WO2011135959A1 - 運搬車両 - Google Patents

運搬車両 Download PDF

Info

Publication number
WO2011135959A1
WO2011135959A1 PCT/JP2011/057803 JP2011057803W WO2011135959A1 WO 2011135959 A1 WO2011135959 A1 WO 2011135959A1 JP 2011057803 W JP2011057803 W JP 2011057803W WO 2011135959 A1 WO2011135959 A1 WO 2011135959A1
Authority
WO
WIPO (PCT)
Prior art keywords
hoist cylinder
control valve
oil
flow rate
controller
Prior art date
Application number
PCT/JP2011/057803
Other languages
English (en)
French (fr)
Inventor
田村 克己
俊和 美濃島
道生 伏木
隆雄 黒澤
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP11774743.6A priority Critical patent/EP2565076A4/en
Priority to CN201180006047.3A priority patent/CN102712280B/zh
Priority to JP2012512734A priority patent/JP5303067B2/ja
Priority to US13/510,977 priority patent/US8731787B2/en
Priority to AU2011246414A priority patent/AU2011246414B2/en
Publication of WO2011135959A1 publication Critical patent/WO2011135959A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P1/00Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
    • B60P1/04Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with a tipping movement of load-transporting element
    • B60P1/16Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with a tipping movement of load-transporting element actuated by fluid-operated mechanisms
    • B60P1/162Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with a tipping movement of load-transporting element actuated by fluid-operated mechanisms the hydraulic system itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/351Flow control by regulating means in feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/353Flow control by regulating means in return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7107Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being mechanically linked
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/755Control of acceleration or deceleration of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • F15B2211/853Control during special operating conditions during stopping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0971Speed responsive valve control

Definitions

  • the present invention relates to a large transport vehicle suitably used to transport, for example, open-pit mining sites, quarries, mined minced materials or excavated soil.
  • a large transport vehicle called a dump truck
  • a vessel load carrier
  • cargo for example, crushed stone or soil
  • a transport vehicle includes a self-propelled vehicle body, a loading platform provided on the vehicle body so as to be tiltable (relief) and on which a load to be transported is loaded, and an extension and contraction between the loading platform and the vehicle body
  • a hoist cylinder is provided, which is extended and extended when the luggage is discharged from the bed, and inclines the bed obliquely to the rear of the vehicle body, and a controller which controls the operation and stop of the hoist cylinder.
  • Such a transport vehicle travels to the transport destination while loading the load in the loading platform, then extends the hoist cylinder to lift the loading platform diagonally backward and lifts the loading package along the sloping load platform by this lifting operation. Discharge to the unloading site. After the discharging operation is completed, the hoist cylinder is contracted according to the manual operation of the operation lever or contracted by the weight on the side of the bed. By the reduction operation of the hoist cylinder, the loading platform is lowered to a position where it is seated on the vehicle body.
  • the hoist cylinder is driven in the extension direction to tilt the loading platform to the rear of the vehicle body, and when the loading platform is tilted to the discharge position of the load, the extension operation of the hoist cylinder is stopped.
  • the hoist cylinder is contracted after discharging the load, and when the cargo bed is lowered to a position where it is seated on the vehicle body, the contraction operation of the hoist cylinder is stopped.
  • the control valve device when stopping the expansion and contraction operation of the hoist cylinder, temporarily reduces the flow rate of the pressure oil between the hydraulic pressure source and the hoist cylinder, and then performs control to shut off the pressure oil flow.
  • the opening area when the control valve device squeezes the pressure oil flow is kept constant regardless of the weight of the load, so the operating speed until stopping the hoist cylinder is excessive due to the large and small load weight. May be faster or slower.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to adjust the expansion and contraction speed of the hoist cylinder according to the weight of the load and to properly reduce the impact at the time of stopping.
  • a self-propelled vehicle body a loading platform provided on the vehicle body so as to be capable of tilting and carrying a load to be transported, and extendable and retractable between the loading platform and the vehicle body
  • a hoist cylinder that is provided and extends when the load is discharged from the loading platform to incline the loading platform obliquely, a hydraulic pressure source that generates pressure oil to be supplied to the hoist cylinder, and a position between the hydraulic pressure source and the hoist cylinder
  • the present invention is applied to a transport vehicle provided with a control valve device for controlling supply and discharge of the pressure oil to and from the hoist cylinder, and an operating device for switching the control valve device.
  • the features of the configuration adopted by the present invention include an inclination state detector that detects an inclination state of the loading platform with respect to the vehicle body, a weight detector that detects a weight of a load loaded on the loading platform, and the operating device.
  • a controller for switching and controlling the control valve device based on signals from the tilt state detector and the weight detector, the controller including the hoist cylinder based on the signals from the operating device and the tilt state detector; Stop position approach determination means for determining whether or not the extension side or reduction side stop position is approaching (approaching), and the stop position approach determination means determines that the hoist cylinder is approaching the stop position Switching the control valve device so as to change the expansion / contraction speed of the hoist cylinder according to the weight on the bed side detected by the weight detector Controlled, in that a configuration and a flow rate adjusting means for variably adjusting the flow rate of hydraulic fluid flowing between said hoist cylinder and the hydraulic source through the control valve device.
  • the controller determines that the hoist cylinder is approaching the stop position when the hoist cylinder is extended and the loading platform is raised or the hoisting cylinder is reduced and the loading platform is lowered, the controller returns to the loading platform.
  • the switching of the control valve system is controlled to slow or accelerate the expansion and contraction speed of the hoist cylinder depending on the weight of the side.
  • the controller variably adjusts the flow rate of the fluid flowing through the control valve device to reduce the flow passage area or the opening area of the control valve device.
  • the expansion speed of the hoist cylinder may become too fast or the contraction speed of the hoist cylinder may be slow by appropriately adjusting the flow rate of oil through the control valve device.
  • the hoist cylinder can be stopped at its original stop position with reduced impact. Therefore, the operator of the transport vehicle can raise and lower the loading platform in a short time simply by operating the operating device normally without being affected by the size, small size, loading status, etc.
  • the operability and stability can be improved by suppressing the occurrence of an impact when stopping the
  • an oil temperature sensor for detecting the temperature of the oil flowing through the control valve device is provided, and the controller controls the oil by the flow rate adjusting means according to the temperature of the oil detected by the oil temperature sensor. The adjustment flow rate of the liquid is corrected.
  • the controller can correct the adjustment flow rate of the oil according to the temperature of the oil detected by the oil temperature sensor. That is, it is possible to correct the influence of the viscous drag accompanying the temperature change of the oil. Therefore, the flow rate of the fluid flowing between the hoist cylinder and the hydraulic pressure source can be properly adjusted, and the shock when the hoist cylinder is stopped can be favorably mitigated regardless of the change in oil temperature. .
  • the controller variably sets a determination reference value when determining whether the hoist cylinder approaches the stop position by the stop position approach determination means according to the tilting speed of the bed. The setting is performed, and the start timing of the flow rate adjustment by the flow rate adjusting unit is corrected according to the determination reference value.
  • the flow adjustment control through the control valve device is performed depending on whether or not the tilting angle of the loading platform reaches the corresponding judgment reference value when the tilting speed is high. Can be started early. On the other hand, when the tilting speed is slow, the judgment reference value can be set to be delayed, and depending on whether or not the tilt angle of the platform has reached this judgment reference value, the timing for delaying the flow rate adjustment control through the control valve device You can start with
  • the weight detector can be constituted by a pressure sensor which detects a load pressure of the hoist cylinder. As described above, by using the pressure sensor as the weight detector, it is possible to control whether the load bed of the hoist cylinder is empty, the load is loaded, or the weight of the load is heavy or light, from the load pressure of the hoist cylinder. It can be determined on the side.
  • the tilt state detector can be configured by an angle sensor that detects a tilt angle of the bed relative to the vehicle body. As a result, it is possible to detect the inclination angle of the bed with respect to the vehicle body using the angle sensor, and on the controller side, it is possible to judge from the inclination angle of the bed whether it approaches the stop position.
  • the stop position approach determination means determines whether the hoist cylinder is at the stop position depending on whether the tilt angle of the bed detected by the angle sensor has reached the determination reference angle.
  • the controller is configured to variably set the angle of the determination criterion in accordance with the tilting speed of the loading platform.
  • the controller can variably set the determination reference angle in accordance with the tilt speed of the loading platform, and whether the tilt angle of the loading platform detected by the angle sensor has reached the determination reference angle at this time Whether or not the hoist cylinder is approaching the stop position can be determined depending on whether or not it is.
  • the control valve device stops the supply and discharge of the pressure oil to stop the movement of the hoist cylinder, and extends the hoist cylinder by the supply and discharge of the pressure oil to move the cargo bed Lowers the hoist cylinder by contracting the hoist cylinder by reducing the hoist cylinder to reduce the hoist cylinder by its own weight on the side of the platform and allowing it to fall by its own weight, and reducing the hoist cylinder by supplying and discharging the pressure oil.
  • a plurality of switching positions including positions are provided, and at the raising position of the control valve device, the flow rate of the oil is adjusted according to the control signal by the flow rate adjusting means of the controller to make the extension speed of the hoist cylinder variable.
  • An expansion-side variable throttle unit for adjusting is provided, and control signals by the flow rate adjusting means of the controller are provided at the floating position and the lowering position of the control valve device.
  • control valve device operates the expansion-side variable throttle in accordance with the control signal from the flow rate adjusting means of the controller in a state where the hoist cylinder is extended and the loading platform is switched to the lifting position.
  • the flow rate of the pressure oil supplied from the hydraulic pressure source to the hoist cylinder can be squeezed variably, and the extension speed of the hoist cylinder can be prevented from becoming excessively fast or slow. .
  • the reduction-side variable throttle unit is operated according to the control signal by the flow rate adjusting means of the controller.
  • the flow rate of the oil fluid returned from the hoist cylinder to the hydraulic pressure source side can be variably squeezed to adjust the reduction speed of the hoist cylinder to an appropriate speed.
  • the reduction speed of the hoist cylinder can be reduced by operating the other reduction side variable throttle unit according to the control signal by the flow rate adjusting means of the controller. It can be adjusted to an appropriate speed.
  • the control valve device stops the supply and discharge of the pressure oil to stop the movement of the hoist cylinder, and extends the hoist cylinder by the supply and discharge of the pressure oil and the load carrier
  • a first position switching according to a control signal from the controller to any one of a lifting position for lifting the load and a lifting position for reducing the hoist cylinder by its own weight on the side of the bed and allowing the bed to drop by its own weight From the controller at any one of a directional control valve, the neutral position, the raising position, and a lowering position where the hoist cylinder is contracted by the supply and discharge of the pressure oil to lower the loading platform
  • a second directional control valve that switches in accordance with a control signal, wherein the first directional control valve is switched to the up position.
  • a first extension-side variable throttle that variably adjusts the flow rate of the fluid according to a control signal from the flow rate adjusting means of the control roller, and a control signal from the flow rate adjusting means of the controller when the floating position is switched
  • a first reduction-side variable throttle unit for variably adjusting the flow rate of the fluid according to the second direction control valve, when the second direction control valve is switched to the up position, the flow rate adjusting means of the controller
  • a second extension-side variable throttle that variably adjusts the flow rate of the fluid according to the control signal by the control unit; and the flow rate of the fluid according to the control signal by the flow rate adjusting means of the controller when switched to the down position
  • a second reduction-side variable stop unit that variably adjusts.
  • control valve device can be configured by combining the first directional control valve and the second directional control valve, and the directional control valve can be set to any of the raising position, the floating position, and the lowering position.
  • the expansion side or reduction side variable throttle portion can be operated to appropriately adjust the expansion and contraction speed of the hoist cylinder.
  • FIG. 5 is a control circuit diagram including a hydraulic circuit for operating and stopping the hoist cylinder. It is a hydraulic circuit diagram which expands and shows the control valve apparatus in FIG. It is a flowchart which shows the raising control processing of the vessel through the control valve apparatus by the controller in FIG. It is a characteristic diagram which shows the relationship between the cylinder pressure of a hoist cylinder, the opening area of a control valve apparatus, and temperature to oil to a control map for flow rate adjustment. It is a characteristic diagram which shows the relationship between the descent speed of a vessel, and the control start angle of flow control. It is a flowchart which shows float control processing of the vessel through the control valve apparatus by the controller in FIG. It is a flowchart which shows the lowering control processing of the vessel through the control valve apparatus by the controller in FIG.
  • FIGS. 1 to 9 a transport vehicle according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 9 by taking a dump truck for transporting crushed material mined in a mine as an example.
  • 1 is a dump truck which is a large transport vehicle
  • the dump truck 1 is a vehicle body 2 having a strong frame structure and a vessel as a loading platform mounted on the vehicle body 2 so as to be tiltable (relief) It is roughly configured by three.
  • the vessel 3 is formed as a large container with a total length of 10 to 13 meters, for example, in order to load a large amount of heavy load such as crushed stone (hereinafter referred to as crushed stone 4).
  • the rear bottom of the vessel 3 is pivotably connected to the rear end side of the vehicle body 2 via a connection pin 5.
  • the collar part 3A which covers the below-mentioned cab 6 from upper side is integrally provided in the front upper part of the vessel 3. As shown in FIG.
  • the bottom side of the vessel 3 is rotatably supported on the rear side of the vehicle body 2 using the connecting pin 5.
  • the front side (the collar 3A side) of the vessel 3 is pivoted (lifted) up and down with the position of the connecting pin 5 as a fulcrum by expanding or contracting a hoist cylinder 10 described later.
  • the vessel 3 is pivoted between the transport position shown in FIG. 1 and the discharge position shown in FIG.
  • a large amount of crushed stone 4 loaded in the vessel 3 is discharged to a predetermined unloading site so as to slide down from the vessel 3 inclined rearward.
  • a part of the crushed stone 4 discharged from the vessel 3 is shown as an earth removal 4A.
  • a cab 6 is provided at the front of the vehicle body 2 while being located below the buttocks 3A.
  • the cab 6 forms a cab where the operator of the dump truck 1 gets on and off.
  • a driver's seat, an accelerator pedal, a brake pedal, a steering wheel, an engine switch (all not shown), and an operation described later A lever 28A (only one shown in FIG. 3) and the like are provided.
  • the buttocks 3A of the vessel 3 protects the cab 6 from stepping stones such as rocks, and also protects the operator in the cab 6 even when the vehicle (dump truck 1) falls over Have a function to
  • Reference numeral 7 denotes left and right front wheels (only one of which is shown) rotatably provided on the front side of the vehicle body 2. These front wheels 7 constitute steered wheels that are steered (steering operation) by the operator of the dump truck 1.
  • the front wheel 7 is formed, for example, with a tire diameter (outer diameter dimension) ranging from 2 to 4 meters, similarly to the rear wheel 8 described later.
  • a front suspension 7A comprising, for example, a hydraulic shock absorber, and the front suspension 7A suspends the front side of the vehicle body 2 with the front wheel 7 It is.
  • the reference numeral 8 denotes left and right rear wheels (only one of which is shown) rotatably provided on the rear side of the vehicle body 2. These rear wheels 8 constitute drive wheels of the dump truck 1 and are rotationally driven by a traveling drive device (not shown). Between the rear wheel 8 and the rear part of the vehicle body 2 is provided a rear suspension 8A comprising, for example, a hydraulic shock absorber, and the rear suspension 8A suspends the rear side of the vehicle body 2 with the rear wheel 8 It is.
  • the 9 is an engine as a prime mover.
  • the engine 9 is configured of, for example, a large diesel engine or the like.
  • the engine 9 is located in the lower side of the cab 6 and provided in the vehicle body 2, and rotationally drives a hydraulic pump 11 and the like described later shown in FIG.
  • a pair of left and right hoist cylinders 10 are provided so as to be extendable between the vehicle body 2 and the vessel 3.
  • the hoist cylinder 10 is formed of a multistage (for example, two-stage) hydraulic cylinder, and as shown in FIG. 3, is provided so as to be expandable and contractible in an outer cylindrical portion 10A located outside and in the outer cylindrical portion 10A It consists of an inner cylinder 10B defined by the inside of the outer cylinder 10A into an upper oil chamber A and a lower oil chamber B, and a piston rod 10C provided in the inner cylinder 10B so as to be expandable and contractible. There is.
  • Reference numeral 11 denotes a hydraulic pump, which constitutes a hydraulic pressure source together with a hydraulic oil tank 12 (hereinafter referred to as a tank 12).
  • the tank 12 is mounted below the vessel 3 and attached to the side of the vehicle body 2 as shown in FIGS. 1 and 2.
  • the hydraulic fluid (oil fluid) contained in the tank 12 is drawn into the hydraulic pump 11 when the hydraulic pump 11 is rotationally driven by the engine 9. From the discharge side of the hydraulic pump 11, high-pressure fluid is discharged into the pump line 13. On the other hand, the return oil from the hoist cylinder 10 is discharged to the tank 12 via the low pressure tank line 14.
  • Reference numerals 15A and 15B denote a pair of hydraulic pipes connected to the oil chambers A and B of each hoist cylinder 10.
  • the hydraulic pipes 15A and 15B are respectively connected to hydraulic sources (hydraulic pump 11 and tank 12) via a control valve device 16 described later, and pressure oil from the hydraulic pump 11 is transferred to oil chambers A and B of the hoist cylinder 10. It supplies and discharges the pressure oil in the oil chambers A and B to the tank 12.
  • a control valve 16 is provided between the hydraulic pump 11 and the tank 12 and the hoist cylinder 10. As shown in FIGS. 3 and 4, the control valve device 16 is generally configured by the high pressure side oil passage 17, the low pressure side oil passage 18, the bypass oil passage 19, the first direction control valve 20 and the second direction control valve 21. It is configured. In this case, the first direction control valve 20 and the second direction control valve 21 are connected in parallel with each other via the high pressure side oil passage 17, the low pressure side oil passage 18 and the bypass oil passage 19.
  • the high pressure side oil passage 17 of the control valve device 16 is connected to the discharge side of the hydraulic pump 11 via a pump line 13, and the low pressure side oil passage 18 is connected to the tank 12 via a tank line 14.
  • the bypass oil passage 19 of the control valve device 16 is connected to the high pressure side oil passage 17 and the low pressure side oil passage 18 when the directional control valves 20 and 21 are in the neutral position (N). Communicate. As a result, the hydraulic pump 11 is unloaded, and the discharge pressure (pressure in the pump line 13) is maintained at a low pressure close to the tank pressure.
  • a pair of actuator side oil passages 22A and 22B are provided on the output side of the first direction control valve 20, and the actuator side oil passages 22A and 22B are oil chambers of the hoist cylinder 10 via hydraulic pipes 15A and 15B. It is connected to A and B respectively.
  • a pair of actuator side oil passages 23A, 23B are provided on the output side of the second direction control valve 21, and the actuator side oil passages 23A, 23B are oil chambers of the hoist cylinder 10 via hydraulic pipes 15A, 15B. It is connected to A and B respectively.
  • the directional control valves 20 and 21 of the control valve device 16 are constituted by, for example, hydraulic pilot directional control valves of six ports and three positions.
  • the first direction control valve 20 has a pair of hydraulic pilot parts 20A, 20B.
  • the first directional control valve 20 is switched from the neutral position (N) to the raising position (R) when the pilot pressure Pr described later is supplied to the hydraulic pilot unit 20A, and the hydraulic pilot unit 20B receives the pilot pressure Pf described later. Is switched from the neutral position (N) to the floating position (F).
  • the first directional control valve 20 has a first extension-side variable throttle portion 20C and a first reduction-side variable throttle portion 20D.
  • the first expansion-side variable throttle unit 20C outputs a signal for flow rate adjustment by duty control to the raising operation unit 36B from the controller 35 described later, the flow rate of the fluid is variably adjusted accordingly as described later It is At this time, with the first directional control valve 20 switched to the raised position (R), the opening area as the flow passage area is set to the target opening area St1 described later by the first extension-side variable throttle portion 20C. Adjust the flow rate to match.
  • the controller 35 when the controller 35 outputs a signal for flow rate adjustment by duty control from the controller 35 to the float operation unit 36C described later, the first reduction-side variable throttle unit 20D performs the flow rate adjustment as described later. is there. At this time, the first directional control valve 20 is switched to the floating position (F) so that the opening area is made equal to a target opening area St2 described later by the first reduction-side variable throttle unit 20D. Make adjustments. Note that the variable throttling units 20C and 20D do not perform flow rate adjustment unless a signal for flow rate adjustment is output from the controller 35.
  • the second direction control valve 21 has a pair of hydraulic pilot parts 21A and 21B.
  • the second directional control valve 21 is switched from the neutral position (N) to the raising position (R) when the pilot pressure Pr described later is supplied to the hydraulic pilot portion 21A, and the hydraulic pilot portion 21B When P1 is supplied, the neutral position (N) is switched to the lowered position (L).
  • the second directional control valve 21 has a second expansion side variable throttle portion 21C and a second reduction side variable throttle portion 21D.
  • the second extension-side variable throttle unit 21C variably adjusts the flow rate of the oil liquid as described later according to this It is At this time, with the second directional control valve 21 switched to the raising position (R), the flow rate is adjusted so that the opening area thereof matches the target opening area St1 described later by the second expansion side variable throttle section 21C. Make adjustments.
  • the second reduction side variable throttling unit 21D changes the flow rate of the oil liquid as described later. To adjust. At this time, with the second directional control valve 21 switched to the lowered position (L), the flow rate is adjusted so that the opening area thereof matches the target opening area St3 described later by the second reduction-side variable throttle unit 21D. Make adjustments. Note that the variable throttling units 21C and 21D do not perform flow rate adjustment unless a signal for flow rate adjustment is output from the controller 35.
  • both the first and second directional control valves 20 and 21 are disposed at the neutral position (N), and the control valve device 16 becomes a holding position for stopping the movement of each hoist cylinder 10.
  • N neutral position
  • the control valve device 16 becomes a holding position for stopping the movement of each hoist cylinder 10.
  • the supply and discharge of pressure oil via the actuator side oil passages 22A and 22B and the actuator side oil passages 23A and 23B to each hoist cylinder 10 is stopped.
  • the first and second directional control valves 20 and 21 of the control valve device 16 are both switched from the neutral position (N) to the raising position (R).
  • the first and second direction control valves 21 are at the raising position (R)
  • the pressure oil from the hydraulic pump 11 is supplied to the pump line 13, the high pressure side oil path 17, the direction control valve 21, the actuator side oil path
  • the oil is supplied into the oil chamber A of each hoist cylinder 10 via 22A, 23A and hydraulic piping 15A.
  • the hydraulic fluid 15B, the actuator side oil passage 22B, the direction control valve 20, and the low pressure side oil passage are selected by switching the first direction control valve 20 to the raising position (R). It is returned to tank 12 via 18 and tank line 14.
  • each hoist cylinder 10 is extended by the pressure oil in the oil chamber A, and lifts the vessel 3 to the earth unloading position shown in FIG. That is, at this time, the first and second directional control valves 20 and 21 of the control valve device 16 are both arranged at the raising position (R), and each hoist cylinder 10 is operated in the direction of arrow E in FIG. , And lifts the vessel 3 upward.
  • the first directional control valve 20 of the control valve device 16 is switched from the neutral position (N) to the floating position (F), and the second directional control valve 21 is disposed at the neutral position (N).
  • the actuator side oil path 22 A is connected to the low pressure side oil path 18 and the tank line 14 via the direction control valve 20.
  • the actuator side oil passage 22B is connected to the low pressure side oil passage 18 and the tank line 14 via a check valve 24B described later, and the other actuator side oil passage 23B is connected via a check valve 26B described later
  • the low pressure side oil passage 18 is connected to the tank line 14.
  • each hoist cylinder 10 is reduced in the direction of arrow G in FIG. 2 according to the load (self weight) from the vessel 3, and the oil in the oil chamber A is the hydraulic piping 15A, the actuator side oil passage 22A,
  • the fluid is discharged toward the tank 12 through the control valve 20, and the oil in the tank 12 is discharged from the check valves 24B and 26B described later into the oil chamber B, and the actuator side oil passages 22B and 23B and the hydraulic piping 15B. It is replenished through. That is, at this time, the first directional control valve 20 of the control valve device 16 is disposed at the floating position (F) that allows the vessel 3 to fall by its own weight.
  • the first directional control valve 20 of the control valve device 16 is returned to the neutral position (N), and the second directional control valve 21 is switched from the neutral position (N) to the lowered position (L). That is, when the second direction control valve 21 is at the lowered position (L), the pressure oil from the hydraulic pump 11 is supplied to the pump line 13, the high pressure side oil passage 17, the second direction control valve 21, the actuator side oil passage 23B. , And is supplied into the oil chamber B of each hoist cylinder 10 via the hydraulic piping 15B. Further, the oil in the oil chamber A is returned to the tank 12 through the hydraulic piping 15A, the actuator side oil passage 23A, the second direction control valve 21, the low pressure side oil passage 18 and the tank pipeline 14.
  • each hoist cylinder 10 the inner cylinder portion 10B is contracted together with the piston rod 10C into the outer cylinder portion 10A by the pressure oil supplied into the oil chamber B, and the vessel 3 is reduced by the oil pressure of each hoist cylinder 10. It is pivoted downward to the transport position shown in FIG. That is, at this time, the direction control valve 21 of the control valve device 16 is disposed at the lowered position (L), and each hoist cylinder 10 reduces the vessel 3 by oil pressure in the direction of arrow G in FIG. 2 down to the position to sit on.
  • Reference numerals 24A and 24B denote make-up check valves disposed on the side of the first direction control valve 20 of the control valve device 16.
  • the check valves 24A and 24B are provided between the actuator side oil passages 22A and 22B and the low pressure side oil passage 18 so as to bypass the first direction control valve 20.
  • the oil in the tank 12 circulates from the low pressure side oil passage 18 toward the oil chambers A and B of the hoist cylinder 10 via the actuator side oil passages 22A and 22B and the hydraulic pipes 15A and 15B. Allow them to stop flowing in the opposite direction.
  • the oil chambers A and B of the hoist cylinder 10 can prevent negative pressure in the oil chambers A and B due to the oil supplied from the check valves 24A and 24B.
  • Reference numerals 25A and 25B denote relief valves for overload prevention provided in the control valve device 16.
  • the relief valves 25A, 25B are provided between the actuator side oil passages 22A, 22B and the low pressure side oil passage 18 by bypassing the first direction control valve 20, and are connected in parallel with the check valves 24A, 24B. There is.
  • one relief valve 25A of the relief valves 25A and 25B opens in order to relieve the excess pressure on the oil chamber A side.
  • the other relief valve 25B opens in order to relieve the excess pressure on the oil chamber B side when an overload in the extension direction acts on the hoist cylinder 10.
  • Reference numerals 26A and 26B denote make-up check valves disposed on the second direction control valve 21 side of the control valve device 16.
  • the check valves 26A and 26B are provided between the actuator side oil passages 23A and 23B and the low pressure side oil passage 18 so as to bypass the second direction control valve 21.
  • the oil in the tank 12 flows from the low pressure side oil passage 18 toward the oil chambers A and B of the hoist cylinder 10 via the actuator side oil passages 23A and 23B and the hydraulic pipes 15A and 15B. Allow them to do so and prevent them from flowing backwards.
  • the check valves 26A, 26B supply the oil chambers A, B of the hoist cylinder 10 with oil.
  • Reference numeral 27 denotes a relief valve provided between the high pressure side oil passage 17 and the low pressure side oil passage 18 of the control valve device 16 and capable of changing the relief setting pressure.
  • the relief valve 27 determines the maximum discharge pressure of the hydraulic pump 11, opens when an excess pressure is generated, and relieves the excess pressure to the tank 12 side.
  • the relief valve 27 has a set pressure variable unit 27A to which a pilot pressure Pr is supplied, and the relief set pressure is switched to a high pressure set by the pilot pressure Pr.
  • the relief valve 27 sets the discharge pressure of the hydraulic pump 11 to a high pressure by setting the relief setting pressure high. Set to high pressure.
  • the relief valve 27 switches the relief setting pressure to a low pressure, and suppresses the pressure oil from becoming higher than necessary. Accordingly, when the first and second directional control valves 20 and 21 are switched to positions other than the raising position (R), that is, the neutral position (N), the floating position (F) or the lowering position When switching to (L), the discharge pressure is set to a low pressure.
  • Reference numeral 28 denotes an operating lever device as an operating device for switching the control valve device 16.
  • the control lever device 28 is constituted by, for example, an electric lever device, and has a control lever 28A which is manually tilted by an operator in the cab 6.
  • the control lever 28A is tilted to any one of the holding position, the raising position, the floating position and the lowering position corresponding to each switching position of the control valve device 16.
  • the control lever 28A has a first return position 28A1 shown by a solid line in FIG. 3 and a second return position 28A3 shown by a two-dot chain line.
  • the operating lever 28A is disposed at the second return position 28A3 corresponding to the floating position.
  • the control lever 28A is tilted in the direction of arrow C from the second return position 28A3 shown by a two-dot chain line in FIG. 3, it becomes a first tilt position 28A2 shown by a two-dot chain line, which will be described later.
  • the pilot pressure Pr is output from the raising operation unit 36B of the pilot pressure generator 36.
  • the control lever 28A is returned to the first return position 28A1 indicated by the solid line in FIG. 3 by a return spring (not shown). And automatically return.
  • control lever 28A when the control lever 28A is tilted in the direction of arrow D from the second return position 28A3, it becomes the second tilt position 28A4 indicated by the two-dot chain line, and the pilot pressure Pl is output from the lowering operation unit 36D described later. Be done.
  • the control lever 28A When the operator releases the control lever 28A in the second tilt position 28A4, the control lever 28A is automatically returned to the second return position 28A3 by another return spring (not shown). It is a thing.
  • Reference numeral 29 denotes a lever sensor as an operation detection unit attached to the operation lever device 28.
  • the lever sensor 29 detects the operation position of the operation lever 28A by the operator, and outputs a detection signal to a controller 35 described later.
  • the lever sensor 29 constitutes an operation detecting means, and detects at which position among the above-described switching positions the control valve device 16 switched by the operation lever device 28 is located.
  • a seating sensor 30 detects whether or not the vessel 3 is seated on the vehicle body 2.
  • the seating sensor 30 is a contact type sensor located on the upper side of the tank 12 and installed on the vehicle body 2 side, and the projection 30A to be detected provided on the vessel 3 is It detects whether it is in contact or separated. That is, the seating sensor 30 constitutes a tilt state detector for detecting the behavior of the vessel 3 on the vehicle body 2 (in which way the vessel 3 is in the inclined state), and outputs the detection signal to the controller 35 described later. It is
  • Reference numeral 31 denotes an angle sensor as another tilt state detector adopted in the present embodiment.
  • the angle sensor 31 is provided on the rear side of the vehicle body 2 in the vicinity of the connection pin 5 as shown in FIGS. 1 and 2. Then, the angle sensor 31 detects the inclination angle of the vessel 3 with respect to the vehicle body 2 as an angle ⁇ illustrated in FIG. 2 and outputs the detection signal to a controller 35 described later.
  • Reference numeral 32 denotes a pressure sensor as a weight detector that detects the weight of the load loaded on the vessel 3.
  • the pressure sensor 32 detects a load pressure of the hoist cylinder 10 as a cylinder pressure P (see FIG. 6) of the oil chambers A and B (see FIG. 6), and outputs a detection signal to a controller 35 described later.
  • the pressure sensor 32 is attached to the connection portion of the hoist cylinder 10 or the hydraulic piping 15A, 15B.
  • the controller 35 which will be described later, can identify the weight on the vessel 3 side, that is, the size and weight of the package, presence or absence of loading, and the like, according to the detection signal from the pressure sensor 32.
  • An oil temperature sensor 33 detects the temperature of the oil.
  • the oil temperature sensor 33 detects the temperature of the pressure oil supplied to the hoist cylinder 10 or the temperature of the return oil discharged from the hoist cylinder 10 to the tank 12 side, and outputs a detection signal to the controller 35. That is, the viscosity resistance of the oil flowing in the direction control valves 20 and 21 of the control valve device 16 changes in accordance with the temperature, and the flow rate also changes. Therefore, according to the temperature (oil temperature T) of the oil detected by the oil temperature sensor 33, the characteristic value of the adjustment flow rate is changed as indicated by characteristic lines 38, 39 and 40 shown in FIG. It corrects so that the influence of the viscous drag accompanying it may be eliminated.
  • the 34F and 34R are other pressure sensors, and one pressure sensor 34F constitutes a front wheel pressure sensor 34F, and the other pressure sensor 34R constitutes a rear wheel pressure sensor 34R. That is, as shown in FIGS. 1 and 2, the front wheel pressure sensor 34F is provided on the front suspension 7A on the front wheel 7 side.
  • the rear wheel side pressure sensor 34R is provided on a rear suspension 8A on the rear wheel 8 side.
  • the front wheel pressure sensor 34F detects an internal pressure (hereinafter referred to as an internal pressure) of the front suspension 7A
  • the rear wheel pressure sensor 34R indicates an internal pressure (hereinafter referred to as an internal pressure) of the rear suspension 8A. It is something to detect.
  • Reference numeral 35 denotes a controller as a control means comprising a microcomputer.
  • the input side of the controller 35 is connected to the lever sensor 29, the seating sensor 30, the angle sensor 31, the pressure sensor 32, the oil temperature sensor 33 and the like, and the output side thereof is connected to the pilot pressure generator 36 described later .
  • the controller 35 also has a storage unit 35A including a ROM, a RAM, a non-volatile memory, and the like.
  • a control map for adjustment, a characteristic map showing the relationship between the falling speed V of vessel 3 and the control start angle ⁇ x of flow rate adjustment shown in FIG. 7, a lowering stop angle ⁇ 0 described later (for example, ⁇ 0 0 to 2 degrees)
  • the controller 35 performs switching control of the control valve device 16 which raises the vessel 3 obliquely upward in accordance with a processing program of FIG. 5 described later, and lowers the vessel 3 in accordance with the processing programs of FIGS.
  • the controller 35 reads detection signals from the lever sensor 29, the angle sensor 31, the pressure sensor 32, and the oil temperature sensor 33 in the middle of this switching control, and determines that the hoist cylinder 10 operating in an elastic manner approaches the stop position.
  • the control valve device 16 is switched to execute flow rate adjustment processing so that the expansion and contraction speed of the hoist cylinder 10 can be variably controlled according to the load pressure (cylinder pressure P).
  • Reference numeral 36 denotes a pilot pressure generator connected to the output side of the controller 35.
  • the pilot pressure generator 36 is constituted by an electric / hydraulic conversion device including a solenoid proportional valve.
  • the pilot pressure generator 36 converts an electrical control signal from the controller 35 into pilot pressures Pr, Pf and Pl, which are pressure signals, as shown in FIG.
  • the pilot pressure generator 36 includes four operation units including a holding operation unit 36A, a raising operation unit 36B, a floating operation unit 36C, and a lowering operation unit 36D.
  • the pilot pressure generator 36 supplies the pilot pressure Pr to the hydraulic pilot units 20A and 21A so as to switch the first and second direction control valves 20 and 21 to the raised position (R),
  • the pilot pressure Pr is changed, for example, within a range of 50 to 100%.
  • the first and second directional control valves 20 and 21 switched to the raising position (R) are directed from the high pressure side oil passage 17 to the actuator side oil passages 22A and 23A in the first and second directions.
  • the expansion-side variable throttles 20C and 21C are operated so as to adjust the flow rate of the pressure oil flowing through the control valves 20 and 21 within a flow rate range corresponding to, for example, 50 to 100%.
  • each hoist cylinder 10 from the hydraulic pump 11 through the pump line 13, the high pressure side oil path 17, the first and second direction control valves 20 and 21, the actuator side oil paths 22A and 23A, and the hydraulic pipes 15A.
  • the hydraulic oil supplied toward the oil chamber A is variably adjusted in flow rate by the extension-side variable throttles 20C and 21C, and the hoist cylinder 10 is controlled so that the extension speed becomes an appropriate speed.
  • the pilot pressure generator 36 supplies the pilot pressure Pf to the hydraulic pilot unit 20B so as to switch the first directional control valve 20 to the floating position (F).
  • the pilot pressure Pf is changed, for example, in the range of 50 to 100%.
  • the first direction control valve 20 switched to the floating position (F) flows through the first direction control valve 20 toward the low pressure side oil passage 18 from the actuator side oil passage 22A side.
  • the first reduction-side variable throttle unit 20D is operated so as to adjust the flow rate of the flow rate within a flow rate range corresponding to, for example, 50 to 100%.
  • the oil discharged from the oil chamber A of each hoist cylinder 10 to the tank 12 through the hydraulic piping 15A, the actuator side oil path 22A, and the first direction control valve 20 is the first reduction side variable.
  • the flow rate is variably adjusted by the throttling portion 20D, and the hoist cylinder 10 is controlled so that the reduction speed becomes an appropriate speed.
  • the pilot pressure generator 36 supplies the pilot pressure Pl to the hydraulic pilot unit 21B so as to switch the second directional control valve 21 to the down position (L), the controller 35 reduces the down operation unit 36D.
  • the pilot pressure P1 is changed, for example, in the range of 50 to 100%.
  • the second direction control valve 21 switched to the lowered position (L) passes through the second direction control valve 21 from the actuator side oil passage 23A toward the low pressure side oil passage 18.
  • the second reduction-side variable throttle unit 21D is operated to adjust the flow rate of the air-fuel ratio in a flow rate range corresponding to, for example, 50 to 100%.
  • the oil discharged from the oil chamber A of each hoist cylinder 10 toward the tank 12 through the hydraulic piping 15A, the actuator side oil passage 23A, and the second direction control valve 21 is the second reduction side variable.
  • the flow rate is variably adjusted by the throttling portion 21D, and the hoist cylinder 10 is controlled so that the reduction speed becomes an appropriate speed.
  • a pilot pump 37 constitutes a pilot hydraulic pressure source together with the tank 12.
  • the pilot pump 37 is driven by the engine 9 together with the hydraulic pump 11 shown in FIG.
  • the pilot pump 37 supplies, for example, 0.5 to 5.0 MPa (megapascal) pressure oil to the pilot pressure generator 36.
  • the pilot pressure generator 36 outputs the pressure oil from the pilot pump 37 as, for example, pilot pressures Pr, Pf, and Pl.
  • the controller 35 controls the holding operation portion 36A of the pilot pressure generator 36.
  • a control signal is output.
  • the pilot pressure generator 36 lowers all the pilot pressures Pr, Pf and Pl to a pressure close to the tank pressure. Therefore, the first and second directional control valves 20 and 21 are both held at the neutral position (N) so that the control valve device 16 is at the holding position.
  • the control lever 28A is tilted from the first return position 28A1 shown by a solid line in FIG. 3 to a second return position 28A3 shown by a two-dot chain line, the control lever 28A is self-operated at this position. While being held, the control signal is output from the controller 35 to the floating operation unit 36C of the pilot pressure generator 36. At this time, in order to switch the first direction control valve 20 of the control valve device 16 from the neutral position (N) to the floating position (F), the pilot pressure Pf is controlled in direction from the floating operation portion 36C of the pilot pressure generator 36. The pressure is supplied to the hydraulic pilot unit 20 B of the valve 20. At this time, the second directional control valve 21 is such that the pilot pressures Pr and Pl both decrease to a pressure close to the tank pressure and return to the neutral position (N).
  • the controller 35 A control signal is output to the lowering operation unit 36D of the pressure generator 36.
  • the pilot pressure P1 is transmitted from the lowering operation unit 36D of the pilot pressure generator 36
  • the hydraulic pilot portion 21B of the directional control valve 21 is supplied.
  • the first directional control valve 20 is returned to the neutral position (N) after the pilot pressures Pr and Pf both decrease to a pressure close to the tank pressure.
  • Characteristic line 38 shows the characteristic for flow rate adjustment suitable when the oil temperature T of the oil liquid is low. That is, when the oil temperature T is low, the viscosity resistance of the oil increases, so the flow rate of the oil greatly varies according to the change of the opening area by the variable throttles 20C, 20D, 21C, and 21D. Therefore, in the characteristic line 38 when the oil temperature T is low, the target opening area St by the direction control valves 20 and 21 of the control valve device 16 is controlled so as to gradually decrease according to the cylinder pressure P of the hoist cylinder 10. In addition, for example, the target opening area St is set to be relatively large as compared with the characteristic line 39 when the oil temperature T is high.
  • Characteristic line 39 shows the characteristic for flow rate adjustment that is suitable when the oil temperature T of the oil liquid is high.
  • the characteristic line 39 when the oil temperature T is high controls the target opening area St by the direction control valves 20 and 21 of the control valve device 16 to gradually decrease according to the cylinder pressure P of the hoist cylinder 10
  • the target opening area St is set so as to be relatively smaller than the characteristic line 38 where the oil temperature T is low.
  • the characteristic line 40 shows characteristics for flow rate adjustment suitable when the oil temperature T of the oil liquid is an intermediate temperature, and an intermediate value between the characteristic line 38 when the oil temperature T is low and the characteristic line 39 when the oil temperature is high.
  • the target opening area St is set to be
  • the characteristic line 41 shown in FIG. 7 corrects the timing when the flow rate adjustment control is started, which will be described later, with respect to the lowering speed V when the vessel 3 is lowered.
  • the angle is set to gradually increase accordingly.
  • the descending speed V is obtained by, for example, differentiating the inclination angle ⁇ of the vessel 3 detected by the angle sensor 31.
  • the dump truck 1 according to the present embodiment has the configuration as described above, and its operation will be described next.
  • the crushed stone 4 to be transported is loaded on the vessel 3 using, for example, a large hydraulic shovel (not shown).
  • a large hydraulic shovel not shown
  • the vessel 3 is placed at the transport position shown in FIG. 1, and the dump truck 1 is transported toward the unloading site in a state in which a large amount of crushed stone 4 is loaded on the vessel 3.
  • the operator in the cab 6 manually operates the operating lever 28A of the operating lever device 28 from the second return position 28A3 indicated by a two-dot chain line in FIG. 3 to the first tilting position 28A2 Tilt in the direction of arrow C.
  • the controller 35 outputs a control signal to the raising operation unit 36B of the pilot pressure generator 36.
  • the pilot pressure Pr is supplied from the raising operation unit 36B of the pilot pressure generator 36 to the hydraulic pilot units 20A and 21A of the first and second directional control valves 20 and 21.
  • the first direction control valve 20 is switched from the neutral position (N) to the raising position (R), and the second direction control valve 21 is also raised from the neutral position (N) Switched to). Therefore, the pressure oil from the hydraulic pump 11 is supplied via the pump pipe line 13, the high pressure side oil path 17, the first and second direction control valves 20 and 21, the actuator side oil paths 22A and 23A, and the hydraulic piping 15A. It is supplied into the oil chamber A of the two hoist cylinders 10. On the other hand, the oil in the oil chamber B is returned to the tank 12 via the hydraulic piping 15B, the actuator side oil passage 22B, the first direction control valve 20, the low pressure side oil passage 18 and the tank pipeline 14.
  • the piston rod 10C of the hoist cylinder 10 is extended by the pressure oil in the oil chamber A, and the vessel 3 is lifted to the soil removal position shown in FIG. 2 so as to incline obliquely backward.
  • the dump truck 1 is placed on the unloading site such that the crushed stone 4 in the vessel 3 slides down by rotating the vessel 3 in the inclined posture as shown in FIG. It can be discharged toward the
  • the direction control valves 20 and 21 of the control valve device 16 automatically return to the neutral position (N), and stop the supply and discharge of the pressure oil to the oil chambers A and B of the hoist cylinder 10 and the piston rod 10C. Can be maintained in an extended state, and the vessel 3 can be paused in the inclined posture shown in FIG.
  • the operator manually tilts the operating lever 28A from the first return position 28A1 in FIG. 3 to the second return position 28A3 indicated by a two-dot chain line.
  • a control signal is output from the controller 35 to the floating operation unit 36C of the pilot pressure generator 36. Therefore, the pilot pressure generator 36 outputs the pilot pressure Pf from the floating operation unit 36C to the hydraulic pilot unit 20B of the first direction control valve 20, and switches the direction control valve 20 to the floating position (F).
  • the second direction control valve 21 automatically returns to the neutral position (N).
  • the first direction control valve 20 switched to the floating position (F) connects the actuator oil passage 22A to the low pressure oil passage 18 and the tank conduit 14. That is, the actuator side oil path 22B is connected to the low pressure side oil path 18 and the tank line 14 via the check valve 24B, and the actuator side oil path 23B is connected to the low pressure side oil path 18 and the tank tube via the check valve 26B. It is connected to the road 14.
  • the hoist cylinder 10 is reduced in the direction of arrow G in FIG. 2 according to the load (self weight) from the vessel 3 and the oil in the oil chamber A is discharged toward the tank 12 and the oil chamber B The oil in the tank 12 is replenished inside via the check valves 24B and 26B. Therefore, the hoist cylinder 10 can lower the vessel 3 to the transport position shown in FIG. 1 by allowing the vessel 3 to fall by its own weight, and can seat the vessel 3 on the vehicle body 2.
  • the vessel 3 descends by its own weight even if the first directional control valve 20 of the control valve device 16 is switched to the floating position (F) There is nothing to do.
  • the controller 35 tilts the pilot pressure generator 36 from the controller 35 by tilting the control lever 28A in the direction of arrow D in FIG. 3 to the second tilt position 28A4.
  • a control signal can be output to the unit 36D.
  • the pilot pressure generator 36 outputs the pilot pressure P1 corresponding to the control signal from the lowering operation unit 36D to the hydraulic pilot unit 21B of the second direction control valve 21, and the second direction control valve 21 is lowered.
  • Switch to (L) As a result, the second direction control valve 21 switched to the lowered position (L) transfers the pressure oil from the hydraulic pump 11 to the pump pipe line 13, the high pressure side oil path 17, the actuator side oil path 23B, and the hydraulic piping 15B.
  • the hydraulic fluid 15A, the actuator side oil passage 23A, the second direction control valve 21, the low pressure side oil passage 18, the hydraulic fluid in the oil chamber A is supplied into the oil chamber B of each hoist cylinder 10 via It returns to the tank 12 via the tank line 14.
  • the inner cylinder portion 10B is contracted together with the piston rod 10C into the outer cylinder portion 10A by the pressure oil supplied into the oil chamber B, and the vessel 3 is subjected to the hydraulic pressure of the hoist cylinder 10 as shown in FIG.
  • the vessel 3 can be forced to sit on the vehicle body 2 by being pivoted downward to the transport position shown in FIG.
  • the operator of the dump truck 1 returns the control lever 28A to a second return position 28A3 shown by a two-dot chain line in FIG.
  • the first direction control valve 20 is switched to the floating position (F)
  • the second direction control valve 21 returns to the neutral position (N).
  • the vessel 3 can continue to be seated on the vehicle body 2 by its own weight, and the hoist cylinder 10 can also be kept in the contracted state by using the vessel 3 side's own weight.
  • the extension speed or the reduction speed of the hoist cylinder 10 is not adjusted before the hoist cylinder 10 is stopped. Therefore, when the vessel 3 is at the unloading position or the carrying position and the inclination angle ⁇ of the vessel 3 reaches a predetermined angle (a raising stop angle ⁇ 2 or a lowering stop angle ⁇ 0 described later), the hoist cylinder 10 When the expansion / contraction operation of is stopped, the impact at the time of stop accompanying this may be increased due to the weight of the load. In the empty state, the expansion operation of the hoist cylinder 10 may be too fast, or the contraction operation of the hoist cylinder 10 may be delayed, which may take extra time.
  • a predetermined angle a raising stop angle ⁇ 2 or a lowering stop angle ⁇ 0 described later
  • the switching control of the control valve device 16 by the controller 35 is performed according to the processing program shown in FIG. 5, FIG. 8 and FIG. Can be variably adjusted, the impact at the time of stopping can be mitigated properly, and the operability and stability can be improved.
  • step 1 when the raising control process starts, in step 1, a detection signal is read from the lever sensor 29, and in the next step 2, it is determined whether the raising operation of the vessel 3 is performed. When it is determined as "NO” in step 2, since operations other than the raising operation are performed, the process proceeds to step 12. In this case, as another operation, for example, a floating control process shown in FIG. 8 or a lowering control process shown in FIG. 9 is performed. However, when it is determined “YES” in step 2, the vessel 3 is operated to be raised, so that the vessel 3 is lifted upward from the vehicle body 2 in step 3.
  • the cylinder pressure P which is the load pressure of the hoist cylinder 10
  • the oil temperature T which is the temperature of the oil
  • the inclination angle ⁇ of the vessel 3 is read from the angle sensor 31.
  • the control map for flow rate adjustment shown in FIG. 6 is read out, and the target opening area St1 corresponding to the cylinder pressure P and the oil temperature T is calculated from the control map.
  • the characteristic line 38 when the oil temperature T is low, the characteristic line 38 is selected, and the target opening area St1 corresponding to the cylinder pressure P is obtained from the characteristic line 38.
  • the characteristic line 39 is selected, and the target opening area St1 corresponding to the cylinder pressure P is obtained from the characteristic line 39.
  • the characteristic line 40 is selected, and the target opening area St1 corresponding to the cylinder pressure P is obtained from the characteristic line 40.
  • the determination angle ⁇ 1 is an angle for determining whether or not the hoist cylinder 10 approaches the extended stop position, that is, whether or not the hoist cylinder 10 is approaching.
  • the inclination angle ⁇ shown in FIG. This corresponds to the case of approximately 53 degrees.
  • step 6 Since the inclination angle ⁇ of the vessel 3 is smaller than the determination angle ⁇ 1 while the determination in step 6 is “NO”, the process returns to step 3 to continue the subsequent processing. However, when it is determined "YES” in step 6, since the inclination angle ⁇ of the vessel 3 has reached the determination angle ⁇ 1, the process proceeds to the next step 7, and the first and second variable-width expansion diaphragms 20C and 21C. Control the switching of the first and second directional control valves 20, 21 so as to operate the
  • step 7 the first and second variable throttles are adjusted so that the opening areas of the first and second directional control valves 20 and 21 become equal to the target opening area St1 in step 5.
  • the flow rate adjustment control by the units 20C and 21C is executed. Thereby, the flow rate of the pressure oil flowing in the first and second directional control valves 20 and 21 from the high pressure side oil passage 17 to the actuator side oil passages 22A and 23A is the first and second extension side variable
  • the adjustment is performed via the throttle portions 20C and 21C, and the hoist cylinder 10 is controlled so that the extension speed becomes an appropriate speed.
  • step 8 the inclination angle ⁇ of the vessel 3 is read again from the angle sensor 31, and it is determined in step 9 whether or not the inclination angle ⁇ at this time is equal to or greater than a predetermined raising stop angle ⁇ 2. Since the hoist cylinder 10 is in the extension stroke while the determination in step 9 is “NO”, the process returns to step 7 to continue the subsequent processing.
  • the process proceeds to the next step 10, and the adjustment control of the flow rate by the expansion-side variable throttles 20C and 21C of the first and second directional control valves 20 and 21 is ended.
  • the first and second directional control valves 20 and 21 are both returned to the neutral position (N), the extension operation of the hoist cylinder 10 is stopped, and the rise of the vessel 3 is stopped.
  • the extension speed of the hoist cylinder 10 is made variable according to the load pressure by the cylinder pressure P of the hoist cylinder 10 and the oil temperature T which is the temperature of the pressure oil. It can be adjusted, and when stopping the hoist cylinder 10 in an original stop position, it can suppress that an impact generate
  • step 21 when the floating control processing operation starts, in step 21, a detection signal is read from the lever sensor 29, and in the next step 22, it is determined whether or not the floating operation of the vessel 3 is performed. When the determination in step 22 is "NO", an operation other than the floating operation is performed. Therefore, the process proceeds to step 34.
  • the raising control process shown in FIG. 5 or the lowering control process shown in FIG. when it is determined “YES” in step 22, since the vessel 3 is operated so as to be lifted, the vessel 3 is lowered from the ascent position to the side of the vehicle body 2 in step 23.
  • step 24 the cylinder pressure P in the reduction stroke of the hoist cylinder 10 is read from the pressure sensor 32, the oil temperature T is read from the oil temperature sensor 33, and the inclination angle ⁇ of the vessel 3 is read from the angle sensor 31.
  • step 25 the control map for flow rate adjustment shown in FIG. 6 is read out, and the target opening area St2 corresponding to the cylinder pressure P and the oil temperature T is calculated from the control map.
  • the process of step 25 is the same as the process of step 5 shown in FIG. 5 described above, and thus the description thereof will be omitted.
  • the descending speed V is calculated by differentiating the inclination angle ⁇ of the vessel 3.
  • the characteristic map according to the characteristic line 41 shown in FIG. 7 is read out, and the control start angle ⁇ x of flow rate adjustment corresponding to the descent velocity V of the vessel 3 is calculated from the characteristic line 41. That is, in the characteristic line 41 shown in FIG. 7, when the descending speed V of the vessel 3 is fast, the control start angle ⁇ x is selected as a larger angle in order to accelerate the control start timing of the flow rate adjustment. On the other hand, when the lowering speed V of the vessel 3 is slow, the control start angle ⁇ x is selected as a smaller angle so as to delay the control start timing of the flow rate adjustment.
  • next step 28 it is determined whether the inclination angle ⁇ of the vessel 3 detected by the angle sensor 31 has become smaller than the control start angle ⁇ x in step 27 or not. Since the inclination angle ⁇ of the vessel 3 is larger than the control start angle ⁇ x while the determination in step 28 is “NO”, the process returns to step 23 to continue the subsequent processing.
  • step 28 When it is determined in step 28 that the result is "YES”, the inclination angle ⁇ of the vessel 3 is reduced to the control start angle ⁇ x.
  • step 29 the switching of the first direction control valve 20 is controlled to start the adjustment control of the flow rate by the first reduction side variable throttle unit 20D.
  • the first directional control valve 20 has a first opening area corresponding to the flow passage area of the first reduction-side variable throttle portion 20D to have an area equal to the target opening area St2 in the step 25.
  • the adjustment control of the flow rate is executed by the reduction side variable throttle unit 20D.
  • the oil discharged from the oil chamber A of each hoist cylinder 10 to the tank 12 through the hydraulic piping 15A, the actuator side oil path 22A, and the first direction control valve 20 is the first reduction side variable.
  • the flow rate is variably adjusted by the throttling unit 20D. That is, the hoist cylinder 10 is controlled such that the reduction speed thereof becomes an appropriate speed corresponding to the weight on the vessel 3 side, the oil temperature T, and the lowering speed V.
  • step 30 the inclination angle ⁇ of the vessel 3 is read again from the angle sensor 31, and in step 31, it is determined whether or not the inclination angle ⁇ at this time is equal to or less than a predetermined lowering stop angle ⁇ 0. Since the hoist cylinder 10 is in the reduction stroke while the determination in step 31 is “NO”, the process returns to step 29 and the subsequent processing is continued.
  • step 32 the process proceeds to the next step 32, and the adjustment control of the flow rate by the reduction-side variable throttle unit 20D of the first direction control valve 20 is ended. Furthermore, in step 33, the first and second directional control valves 20 and 21 are both returned to the neutral position (N), the contraction operation of the hoist cylinder 10 is stopped, and the descent of the vessel 3 is stopped.
  • the hoist cylinder 10 when the hoist cylinder 10 is reduced by the load on the vessel 3 side to allow the descent of the vessel 3, the reduction pressure of the hoist cylinder 10 according to the load pressure of the hoist cylinder 10, the oil temperature T and the descent speed V Can be variably adjusted, and when stopping the hoist cylinder 10 at the original stop position, it is possible to suppress the occurrence of an impact.
  • the operability, stability and workability at the time of the floating operation of the vessel 3 can be improved.
  • step 41 when the lowering control processing operation starts, in step 41, a detection signal is read from the lever sensor 29, and in the next step 42, it is determined whether or not the lowering operation of the vessel 3 is performed. If "NO" in the step 42, an operation other than the lowering operation is performed. Therefore, the process proceeds to the step 54, where, for example, the raising control process shown in FIG. 5 or the floating control process shown in FIG.
  • step 42 If it is determined “YES” in step 42, the vessel 3 is operated to be lowered, so that the vessel 3 is lowered from the raised position to the side of the vehicle body 2 in step 43. In this case, the process of the next steps 44 to 48 is performed in the same manner as the process of steps 24 to 28 shown in FIG. 8 described above. In step 48, it is determined whether the inclination angle ⁇ of the vessel 3 detected by the angle sensor 31 has become smaller than the control start angle ⁇ x in step 47 or not.
  • the control start angle ⁇ x is selected to be a larger angle than in the case of the floating operation, and the control start timing is also set to be faster in the case of the lowering operation.
  • the switching of the second direction control valve 21 is controlled so as to start the adjustment control of the flow rate by the second reduction-side variable throttle unit 21D.
  • the second directional control valve 21 has an opening area corresponding to the flow passage area of the second reduction-side variable throttle portion 21D such that the opening area becomes equal to the target opening area St3 in step 45.
  • the adjustment control of the flow rate is executed by the second reduction side variable throttle unit 21D.
  • the oil discharged from the oil chamber A of each hoist cylinder 10 toward the tank 12 through the hydraulic piping 15A, the actuator side oil passage 23A, and the second direction control valve 21 is subjected to the second reduction side variable.
  • the flow rate is variably adjusted by the throttling portion 21D, and the hoist cylinder 10 is controlled such that the reduction speed is an appropriate speed corresponding to the weight on the vessel 3 side, the oil temperature T, and the lowering speed V.
  • step 50 the inclination angle ⁇ of the vessel 3 is read again from the angle sensor 31, and it is determined in step 51 whether or not the inclination angle ⁇ at this time is lowered and becomes equal to or less than the stop angle ⁇ 0. Since the hoist cylinder 10 is in the reduction stroke while the determination in step 51 is “NO”, the process returns to step 49 to continue the subsequent processing. If “YES” is determined in the step 51, the process proceeds to the step 52, and the adjustment control of the flow rate by the reduction-side variable throttle portion 21D of the second direction control valve 21 is ended. Then, in step 53, the first and second directional control valves 20 and 21 are both returned to the neutral position (N), the contraction operation of the hoist cylinder 10 is stopped, and the descent of the vessel 3 is stopped.
  • the reduction speed of the hoist cylinder 10 is variably adjusted according to the load pressure of the hoist cylinder 10, the oil temperature T, and the lowering speed V.
  • the controller 35 extends the hoist cylinder 10 to raise the vessel 3 or reduce the hoist cylinder 10 to lower the vessel 3 by the processes shown in FIGS. 5, 8 and 9.
  • the controller 35 determines that the hoist cylinder 10 is approaching the stop position
  • the controller 35 controls the control valve device 16 so as to slow or accelerate the expansion and contraction speed of the hoist cylinder 10 according to the weight on the vessel 3 side.
  • the flow rate of the oil fluid flowing through is adjusted variably.
  • the controller 35 can reduce the flow area or the opening area of the first and second directional control valves 20 and 21 in the vicinity of the stop position.
  • the controller 35 slows the reduction speed of the hoist cylinder 10. Switching is controlled, and the flow rate of the fluid flowing through the first directional control valve 20 or the second directional control valve 21 can be throttled by the reduction-side variable throttle portion 20D or 21D of the control valve device 16.
  • the vessel 3 in the loaded state can be prevented from being seated at a high speed on the vehicle body 2 side, and the impact when the vessel 3 is seated on the vehicle body 2 side can be reduced. Therefore, the operator of the dump truck 1 can easily carry out the operation of lowering the vessel 3 while carrying the load without paying special attention, and improve the operability and stability of the control lever 28A. Can.
  • the extension speed of the hoist cylinder 10 may be excessively accelerated or reduced by appropriately adjusting the flow rate of the oil through the control valve device 16 Excessive slowing of the speed can be prevented, and the hoist cylinder 10 can be stopped at the original stop position with reduced impact. Therefore, the operator of the dump truck 1 can raise and lower the vessel 3 in a short time only by operating the operation lever 28A as usual, without being influenced by the size, small size, and presence or absence of loading of the load. The operability and stability can be improved by suppressing the occurrence of an impact when stopping the hoist cylinder 10.
  • the controller 35 can correct the adjustment flow rate of the oil according to the temperature of the oil detected by the oil temperature sensor 33. For this reason, it is possible to properly adjust the flow rate of the oil flowing between the hoist cylinder 10 and the hydraulic pressure source by correcting the influence of the viscosity resistance accompanying the temperature change of the oil, and the change of the oil temperature T Regardless of this, the impact at the time of stopping of the hoist cylinder 10 can be favorably mitigated.
  • control is performed according to whether or not the tilt angle ⁇ of the vessel 3 reaches the corresponding decision reference angle when the tilt speed is fast. Adjustment control of the flow rate through the valve device 16 can be started at an early timing. On the other hand, when the tilting speed is slow, the judgment reference angle can be set to be delayed, and depending on whether the inclination angle ⁇ of the vessel 3 reaches the judgment reference angle (control start angle ⁇ x) The flow rate adjustment control can be started at a later timing.
  • the process of step 6 is a specific example of the stop position approach determination means which is a constituent feature of the present invention
  • the process of step 7 is a specific example of the flow rate adjustment means.
  • An example is shown.
  • the process of step 28 is a specific example of the stop position approach determination means
  • the process of step 29 is a specific example of the flow rate adjustment means.
  • the process of step 48 is a specific example of the stop position approach determination means
  • the process of step 49 is a specific example of the flow rate adjustment means.
  • the inclination state detector was comprised by the angle sensor 31 as the example, and was demonstrated.
  • the present invention is not limited to this.
  • a detector that detects the tilt state of the vessel 3 using both the seating sensor 30 and the angle sensor 31 may be configured.
  • it may be configured to detect whether or not the vessel 3 is seated on the vehicle body 2 using only the seating sensor 30, that is, whether or not the vessel 3 is in an inclined state.
  • the weight detector is configured by detecting the load pressure of the hoist cylinder 10 using the pressure sensor 32
  • a weight detector is configured by a pressure sensor 34F provided on the front suspension 7A on the front wheel 7 side and a pressure sensor 34R provided on the rear suspension 8A on the rear wheel 8 side. It is also good. That is, the weight on the vessel 3 side can be measured as the vehicle weight from the internal pressure of the front suspension 7A and the rear suspension 8A detected by the pressure sensors 34F and 34R.
  • control valve apparatus 16 was comprised using two direction control valves 20 and 21 was mentioned as the example, and was demonstrated.
  • present invention is not limited to this, and for example, a control valve device configured to be switched to four positions (for example, neutral position, raising position, floating position, lowering position) using one directional control valve Is also good.
  • the rear wheel drive type dump truck 1 has been described as an example of the transport vehicle.
  • the present invention is not limited to this, and may be applied to, for example, a front wheel drive type or a four wheel drive type dump truck driving both front and rear wheels, and other than a dump truck having wheels for traveling. It may be applied to a transport vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

 制御弁装置(16)を2つの方向制御弁(20),(21)により構成する。方向制御弁(20)は伸長側可変絞り部(20C)と縮小側可変絞り部(20D)とを有している。方向制御弁(21)は伸長側可変絞り部(21C)と縮小側可変絞り部(21D)とを有している。ホイストシリンダ(10)を伸縮してベッセル(3)を上昇または下降させているときに、ホイストシリンダ(10)が停止位置に近付くと、コントローラ(35)は、ホイストシリンダ(10)が停止位置に接近していることを判定する。この判定により、コントローラ(35)は、ベッセル(3)側の重量に応じてホイストシリンダ(10)の伸縮速度を遅くまたは速くするように、前記可変絞り部(20C),(20D)を用いて、方向制御弁(20)の流路面積を可変に調整し、または、前記可変絞り部(21C),(21D)を用いて方向制御弁(21)の流路面積を可変に調整する。

Description

運搬車両
 本発明は、例えば露天の採掘場、石切り場、鉱山で採掘した砕石物または掘削した土砂を運搬するのに好適に用いられる大型の運搬車両に関する。
 一般に、ダンプトラックと呼ばれる大型の運搬車両は、車体のフレーム上に起伏可能となったベッセル(荷台)を備え、このベッセルに運搬対象の荷物(例えば、砕石物または土砂)を多量に積載し、この状態で荷物の運搬、搬送を行うものである(例えば、特許文献1参照)。
 この種の従来技術による運搬車両は、自走可能な車体と、該車体上に傾転(起伏)可能に設けられ運搬対象の荷物が積載される荷台と、該荷台と車体との間に伸縮可能に設けられ前記荷物を荷台から排出するときに伸長して該荷台を車体の斜め後方へと傾斜させるホイストシリンダと、該ホイストシリンダの作動,停止を制御するコントローラとを備えている。
 このような運搬車両は、荷台内に荷物を積載した状態で運搬先まで自走した後に、ホイストシリンダを伸長させて荷台を斜め後方に持上げ、この持上げ動作により傾斜した荷台に沿って前記荷物を荷降し場へと排出する。排出動作が終了した後には、ホイストシリンダは、操作レバーの手動操作に従って縮小し、または荷台側の自重によって縮小する。このホイストシリンダの縮小動作により、荷台は車体上に着座する位置まで下降する。
特開2001-105956号公報
 ところで、上述した従来技術による運搬車両では、ホイストシリンダを伸長方向に駆動して荷台を車体の後方へと傾斜させ、該荷台が荷物の排出位置まで傾斜するとホイストシリンダの伸長動作を停止させる。また、荷物の排出後にはホイストシリンダを縮小させ、荷台が車体上に着座する位置まで下降するとホイストシリンダの縮小動作を停止させる構成としている。
 しかし、従来技術の場合には、荷物の重量にかかわりなく、荷台の傾斜角度が予め決められた角度に達するとホイストシリンダの伸縮動作を停止させる構成である。このため、ホイストシリンダを停止させるときに、これに伴って発生する衝撃が、荷物の重量に影響されて大きくなることがある。
 即ち、ホイストシリンダの伸縮動作を停止させるときには、油圧源とホイストシリンダとの間で制御弁装置により圧油の流量を一時的に絞り、その後に圧油の流れを遮断する制御を行う。しかし、制御弁装置が圧油の流れを絞るときの開口面積は、荷物の重量に関係なく一定に保たれるために、荷物重量の大,小によりホイストシリンダを停止させるまでの動作速度が過度に速くなったり、遅くなったりすることがある。
 このため、荷物の重量が軽い場合には、例えばホイストシリンダの縮小速度を速くしたいのに、ホイストシリンダの縮小速度は重量に係りなくほぼ一定となるため遅く感じるようになり、本来の停止位置に達するまでの時間が感覚的に長くなるという問題がある。一方、荷物の重量が重い場合には、ホイストシリンダの縮小速度を遅くしたいのに、ホイストシリンダの縮小速度は重量に係りなくほぼ一定となるため速く感じるようになり、ホイストシリンダを停止させたときの衝撃が大きくなるという問題がある。ホイストシリンダを伸長させる場合にも、同様な問題が生じる。
 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、荷物の重量に応じてホイストシリンダの伸縮速度を調整することができ、停止時の衝撃を適正に緩和することができるようにした運搬車両を提供することにある。
(1).上述した課題を解決するため本発明は、自走可能な車体と、該車体上に傾転可能に設けられ運搬対象の荷物が積載される荷台と、該荷台と車体との間に伸縮可能に設けられ前記荷物を荷台から排出するときに伸長して該荷台を斜めに傾斜させるホイストシリンダと、該ホイストシリンダに供給する圧油を発生する油圧源と、該油圧源とホイストシリンダとの間に設けられ該ホイストシリンダに対して前記圧油を供給,排出するのを制御する制御弁装置と、該制御弁装置の切換操作を行う操作装置とを備えてなる運搬車両に適用される。
 そして、本発明が採用する構成の特徴は、前記車体に対する前記荷台の傾斜状態を検出する傾斜状態検出器と、前記荷台に積載された荷物の重量を検出する重量検出器と、前記操作装置、傾斜状態検出器および重量検出器からの信号に基づいて前記制御弁装置を切換制御するコントローラとを備え、該コントローラは、前記操作装置および傾斜状態検出器からの信号に基づいて、前記ホイストシリンダが伸長側または縮小側の停止位置に近付いている(接近している)か否かを判定する停止位置接近判定手段と、該停止位置接近判定手段により前記ホイストシリンダが停止位置に近付いていると判定したときに、前記重量検出器で検出した前記荷台側の重量に応じて前記ホイストシリンダの伸縮速度を変えるように前記制御弁装置の切換えを制御し、前記ホイストシリンダと油圧源との間で流通する油液の流量を前記制御弁装置を通じて可変に調整する流量調整手段とを有する構成としたことにある。
 このように構成することにより、ホイストシリンダを伸長して荷台を上昇またはホイストシリンダを縮小して荷台を下降させているときに、ホイストシリンダが停止位置に接近していると判定すると、コントローラは荷台側の重量に応じてホイストシリンダの伸縮速度を遅くまたは速くするように制御弁装置の切換えを制御する。これにより、コントローラは、前記制御弁装置を流通する油液の流量を可変に調整し、制御弁装置の流路面積または開口面積を絞る。この結果、荷物の重量が重い場合にホイストシリンダの伸縮速度が速くなったとしても、制御弁装置を通じて油液の流量を適正に絞ることができ、停止位置に達する前にホイストシリンダの動きを抑制して衝撃の発生を緩和することができる。
 一方、荷物の重量が軽い場合または空荷の場合には、制御弁装置を通じて油液の流量を適正に調整することにより、ホイストシリンダの伸長速度が速くなり過ぎたり、ホイストシリンダの縮小速度が遅くなったりするのを防止でき、衝撃を抑えた状態でホイストシリンダを本来の停止位置で停止させることができる。従って、運搬車両のオペレータは、荷物の大,小、積載の有,無等に影響されることなく、操作装置を通常通りに操作するだけで荷台を短時間で昇降することができ、ホイストシリンダを停止させるときの衝撃の発生を抑えて操作性、安定性を向上することができる。
(2).この場合、本発明によると、前記制御弁装置を流通する油液の温度を検出する油温センサを備え、前記コントローラは、該油温センサで検出した油液の温度に従って前記流量調整手段による油液の調整流量を補正する構成としている。
 この構成によると、コントローラは、油温センサで検出した油液の温度に従って油液の調整流量を補正することができる。即ち、油液の温度変化に伴う粘性抵抗の影響を補正することができる。このため、ホイストシリンダと油圧源との間で流通する油液の流量を適正に調整することができ、油温の変化にかかわりなく、ホイストシリンダの停止時の衝撃を良好に緩和することができる。
(3).一方、本発明によると、前記コントローラは、前記停止位置接近判定手段により前記ホイストシリンダが停止位置に近付いているか否かを判定するときの判定基準値を前記荷台の傾転速度に応じて可変に設定し、前記流量調整手段による流量調整の開始タイミングを前記判定基準値に従って補正する構成としている。
 この構成のように、荷台の傾転速度を勘案することにより、傾転速度が速いときには該当する判定基準値に荷台の傾斜角度が達したか否かで、制御弁装置を通じた流量の調整制御を早めなタイミングで開始することができる。一方、傾転速度が遅いときには判定基準値を遅くするように設定でき、この判定基準値に荷台の傾斜角度が達したか否かで、制御弁装置を通じた流量の調整制御を遅めなタイミングで開始することができる。
(4).前記(1)項の場合、本発明によると、前記重量検出器は、前記ホイストシリンダの負荷圧を検出する圧力センサにより構成することができる。このように、重量検出器として圧力センサを用いることにより、ホイストシリンダの負荷圧から荷台が空荷状態であるか、荷物の積載状態であるか、荷物の重量が重いか、軽いかを、コントローラ側で判別することができる。
(5).また、前記(1)項の場合、本発明によると、前記傾斜状態検出器は、前記車体に対する荷台の傾斜角度を検出する角度センサにより構成することができる。この結果、角度センサを用いて車体に対する荷台の傾斜角度を検出することでき、コントローラ側では荷台の傾斜角度から停止位置に接近しているか否かの判定を行うことができる。
(6).前記(5)項の場合、本発明によると、前記停止位置接近判定手段は、前記角度センサで検出した前記荷台の傾斜角度が判定基準の角度に達したか否かにより前記ホイストシリンダが停止位置に接近しているか否かを判定し、前記コントローラは、前記判定基準の角度を前記荷台の傾転速度に応じて可変に設定する構成としている。
 この構成によると、コントローラは、判定基準の角度を荷台の傾転速度に応じて可変に設定することができ、このときの判定基準の角度に角度センサで検出した荷台の傾斜角度が達したか否かにより、ホイストシリンダが停止位置に接近しているか否かを判定することができる。
(7).また、本発明によると、前記制御弁装置は、前記圧油の供給,排出を停止してホイストシリンダの動きを止める中立位置と、前記圧油の供給,排出によりホイストシリンダを伸長させて前記荷台を持上げる上げ位置と、前記荷台側の自重によって前記ホイストシリンダを縮小させ前記荷台の自重落下を許す浮き位置と、前記圧油の供給,排出によりホイストシリンダを縮小させて前記荷台を下降させる下げ位置とからなる複数の切換位置を有し、前記制御弁装置の上げ位置には、前記コントローラの前記流量調整手段による制御信号に従って前記油液の流量調整を行い前記ホイストシリンダの伸長速度を可変に調整する伸長側可変絞り部を設け、前記制御弁装置の浮き位置と下げ位置には、前記コントローラの前記流量調整手段による制御信号に従って前記油液の流量調整を行い前記ホイストシリンダの縮小速度を可変に調整する縮小側可変絞り部を設ける構成としている。
 このように構成することにより、制御弁装置は、ホイストシリンダを伸長させて荷台を持上げる上げ位置に切換えられている状態で、コントローラの流量調整手段による制御信号に従って伸長側可変絞り部を動作させることにより、油圧源から前記ホイストシリンダに向けて供給される圧油の流量を可変に絞ることができ、前記ホイストシリンダの伸長速度が過度に速くなったり、遅くなったりするのを防ぐことができる。
 また、荷台側の自重によってホイストシリンダを縮小させ前記荷台の自重落下を許す浮き位置に切換えられている状態では、コントローラの流量調整手段による制御信号に従って縮小側可変絞り部を動作させることにより、前記ホイストシリンダから油圧源側に戻される油液の流量を可変に絞り、前記ホイストシリンダの縮小速度を適正な速度に調整することができる。一方、前記荷台を下向きに回動させる下げ位置に切換えられている状態でも、前記コントローラの流量調整手段による制御信号に従って他の縮小側可変絞り部を動作させることにより、前記ホイストシリンダの縮小速度を適正な速度に調整することができる。
(8).さらに、本発明によると、前記制御弁装置は、前記圧油の供給,排出を停止してホイストシリンダの動きを止める中立位置と、前記圧油の供給,排出によりホイストシリンダを伸長させて前記荷台を持上げる上げ位置と、前記荷台側の自重によって前記ホイストシリンダを縮小させ前記荷台の自重落下を許す浮き位置とのうち、いずれか一の位置に前記コントローラからの制御信号に従って切換わる第1の方向制御弁と、前記中立位置と、前記上げ位置と、前記圧油の供給,排出によりホイストシリンダを縮小させて前記荷台を下降させる下げ位置とのうち、いずれか一の位置に前記コントローラからの制御信号に従って切換わる第2の方向制御弁とを組合せて構成し、前記第1の方向制御弁は、前記上げ位置に切換えられているときに前記コントローラの前記流量調整手段による制御信号に従って前記油液の流量を可変に調整する第1の伸長側可変絞り部と、前記浮き位置に切換えられているときに前記コントローラの前記流量調整手段による制御信号に従って前記油液の流量を可変に調整する第1の縮小側可変絞り部とを有し、前記第2の方向制御弁は、前記上げ位置に切換えられているときに前記コントローラの前記流量調整手段による制御信号に従って前記油液の流量を可変に調整する第2の伸長側可変絞り部と、前記下げ位置に切換えられているときに前記コントローラの前記流量調整手段による制御信号に従って前記油液の流量を可変に調整する第2の縮小側可変絞り部とを有する構成としている。
 このように構成することにより、制御弁装置を第1の方向制御弁と第2の方向制御弁とを組合わせて構成することができ、上げ位置、浮き位置または下げ位置のいずれに方向制御弁が切換えられているかに応じて、伸長側または縮小側可変絞り部のいずれかを動作させ、ホイストシリンダの伸縮速度を適正に調整することができる。
本発明の実施の形態によるダンプトラックを示す正面図である。 ダンプトラックのベッセルを斜め後方に傾斜させた状態を示す正面図である。 ホイストシリンダを作動、停止させるための油圧回路を含んだ制御回路図である。 図3中の制御弁装置を拡大して示す油圧回路図である。 図3中のコントローラによる制御弁装置を通じたベッセルの上げ制御処理を示す流れ図である。 ホイストシリンダのシリンダ圧、制御弁装置の開口面積および油液に温度との関係を流量調整用の制御マップとして示す特性線図である。 ベッセルの下降速度と流量調整の制御開始角度との関係を示す特性線図である。 図3中のコントローラによる制御弁装置を通じたベッセルの浮き制御処理を示す流れ図である。 図3中のコントローラによる制御弁装置を通じたベッセルの下げ制御処理を示す流れ図である。
 以下、本発明の実施の形態による運搬車両を、鉱山で採掘した砕石物を運搬するダンプトラックを例に挙げ、図1ないし図9に従って詳細に説明する。
 図中、1は大型の運搬車両であるダンプトラックで、該ダンプトラック1は、頑丈なフレーム構造をなす車体2と、該車体2上に傾転(起伏)可能に搭載された荷台としてのベッセル3とにより大略構成されている。
 ベッセル3は、例えば砕石物のような重い荷物(以下、砕石4という)を多量に積載するため全長が10~13メートルにも及ぶ大型の容器として形成されている。ベッセル3の後側底部は、車体2の後端側に連結ピン5を介して傾転可能に連結されている。また、ベッセル3の前側上部には、後述のキャブ6を上側から覆う庇部3Aが一体に設けられている。
 即ち、ベッセル3の底部側は、車体2の後部側に連結ピン5を用いて回動可能に支持されている。そして、ベッセル3の前部側(庇部3A側)は、後述のホイストシリンダ10を伸長または縮小させることにより、連結ピン5の位置を支点として上,下方向に回動(昇降)される。これにより、ベッセル3は、図1に示す運搬位置と図2に示す排出位置との間で回動される。例えば、図2に示す排出位置において、ベッセル3に積載された多量の砕石4は、後方へと傾いたベッセル3から滑り落ちるように所定の荷降し場に排出される。図2中では、ベッセル3から排出された砕石4の一部を排土4Aとして示している。
 6は庇部3Aの下側に位置して車体2の前部に設けられたキャブである。このキャブ6は、ダンプトラック1のオペレータが乗降する運転室を形成し、その内部には運転席、アクセルペダル、ブレーキペダル、操舵用のハンドル、エンジンスイッチ(いずれも図示せず)、後述の操作レバー28A(図3中に1個のみ図示)等が設けられている。
 ベッセル3の庇部3Aは、キャブ6を上側からほぼ完全に覆うことにより、例えば岩石等の飛び石からキャブ6を保護すると共に、車両(ダンプトラック1)の転倒時にもキャブ6内のオペレータを保護する機能を有しているものである。
 7は車体2の前部側に回転可能に設けられた左,右の前輪(一方のみ図示)を示している。これらの前輪7は、ダンプトラック1のオペレータによって操舵(ステアリング操作)される操舵輪を構成している。前輪7は後述の後輪8と同様に、例えば2~4メートルに及ぶタイヤ径(外径寸法)をもって形成されている。車体2の前部と前輪7との間には、例えば油圧緩衝器等からなるフロントサスペンション7Aが設けられ、このフロントサスペンション7Aは、車体2の前部側を前輪7との間で懸架するものである。
 8は車体2の後部側に回転可能に設けられた左,右の後輪(一方のみ図示)を示している。これらの後輪8は、ダンプトラック1の駆動輪を構成し、走行駆動装置(図示せず)により回転駆動されるものである。後輪8と車体2の後部との間には、例えば油圧緩衝器等からなるリヤサスペンション8Aが設けられ、このリヤサスペンション8Aは、車体2の後部側を後輪8との間で懸架するものである。
 9は原動機としてのエンジンである。このエンジン9は、例えば大型のディーゼルエンジン等により構成されている。エンジン9は、キャブ6の下側に位置して車体2内に設けられ、図3に示す後述の油圧ポンプ11等を回転駆動するものである。
 10は車体2とベッセル3との間に伸縮可能に設けられた左,右一対のホイストシリンダである。このホイストシリンダ10は、多段式(例えば、2段式)の油圧シリンダからなり、図3に示すように外側に位置する外筒部10Aと、該外筒部10A内に伸縮可能に設けられ、外筒部10A内を上側の油室Aと下側の油室Bとに画成した内筒部10Bと、該内筒部10B内に伸縮可能に設けられたピストンロッド10Cとにより構成されている。
 ホイストシリンダ10は、後述の油圧ポンプ11から油室A内に圧油が供給されたときにピストンロッド10Cが下向きに伸長し、連結ピン5を支点としてベッセル3を斜め後方へと傾斜(回動)させる(図2参照)。一方、ホイストシリンダ10は、油圧ポンプ11から油室B内に圧油(油液)が供給されたときにピストンロッド10Cが縮小し、連結ピン5を支点としてベッセル3を下向きに回動した運搬位置(図1参照)へと戻す。
 次に、ホイストシリンダ10を駆動するための油圧回路について、図3、図4を参照して説明する。
 11は油圧ポンプを示し、該油圧ポンプ11は、作動油タンク12(以下、タンク12という)と共に油圧源を構成している。タンク12は、図1、図2に示すようにベッセル3の下方に位置して車体2の側面に取付けられている。タンク12内に収容された作動油(油液)は、油圧ポンプ11がエンジン9により回転駆動されるときに、油圧ポンプ11に吸込まれる。油圧ポンプ11の吐出側からは、高圧の圧油がポンプ管路13内に吐出される。一方、ホイストシリンダ10からの戻り油は、低圧のタンク管路14を介してタンク12へと排出されるものである。
 15A,15Bは各ホイストシリンダ10の油室A,Bに接続された一対の油圧配管である。この油圧配管15A,15Bは、後述の制御弁装置16を介して油圧源(油圧ポンプ11、タンク12)にそれぞれ接続され、油圧ポンプ11からの圧油をホイストシリンダ10の油室A,Bに供給し、また、油室A,B内の圧油をタンク12に排出するものである。
 16は油圧ポンプ11、タンク12とホイストシリンダ10との間に設けられた制御弁装置である。この制御弁装置16は、図3、図4に示すように高圧側油路17、低圧側油路18、バイパス油路19、第1の方向制御弁20および第2の方向制御弁21により大略構成されている。この場合、第1の方向制御弁20と第2の方向制御弁21とは、高圧側油路17、低圧側油路18、バイパス油路19を介して互いにパラレル接続されている。
 制御弁装置16の高圧側油路17は、ポンプ管路13を介して油圧ポンプ11の吐出側に接続され、低圧側油路18はタンク管路14を介してタンク12に接続されている。一方、図3、図4に示す如く、制御弁装置16のバイパス油路19は、方向制御弁20,21が中立位置(N)にあるときに高圧側油路17と低圧側油路18とを連通させる。これにより、油圧ポンプ11はアンロード状態となり、吐出圧力(ポンプ管路13内の圧力)はタンク圧に近い低圧状態に保たれる。
 第1の方向制御弁20の出力側には、一対のアクチュエータ側油路22A,22Bが設けられ、該アクチュエータ側油路22A,22Bは、油圧配管15A,15Bを介してホイストシリンダ10の油室A,Bにそれぞれ接続されている。第2の方向制御弁21の出力側には、一対のアクチュエータ側油路23A,23Bが設けられ、該アクチュエータ側油路23A,23Bは、油圧配管15A,15Bを介してホイストシリンダ10の油室A,Bにそれぞれ接続されている。
 制御弁装置16の方向制御弁20,21は、例えば6ポート3位置の油圧パイロット式方向制御弁により構成されている。第1の方向制御弁20は、一対の油圧パイロット部20A,20Bを有している。第1の方向制御弁20は、後述のパイロット圧Prが油圧パイロット部20Aに供給されると、中立位置(N)から上げ位置(R)に切換えられ、油圧パイロット部20Bに後述のパイロット圧Pfが供給されたときには、中立位置(N)から浮き位置(F)へと切換えられる。
 第1の方向制御弁20は、第1の伸長側可変絞り部20Cと第1の縮小側可変絞り部20Dとを有している。第1の伸長側可変絞り部20Cは、後述のコントローラ35から上げ操作部36Bに対し、デューティ制御による流量調整用の信号が出力されると、これに従って後述の如く油液の流量を可変に調整するものである。このとき、第1の方向制御弁20は、上げ位置(R)に切換った状態で第1の伸長側可変絞り部20Cにより、その流路面積としての開口面積を後述の目標開口面積St1に一致させるように流量調整を行う。
 また、第1の縮小側可変絞り部20Dは、コントローラ35から後述の浮き操作部36Cに対し、デューティ制御による流量調整用の信号が出力されると、これに従って後述の如く流量調整を行うものである。このとき、第1の方向制御弁20は、浮き位置(F)に切換った状態で第1の縮小側可変絞り部20Dにより、その開口面積を後述の目標開口面積St2に一致させるように流量調整を行う。なお、流量調整用の信号がコントローラ35から出力されない限りは、可変絞り部20C,20Dが流量調整を行うことはない。
 第2の方向制御弁21は、一対の油圧パイロット部21A,21Bを有している。この第2の方向制御弁21は、後述のパイロット圧Prが油圧パイロット部21Aに供給されると、中立位置(N)から上げ位置(R)に切換えられ、油圧パイロット部21Bに後述のパイロット圧Plが供給されたときには、中立位置(N)から下げ位置(L)へと切換えられるものである。
 第2の方向制御弁21は、第2の伸長側可変絞り部21Cと第2の縮小側可変絞り部21Dを有している。第2の伸長側可変絞り部21Cは、コントローラ35から後述の上げ操作部36Bに対し、デューティ制御による流量調整用の信号が出力されると、これに従って後述の如く油液の流量を可変に調整するものである。このとき、第2の方向制御弁21は、上げ位置(R)に切換った状態で第2の伸長側可変絞り部21Cにより、その開口面積を後述の目標開口面積St1に一致させるように流量調整を行う。
 また、第2の縮小側可変絞り部21Dは、コントローラ35から後述の下げ操作部36Dに対し、デューティ制御による絞り制御を行う信号が出力されると、これに従って後述の如く油液の流量を可変に調整するものである。このとき、第2の方向制御弁21は、下げ位置(L)に切換った状態で第2の縮小側可変絞り部21Dにより、その開口面積を後述の目標開口面積St3に一致させるように流量調整を行う。なお、流量調整用の信号がコントローラ35から出力されない限りは、可変絞り部21C,21Dが流量調整を行うことはない。
 ここで、制御弁装置16が保持位置にある場合について述べる。この場合には、制御弁装置16は、第1,第2の方向制御弁20,21が共に中立位置(N)に配置され、各ホイストシリンダ10の動きを止める保持位置となる。この保持位置では、各ホイストシリンダ10に対するアクチュエータ側油路22A,22Bとアクチュエータ側油路23A,23Bとを介した圧油の供給,排出が停止される。
 また、制御弁装置16が上げ位置となる場合について述べる。この場合には、制御弁装置16の第1,第2の方向制御弁20,21が共に中立位置(N)から上げ位置(R)に切換えられる。まず、第1,第2の方向制御弁21が上げ位置(R)になると、油圧ポンプ11からの圧油は、ポンプ管路13、高圧側油路17、方向制御弁21、アクチュエータ側油路22A,23A、油圧配管15Aを介して各ホイストシリンダ10の油室A内に供給される。このとき、油室B内の油液は、第1の方向制御弁20が上げ位置(R)に切換わることにより、油圧配管15B、アクチュエータ側油路22B、方向制御弁20、低圧側油路18およびタンク管路14を介してタンク12に戻される。
 これにより、各ホイストシリンダ10のピストンロッド10Cは、油室A内の圧油により伸長してベッセル3を図2に示す排土位置へと持上げる。即ち、このときに制御弁装置16の第1,第2の方向制御弁20,21は共に上げ位置(R)に配置され、各ホイストシリンダ10は、図2中の矢示E方向に油圧力で伸長することによりベッセル3を上向きに持上げるものである。
 一方、制御弁装置16が浮き位置となる場合について述べる。この場合には、制御弁装置16の第1の方向制御弁20を中立位置(N)から浮き位置(F)に切換え、第2の方向制御弁21を中立位置(N)に配置する。第1の方向制御弁20が浮き位置(F)になると、アクチュエータ側油路22Aが方向制御弁20を介して低圧側油路18、タンク管路14へと接続される。また、アクチュエータ側油路22Bは、後述のチェック弁24Bを介して低圧側油路18、タンク管路14に接続されると共に、他のアクチュエータ側油路23Bは、後述のチェック弁26Bを介して低圧側油路18、タンク管路14へと接続される。
 これにより、各ホイストシリンダ10は、ベッセル3からの荷重(自重)に従って図2中の矢示G方向に縮小し、油室A内の油液は、油圧配管15A、アクチュエータ側油路22A、方向制御弁20を介してタンク12に向けて排出されると共に、油室B内には、タンク12内の油液が後述のチェック弁24B,26Bからアクチュエータ側油路22B,23Bおよび油圧配管15Bを介して補給される。即ち、このときに制御弁装置16の第1の方向制御弁20は、ベッセル3の自重落下を許す浮き位置(F)に配置されるものである。
 また、制御弁装置16が下げ位置となる場合について述べる。この場合には、制御弁装置16の第1の方向制御弁20を中立位置(N)に戻し、第2の方向制御弁21を中立位置(N)から下げ位置(L)に切換える。即ち、第2の方向制御弁21が下げ位置(L)になると、油圧ポンプ11からの圧油がポンプ管路13、高圧側油路17、第2の方向制御弁21、アクチュエータ側油路23B、油圧配管15Bを介して各ホイストシリンダ10の油室B内に供給される。また、油室A内の油液は、油圧配管15A、アクチュエータ側油路23A、第2の方向制御弁21、低圧側油路18およびタンク管路14を介してタンク12に戻される。
 これによって、各ホイストシリンダ10は、油室B内に供給された圧油により内筒部10Bがピストンロッド10Cと共に外筒部10A内へと縮小し、ベッセル3を各ホイストシリンダ10の油圧力で図1に示す運搬位置へと下向きに回動させる。即ち、このときに制御弁装置16の方向制御弁21は下げ位置(L)に配置され、各ホイストシリンダ10は、図2中の矢示G方向に油圧力で縮小することによりベッセル3を車体2上に着座する位置へと下げるものである。
 24A,24Bは制御弁装置16の第1の方向制御弁20側に配設されたメイクアップ用のチェック弁である。このチェック弁24A,24Bは、アクチュエータ側油路22A,22Bと低圧側油路18との間に第1の方向制御弁20を迂回して設けられている。チェック弁24A,24Bは、タンク12内の油液が低圧側油路18からアクチュエータ側油路22A,22B、油圧配管15A,15Bを介してホイストシリンダ10の油室A,Bに向けて流通するのを許し、逆向きに流れるのを阻止する。ホイストシリンダ10の油室A,Bは、チェック弁24A,24Bを介して補給される油液により油室A,B内が負圧となるのを防止できるものである。
 25A,25Bは制御弁装置16に設けた過負荷防止用のリリーフ弁である。このリリーフ弁25A,25Bは、アクチュエータ側油路22A,22Bと低圧側油路18との間に第1の方向制御弁20を迂回して設けられ、チェック弁24A,24Bと並列に接続されている。リリーフ弁25A,25Bのうち一方のリリーフ弁25Aは、ホイストシリンダ10に対し縮小方向の過負荷が作用すると、油室A側の過剰圧をリリーフするために開弁する。他方のリリーフ弁25Bは、ホイストシリンダ10に対し伸長方向の過負荷が作用すると、油室B側の過剰圧をリリーフするために開弁するものである。
 26A,26Bは制御弁装置16の第2の方向制御弁21側に配設されたメイクアップ用のチェック弁である。このチェック弁26A,26Bは、アクチュエータ側油路23A,23Bと低圧側油路18との間に第2の方向制御弁21を迂回して設けられている。チェック弁26A,26Bは、例えばタンク12内の油液が低圧側油路18からアクチュエータ側油路23A,23B、油圧配管15A,15Bを介してホイストシリンダ10の油室A,Bに向けて流通するのを許し、逆向きに流れるのを阻止する。これにより、チェック弁26A,26Bは、ホイストシリンダ10の油室A,Bに油液を補給するものである。
 27は制御弁装置16の高圧側油路17と低圧側油路18との間に設けられたリリーフ設定圧の変更が可能なリリーフ弁を示している。このリリーフ弁27は、油圧ポンプ11の最大吐出圧を決め、これ以上の過剰な圧力が発生すると開弁し、過剰圧をタンク12側にリリーフするものである。このリリーフ弁27は、パイロット圧Prが供給される設定圧可変部27Aを有し、このパイロット圧Prによりリリーフ設定圧が高圧設定に切換わる。
 即ち、リリーフ弁27は、パイロット圧Prの供給により方向制御弁20,21が上げ位置(R)に切換えられているときに、リリーフ設定圧を高圧とすることにより、油圧ポンプ11の吐出圧を高い圧力に設定する。一方、前記パイロット圧Prの供給を停止したときに、リリーフ弁27は、リリーフ設定圧が低圧に切換えられ、圧油の圧力が必要以上に高くなるのを抑える。従って、油圧ポンプ11は、第1,第2の方向制御弁20,21が上げ位置(R)以外の位置に切換えられているとき、即ち中立位置(N)、浮き位置(F)または下げ位置(L)に切換えられているときに、吐出圧が低い圧力に設定されるものである。
 次に、制御弁装置16を構成する第1,第2の方向制御弁20,21にパイロット圧を供給するための操作装置について、図3を参照して説明する。
 28は制御弁装置16の切換操作を行う操作装置としての操作レバー装置である。この操作レバー装置28は、例えば電気レバー装置により構成され、キャブ6内のオペレータによって手動で傾転操作される操作レバー28Aを有している。この操作レバー28Aは、制御弁装置16の各切換位置に対応して保持位置、上げ位置、浮き位置および下げ位置のいずれかに傾転される。
 この場合、操作レバー28Aは、図3中に実線で示す第1の戻り位置28A1 と二点鎖線で示す第2の戻り位置28A3 とを有している。通常は、操作レバー28Aは、浮き位置に該当する第2の戻り位置28A3 に配置されている。ここで、操作レバー28Aを、図3中に二点鎖線で示す第2の戻り位置28A3 から矢示C方向に傾転したときには、二点鎖線で示す第1の傾転位置28A2 となり、後述するパイロット圧発生器36の上げ操作部36Bからパイロット圧Prが出力される。なお、第1の傾転位置28A2 の状態でオペレータが操作レバー28Aから手を離すと、操作レバー28Aは、戻しばね(図示せず)によって図3中の実線で示す第1の戻り位置28A1 へと自動的に復帰するものである。
 一方、オペレータが操作レバー28Aを、図3中に実線で示す第1の戻り位置28A1 から二点鎖線で示す第2の戻り位置28A3 へと前記戻しばねに抗して傾転したときには、この位置で操作レバー28Aが自己保持される。このときには後述の浮き操作部36Cからパイロット圧Pfが出力される。
 さらに、操作レバー28Aを、第2の戻り位置28A3 から矢示D方向に傾転したときには、二点鎖線で示す第2の傾転位置28A4 となり、後述の下げ操作部36Dからパイロット圧Plが出力される。そして、第2の傾転位置28A4 の状態でオペレータが操作レバー28Aから手を離すと、操作レバー28Aは、他の戻しばね(図示せず)によって第2の戻り位置28A3 に自動的に戻されるものである。
 29は操作レバー装置28に付設された操作検出手段としてのレバーセンサである。このレバーセンサ29は、オペレータによる操作レバー28Aの操作位置を検出し、その検出信号を後述のコントローラ35に出力する。この場合、レバーセンサ29は、操作検出手段を構成し、操作レバー装置28により切換えられる制御弁装置16が前述した各切換位置のうちいずれの位置にあるかを検出するものである。
 30はベッセル3が車体2上に着座しているか否かを検出する着座センサである。この着座センサ30は、図1、図2に示すようにタンク12の上側に位置して車体2側に設置された接触式センサにより構成され、ベッセル3側に設けた検出対象の突起物30Aが当接しているか、離間しているかを検出する。即ち、着座センサ30は、車体2上でのベッセル3の挙動(ベッセル3がどのような傾斜状態にあるか)を検出する傾斜状態検出器を構成し、その検出信号を後述のコントローラ35に出力するものである。
 31は本実施の形態で採用した他の傾斜状態検出器としての角度センサである。この角度センサ31は、図1、図2に示すように連結ピン5の近傍に位置して車体2の後部側に設けられている。そして、角度センサ31は、車体2に対するベッセル3の傾斜角度を、図2に例示する角度θとして検出し、その検出信号を後述のコントローラ35に出力するものである。
 32はベッセル3に積載された荷物の重量を検出する重量検出器としての圧力センサである。この圧力センサ32は、ホイストシリンダ10の負荷圧を油室A,Bのシリンダ圧P(図6参照)として検出し、その検出信号を後述のコントローラ35に出力する。このため、圧力センサ32は、ホイストシリンダ10または油圧配管15A,15Bの接続部位に取付けられるものである。後述のコントローラ35側では、圧力センサ32からの検出信号に従ってベッセル3側の重量、即ち荷物の大,小、積載の有,無等を識別することができる。
 33は油液の温度を検出する油温センサである。この油温センサ33は、ホイストシリンダ10に供給する圧油の温度、またはホイストシリンダ10からタンク12側に排出される戻り油の温度を検出し、その検出信号をコントローラ35に出力する。即ち、制御弁装置16の方向制御弁20,21内を流れる油液は、その温度に応じて粘性抵抗が変わり、これにより流量も変化してしまう。このため、油温センサ33で検出した油液の温度(油温T)に従って、図6に示す後述の特性線38,39,40の如く調整流量の特性値を変化させ、油液の温度変化に伴う粘性抵抗の影響をなくすように補正するものである。
 34F,34Rは他の圧力センサで、一方の圧力センサ34Fは前輪側圧力センサ34Fを構成し、他方の圧力センサ34Rは後輪側圧力センサ34Rを構成している。即ち、図1、図2に示すように、前輪側圧力センサ34Fは、前輪7側のフロントサスペンション7Aに設けられている。後輪側圧力センサ34Rは、後輪8側のリヤサスペンション8Aに設けられている。ここで、前輪側圧力センサ34Fは、フロントサスペンション7Aの内部圧力(以下、内圧という)を検出するものであり、後輪側圧力センサ34Rは、リヤサスペンション8Aの内部圧力(以下、内圧という)を検出するものである。これらの圧力センサ34F,34Rで検出したフロントサスペンション7A,リヤサスペンション8Aの内圧は、ベッセル3側の重量変化に対応して圧力値が変化することが知られている。このため、圧力センサ34F,34Rによって、ベッセル3に積載された荷物の重量を検出することができる。
 35はマイクロコンピュータからなる制御手段としてのコントローラである。このコントローラ35は、その入力側がレバーセンサ29、着座センサ30、角度センサ31、圧力センサ32および油温センサ33等に接続され、その出力側は後述のパイロット圧発生器36等に接続されている。また、コントローラ35は、ROM,RAM,不揮発性メモリ等からなる記憶部35Aを有している。
 コントローラ35の記憶部35A内には、後述の図5に示す上げ制御処理用のプログラム、図8に示す浮き制御処理用のプログラム、図9に示す下げ制御処理用のプログラム、図6に示す流量調整用の制御マップ、図7に示すベッセル3の下降速度Vと流量調整の制御開始角度θxとの関係を示す特性マップ、後述の下げ停止角度θ0 (例えば、θ0 =0~2度)、判定角度θ1 (例えば、θ1 =45~53度)、上げ停止角度θ2 (例えば、θ2 =55~57度)等が格納されている。
 ここで、コントローラ35は、後述する図5の処理プログラムに従ってベッセル3を斜め上向きに上昇させたり、図8、図9の処理プログラムに従って下降させたりする制御弁装置16の切換制御を行う。コントローラ35は、この切換制御の途中でレバーセンサ29、角度センサ31、圧力センサ32および油温センサ33からの検出信号を読込み、伸縮動作しているホイストシリンダ10が停止位置に近付いていると判定したときに、ホイストシリンダ10の伸縮速度を負荷圧(シリンダ圧P)に応じて可変に制御するように、制御弁装置16を切換えて流量の調整処理を実行するものである。
 36はコントローラ35の出力側に接続されたパイロット圧発生器で、該パイロット圧発生器36は、電磁比例弁を含んだ電気・油圧変換装置により構成されている。このパイロット圧発生器36は、図3に示す如くコントローラ35からの電気的な制御信号を圧力信号であるパイロット圧Pr,Pf,Plに変換する。このため、パイロット圧発生器36は、保持操作部36A、上げ操作部36B、浮き操作部36Cおよび下げ操作部36Dからなる4つの操作部を備えている。
 ここで、パイロット圧発生器36は、第1,第2の方向制御弁20,21を上げ位置(R)に切換えるように油圧パイロット部20A,21Aにパイロット圧Prを供給している状態で、コントローラ35から上げ操作部36Bに流量調整用の信号が出力されると、前記パイロット圧Prを、例えば50~100%の範囲内で変化させる。これにより、上げ位置(R)に切換わっている第1,第2の方向制御弁20,21は、高圧側油路17からアクチュエータ側油路22A,23Aに向けて第1,第2の方向制御弁20,21内を流通する圧油の流量を、例えば50~100%に相当する流量範囲で調整するように伸長側可変絞り部20C,21Cを作動させる。
 この結果、油圧ポンプ11からポンプ管路13、高圧側油路17、第1,第2の方向制御弁20,21、アクチュエータ側油路22A,23A、各油圧配管15Aを介して各ホイストシリンダ10の油室Aに向けて供給される圧油は、伸長側可変絞り部20C,21Cにより流量が可変に調整され、ホイストシリンダ10は伸長速度が適正な速度となるように制御される。
 一方、パイロット圧発生器36は、第1の方向制御弁20を浮き位置(F)に切換えるように油圧パイロット部20Bにパイロット圧Pfを供給している状態で、コントローラ35から浮き操作部36Cに流量調整用の信号が出力されると、前記パイロット圧Pfを、例えば50~100%の範囲内で変化させる。これにより、浮き位置(F)に切換わっている第1の方向制御弁20は、アクチュエータ側油路22A側から低圧側油路18に向けて第1の方向制御弁20内を流通する油液の流量を、例えば50~100%に相当する流量範囲で調整するように第1の縮小側可変絞り部20Dを作動させる。
 この結果、各ホイストシリンダ10の油室Aから油圧配管15A、アクチュエータ側油路22A、第1の方向制御弁20を介してタンク12に向けて排出される油液は、第1の縮小側可変絞り部20Dにより流量が可変に調整され、ホイストシリンダ10は縮小速度が適正な速度となるように制御される。
 さらに、パイロット圧発生器36は、第2の方向制御弁21を下げ位置(L)に切換えるように油圧パイロット部21Bにパイロット圧Plを供給している状態で、コントローラ35から下げ操作部36Dに流量調整用の信号が出力されると、前記パイロット圧Plを、例えば50~100%の範囲内で変化させる。これにより、下げ位置(L)に切換わっている第2の方向制御弁21は、アクチュエータ側油路23A側から低圧側油路18に向けて第2の方向制御弁21内を流通する油液の流量を、例えば50~100%に相当する流量範囲で調整するように第2の縮小側可変絞り部21Dを作動させる。
 この結果、各ホイストシリンダ10の油室Aから油圧配管15A、アクチュエータ側油路23A、第2の方向制御弁21を介してタンク12に向けて排出される油液は、第2の縮小側可変絞り部21Dにより流量が可変に調整され、ホイストシリンダ10は縮小速度が適正な速度となるように制御される。
 37はタンク12と共にパイロット油圧源を構成するパイロットポンプで、該パイロットポンプ37は、図3に示す油圧ポンプ11と共にエンジン9により駆動される。パイロットポンプ37は、例えば0.5~5.0MPa(メガパスカル)程度の圧油をパイロット圧発生器36に向けて供給する。そして、パイロット圧発生器36は、パイロットポンプ37からの圧油を、例えばパイロット圧Pr,Pf,Plとして出力するものである。
 この場合、操作レバー装置28の操作レバー28Aを図3中に実線で示す第1の戻り位置28A1 に配置している場合には、コントローラ35からは、パイロット圧発生器36の保持操作部36Aに制御信号が出力される。これにより、パイロット圧発生器36は、パイロット圧Pr,Pf,Plを全てタンク圧に近い圧力まで下げる。このため、制御弁装置16は保持位置となるように、第1,第2の方向制御弁20,21が共に中立位置(N)に保持される。
 次に、操作レバー28Aを、図3中に実線で示す第1の戻り位置28A1 から第1の傾転位置28A2 へと矢示C方向に傾転した場合には、コントローラ35からは、パイロット圧発生器36の上げ操作部36Bに制御信号が出力される。これにより、パイロット圧発生器36は、パイロット圧Prを上げ操作部36Bから第1,第2の方向制御弁20,21の油圧パイロット部20A,21Aに供給する。このため、制御弁装置16は、第1,第2の方向制御弁20,21が共に中立位置(N)から上げ位置(R)に切換えられる。
 次に、操作レバー28Aを、図3中に実線で示す第1の戻り位置28A1 から二点鎖線で示す第2の戻り位置28A3 へと傾転した場合には、この位置で操作レバー28Aが自己保持されると共に、コントローラ35からパイロット圧発生器36の浮き操作部36Cに制御信号が出力される。このときには、制御弁装置16の第1の方向制御弁20を中立位置(N)から浮き位置(F)に切換えるために、パイロット圧Pfは、パイロット圧発生器36の浮き操作部36Cから方向制御弁20の油圧パイロット部20Bに供給される。なお、このときに第2の方向制御弁21は、パイロット圧Pr,Plが共にタンク圧に近い圧力まで下がって中立位置(N)に戻されるものである。
 さらに、操作レバー28Aを、図3中に二点鎖線で示す第2の戻り位置28A3 から第2の傾転位置28A4 へと矢示D方向に傾転した場合には、コントローラ35からは、パイロット圧発生器36の下げ操作部36Dに制御信号が出力される。このときには、制御弁装置16の第2の方向制御弁21を中立位置(N)から下げ位置(L)に切換えるために、パイロット圧Plは、パイロット圧発生器36の下げ操作部36Dから第2の方向制御弁21の油圧パイロット部21Bに供給される。なお、このときに第1の方向制御弁20は、パイロット圧Pr,Pfが共にタンク圧に近い圧力まで下がって中立位置(N)に戻される。
 次に、図6に示す流量調整用の制御マップについて説明する。特性線38は、油液の油温Tが低温の場合に適した流量調整用の特性を示している。即ち、油温Tが低い場合には油液の粘性抵抗が高くなるので、可変絞り部20C,20D,21C,21Dによる開口面積の変化に従って油液の流量が大きく変動する。このため、油温Tが低い場合の特性線38は、制御弁装置16の方向制御弁20,21による目標開口面積St を、ホイストシリンダ10のシリンダ圧Pに応じて漸次小さくするように制御すると共に、例えば油温Tが高い場合の特性線39に比較して相対的に目標開口面積St が大きくなるように設定されている。
 特性線39は、油液の油温Tが高温の場合に適した流量調整用の特性を示している。油温Tが高い場合の特性線39は、制御弁装置16の方向制御弁20,21による目標開口面積St を、ホイストシリンダ10のシリンダ圧Pに応じて漸次小さくするように制御すると共に、例えば油温Tが低温な特性線38に比較して目標開口面積St が相対的に小さくなるように設定されている。また、特性線40は、油液の油温Tが中間温度の場合に適した流量調整用の特性を示し、油温Tが低い場合の特性線38と高い場合の特性線39との中間値となるように目標開口面積St が設定されている。
 図7に示す特性線41は、ベッセル3が下降されるときの下降速度Vに対して後述の流量調整制御を開始するときのタイミングを補正するもので、制御開始角度θxは、下降速度Vに応じて漸次大きな角度となるように設定される。下降速度Vは、角度センサ31で検出したベッセル3の傾斜角度θを、例えば微分して求められるものである。
 本実施の形態によるダンプトラック1は、上述の如き構成を有するもので、次に、その作動について説明する。
 まず、鉱山等の砕石場では、例えば大型の油圧ショベル(図示せず)を用いて運搬対象の砕石4をベッセル3上に積載する。このとき、ベッセル3は図1に示す運搬位置に置かれ、ダンプトラック1は、ベッセル3上に砕石4を多量に積載した状態で荷降し場に向けて運搬する。
 荷降し場においては、キャブ6内のオペレータが、操作レバー装置28の操作レバー28Aを手動で、図3中に二点鎖線で示す第2の戻り位置28A3 から第1の傾転位置28A2 まで矢示C方向に傾転操作する。これにより、コントローラ35からは、パイロット圧発生器36の上げ操作部36Bに制御信号が出力される。この結果、パイロット圧発生器36の上げ操作部36Bからは、パイロット圧Prが第1,第2の方向制御弁20,21の油圧パイロット部20A,21Aに供給される。
 このとき、制御弁装置16は、第1の方向制御弁20が中立位置(N)から上げ位置(R)に切換えられ、第2の方向制御弁21も中立位置(N)から上げ位置(R)に切換えられる。このため、油圧ポンプ11からの圧油は、ポンプ管路13、高圧側油路17、第1,第2の方向制御弁20,21、アクチュエータ側油路22A,23A、油圧配管15Aを介して2つのホイストシリンダ10の油室A内に供給される。一方、油室B内の油液は、油圧配管15B、アクチュエータ側油路22B、第1の方向制御弁20、低圧側油路18およびタンク管路14を介してタンク12に戻される。
 この結果、ホイストシリンダ10のピストンロッド10Cは、油室A内の圧油により伸長し、ベッセル3は斜め後方へと傾斜するように図2に示す排土位置へと持上げられる。このとき、ダンプトラック1は、ベッセル3が連結ピン5を支点として図2に示す如き傾斜姿勢に回動することにより、ベッセル3内の砕石4を下方へと滑り落とすように荷降し場に向けて排出することができる。
 このとき、オペレータが操作レバー28Aから手を離すと、操作レバー28Aは、前記戻しばねにより図3中の第1の戻り位置28A1 に自動的に復帰する。このため、コントローラ35からパイロット圧発生器36の保持操作部36Aに制御信号が出力され、パイロット圧発生器36からのパイロット圧Pr,Pf,Plは全てタンク圧に近い圧力まで下げられる。
 これにより、制御弁装置16の方向制御弁20,21は中立位置(N)に自動的に戻り、ホイストシリンダ10の油室A,Bに対する圧油の供給,排出を停止すると共に、ピストンロッド10Cを伸長状態に保つことができ、ベッセル3を図2に示す傾斜姿勢のままで一時停止させることができる。
 次に、砕石4の排出作業が終了すると、オペレータは、操作レバー28Aを手動で図3中の第1の戻り位置28A1 から二点鎖線で示す第2の戻り位置28A3 まで傾転操作する。これにより、コントローラ35からパイロット圧発生器36の浮き操作部36Cに制御信号が出力される。このため、パイロット圧発生器36は、浮き操作部36Cからパイロット圧Pfを第1の方向制御弁20の油圧パイロット部20Bに出力し、方向制御弁20を浮き位置(F)に切換える。また、第2の方向制御弁21は中立位置(N)に自動的に復帰する。
 これにより、浮き位置(F)に切換わった第1の方向制御弁20は、アクチュエータ側油路22Aを低圧側油路18、タンク管路14に接続する。即ち、アクチュエータ側油路22Bは、チェック弁24Bを介して低圧側油路18、タンク管路14に接続され、アクチュエータ側油路23Bは、チェック弁26Bを介して低圧側油路18、タンク管路14へと接続されている。
 この結果、ホイストシリンダ10は、ベッセル3からの荷重(自重)に従って図2中の矢示G方向に縮小し、油室A内の油液がタンク12に向けて排出されると共に、油室B内にはチェック弁24B,26Bを介してタンク12内の油液が補給される。従って、ホイストシリンダ10は、ベッセル3の自重による落下を許すことにより、ベッセル3を図1に示す運搬位置へと下降することができ、ベッセル3を車体2上に着座させることができる。
 一方、ダンプトラック1が作業現場の凹凸、傾斜地等で傾いた状態にあるときには、制御弁装置16の第1の方向制御弁20を浮き位置(F)に切換えても、ベッセル3が自重により下降しないことがある。しかし、このような場合には、オペレータが操作レバー28Aを図3中の矢示D方向に第2の傾転位置28A4 まで傾転操作することにより、コントローラ35からパイロット圧発生器36の下げ操作部36Dに対し制御信号を出力できる。
 このため、パイロット圧発生器36は、下げ操作部36Dから制御信号に対応したパイロット圧Plを第2の方向制御弁21の油圧パイロット部21Bに出力し、第2の方向制御弁21を下げ位置(L)に切換える。これにより、下げ位置(L)に切換わった第2の方向制御弁21は、油圧ポンプ11からの圧油を、ポンプ管路13、高圧側油路17、アクチュエータ側油路23B、油圧配管15Bを介して各ホイストシリンダ10の油室B内に供給すると共に、油室A内の油液を、油圧配管15A、アクチュエータ側油路23A、第2の方向制御弁21、低圧側油路18、タンク管路14を介してタンク12に戻す。
 これによって、ホイストシリンダ10は、油室B内に供給された圧油により内筒部10Bがピストンロッド10Cと共に外筒部10A内へと縮小し、ベッセル3をホイストシリンダ10の油圧力で図1に示す運搬位置へと下向きに回動することができ、ベッセル3を車体2上に強制的に着座させることができる。
 また、ダンプトラック1のオペレータは、車両の走行時に操作レバー28Aを図3中に二点鎖線で示す第2の戻り位置28A3 へと戻して自己保持させるようにしている。これにより、制御弁装置16は、第1の方向制御弁20が浮き位置(F)に切換わり、第2の方向制御弁21が中立位置(N)に戻る。この結果、ベッセル3は自重によって車体2上に着座し続け、ホイストシリンダ10もベッセル3側の自重を利用して縮小状態に保つことができる。
 ところで、一般的にホイストシリンダ10は、その伸長速度または縮小速度がホイストシリンダ10の停止前に調整されることはない。従って、ベッセル3が排土位置または運搬位置となって、該ベッセル3の傾斜角度θが予め決められた角度(後述の上げ停止角度θ2 または下げ停止角度θ0 )に達した時点で、ホイストシリンダ10の伸縮動作を停止させると、これに伴って発生する停止時の衝撃が、荷物の重量に影響されて大きくなることがある。また、空荷の状態では、ホイストシリンダ10の伸長動作が速くなり過ぎたり、ホイストシリンダ10を縮小動作が遅くなって余分な時間がかかる場合もある。
 そこで、本実施の形態では、コントローラ35による制御弁装置16の切換制御を図5、図8、図9に示す処理プログラムに沿って行うことにより、荷物の重量に応じてホイストシリンダ10の伸縮速度を可変に調整することができ、停止時の衝撃を適正に緩和することができ、操作性、安定性を向上することができるようにしている。
 まず、図5に基づき、上げ制御処理時におけるホイストシリンダ10の伸長速度の調整動作について説明する。
 即ち、図5において、上げ制御処理がスタートすると、ステップ1ではレバーセンサ29から検出信号を読込み、次のステップ2ではベッセル3の上げ操作が行われているか否かを判定する。ステップ2で「NO」と判定したときには、上げ操作以外の操作を行っているので、ステップ12に移る。この場合には、他の作業として、例えば図8に示す浮き制御処理、または図9に示す下げ制御処理等が行われる。しかし、ステップ2で「YES」と判定したときには、ベッセル3が上げ操作されているので、ステップ3によりベッセル3が車体2から上向きに上昇している。
 そこで、次のステップ4では、圧力センサ32からホイストシリンダ10の負荷圧であるシリンダ圧Pを読込む。また、油温センサ33から油液の温度である油温Tを読込み、角度センサ31からベッセル3の傾斜角度θを読込む。次のステップ5では、図6に示す流量調整用の制御マップを読出し、前記シリンダ圧Pおよび油温Tに対応した目標開口面積St1を制御マップから算定する。
 即ち、図6に示す特性線38~40のうち、油温Tが低温の場合には特性線38を選択し、前記シリンダ圧Pに対応した目標開口面積St1を特性線38から求める。油温Tが高温の場合には特性線39を選択し、前記シリンダ圧Pに対応した目標開口面積St1を特性線39から求める。さらに、油温Tが中間温度の場合には特性線40を選択し、前記シリンダ圧Pに対応した目標開口面積St1を特性線40から求める。
 次のステップ6では、角度センサ31で検出したベッセル3の傾斜角度θが予め決められた判定角度θ1 以上まで大きくなったか否かを判定する。ここで、判定角度θ1 とは、ホイストシリンダ10が伸長側の停止位置に近ついている、即ち、接近しているか否かを判定するための角度であり、例えば図2に示す傾斜角度θが45~53度程度となった場合に相当する。
 ステップ6で「NO」と判定する間は、ベッセル3の傾斜角度θが判定角度θ1 よりも小さいので、ステップ3に戻って、これ以降の処理を続行する。しかし、ステップ6で「YES」と判定したときには、ベッセル3の傾斜角度θが判定角度θ1 に達しているので、次のステップ7に移り、第1、第2の伸長側可変絞り部20C,21Cを作動させるように第1,第2の方向制御弁20,21の切換えを制御する。
 即ち、ステップ7では、第1,第2の方向制御弁20,21の開口面積が、前記ステップ5による目標開口面積St1に一致する面積となるように、第1、第2の伸長側可変絞り部20C,21Cによる流量の調整制御を実行する。これにより、高圧側油路17からアクチュエータ側油路22A,23Aに向けて第1,第2の方向制御弁20,21内を流通する圧油の流量は、第1,第2の伸長側可変絞り部20C,21Cを介して調整され、ホイストシリンダ10は伸長速度が適正な速度となるように制御される。
 次に、ステップ8では、角度センサ31からベッセル3の傾斜角度θを再び読込み、このときの傾斜角度θが予め決められた上げ停止角度θ2 以上となったか否かをステップ9で判定する。ステップ9で「NO」と判定する間は、ホイストシリンダ10が伸長行程にあるので、ステップ7に戻ってこれ以降の処理を続ける。ステップ9で「YES」と判定したときには、ベッセル3の傾斜角度θが上げ停止角度θ2 (例えば、θ2 =55~57度)に達した場合である。
 そこで、この場合には、次のステップ10に移って第1,第2の方向制御弁20,21の伸長側可変絞り部20C,21Cによる流量の調整制御を終了させる。そして、ステップ11では、第1,第2の方向制御弁20,21を共に中立位置(N)に復帰させ、ホイストシリンダ10の伸長動作を停止させ、ベッセル3の上昇を停止させる。
 これにより、ホイストシリンダ10を伸長させてベッセル3を上昇させるときに、ホイストシリンダ10のシリンダ圧Pによる負荷圧、圧油の温度である油温Tに応じてホイストシリンダ10の伸長速度を可変に調整することができ、本来の停止位置でホイストシリンダ10を停止させるときに、衝撃が発生するのを抑えることができる。この結果、ホイストシリンダ10の伸長速度が過度に速くなったり、遅くなったりするのを防ぐことができ、ベッセル3の上げ操作時における操作性、安定性、作業性を向上することができる。
 次に、図8に基づき、浮き制御処理時におけるホイストシリンダ10の縮小速度の調整動作について説明する。
 図8において、浮き制御処理動作がスタートすると、ステップ21ではレバーセンサ29から検出信号を読込み、次のステップ22ではベッセル3の浮き操作が行われているか否かを判定する。ステップ22で「NO」と判定したときには、浮き操作以外の操作を行っているので、ステップ34に移り、例えば図5に示す上げ制御処理、または図9に示す下げ制御処理等が行われる。しかし、ステップ22で「YES」と判定したときには、ベッセル3が浮き操作されているので、ステップ23によりベッセル3が上昇位置から車体2側へ下降している。
 次のステップ24では、圧力センサ32からホイストシリンダ10の縮小行程でのシリンダ圧Pを読込み、油温センサ33から油温Tを読込み、角度センサ31からベッセル3の傾斜角度θを読込む。次のステップ25では、図6に示す流量調整用の制御マップを読出し、前記シリンダ圧Pおよび油温Tに対応した目標開口面積St2を制御マップから算定する。なお、ステップ25の処理は、前述した図5に示すステップ5と同様の処理を行うので、これ以上の説明を省略する。
 次のステップ26では、ベッセル3の傾斜角度θを微分して下降速度Vを算出する。次のステップ27では、図7に示す特性線41による特性マップを読出し、ベッセル3の下降速度Vに対応した流量調整の制御開始角度θxを特性線41から演算により求める。即ち、図7に示す特性線41では、ベッセル3の下降速度Vが速いときには、流量調整の制御開始タイミングを速めるために制御開始角度θxをより大きな角度として選定する。一方、ベッセル3の下降速度Vが遅いときには、流量調整の制御開始タイミングを遅くするように制御開始角度θxをより小さな角度として選定する。
 次のステップ28では、角度センサ31で検出したベッセル3の傾斜角度θがステップ27による制御開始角度θx以下まで小さくなったか否かを判定する。ステップ28で「NO」と判定する間は、ベッセル3の傾斜角度θが制御開始角度θxよりも大きいので、ステップ23に戻って、これ以降の処理を続行する。
 ステップ28で「YES」と判定したときには、ベッセル3の傾斜角度θが制御開始角度θxまで小さくなっているので、次のステップ29に移る。このステップ29では、第1の縮小側可変絞り部20Dによる流量の調整制御を開始させるように第1の方向制御弁20の切換えを制御するものである。このとき、第1の方向制御弁20は、第1の縮小側可変絞り部20Dの流路面積に相当する開口面積が、前記ステップ25による目標開口面積St2に一致する面積となるように、第1の縮小側可変絞り部20Dによって流量の調整制御を実行する。
 これにより、各ホイストシリンダ10の油室Aから油圧配管15A、アクチュエータ側油路22A、第1の方向制御弁20を介してタンク12に向けて排出される油液は、第1の縮小側可変絞り部20Dにより流量が可変に調整される。即ち、ホイストシリンダ10は、その縮小速度がベッセル3側の重量、油温T、下降速度Vに対応して適正な速度となるように制御される。
 次に、ステップ30では、角度センサ31からベッセル3の傾斜角度θを再び読込み、ステップ31では、このときの傾斜角度θが予め決められた下げ停止角度θ0 以下となったか否かを判定する。ステップ31で「NO」と判定する間は、ホイストシリンダ10が縮小行程にあるので、ステップ29に戻ってこれ以降の処理を続ける。ステップ31で「YES」と判定したときには、ベッセル3の傾斜角度θが下げ停止角度θ0 (例えば、θ0 =0~2度)に達した場合である。
 そこで、この場合には、次のステップ32に移って第1の方向制御弁20の縮小側可変絞り部20Dによる流量の調整制御を終了させる。さらに、ステップ33では、第1,第2の方向制御弁20,21を共に中立位置(N)に復帰させ、ホイストシリンダ10の縮小動作を停止させ、ベッセル3の下降を停止させる。
 これにより、ホイストシリンダ10をベッセル3側の荷重により縮小させてベッセル3の下降を許しているときに、ホイストシリンダ10の負荷圧、油温T、下降速度Vに応じてホイストシリンダ10の縮小速度を可変に調整することができ、本来の停止位置でホイストシリンダ10を停止させるときに、衝撃が発生するのを抑えることができる。しかも、ホイストシリンダ10の縮小速度が過度に速くなったり、遅くなったりするのを防ぐことができるので、ベッセル3の浮き操作時における操作性、安定性、作業性を向上することができる。
 次に、図9に基づき、下げ制御処理時におけるホイストシリンダ10の縮小速度の調整動作について説明する。
 図9において、下げ制御処理動作がスタートすると、ステップ41ではレバーセンサ29から検出信号を読込み、次のステップ42ではベッセル3の下げ操作が行われているか否かを判定する。ステップ42で「NO」と判定したときには、下げ操作以外の操作を行っているので、ステップ54に移り、例えば図5に示す上げ制御処理、または図8に示す浮き制御処理等が行われる。
 ステップ42で「YES」と判定したときには、ベッセル3が下げ操作されているので、ステップ43によりベッセル3が上昇位置から車体2側に下降している。この場合には、次のステップ44~48にわたる処理を、前述した図8に示すステップ24~28にわたる処理と同様に行う。ステップ48では、角度センサ31で検出したベッセル3の傾斜角度θがステップ47による制御開始角度θx以下まで小さくなったか否かを判定する。
 この場合はベッセル3の下げ操作を行っているので、例えば浮き操作の場合よりもホイストシリンダ10の縮小速度、ベッセル3の下降速度Vは速くなっている。このため、ステップ47による処理では、制御開始角度θxは、浮き操作の場合よりも大きな角度に選定され、制御開始タイミングも下げ操作の場合の方が速いタイミングに設定される。
 前記ステップ48で「YES」と判定した場合、ベッセル3の傾斜角度θが制御開始角度θx以下まで小さくなっている。このため、次のステップ49では、第2の縮小側可変絞り部21Dによる流量の調整制御を開始させるように第2の方向制御弁21の切換えを制御する。このとき、第2の方向制御弁21は、第2の縮小側可変絞り部21Dの流路面積に相当する開口面積が、前記ステップ45による目標開口面積St3に一致する面積となるように、第2の縮小側可変絞り部21Dによって流量の調整制御を実行する。
 これにより、各ホイストシリンダ10の油室Aから油圧配管15A、アクチュエータ側油路23A、第2の方向制御弁21を介してタンク12に向けて排出される油液は、第2の縮小側可変絞り部21Dにより流量が可変に調整され、ホイストシリンダ10は縮小速度がベッセル3側の重量、油温T、下降速度Vに対応して適正な速度となるように制御される。
 次に、ステップ50では、角度センサ31からベッセル3の傾斜角度θを再び読込み、このときの傾斜角度θが下げ停止角度θ0 以下となったか否かをステップ51で判定する。ステップ51で「NO」と判定する間は、ホイストシリンダ10が縮小行程にあるので、ステップ49に戻ってこれ以降の処理を続ける。ステップ51で「YES」と判定したときには、ステップ52に移って第2の方向制御弁21の縮小側可変絞り部21Dによる流量の調整制御を終了させる。そして、ステップ53では、第1,第2の方向制御弁20,21を共に中立位置(N)に復帰させ、ホイストシリンダ10の縮小動作を停止させ、ベッセル3の下降を停止させる。
 これにより、ホイストシリンダ10を圧油により縮小させてベッセル3を下降しているときに、ホイストシリンダ10の負荷圧、油温T、下降速度Vに応じてホイストシリンダ10の縮小速度を可変に調整することができ、本来の停止位置でホイストシリンダ10を停止させるときに、衝撃が発生するのを抑えることができる。しかも、ホイストシリンダ10の縮小速度が過度に速くなったり、遅くなったりするのを防ぐことができるので、ベッセル3の下げ操作時における操作性、安定性、作業性を向上することができる。
 かくして、本実施の形態によれば、図5、図8、図9に示す処理により、コントローラ35は、ホイストシリンダ10を伸長してベッセル3を上昇またはホイストシリンダ10を縮小してベッセル3を下降させる。この間に、コントローラ35は、ホイストシリンダ10が停止位置に近付いていると判定すると、該コントローラ35はベッセル3側の重量に応じてホイストシリンダ10の伸縮速度を遅くまたは速くするように制御弁装置16を流通する油液の流量を可変に調整する。この結果、コントローラ35は、ホイストシリンダ10が停止位置に接近すると、この停止位置の近傍で、第1,第2の方向制御弁20,21の流路面積または開口面積を絞ることができる。
 これにより、ベッセル3側の荷物重量が重い場合または軽い場合に、ホイストシリンダ10の伸縮速度が速くなったとしても、制御弁装置16を通じて油液の流量を適正に絞ることができ、停止位置に達する前にホイストシリンダ10の動きを抑制して衝撃の発生を緩和することができる。
 特に、ベッセル3に荷物を積載したままの状態で、ベッセル3を車体2側に着座する位置まで下降させる場合にも、コントローラ35はホイストシリンダ10の縮小速度を遅くするように制御弁装置16の切換えを制御し、制御弁装置16の縮小側可変絞り部20Dまたは21Dによって第1の方向制御弁20または第2の方向制御弁21を流通する油液の流量を絞ることができる。
 これにより、載荷状態のベッセル3が車体2側に速い速度で着座するのを抑えることができ、ベッセル3が車体2側に着座するときの衝撃を低減することができる。従って、ダンプトラック1のオペレータは、荷物を積載したままでもベッセル3を下降させる操作を、特別な注意を払うことなく容易に行うことができ、操作レバー28Aの操作性、安定性を向上することができる。
 一方、ベッセル3側の荷物重量が軽い場合または空荷の場合には、制御弁装置16を通じて油液の流量を適正に調整することにより、ホイストシリンダ10の伸長速度が過度に速くなったり、縮小速度が過度に遅くなったりするのを防止でき、衝撃を抑えた状態でホイストシリンダ10を本来の停止位置で停止させることができる。従って、ダンプトラック1のオペレータは、荷物の大,小、積載の有,無等に影響されることなく、操作レバー28Aを通常通りに操作するだけでベッセル3を短時間で昇降することができ、ホイストシリンダ10を停止させるときの衝撃の発生を抑えて操作性、安定性を向上することができる。
 また、コントローラ35は、油温センサ33で検出した油液の温度に従って油液の調整流量を補正することができる。このため、油液の温度変化に伴う粘性抵抗の影響を補正するかたちで、ホイストシリンダ10と油圧源との間で流通する油液の流量を適正に調整することができ、油温Tの変化にかかわりなく、ホイストシリンダ10の停止時の衝撃を良好に緩和することができる。
 さらに、ベッセル3の下降速度Vまたは傾転速度に従って判定基準の角度を変えることにより、傾転速度が速いときには該当する判定基準の角度にベッセル3の傾斜角度θが達したか否かで、制御弁装置16を通じた流量の調整制御を早めなタイミングで開始することができる。一方、傾転速度が遅いときには判定基準の角度を遅くするように設定でき、判定基準の角度(制御開始角度θx)にベッセル3の傾斜角度θが達したか否かで、制御弁装置16を通じた流量の調整制御を遅めなタイミングで開始することができる。
 なお、前述した実施の形態では、図5に示す上げ制御処置ではステップ6の処理が本発明の構成要件である停止位置接近判定手段の具体例であり、ステップ7の処理が流量調整手段の具体例を示している。また、図8に示す浮き制御処置ではステップ28の処理が停止位置接近判定手段の具体例であり、ステップ29の処理が流量調整手段の具体例を示している。図9に示す下げ制御処置ではステップ48の処理が停止位置接近判定手段の具体例であり、ステップ49の処理が流量調整手段の具体例を示している。
 また、前記実施の形態では、傾斜状態検出器を角度センサ31によって構成する場合を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば着座センサ30と角度センサ31との両方を用いてベッセル3の傾斜状態を検出する検出器を構成してもよい。一方、着座センサ30のみを用いてベッセル3が車体2上に着座しているか否か、即ちベッセル3が傾斜状態にあるか否かを検出する構成としてもよい。
 一方、前記実施の形態では、圧力センサ32を用いてホイストシリンダ10の負荷圧を検出することにより重量検出器を構成する場合を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば前輪7側のフロントサスペンション7Aに設けた圧力センサ34Fと後輪8側のリヤサスペンション8Aに設けた圧力センサ34Rとにより重量検出器を構成してもよい。即ち、圧力センサ34F,34Rで検出したフロントサスペンション7A,リヤサスペンション8Aの内圧からベッセル3側の重量を車両重量として計測することができる。
 また、前記実施の形態では、2つの方向制御弁20,21を用いて制御弁装置16を構成する場合を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば1つの方向制御弁を用いて4位置(例えば、中立位置、上げ位置、浮き位置、下げ位置)に切換操作される制御弁装置を構成してもよいものである。
 さらに、前記実施の形態にあっては、運搬車両として後輪駆動式のダンプトラック1を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば前輪駆動式または前,後輪を共に駆動する4輪駆動式のダンプトラックに適用してもよく、走行用の車輪を備えたダンプトラック以外の運搬車両に適用してもよいものである。
 1 ダンプトラック(運搬車両)
 2 車体
 3 ベッセル(荷台)
 4 砕石(運搬対象の荷物)
 5 連結ピン
 6 キャブ
 7 前輪
 7A フロントサスペンション
 8 後輪
 8A リヤサスペンション
 9 エンジン
 10 ホイストシリンダ
 11 油圧ポンプ(油圧源)
 12 作動油タンク(油圧源)
 16 制御弁装置
 20,21 方向制御弁
 20C,21C 伸長側可変絞り部
 20D,21D 縮小側可変絞り部
 28 操作レバー装置(操作装置)
 28A 操作レバー
 29 レバーセンサ(操作検出手段)
 30 着座センサ
 31 角度センサ(傾斜状態検出器)
 32 圧力センサ(重量検出器)
 33 油温センサ
 34F,34R 圧力センサ
 35 コントローラ
 36 パイロット圧発生器

Claims (8)

  1.  自走可能な車体(2)と、該車体(2)上に傾転可能に設けられ運搬対象の荷物が積載される荷台(3)と、該荷台(3)と車体(2)との間に伸縮可能に設けられ前記荷物を荷台(3)から排出するときに伸長して該荷台(3)を斜めに傾斜させるホイストシリンダ(10)と、該ホイストシリンダ(10)に供給する圧油を発生する油圧源(11,12)と、該油圧源(11,12)とホイストシリンダ(10)との間に設けられ該ホイストシリンダ(10)に対して前記圧油を供給,排出するのを制御する制御弁装置(16)と、該制御弁装置(16)の切換操作を行う操作装置(28)とを備えてなる運搬車両において、
     前記車体(2)に対する前記荷台(3)の傾斜状態を検出する傾斜状態検出器(31)と、
     前記荷台(3)に積載された荷物の重量を検出する重量検出器(32)と、
     前記操作装置(28)、傾斜状態検出器(31)および重量検出器(32)からの信号に基づいて前記制御弁装置(16)を切換制御するコントローラ(35)とを備え、
     該コントローラ(35)は、
     前記操作装置(28)および傾斜状態検出器(31)からの信号に基づいて、前記ホイストシリンダ(10)が伸長側または縮小側の停止位置に近付いているか否かを判定する停止位置接近判定手段と、
     該停止位置接近判定手段により前記ホイストシリンダ(10)が停止位置に近付いていると判定したときに、前記重量検出器(32)で検出した前記荷台(3)側の重量に応じて前記ホイストシリンダ(10)の伸縮速度を変えるように前記制御弁装置(16)の切換えを制御し、前記ホイストシリンダ(10)と油圧源(11,12)との間で流通する油液の流量を前記制御弁装置(16)を通じて可変に調整する流量調整手段とを有する構成としたことを特徴とする運搬車両。
  2.  前記制御弁装置(16)を流通する油液の温度を検出する油温センサ(33)を備え、前記コントローラ(35)は、該油温センサ(33)で検出した油液の温度に従って前記流量調整手段による油液の調整流量を補正する構成としてなる請求項1に記載の運搬車両。
  3.  前記コントローラ(35)は、前記停止位置接近判定手段により前記ホイストシリンダ(10)が停止位置に近付いているか否かを判定するときの判定基準値を前記荷台(3)の傾転速度に応じて可変に設定し、前記流量調整手段による流量調整の開始タイミングを前記判定基準値に従って補正する構成としてなる請求項1に記載の運搬車両。
  4.  前記重量検出器は、前記ホイストシリンダ(10)の負荷圧を検出する圧力センサ(32)により構成してなる請求項1に記載の運搬車両。
  5.  前記傾斜状態検出器は、前記車体(2)に対する荷台(3)の傾斜角度を検出する角度センサ(31)により構成してなる請求項1に記載の運搬車両。
  6.  前記停止位置接近判定手段は、前記角度センサ(31)で検出した前記荷台(3)の傾斜角度が判定基準の角度に達したか否かにより前記ホイストシリンダ(10)が停止位置に近付いているか否かを判定し、前記コントローラ(35)は、前記判定基準の角度を前記荷台(3)の傾転速度に応じて可変に設定する構成としてなる請求項5に記載の運搬車両。
  7.  前記制御弁装置(16)は、前記圧油の供給,排出を停止してホイストシリンダ(10)の動きを止める中立位置(N)と、前記圧油の供給,排出によりホイストシリンダ(10)を伸長させて前記荷台(3)を持上げる上げ位置(R)と、前記荷台(3)側の自重によって前記ホイストシリンダ(10)を縮小させ前記荷台(3)の自重落下を許す浮き位置(F)と、前記圧油の供給,排出によりホイストシリンダ(10)を縮小させて前記荷台(3)を下降させる下げ位置(L)とからなる複数の切換位置を有し、
     前記制御弁装置(16)の上げ位置(R)には、前記コントローラ(35)の前記流量調整手段による制御信号に従って前記油液の流量調整を行い前記ホイストシリンダ(10)の伸長速度を可変に調整する伸長側可変絞り部(20C,21C)を設け、
     前記制御弁装置(16)の浮き位置(F)と下げ位置(L)には、前記コントローラ(35)の前記流量調整手段による制御信号に従って前記油液の流量調整を行い前記ホイストシリンダ(10)の縮小速度を可変に調整する縮小側可変絞り部(20D,21D)を設ける構成としてなる請求項1に記載の運搬車両。
  8.  前記制御弁装置(16)は、
     前記圧油の供給,排出を停止してホイストシリンダ(10)の動きを止める中立位置(N)と、前記圧油の供給,排出によりホイストシリンダ(10)を伸長させて前記荷台(3)を持上げる上げ位置(R)と、前記荷台(3)側の自重によって前記ホイストシリンダ(10)を縮小させ前記荷台(3)の自重落下を許す浮き位置(F)とのうち、いずれか一の位置に前記コントローラ(35)からの制御信号に従って切換わる第1の方向制御弁(20)と、
     前記中立位置(N)と、前記上げ位置(R)と、前記圧油の供給,排出によりホイストシリンダ(10)を縮小させて前記荷台(3)を下降させる下げ位置(L)とのうち、いずれか一の位置に前記コントローラ(35)からの制御信号に従って切換わる第2の方向制御弁(21)とを組合せて構成し、
     前記第1の方向制御弁(20)は、前記上げ位置(R)に切換えられているときに前記コントローラ(35)の前記流量調整手段による制御信号に従って前記油液の流量を可変に調整する第1の伸長側可変絞り部(20C)と、前記浮き位置(F)に切換えられているときに前記コントローラ(35)の前記流量調整手段による制御信号に従って前記油液の流量を可変に調整する第1の縮小側可変絞り部(20D)とを有し、
     前記第2の方向制御弁(21)は、前記上げ位置(R)に切換えられているときに前記コントローラ(35)の前記流量調整手段による制御信号に従って前記油液の流量を可変に調整する第2の伸長側可変絞り部(21C)と、前記下げ位置(L)に切換えられているときに前記コントローラ(35)の前記流量調整手段による制御信号に従って前記油液の流量を可変に調整する第2の縮小側可変絞り部(21D)とを有する構成としてなる請求項1に記載の運搬車両。
PCT/JP2011/057803 2010-04-26 2011-03-29 運搬車両 WO2011135959A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11774743.6A EP2565076A4 (en) 2010-04-26 2011-03-29 Transportation vehicle
CN201180006047.3A CN102712280B (zh) 2010-04-26 2011-03-29 运输车辆
JP2012512734A JP5303067B2 (ja) 2010-04-26 2011-03-29 運搬車両
US13/510,977 US8731787B2 (en) 2010-04-26 2011-03-29 Transporter vehicle
AU2011246414A AU2011246414B2 (en) 2010-04-26 2011-03-29 Transportation vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010100503 2010-04-26
JP2010-100503 2010-04-26

Publications (1)

Publication Number Publication Date
WO2011135959A1 true WO2011135959A1 (ja) 2011-11-03

Family

ID=44861280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057803 WO2011135959A1 (ja) 2010-04-26 2011-03-29 運搬車両

Country Status (6)

Country Link
US (1) US8731787B2 (ja)
EP (1) EP2565076A4 (ja)
JP (1) JP5303067B2 (ja)
CN (1) CN102712280B (ja)
AU (1) AU2011246414B2 (ja)
WO (1) WO2011135959A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102501789A (zh) * 2011-11-10 2012-06-20 重庆润江机械制造有限公司 汽车液压举升防倾斜自动控制系统
JP2013169931A (ja) * 2012-02-22 2013-09-02 Hitachi Constr Mach Co Ltd 運搬車両
JPWO2013073325A1 (ja) * 2011-11-14 2015-04-02 日立建機株式会社 運搬車両
JP2017109539A (ja) * 2015-12-15 2017-06-22 日立建機株式会社 運搬用車両
US10501000B2 (en) 2016-09-16 2019-12-10 Hitachi Construction Machinery Co., Ltd. Transportation vehicle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840189B2 (en) * 2010-01-20 2014-09-23 Hitachi Construction Machinery Co., Ltd. Transporter vehicle
KR101741703B1 (ko) * 2013-01-24 2017-05-30 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 유량 제어장치 및 제어방법
JP6052402B2 (ja) * 2013-05-09 2016-12-27 トヨタ自動車株式会社 運転支援システム
CN103386914A (zh) * 2013-08-12 2013-11-13 三一矿机有限公司 一种举升平稳性控制系统及矿用自卸车
DE102014202436A1 (de) * 2014-02-11 2015-08-13 Franz Xaver Meiller Fahrzeug- Und Maschinenfabrik - Gmbh & Co Kg Hydraulisches Kippsystem für einen mittels eines Kippventils stetig steuerbaren, in der Senkgeschwindigkeit nicht durch das Kippventil begrenzten Senkbetrieb
JP6006252B2 (ja) * 2014-03-28 2016-10-12 日立建機株式会社 ダンプトラックのホイスト装置
US20150322975A1 (en) * 2014-05-09 2015-11-12 Caterpillar Inc. Control Valve for a Hydraulic System
JP6506547B2 (ja) * 2014-12-16 2019-04-24 Kyb−Ys株式会社 ロータリーバルブ及びこれを備える流体圧アクチュエータユニット
US9815479B2 (en) * 2015-10-27 2017-11-14 Deere & Company System and method for overload protection
US9802524B2 (en) 2016-03-01 2017-10-31 Caterpillar Inc. System and method of operating a positioning mode actuator to operate a material dispersal device
GB2553377A (en) * 2016-09-06 2018-03-07 Hyva Holding Bv Method and system for operating a tipper
US10626986B2 (en) * 2016-10-31 2020-04-21 Hydraforce, Inc. Hydraulic motor drive system for controlling high inertial load rotary components
WO2017171088A1 (ja) 2017-03-31 2017-10-05 株式会社小松製作所 ダンプトラックの制御システム、ダンプトラック及びダンプトラックの制御方法
ES2781467T3 (es) * 2017-05-26 2020-09-02 Reinhold Schulte Módulo de accionamiento hidráulico para una puerta de vehículo o un portón de vehículo
CN111762077A (zh) * 2020-06-10 2020-10-13 博雷顿科技有限公司 一种无人驾驶商用车车箱自动举升系统
US11654815B2 (en) * 2021-02-01 2023-05-23 Caterpillar Inc. Closed center hoist valve with snubbing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070383U (ja) * 1973-10-30 1975-06-21
JPS50114008U (ja) * 1974-02-28 1975-09-17
JPS6223744U (ja) * 1985-07-30 1987-02-13
JP2001105956A (ja) 1999-10-08 2001-04-17 Komatsu Ltd ダンプトラックのボディ操作装置
JP2006052810A (ja) * 2004-08-13 2006-02-23 Komatsu Ltd 作業機械用油圧回路の制御装置
WO2008099691A1 (ja) * 2007-02-16 2008-08-21 Hitachi Construction Machinery Co., Ltd. 運搬車両

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511974A (en) * 1981-02-04 1985-04-16 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Load condition indicating method and apparatus for forklift truck
US4518044A (en) * 1982-03-22 1985-05-21 Deere & Company Vehicle with control system for raising and lowering implement
JPS6267304A (ja) * 1985-09-19 1987-03-27 Tokyo Keiki Co Ltd デイジタル弁クロ−ズドル−プ制御装置
CA2061071C (en) * 1992-02-12 1995-08-22 Gary Tyhy On-board weighing system for a vehicle
GB9421149D0 (en) * 1994-10-20 1994-12-07 Smiths Industries Plc Hydraulic systems
US5902090A (en) * 1996-05-24 1999-05-11 Eta Industries Cargo handling truck bed
JP4234893B2 (ja) * 2000-09-12 2009-03-04 株式会社小松製作所 シリンダの作動制御装置
US6474064B1 (en) * 2000-09-14 2002-11-05 Case Corporation Hydraulic system and method for regulating pressure equalization to suppress oscillation in heavy equipment
JP3973584B2 (ja) * 2003-03-19 2007-09-12 株式会社クボタ 作業装置のための油圧シリンダを制御する油圧制御装置
US7090305B2 (en) * 2004-04-08 2006-08-15 Stealth Dump Trucks, Inc. Vehicle dump body elevation device, kit, and method relating thereto
US7506505B2 (en) * 2005-06-24 2009-03-24 Kayaba Industry Co., Ltd. Hydraulic driving device for operating machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070383U (ja) * 1973-10-30 1975-06-21
JPS50114008U (ja) * 1974-02-28 1975-09-17
JPS6223744U (ja) * 1985-07-30 1987-02-13
JP2001105956A (ja) 1999-10-08 2001-04-17 Komatsu Ltd ダンプトラックのボディ操作装置
JP2006052810A (ja) * 2004-08-13 2006-02-23 Komatsu Ltd 作業機械用油圧回路の制御装置
WO2008099691A1 (ja) * 2007-02-16 2008-08-21 Hitachi Construction Machinery Co., Ltd. 運搬車両

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102501789A (zh) * 2011-11-10 2012-06-20 重庆润江机械制造有限公司 汽车液压举升防倾斜自动控制系统
JPWO2013073325A1 (ja) * 2011-11-14 2015-04-02 日立建機株式会社 運搬車両
JP2013169931A (ja) * 2012-02-22 2013-09-02 Hitachi Constr Mach Co Ltd 運搬車両
JP2017109539A (ja) * 2015-12-15 2017-06-22 日立建機株式会社 運搬用車両
US10501000B2 (en) 2016-09-16 2019-12-10 Hitachi Construction Machinery Co., Ltd. Transportation vehicle

Also Published As

Publication number Publication date
JPWO2011135959A1 (ja) 2013-07-18
CN102712280A (zh) 2012-10-03
US20130035828A1 (en) 2013-02-07
JP5303067B2 (ja) 2013-10-02
AU2011246414B2 (en) 2014-06-05
AU2011246414A1 (en) 2012-05-31
EP2565076A1 (en) 2013-03-06
CN102712280B (zh) 2014-09-03
US8731787B2 (en) 2014-05-20
EP2565076A4 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
WO2011135959A1 (ja) 運搬車両
JP5119363B2 (ja) 運搬車両
JP4917617B2 (ja) 運搬車両
AU2012337961B2 (en) Conveyance vehicle
WO2013146140A1 (ja) 運搬車両
JP5746802B2 (ja) 運搬車両
AU2012338079B2 (en) Conveyance vehicle
JP5700488B2 (ja) 運搬車両
JP6473240B2 (ja) 運搬用車両
WO2018051582A1 (ja) 運搬車両
JP6457380B2 (ja) 運搬車両
JP6621777B2 (ja) ダンプトラック
JP6488990B2 (ja) 荷役車両の油圧駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006047.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512734

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011246414

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13510977

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011246414

Country of ref document: AU

Date of ref document: 20110329

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011774743

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE