図4は、本発明の排水処理方法(α)の汚泥返送の流れのみを示した模式図であるが、この排水処理方法(α)を通常の連続式処理方法(図1),回分式処理方法(図2)およびOD式処理方法(図3)に適用したときの処理の運転方法を説明する。
 [連続式処理方法の場合]
 通常、大量の下水処理施設などで用いられている連続式処理方法(図1)では、第一処理槽2a(通常、嫌気性に保たれている。)に原水1aを受け入れ、脱窒処理した後、処理した原水を第二処理槽3a、続いて第三処理槽4aで曝気し、そして沈殿槽6aに送り、固液分離した上澄み水を放流水7aとして滅菌後放流する。一方、沈殿槽6a中で固液分離した沈殿を汚泥引き抜き(Xa)し、その一部を第一処理槽2aに汚泥返送(Ya)する。汚泥引き抜きXaした残部を汚泥濃縮槽10aに送り、静置後、上澄み水を引き抜き濃縮し、汚泥貯留槽11aに送る。そして、さらに上澄み水を引き抜き、濃縮した後、搬出汚泥14aとして搬出する。
 なお、現在使用されている下水処理施設において(上記の連続式処理方法,回分式処理方法およびOD式処理方法のいずれの方法を問わず)、沈殿槽6a,第一余剰汚泥槽(または汚泥貯留槽)8a,第二余剰汚泥槽(または濃縮汚泥貯留槽)9a,汚泥濃縮槽10aおよび汚泥貯留槽(または濃縮汚泥貯留槽)11aのいずれにも、曝気装置も撹拌装置も備えておらず、かつ、槽11aから槽2a;槽10aから槽2a;槽11aから槽10a;槽9aから槽2a;槽8aから槽2a;および槽9aから槽8aへの汚泥返送するための設備(装置)も備えていない。
 本発明の排水処理方法(α)をこの連続式処理法に適用したときの処理の運転方法としては、例えば、濃縮汚泥貯留槽11aに曝気装置および/または撹拌装置を設置することによって槽11a中に空気を供給することができる状態にし、槽11aで曝気・撹拌した汚泥を第一処理槽2aに返送する。この汚泥返送量は、原水1aの量(流入量)に対し5~15%/日とし、沈殿槽6aから第一処理槽2aへの汚泥返送Yaの量から、この汚泥返送量分の3~6倍量を差し引く(この差し引き量は、第一処理槽2aのMLSS濃度によって異なる場合がある)。そして、後述する凝集剤,栄養剤および窒素源のいずれか一種以上を適量添加するのが好ましい。
 [回分式処理方法の場合]
 図2に示すように、第一回分槽2aおよび第二回分槽3aに6時間間隔で交互に原水1aを受け入れ、その6時間の間に(1サイクル)曝気と攪拌を行う。よって、通常1日4サイクルで行い、曝気・攪拌の時間は適宜の回数、例えば曝気・攪拌は2~3回/サイクル、曝気時間は約1.5時間×2/サイクル、攪拌時間は約1.5時間×2/サイクルで行う。曝気・撹拌を停止している間に、4~5時間で汚泥の沈殿と処理水の放流を行う。併せて、汚泥の引抜を行う。
 本発明の排水処理方法(α)をこの回分式処理方法に適用したときの処理の運転方法は、実施例で詳述する。
 [OD〔オキシデーションディッチ〕式処理方法の場合]
 原水1aは、OD槽5a(図3:通常は楕円形で、2カ所に曝気装置兼攪拌装置を備えており、槽内は原水が周回できる構成になっている。)に導かれ、流入直後および半周後に曝気・撹拌されながら槽5a中を周回する。OD槽5a中の槽内水(懸濁水)の一部は沈殿槽6aに導かれ、固液分離の後、上澄み水は滅菌後放流水7aとして放流される。沈殿物(汚泥)が引き抜かれ(Xa)、その一部はOD槽5aに汚泥返送Yaされる。引き抜かれた汚泥の残部は、汚泥濃縮槽10aで上澄み水を引き抜かれて濃縮され、そして汚泥貯留槽11aに送られ、そこで上澄み水を引き抜かれて濃縮され搬出汚泥14aとして搬出される。
 本発明の排水処理方法(α)をこのOD式処理方法に適用したときの処理の運転方法としては、例えば、濃縮汚泥貯留槽11aに曝気装置および/または撹拌装置を設置することによって槽11a中に空気を供給することができる状態にし、槽11aで曝気・撹拌した汚泥をOD槽5aに返送する。この汚泥返送量は、原水1aの量(流入量)に対し5~15%/日とし、沈殿槽6aからOD槽5aへの汚泥返送Yaの量から、この汚泥返送量分の3~6倍量を差し引く(この差し引き量は、OD槽5aのMLSS濃度によって異なる場合がある)。そして、後述する凝集剤,栄養剤および窒素源のいずれか一種以上を適量添加するのが好ましい。
 なお、第一処理槽2a,回分槽2aおよび3aならびにOD槽5aへの原水1aの導入にあたって、予め調整槽において原水1aの水質および濃度を平均化することが一般的である。
 上記槽12aから処理槽(回分槽)への余剰汚泥の返送工程に加えて、処理槽や該槽12aおよび上記層13aに処理促進剤を添加することによって、各槽における活性汚泥処理微生物群が、生育阻害物質の流入によるショック状態の解消と汚濁物分解性細菌類の回復,さらには、汚濁物分解性のより一層高い細菌類の出現に高い効果が得られることを見出したのである。
 用いられる処理促進剤は、ケイ素化合物またはマグネシウム化合物(それぞれ単独)でも充分に効果が発揮されるが、ケイ素化合物,マグネシウム化合物,アルミニウム化合物,ペプトンおよび乾燥酵母エキスからなる混合物がより良い効果をもたらす。さらに、ケイ素化合物,マグネシウム化合物,アルミニウム化合物,ペプトンおよび乾燥酵母エキスからなる混合物に窒素源を加えたものに、より一層の効果が認められる。添加頻度は、週1~2回、添加した処理促進剤は、添加後直ちにフロックに吸着される。したがって、フロック内で30~70倍、通常約50倍に濃縮され、微生物群に作用する。各処理槽および/または該槽12aにおいて活性汚泥処理微生物群に生育阻害・ショック状態などが発生したときには、追加的にその都度添加して、活性汚泥処理微生物群の生育を回復させることができる。
 本発明の排水処理方法(α)において、上記槽12aおよび/または13aに、窒素源を添加することが、特に汚濁物分解性微生物群の生育に効果的であるから好ましい。用いられる窒素源としては、ペプトン,酵母エキス、および/または尿素,硫酸アンモニウム,硝酸アンモニウム,塩化アンモニウム等の窒素化合物、貯留汚泥槽12aや13aからの返戻汚泥1種又は2種以上である。上記の処理促進剤と窒素源を併用したときには、汚濁物分解性微生物群の生育に効果的であるとともに、新たな汚濁物分解性微生物群の誘導にも効果が大きい。
 次に、添付した図5~7を参照しつつ、本発明の排水処理方法(β),排水処理システムおよび活性汚泥微生物の汚濁物分解活性測定方法について具体的に説明する。
             <排水処理方法(β)>
 本発明の排水処理方法(β)は、図5に示すように、少なくとも、上記工程(1)~(5)を含む活性汚泥法を用いて排水処理する際に、
・汚泥貯留槽30および/または濃縮汚泥貯留槽50に、曝気装置および撹拌装置のうち少なくとも曝気装置を配設して、上記汚泥返送(I)および/または(II)を行うこと;
・該曝気槽10,該装置付き汚泥貯留槽30および該装置付き濃縮汚泥貯留槽50のうち1槽以上に、汚泥凝集剤および栄養剤を添加すること;
・該汚泥凝集剤および該栄養剤を添加した槽中のバチルス属の細菌数を2.0×105~111×105cfu/mLに保持すること;
を行い、排水処理することを特徴とする。
 このような本発明の排水処理方法(β)を実施することで、汚濁物/汚泥は、デンプン分解性・油脂分解性・タンパク質分解性が高い菌株/微生物群によって効率良く分解される。バチルス属細菌類のうち、国際寄託したA株(デンプン+油脂分解性)とB株(油脂+タンパク質分解性)との組み合わせ、ならびにC株~F株の菌株は、デンプン分解性・油脂分解性・タンパク質分解性を有し、特にA株+B株およびC~F株はタンパク質分解性が高い。G株のカビおよびH~J株の酵母は、高いデンプン分解性・油脂分解性を有し、タンパク質分解性がA株+B株やC株~F株と比較して劣る。そのため、汚濁物/汚泥(特にタンパク質)を効率良く分解するためには、汚泥凝集剤および栄養剤を添加した槽中のバチルス属の細菌数を2.0×105~111×105cfu/mLに保持する必要がある。
 この細菌数の下限値は各所の下水処理施設の細菌叢を分析し、文献の実験プラントの汚泥転換率やバチルス属細菌数を勘案して求めた数値である。現在行っている実験下水処理施設でもほぼ同様の数値を得ている。
 [活性汚泥法]
 活性汚泥は、下水・排水中に存在していた微生物が、有機物の分解,酸素の供給(曝気)により爆発的に繁殖・増殖を行うことにより生じ、これにより下水・排水中の有機性汚濁が減少(処理)されると言われているが、実情は汚泥発生量が高く、汚泥処理費が嵩むなどが活性汚泥法の問題となっている。
 本明細書において、活性汚泥を用いた排水処理を一般に「活性汚泥法」と称する。活性汚泥法は微生物に酸素を与える(方式によっては、一時的に敢えて与えない)手法と、水に混合している活性汚泥をその後分離する工程の形態により、さらに細かく分類されている。酸素を与えるための水槽を曝気槽10と呼ぶ。
 本発明の排水処理方法(β)では、鉄筋コンクリートや鋼板製の水槽(曝気槽10)中に活性汚泥を入れ、送風機で空気を送り込む(槽底から気泡が出るなどの態様であってもよい)。汚水または廃液1を槽内へ少しずつ流入させれば、汚水または廃液1に含まれる汚濁物質が微生物(例えば、種菌叢2)の"餌"となる。流入した汚水または廃液1と同じ量だけ、活性汚泥を含む水があふれ出るので、別の水槽に流れ込ませる。これを汚泥沈殿槽20と呼び、活性汚泥は比重が水よりやや重いため、底へ沈んでたまる。これをポンプなどで汚泥貯留槽30へ流入させ、一時的に汚泥を貯留し、この汚泥を曝気槽10に返送する(これを「汚泥返送」という)。これらを連続して行えるように設計された、一連の設備を用いる。
 このような活性汚泥法は、図5に示すように、典型的には、少なくとも下記工程(1)~(5)を含むものである。
 工程(1):曝気装置および撹拌装置を備える曝気槽10に、種菌叢2を添加した状態で、生物化学的酸素要求量〔BOD〕が80mg/L以上の汚水または廃液1を流入させ、曝気および撹拌することによって、撹拌処理液11を得る曝気工程。
 工程(2):工程(1)で得られた撹拌処理液11を汚泥沈殿槽20に流入させ、静置することによって、上澄み液21と沈殿汚泥22とに分離した後、該上澄み液21を放流水23として系外に排水する分離工程。
 工程(3):工程(2)で得られた沈殿汚泥22を引き抜き、汚泥貯留槽30に沈殿汚泥22を貯留し、その一部を上記曝気槽10に返送する貯留・返送工程。
 工程(4):工程(3)で得られた貯留汚泥を、汚泥濃縮槽40および/または遠心濃縮機60で濃縮する濃縮工程。
 工程(5):工程(4)で得られた濃縮汚泥を、濃縮汚泥貯留槽50に貯留し、その一部を系外に搬出する貯留・搬出工程。
 この活性汚泥法を用いて、下水や生活排水等の汚水,実験排水,工場排水,家畜排水,汚泥処理水などの排水を処理するには、上述したように、三種類の処理方式が存在する。
 上述したように、通常「標準法」と呼ばれる連続式処理方式,回分式処理方法と呼ばれる処理方式およびOD式処理方式に分類される。
 例えば、図7に示すように、回分式処理方式の場合、4槽の処理設備において、排水を曝気装置および撹拌装置、排水装置を備えた第一および第二回分槽70に導入、活性汚泥処理し、両回分槽70の底面に沈殿した汚泥は、汚泥引抜きして汚泥貯留槽30(第一余剰汚泥槽ともいう。)に移送し、さらにこの汚泥を濃縮して濃縮汚泥貯留槽50(第二余剰汚泥槽ともいう。)に貯蔵、適宜搬出して脱水後埋め立て、焼却等に付される。
 一方、回分槽70の上澄み液は排水装置により汲み上げ、河川に放流される。なお、通常原排水は、予め調整槽において、流入排水の水質と濃度を平均化した後処理槽に導入されることが多い。
 [汚水または廃液/上澄み液/放流水]
 「汚水または廃液1」(本明細書において、単に「排水」,「原水」,「原排水」または「下水」ともいう。)は、生物化学的酸素要求量〔BOD〕が80mg/L以上の下水であって、屎尿および豚尿を含むものであってもよい。
 下水,屎尿および豚尿のBODはそれぞれ、80~600mg/L;7,000~12,000mg/Lおよび20,000~40,000mg/Lであることが好ましい。
 「上澄み液21」は、そのBODが「汚水または廃液1」のBODの1%以下であることが好ましい。
 このような排水を処理して公共水域に放流するには、そのBODを20mg/L以下とする規制を満たす必要があるため、「上澄み液21」のBODが20mg/L以下となった時点で「放流水23」として、系外に排水する。
 [曝気槽]
 曝気槽10は、図5に示すように、曝気装置および撹拌装置が配設されている。
 図6に示すように、曝気槽10は、2槽以上直列に連結し、第一槽目の処理槽12では曝気せずに撹拌のみを行う嫌気処理を施し、第二槽目の処理槽13以降で種菌叢2を添加し、曝気および撹拌するような従来の連続式処理に対応する態様であってもよい。
 また、図7に示すように、曝気槽10は、その曝気および撹拌の機能を一時的に停止させることによって、汚泥沈殿槽20を兼用することもできる。
 [種菌叢]
 曝気槽10に添加する「種菌叢2」として、A株,B株およびC株を用いることが好ましい。
 なお、現在まで屎尿分解性が証明された菌株として、A株とB株との組合せ(非特許文献1)およびC株(発明者未発表)以外には知られていない。国際的にも、屎尿分解性菌株や汚濁物分解性菌株は知られていない(あるいは特定されていない)。
 種菌叢として、バチルス属細菌とバチルス属細菌以外の微生物(例えば、カビや酵母など)とを組み合わせて用いて本発明の排水処理方法を実施した場合、汚泥減量化(乾燥重量;従来比)を50%以上にすることは可能であり、2007年の汚泥減量化率は62.75%(なお、汚泥転換率は28.376%)であった。
 一方、農業集落排水処理施設(OD式処理方式を採用し、工場廃液は流入しない。)において、種菌叢2としてA~C株の代わりにA株~J株を用いて汚泥貯留槽で曝気を行い、従来の排水処理方法(ただし、汚泥貯留槽を曝気し、かつOD槽および各汚泥貯留槽(計3槽)に、処理促進剤として、MLSS1g/Lあたり、Al23を0.01~0.5g、SiO2を0.01~2.0g、MgOを0.01~0.5gならびにペプトンを0.8~250mgおよび乾燥酵母エキスを0.1~45mg添加(各槽1m3かつ1日あたり)した。流入水に窒素含量が高かったため、窒素源は添加しなかった。)を2010年3月から実施し、5~7月にかけて、25~30%の汚泥減量化を確認している(なお、2010年7月中旬から、曝気装置および攪拌装置が故障したため、2010年10月30日までのデータを取得することができなかった)。この場合、汚泥減量化が従来比50%に達しなかった原因として、(1) 本発明の排水処理方法のように汚泥返送などを実施していないこと;(2) 曝気槽10や汚泥貯留槽20の汚泥濃度値を早期に受け取れず、対策の立てようがなかったこと;(3) 汚濁物流入量と搬出汚泥量とを正確に把握できなかったこと;(4) 該施設で曝気装置などに故障が頻発したこと等が考えられる。これらA~C株については、実施例で詳述する。
 また、非特許文献2にも記載されているが、実験プラントを用いた場合、汚泥転換率が15.3%であった(なお、滞留時間:12~15時間で、水温:12~24℃である)。この値から、汚泥転換率が90%の処理施設と比べて、80%以上の汚泥減量化を達成できるものと推測される。このことから、種菌叢を添加しなくとも、汚泥減量化50%以上が可能であると考えられるが、この値は実験プラント(4槽の合計3.6m3)を使用して得られた値であり、実機を用いた場合より汚泥減量化が容易である。実験プラントでは生育阻害が発生した場合、曝気量調整,汚泥引き抜きなどの操作が容易で、生育阻害の影響を低く抑えることができることによる。
 [汚濁物高分解性菌叢]
 種菌叢2は、本発明の排水処理方法を実施し、所定の時間が経過した後に、汚濁物高分解性菌叢に誘導されていることが好ましい。
 この汚濁物高分解性菌叢は、デンプン分解性および油脂分解性を有し、かつ下記組成のクックトミート培地(Oxoid)および(Difco)それぞれに含まれる懸濁物質〔SS〕の除去率が70%以上および60%以上であることが好ましく、該クックトミート培地(Oxoid)に含まれるSSの除去率が、80%以上であることがより好ましい。
 なお、クックトミート培地(Oxoid)および(Difco)は、それぞれOxoid社製の「COOKED MEAT MEDIUM」(OXOIDコード:CM0081)およびDifco社製の「Difco(商標) Cooked Meat Medium」(カタログNO.226730)を用いる。
 クックトミート培地(Oxoid)の1リットルあたりの組成は、心筋(乾燥)が73.0g,ペプトンが10.0g,ラブ-レムコ末が10.0g,塩化ナトリウムが5.0g,およびブドウ糖が2.0gである。他方、クックトミート培地(Difco)の1リットルあたりの組成は、牛心筋(乾燥)が98.0g,プロテオースペプトンが20.0g,ブドウ糖が2.0g,および塩化ナトリウムが5.0gである。
 なお、一般に、タンパク質分解性を評価するには、例えば、アルブミン,カゼイン,ゼラチンなどの分解性で示す。しかしながら、カゼインやゼラチンをタンパク質分解性の評価に用いた場合、分解性菌株が多く、汚濁物分解性の指標を得ることが困難であったことから、本発明者が独自にクックトミート培地によるタンパク質分解性の評価を導入した。
 クックトミート培地(Oxoid)および(Difco)約300mgを水6mLに懸濁させ10日間振盪すると、残留するSSはOxoidで49.7%であるのに対して、Difcoでは68.4%となり、この2つの培地はその性質が大きく異なることがわかる。
 汚濁物高分解性菌叢は、種菌叢としてA~C株を用いた場合、D株,E株およびF株からなる群から選択される少なくとも1種のバチルス属細菌を含むか、あるいは該バチルス属細菌を少なくとも1種と、カビであるG株および/またはH株,I株およびJ株からなる群から選択される少なくとも1種の酵母とを含むことが好ましい。
 なお、クックトミート培地を分解できるのは限られた菌株で、例えば、クロストリジウム[Clostridium]属細菌,バクテロイド[Bacteroid]属細菌、セラチア[Serratia]属細菌などが知られている。これら汚濁物高分解性菌叢についても、実施例で詳述する。
 [汚泥凝集剤/栄養剤]
 曝気槽10ならびに、曝気装置および撹拌装置のうちの少なくとも曝気装置を備えた、装置付き汚泥貯留槽30および/または装置付き濃縮汚泥貯留槽50に汚泥凝集剤および栄養剤(本明細書において、汚泥凝集剤と栄養剤とをまとめて単に「処理促進剤」ともいう。)を添加することで、排水処理の効率を上げることができる。
 好ましくは、汚泥凝集剤と栄養剤とともに、装置付き汚泥貯留槽30および/または装置付き濃縮汚泥貯留槽50に窒素源も添加する。
 汚泥凝集剤は、アルミニウム化合物と、ケイ素化合物および/またはマグネシウム化合物とを含むことが好ましく;栄養剤は、ペプトンおよび/または乾燥酵母エキスであることが好ましく;窒素源は、尿素,硫酸アンモニウム,塩化アンモニウムおよび硝酸アンモニウムからなる群から選択される1種以上であることが好ましい。
 これらの、槽中の懸濁物質〔MLSS;mixed liquor suspended solid(曝気槽混合液中の活性汚泥浮遊物)〕1g/Lあたりの添加量(該槽の1立方メートル〔m3〕かつ1日あたり)を下表にまとめる。MLSSとは、曝気槽内の汚水中に浮遊している活性汚泥をいう。
Figure JPOXMLDOC01-appb-T000001
              <排水処理システム>
 本発明の排水処理システムは、図5~7に示すように、上述した活性汚泥法を用いて排水処理する際に、
・汚泥貯留槽30および/または濃縮汚泥貯留槽50に、曝気装置および撹拌装置のうち少なくとも曝気装置を配設して、上記汚泥返送(I)および/または(II)を行うこと;
・該曝気槽10,該装置付き汚泥貯留槽30および該装置付き濃縮汚泥貯留槽50のうち1槽以上に、汚泥凝集剤および栄養剤を添加すること;ならびに
・該汚泥凝集剤および該栄養剤を添加した槽中のバチルス属の細菌数を、2.0×105~111×105cfu/mLに保持すること;
を行い排水処理することを特徴とする。
 排水処理システムに用いる曝気槽10は、図6に示すように、2槽以上直列に連結し、第一槽目の処理槽12では曝気せずに撹拌のみを行う嫌気処理を施し、第二槽目の処理槽13以降で種菌叢2を添加し、曝気および撹拌するような従来の連続式処理に対応する態様であってもよい。
 また、図8に示すように、曝気槽10は、その曝気および撹拌の機能を一時的に停止させることによって、汚泥沈殿槽20を兼用することもできる。
 排水処理システムに係る汚泥凝集剤および栄養剤それぞれに用いる化合物・その添加量ならびにこれら処理促進剤ととともに添加する窒素源として用いる化合物・その添加量は、上述したものと同様である。
        <活性汚泥微生物の汚濁物分解活性測定方法>
 本発明の活性汚泥微生物の汚濁物分解活性測定方法は、上記クックトミート培地に植菌し培養した後のSSの乾燥重量(X)と、別途、上記クックトミート培地に植菌せずに培養した後のSSの乾燥重量(Y)とから、下記式(i):
   SS除去率(%)={(Y-X)/Y}×100 …(i)
を用いて、クックトミート培地中のSS除去率を算出することによって、上記種菌叢または上記汚濁物高分解性菌叢に含まれる活性汚泥微生物の汚濁物分解性能を測定することを特徴とする。この際、デンプン分解性および油脂分解性も併せて考慮することが好ましい。
 なお、デンプン分解性および油脂分解性の測定方法については後述する。
 また、BOD成分の除去率は、JIS K 0102・16に記載の方法に従って測定することができる。以下、その方法を簡単に説明する。
 微生物によって消費される、被検水に含まれる溶存酸素量〔DO〕の消費量(5日間培養)を測定して、mg/Lに換算して表示する。まず、容量が既知の「酸素瓶(例:200mL)」を希釈段階に応じて2本ずつ用意し、各瓶を希釈水で半分まで満たす。被検水の希釈段階は1/2づつとし、最初の濃度の2本の瓶に被検水を一定量(例:40mL)を加え、空間を希釈水で満たす。同様にして、段階的に1/2量の被検水(例:20mL)を一対の酸素瓶に加え、希釈水で満たし、各段階の濃度の被検水を調製する(例:10mL,5mL,2.5mL等)。5分後、各希釈段階1本の瓶の溶存酸素量(A〔mg/L〕とする。)を測定し、他の瓶を密閉状態で、20℃で5日間培養する。培養した後、溶存酸素量を測定し、3.5~6mg/Lの値の希釈段階の数値を採用して溶存酸素量(B〔mg/L〕とする。)とし、「BOD値〔mg/L〕=(A-B)×希釈率」で表示する。植種を行うときは補正する。溶存酸素量は、ウインクラーアジ化ナトリウム法(JIS K 0102・24・3)または溶存酸素計(主として現場)によって測定する。
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 平成18年12月初めに種菌を添加して、本発明の排水処理方法を開始し、以下のように活性汚泥処理を行った。
 実施例で使用した下水処理施設(長野県中野市の公共下水道長嶺浄化管理センター)は、図7に示すように、曝気装置,攪拌装置および処理水引抜装置がそれぞれ配設された、2つの回分槽70(各最大容量:365m3),汚泥貯留槽30(最大容量:40m3)および濃縮汚泥貯留槽50(最大容量:20m3);ならびに遠心濃縮機60(汚泥を最大4.5倍に濃縮することができ、平均で4倍濃縮。)からなる。
 この下水処理施設では、汚泥貯留槽31から回分槽70へ汚泥を返送する装置のみを備えており(通常は回分式処理施設では汚泥を返送する装置を備えていない。)、また汚泥貯留槽30および濃縮汚泥貯留槽50には、曝気装置,攪拌装置および処理水引抜装置のいずれも備えていなかった。
 そこで、新たに、上記のとおり汚泥返送(i)~(iii)を行う経路を配設した。
 さらに、汚泥貯留槽30および濃縮汚泥貯留槽50それぞれに曝気装置および攪拌装置を新たに配設した。ただし、濃縮汚泥貯留槽50に配設した曝気装置は、パイプを槽に装着して、空気攪拌を主目的として攪拌装置を補助的に用いた。なお、濃縮汚泥貯留槽50中のMLSS濃度が15,000mg/L以上では正常に曝気することができない。
 汚水または廃液1(以下「原水」ともいう。)の流入量は、184.8m3/日(平成17年)~184.9m3/日(平成21年)であり、滞留時間は約4日間であった。この原水の流入を6時間間隔で切り替え、1日あたり4サイクルで運転していた。各サイクル中、2回の曝気・攪拌(計6時間)を行い、3時間の沈殿および上澄み液21の放流を行った。この条件で運転すると、もっとも汚泥沈降性が良好であったためである。
 回分槽70の曝気量は、ORPで50~300mV(通常100~280mV)であり;汚泥貯留槽30の曝気量は、ORPで-50~300mV(通常100~280mV)であり;濃縮汚泥貯留槽50の曝気量は、ORPで-350~-100mV(通常-300~-100mV)であった。
 汚泥貯留槽30の汚泥を濃縮する遠心濃縮機60は、平成17年(2005年)では汚泥貯留槽30の汚泥平均3m3/日を1m3/日に濃縮したが、平成21年(2009年)では4.2~4.8m3/日の汚泥を1m3/日に濃縮した。
 汚泥返送(i)の汚泥返送量は、原水流入量に対して、従来の標準法で15~50%(通常は最大70%)、回分法で10~30%であり、一方、実施例では約11~16%(回分槽70の槽容量に対して2.7~4.1%に相当する。)であった。
 また、汚泥返送(iii)の汚泥返送量は、汚泥濃縮機を備える施設において、原水流入量に対して1.6~6%(汚泥貯留槽30の槽容量に対して7.5~30%に相当する。)であり、一方、実施例では平均1.6~2.8%/回・週2回(汚泥貯留槽30の槽容量に対して7.5~12.5%/回・週2回に相当する。)であった(特開2000-189991号公報および特開平10-216789号公報を参照)。
 [実施例1および比較例1]
 実施例1は、すなわち、図2に示した回分式活性汚泥処理装置に、図4に示した曝気・撹拌可能な第一余剰汚泥槽12aおよび第二余剰汚泥槽13aならびに第一汚泥返送工程Vaを可能とする装置を設置して用いた。
 比較例1として、図2に示した回分式活性汚泥処理装置を用いて、平成17年1月初めから平成17年12月末までの実施結果を示す。比較例1における第一余剰汚泥槽8aおよび第二余剰汚泥槽9aは、曝気・撹拌の装置は有していない。この期間は、汚泥返送工程に用いる第一余剰汚泥槽9aから回分槽へ汚泥返送できる装置を備えていた。
 最大容量365m3の処理槽である第一回分槽2aおよび第二回分槽3aに、最大量340m3に維持するように長野県中野市長嶺地区下水を原水として流入させ、4サイクル運転、1サイクル中に2回の曝気と撹拌を行った。1サイクル約45m3の処理量(=放水量、すなわち流入量)にて運転した。
 種菌として、バチルス・シューリンジエンシスA株,バチルス・ズブチリスB株およびバチルス・ズブチリスC株を、第一回分槽2aおよび第二回分槽3aならびに第一余剰汚泥槽8aに添加した。
 この間、両回分槽から合計最大量約30m3/日(=汚泥返送量)の汚泥引き抜きと汚泥返送を行った。下水処理量は約185m3/日であった。処理運転中、原水の流入量の16%量の第一汚泥返送工程Vaの最大量を行った。この間、各回分槽中のバチルス属細菌数がおおよそ3×105cfu/mLにまで低下したとき、余剰汚泥引抜き量と返送量とを増加して汚濁物分解活性を持った汚濁分解性微生物数(汚濁物分解性のバチルス属菌を指標として)を、2.0×105~22.5×105cfu/mLに維持した。
 処理水(原水,処理済み水)の微生物数(バチルス属菌数)・水質(BOD)・トータル窒素〔T-N〕・全隣化合物量〔T-P〕ともに2回/月測定して月平均値を算出し、年平均値で表した。微生物数は1回/週で総細菌数とバチルス属細菌数とを計測した。原水流入量、BODとSSの流入量と除去率(年平均)を表2に、流入T-N,T-P量および除去率を表3に示した。
 また、処理槽における総曝気時間(年間および一日当たり)を表4に示した。なお、ORPは(DOが1.0~1.1mg/Lで)100~270mVに維持した。
 汚濁物分解性の指標として、汚泥搬出量・汚泥減量化率・汚泥転換率を表5に表した。
 実施例1の第一回分槽2aおよび第一余剰汚泥槽8a中の微生物数(バチルス属細菌数)の測定値を表6に示した。なお、主として沈降性を保つ目的で、両回分槽MLSS濃度を汚泥引き抜き量の増減によって調整したところ、両回分槽MLSSは2,700~4,300mg/L(比較例1において両回分槽MLSS濃度1,250~2,150mg/mL)の範囲に保たれた。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例1においては、排水中のBOD流入量が大幅に増加したにもかかわらず、BODおよびSSの除去率においても比較例1に比べ著しく改善されていた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 比較例1において、運転中、毒性物質を含む工場排水と思われる生育阻害物質の流入により、しばしば活性汚泥微生物群がショック状態を起こしたので、沈降性を良くするため汚泥の引き抜きを行った。また、1月29日,2月26日,3月26日,4月16日および4月26日にバチルス属細菌数の減少(1月29日および2月26日を除く)を伴う強いショック状態に陥り、沈降性の阻害が起ったので、汚泥引き抜きと汚泥返送量の増加により、バチルス属細菌数の正常値への回復効果を得た。6月に汚泥の膨潤が起こり、沈降性が悪くなったので6月4日,6月11日,6月18日,6月25日および7月2日に凝集剤(ポリ塩化アルミニウム〔pac〕;式[Al2(OH)n・Cl6-n]mで表され、1≦n≦5およびm≦10を満たす。)を1.5Lづつ両回分槽に添加して運転したところ、7月30日には細かい泡が浮上して沈降性が良くなった。
 汚泥減量化率は、比較例1に比し実施例1では62.745%という極めて高い減量を示した。なお、比較例1においては、種菌添加前でバチルス属細菌数が約6×105cfu/mLと異常に多かったにもかかわらず、分解性が低かった。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 [実施例2]
 実施例2として、実施例1と同様に、平成20年1月~12月にかけて本発明の排水処理方法(α)を行った。この間、曝気・撹拌を行った第二余剰汚泥槽13aから第一余剰汚泥槽12aへ第一余剰汚泥槽中の汚泥量の25%量/週の汚泥返送(図4において第二汚泥返送工程Wa)を行った。
 原水流入量,BODとSS(懸濁物質)の流入量と除去率(年平均)を表7に、流入T-N,T-P量と除去率を表8に示した。
 また、処理槽における総曝気時間(年間および1日当たり)を表9に示した。
 さらに、汚濁物分解性の指標として、汚泥搬出量・汚泥減量化率・汚泥転換率を表10に表した。
 また、実施例2の第一回分槽2aおよび第一余剰汚泥槽12a中の微生物数(バチルス属細菌数)の測定値を表11に示した。なお、主として沈降性を保つ目的で、両回分槽MLSS濃度を汚泥引き抜き量の増減によって調整したところ、両回分槽MLSSは2,300~4,200mg/L(比較例1において両回分槽MLSS濃度1,250~2,150mg/mL)の範囲に保たれた。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表10が示すように、第二余剰汚泥槽13aから第一余剰汚泥槽12aへ汚泥返送(図4において第二汚泥返送工程Wa)を行うことによって、汚濁物除去、汚泥減量率に顕著な改善がみられた。
Figure JPOXMLDOC01-appb-T000012
 上記バチルス属菌数から明らかなように、曝気量を特に変更しなくても、第二余剰汚泥槽13aから第一余剰汚泥槽12aへの汚泥返送(第二汚泥返送工程Wa)ならびに第一余剰汚泥槽12aから第一回分槽2aおよび第二回分槽3aへの汚泥返送(第一汚泥返送工程Va)でバチルス属細菌数が早期に回復、安定した処理運転が可能となった。
 [実施例3]
 実施例3として、処理促進剤および栄養剤をさらに添加した以外は実施例2と同様に、平成21年1月~12月にかけて本発明の排水処理方法(α)を行った。すなわち、実施例3は、本発明の排水処理方法(β)の好ましい態様を実施したものである。この間、曝気・撹拌した第二余剰汚泥槽13aから第一余剰汚泥槽12aへ第一余剰汚泥槽中の汚泥量の25%量/週の汚泥返送(図4において第二汚泥返送工程Wa)を行った。
 また、実施例3において、各回分槽(第一回分槽2aおよび第二回分槽3a)に処理促進剤(凝集剤)および栄養剤として、SiO2を450g、Al23を230g、MgOを680g、ペプトンを17.6g、乾燥酵母エキスを3.5g、2回/週添加した。添加した処理促進剤は、添加後直ちにフロックに吸着された。処理促進剤は、フロック内では、約50倍に濃縮されている。
 さらに、第一余剰汚泥槽12aに、SiO2を100g、Al23を55g、MgOを160g、ペプトンを17.6g、乾燥酵母エキスを3.5g、2回/週添加した。
 原水流入量,BODとSSの流入量と除去率(年平均)を表12に、流入T-N,T-P量と除去率を表13に示した。
 また、処理槽における総曝気時間(年間および1日当たり)を表14に示した。
 さらに、汚濁物分解性の指標として、汚泥搬出量・汚泥減量化率・汚泥転換率を表15に表した。
 また、実施例3の第一回分槽2aおよび第一余剰汚泥槽12a中の微生物数(バチルス属細菌数)の測定値を表16に示した。なお、主として沈降性を保つ目的で、汚泥引き抜き量の増減で両回分槽MLSS濃度を調整したところ、両回分槽MLSSは2,100~4,000mg/L(比較例1において両回分槽MLSS濃度1,250~2,150mg/mL)の範囲に保たれた。
Figure JPOXMLDOC01-appb-T000013
 表12に示したように、実施例3の場合、比較例1に比し流入BODは35%増加しているにも関わらず、放流水量BODは57%減少し、除去率は0.39%向上していた。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 両回分槽と第一余剰汚泥槽12aにおいては、DOが1.0~1.1mg/Lで、ORPが100~270mVに維持した。第二余剰汚泥槽13aではORPが-180~-310mVを示していた。
Figure JPOXMLDOC01-appb-T000016
 表15が示すように、第二余剰汚泥槽13aから第一余剰汚泥槽12aへ第二汚泥返送工程Waを行い、処理促進剤および栄養剤を添加することによって、汚泥減少化率は、比較例1に比べ50%減量した。汚泥減量化率に顕著な改善がみられた。
 また、表16が示すように、年間を通してバチルス属細菌数は第一回分槽2aおよび第一余剰汚泥槽12aにおいても極めて安定であり、汚泥返送と処理促進剤および栄養剤との効果が明瞭に観察され、排水の質向上と、高汚泥減量化率が実証された。
Figure JPOXMLDOC01-appb-T000017
 さらに、第一余剰汚泥槽12aから、デンプン分解性・油脂分解性・セルロース分解性が極めて高いカビおよび酵母菌が見出された。これらは、大気中から自然に飛来したものや原水中に元々含まれていたものが、第一余剰汚泥槽12aにおいて高い汚泥物質分解能を取得したものと推察される。
 本発明の高い効率の排水処理効果に加え、高い汚泥分解性を分析したところ、従来法に拠るときは原排水とともに糸状菌の流入や汚泥が膨潤して沈降性が悪くなり、汚泥処理効率を低下させる事態がしばしば起きていた。
 しかしながら、本発明の排水処理方法における第一余剰汚泥の返送によって、回分槽における糸状菌の生育が弱くなり、運転の中期からは生育が認められなくなった。第一余剰汚泥槽12aからペニシリウム・ターバタム[Penicillium turbatum]と同定したカビが分離された。28S rDNA塩基配列と系統樹から同定した。ペニシリウム・ターバタムは、抗生物質生産菌として知られており、これが流入した糸状菌の生育を抑制したものと考えられる。本菌は、強いデンプン分解性・油脂分解性・セルロース分解性を有し、バチルス属細菌であるD株,E株,F株と協奏して汚濁物分解に寄与している。なお、このカビはペニシリウム・ターバタムG株として、国際寄託されている。単離は、上記方法を用い、細菌類分析中に出現し、釣菌した。
 さらに、第一余剰汚泥槽12aの汚泥の顕微鏡観察から酵母の生育が確認され、単離を行って、26S rDNA塩基配列の相同性と系統樹から、ジェオトリカム・シルビコーラ(=ガラクトマイセス・ジェオトリカム[Galactomyces geotrichum])H株,ピチア・フェルメンタンスI株,ピチア・グイリイエルモンデイイJ株と同定した3株を確認した。これらも国際寄託されている。
 これら酵母類も強いデンプン分解性・油脂分解性・セルロース分解性を有しており、バチルス属細菌であるD株,E株,F株と協奏して汚濁物分解に寄与している。
 すなわち、添加した種菌は、C株を除いて平成19年7月頃には消失し、より分解性の高いバチルス属細菌が出現し始め、平成20年5月~7月にかけて、C株と近縁である、D株,E株およびF株の分解性の高いバチルス属細菌3株が出現した。さらに、分解性の高いバチルス属細菌類に加え、汚濁物とセルロース分解性を示すカビおよび酵母類が平成21年1月から出現し、汚濁物分解に寄与している。
 [汚泥返送について]
 実施例1~3において、汚泥返送の運転は、平成17年度までは汚泥返送(i)の経路(図7)で各回分槽当たり5m3/日で行った(自動運転)。
 実験開始後、平成19年1月~平成20年5月まで、汚泥返送(i)を各回分槽当たり5~15m3/日(自動運転),汚泥返送(iii)を1~5m3/点検時・週2回行った(手動運転)。汚泥返送(i)の返送汚泥量は10~15m3(この施設の許容最大量)で処理の改善が見られた。汚泥返送(iii)は3~5m3(この施設での最大許容量)が適量であった。汚泥返送(ii)は、平成19年1月~6月頃まで間欠的に行ったが、濃縮汚泥貯留槽50の汚泥濃度変化が大きく、返送用ポンプの揚力不足のため返送することが困難であった。しかしながら、汚泥返送(ii)の有効性は確認している。
Figure JPOXMLDOC01-appb-T000018
 汚泥返送(i)は、平成20年7月から各回分槽に10m3以上/日で運転すると効果を発揮し、15m3/日(この施設での許容最大量)ではさらに効果を示した。特に生育阻害剤流入時、回分槽70での分解性細菌類の回復・維持にこの汚泥返送(i)が安定して効果を発揮するようになった。
 汚泥返送(ii)は、濃縮汚泥貯留槽50の汚泥濃度が高い場合、揚力不足でポンプが作動せず、平成19年短期間の運転で中止した。
 汚泥返送(iii)は、5m3/点検時・週2回で安定した効果を示したが、施設の槽容量の制限で3~5m3/点検時・週2回(許容最大量)で運転した。
 [処理促進剤の添加量について]
 平成19年~平成20年は試行を続け、平成20年7月から各槽への添加量が定まった。
 汚泥凝集剤(無機性化合物)として、アルミニウム化合物,ケイ素化合物,マグネシウム化合物を;栄養剤(有機性化合物)として、ペプトンおよび乾燥酵母エキスを;および窒素源を添加した。
 図7において、各回分槽70(表18),汚泥貯留槽30(表19)および濃縮汚泥貯留槽50(表20)への処理促進剤および窒素源の添加量を示した。アルミニウム化合物,ケイ素化合物およびマグネシウム化合物それぞれの添加量を酸化物重量で記載した。また、窒素源の添加量をN2換算値で記載した。
 添加した処理促進剤は、添加後、直ちにフロックに吸着される。フロックは、遠心分離や濾過の操作で容易に集められ、MLSS濃度5,000mg/Lの汚泥が含水率75%のとき、占める容積が約20mLである。すなわち、添加した処理促進剤はフロック内で50倍以上に濃縮される。なお、下水(汚濁物を含む排水)を曝気すると汚濁物質が凝集して細かい懸濁物が形成される。この懸濁物質が「フロック」と呼ばれる。
Figure JPOXMLDOC01-appb-T000019
 窒素源は、回分槽70に添加するよりも、汚泥貯留槽30に添加する方が汚濁物分解性微生物類の生育により効果的であった。ペプトンおよび乾燥酵母エキスの添加濃度は、回分槽でペプトン0.055mg/L,乾燥酵母エキス0.011mg/Lと濃度が低いが、汚濁物分解性微生物の生育に効果が認められた。ペプトンおよび乾燥酵母エキスは槽内水フロックに吸着されるため、微生物の生育するフロック内では50倍以上の濃度となり、効果を示すと考えられる。
Figure JPOXMLDOC01-appb-T000020
 汚泥貯留槽30への処理促進剤は、平成20年7月から定まり継続して同じ量を添加した。汚泥貯留槽30では、滞留時間が24時間であるが、汚泥減量化に効果を示した。
Figure JPOXMLDOC01-appb-T000021
 濃縮汚泥貯留槽50への処理促進剤の添加は、栄養剤および窒素源が効果的であった。添加によって、分解性菌株(バチルス属細菌およびカビ,酵母類)が住み着いて、汚泥分解・分解性菌株数の維持に効果を発揮した。
 平成20年7月以後の添加量で安定した処理が可能となり、分解性細菌類が安定して生育し、汚泥発生量の減少が継続して見られた。また、汚泥沈降性の向上や汚濁物分解に効果的であった。表21に見られるように、平成21年5月頃から汚濁物分解性微生物数も含め安定して検出した。平成21年7月頃から特に汚泥分解や処理水質の向上が見られた。
 [汚濁物分解性の高い微生物類(汚濁物高分解性菌叢)の推移について]
 実施例で用いた下水処理施設は、BOD成分の除去とT-N除去およびT-P除去がともに優れていた。BOD成分の除去には、(a-1)バチルス属細菌類,(a-2)ロドコッカス・ラバー[Rhodococcus rubber],(a-3)マイクロコッカス・ルテウス[Micrococcus luteus]および(b)カビおよび酵母類が主に貢献し、T-N成分の除去には(a-1)バチルス属細菌に加え、(a-4)アルカリゲネス・フェーカリス[Alcaligenes faecalis],(a-5)パラコッカス[Paracoccus]属細菌類および(a-6)ロドバクター[Rhodobacter]属細菌がT-N除去に寄与しており、T-P成分の除去には(a-6)ロドバクター[Rhodobacter]属細菌,(a-7)スフィンゴバクテリウム[Sphingobacterium]属細菌および(a-8)リゾビウム・ロティ[Rhizobium loti]が寄与していると考えられる。
 (a)細菌類
 (a-1)バチルス属細菌類
 表21に、検出されたバチルス属細菌数を年度別にまとめた。
 実験施設の平成18年12月におけるバチルス属細菌数は、回分槽で平均5.5×105cfu/mLであった。ここに種菌叢2として、A株,B株およびC株の3菌株(濃度約1:1:3)を合計で、各回分槽に2.5×106cfu/mLの濃度になるよう添加した。
 一方、汚泥貯留槽30には添加前バチルス属細菌数7×105cfu/mLに対し、上記3菌株(濃度比1:1:3)を2×106cfu/mLになるよう添加した。
 種菌添加後、平成19年は1週間単位で、平成20年以降は2週間単位で総細菌数およびバチルス属細菌数を計測した。
 A株は平成19年4月には消失した(生育阻害物質の流入が続き細菌数急減)。B株は、平成19年7月頃には消失した(生育阻害物質の流入によって細菌数急減)。C株は、添加後平成19年5月頃までは検出された。
 その後、16S rDNAに基づく分析で、C株と同一の塩基配列・長さを有し、より分解性の高いD株(B.subtilis)(表21)が平成19年5月頃から出現し、平成19年7月頃にはバチルス属細菌の約90%を占めた。
 さらにその後、16S rDNA塩基配列でC株と同一の塩基配列・長さを有し、さらに分解性の高いE株(B.subtilis)およびF株(B.subtilis)(表21)が平成19年10月頃から出現し、この時期濃縮汚泥貯留槽50で汚泥分解が顕著に進んだ(平成19年10月~平成20年1月、濃縮汚泥貯留槽50でMLSS(濃縮直後17,000~18,000mg/L)が9,500~15,500mg/Lに低下した)。
 汚濁物分解性を比較すると、C株<D株<E株<F株であった(表21)。
 平成20年11月にはバチルス属細菌数の内、D株+E株+F株で90%以上を占め、D株30~70%;E株10~30%;F株10~20%の割合であった。平成21年7月、D株10~30%;E株10~30%;F株30~80%を占めた(表21;(注3))。
 菌株の識別・同定法は(注3)に記載した。
 D株,E株およびF株は、Clustal Xによる16S rDNA塩基配列の解析および遺伝子系統樹から、種菌C株が、より汚濁物分解性の高い酵素生産性株に誘導された変異株と推定される。
 これらバチルス属細菌の汚濁物分解性は、デンプン分解性・油脂分解性・タンパク質分解性に基づくと考えられるが、汚濁物分解性の差は、菌株または菌株群がデンプン分解性・油脂分解性を備える場合、クックトミート培地(筋肉性タンパク質)分解性で評価できた。A株~F株および下水処理施設の活性汚泥希釈液のクックトミート培地中の懸濁物質〔SS〕除去率を表22に示した。
 (注1)  下水処理施設において標準法で下水処理する場合、バチルス属細菌数は2×105cfu/mL以下で通常0.5×105cfu/mL以下で出現し、活性汚泥のクックトミート分解性は弱い(表22)。
 (注2)  A株はデンプン分解性・油脂分解性・カゼイン分解性を示し、B株は油脂分解性・筋肉性タンパク質(クックトミート)分解性を示す。
 各菌株単独では屎尿分解性を示さないが、A株+B株で強い屎尿分解性を示し、クックトミート培地分解性も大幅に向上する(表24)。C株は処理の良好な屎尿処理施設から単離した菌株で、デンプン分解性、油脂分解性、筋肉性タンパク質分解性を示す(表24)。
 (注3)  実施例で使用した下水処理施設では、B.thuringiensisの出現が0.25×105cfu/mL以下と少なかった。平成19年4月にはB.thuringiensisは1×104cfu/mL以下となった。B.thuringiensisはコロニーの形状と菌体の大きさ(φ1μm以上)から容易に識別できる。
 (注4)  B株およびC株(いずれもB.subtilis)の識別は、コロニーの形状とクックトミート培地分解性および16S rDNA分析に依った。B株は、16S rDNA塩基配列に基づく遺伝子系統樹で、B.subtilis標準株(ATCC 6051,AJ276351)より起源が古く、容易に識別できる。Clustal Xによるアライメントを行うと、C株は、16S rDNA塩基配列(塩基数1,510 bp;図8)で276番目の塩基が"R"(「A」または「G」:C株には16S rDNA部分が複数箇所(コピー)存在し、それらの約半数の276番目塩基が「A」、残りが「G」である。)で、B.subtilus標準株の相当する塩基は"A"(16S rDNA部分は複数個存在する。)であった。また、C株は配列の先端(5'末端)でB.subtilus標準株の16S rDNA塩基配列より9塩基("GAGTTTGAT")長く、末端(3'末端)はB.subtilis標準株が16塩基長い。C株はこれら遺伝子分析から容易に識別できる。D株,E株およびF株はC株と同一の塩基配列・長さを有すること、培養したコロニーの形状とクックトミート分解性の違いによって識別した(表21)。C株,D株,E株およびF株は極めて近縁であることがわかった。
 (注5)  屎尿は分解し難く、屎尿処理施設の滞留時間は通常15日間である。屎の分解が進めば悪臭の低減化や汚泥減量化に繋がると考えられ、屎尿分解性菌株を種菌として使用した。
Figure JPOXMLDOC01-appb-T000022
 表21において、平成18年12月4日に種菌叢2を添加したが、種菌培養の際に熱がかかり、胞子は発芽しがたかった。回分槽70および汚泥貯留槽30で2月中旬にほぼ発芽してバチルス属細菌数が急増した。平成19年2月下旬まで汚泥搬出を行わず運転した。
 また、平成19年5~8月まで、濃縮汚泥貯留槽50で増加していたMLSSが平成19年10月~平成20年1月に、約17,500mg/Lに濃縮されたMLSSが分解を受け、約30日間で9,500~15,500mg/Lに低下した(約10,000ppm/L低減化)。より分解性の高いD株,E株およびF株が出現した後、顕著な汚泥減量化が見られた。
 さらに、汚泥貯留槽30の汚泥は遠心濃縮機60で、平成19年1月以降平成20年1月までは約3~3.5倍に、それ以降は約4.2~4.8倍に濃縮された。平成21年7月以降、濃縮汚泥貯留槽50のMLSS濃度は汚泥貯留槽30の約3.1倍かそれ以下であって、濃縮汚泥貯留槽50でも汚泥の分解が起こっていることが判明した。バチルス属細菌濃度を比較すると、約4.8倍で、バチルス属細菌が増加していることが分かった。一般の下水処理施設では、バチルス属細菌数はMLSS濃度に比例せず、汚泥貯留槽30に相当する汚泥貯留槽で回分槽の1.1~1.2倍である。
 (注6)  活性汚泥細菌の分離:
 ニュートリエント・ブロス(Oxoid社製,コード:CM0001)8g,グルコース7g,ペプトン-P(Oxoid社製,コード:LP0049)4g,乾燥酵母エキス(Bacto社製,コード:212750)2gおよび寒天15gを蒸留水1,000mLに溶解させ、121℃で15分間滅菌した。滅菌したφ9cmのシャーレに、それを20mLずつ分注して平面培地を作製した。
 乾燥後、活性汚泥の100倍希釈液および10,000倍希釈液を調製し、それぞれ0.1mLずつを平面培地上に添加しコンラージ棒で拡げた。
 32℃で4~5日間培養しコロニーを観察した。
 (注7)  クックトミート培地中のSS除去率測定法:
 φ18mmの試験管2本に、Oxoid社製のクックトミート培地(CM0081)およびDifco社製のクックトミート培地(226730)をそれぞれ250~350mg量り取り、蒸留水6mL加えて121℃で15分間滅菌した。1本ずつに菌株を植菌して32℃で10日間振蘯培養した。
 ブランクとして、植菌しない試験管も同様に振蘯培養した。
 10日間後、φ55mmのガラス繊維フィルタ(アドバンテック社製GS25;またはワットマン社製GF/A)で懸濁物を濾集し、125℃で2.5時間乾燥して懸濁物質乾物重量を測定した。
 クックトミート培地に植菌し培養した後の懸濁物質〔SS〕の乾燥重量(X)と、別途、クックトミート培地に植菌せずに培養した後のSSの乾燥重量(Y)とから、下記式(i):
   SS除去率(%)={(Y-X)/Y}×100 …(i)
を用いてSS除去率を算出した。
Figure JPOXMLDOC01-appb-T000023
 A株(B.thuringiensis)およびB株(B.subtilis)は、単独では屎尿を分解できないが共存すると激しい分解性を示す(表24および非特許文献1を参照)。これらのSS除去率から、Oxoid社製で70%以上、Difco社製で60%以上のSS除去率を示し、かつ、デンプン分解性および油脂分解性を有する場合、汚濁物高分解性菌株と判定した。A株+B株,A株+B.subtilisTおよびC株はこの条件を満たし、D株,E株およびF株は汚濁物高分解性であると判定できる。
 また、実験開始前の下水処理施設活性汚泥(100倍希釈液)と実験開始後(平成21年10月)活性汚泥(100倍希釈液)のOxoid社製とDifco社製とにおける懸濁物質〔SS〕除去能を比較すると、実験開始後大幅に増加している(表22)。
 なお、D株+H株,E株+H株,F株+H株において、SS除去率が低下しているが、活性汚泥中ではこの様な現象は起こっていないと考えられる。なぜならDifco製ではH株の生育が旺盛になり、D株,E株およびF株の生育が抑制され数が少なくなるためと考えられるからである(顕微鏡観察から)。D株,E株およびF株のプロテアーゼ活性阻害を行っているためではないと思われる。
 なお、平成22年(2010年)になって、汚泥減量化がより一層進んでいる。すなわち、A株+B株は消失し、C株がD株,E株,F株,IRN-110株,IRN-111株などのより汚濁物分解性の高い菌株に変異している。A株+B株の効果は、C株が下水/汚濁物に順応し、D株(E株,F株,IRN-110株,IRN-111株など)に変異する過程で、汚濁物を分解してC株の生育/順馳を支えることであると考えられる。A株+B株を添加した事で、C株の生育停止を防ぎ、C株を繰り返し添加する必要がなかったと思われる。
 下記のバチルス属細菌はすべてC株と同じ16S rDNAを有しており、クックトミート培地(Oxoid)および(Difco)それぞれのSS除去率を下表にまとめる。
Figure JPOXMLDOC01-appb-T000024
 表23から、平成21年(2009年)までに単離されたバチルス属細菌はOxoidのSS除去率が高くてもDifcoのSS除去率が低い場合があったが、平成22年(2010年)になってDifcoのSS除去率が向上し、OxoidのSS除去率/DifcoのSS除去率の比が小さくなってきた。2010年になって汚泥減量化はさらに進んでいる。
 汚濁物分解性が高い微生物群として、定性的にデンプン分解性・油脂分解性を示し、繊維性タンパク質であるクックトミート培地中のSS除去率がOxoid社製で70%以上、Difco社製で60%以上を示す場合であると定義した根拠について、以下に説明する。
Figure JPOXMLDOC01-appb-T000025
 通説では、下水汚泥は活性汚泥細菌が主要構成物であるとされているが、実際は下水に含まれる未分解汚濁物が下水汚泥の主要構成物であると考えられる。下水汚濁物の大半は生物由来のため、デンプン・油脂・タンパク質から構成され、屎尿が未分解汚濁物の半分以上を占めると考え、屎尿分解性菌株に注目した。屎尿処理施設から単離したA株,B株,A株+B株,C株についてデンプン分解性,油脂分解性,クックトミート培地中のSS除去率を測定したところ、屎尿分解性であるA株+B株およびC株が、デンプン分解性・油脂分解性を示し、SS除去率においてOxoid社製で70%以上、Difco社製で60%以上を示すことが判明し(表22,24)、これらの生化学的性質を備える菌株あるいは菌叢を汚濁物高分解性であると定義した。A株およびB株は単独では屎尿分解性を示さなかった。汚濁物高分解性は、単独の菌株または菌叢であって、細菌,酵母およびカビのそれぞれが単独であっても2種以上で構成されてもよい。
 (a-2)ロドコッカス・ラバー[Rhodococcus rubber]
 ポリヒドロキシアルカン酸分解性,植物油分解性,各種環状炭化水素(シクロドデカン等)の分解性,高級炭化水素エーテル化合物の分解性,メチル-t-ブチルエーテルの分解性,2級-アルキル硫酸分解性など、多岐に渡る合成化合物資化性が知られている。洗剤や油脂、その他の高分子化合物の除去に寄与していると考えられる。平成21年7月、回分槽70で、4×105~8×105cfu/mL、汚泥貯留槽30で7×105~14×105cfu/mL見られ年間を通じて検出された。特有のコロニーの形状から(コロニーは4種類の形状を示す)容易に識別できる。16S rDNA分析から確認した。
 (a-3)マイクロコッカス・ルテウス[Micrococcus luteus]
 高級脂肪酸資化性,エステラーゼ生産性,C16炭化水素資化性等を示し、洗剤などの高分子化合物の除去に寄与していると考えられる。コロニーの形状と菌体の検鏡によって容易に識別可能である。平成21年7月、回分槽70で1×105cfu/mL以下、汚泥貯留槽30で1×105~4×105cfu/mL検出された。
 (a-4)アルカリゲネス・フェーカリス[Alcaligenes faecalis]
 硝酸イオン利用性および脱窒性を示す。また、脱窒に伴いBOD成分を消費する。薄く着色した透明の、特有の形状のコロニーを形成し、容易に識別できる。年間を通じて、平成21年7月で、回分槽70で総細菌数の約25%、汚泥貯留槽30で総細菌数の約50%を占めた。
 (注8)  10年前まで(または現在でも)の通説では、好気性で脱窒は起こらないとされてきた。しかし、Alcaligenes faecalisとParacoccus denitrificansとの研究が進み現在では好気性での脱窒が認めらるようになってきている。
 (a-5)パラコッカス[Paracoccus]属細菌類
 これら3株の種は未同定である。いずれも脱窒性を示し、脱窒する際BOD成分を資化する。薄いまたは濃いピンク色の透明なコロニーを形成し容易に識別可能である。平成21年7月、回分槽70で2×105~6×105cfu/mL、汚泥貯留槽30で4×105~12×105cfu/mL出現した。
 (a-6)ロドバクター[Rhodobacter]属細菌
 硝酸イオン還元性・脱窒性を示し、リン酸を代謝する。特有のコロニーを形成し容易に識別できる。平成21年7月、回分槽70で2×105~6×105cfu/mL、汚泥貯留槽30で2×105~8×105cfu/mL検出した。
 (a-7)スフィンゴバクテリウム[Sphingobacterium]属細菌
 脱窒性・リン脂質(スフィンゴ脂質)蓄積性を示す。黄色のコロニーを形成し容易に識別できる。リン酸の除去に寄与すると考えられる。平成21年7月、これらは回分槽70で<1×105cfu/mL、汚泥貯留槽30で1×105~4×105cfu/mL出現した。(a-8)リゾビウム・ロティ[Rhizobium loti]と区別し難い場合がある。
 (a-8)リゾビウム・ロティ[Rhizobium loti]
 リン酸の代謝に関係し、リン酸の除去に関与していると考えられる。回分槽70で<1×105cfu/mL以下、汚泥貯留槽30で1×105~4×105cfu/mL見られた。(a-7)スフィンゴバクテリウム属[Sphingpbacterium sp.]と区別し難い場合がある。
 (b)カビおよび酵母類
 (b-1)カビ(G株)
 G株(ペニシリウム・ターバタム[Penicillium turbatum])は、平成21年5月頃から細菌数計測の際、汚泥貯留槽30から検出されるようになり、平成21年9月、汚泥貯留槽30で、5×105cfu/mL、回分槽70で2.5×104cfu/mL検出した。単離した一連の菌株は、28S rDNA塩基配列の相同性と遺伝子系統樹からPenicillium turbatumと同定した。強いデンプン分解性・油脂分解性・セルロース分解性を示す。P. turbatumは、抗生物質を生産することが知られている。下水処理施設で、平成21年1月頃から、流入する糸状菌類の生育性が回分槽で弱くなり、平成21年5月以降には生育できなくなった(分解中の糸状菌類は多数見られる)。
 (b-2)酵母類
 酵母類は、汚泥貯留槽30の汚泥の検鏡で、平成20年8月頃から生存が確認できた。汚泥貯留槽30から平成21年3月,平成21年6月に単離を試み、3月にはI株(Pichia fermentans)およびJ株(Pichia guilliermondii)を、6月にはH株(Galactomyces geotrichum/Geotrichum silvicola;有性無性の関係)を加えて単離した。
 H株,I株およびJ株いずれも強いデンプン分解性・油脂分解性・セルロース分解性を示した。平成21年6月、H株,I株およびJ株の合計菌株数は、汚泥貯留槽30で1×103cfu/mLであり、H株が約20%,I株が約20%,J株が約60%を占めた。26S rDNA塩基配列の相同性および系統樹から同定した。
 (注9)  酵母の単離方法:
 酵母類の単離培地は、馬鈴薯デンプン5g,可溶性デンプン5g,グルコース5g,ニュートリエント・ブロス(Oxoid社製,コード:CM0001)5g,ペプトン-P(Oxoid社製,コード:LP0049)4g,乾燥酵母エキス(Bacto社製,コード:212750)2gおよび寒天16gを蒸留水1,000mLに懸濁し、クエン酸でpH3.8に調整後、115℃で3分間滅菌して平面培地を調製した。
 ここに汚泥貯留槽30の槽内水0.1mLを拡げ、6日間培養して生育したコロニーから釣り菌して培養した。釣り菌した各菌株は希釈法で3回精製を繰り返して純粋な菌株を得た。なお、釣り菌した菌株の培養に使用した培地は、(注6)に記載したニュートリエント・ブロス-グルコース培地である。
 (注10)  実施例で用いた種菌の調製方法およびその添加:
 ニュートリエント・ブロス(Oxoid社製,コード:CM-1)15g,グルコース10g,乾燥酵母エキス2gおよび寒天15gを蒸留水1,000mLに溶解し、121℃で15分間滅菌して、予め滅菌しておいたステンレス製バット(蓋付き,約23cm×32cm)に流し込み(約1L必要)平面培地を5枚調製した。
 A株,B株およびC株それぞれ6mL×3本を予め試験管に培養しておき、1枚目のバットにA株,2枚目のバットにB株,3枚目から5枚目のバットにC株を撒いて30℃で10日間培養した。各培養物を掻き取り2Lの蒸留水に懸濁した。
 懸濁液を1×104倍,1×106倍,1×108倍に希釈して600nmでODを測定し、文献からOD=0.3で約1×109cells/mLとした。原液を2×1012cells/Lに希釈し、500mLずつ各回分槽に添加した(種菌濃度:約2.5×106cfu/mL)。
 一方、汚泥貯留槽30へは、種菌濃度8×1010cells/L液を1L調製して添加した(種菌濃度:約2×106cells/mL)。この様にして調製した種菌は培養中約40℃に発熱し、胞子化した培養物は、栄養培地中32℃で培養しても急速に栄養細胞に戻らない。種菌として添加すると約25日後から発芽を始めた。なお、種菌添加前、バチルス属細菌数は各回分槽で5×105cfu/mLおよび6×105cfu/mL、汚泥貯留槽30で7×105cfu/mLであったが、クックトミート培地中のSS除去率はOxoid社製で41%、Difco社製で28%であり、種菌添加後平成21年10月、Oxoid社製で80%、Difco社製で82%であり(表22)、汚濁物分解性も平成21年には大幅に高くなった(表2,5,7,10,12,15)。(Quiagen社,Genomic DNA Handbook(2001),P.38~39を参照。)
 (注11)  デンプン分解性試験および油脂分解性試験は「坂崎利一,吉崎悦郎,三木寛二著 新細菌培地学口座-下I,近代出版(1988)」に従って行った。以下、セルロース分解性試験も併せて簡単に説明する。
 [デンプン分解性試験]
 可溶性デンプンを含む寒天平面培地に試験菌株を植菌し、32℃で培養した。2~7日後に生じたコロニーにヨウ素ヨウ化カリ液(グラム染色用ルゴール液)を数滴垂らし、コロニー周辺にヨウ素-デンプン反応が消失した場合を「デンプン分解性あり(表24中“○”で示す。)」と判定した。
 可溶性デンプンを含む寒天平面培地は、ニュートリエント・ブロス(Oxoid社製,コード:CM-1)8g,ペプトン-P(Oxoid社製,コード:LP0049)4g,グルコース2g,可溶性デンプン5g,乾燥酵母エキス(Bacto社製,コード:212750)2gおよび寒天15gを蒸留水1,000mLに溶解し、121℃で15分間滅菌し、予め滅菌したシャーレに20mLずつ分注し冷却することで作製した。
 グラム染色用ルゴール液は、ヨウ素0.2gおよびヨウ化カリウム0.4gを蒸留水60mLに溶解することで調製し、茶色瓶に保存した。
 [油脂分解性試験]
 油脂分解試験用寒天平面培地に試験菌株を植菌し、32℃で2~10日間培養した。コロニー周辺に結晶(有機酸カルシウム塩)が形成された場合を「油脂分解性あり(表24中“○”で示す。)」と判定した。
 油脂分解試験用寒天平面培地は、下記a~c液を調製して滅菌した後、85℃でa~c液を素早く混合し、予め121℃で15分間滅菌したシャーレに20mLずつ分注し冷却することによって作製した。
 a液:ニュートリエント・ブロス(Oxoid社製,コード:CM-1)8g,グルコース7g,ペプトン-P(Oxoid社製,コード:LP0049)4g,乾燥酵母エキス(Bacto社製,コード:212750)2gおよび寒天15gを蒸留水1,000mLに溶解し、121℃で15分間滅菌した。
 b液:1%塩化カルシウム液10mLを調製し、121℃で15分間滅菌した。
 c液:ツイーン80(または60もしくは40)10mLを121℃で15分間滅菌した。
 [セルロース分解性試験]
 セルロース粉末を含む寒天培地に試験菌株を植菌し、2~10日間32℃で培養した。コロニー周辺に透明帯が生成した場合を「セルロース分解性あり」と判定した。。
 セルロース粉末を含む寒天平面培地は、ニュートリエント・ブロス(Oxoid社製,コード:CM-1)8g,グルコース7g,ペプトン-P(Oxoid社製,コード:LP0049)4g,乾燥酵母エキス(Bacto社製,コード:212750)2g,セルロース粉末1gおよび寒天16gを蒸留水1,000mLに溶解し、121℃で15分間滅菌した。滅菌後、予め滅菌しておいたシャーレに20mLずつ分注して冷却することによって作製した。
 下水処理のみならず、畜産排水処理、し尿処理、その他の食品工場排水処理にも記載の効率化方法は適用可能で、種々の分野で排水処理の効率化で応用可能である。
  1a・・・・・・原水
  2a・・・・・・第一処理槽 または 第一回分槽
  3a・・・・・・第二処理槽 または 第二回分槽
  4a・・・・・・第三処理槽
  5a・・・・・・OD槽
  6a・・・・・・沈殿槽
  7a・・・・・・放流水(図1~3中)
  8a・・・・・・第一余剰汚泥槽 または 汚泥貯留槽
  9a・・・・・・第二余剰汚泥槽 または 濃縮汚泥貯留槽
 10a・・・・・・汚泥濃縮槽(図1~3中)
 11a・・・・・・汚泥貯留槽 または 濃縮汚泥貯留槽(図1~3中)
 12a・・・・・・曝気・撹拌付きの 第一余剰汚泥槽 もしくは 汚泥貯留槽
 13a・・・・・・曝気・撹拌付きの 第二余剰汚泥槽 もしくは 濃縮汚泥貯留槽
 14a・・・・・・搬出汚泥(図1~3中)
 15a・・・・・・余剰汚泥 または 引き抜き汚泥
 Xa・・・・・・汚泥引き抜き工程
 Ya・・・・・・汚泥返送工程
 Za・・・・・・汚泥濃縮工程(汚泥濃縮槽,汚泥濃縮機等により実施する。)
 Va・・・・・・第一汚泥返送工程
 Wa・・・・・・第二汚泥返送工程
  1 ・・・・・・汚水 または 廃液
  2 ・・・・・・種菌叢
  3 ・・・・・・撹拌子
 10 ・・・・・・曝気槽
 11 ・・・・・・撹拌処理液
 12,13,14 ・・・処理槽
 20 ・・・・・・汚泥沈殿槽
 21 ・・・・・・上澄み液
 22 ・・・・・・沈殿汚泥(余剰汚泥)
 23 ・・・・・・放流水(図5~7中)
 30 ・・・・・・汚泥貯留槽(図5~7中)
 31 ・・・・・・撹拌処理貯留汚泥
 40 ・・・・・・汚泥濃縮槽(図5~7中)
 41 ・・・・・・濃縮汚泥
 50 ・・・・・・濃縮汚泥貯留槽
 51 ・・・・・・撹拌処理濃縮貯留汚泥
 52 ・・・・・・搬出汚泥(図5~7中)
 60 ・・・・・・遠心濃縮機
 61 ・・・・・・濃縮汚泥
 70 ・・・・・・回分槽

Claims (23)

  1.  原水1aを活性汚泥処理する際、
     第一汚泥返送工程Va:
           曝気・撹拌付きの第一余剰汚泥槽もしくは汚泥貯留槽12aにおいて、曝気・撹拌した汚泥を、処理槽,回分槽もしくは嫌気槽に返送する工程;および/または
           曝気・撹拌付きの第二余剰汚泥槽もしくは濃縮汚泥貯留槽13aにおいて、曝気・撹拌した汚泥を、処理槽,回分槽もしくは嫌気槽に返送する工程
    を実施し、かつ、
     該汚泥を返送された処理槽中,回分槽中または嫌気槽中のバチルス属菌数を、2.0×105~22.5×105cfu/mLに維持しながら活性汚泥処理することを特徴とする排水処理方法。
  2.  さらに、第二汚泥返送工程Wa:
           曝気・撹拌付きの第二余剰汚泥槽もしくは濃縮汚泥貯留槽13aにおいて、曝気・撹拌した汚泥を、曝気・撹拌付きの第一余剰汚泥槽もしくは汚泥貯留槽12aに返送する工程
    を実施する請求項1に記載の排水処理方法。
  3.  第一処理槽または第一回分槽2a;
     第二処理槽または第二回分槽3a;
     第三処理槽4a;
     OD槽5a;
     第一余剰汚泥槽または汚泥貯留槽8a;
     第二余剰汚泥槽または濃縮汚泥貯留槽9a;
     汚泥濃縮槽10a;
     汚泥貯留槽または濃縮汚泥貯留槽11a;
     曝気・撹拌付きの第一余剰汚泥槽もしくは汚泥貯留槽12a;および、
     曝気・撹拌付きの第二余剰汚泥槽もしくは濃縮汚泥貯留槽13a
    のいずれか一槽以上に、処理促進剤を添加する請求項1または2に記載の排水処理方法。
  4.  上記処理促進剤が、ケイ素化合物,マグネシウム化合物,アルミニウム化合物,ペプトンおよび乾燥酵母エキスからなる群より選択される一種または二種以上である請求項3に記載の排水処理方法。
  5.  第一余剰汚泥槽または汚泥貯留槽8a;
     第二余剰汚泥槽または濃縮汚泥貯留槽9a;
     汚泥濃縮槽10a;
     汚泥貯留槽または濃縮汚泥貯留槽11a;
     曝気・撹拌付きの第一余剰汚泥槽もしくは汚泥貯留槽12a;および、
     曝気・撹拌付きの第二余剰汚泥槽もしくは濃縮汚泥貯留槽13a
    のいずれか一槽以上に、窒素源を添加する請求項1~4のいずれかに記載の排水処理方法。
  6.  上記窒素源が、尿素,硫酸アンモニウム,塩化アンモニウムおよび硝酸アンモニウムのいずれか一種以上である請求項5に記載の排水処理方法。
  7.  少なくとも、下記工程(1)~(5):
     工程(1):曝気装置および撹拌装置を備える曝気槽10に、種菌叢2を添加した状態で、生物化学的酸素要求量〔BOD〕が80mg/L以上の汚水または廃液1を流入させ、曝気および撹拌することによって、撹拌処理液11を得る曝気工程;
     工程(2):工程(1)で得られた撹拌処理液11を汚泥沈殿槽20に流入させ、静置することによって、上澄み液21と沈殿汚泥22とに分離した後、該上澄み液21を放流水23として系外に排水する分離工程;
     工程(3):工程(2)で得られた沈殿汚泥22を引き抜き、汚泥貯留槽30に沈殿汚泥22を貯留し、その一部を上記曝気槽10に返送する貯留・返送工程;
     工程(4):工程(3)で得られた貯留汚泥を、汚泥濃縮槽40および/または遠心濃縮機60で濃縮する濃縮工程;ならびに
     工程(5):工程(4)で得られた濃縮汚泥を、濃縮汚泥貯留槽50に貯留し、その一部を系外に搬出する貯留・搬出工程
    を含む活性汚泥法を用いて排水処理する際に、
     汚泥貯留槽30および/または濃縮汚泥貯留槽50に、曝気装置および撹拌装置のうち少なくとも曝気装置を備え付けて、装置付き汚泥貯留槽30および/または装置付き濃縮汚泥貯留槽50を配設し、
     下記汚泥返送(I),(II):
     汚泥返送(I):該装置付き汚泥貯留槽30で、曝気するか、もしくは曝気・撹拌することによって得られる撹拌処理貯留汚泥31を引き抜き、上記曝気槽10に返送すること;および/または
     汚泥返送(II):該装置付き濃縮汚泥貯留槽50で、曝気するか、もしくは曝気・撹拌することによって得られる撹拌処理濃縮貯留汚泥51を引き抜き、上記曝気槽10および/または該装置付き汚泥貯留槽30に返送すること
    を行い、
     該曝気槽10,該装置付き汚泥貯留槽30および該装置付き濃縮汚泥貯留槽50のうち1槽以上に、汚泥凝集剤および栄養剤を添加するとともに、
     該汚泥凝集剤および該栄養剤を添加した槽中のバチルス属の細菌数を、2.0×105~111×105cfu/mLに保持しつつ排水処理することを特徴とする排水処理方法。
  8.  上記曝気槽10が、2槽以上直列に連結し、
     第一槽目の処理槽12では曝気せずに撹拌のみを行う嫌気処理を施し、
     第二槽目の処理槽13以降で種菌叢2を添加し、曝気および撹拌する請求項7に記載の排水処理方法。
  9.  上記曝気槽10が、その曝気および撹拌の機能を一時的に停止させることによって、上記汚泥沈殿槽20を兼用する請求項7に記載の排水処理方法。
  10.  デンプン分解性および油脂分解性を有し、かつ下記組成のクックトミート培地(Oxoid)および(Difco)それぞれに含まれる懸濁物質〔SS〕の除去率が70%以上および60%以上である汚濁物高分解性菌叢に、上記種菌叢2が誘導される請求項7~9のいずれかに記載の排水処理方法;
     クックトミート培地(Oxoid)の組成(1Lあたり):
           心筋(乾燥)         73.0g,
           ペプトン             10.0g,
           ラブ-レムコ末       10.0g,
           塩化ナトリウム         5.0g,および
           ブドウ糖               2.0g;ならびに
     クックトミート培地(Difco)の組成(1Lあたり):
           牛心筋(乾燥)       98.0g,
           プロテオースペプトン 20.0g,
           ブドウ糖               2.0g,および
           塩化ナトリウム         5.0g。
  11.  上記汚濁物高分解性菌叢が、上記クックトミート培地(Oxoid)に含まれるSSの除去率が、80%以上である請求項10に記載の排水処理方法。
  12.  上記種菌叢2が、
        A株(バチルス・シューリンジエンシス;FERM BP-11280),
        B株(バチルス・ズブチリス;FERM BP-11281)および
        C株(バチルス・ズブチリス;FERM BP-11282)
    である請求項7~11のいずれかに記載の排水処理方法。
  13.  上記汚濁物高分解性菌叢が、
        D株(バチルス・ズブチリス;FERM BP-11283),
        E株(バチルス・ズブチリス:FERM BP-11284)および
        F株(バチルス・ズブチリス;FERM BP-11285)
    からなる群から選択される少なくとも1種のバチルス属細菌を含むか;あるいは
     該バチルス属細菌を少なくとも1種と、
        G株(ペニシリウム・ターバタム;FERM BP-11289)のカビ
    および/または
        H株(ジェオトリカム・シルビコーラ;FERM BP-11287),
        I株(ピチア・フェルメンタンス;FERM BP-11286)および
        J株(ピチア・グイリイエルモンデイイ;FERM BP-11288)
    からなる群から選択される少なくとも1種の酵母とを含む請求項12に記載の排水処理方法。
  14.  上記汚泥凝集剤が、アルミニウム化合物と、ケイ素化合物および/またはマグネシウム化合物とを含み、
     該汚泥凝集剤を添加する槽中の懸濁物質〔MLSS〕1g/Lあたり、
     酸化アルミニウム〔Al23〕で換算したアルミニウム化合物を、0.01~0.5g;
     二酸化ケイ素〔SiO2〕で換算したケイ素化合物を、0.01~2g;および
    酸化マグネシウム〔MgO〕で換算したマグネシウム化合物を、0.01~0.5g
    で添加(ただし、各槽の1立方メートル〔m3〕かつ1日あたり)する請求項7~13のいずれかに記載の排水処理方法。
  15.  上記栄養剤が、ペプトンおよび/または乾燥酵母エキスであり、
     該栄養剤を添加した曝気槽10中のMLSS1g/Lあたり、ペプトンを0.8~70mg,乾燥酵母エキスを0.1~10mg;
     該栄養剤を添加した上記の装置付き汚泥貯留槽30中のMLSS1g/Lあたり、ペプトンを3.5~250mg,乾燥酵母エキスを0.7~45mg;
     該栄養剤を添加した上記の装置付き濃縮汚泥貯留槽50中のMLSS1g/Lあたり、ペプトンを2.0~150mg,酵母エキスを0.4~25mg
    で添加(ただし、各槽の1立方メートル〔m3〕かつ1日あたり)する請求項7~14のいずれかに記載の排水処理方法。
  16.  上記の装置付き汚泥貯留槽30および/または上記の装置付き濃縮汚泥貯留槽50に、上記汚泥凝集剤と上記栄養剤とともに、
     尿素,硫酸アンモニウム,塩化アンモニウムおよび硝酸アンモニウムからなる群から選択される1種以上の窒素源を添加し、N2で換算した窒素源を、
     該装置付き汚泥貯留槽30中のMLSS1g/Lあたり、0.1~15g;
     該装置付き濃縮汚泥貯留槽50中のMLSS1g/Lあたり、1~150mg
    で添加(ただし、各槽の1立方メートル〔m3〕かつ1日あたり)する請求項7~15のいずれかに記載の排水処理方法。
  17.  請求項7~16のいずれかに記載の活性汚泥法を用いて排水処理する際に、
     汚泥貯留槽30および/または濃縮汚泥貯留槽50に、曝気装置および撹拌装置のうち少なくとも曝気装置を備え付けて、装置付き汚泥貯留槽30および/または装置付き濃縮汚泥貯留槽50を配設し、
     上記汚泥返送(I)および/または(II)を行い、
     該曝気槽10,該装置付き汚泥貯留槽30および該装置付き濃縮汚泥貯留槽50のうち1槽以上に、汚泥凝集剤および栄養剤を添加するとともに、
     該汚泥凝集剤および該栄養剤を添加した槽中のバチルス属の細菌数を、2.0×105~111×105cfu/mLに保持しつつ排水処理することを特徴とする排水処理システム。
  18.  上記曝気槽10が、2槽以上直列に連結し、
     第一槽目の処理槽12では曝気せずに撹拌のみを行う嫌気処理を施し、
     第二槽目の処理槽13以降で種菌叢2を添加し、曝気および撹拌する請求項17に記載の排水処理システム。
  19.  上記曝気槽10が、その曝気および撹拌の機能を一時的に停止させることによって、上記汚泥沈殿槽20を兼用する請求項17に記載の排水処理システム。
  20.  上記汚泥凝集剤が、アルミニウム化合物と、ケイ素化合物および/またはマグネシウム化合物とを含み、
     該汚泥凝集剤を添加する槽中の懸濁物質〔MLSS〕1g/Lあたり、
     酸化アルミニウム〔Al23〕で換算したアルミニウム化合物を、0.01~0.5g;
     二酸化ケイ素〔SiO2〕で換算したケイ素化合物を、0.01~2g;および
     酸化マグネシウム〔MgO〕で換算したマグネシウム化合物を、0.01~0.5g
    で添加(ただし、該槽の1立方メートル〔m3〕かつ1日あたり)する請求項17~19のいずれかに記載の排水処理システム。
  21.  上記栄養剤が、ペプトンおよび/または乾燥酵母エキスであり、
     該栄養剤を添加した曝気槽10中のMLSS1g/Lあたり、ペプトンを0.8~70mg,乾燥酵母エキスを0.1~10mg;
     該栄養剤を添加した上記の装置付き汚泥貯留槽30中のMLSS1g/Lあたり、ペプトンを3.5~250mg,乾燥酵母エキスを0.7~45mg;
     該栄養剤を添加した上記の装置付き濃縮汚泥貯留槽50中のMLSS1g/Lあたり、ペプトンを2.0~150mg,酵母エキスを0.4~25mg
    で添加(ただし、各槽の1立方メートル〔m3〕かつ1日あたり)する請求項17~20のいずれかに記載の排水処理システム。
  22.  上記の装置付き汚泥貯留槽30および/または上記の装置付き濃縮汚泥貯留槽50に、上記汚泥凝集剤と上記栄養剤とともに、
     尿素,硫酸アンモニウム,塩化アンモニウムおよび硝酸アンモニウムからなる群から選択される1種以上の窒素源を添加し、N2で換算した窒素源を、
     該装置付き汚泥貯留槽30中のMLSS1g/Lあたり、0.1~15g;
     該装置付き濃縮汚泥貯留槽50中のMLSS1g/Lあたり、1~150mg
    で添加(ただし、各槽の1立方メートル〔m3〕かつ1日あたり)する請求項17~21のいずれかに記載の排水処理システム。
  23.  上記クックトミート培地に植菌し培養した後の懸濁物質〔SS〕の乾燥重量(X)と、別途、上記クックトミート培地に植菌せずに培養した後のSSの乾燥重量(Y)とから、下記式(i):
       SS除去率(%)={(Y-X)/Y}×100 …(i)
    を用いてSS除去率を算出することによって、
     請求項7~22のいずれかに記載の種菌叢または請求項10~16のいずれかに記載の汚濁物高分解性菌叢に含まれる活性汚泥微生物の汚濁物分解性能を測定することを特徴とする、活性汚泥微生物の汚濁物分解活性測定方法。
PCT/JP2011/060089 2010-04-26 2011-04-25 排水処理方法、システムおよび汚濁物分解活性測定方法 WO2011136188A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012512836A JP5654005B2 (ja) 2010-04-26 2011-04-25 排水処理方法および排水処理システム
KR1020127028123A KR101536392B1 (ko) 2010-04-26 2011-04-25 배수 처리 방법, 시스템 및 오염물 분해 활성 측정 방법
AU2011246164A AU2011246164B9 (en) 2010-04-26 2011-04-25 Wastewater processing method, system, and method for measuring pollutant-decomposition activity
US13/643,402 US20130092628A1 (en) 2010-04-26 2011-04-25 Wastewater Treatment Method, System and Pollutant Decomposition Activity Measuring Method
EP11774969.7A EP2565166B1 (en) 2010-04-26 2011-04-25 Wastewater treatment method
SG2012079273A SG185044A1 (en) 2010-04-26 2011-04-25 Wastewater processing method, system, and method for measuring pollutant-decomposition activity
CN201180020900.7A CN102858695B (zh) 2010-04-26 2011-04-25 废水处理方法、系统及污染物降解活性测定方法
US15/164,209 US20160272523A1 (en) 2010-04-26 2016-05-25 Wastewater Treatment Method, System and Pollutant Decomposition Activity Measuring Method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010101166 2010-04-26
JP2010-101166 2010-04-26
JP2010-278088 2010-12-14
JP2010278088 2010-12-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/643,402 A-371-Of-International US20130092628A1 (en) 2010-04-26 2011-04-25 Wastewater Treatment Method, System and Pollutant Decomposition Activity Measuring Method
US15/164,209 Division US20160272523A1 (en) 2010-04-26 2016-05-25 Wastewater Treatment Method, System and Pollutant Decomposition Activity Measuring Method

Publications (1)

Publication Number Publication Date
WO2011136188A1 true WO2011136188A1 (ja) 2011-11-03

Family

ID=44861487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060089 WO2011136188A1 (ja) 2010-04-26 2011-04-25 排水処理方法、システムおよび汚濁物分解活性測定方法

Country Status (9)

Country Link
US (2) US20130092628A1 (ja)
EP (1) EP2565166B1 (ja)
JP (1) JP5654005B2 (ja)
KR (1) KR101536392B1 (ja)
CN (1) CN102858695B (ja)
AU (1) AU2011246164B9 (ja)
MY (1) MY170712A (ja)
SG (1) SG185044A1 (ja)
WO (1) WO2011136188A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101373323B1 (ko) * 2013-11-13 2014-03-10 주식회사동일기술공사 다기능성 토양 오염물질 제거용 영양 크리너 조성물 및 이의 제조방법
CN103725620A (zh) * 2014-01-03 2014-04-16 湖南大学 一种处理高浓度分散式生活污水的活性污泥酵母及其制备方法与应用
US20140116937A1 (en) * 2012-10-29 2014-05-01 Korea Institute Of Science And Technology Apparatus and method for sewage sludge treatment and advanced sewage treatment
JP2015131254A (ja) * 2014-01-09 2015-07-23 三菱重工業株式会社 工業排水処理システム及び処理方法
WO2015137300A1 (ja) * 2014-03-14 2015-09-17 富士電機株式会社 排水処理方法
WO2017195609A1 (ja) 2016-05-09 2017-11-16 富士電機株式会社 排水処理方法、排水処理装置、及び排水処理用の活性剤

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2830086C (en) 2011-04-04 2020-06-23 Dairy Manufacturers, Inc. Composition and method for delivery of living cells in a dry mode having a surface layer
WO2015119100A1 (ja) 2014-02-04 2015-08-13 富士電機株式会社 排水処理方法
AU2015364736B2 (en) * 2014-12-19 2020-11-19 The Coca-Cola Company On-demand system for drawing and purifying well water
WO2016167037A1 (ja) * 2015-04-13 2016-10-20 富士電機株式会社 排水処理方法及び排水処理用の活性剤
US10407330B2 (en) 2016-10-28 2019-09-10 Xylem Water Solutions U.S.A., Inc. Biological nutrient removal process control system
EP3589605A4 (en) 2017-02-28 2020-12-23 Drylet, LLC SYSTEMS, PROCESSES AND APPARATUS FOR INCREASING THE QUALITY OF WASTE WATER EFFLUENT AND BIOSOLIDS
KR101867957B1 (ko) * 2017-08-09 2018-06-20 (주)에코필 탄소(c) 25 이상의 풍화된 유류를 정화하기 위한 미생물 제제
CN108423839A (zh) * 2018-02-11 2018-08-21 北京理工大学珠海学院 一种生物滤层除铁锰的方法
DE102018112988B3 (de) * 2018-05-30 2019-03-28 Maximilian Maier Verfahren und Vorrichtung zum Abreichern von Schwimmschlamm einer Kläranlage
KR20200052821A (ko) * 2018-11-07 2020-05-15 가부시키가이샤 쿄교쿠엔지니어링 하수처리 시스템
CN110272834B (zh) * 2019-05-23 2020-11-10 浙江工业大学 餐厨垃圾处理的无臭型微生物菌剂及其制备方法和应用
CN110317733B (zh) * 2019-05-23 2020-09-08 浙江工业大学 林生地霉菌株及其在降解餐厨垃圾中的应用
CN110702859B (zh) * 2019-10-21 2022-11-25 中盛易分类(北京)环保科技有限公司 一种用于餐厨垃圾处理的菌剂活性智能判断系统及操作方法
CN112795560A (zh) * 2020-12-24 2021-05-14 天津国瑞蓝天科技有限公司 一种用于治理工业废水的生物制剂及其制备方法
KR102268814B1 (ko) * 2021-01-13 2021-06-23 임명준 유용(em) 미생물로 악취를 탈취하는 미생물 제품을 이용하여 고속으로 슬러지를 제거하는 방법
CN113214999B (zh) * 2021-03-24 2022-05-27 中国科学院微生物研究所 一株地霉tn42及其在污水处理中的应用
CN113293100A (zh) * 2021-04-23 2021-08-24 东莞市科绿智能环保科技有限公司 一种锂电池废水处理专用微生物的培养方法
CN114195269B (zh) * 2021-11-25 2023-12-12 柳州市净元生物科技有限公司 一种利用复合蛋白酶结合枯草芽孢杆菌生态处理高浓度污水的方法
CN114606154A (zh) * 2021-12-31 2022-06-10 浙江华庆元生物科技有限公司 尾菜废水资源化菌剂及其在制备植物营养液中的应用
CN116355882B (zh) * 2023-04-10 2023-11-10 北京电子科技职业学院 一种丝状菌膨胀污泥控制生物酶制剂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929280A (ja) * 1995-07-20 1997-02-04 Toyo Bio Reactor Kk 廃水の処理方法
JPH10216789A (ja) 1997-02-05 1998-08-18 Kaigo:Kk 下水処理装置および下水処理方法
JPH11169896A (ja) * 1997-12-08 1999-06-29 Nippon Nogyo Shuraku Haisui Kyokai 汚泥接触槽の充填剤、および汚泥接触槽の充填剤の製造方法
JP2000189991A (ja) 1998-12-30 2000-07-11 Hiromi Ikechi 廃水処理方法およびその装置
JP2001286884A (ja) * 2000-04-04 2001-10-16 Mitsui Eng & Shipbuild Co Ltd 有機性廃水の処理装置および処理方法
JP2002086181A (ja) 2000-09-13 2002-03-26 Riyouzo Irie 水処理施設における運転制御方法
WO2006115199A1 (ja) 2005-04-21 2006-11-02 Ibiden Co., Ltd. 有機物含有廃液の処理方法
JP2007319837A (ja) * 2006-06-05 2007-12-13 Sumiju Kankyo Engineering Kk 廃水処理装置及び廃水処理方法
JP2009131773A (ja) * 2007-11-30 2009-06-18 Akira Ikechi 廃水処理方法
JP2009142786A (ja) * 2007-12-17 2009-07-02 Ina Seibutsu Kagaku Kenkyusho:Kk 有機性廃水の処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169896A (ja) * 1995-09-25 1997-06-30 Shin Etsu Chem Co Ltd 生分解性を有するポリマー組成物および収縮フィルム
CN1194910C (zh) * 2001-09-21 2005-03-30 重庆康达环保股份有限公司 改良型氧化沟城市污水处理工艺
KR100439740B1 (ko) * 2002-01-08 2004-07-12 고려대학교 산학협력단 연속회분식 반응조와 슬러지 저장농축조를 이용한하·폐수 처리방법
JP4408435B2 (ja) * 2006-02-16 2010-02-03 住重環境エンジニアリング株式会社 廃水処理装置および廃水処理方法
CN101684029B (zh) * 2009-09-01 2012-01-11 常州纺织服装职业技术学院 一种毛纺厂染整废水构筑物及处理工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929280A (ja) * 1995-07-20 1997-02-04 Toyo Bio Reactor Kk 廃水の処理方法
JPH10216789A (ja) 1997-02-05 1998-08-18 Kaigo:Kk 下水処理装置および下水処理方法
JPH11169896A (ja) * 1997-12-08 1999-06-29 Nippon Nogyo Shuraku Haisui Kyokai 汚泥接触槽の充填剤、および汚泥接触槽の充填剤の製造方法
JP2000189991A (ja) 1998-12-30 2000-07-11 Hiromi Ikechi 廃水処理方法およびその装置
JP2001286884A (ja) * 2000-04-04 2001-10-16 Mitsui Eng & Shipbuild Co Ltd 有機性廃水の処理装置および処理方法
JP2002086181A (ja) 2000-09-13 2002-03-26 Riyouzo Irie 水処理施設における運転制御方法
WO2006115199A1 (ja) 2005-04-21 2006-11-02 Ibiden Co., Ltd. 有機物含有廃液の処理方法
JP2007319837A (ja) * 2006-06-05 2007-12-13 Sumiju Kankyo Engineering Kk 廃水処理装置及び廃水処理方法
JP2009131773A (ja) * 2007-11-30 2009-06-18 Akira Ikechi 廃水処理方法
JP2009142786A (ja) * 2007-12-17 2009-07-02 Ina Seibutsu Kagaku Kenkyusho:Kk 有機性廃水の処理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOKIN BOBAI: "Studies on Sewage Treatment Improvement by Increase/Domination of Genus Bacillus Bacteria", JOURNAL OF ANTIBACTERIAL AND ANTIFUNGAL AGENTS, JAPAN, vol. 27, no. 7, 1999, pages 431 - 440
MURAKAMI, IRIYE ET AL.: "Domination of Bacillis spp. in Aerobic Night Soil Treatment Tank and Biochemical Properties Thereof", JOURNAL OF JAPAN SOCIETY OF WATER ENVIRONMENT, vol. 18, no. 2, 1995, pages 97 - 108
YUKIO DOI; BOON-SING LEE; RYOZO IRIYE; SHINICHIRO TABUCHI; KOICHI TATEISHI: "Bacterial Phase Dominating in Efficient Odorless Combined Treatment Purification Tank and Biochemical Properties Thereof", JOURNAL OF ANTIBACTERIAL AND ANTIFUNGAL AGENTS, JAPAN, vol. 26, no. 2, 1998, pages 53 - 63

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140116937A1 (en) * 2012-10-29 2014-05-01 Korea Institute Of Science And Technology Apparatus and method for sewage sludge treatment and advanced sewage treatment
KR101373323B1 (ko) * 2013-11-13 2014-03-10 주식회사동일기술공사 다기능성 토양 오염물질 제거용 영양 크리너 조성물 및 이의 제조방법
CN103725620A (zh) * 2014-01-03 2014-04-16 湖南大学 一种处理高浓度分散式生活污水的活性污泥酵母及其制备方法与应用
JP2015131254A (ja) * 2014-01-09 2015-07-23 三菱重工業株式会社 工業排水処理システム及び処理方法
WO2015137300A1 (ja) * 2014-03-14 2015-09-17 富士電機株式会社 排水処理方法
CN105960380A (zh) * 2014-03-14 2016-09-21 富士电机株式会社 排水处理方法
JP6091039B2 (ja) * 2014-03-14 2017-03-08 富士電機株式会社 排水処理方法
JPWO2015137300A1 (ja) * 2014-03-14 2017-04-06 富士電機株式会社 排水処理方法
CN105960380B (zh) * 2014-03-14 2019-07-23 富士电机株式会社 排水处理方法
WO2017195609A1 (ja) 2016-05-09 2017-11-16 富士電機株式会社 排水処理方法、排水処理装置、及び排水処理用の活性剤

Also Published As

Publication number Publication date
EP2565166A4 (en) 2016-08-10
CN102858695B (zh) 2014-06-18
US20130092628A1 (en) 2013-04-18
AU2011246164A1 (en) 2012-11-29
AU2011246164B2 (en) 2013-09-05
JPWO2011136188A1 (ja) 2013-07-18
EP2565166B1 (en) 2021-01-06
US20160272523A1 (en) 2016-09-22
KR20130028729A (ko) 2013-03-19
AU2011246164B9 (en) 2013-10-10
MY170712A (en) 2019-08-27
SG185044A1 (en) 2012-11-29
CN102858695A (zh) 2013-01-02
JP5654005B2 (ja) 2015-01-14
EP2565166A1 (en) 2013-03-06
KR101536392B1 (ko) 2015-07-14

Similar Documents

Publication Publication Date Title
JP5654005B2 (ja) 排水処理方法および排水処理システム
Abdel-Shafy et al. Greywater treatment via hybrid integrated systems for unrestricted reuse in Egypt
AU2011292811B2 (en) Method of treating municipal wastewater and producing biomass with biopolymer production potential
JPWO2006115199A1 (ja) 有機物含有廃液の処理方法
Yusof et al. Nitrification of ammonium-rich sanitary landfill leachate
US20200087183A1 (en) Systems and Methods for Treating Wastewater and Providing Class A Sludge
JP2009072737A (ja) 油脂とαデンプンとβデンプンとを含む廃液の処理方法
Choi et al. Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater
Subramani et al. Biodegradation of tannery effluent and designing the reactor for clarifier and activated sludge process
US6780317B1 (en) Method of purifying water, suitable bacteria for the method and use thereof
JP3836338B2 (ja) 新規微生物、およびこれを用いた油脂含有廃水処理装置
JP6715187B2 (ja) 油脂含有排水の処理方法及び処理装置
JP5948651B2 (ja) 余剰汚泥の発生抑制方法、及び有機排水処理方法
CN109576184A (zh) 一种用于碱性印染废水处理的微生物复合菌剂
JP3816357B2 (ja) 新規微生物、およびこれを用いた有機性廃水処理装置
Faheem et al. A study on filamentous bacteria in activated sludge process of sewage treatment plant in Dubai, United Arab Emirates
US20240109797A1 (en) Systems and Methods for Systems and Methods Using Thermophilic Microbes for the Treatment of Wastewater
JPH11262385A (ja) エチレングリコールを分解することができる微生物及びその使用
Ahmed Measurement of biological oxygen demand (BOD) in sewage wastewater using modified inoculums
JP6157860B2 (ja) 高濃度油含有廃水の生物処理方法
Hasan Understanding the causes of sludge bulking and foaming phenomena at Al-Bireh wastewater treatment plant
Hasan Faculty of Graduate Studies
Downing Biological Processes of Importance in the Treatment and Disposal of Industrial Waste Waters
Swaileh et al. Use of molecular techniques for the analysis of foam-causing bacteria in Al Bireh oxidation ditch, Palestine
JP2016120470A (ja) 活性汚泥廃水処理方法及び活性汚泥廃水処理設備

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020900.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512836

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13643402

Country of ref document: US

Ref document number: 9219/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127028123

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011774969

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011246164

Country of ref document: AU

Date of ref document: 20110425

Kind code of ref document: A