WO2011135813A1 - 二次電池状態管理システム、充電器、二次電池状態管理方法及び電気特性測定方法 - Google Patents

二次電池状態管理システム、充電器、二次電池状態管理方法及び電気特性測定方法 Download PDF

Info

Publication number
WO2011135813A1
WO2011135813A1 PCT/JP2011/002358 JP2011002358W WO2011135813A1 WO 2011135813 A1 WO2011135813 A1 WO 2011135813A1 JP 2011002358 W JP2011002358 W JP 2011002358W WO 2011135813 A1 WO2011135813 A1 WO 2011135813A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
charger
information
electrical
measurement
Prior art date
Application number
PCT/JP2011/002358
Other languages
English (en)
French (fr)
Inventor
丹生隆之
井上晃
山崎俊太郎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012512656A priority Critical patent/JP5895839B2/ja
Priority to US13/643,230 priority patent/US9287729B2/en
Publication of WO2011135813A1 publication Critical patent/WO2011135813A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the present invention relates to a secondary battery state management system, a charger, a secondary battery state management method, an electrical characteristic measurement method, and an electrical characteristic measurement program for managing the state of a secondary battery mounted on an electric vehicle or the like.
  • Examples of electric vehicles equipped with secondary batteries include electric vehicles and hybrid vehicles equipped with both internal combustion engines and motors. In order to drive such an electric vehicle with electricity, it is necessary to charge the mounted secondary battery from an external charger. When charging the secondary battery, it is generally necessary to perform charge control in accordance with the characteristics unique to the battery.
  • the secondary battery when used for a long time, it is considered that charging and discharging are repeatedly performed. If charging / discharging is repeated, the performance of the secondary battery deteriorates, and depending on the deterioration conditions, the secondary battery may generate heat and ignite. To avoid significant damage to secondary battery users, when using a secondary battery, it is necessary to monitor the deterioration status and perform charge control according to the characteristics of the secondary battery. become.
  • Patent Document 1 describes a secondary battery system in which a function for holding information unique to a secondary battery is added to the secondary battery.
  • the secondary battery system described in Patent Literature 1 notifies specific information of the secondary battery to an external device.
  • the charger controls charging according to the secondary battery specific information acquired from the secondary battery system.
  • Patent Document 2 describes a charging system that performs charging according to the charging characteristics of a battery.
  • the battery system does not notify the charger of information specific to the secondary battery, but rather includes a reference for charging such as a voltage value and a current value in consideration of the unique information of the secondary battery. The value is calculated and the reference value is notified to the charger. On the charger side, voltage and current are output as charge control according to the reference value of charge notified from the battery system.
  • Patent Document 3 describes a charging device for a secondary battery.
  • the charging device described in Patent Document 3 detects the terminal voltage of the secondary battery at a constant time interval as the state of the secondary battery, calculates the latest and average slope of the charging curve indicating the change in the terminal voltage. Then, it is determined whether or not the supply of charging current is stopped.
  • Non-Patent Document 1 describes changes in battery performance that accompany charging and discharging.
  • Non-Patent Document 1 indicates that the capacity of the battery is reduced or the charge / discharge characteristics are changed by repeating charge / discharge.
  • Non-Patent Document 1 shows that the internal impedance of the secondary battery increases as the battery capacity decreases.
  • JP-A-8-37036 (paragraphs 0001, 0022) JP 2007-336778 A (paragraph 0015) JP-A-6-38394 (paragraph 0010)
  • the charger supplies power according to the charging instruction from the battery system. That is, since the battery system only transmits the reference value to the charger side, there is a problem that the charging side cannot grasp the deterioration state of the secondary battery.
  • the charging device described in Patent Document 3 measures the slope of the charging curve during charging at regular time intervals, and compares the measured slope to determine whether or not the supply of charging current is stopped. For this reason, it is difficult to grasp the state of the secondary battery at each time when charging is performed.
  • an object of the present invention is to provide a secondary battery state management system, a charger, a secondary battery state management method, an electrical characteristic measurement method, and an electrical characteristic measurement program that can manage the state of the secondary battery during charging. To do.
  • a secondary battery state management system includes a charger that charges a secondary battery, and a storage server that accumulates electrical characteristic information that is information indicating electrical characteristics during charging of the secondary battery,
  • the charger includes an electrical characteristic measurement unit that measures electrical characteristics during charging
  • the storage server includes a measurement information storage unit that stores a history of measured electrical characteristic information for each secondary battery, and an electrical characteristic measurement unit.
  • Battery state determination means for comparing the electrical characteristic information of the secondary battery being measured and the electrical characteristic information for the same secondary battery stored in the measurement information storage means to determine the state of the secondary battery; It is provided with.
  • a charger according to the present invention is a charger for charging a secondary battery, and measures an electrical characteristic during charging of the secondary battery, and a secondary battery measured by the electrical characteristic measuring means.
  • the determination device that determines the state of the secondary battery by comparing the electrical characteristic information, which is information indicating the electrical characteristics of the battery, with the history of the stored electrical characteristic information for the same secondary battery and the received electrical characteristic information And transmitting means for transmitting.
  • the charger that charges the secondary battery measures the electrical characteristics during charging, and the history of the electrical characteristics information, which is information indicating the electrical characteristics, is stored for each secondary battery.
  • the storage server comprising the measurement information storage means for storing the secondary battery electrical characteristic information measured during charging and the electrical characteristic information for the same secondary battery stored in the measurement information storage means are compared. And determining the state of the secondary battery.
  • a charger that charges a secondary battery measures electrical characteristics during charging of the secondary battery, and the charger indicates the measured electrical characteristics of the secondary battery. Transmitting the electrical characteristic information, which is information, to the determination device that compares the history of the stored electrical characteristic information for the same secondary battery and the received electrical characteristic information to determine the state of the secondary battery.
  • An electrical property measurement program is an electrical property measurement program installed in a computer that charges a secondary battery, and the electrical property measurement process that measures electrical properties during charging of the secondary battery in the computer.
  • the electrical characteristic information which is information indicating the electrical characteristics of the secondary battery measured in the electrical characteristic measurement process, is compared with the stored electrical characteristic information history for the same secondary battery. Then, a transmission process of transmitting to the determination device that determines the state of the secondary battery is executed.
  • the state of the secondary battery can be managed during charging.
  • FIG. FIG. 1 is a block diagram showing an example of a secondary battery state management system according to the first embodiment of the present invention.
  • the secondary battery state management system in the present invention includes a battery system 2, a charger 3, and a server 4.
  • the battery system 2 is mounted on the electric vehicle 1.
  • power is supplied from the commercial power supply 23 to the charger 3.
  • the charger 3 supplies power to the battery system 2 through the power supply line 31.
  • the server 4 accumulates and analyzes information notified from the charger 3.
  • the battery system 2 is mounted on the electric vehicle 1 .
  • the battery system 2 may be mounted on another type of mobile body.
  • FIG. 2 is a block diagram showing a detailed example of each component of the secondary battery state management system illustrated in FIG.
  • the battery system 2 includes a secondary battery 5, a control unit 6, a communication unit 7, and a storage unit 24.
  • the secondary battery 5 is a secondary battery that is connected to the charger 3 and charged.
  • the storage unit 24 stores information notified from the charger 3 and information related to the battery system 2 itself. Specifically, the storage unit 24 stores information identifying the charger (hereinafter referred to as a charger ID), a protocol version supported by the charger, and the like as information notified from the charger 3. The storage unit 24 stores information for identifying the battery system (hereinafter referred to as a battery system ID), a protocol version supported by the battery system, and the like as information on the battery system 2 itself.
  • the content stored in the storage unit 24 is not limited to the above content.
  • the storage unit 24 is realized by, for example, a memory.
  • the control unit 6 measures the voltage of the secondary battery 5, the ambient temperature, the current value during charging, and the like, and controls charging / discharging of the secondary battery 5 and control information transmitted to the charger 3 according to the values. Is generated.
  • the control information includes conditions such as a current value necessary for power supply (hereinafter referred to as power supply conditions) in addition to a charge start instruction and charge stop processing for the secondary battery 5.
  • control unit 6 transmits information stored in the storage unit 24 to the charger 3. For example, the control unit 6 transmits the battery system ID stored in the storage unit 24 and the version of the protocol supported by the battery system 2 to the charger 3.
  • the communication unit 7 communicates with the charger 3.
  • the charger 3 includes a power supply unit 8, a measurement unit 9, a control unit 10, a communication unit 11, a display unit 12, and a storage unit 25.
  • the charger 3 charges the connected secondary battery 5.
  • the storage unit 25 stores information acquired from the battery system 2 and the server 4, information about the charger 3 itself, and the like. Specifically, the storage unit 25 stores a battery system ID, a protocol version supported by the battery system, and the like as information acquired from the battery system 2. The storage unit 25 stores information identifying the charger (that is, the charger ID), a protocol version supported by the charger itself, and the like as information on the charger 3 itself. However, the content stored in the storage unit 25 is not limited to the above content.
  • the storage unit 25 is realized by a memory or the like, for example.
  • the power supply unit 8 converts the power received from the external commercial power supply 23 into a power supply condition for charging the secondary battery and supplies power to the secondary battery 5. Specifically, the power supply unit 8 converts an alternating current into a direct current and supplies power to the secondary battery 5 using the converted direct current.
  • the measuring unit 9 measures the electrical characteristics of the secondary battery 5 during charging. Specifically, the measurement unit 9 measures electrical characteristics during charging based on measurement conditions determined according to the battery system 2. The measurement conditions are notified by the server 4 described later. The electrical characteristics measured by the measuring unit 9 include a current value, a voltage value, and an electric energy when the secondary battery is charged.
  • the information measured by the measurement unit 9 is not limited to information indicating electrical characteristics.
  • the measuring unit 9 may measure the temperature around the charger 3 in addition to the electrical characteristics during charging, such as the current value, voltage value, and electric energy.
  • the measurement unit 9 measures a voltage value and a current value at the output end of the power supply unit 8
  • information representing the electrical characteristics measured by the measurement unit 9 and the temperature around the charger is referred to as measurement information.
  • the measuring unit 9 identifies the secondary battery whose electrical characteristics are to be measured based on the battery system ID notified from the battery system 2 when the secondary battery 5 is connected to the secondary battery 5.
  • the method by which the measurement unit 9 identifies the secondary battery is not limited to the battery system ID notified from the battery system 2. In the present embodiment, a case will be described in which the measurement unit 9 identifies a secondary battery whose electrical characteristics are to be measured based on the battery system ID notified from the battery system 2.
  • the control unit 10 controls the power supply unit 8 to match the power supply condition to the secondary battery 5 based on the control information notified from the battery system 2.
  • control unit 10 transmits information stored in the storage unit 25 to the battery system 2. For example, the control unit 10 transmits the charger ID stored in the storage unit 25 and the version of the protocol supported by the charger 3 to the battery system 2.
  • control unit 10 acquires measurement conditions corresponding to the battery system 2 from the server 4. Specifically, the control part 10 transmits battery system ID with respect to the server 4, and receives the measurement conditions defined according to the battery system ID.
  • control unit 10 transmits information indicating the electrical characteristics during charging to the server 4.
  • the control unit 10 may transmit not only the information indicating the electrical characteristics but also the measured temperature around the charger to the server 4.
  • the communication unit 11 communicates with the battery system 2 and the server 4.
  • the display unit 12 displays the state of charge, the state of deterioration of the secondary battery, and the like according to instructions from the control unit 10.
  • the display unit 12 is realized by a display device such as a display, for example.
  • the server 4 includes a storage unit 13, an analysis unit 14, and a communication unit 15.
  • the storage unit 13 stores the measurement information notified from the charger 3. Specifically, the storage unit 13 stores a history of electrical characteristic information measured by the charger 3 for each secondary battery.
  • the storage unit 13 stores measurement conditions according to the battery system 2.
  • the storage unit 13 may store a measurement condition of “measuring at an interval from the reference voltage value V0 to the voltage dV” for a certain battery system 2.
  • the measurement conditions are stored in advance according to the battery system 2.
  • the storage unit 13 is realized by a magnetic disk or the like.
  • the analysis unit 14 analyzes the deterioration state of the secondary battery 5 by analyzing and comparing the information notified from the charger 3 and the past measurement information stored in the storage unit 13. That is, the analysis unit 14 compares the electrical characteristics measured by the measurement unit 9 with the electrical characteristics for the same secondary battery 5 stored in the storage unit 13 to determine the state of the secondary battery 5. .
  • the analysis unit 14 stores in the storage unit 13 based on the battery system ID notified from the charger 3 (more specifically, the battery system ID notified from the battery system 2 to the charger 3). The history of past measurement information is extracted. And the analysis part 14 determines the state of the secondary battery 5 by comparing the measurement information which the charger 3 measured, and the log
  • the analysis unit 14 transmits measurement conditions to the charger 3. Specifically, when the analysis unit 14 receives the request for the measurement condition together with the battery system ID from the charger 3, the analysis unit 14 extracts the measurement condition from the storage unit 13 using the battery system ID as a key. Notify the charger 3.
  • the storage unit 13 stores the measurement conditions corresponding to the battery system and the analysis unit 14 extracts the measurement conditions corresponding to the battery system ID received from the charger 3 has been described.
  • the storage unit 13 may store measurement conditions for each manufacturer and model of the electric vehicle, not for each battery system. For example, when the charger 3 receives information (for example, manufacturer ID or vehicle type ID) that can identify the manufacturer and vehicle type of the electric vehicle from the battery system 2, the analysis unit 14 receives these identification information from the charger 3. The corresponding measurement conditions may be extracted.
  • information that associates the manufacturer and model of the electric vehicle with the battery system ID may be stored in the storage unit 13 in advance.
  • the analysis unit 14 extracts the manufacturer and model of the electric vehicle corresponding to the battery system ID from the storage unit 13, and extracts the extracted electric vehicle manufacturer.
  • the measurement conditions corresponding to the vehicle type may be extracted from the storage unit 13 again.
  • the communication unit 15 communicates with the charger 3.
  • the measurement unit 9 and the control unit 10 are realized by a CPU of a computer that operates according to a program (electric characteristic measurement program).
  • the program may be stored in the storage unit 25 of the charger 3, and the CPU may read the program and operate as the measurement unit 9 and the control unit 10 according to the program.
  • each of the measurement unit 9 and the control unit 10 may be realized by dedicated hardware.
  • FIG. 3 is a sequence diagram illustrating an example of processing performed between the battery system 2, the charger 3, and the server 4.
  • a battery system ID for identifying each individual, a replacement of the charger ID, and a protocol supported by each device for determining an operation level Version exchange or the like is performed between the battery system 2 and the controller of the charger 3 (step S1).
  • the control unit 10 uses the charger 3 connected to the battery system 2 as a trigger, the control unit 10 transmits the charger ID stored in the storage unit 25 to the battery system 2, and the control unit 6 stores the storage unit 24.
  • the battery system ID stored in is transmitted to the charger 3.
  • the control unit 6 of the battery system 2 and the control unit 10 of the charger 3 store the exchanged information in the storage unit 24 and the storage unit 25, respectively (steps S2 and S3).
  • the charger 3 acquires measurement conditions from the server 4 (specifically, the storage unit 13) using the battery system ID acquired in the charge preparation process as a key (step S4, step S5). Further, the control unit 6 of the battery system 2 notifies the power supply condition and the power supply start instruction to the control unit 10 of the charger 3 (step S6). When the charger 3 receives these pieces of information, the control unit 10 of the charger 3 controls the power supply unit 8 based on the requested power supply condition to start power supply (steps S7 and S8).
  • the measurement unit 9 discretely measures the voltage value between the power supply lines and the current value flowing through the power supply line according to the measurement conditions acquired from the server 4 (steps). S9). For example, when the measurement condition is set to “measure at an interval from the reference voltage value V0 to the voltage dV”, the measurement unit 9 applies a voltage at an interval from the reference voltage value V0 to the voltage dV according to the measurement condition. Measure the current value.
  • the controller 10 of the charger 3 notifies the server 4 of the current value and voltage value measured by the measuring unit 9 together with the battery system ID, the ambient temperature of the charger, the charger ID, and the measurement time (step S10). Note that the control unit 10 of the charger 3 may notify the server 4 of information other than the above.
  • the analysis unit 14 stores the received information in the storage unit 13 (step S11).
  • the analysis unit 14 is supplied to the secondary battery from the voltage value between the feeder lines 31 and the current value flowing through the feeder line 31, the voltage value between the feeder lines 31 and the feeder line 31 together with the battery system ID of the secondary battery, for example.
  • the charger 3 receives a notification about at least one of the calculated power amount and information (for example, impedance) calculated from the information, and causes the storage unit 13 to store the notified information.
  • the information to be stored may include information regarding the date and time of charging and the charger.
  • the analysis unit 14 analyzes the state of the secondary battery based on the measurement information stored in the storage unit 13.
  • a method for analyzing the deterioration state of the secondary battery will be described in detail.
  • FIG. 4 is an explanatory diagram showing an example of charging characteristics of a lithium ion battery.
  • the explanatory diagram shown in FIG. 4 shows how the voltage value and current value change when a lithium ion battery is charged by a method called a constant current / constant voltage charging method.
  • This method is characterized in that charging is initially performed at a constant current (I0) and charging is performed at a constant voltage after the voltage value reaches a certain value (Vmax).
  • Vmin illustrated in FIG. 4 indicates a battery voltage at the start of measurement
  • Vmax indicates a voltage value when charging is performed at a constant voltage.
  • T0 is a time for changing the battery voltage from Vmin to V0
  • t1 is a time for changing the battery voltage from V1 to V2
  • t2 is a time for changing the battery voltage from V2 to V3.
  • the analysis unit 14 of the server 4 has slope values (dV / t0, dV / t1, etc.) at a plurality of points (for example, battery voltage values V0, V1, V2, V3, etc.) during the constant current charging.
  • dV / t2 etc. is calculated (step S12) and stored in the storage unit 13.
  • the analysis unit 14 refers to the slope value of the battery voltage curve under the same conditions (for example, when the voltage value, current value, and temperature are the same) from the past measurement history of the same battery system ID (step S13). The deterioration is determined by comparing the two (step S14).
  • Vmin and Vmax in the battery voltage curve illustrated in FIG. 4 take different values depending on the configuration of the battery system. Therefore, a person determines the point (for example, battery voltage values V1, V2, V3, etc.) for calculating the slope value based on the battery voltage curve derived by the analysis unit 14, and the point is stored in the storage unit 13 of the server 4. Just remember it.
  • the analysis unit 14 may use the temperature around the charger 3 received from the charger 3 as a condition for determining deterioration.
  • the battery charging method is changed depending on the surface temperature of the battery. Therefore, even when the temperature of the secondary battery in the vehicle cannot be directly measured, the measured temperature can be regarded as the surface temperature of the secondary battery by measuring the temperature around the charger 3. . Therefore, by assuming that the charging method is the same when the ambient temperature of the charger 3 is the same, it is possible to compare with past measurement information including the temperature as a condition. By performing such a comparison, it is possible to improve the estimation accuracy of deterioration determination.
  • the charger 3 may transmit the surface temperature of the secondary battery to the server 4.
  • the analysis unit 14 can use the surface temperature of the secondary battery 5 as a condition for determining deterioration.
  • step S15 If the analysis part 14 of the server 4 performs deterioration determination, it will notify the determination result to the charger 3 (step S15). Based on the notified deterioration determination, the control unit 10 of the charger 3 displays a message for transmitting the battery state on the display unit 12 (step S16). Thereafter, when the voltage value of the secondary battery 5 reaches a predetermined value, the control unit 6 instructs the charger 3 to stop power supply (step S17).
  • the measuring unit 9 of the charger 3 measures the electrical characteristics of the secondary battery 5 during charging. Then, the analysis unit 14 of the server 4 compares the electrical characteristics measured by the measurement unit 9 with the electrical characteristics for the same secondary battery 5 stored in the storage unit 13 to determine the state of the secondary battery 5. Determine. Specifically, the measurement unit 9 built in the charger 3 measures a voltage value and a current value during charging of the secondary battery 5 connected to the charger 3. And the analysis part 14 compares the measured value and the past measured value accumulate
  • identification information for example, battery system ID
  • the storage unit 13 stores measurement information such as a current value and a voltage value notified from the charger 3. Therefore, the server 4 can draw a charging characteristic curve corresponding to the battery system. That is, the charge characteristic curve corresponding to the battery system can be visualized on the server 4 side.
  • Embodiment 2 a second embodiment of the present invention will be described.
  • the configuration in the second embodiment is the same as the configuration in the first embodiment illustrated in FIG.
  • the information handled by the measurement unit 9 of the charger 3 and the analysis unit 14 of the server 4 is different from that of the first embodiment.
  • the measurement unit 9 of the charger 3 measures the current value and voltage value during charging, and the analysis unit 14 of the server 4 deteriorates the secondary battery from the slope of the voltage change curve.
  • the measurement part 9 of the charger 3 measures the voltage value and electric energy in charge, and the analysis part 14 of the server 4 uses a secondary battery's electric energy with respect to the same voltage change as a secondary battery. It differs from 1st Embodiment in the point which estimates the degradation condition of.
  • FIG. 5 is a sequence diagram illustrating an example of processing performed between the battery system 2, the charger 3, and the server 4.
  • a battery system ID for identifying each individual, a replacement of the charger ID, and a protocol supported by each device for determining an operation level Version exchange or the like is performed between the control units of the battery system 2 and the charger 3 (specifically, between the control unit 6 of the battery system 2 and the control unit 10 of the charger 3) (step S1).
  • the contents of the charging preparation process are the same as those in the first embodiment.
  • the control unit 6 of the battery system 2 and the control unit 10 of the charger 3 store the exchanged information in the storage unit 24 and the storage unit 25, respectively (steps S2 and S3).
  • the charger 3 notifies the server 4 of the battery system ID acquired from the battery system 2 (step S4).
  • the analysis unit 14 of the server 4 acquires measurement conditions stored in advance in the storage unit 13 and notifies the charger 3 (step S20).
  • the measurement condition may be referred to as a measurement parameter.
  • the storage unit 13 uses, as measurement parameters, a voltage value Vs at the start of power measurement, a voltage value Ve at the end of power measurement, and voltage values V0 to Vn between Vs and Ve (hereinafter, these voltage values are intermediate). May be stored as a dot).
  • the number n of intermediate points is an arbitrary integer greater than or equal to zero.
  • the measurement parameters are not limited to the above contents.
  • control unit 6 of the battery system 2 notifies the control unit 10 of the charger 3 of the power supply condition and the power supply start instruction (step S6).
  • control unit 10 of the charger 3 controls the power supply unit 8 based on the requested power supply condition to start power supply (steps S7 and S8).
  • the measurement unit 9 measures the voltage value between the feeder lines. And the measurement part 9 will start the measurement of the electric energy supplied to a secondary battery, if a voltage value becomes Vs (step S21).
  • the measurement unit 9 may measure the amount of power by calculating a product of a voltage value, a current value, and a measurement time.
  • the electric energy calculated in this way may be referred to as an integrated electric power value.
  • the measuring unit 9 calculates the integrated power value of each section for each intermediate point (that is, V0 to Vn) until the voltage value becomes Ve, and when the voltage value becomes Ve, the amount of power supplied to the secondary battery End the measurement.
  • the control unit 10 of the charger 3 determines the integrated power value measured by the measurement unit 9 as the voltage value at the start of measurement, the voltage value at the end of measurement, the voltage value at the midpoint, the battery system ID, the ambient temperature of the charger, The server 4 is notified together with the charger ID and the measurement time (step S22). Note that the control unit 10 of the charger 3 may notify the server 4 of information other than the above.
  • the analysis unit 14 stores the received information in the storage unit 13 (step S11). And the analysis part 14 refers to the measurement information memorize
  • a method for analyzing the deterioration state of the secondary battery will be described in detail.
  • the analysis unit 14 of the server 4 supplies the amount of power supplied to the secondary battery with a change in the predetermined voltage value (for example, before the change from the first voltage value to the second voltage value). Are compared, and deterioration determination is performed based on whether or not the amount of power tends to decrease. In other words, the analysis unit 14 determines that the secondary battery has deteriorated when the integrated power value decreases.
  • the voltage values Vs, Ve, and V0 to Vn used when measuring the integrated power value take different values depending on the configuration of the battery system. Therefore, it is only necessary for a person to determine and determine the voltage values Vs, Ve, and V0 to Vn based on the voltage change range stored in the storage unit 13.
  • step S15 If the analysis part 14 of the server 4 performs deterioration determination, it will notify the determination result to the charger 3 (step S15). Based on the notified deterioration determination, the control unit 10 of the charger 3 displays a message for transmitting the battery state on the display unit 12 (step S16). Thereafter, when the voltage value of the secondary battery 5 reaches a predetermined value, the control unit 6 instructs the charger 3 to stop power supply (step S17).
  • the analysis unit 14 of the server 4 determines the voltage value and power amount measured by the measurement unit 9, the voltage value for the same secondary battery 5 stored in the storage unit 13, and The amount of electric power is compared to determine the state of the secondary battery 5. Even in this way, the state of the secondary battery can be managed during charging.
  • the control unit 9 of the charger 3 measures the current value and the voltage value at a short measurement interval, notifies the server 4 of the measurement result, and the analysis unit 14 of the server 4 receives the measurement result.
  • the accumulated power amount may be calculated based on the measured result.
  • the measurement unit 9 needs to notify the server 4 side of the voltage value and the current value measured at short intervals.
  • the measurement unit 9 needs to notify the server 4 side of the voltage value and the current value measured at short intervals.
  • the measurement unit 9 when measuring the electric energy on the charger 3 side, it is not necessary to transmit the voltage value and the current value for calculating the electric energy to the server 4 side. Therefore, even if the measurement interval of the voltage value and the current value is the same, the amount of information to be transmitted can be reduced, so that the effect of reducing the network load between the charger 3 and the server 4 can also be expected.
  • FIG. 6 is a block diagram showing a detailed example of each component of the secondary battery state management system according to the third embodiment of the present invention.
  • symbol same as FIG. 2 is attached
  • the charger 3 in the present embodiment is further different from the charger 3 in the first embodiment in that an AC impedance measurement signal source (hereinafter, signal source) 26 is provided.
  • signal source AC impedance measurement signal source
  • the signal source 26 superimposes an AC signal for measuring AC impedance on the power supply line. Note that the AC signal to be superimposed is determined in advance according to the configuration of the battery system 2.
  • the information handled by the measurement unit 9 of the charger 3 and the analysis unit 14 of the server 4 is different from the first embodiment and the second embodiment.
  • the measurement unit 9 of the charger 3 measures the current value and voltage value during charging, and the analysis unit 14 of the server 4 deteriorates the secondary battery from the slope of the voltage change curve. I guessed the situation.
  • the measurement part 9 of the charger 3 measures the voltage value and electric energy in charge, and the analysis part 14 of the server 4 is secondary from the electric energy with respect to the same voltage change range of a secondary battery. We estimated the deterioration of the battery.
  • the signal source 26 superimposes an AC signal on the power supply line 31 that supplies power from the charger 3 to the secondary battery 5, and the measurement unit 9 of the charger 3 measures the AC impedance with respect to the AC signal.
  • the analysis unit 14 of the server 4 is different from the first embodiment and the second embodiment in that the degradation state of the secondary battery is estimated from the change from the past AC impedance measurement value. .
  • FIG. 7 is a sequence diagram illustrating an example of processing performed between the battery system 2, the charger 3, and the server 4.
  • a battery system ID for identifying each individual, a replacement of the charger ID, and a protocol supported by each device for determining an operation level Version exchange or the like is performed between the control units of the battery system 2 and the charger 3 (specifically, between the control unit 6 of the battery system 2 and the control unit 10 of the charger 3) (step S1).
  • the control unit 6 of the battery system 2 and the control unit 10 of the charger 3 store the exchanged information in the storage unit 24 and the storage unit 25, respectively (steps S2 and S3).
  • control unit 6 of the battery system 2 notifies the control unit 10 of the charger 3 of the power supply condition and the power supply start instruction (step S6).
  • control unit 10 of the charger 3 controls the power supply unit 8 based on the requested power supply condition to start power supply (steps S7 and S8).
  • the control unit 10 of the charger 3 instructs the power supply unit 8 to superimpose the signal source 26 for measuring AC impedance on the power supply line 31.
  • the power supply part 8 outputs the signal from the signal source 26 to the feeder 31 (step S31).
  • the signal source 26 outputs an AC signal having a frequency of 1 kHz and a current amplitude of 5 A, for example.
  • the AC signal output from the signal source 26 is not limited to the above content.
  • the control unit 10 instructs the power supply unit 8 to superimpose the signal from the signal source 26.
  • the control unit 10 instructs the measurement unit 9 to measure the voltage effective value and the current effective value (step S32), and the impedance based on them (hereinafter also referred to as impedance
  • An instruction to calculate is given (step S33).
  • the control unit 10 instructs the power supply unit 8 to stop signal superimposition from the signal source 26, and the power supply unit 8 stops superimposing the measurement signal from the signal source 26. (Step S35).
  • control unit 10 notifies the server 4 of the calculated impedance
  • the analysis unit 14 stores the received information in the storage unit 13 (step S11). And the analysis part 14 refers to the measurement information memorize
  • a method for analyzing the deterioration state of the secondary battery will be described in detail.
  • the analysis part 14 of the server 4 compares the historical information of the alternating current impedance value of the same battery system ID, and performs deterioration determination depending on whether or not an increasing tendency appears. That is, the analysis unit 14 determines that the secondary battery has deteriorated when the calculated impedance is increased.
  • step S15 If the analysis part 14 of the server 4 performs deterioration determination, it will notify the determination result to the charger 3 (step S15). Based on the notified deterioration determination, the control unit 10 of the charger 3 displays a message for transmitting the battery state on the display unit 12 (step S16). Thereafter, when the voltage value of the secondary battery 5 reaches a predetermined value, the control unit 6 instructs the charger 3 to stop power supply (step S17).
  • the analysis unit 14 of the server 4 compares the calculated AC impedance with the impedance for the same secondary battery 5 stored in the storage unit 13 to determine the state of the secondary battery 5. Even in this way, the state of the secondary battery can be managed during charging.
  • Embodiment 4 FIG.
  • the first to third embodiments the case where the battery system is identified using the battery system ID notified from the battery system 2 has been described.
  • the first to third embodiments are used in that the number of the license plate attached to the electric vehicle 1 on which the battery system 2 is mounted is used as identification information (ID) of the battery system. And different.
  • ID identification information
  • FIG. 8 is a block diagram illustrating an example of a secondary battery state management system according to the fourth embodiment.
  • the secondary battery state management system in this embodiment includes a battery system 2, a charger 3, a server 4, a vehicle number reader 17, and a camera 18.
  • the electric vehicle 1 on which the battery system 2 is mounted is provided with an electric vehicle mark 27.
  • the electric vehicle mark 27 is a vehicle identification number, for example, an automobile registration number mark or a vehicle number mark (number plate) for identifying the vehicle.
  • the camera 18 is connected to the vehicle number reader 17, and the vehicle number reader 17 is connected to the charger 3.
  • Other configurations are the same as those in the first to third embodiments.
  • the camera 18 photographs the electric vehicle mark 27.
  • the vehicle number reader 17 reads an image taken by the camera 18 and recognizes the vehicle number.
  • description is abbreviate
  • the difference between the first embodiment and the fourth embodiment is that the charger 3, the camera 18 that captures the electric vehicle mark 27, and the vehicle number reader 17 that recognizes the vehicle number from the captured image. And the vehicle number is used instead of the battery system ID.
  • the operation of the fourth embodiment will be described.
  • a vehicle number information for identifying the vehicle (hereinafter referred to as a vehicle number) is acquired from the electric vehicle mark 27. To do.
  • FIG. 9 is a sequence diagram illustrating an example of an operation of acquiring a vehicle number from the electric vehicle mark 27 instead of the battery system ID.
  • step S1 ′ a charge preparation process is executed between the battery system 2 and the charger 3 as in the first to third embodiments.
  • step S1 ′ a charge preparation process is executed between the battery system 2 and the charger 3 as in the first to third embodiments.
  • step S1 ′ it differs from the process of step S1 in FIG. 3 in that the battery system ID is not notified to the charger 3.
  • the control unit 10 of the charger 3 instructs the vehicle number reader 17 to read the number of the electric vehicle mark 27 (step S41).
  • the vehicle number reader 17 recognizes the vehicle number from the image captured by the camera 18 (step S42), and notifies the charger 3 of the recognized vehicle number (step S43).
  • the control unit 10 of the charger 3 stores the value in the storage unit 25 (step S44).
  • the process of performing the deterioration determination based on the measured value is the same as the process from step S2 to step S17 illustrated in FIG. However, in each process, a vehicle number is used instead of the battery system ID.
  • the measurement unit 9 of the charger 3 reads the vehicle number mark 27 of the electric vehicle 1 read by the vehicle number reader 17. Is received, and the secondary battery whose electrical characteristics are to be measured is identified based on the identification information indicated by the vehicle number mark 27.
  • the analysis unit 14 of the server 4 extracts information corresponding to the identification information indicated by the vehicle number mark 27 from the storage unit 13. Therefore, in addition to the effects of the first to third embodiments, the secondary battery to be compared can be identified even when the identification information (battery system ID) is not transmitted from the connected battery system. .
  • Embodiment 5 FIG. In the first to third embodiments, the case where the battery system is identified using the battery system ID notified from the battery system 2 has been described.
  • the first embodiment to the third embodiment are used in that the unique number of the vehicle-mounted device attached to the electric vehicle 1 on which the battery system 2 is mounted is used as identification information (ID) of the battery system. Different from the embodiment.
  • FIG. 10 is a block diagram illustrating an example of a secondary battery state management system according to the fifth embodiment.
  • the secondary battery state management system in the present embodiment includes a battery system 2, a charger 3, a server 4, an in-vehicle device 19, and an in-vehicle device ID reader 20.
  • the battery system 2 and the vehicle-mounted device 19 are mounted on the electric vehicle 1.
  • the charger 3 and the vehicle-mounted device ID reader 20 are connected to each other.
  • Other configurations are the same as those in the first to third embodiments.
  • the on-vehicle device 19 is a device with a wireless interface to which a unique number is assigned.
  • the vehicle-mounted device 19 transmits the unique number assigned to each vehicle-mounted device to the vehicle-mounted device ID reader 20 through a wireless interface.
  • the unique number of the vehicle-mounted device may be a unique number assigned to the vehicle-mounted device itself, for example, a unique number assigned to a card inserted into the vehicle-mounted device.
  • the in-vehicle device 19 is realized by, for example, an in-vehicle device used in an automatic fee collection system (ETC: Electronic Toll Collection System).
  • DSRC Dedicated Short Range Communication
  • the radio interface is not limited to DSRC.
  • the OBE ID reader 20 is a device that reads the unique number of the OBE 19 transmitted by the wireless interface.
  • the vehicle-mounted device ID reader 20 is implemented by, for example, a DSRC roadside device used in ETC and arranged in a base station.
  • the mode of the vehicle-mounted device ID reader 20 is not limited to the DSRC roadside device.
  • the difference between the first embodiment and the fifth embodiment is that the vehicle-mounted device 19 with the wireless interface to which the unique number is assigned is mounted on the electric vehicle 1 and the wireless interface (and the wireless communication line) is changed.
  • the vehicle-mounted device ID reader 20 that reads the unique number of the vehicle-mounted device 19 is connected to the charger 3, and the unique number of the vehicle-mounted device 19 is used instead of the battery system ID.
  • FIG. 11 is a sequence diagram illustrating an example of an operation for acquiring the unique number of the vehicle-mounted device 19 instead of the battery system ID.
  • step S1 ′ a charge preparation process is executed between the battery system 2 and the charger 3 as in the first to third embodiments.
  • step S1 ′ a charge preparation process is executed between the battery system 2 and the charger 3 as in the first to third embodiments.
  • step S1 ′ it differs from the process of step S1 in FIG. 3 in that the battery system ID is not notified to the charger 3.
  • control unit 10 of the charger 3 instructs the in-vehicle device ID reader 20 to read the number of the unique number of the on-vehicle device 19 (step S51).
  • the onboard equipment ID reader 20 communicates with the onboard equipment 19 through the wireless interface, and acquires the unique number of the onboard equipment 19 (step S52).
  • the control unit 10 of the charger 3 stores the value in the storage unit 25 (step S53).
  • the vehicle-mounted device 19 and the vehicle-mounted device ID reader 20 in the present embodiment are, for example, a vehicle-mounted device or a base station of an automatic toll collection system (ETC), and the DSRC is an example of the wireless interface.
  • ETC automatic toll collection system
  • the process of performing the deterioration determination based on the measured value is the same as the process from step S2 to step S17 illustrated in FIG. However, in each process, the unique number of the vehicle-mounted device 19 is used instead of the battery system ID.
  • the charger 3 when the charger 3 is connected to the secondary battery 5, the charger 3 is connected to the in-vehicle device 19 provided in the electric vehicle 1 on which the secondary battery 5 is mounted.
  • the vehicle-mounted device ID is received from the vehicle-mounted device ID reader 20 that receives the vehicle-mounted device ID from the charger 3 via the wireless communication line.
  • the measurement part 9 of the charger 3 identifies the secondary battery of the object which measures an electrical property based on the vehicle equipment ID of the vehicle equipment 19.
  • the analysis unit 14 of the server 4 extracts information corresponding to the vehicle-mounted device ID from the storage unit 13. Therefore, as in the fourth embodiment, in addition to the effects of the first to third embodiments, even if identification information (battery system ID) is not transmitted from the connected battery system, the comparison target Can be identified.
  • Embodiment 6 differs from the first to third embodiments in that a card ID assigned to a card associated with the battery system is used as battery system identification information (ID).
  • ID battery system identification information
  • the card associated with the battery system is a card determined for each battery system, and the battery system can be identified by the unique identification information given to the card.
  • the unique identification information given to the card is referred to as a card ID.
  • FIG. 12 is a block diagram illustrating an example of a secondary battery state management system according to the sixth embodiment.
  • the secondary battery state management system in the present embodiment includes a battery system 2, a charger 3, a server 4, and a card reader 21.
  • the charger 3 and the card reader 21 are connected to each other.
  • the card 22 is associated with the battery system 2 in advance and is held by the driver of the electric vehicle 1, for example.
  • Other configurations are the same as those in the first to third embodiments.
  • the card 22 is a card associated with the battery system 2.
  • the card 22 is realized by, for example, an IC card that stores a card ID.
  • the card reader 21 recognizes the card ID assigned to the card 22 and notifies the charger 3 of the recognized card ID. Specifically, when the card in which the card ID is stored is held over the card reader 21, the card reader 21 reads the card ID stored in the card. Then, the card reader 21 notifies the charger of the read card ID.
  • the card reader 21 may be realized by an IC card reader.
  • the mode of the card reader 21 is not limited to the IC card reader.
  • the difference between the first embodiment and the sixth embodiment is that the card reader 21 for obtaining the card ID of the card 22 is connected to the charger 3, and the card of the card 22 instead of the battery system ID.
  • the ID is used.
  • FIG. 13 is a sequence diagram showing an example of an operation for acquiring a card ID instead of a battery system ID.
  • step S1 ′ a charge preparation process is executed between the battery system 2 and the charger 3 as in the first to third embodiments.
  • step S1 ′ a charge preparation process is executed between the battery system 2 and the charger 3 as in the first to third embodiments.
  • step S1 ′ it differs from the process of step S1 in FIG. 3 in that the battery system ID is not notified to the charger 3.
  • the control unit 10 of the charger 3 instructs the card reader 21 to acquire the card ID assigned to the card 22 (step S61).
  • the card reader 21 waits until information on the card 22 is read. That is, the card reader 21 determines whether or not the information on the card 22 has been read (step S62). If not read (No in step S62), the card reader 21 repeats the process of step S62.
  • step S62 the card reader 21 transmits the read card ID to the charger 3 (step S63).
  • step S63 Holding the card 22 over the card reader means that the card reader 21 reads information on the card 22.
  • the control unit 10 of the charger 3 stores the received card ID in the storage unit 25 (step S64).
  • the process of performing the deterioration determination based on the measured value is the same as the process from step S2 to step S17 illustrated in FIG.
  • the card ID of the card 22 is used instead of the battery system ID.
  • the charger 3 receives the card ID given to the card 22 associated with the secondary battery 5 from the card reader 21. And the measurement part 9 of the charger 3 identifies the secondary battery of the object which measures an electrical property based on received card ID.
  • the analysis unit 14 of the server 4 extracts information corresponding to the card ID from the storage unit 13. Therefore, in the same way as the fourth and fifth embodiments, in addition to the effects of the first to third embodiments, the identification information (battery system ID) is not transmitted from the connected battery system. Even if it exists, the secondary battery used as a comparison object can be identified.
  • FIG. 14 is a block diagram showing an example of the minimum configuration of the secondary battery state management system according to the present invention.
  • the secondary battery state management system according to the present invention includes a charger 80 (for example, the charger 3) for charging the secondary battery 70 (for example, the secondary battery 5), and an electric power for charging the secondary battery 70.
  • An accumulation server 90 (for example, server 4) that accumulates electrical characteristic information (for example, current value, voltage value, electric energy, impedance, etc.) that is information indicating characteristics is provided.
  • the charger 80 includes an electrical property measuring unit 81 (for example, the measuring unit 9) that measures electrical properties during charging.
  • the storage server 90 includes a measurement information storage unit 91 (for example, the storage unit 13) that stores the history of measured electrical characteristic information for each secondary battery, and the electrical power of the secondary battery that is measured by the electrical characteristic measurement unit 81.
  • a battery state determination unit 92 (for example, the analysis unit 14) that compares the characteristic information with the electrical characteristic information for the same secondary battery stored in the measurement information storage unit 91 and determines the state of the secondary battery; It has.
  • the state of the secondary battery can be managed during charging. Specifically, it is possible to collect information for estimating the deterioration status of the secondary battery without acquiring information such as charging characteristics from the battery system. Moreover, by analyzing the collected information, it is possible to infer the deterioration status and prompt the user to check, thereby improving safety.
  • the electrical characteristic measuring unit 81 of the charger 80 has, as electrical characteristics, a voltage value between power supply lines (for example, the power supply line 31) connecting the secondary battery and the charger, and at least a current value flowing through the power supply line. And one of the amounts of power may be measured.
  • the charger 80 may include AC signal superimposing means (for example, an AC impedance measurement signal source 26) that superimposes an AC signal on a power supply line connecting the secondary battery and the charger. Then, the electrical characteristic measuring means 81 of the charger 80 calculates an impedance (for example, AC impedance) based on the AC voltage between the power supply lines and the AC signal when an AC signal is superimposed on the power supply line. Then, the measurement information storage unit 91 of the storage server 90 stores the calculated impedance history for each secondary battery, and the battery state determination unit 92 of the storage server 90 stores the calculated impedance and the measurement information storage unit 91. Is compared with the impedance for the same secondary battery stored in the memory, and the state of the secondary battery is determined (for example, when the impedance is increased, the secondary battery is determined to be deteriorated). Also good.
  • AC signal superimposing means for example, an AC impedance measurement signal source 26
  • the battery state determination unit 92 of the storage server 90 has the same voltage value and current value stored in the measurement information storage unit 91 as the electrical characteristic information of the secondary battery 70 measured by the electrical characteristic measurement unit 81.
  • the state of the secondary battery 70 may be determined by comparing the electrical characteristic information of a certain secondary battery 70 with respect to a change in voltage value per single time.
  • the battery state determination unit 92 of the storage server 90 has the electrical characteristic information of the secondary battery 70 measured by the electrical characteristic measurement unit 81 and the electrical characteristics of the secondary battery 70 stored in the measurement information storage unit 91.
  • the state of the secondary battery may be determined by comparing the information with the amount of power supplied to the secondary battery 70 in accordance with a change in a predetermined voltage value (for example, measurement condition).
  • the storage server 90 uses the secondary battery identification information (for example, battery system ID), the secondary battery electrical identification information measured by the electrical characteristic measuring unit 81 of the charger 80, and the electrical identification information.
  • a registration processing unit (for example, the analysis unit 14) that receives at least one of the calculated information from the charger and stores the received information in the measurement information storage unit 91 may be provided.
  • the electrical characteristic measuring unit 81 of the charger 80 measures the electrical characteristics based on the identification information (for example, battery system ID) of the secondary battery 70 notified when the battery 80 is connected.
  • the target secondary battery is identified, and the measurement information storage unit 91 of the storage server 90 stores the history of the measured electrical characteristic information of the secondary battery for each secondary battery identification information, and the battery status of the storage server 90
  • the determination unit 92 may extract electrical characteristic information corresponding to the identification information of the secondary battery from the measurement information storage unit 91.
  • the electrical characteristic measuring means 81 of the charger 80 connects the charger 80 to the secondary battery 70, the identification shown on the mobile body (for example, the electric vehicle 1) on which the secondary battery 70 is mounted.
  • the moving body identification number reading means for example, the vehicle number reader 17
  • the measurement information storage unit 91 of the storage server 90 stores the history of the measured electrical characteristic information of the secondary battery for each identification number of the mobile unit, and the storage server 90
  • the battery state determination unit 92 may extract electrical characteristic information corresponding to the identification number of the moving object from the measurement information storage unit 91.
  • the electrical characteristic measuring means 81 of the charger 80 connects the charger 80 to the secondary battery 70
  • the vehicle-mounted device provided in the mobile body for example, the electric vehicle 1 on which the secondary battery 70 is mounted.
  • the identification information (for example, onboard unit ID) of (for example, onboard unit 19) is received from the onboard unit identification information detecting means (for example, onboard unit ID reader 20) that receives the charger 80 from the charger 80 via a wireless communication line.
  • the measurement information storage unit 91 of the storage server 90 stores the history of the measured electrical characteristics information of the secondary battery. May be stored for each identification information of the vehicle-mounted device, and the battery state determination unit 92 of the storage server 90 may extract the electrical characteristic information corresponding to the identification information of the vehicle-mounted device from the measurement information storage unit.
  • the electrical characteristic measuring unit 81 of the charger 80 uses the unique identification information (for example, card ID) given to the medium (for example, the card 22) associated with the secondary battery 70, and the identification information of the medium. Based on the medium identification information reading means (for example, card reader 21) to be read and based on the received medium identification information, the secondary battery to be measured for electrical characteristics is identified, and the measurement information storage means of the storage server 90 91 stores the history of the measured electrical characteristic information of the secondary battery for each medium identification information, and the battery state determination unit 92 of the storage server 90 stores the electrical characteristic information corresponding to the medium identification information in the measurement information storage. It may be extracted from the means.
  • the medium identification information reading means for example, card reader 21
  • the battery state determination unit 92 of the storage server 90 stores the electrical characteristic information corresponding to the medium identification information in the measurement information storage. It may be extracted from the means.
  • the battery state determination unit 92 may use at least one of the surface temperature of the secondary battery 70 and the ambient temperature of the charger 80 for determining the state of the secondary battery 70.
  • FIG. 15 is a block diagram showing an example of the minimum configuration of the charger according to the present invention.
  • the charger 85 according to the present invention is a charger that charges the connected secondary battery 70, and is an electrical characteristic measuring unit 86 (for example, a measuring unit) that measures electrical characteristics during charging of the secondary battery 70. 9) and electrical characteristic information (for example, current value, voltage value, electric energy, impedance, etc.) that is information indicating the electrical characteristics of the secondary battery measured by the electrical characteristic measuring means 86 is stored in the same secondary battery.
  • Transmitting means 87 for transmitting to a determination device 71 (for example, server 4) that compares the history of the electrical characteristic information for the battery with the received electrical characteristic information to determine the state of the secondary battery.
  • the state of the secondary battery can be managed during charging.
  • the electrical characteristic measuring means 86 has, as electrical characteristics, a voltage value between power supply lines (for example, the power supply line 31) connecting the secondary battery 70 and the charger 85, at least a current value and power flowing through the power supply line. One of the quantities may be measured.
  • the storage server includes a measurement information storage unit that stores a history of measured electrical property information for each secondary battery, and the electrical property measurement unit performs measurement.
  • Battery state determination means for comparing the electrical characteristic information of the secondary battery and the electrical characteristic information for the same secondary battery stored in the measurement information storage means to determine the state of the secondary battery.
  • the electrical property measuring means of the charger has, as an electrical property, one of a voltage value between power supply lines connecting the secondary battery and the charger, at least a current value flowing through the power supply line, and an electric energy.
  • the secondary battery state management system according to supplementary note 1 for measuring one.
  • the charger includes AC signal superimposing means that superimposes an AC signal on a power supply line connecting the secondary battery and the charger, and the electrical characteristic measuring means of the charger superimposes an AC signal on the power supply line.
  • the impedance is calculated based on the AC voltage between the feeder lines and the AC signal, and the measurement information storage means of the storage server stores the history of the calculated impedance for each secondary battery.
  • the battery status determination means of the storage server compares the calculated impedance with the impedance for the same secondary battery stored in the measurement information storage means to determine the status of the secondary battery.
  • the secondary battery state management system according to 2.
  • the battery state determination means of the storage server has the same voltage value and current value stored in the measurement information storage means as the electrical characteristic information of the secondary battery measured by the electrical characteristic measurement means.
  • the secondary battery state management system according to supplementary note 1 or supplementary note 2, wherein the state of the secondary battery is determined by comparing the electrical characteristic information of the secondary battery with respect to a change in voltage value per single time.
  • the battery state determination means of the storage server includes the electrical characteristic information of the secondary battery measured by the electrical characteristic measurement means and the electrical characteristic information of the secondary battery stored in the measurement information storage means.
  • the secondary battery state management system according to supplementary note 1 or supplementary note 2, wherein the state of the secondary battery is determined by comparing the amount of electric power supplied to the secondary battery with a change in a predetermined voltage value.
  • the storage server includes the secondary battery identification information, the secondary battery electrical identification information measured by the electrical characteristics measuring unit of the charger, and the information calculated based on the electrical identification information.
  • the secondary battery state management system according to any one of supplementary notes 1 to 5, further comprising a registration processing unit that receives at least one information from the charger and stores the received information in the measurement information storage unit.
  • the electrical characteristic measuring means of the charger identifies the secondary battery whose electrical characteristics are to be measured based on the identification information of the secondary battery notified when connected to the secondary battery.
  • the storage server measurement information storage means stores the history of the measured secondary battery electrical characteristic information for each identification information of the secondary battery, and the storage server battery status determination means identifies the secondary battery identification.
  • the secondary battery state management system according to any one of supplementary notes 1 to 6, wherein electrical characteristic information corresponding to the information is extracted from the measurement information storage unit.
  • the mobile unit identification number reading unit that reads the identification number indicated on the mobile unit on which the secondary battery is mounted is provided.
  • the battery status determination means of the storage server extracts the electrical characteristic information corresponding to the identification number of the mobile body from the measurement information storage means.
  • the secondary battery state management system according to any one of appendix 6.
  • the electrical characteristic measuring unit of the charger wirelessly transmits the identification information of the vehicle-mounted device provided in the mobile body mounting the secondary battery from the charger. Based on the received onboard unit identification information received from the onboard unit identification information detection means received via the communication line, the secondary battery to be measured for electrical characteristics is identified, and the measurement information storage unit of the storage server is The history of the measured electrical characteristic information of the secondary battery is stored for each identification information of the in-vehicle device, and the battery state determination unit of the storage server stores the electrical characteristic information corresponding to the identification information of the in-vehicle device as measurement information.
  • the secondary battery state management system according to any one of supplementary notes 1 to 6 extracted from the means.
  • the electrical characteristic measuring unit of the charger receives the unique identification information given to the medium associated with the secondary battery from the medium identification information reading unit that reads the identification information of the medium, and the received medium Based on the identification information of the secondary battery, the secondary battery whose electrical characteristics are to be measured is identified, and the measurement information storage means of the storage server records the measured history of electrical characteristics information of the secondary battery for each identification information of the medium.
  • the battery state determination unit of the storage server that stores the secondary battery state according to any one of appendix 1 to appendix 6 that extracts electrical characteristic information corresponding to the identification information of the medium from the measurement information storage unit Management system.
  • the battery state determination means is any one of the supplementary notes 1 to 10 that uses at least one of the surface temperature of the secondary battery and the ambient temperature of the charger for determining the state of the secondary battery.
  • the secondary battery state management system as described in one.
  • the charger which charges with respect to a secondary battery Comprising: The electrical property measurement means which measures the electrical property during charge with respect to the said secondary battery, The secondary battery which the said electrical property measurement means measured For a determination device that determines the state of the secondary battery by comparing the electrical characteristic information, which is information indicating the electrical characteristics, with the stored electrical characteristic information for the same secondary battery and the received electrical characteristic information.
  • a charger comprising: a transmitting means for transmitting.
  • the electrical characteristic measuring means measures, as an electrical characteristic, one of a voltage value between power supply lines connecting the secondary battery and the charger, and at least one of a current value flowing through the power supply line and an electric energy.
  • the charger according to appendix 12.
  • the measurement information storage means which the charger which charges with respect to a secondary battery measures the electrical property in charge, and memorize
  • the storage server provided with the secondary battery compares the electrical characteristic information of the secondary battery measured during charging with the electrical characteristic information for the same secondary battery stored in the measurement information storage means, and A state management method for a secondary battery, characterized in that:
  • Electricity is information indicating that the charger that charges the secondary battery measures the electrical characteristics of the secondary battery during charging, and the charger indicates the measured electrical characteristics of the secondary battery.
  • the characteristic information is transmitted to a determination device that determines the state of the secondary battery by comparing the history of the stored electric characteristic information for the same secondary battery and the received electric characteristic information. Characteristic measurement method.
  • An electrical characteristic measurement program installed in a computer that charges a secondary battery, wherein the computer measures an electrical characteristic measurement process for measuring electrical characteristics during charging of the secondary battery, and The electrical characteristic information, which is information indicating the electrical characteristics of the secondary battery measured in the electrical characteristic measurement process, is compared with the stored electrical characteristic information history for the same secondary battery and the received electrical characteristic information.
  • An electrical characteristic measurement program for executing transmission processing to be transmitted to a determination device for determining a state of a secondary battery.
  • the present invention is suitably applied to a secondary battery state management system that manages the state of a secondary battery mounted on an electric vehicle or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 本発明による二次電池状態管理システムは、二次電池に対して充電を行う充電器と、二次電池に対する充電中の電気特性を示す情報である電気特性情報を蓄積する蓄積サーバとを備えている。電気特性測定手段は、充電中の電気特性を測定する。測定情報記憶手段は、測定された電気特性情報の履歴を二次電池ごとに記憶する。電池状態判定手段は、電気特性測定手段が測定している二次電池の電気特性情報と、測定情報記憶手段に記憶された同一の二次電池に対する電気特性情報とを比較して、その二次電池の状態を判定する。

Description

二次電池状態管理システム、充電器、二次電池状態管理方法及び電気特性測定方法
 本発明は、電動車両などに搭載される二次電池の状態を管理する二次電池状態管理システム、充電器、二次電池状態管理方法、電気特性測定方法および電気特性測定プログラムに関する。
 二次電池を搭載した電動車両として、例えば、電気自動車や、内燃機関及びモータの両方を搭載したハイブリッド車などが挙げられる。このような電動車両を電気で駆動させるためには、搭載した二次電池に外部の充電器から充電を行うことが必要になる。この二次電池への充電の際には、一般的に、電池固有の特性に合わせた充電制御が必要になる。
 また、二次電池を長期間使用する場合、充放電が繰り返し行われることが考えられる。充放電が繰り返し行われると、二次電池の性能が劣化し、劣化の条件によっては、二次電池が発熱し、発火する恐れがある。甚大な被害が二次電池利用者に及ぶことを避けるためにも、二次電池を使用する際には、劣化状況を監視し、その二次電池の特性に応じて充電制御を行うことが必要になる。
 特許文献1には、二次電池固有の情報を保持する機能を二次電池に付加した二次電池システムが記載されている。特許文献1に記載された二次電池システムは、外部機器に対して二次電池の固有情報を通知する。外部機器が充電器の場合、充電器が二次電池システムから取得した二次電池固有情報に応じて充電を制御する。
 特許文献2には、電池の充電特性に従って充電を行う充電システムが記載されている。特許文献2に記載された充電システムでは、電池システムは、二次電池固有の情報を充電器に通知するのではなく、二次電池の固有情報を加味して電圧値や電流値といった充電の基準値を算出し、その基準値を充電器に通知する。そして、充電器側では、充電制御として、電池システムから通知された充電の基準値に応じて電圧や電流を出力する。
 また、特許文献3には、二次電池の充電装置が記載されている。特許文献3に記載された充電装置は、二次電池の状態として、二次電池の端子電圧を一定時間間隔で検出し、端子電圧の変化を示す充電曲線の最新と平均の傾きを計算して、充電電流の供給停止の有無を判断する。
 なお、非特許文献1には、充放電に伴う電池の性能変化について記載されている。非特許文献1には、充放電を繰り返すことにより、電池の容量が減少したり、充放電特性が変化したりすることが示されている。また、非特許文献1には、電池の容量が減少すると二次電池の内部インピーダンスが増加することが示されている。
特開平8-37036号公報(段落0001,0022) 特開2007-336778号公報(段落0015) 特開平6-38394号公報(段落0010)
竹野 和彦、代田 玲美、"移動端末用リチウムイオン電池の容量劣化特性","NTT DoCoMo テクニカルジャーナル"、Vol.13、No.4 (なお、NTT及びDoCoMoは、登録商標である。)
 しかし、電動車両と充電器とは製造者が異なることが一般的である。そのため、特許文献1に記載された二次電池システムのように、二次電池の充放電情報が電動車両から充電器に対して必ずしも通知されるとは限らない。この場合、充電時に二次電池の劣化状況を把握できないという課題がある。
 また、特許文献2に記載された充電システムでは、電池システムからの充電指示通りに充電器が給電を行う。すなわち、電池システムは、充電器側に基準値を送信するだけであるため、充電する側では二次電池の劣化状況を把握できないという課題がある。
 また、特許文献3に記載された充電装置は、充電中の充電曲線の傾きを一定時間間隔で測定し、測定した傾きを比較して充電電流の供給停止の有無を判断するものである。そのため、充電を行っている各時点において二次電池の状況を把握することは困難である。
 そこで、本発明は、充電中に二次電池の状態を管理できる二次電池状態管理システム、充電器、二次電池状態管理方法、電気特性測定方法および電気特性測定プログラムを提供することを目的とする。
 本発明による二次電池状態管理システムは、二次電池に対して充電を行う充電器と、二次電池に対する充電中の電気特性を示す情報である電気特性情報を蓄積する蓄積サーバとを備え、充電器が、充電中の電気特性を測定する電気特性測定手段を備え、蓄積サーバが、測定された電気特性情報の履歴を二次電池ごとに記憶する測定情報記憶手段と、電気特性測定手段が測定している二次電池の電気特性情報と、測定情報記憶手段に記憶された同一の二次電池に対する電気特性情報とを比較して、その二次電池の状態を判定する電池状態判定手段とを備えたことを特徴とする。
 本発明による充電器は、二次電池に対して充電を行う充電器であって、二次電池に対する充電中の電気特性を測定する電気特性測定手段と、電気特性測定手段が測定した二次電池の電気特性を示す情報である電気特性情報を、蓄積された同一の二次電池に対する電気特性情報の履歴と受信した電気特性情報とを比較して二次電池の状態を判定する判定装置に対して送信する送信手段とを備えたことを特徴とする。
 本発明による二次電池状態管理方法は、二次電池に対して充電を行う充電器が、充電中の電気特性を測定し、電気特性を示す情報である電気特性情報の履歴を二次電池ごとに記憶する測定情報記憶手段を備えた蓄積サーバが、充電中に測定された二次電池の電気特性情報と、測定情報記憶手段に記憶された同一の二次電池に対する電気特性情報とを比較して、その二次電池の状態を判定することを特徴する。
 本発明による電気特性測定方法は、二次電池に対して充電を行う充電器が、その二次電池に対する充電中の電気特性を測定し、充電器が、測定した二次電池の電気特性を示す情報である電気特性情報を、蓄積された同一の二次電池に対する電気特性情報の履歴と受信した電気特性情報とを比較して二次電池の状態を判定する判定装置に対して送信することを特徴とする。
 本発明による電気特性測定プログラムは、二次電池に対して充電を行うコンピュータに搭載される電気特性測定プログラムであって、コンピュータに、二次電池に対する充電中の電気特性を測定する電気特性測定処理、および、電気特性測定処理で測定された二次電池の電気特性を示す情報である電気特性情報を、蓄積された同一の二次電池に対する電気特性情報の履歴と受信した電気特性情報とを比較して二次電池の状態を判定する判定装置に対して送信する送信処理を実行させることを特徴とする。
 本発明によれば、充電中に二次電池の状態を管理できる。
本発明の第1の実施形態における二次電池状態管理システムの例を示すブロック図である。 二次電池状態管理システムの各構成要素を詳細化した例を示すブロック図である。 第1の実施形態における動作の例を示すシーケンス図である。 リチウムイオン電池の充電特性の例を示す説明図である。 第2の実施形態における動作の例を示すシーケンス図である。 本発明の第3の実施形態における二次電池状態管理システムの各構成要素を詳細化した例を示すブロック図である。 第2の実施形態における動作の例を示すシーケンス図である。 本発明の第4の実施形態における二次電池状態管理システムの例を示すブロック図である。 電動車両標27から車両番号を取得する動作の例を示すシーケンス図である。 本発明の第5の実施形態における二次電池状態管理システムの例を示すブロック図である。 車載器19の固有番号を取得する動作の例を示すシーケンス図である。 本発明の第6の実施形態における二次電池状態管理システムの例を示すブロック図である。 カードIDを取得する動作の例を示すシーケンス図である。 本発明による二次電池状態管理システムの最小構成の例を示すブロック図である。 本発明による充電器の最小構成の例を示すブロック図である。
 以下、本発明の実施形態を図面を参照して説明する。
実施形態1.
 図1は、本発明の第1の実施形態における二次電池状態管理システムの例を示すブロック図である。本発明における二次電池状態管理システムは、電池システム2と、充電器3と、サーバ4とを備えている。電池システム2は、電動車両1に搭載される。また、充電器3へは、商用電源23から電力が供給される。充電器3は、給電線31を介して、電池システム2に対して電力を供給する。また、サーバ4は、充電器3から通知された情報の蓄積及び分析を行う。
 なお、以下の説明では、電池システム2が電動車両1に搭載される場合について説明する。ただし、電池システム2は、充電器3からの充電が可能であれば、他の種類の移動体に搭載されていてもよい。
 図2は、図1に例示した二次電池状態管理システムの各構成要素を詳細化した例を示すブロック図である。電池システム2は、二次電池5と、制御部6と、通信部7と、記憶部24とを備えている。
 二次電池5は、充電器3に接続され充電が行われる二次電池である。
 記憶部24は、充電器3から通知された情報や、電池システム2自身に関する情報などを記憶する。具体的には、記憶部24は、充電器3から通知された情報として、充電器を識別する情報(以下、充電器IDと記す。)や、充電器がサポートするプロトコルバージョンなどを記憶する。また、記憶部24は、電池システム2自身に関する情報として、電池システムを識別する情報(以下、電池システムIDと記す。)や、電池システム自身がサポートするプロトコルバージョンなどを記憶する。ただし、記憶部24が記憶する内容は、上記内容に限定されない。記憶部24は、例えば、メモリ等により実現される。
 制御部6は、二次電池5の電圧や周囲の温度、充電時の電流値などを測定し、その値に応じて二次電池5に対する充放電の制御や、充電器3に送信する制御情報の生成を行う。なお、制御情報には、二次電池5に対する充電開始指示や充電停止処理の他、給電に必要な電流値などの条件(以下、給電条件と記す。)が含まれる。
 また、制御部6は、充電器3に接続されると、記憶部24に記憶された情報を充電器3に送信する。例えば、制御部6は、記憶部24に記憶された電池システムIDや、電池システム2がサポートするプロトコルのバージョンなどを充電器3に送信する。
 通信部7は、充電器3との通信を行う。
 充電器3は、電源部8と、計測部9と、制御部10と、通信部11と、表示部12と、記憶部25とを備えている。充電器3は、二次電池5に接続されると、接続された二次電池5に対して充電を行う。
 記憶部25は、電池システム2やサーバ4から取得した情報、充電器3自身に関する情報などを記憶する。具体的には、記憶部25は、電池システム2から取得した情報として、電池システムIDや、電池システムがサポートするプロトコルバージョンなどを記憶する。また、記憶部25は、充電器3自身に関する情報として、充電器を識別する情報(すなわち、充電器ID)や、充電器自身がサポートするプロトコルバージョンなどを記憶する。ただし、記憶部25が記憶する内容は、上記内容に限定されない。記憶部25は、例えば、メモリ等により実現される。
 電源部8は、外部の商用電源23から受け取った電力を、二次電池を充電するための電源条件に変換して二次電池5に給電する。具体的には、電源部8は、交流電流を直流電流に変換し、変換した直流電流を用いて二次電池5に給電する。
 計測部9は、二次電池5に対する充電中の電気特性を測定する。具体的には、計測部9は、電池システム2に応じて定められた計測条件に基づいて、充電中の電気特性を測定する。なお、計測条件は、後述するサーバ4により通知される。計測部9が測定する電気特性には、二次電池に対して充電を行っている際の電流値や電圧値、電力量が含まれる。
 なお、計測部9が測定する情報は、電気特性を示す情報に限定されない。計測部9は、電流値や電圧値、電力量など、充電時における電気特性の他、充電器3の周辺の気温を測定してもよい。以下の説明では、計測部9が電源部8の出力端における電圧値と電流値を測定する場合について説明する。また、以下の説明では、計測部9が測定した電気特性や充電器周辺の温度を表す情報を測定情報と記す。
 また、計測部9は、電気特性を測定する対象の二次電池を、二次電池5に接続したときに電池システム2から通知される電池システムIDをもとに識別する。ただし、計測部9が二次電池を識別する方法は、電池システム2から通知される電池システムIDに限定されない。なお、本実施形態では、計測部9が電池システム2から通知される電池システムIDをもとに電気特性を測定する対象の二次電池を識別する場合について説明する。
 制御部10は、電池システム2から通知される制御情報に基づいて、二次電池5への給電条件に整合するように電源部8を制御する。
 さらに、充電器3が電池システム2に接続されると、制御部10は、記憶部25に記憶された情報を電池システム2に送信する。例えば、制御部10は、記憶部25に記憶された充電器IDや、充電器3がサポートするプロトコルのバージョンなどを電池システム2に送信する。
 また、制御部10は、電池システム2に対応する計測条件をサーバ4から取得する。具体的には、制御部10は、電池システムIDをサーバ4に対して送信し、その電池システムIDに応じて定められた計測条件を受信する。
 さらに、制御部10は、充電中の電気特性を示す情報をサーバ4に送信する。制御部10は、電気特性を示す情報だけでなく、測定した充電器周辺の気温をサーバ4に送信してもよい。
 通信部11は、電池システム2及びサーバ4と通信を行う。
 表示部12は、制御部10の指示に応じ、充電状態や二次電池の劣化状態などを表示する。表示部12は、例えば、ディスプレイなどの表示装置によって実現される。
 サーバ4は、蓄積部13と、分析部14と、通信部15とを備えている。
 蓄積部13は、充電器3から通知された測定情報を蓄積する。具体的には、蓄積部13は、充電器3で測定された電気特性情報の履歴を二次電池ごとに記憶する。
 また、蓄積部13は、電池システム2に応じた計測条件を記憶する。蓄積部13は、例えば、ある電池システム2に対して、「基準電圧値V0から電圧dVの間隔で計測を行う」という計測条件を記憶していてもよい。なお、計測条件は、電池システム2に応じて予め記憶される。蓄積部13は、磁気ディスク等により実現される。
 分析部14は、充電器3から通知された情報と、蓄積部13に蓄積された過去の測定情報とを分析及び比較することにより、二次電池5の劣化状況を分析する。すなわち、分析部14は、計測部9が測定している電気特性と、蓄積部13に記憶された同一の二次電池5に対する電気特性とを比較して、二次電池5の状態を判定する。
 具体的には、分析部14は、充電器3から通知される電池システムID(より詳しくは、電池システム2から充電器3に通知される電池システムID)をもとに、蓄積部13に記憶された過去の測定情報の履歴を抽出する。そして、分析部14は、充電器3が測定した測定情報と電圧値や電流値が一致する履歴とを比較することで、二次電池5の状態を判定する。なお、分析部14が二次電池5の状態を判定する方法については後述する。
 また、分析部14は、充電器3に対して計測条件を送信する。具体的には、分析部14は、充電器3から電池システムIDと併せて計測条件の依頼を受け取ると、電池システムIDをキーにして蓄積部13から計測条件を抽出し、抽出した計測条件を充電器3に通知する。
 なお、上記説明では、蓄積部13が電池システムに応じた計測条件を記憶し、分析部14が充電器3から受け取った電池システムIDに応じた計測条件を抽出する場合について説明した。ただし、蓄積部13は、電池システムごとではなく、電動車両のメーカや車種ごとに計測条件を記憶していてもよい。例えば、電池システム2から電動車両のメーカや車種を識別可能な情報(例えば、メーカIDや車種ID)を充電器3が受信する場合、分析部14は充電器3からこれらの識別情報を受け取って、対応する計測条件を抽出してもよい。
 また、電動車両のメーカや車種を電池システムIDと対応付けた情報を予め蓄積部13に記憶させておいてもよい。この場合、サーバ4が充電器3から電池システムIDを受信したときに、分析部14が、電池システムIDに対応する電動車両のメーカや車種を蓄積部13から抽出し、抽出した電動車両のメーカや車種に対応する計測条件を、再度蓄積部13から抽出してもよい。
 通信部15は、充電器3と通信を行う。
 計測部9と、制御部10とは、プログラム(電気特性測定プログラム)に従って動作するコンピュータのCPUによって実現される。例えば、プログラムは、充電器3の記憶部25に記憶され、CPUは、そのプログラムを読み込み、プログラムに従って、計測部9及び制御部10として動作してもよい。また、計測部9と、制御部10とは、それぞれが専用のハードウェアで実現されていてもよい。
 次に、第1の実施形態の動作を説明する。図3は、電池システム2、充電器3及びサーバ4の間で行われる処理の例を示すシーケンス図である。
 充電器3が電池システム2に接続されると、充電準備処理として、各個体を識別するための電池システムID、充電器IDの交換や、動作レベルを決定するためにそれぞれの装置がサポートするプロトコルバージョンの交換などが電池システム2と充電器3の制御部間で行われる(ステップS1)。具体的には、充電器3が電池システム2に接続されたことをトリガとして、制御部10が記憶部25に記憶された充電器IDを電池システム2に送信し、制御部6が記憶部24に記憶された電池システムIDを充電器3に送信する。電池システム2の制御部6及び充電器3の制御部10は、交換した情報をそれぞれ記憶部24及び記憶部25に保存する(ステップS2、ステップS3)。
 充電準備処理が完了すると、充電器3は、充電準備処理で取得した電池システムIDをキーにして、サーバ4(具体的には、蓄積部13)から計測条件を取得する(ステップS4、ステップS5)。また、電池システム2の制御部6は、充電器3の制御部10に対して、給電条件及び給電開始指示を通知する(ステップS6)。充電器3がこれらの情報を受け取ると、充電器3の制御部10は、要求された給電条件に基づいて電源部8を制御し、電力供給を開始させる(ステップS7、ステップS8)。
 充電器3の電源部8が電力供給を開始すると、計測部9は、サーバ4から取得した計測条件に従って、給電線間の電圧値及びその給電線に流れる電流値を離散的に計測する(ステップS9)。例えば、計測条件が「基準電圧値V0から電圧dVの間隔で計測を行う」と定められている場合、計測部9は、計測条件に従い、基準電圧値V0から電圧dVの間隔で電圧をかけたときの電流値を計測する。充電器3の制御部10は、計測部9が計測した電流値及び電圧値を、電池システムID、充電器の周辺温度、充電器ID及び計測時刻とともにサーバ4に通知する(ステップS10)。なお、充電器3の制御部10は、上記以外の情報をサーバ4に通知してもよい。
 サーバ4が充電器3からの通知を受け取ると、分析部14は、受け取った情報を蓄積部13に蓄積させる(ステップS11)。分析部14は、例えば、二次電池の電池システムIDとともに、給電線31間の電圧値と給電線31を流れる電流値、給電線31間の電圧値と給電線31から二次電池に供給された電力量、及びこれら情報から算出される情報(例えば、インピーダンス)のうちの少なくとも1つの情報について充電器3から通知を受け、通知された情報を蓄積部13に蓄積させる。なお、蓄積させる情報には、充電を行った日時や充電器に関連する情報を含んでいてもよい
 そして、分析部14は、蓄積部13に記憶された測定情報をもとに、二次電池の状態を分析する。以下、二次電池の劣化状態を分析する方法を具体的に説明する。
 図4は、リチウムイオン電池の充電特性の例を示す説明図である。図4に例示す説明図は、定電流・定電圧充電方式と呼ばれる方法でリチウムイオン電池を充電する場合の電圧値及び電流値の変化の様子を示している。この方式は、最初のうちは定電流(I0)で充電を行い、電圧値がある値(Vmax)に達した後は定電圧で充電を行うという特徴がある。ここで、図4に例示するVminは、測定開始時の電池電圧を示し、Vmaxは定電圧で充電を行う際の電圧値を示す。また、t0は、電池電圧をVminからV0まで変化させる時間、t1は、電池電圧をV1からV2まで変化させる時間、t2は、電池電圧をV2からV3まで変化させる時間である。
 二次電池が劣化すると、電圧値、電流値、温度などの条件が同一であっても、定電流充電時における電池電圧の単一時間あたりの変化量が異なる。そこで、サーバ4の分析部14は、定電流充電時における電池電圧曲線の複数の点(例えば、電池電圧値V0,V1,V2,V3など)での傾き値(dV/t0,dV/t1,dV/t2など)を算出し(ステップS12)、蓄積部13に蓄積させる。そして、分析部14は、同一電池システムIDの過去の測定履歴から同一条件時(例えば、電圧値、電流値、温度が同一の時)における電池電圧曲線の傾き値を参照し(ステップS13)、両者を比較することで劣化判定を行う(ステップS14)。
 また、図4に例示する電池電圧曲線におけるVminとVmaxは電池システムの構成に依存して異なる値を取る。そこで、傾き値を算出する点(例えば、電池電圧値V1,V2,V3など)を、分析部14が導出した電池電圧曲線をもとに人が判断し、その点をサーバ4の蓄積部13に記憶しておけばよい。
 また、分析部14は、充電器3から受け取った、充電器3の周辺の気温を劣化判定の条件に用いてもよい。一般的に、電池の充電方法は、電池の表面温度に依存して変更される。そこで、車両内の二次電池の温度を直接測定できない場合であっても、充電器3の周辺の気温を測定することで、測定した気温を二次電池の表面温度とみなすことが可能になる。そこで、充電器3の周辺温度が同一の場合には充電方法も同一であるという仮定を設けることで、温度を条件に含めた過去の測定情報との比較を行うことが可能になる。このような比較を行うことで、劣化判定の推定精度を向上させることが可能になる。
 また、電池システム2の制御部6が二次電池5の表面温度を充電器3に通知している場合、充電器3はサーバ4に、二次電池の表面温度を送信してもよい。この場合、また、分析部14は、二次電池5の表面温度を劣化判定の条件に用いることが可能になる。
 サーバ4の分析部14は、劣化判定を行うと、その判定結果を充電器3に通知する(ステップS15)。充電器3の制御部10は、通知された劣化判定に基づいて、電池状態を伝えるためのメッセージを表示部12に表示させる(ステップS16)。その後、制御部6は、二次電池5の電圧値が予め定められた値に達すると、充電器3に対して、給電停止の指示を行う(ステップS17)。
 以上のように、本実施形態によれば、充電器3の計測部9が、二次電池5に対する充電中の電気特性を測定する。そして、サーバ4の分析部14が、計測部9が測定している電気特性と、蓄積部13に記憶された同一の二次電池5に対する電気特性とを比較して、二次電池5の状態を判定する。具体的には、充電器3に内蔵された計測部9が、充電器3に接続された二次電池5の充電中における電圧値及び電流値を測定する。そして、分析部14が、その測定値と、個々の二次電池ごとに識別情報(例えば、電池システムID)と対応付けて蓄積された過去の測定値とを比較する。そのため、電動車両側から二次電池5の充電特性などの情報を得なくても、充電中に二次電池の状態を管理できる。
 また、本実施形態によれば、蓄積部13が充電器3から通知された電流値や電圧値などの測定情報を蓄積する。よって、サーバ4において、電池システムに応じた充電特性曲線を描くことが可能になる。すなわち、サーバ4側で電池システムに応じた充電特性曲線を可視化できる。
実施形態2.
 次に、本発明の第2の実施形態を説明する。第2の実施形態における構成は、図2に例示する第1の実施形態における構成と同一である。ただし、本実施形態では、充電器3の計測部9、および、サーバ4の分析部14で扱う情報が第1の実施形態と異なる。
 具体的には、第1の実施形態では、充電器3の計測部9が充電中の電流値及び電圧値を測定し、サーバ4の分析部14が電圧変化曲線の傾きから二次電池の劣化状況を推測する方法について説明した。一方、第2の実施形態では、充電器3の計測部9が充電中の電圧値及び電力量を測定し、サーバ4の分析部14が同一電圧変化に対する二次電池の電力量から二次電池の劣化状況を推測する点において第1の実施形態と異なる。
 以下、第2の実施形態の動作を説明する。図5は、電池システム2、充電器3及びサーバ4の間で行われる処理の例を示すシーケンス図である。
 充電器3が電池システム2に接続されると、充電準備処理として、各個体を識別するための電池システムID、充電器IDの交換や、動作レベルを決定するためにそれぞれの装置がサポートするプロトコルバージョンの交換などが電池システム2と充電器3の制御部間(具体的には、電池システム2の制御部6と充電器3の制御部10との間)で行われる(ステップS1)。充電準備処理の内容は、第1の実施形態と同様である。電池システム2の制御部6及び充電器3の制御部10は、交換した情報をそれぞれ記憶部24及び記憶部25に保存する(ステップS2、ステップS3)。
 次に、充電器3は、電池システム2から取得した電池システムIDをサーバ4に通知する(ステップS4)。サーバ4の分析部14は、蓄積部13に予め保存されている計測条件を取得し、充電器3に通知する(ステップS20)。なお、以下の説明では、計測条件を、測定パラメータと記すこともある。
 例えば、蓄積部13は、測定パラメータとして、電力測定開始時の電圧値Vs、電力測定終了時の電圧値Ve、及びVsとVeの間の電圧値V0~Vn(以下、これらの電圧値を中間点と記す。)を記憶していてもよい。なお、中間点の数nは0以上の任意の整数である。ただし、測定パラメータは、上記内容に限定されない。
 充電準備処理が完了すると、電池システム2の制御部6は、充電器3の制御部10に対して、給電条件及び給電開始指示を通知する(ステップS6)。充電器3がこれらの情報を受け取ると、充電器3の制御部10は、要求された給電条件に基づいて電源部8を制御し、電力供給を開始させる(ステップS7、ステップS8)。
 充電器3の電源部8が電力供給を開始すると、計測部9は、給電線間の電圧値を計測する。そして、計測部9は、電圧値がVsになると、二次電池に供給される電力量の計測を開始する(ステップS21)。計測部9は、例えば、電圧値と、電流値と、計測時間との積を計算して電力量を計測してもよい。以下、このように算出した電力量を積算電力値と記すこともある。計測部9は、電圧値がVeになるまで中間点(すなわち、V0~Vn)ごとに、それぞれの区間の積算電力値を算出し、電圧値がVeになると二次電池に供給される電力量の計測を終了する。
 充電器3の制御部10は、計測部9が計測した積算電力値を、計測開始時の電圧値、計測終了時の電圧値、中間点の電圧値、電池システムID、充電器の周辺温度、充電器ID及び計測時刻とともにサーバ4に通知する(ステップS22)。なお、充電器3の制御部10は、上記以外の情報をサーバ4に通知してもよい。
 サーバ4が充電器3からの通知を受け取ると、分析部14は、受け取った情報を蓄積部13に蓄積させる(ステップS11)。そして、分析部14は、蓄積部13に記憶された測定情報を参照し(ステップS13)、二次電池の状態を分析(すなわち、劣化判定)する(ステップS14)。以下、二次電池の劣化状態を分析する方法を具体的に説明する。
 二次電池が劣化すると、充電時の電圧値の変化(すなわち、見かけの電力容量増)に対して、実際の充電電力量が減るという特徴がある。そこで、サーバ4の分析部14は、予め定められた電圧値の変化に伴って(例えば、第一の電圧値から第二の電圧値に変化するまでに)二次電池に供給される電力量を比較し、電力量が減少傾向にあるか否かにより劣化判定を行う。すなわち、分析部14は、積算電力値が減少している場合、二次電池が劣化していると判定する。
 なお、積算電力値を計測する際に用いられる電圧値Vs、Ve、及び、V0~Vnは、電池システムの構成に依存して異なる値を取る。そこで、蓄積部13に蓄積された電圧変化範囲をもとに電圧値Vs、Ve、及び、V0~Vnを人が判断して決定しておけばよい。
 サーバ4の分析部14は、劣化判定を行うと、その判定結果を充電器3に通知する(ステップS15)。充電器3の制御部10は、通知された劣化判定に基づいて、電池状態を伝えるためのメッセージを表示部12に表示させる(ステップS16)。その後、制御部6は、二次電池5の電圧値が予め定められた値に達すると、充電器3に対して、給電停止の指示を行う(ステップS17)。
 以上のように、本実施形態では、サーバ4の分析部14が、計測部9が測定している電圧値及び電力量と、蓄積部13に記憶された同一の二次電池5に対する電圧値及び電力量とを比較して、二次電池5の状態を判定する。このようにしても、充電中に二次電池の状態を管理できる。
 なお、第二の実施形態では、積算電力量が充電器3内部で(すなわち、制御部9によって)計測される場合について説明した。ただし、積算電力量の計測は、制御部9によって行われる場合に限定されない。第一の実施形態と同様、充電器3の制御部9が、電流値と電圧値とを短い測定間隔で測定して、測定結果をサーバ4に通知し、サーバ4の分析部14が、受け取った測定結果を基に積算電力量を算出してもよい。
 ただし、電圧値と電流値とをもとに算出される電力量の誤差を少なくするためには、これらの測定間隔を短くする必要がある。すなわち、サーバ4側で電力量を算出する場合、計測部9は、短い間隔で測定した電圧値及び電流値をサーバ4側に通知する必要がある。一方、充電器3側で電力量を測定する場合、電力量を算出するための電圧値及び電流値をサーバ4側に送信する必要はない。そのため、電圧値及び電流値の測定間隔は同一であっても、送信する情報量を減少させることができるため、充電器3とサーバ4との間のネットワーク負荷が低減する効果も期待できる。
実施形態3.
 次に、本発明の第3の実施形態を説明する。図6は、本発明の第3の実施形態における二次電池状態管理システムの各構成要素を詳細化した例を示すブロック図である。なお、第1の実施形態及び第2の実施形態と同様の構成については、図2と同一の符号を付し、説明を省略する。本実施形態における充電器3は、さらに、交流インピーダンス測定用信号源(以下、信号源)26を備えている点において第1の実施形態における充電器3と異なる。
 信号源26は、交流インピーダンス測定用の交流信号を給電線に重畳する。なお、重畳する交流信号は、電池システム2の構成に応じて予め定められる。
 また、本実施形態では、充電器3の計測部9、および、サーバ4の分析部14で扱う情報が第1の実施形態及び第2の実施形態と異なる。具体的には、第1の実施形態では、充電器3の計測部9が充電中の電流値及び電圧値を測定し、サーバ4の分析部14が電圧変化曲線の傾きから二次電池の劣化状況を推測した。また、第2の実施形態では、充電器3の計測部9が充電中の電圧値及び電力量を測定し、サーバ4の分析部14が二次電池の同一電圧変化範囲に対する電力量から二次電池の劣化状況を推測した。
 一方、第3の実施形態では、信号源26が充電器3から二次電池5に給電する給電線31に交流信号を重畳し、充電器3の計測部9がこの交流信号に対する交流インピーダンスを測定する点において第1の実施形態及び第2の実施形態と異なる。また、第3の実施形態では、サーバ4の分析部14が過去の交流インピーダンス測定値との変化から二次電池の劣化状況を推定する点において第1の実施形態及び第2の実施形態と異なる。
 以下、第3の実施形態の動作を説明する。図7は、電池システム2、充電器3及びサーバ4の間で行われる処理の例を示すシーケンス図である。
 充電器3が電池システム2に接続されると、充電準備処理として、各個体を識別するための電池システムID、充電器IDの交換や、動作レベルを決定するためにそれぞれの装置がサポートするプロトコルバージョンの交換などが電池システム2と充電器3の制御部間(具体的には、電池システム2の制御部6と充電器3の制御部10との間)で行われる(ステップS1)。電池システム2の制御部6及び充電器3の制御部10は、交換した情報をそれぞれ記憶部24及び記憶部25に保存する(ステップS2、ステップS3)。
 充電準備処理が完了すると、電池システム2の制御部6は、充電器3の制御部10に対して、給電条件及び給電開始指示を通知する(ステップS6)。充電器3がこれらの情報を受け取ると、充電器3の制御部10は、要求された給電条件に基づいて電源部8を制御し、電力供給を開始させる(ステップS7、ステップS8)。
 充電器3の電源部8が電力供給を開始すると、充電器3の制御部10は、交流インピーダンス測定用の信号源26を給電線31に重畳するように電源部8に対して指示する。そして、電源部8は、信号源26からの信号を給電線31に出力する(ステップS31)。信号源26は、例えば、周波数1kHz、電流振幅5Aというような交流信号を出力する。ただし、信号源26が出力する交流信号は、上記内容に限定されない。
 制御部10は、信号源26からの信号を重畳するよう電源部8に指示する。あわせて、制御部10は、計測部9に、電圧実効値及び電流実効値の計測指示(ステップS32)、および、それらに基づいてインピーダンス(以下、インピーダンス|Z|と記すこともある。)を算出する旨の指示(ステップS33)を行う。
 インピーダンス|Z|が算出されると、制御部10は、信号源26からの信号重畳を停止するよう電源部8に指示し、電源部8は、信号源26からの測定用信号の重畳を停止する(ステップS35)。
 また、制御部10は、算出されたインピーダンス|Z|を、電池システムID、充電器の周辺温度、充電器ID及び計測時刻とともにサーバ4に通知する(ステップS34)。なお、制御部10は、上記以外の情報をサーバ4に通知してもよい。
 サーバ4が充電器3からの通知を受け取ると、分析部14は、受け取った情報を蓄積部13に蓄積させる(ステップS11)。そして、分析部14は、蓄積部13に記憶された測定情報を参照し(ステップS13)、二次電池の状態を分析(すなわち、劣化判定)する(ステップS14)。以下、二次電池の劣化状態を分析する方法を具体的に説明する。
 二次電池が劣化すると、交流インピーダンスが増加するという特徴がある。そこで、サーバ4の分析部14は、同一電池システムIDの交流インピーダンス値の履歴情報を比較し、増加傾向が表れているか否かにより劣化判定を行う。すなわち、分析部14は、算出されたインピーダンスが増加している場合、二次電池が劣化していると判定する。
 サーバ4の分析部14は、劣化判定を行うと、その判定結果を充電器3に通知する(ステップS15)。充電器3の制御部10は、通知された劣化判定に基づいて、電池状態を伝えるためのメッセージを表示部12に表示させる(ステップS16)。その後、制御部6は、二次電池5の電圧値が予め定められた値に達すると、充電器3に対して、給電停止の指示を行う(ステップS17)。
 以上のように、本実施形態によれば、充電器3の計測部9が、給電線31に信号源26による交流信号が重畳されたときに、給電線31間の交流電圧と、交流信号とをもとに交流インピーダンスを算出する。そして、サーバ4の分析部14が、算出された交流インピーダンスと、蓄積部13に記憶された同一の二次電池5に対するインピーダンスとを比較して、二次電池5の状態を判定する。このようにしても、充電中に二次電池の状態を管理できる。
実施形態4.
 第1の実施形態~第3の実施形態では、電池システム2から通知された電池システムIDを用いて電池システムを識別する場合について説明した。第4の実施形態では、電池システム2を搭載する電動車両1に取り付けられたナンバープレートの番号を電池システムの識別情報(ID)として利用する点において、第1の実施形態~第3の実施形態と異なる。
 図8は、第4の実施形態における二次電池状態管理システムの例を示すブロック図である。本実施形態における二次電池状態管理システムは、電池システム2と、充電器3と、サーバ4と、車両番号読取器17と、カメラ18とを備えている。また、電池システム2が搭載される電動車両1には、電動車両標27を備えている。電動車両標27は、車両の識別番号であり、例えば、車両を識別する自動車登録番号標や車両番号標(ナンバープレート)である。また、カメラ18は、車両番号読取器17に接続され、車両番号読取器17は、充電器3に接続される。それ以外の構成については、第1の実施形態~第3の実施形態と同様である。
 カメラ18は、電動車両標27を撮影する。また、車両番号読取器17は、カメラ18が撮影した画像を読み取って車両番号を認識する。なお、撮影した画像から車両番号を認識する方法は広く知られているため、ここでは説明を省略する。
 このように、第1の実施形態と第4の実施形態との違いは、充電器3と、電動車両標27を撮影するカメラ18と、撮影した画像から車両番号を認識する車両番号読取器17とが接続され、電池システムIDの代わりに車両番号が使用される点である。
 次に、第4の実施形態の動作を説明する。以下の説明では、第1の実施形態において、電池システム2から電池システムIDを取得する代わりに、電動車両標27から車両を識別する情報(以下、車両番号と記す。)を取得する場合について説明する。
 図9は、電池システムIDの代わりに電動車両標27から車両番号を取得する動作の例を示すシーケンス図である。
 充電器3が電池システム2に接続されると、第1の実施形態~第3の実施形態と同様に、電池システム2と充電器3との間で充電準備処理が実行される(ステップS1’)。なお、電池システムIDが充電器3に通知されない点において、図3におけるステップS1の処理と異なる。
 また、充電器3の制御部10は、充電準備処理と並行して、車両番号読取器17に対して電動車両標27の番号読取指示を行う(ステップS41)。車両番号読取器17は、カメラ18が撮影した画像から車両番号を認識し(ステップS42)、認識した車両番号を充電器3に通知する(ステップS43)。充電器3の制御部10は、車両番号を受け取ると、その値を記憶部25に記憶させる(ステップS44)。
 以降、計測した値をもとに劣化判定を行う処理は、図3に例示するステップS2~ステップS17までの処理と同様である。ただし、各処理において、電池システムIDの代わりに車両番号が使用される。
 上記説明では、電動車両標27から車両番号を取得する処理、及び、電池システムIDの代わりに車両番号を用いる処理を第1の実施形態の充電準備処理と並行して行う場合について説明した。これらの処理は、第1の実施形態だけでなく、第2の実施形態及び第3の実施形態にも適用可能である。
 以上のように、本実施形態によれば、充電器3を二次電池に接続したときに、充電器3の計測部9が、車両番号読取器17が読み取った電動車両1の車両番号標27が示す識別情報を受信し、その車両番号標27が示す識別情報に基づいて電気特性を測定する対象の二次電池を識別する。このとき、サーバ4の分析部14は、車両番号標27が示す識別情報に対応する情報を蓄積部13から抽出する。そのため、第1の実施形態~第3の実施形態の効果に加え、接続された電池システムから識別情報(電池システムID)が送信されない場合であっても、比較対象とする二次電池を識別できる。
実施形態5.
 第1の実施形態~第3の実施形態では、電池システム2から通知される電池システムIDを用いて電池システムを識別する場合について説明した。第5の実施形態では、電池システム2を搭載する電動車両1に取り付けられた車載器が持つ固有の番号を電池システムの識別情報(ID)として利用する点において、第1の実施形態~第3の実施形態と異なる。
 図10は、第5の実施形態における二次電池状態管理システムの例を示すブロック図である。本実施形態における二次電池状態管理システムは、電池システム2と、充電器3と、サーバ4と、車載器19と、車載器ID読取器20とを備えている。電池システム2及び車載器19は、電動車両1に搭載される。また、充電器3と、車載器ID読取器20とは、相互に接続される。それ以外の構成は、第1の実施形態~第3の実施形態と同様である。
 車載器19は、固有番号が付与された無線インタフェース付きの装置である。車載器19は、各車載器に付与された固有番号を無線インタフェースにより車載器ID読取器20に送信する。なお、車載器の固有番号とは、車載器自身に付与された固有番号であってもよく、例えば、車載器に投入されるカードに付与された固有番号であってもよい。車載器19は、例えば、自動料金収受システム(ETC:Electronic Toll Collection System )で用いられる車載器などにより実現される。
 また、固有番号を送信する際に用いられる無線インタフェースとして、例えば、DSRC(Dedicated Short Range Communication )が用いられる。ただし、無線インタフェースは、DSRCに限定されない。
 車載器ID読取器20は、無線インタフェースにより送信される車載器19の固有番号を読み取る装置である。車載器ID読取器20は、例えば、ETCで用いられ、基地局に配置されるDSRC路側器などにより実現される。ただし、車載器ID読取器20の態様は、DSRC路側器に限定されない。
 このように、第1の実施形態と第5の実施形態との違いは、固有番号が付与された無線インタフェース付きの車載器19が電動車両1に搭載され、無線インタフェース(及び無線通信回線)を介して車載器19の固有番号を読取る車載器ID読取器20が充電器3に接続され、電池システムIDの代わりに車載器19の固有番号が使用される点である。
 次に、第5の実施形態の動作を説明する。以下の説明では、第1の実施形態において、電池システム2から電池システムIDを取得する代わりに、車載器19の固有番号を取得する場合について説明する。
 図11は、電池システムIDの代わりに車載器19の固有番号を取得する動作の例を示すシーケンス図である。
 充電器3が電池システム2に接続されると、第1の実施形態~第3の実施形態と同様に、電池システム2と充電器3との間で充電準備処理が実行される(ステップS1’)。なお、電池システムIDが充電器3に通知されない点において、図3におけるステップS1の処理と異なる。
 また、充電器3の制御部10は、充電準備処理と並行して、車載器ID読取器20に対して車載器19の固有番号の番号読取指示を行う(ステップS51)。車載器ID読取器20は、無線インタフェースにより車載器19と通信を行い、車載器19の固有番号を取得する(ステップS52)。充電器3の制御部10は、固有番号を取得すると、その値を記憶部25に記憶させる(ステップS53)。
 上述の通り、本実施形態における車載器19や車載器ID読取器20は、例えば、自動料金収受システム(ETC)の車載器や基地局であり、無線インタフェースはDSRCが一例として挙げられる。
 以降、計測した値をもとに劣化判定を行う処理は、図3に例示するステップS2~ステップS17までの処理と同様である。ただし、各処理において、電池システムIDの代わりに車載器19の固有番号が使用される。
 上記説明では、車載器19から固有番号を取得する処理、及び、電池システムIDの代わりに固有番号を用いる処理を第1の実施形態の充電準備処理と並行して行う場合について説明した。これらの処理は、第1の実施形態だけでなく、第2の実施形態及び第3の実施形態にも適用可能である。
 以上のように、本実施形態によれば、充電器3を二次電池5に接続したときに、充電器3は、その二次電池5を搭載する電動車両1に備えられた車載器19の車載器IDを、その充電器3から無線通信回線を介して受信する車載器ID読取器20から受信する。そして、充電器3の計測部9が、車載器19の車載器IDに基づいて、電気特性を測定する対象の二次電池を識別する。このとき、サーバ4の分析部14は、車載器IDに対応する情報を蓄積部13から抽出する。そのため、第4の実施形態と同様、第1の実施形態~第3の実施形態の効果に加え、接続された電池システムから識別情報(電池システムID)が送信されない場合であっても、比較対象とする二次電池を識別できる。
実施形態6.
 第1の実施形態~第3の実施形態では、電池システム2から通知される電池システムIDを用いて電池システムを識別する場合について説明した。第6の実施形態では、電池システムに関連付けられたカードに付与されたカードIDを電池システムの識別情報(ID)として利用する点において、第1の実施形態~第3の実施形態と異なる。
 ここで、電池システムに関連付けられたカードとは、電池システムごとに定められるカードであり、このカードに付与される一意の識別情報によって、電池システムを識別可能になる。以下、カードに付与される一意の識別情報をカードIDと記す。
 図12は、第6の実施形態における二次電池状態管理システムの例を示すブロック図である。本実施形態における二次電池状態管理システムは、電池システム2と、充電器3と、サーバ4と、カード読取器21とを備えている。また、充電器3と、カード読取器21とは、相互に接続される。さらに、カード22は、電池システム2に予め関連付けられ、例えば、電動車両1の運転手により保持される。それ以外の構成については、第1の実施形態~第3の実施形態と同様である。
 カード22は、電池システム2に関連付けられたカードである。カード22は、例えば、カードIDを記憶するICカードにより実現される。カード読取器21は、カード22に付与されたカードIDを認識し、認識したカードIDを充電器3に通知する。具体的には、カードIDが記憶されたカードがカード読取器21にかざされると、カード読取器21は、カードに記憶されたカードIDを読み取る。そして、カード読取器21は、読み取ったカードIDを充電器に通知する。
 なお、カード22にICカードが用いられる場合、カード読取器21は、ICカードリーダによって実現されてもよい。ただし、カード読取器21の態様は、ICカードリーダに限定されない。
 このように、第1の実施形態と第6の実施形態との違いは、カード22のカードIDを取得するカード読取器21が充電器3に接続され、電池システムIDの代わりにカード22のカードIDが使用される点である。
 次に、第6の実施形態の動作を説明する。以下の説明では、第1の実施形態において、電池システム2から電池システムIDを取得する代わりに、カード22に付与されたカードIDを取得する場合について説明する。
 図13は、電池システムIDの代わりにカードIDを取得する動作の例を示すシーケンス図である。
 充電器3が電池システム2に接続されると、第1の実施形態~第3の実施形態と同様に、電池システム2と充電器3との間で充電準備処理が実行される(ステップS1’)。なお、電池システムIDが充電器3に通知されない点において、図3におけるステップS1の処理と異なる。
 また、充電器3の制御部10は、充電準備処理と並行して、カード読取器21に対してカード22に付与されたカードIDの取得指示を行う(ステップS61)。カード読取器21は、カード22の情報を読み取るまで待ち状態になる。すなわち、カード読取器21は、カード22の情報を読み取ったか否かを判断し(ステップS62)、読み取っていない場合(ステップS62におけるNo)、カード読取器21は、ステップS62の処理を繰り返す。
 その後、カード22がカード読取器にかざされると(ステップS62におけるYes)、カード読取器21は、読み取ったカードIDを充電器3に送信する(ステップS63)。なお。カード22がカード読取器にかざされることとは、カード読取器21がカード22の情報を読み取ることと言える。充電器3の制御部10は、受け取ったカードIDを記憶部25に記憶させる(ステップS64)。
 以降、計測した値をもとに劣化判定を行う処理は、図3に例示するステップS2~ステップS17までの処理と同様である。ただし、各処理において、電池システムIDの代わりにカード22のカードIDが使用される。
 上記説明では、カード22からカードIDを取得する処理、及び、電池システムIDの代わりにカードIDを用いる処理を第1の実施形態の充電準備処理と並行して行う場合について説明した。これらの処理は、第1の実施形態だけでなく、第2の実施形態及び第3の実施形態にも適用可能である。
 以上のように、本実施形態によれば、充電器3が、二次電池5に関連付けられたカード22に付与されるカードIDを、カード読取器21から受信する。そして、充電器3の計測部9が、受信したカードIDに基づいて、電気特性を測定する対象の二次電池を識別する。このとき、サーバ4の分析部14は、カードIDに対応する情報を蓄積部13から抽出する。そのため、第4の実施形態及び第5の実施形態と同様、第1の実施形態~第3の実施形態の効果に加え、接続された電池システムから識別情報(電池システムID)が送信されない場合であっても、比較対象とする二次電池を識別できる。
 次に、本発明による二次電池状態管理システムの最小構成の例を説明する。図14は、本発明による二次電池状態管理システムの最小構成の例を示すブロック図である。本発明による二次電池状態管理システムは、二次電池70(例えば、二次電池5)に対して充電を行う充電器80(例えば、充電器3)と、二次電池70に対する充電中の電気特性を示す情報である電気特性情報(例えば、電流値、電圧値、電力量、インピーダンスなど)を蓄積する蓄積サーバ90(例えば、サーバ4)とを備えている。
 充電器80は、充電中の電気特性を測定する電気特性測定手段81(例えば、計測部9)を備えている。
 蓄積サーバ90は、測定された電気特性情報の履歴を二次電池ごとに記憶する測定情報記憶手段91(例えば、蓄積部13)と、電気特性測定手段81が測定している二次電池の電気特性情報と、測定情報記憶手段91に記憶された同一の二次電池に対する電気特性情報とを比較して、その二次電池の状態を判定する電池状態判定手段92(例えば、分析部14)とを備えている。
 そのような構成により、充電中に二次電池の状態を管理できる。具体的には、電池システムから充電特性などの情報を取得しなくても、二次電池の劣化状況を推測する情報を収集することが可能になる。また、収集した情報を分析することで、劣化状況を推測し、利用者に点検を促すことができ、安全性が向上する。
 また、充電器80の電気特性測定手段81が、電気特性として、二次電池と充電器とを接続する給電線(例えば、給電線31)間の電圧値と、少なくともその給電線に流れる電流値と電力量のうちの1つを測定してもよい。
 また、充電器80が、二次電池と充電器とを接続する給電線に交流信号を重畳する交流信号重畳手段(例えば、交流インピーダンス測定用信号源26)を備えていてもよい。そして、充電器80の電気特性測定手段81が、給電線に交流信号が重畳されたときに、その給電線間の交流電圧と、交流信号とをもとにインピーダンス(例えば、交流インピーダンス)を算出し、蓄積サーバ90の測定情報記憶手段91が、算出されたインピーダンスの履歴を二次電池ごとに記憶し、蓄積サーバ90の電池状態判定手段92が、算出されたインピーダンスと、測定情報記憶手段91に記憶された同一の二次電池に対するインピーダンスとを比較して、その二次電池の状態を判定(例えば、インピーダンスが増加している場合に、二次電池が劣化していると判断)してもよい。
 また、蓄積サーバ90の電池状態判定手段92が、電気特性測定手段81が測定している二次電池70の電気特性情報と、測定情報記憶手段91に記憶された電圧値及び電流値が同一である二次電池70の電気特性情報とを、単一時間あたりの電圧値の変化について比較することにより、その二次電池70の状態を判定してもよい。
 また、蓄積サーバ90の電池状態判定手段92が、電気特性測定手段81が測定している二次電池70の電気特性情報と、測定情報記憶手段91に記憶されたその二次電池70の電気特性情報とを、予め定められた電圧値(例えば、測定条件)の変化に伴って二次電池70に供給される電力量について比較することにより、その二次電池の状態を判定してもよい。
 また、蓄積サーバ90が、二次電池の識別情報(例えば、電池システムID)とともに、充電器80の電気特性測定手段81が測定した二次電池の電気特定情報と、その電気特定情報をもとに算出された情報のうちの少なくとも1つの情報を充電器から受信し、受信した情報を測定情報記憶手段91に記憶させる登録処理手段(例えば、分析部14)を備えていてもよい。
 また、充電器80の電気特性測定手段81が、二次電池70に接続されたときに通知される二次電池70の識別情報(例えば、電池システムID)をもとに、電気特性を測定する対象の二次電池を識別し、蓄積サーバ90の測定情報記憶手段91が、測定された二次電池の電気特性情報の履歴を二次電池の識別情報ごとに記憶し、蓄積サーバ90の電池状態判定手段92が、二次電池の識別情報に対応する電気特性情報を測定情報記憶手段91から抽出してもよい。
 また、充電器80の電気特性測定手段81が、充電器80を二次電池70に接続したときに、その二次電池70を搭載する移動体(例えば、電動車両1)に表わされた識別番号(例えば、車両番号標27)を読み取る移動体識別番号読取手段(例えば、車両番号読取器17)が読み取った移動体の識別番号を受信し、その移動体の識別番号に基づいて、電気特性を測定する対象の二次電池を識別し、蓄積サーバ90の測定情報記憶手段91が、測定された二次電池の電気特性情報の履歴を移動体の識別番号ごとに記憶し、蓄積サーバ90の電池状態判定手段92が、移動体の識別番号に対応する電気特性情報を測定情報記憶手段91から抽出してもよい。
 また、充電器80の電気特性測定手段81が、充電器80を二次電池70に接続したときに、その二次電池70を搭載する移動体(例えば、電動車両1)に備えられた車載器(例えば、車載器19)の識別情報(例えば、車載器ID)を、その充電器80から無線通信回線を介して受信する車載器識別情報検知手段(例えば、車載器ID読取器20)から受信し、受信した車載器の識別情報に基づいて、電気特性を測定する対象の二次電池を識別し、蓄積サーバ90の測定情報記憶手段91が、測定された二次電池の電気特性情報の履歴を車載器の識別情報ごとに記憶し、蓄積サーバ90の電池状態判定手段92が、車載器の識別情報に対応する電気特性情報を測定情報記憶手段から抽出してもよい。
 また、充電器80の電気特性測定手段81が、二次電池70に関連付けられた媒体(例えば、カード22)に付与される一意の識別情報(例えば、カードID)を、その媒体の識別情報を読み取る媒体識別情報読取手段(例えば、カード読取器21)から受信し、受信した媒体の識別情報に基づいて、電気特性を測定する対象の二次電池を識別し、蓄積サーバ90の測定情報記憶手段91が、測定された二次電池の電気特性情報の履歴を媒体の識別情報ごとに記憶し、蓄積サーバ90の電池状態判定手段92が、媒体の識別情報に対応する電気特性情報を測定情報記憶手段から抽出してもよい。
 また、電池状態判定手段92が、二次電池70の表面温度と、充電器80の周辺気温のうちの少なくとも1つをその二次電池70の状態の判定に用いてもよい。
 次に、本発明による充電器の最小構成の例を説明する。図15は、本発明による充電器の最小構成の例を示すブロック図である。本発明による充電器85は、接続される二次電池70に対して充電を行う充電器であって、二次電池70に対する充電中の電気特性を測定する電気特性測定手段86(例えば、計測部9)と、電気特性測定手段86が測定した二次電池の電気特性を示す情報である電気特性情報(例えば、電流値、電圧値、電力量、インピーダンスなど)を、蓄積された同一の二次電池に対する電気特性情報の履歴と受信した電気特性情報とを比較して二次電池の状態を判定する判定装置71(例えば、サーバ4)に対して送信する送信手段87とを備えている。
 そのような構成によっても、充電中に二次電池の状態を管理できる。
 また、電気特性測定手段86が、電気特性として、二次電池70と充電器85とを接続する給電線(例えば、給電線31)間の電圧値と、少なくともその給電線に流れる電流値と電力量のうちの1つを測定してもよい。
 なお、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)二次電池に対して充電を行う充電器と、前記二次電池に対する充電中の電気特性を示す情報である電気特性情報を蓄積する蓄積サーバとを備え、前記充電器は、充電中の電気特性を測定する電気特性測定手段を備え、前記蓄積サーバは、測定された電気特性情報の履歴を二次電池ごとに記憶する測定情報記憶手段と、前記電気特性測定手段が測定している二次電池の電気特性情報と、前記測定情報記憶手段に記憶された同一の二次電池に対する電気特性情報とを比較して、当該二次電池の状態を判定する電池状態判定手段とを備えたことを特徴とする二次電池状態管理システム。
(付記2)充電器の電気特性測定手段は、電気特性として、二次電池と充電器とを接続する給電線間の電圧値と、少なくとも当該給電線に流れる電流値と電力量のうちの1つを測定する付記1記載の二次電池状態管理システム。
(付記3)充電器は、二次電池と充電器とを接続する給電線に交流信号を重畳する交流信号重畳手段を備え、充電器の電気特性測定手段は、前記給電線に交流信号が重畳されたときに、当該給電線間の交流電圧と、前記交流信号とをもとにインピーダンスを算出し、蓄積サーバの測定情報記憶手段は、算出されたインピーダンスの履歴を二次電池ごとに記憶し、蓄積サーバの電池状態判定手段は、算出されたインピーダンスと、測定情報記憶手段に記憶された同一の二次電池に対するインピーダンスとを比較して、当該二次電池の状態を判定する付記1または付記2記載の二次電池状態管理システム。
(付記4)蓄積サーバの電池状態判定手段は、電気特性測定手段が測定している二次電池の電気特性情報と、測定情報記憶手段に記憶された電圧値及び電流値が同一である当該二次電池の電気特性情報とを、単一時間あたりの電圧値の変化について比較することにより、当該二次電池の状態を判定する付記1または付記2記載の二次電池状態管理システム。
(付記5)蓄積サーバの電池状態判定手段は、電気特性測定手段が測定している二次電池の電気特性情報と、測定情報記憶手段に記憶された当該二次電池の電気特性情報とを、予め定められた電圧値の変化に伴って二次電池に供給される電力量について比較することにより、当該二次電池の状態を判定する付記1または付記2記載の二次電池状態管理システム。
(付記6)蓄積サーバは、二次電池の識別情報とともに、充電器の電気特性測定手段が測定した二次電池の電気特定情報と、当該電気特定情報をもとに算出された情報のうちの少なくとも1つの情報を充電器から受信し、受信した情報を測定情報記憶手段に記憶させる登録処理手段を備えた付記1から付記5のうちのいずれか1つに記載の二次電池状態管理システム。
(付記7)充電器の電気特性測定手段は、二次電池に接続されたときに通知される当該二次電池の識別情報をもとに、電気特性を測定する対象の二次電池を識別し、蓄積サーバの測定情報記憶手段は、測定された二次電池の電気特性情報の履歴を前記二次電池の識別情報ごとに記憶し、蓄積サーバの電池状態判定手段は、前記二次電池の識別情報に対応する電気特性情報を測定情報記憶手段から抽出する付記1から付記6のうちのいずれか1つに記載の二次電池状態管理システム。
(付記8)充電器の電気特性測定手段は、充電器を二次電池に接続したときに、当該二次電池を搭載する移動体に表わされた識別番号を読み取る移動体識別番号読取手段が読み取った移動体の識別番号を受信し、当該移動体の識別番号に基づいて、電気特性を測定する対象の二次電池を識別し、蓄積サーバの測定情報記憶手段は、測定された二次電池の電気特性情報の履歴を前記移動体の識別番号ごとに記憶し、蓄積サーバの電池状態判定手段は、前記移動体の識別番号に対応する電気特性情報を測定情報記憶手段から抽出する付記1から付記6のうちのいずれか1つに記載の二次電池状態管理システム。
(付記9)充電器の電気特性測定手段は、充電器を二次電池に接続したときに、当該二次電池を搭載する移動体に備えられた車載器の識別情報を、当該充電器から無線通信回線を介して受信する車載器識別情報検知手段から受信し、受信した車載器の識別情報に基づいて、電気特性を測定する対象の二次電池を識別し、蓄積サーバの測定情報記憶手段は、測定された二次電池の電気特性情報の履歴を前記車載器の識別情報ごとに記憶し、蓄積サーバの電池状態判定手段は、前記車載器の識別情報に対応する電気特性情報を測定情報記憶手段から抽出する付記1から付記6のうちのいずれか1つに記載の二次電池状態管理システム。
(付記10)充電器の電気特性測定手段は、二次電池に関連付けられた媒体に付与される一意の識別情報を、当該媒体の識別情報を読み取る媒体識別情報読取手段から受信し、受信した媒体の識別情報に基づいて、電気特性を測定する対象の二次電池を識別し、蓄積サーバの測定情報記憶手段は、測定された二次電池の電気特性情報の履歴を前記媒体の識別情報ごとに記憶し、蓄積サーバの電池状態判定手段は、前記媒体の識別情報に対応する電気特性情報を測定情報記憶手段から抽出する付記1から付記6のうちのいずれか1つに記載の二次電池状態管理システム。
(付記11)電池状態判定手段は、二次電池の表面温度と、充電器の周辺気温のうちの少なくとも1つを当該二次電池の状態の判定に用いる付記1から付記10のうちのいずれか1つに記載の二次電池状態管理システム。
(付記12)二次電池に対して充電を行う充電器であって、前記二次電池に対する充電中の電気特性を測定する電気特性測定手段と、前記電気特性測定手段が測定した二次電池の電気特性を示す情報である電気特性情報を、蓄積された同一の二次電池に対する電気特性情報の履歴と受信した電気特性情報とを比較して二次電池の状態を判定する判定装置に対して送信する送信手段とを備えたことを特徴とする充電器。
(付記13)電気特性測定手段は、電気特性として、二次電池と充電器とを接続する給電線間の電圧値と、少なくとも当該給電線に流れる電流値と電力量のうちの1つを測定する付記12記載の充電器。
(付記14)二次電池に対して充電を行う充電器が、充電中の電気特性を測定し、電気特性を示す情報である電気特性情報の履歴を二次電池ごとに記憶する測定情報記憶手段を備えた蓄積サーバが、充電中に測定された二次電池の電気特性情報と、前記測定情報記憶手段に記憶された同一の二次電池に対する電気特性情報とを比較して、当該二次電池の状態を判定することを特徴する二次電池状態管理方法。
(付記15)電気特性の測定に際し、二次電池と充電器とを接続する給電線間の電圧値と、少なくとも当該給電線に流れる電流値と電力量のうちの1つを電気特性として測定する付記14記載の二次電池状態管理方法。
(付記16)二次電池に対して充電を行う充電器が、当該二次電池に対する充電中の電気特性を測定し、前記充電器が、測定した二次電池の電気特性を示す情報である電気特性情報を、蓄積された同一の二次電池に対する電気特性情報の履歴と受信した電気特性情報とを比較して二次電池の状態を判定する判定装置に対して送信することを特徴とする電気特性測定方法。
(付記17)電気特性の測定に際し、二次電池と充電器とを接続する給電線間の電圧値と、少なくとも当該給電線に流れる電流値と電力量のうちの1つを電気特性として測定する付記16記載の電気特性測定方法。
(付記18)二次電池に対して充電を行うコンピュータに搭載される電気特性測定プログラムであって、前記コンピュータに、前記二次電池に対する充電中の電気特性を測定する電気特性測定処理、および、前記電気特性測定処理で測定された二次電池の電気特性を示す情報である電気特性情報を、蓄積された同一の二次電池に対する電気特性情報の履歴と受信した電気特性情報とを比較して二次電池の状態を判定する判定装置に対して送信する送信処理を実行させるため電気特性測定プログラム。
(付記19)コンピュータに、電気特性測定処理で、二次電池と充電器とを接続する給電線間の電圧値と、少なくとも当該給電線に流れる電流値と電力量のうちの1つを電気特性として測定させる付記18記載の電気特性測定プログラム。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年4月26日に出願された日本特許出願2010-101223を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、電動車両などに搭載される二次電池の状態を管理する二次電池状態管理システムに好適に適用される。
 1 電動車両
 2 電池システム
 3 充電器
 4 サーバ
 5 二次電池
 6 制御部(電池システム2)
 7 通信部(電池システム2)
 8 電源部
 9 計測部
 10 制御部(充電器3)
 11 通信部(充電器3)
 12 表示部
 13 蓄積部
 14 分析部
 15 通信部(サーバ4)
 17 車両番号読取器
 18 カメラ
 19 車載器
 20 車載器ID読取器
 21 カード読取器
 22 カード
 23 商用電源
 24 記憶部(電池システム2)
 25 記憶部(充電器3)
 26 交流インピーダンス測定用信号源
 27 車両番号標
 31 給電線

Claims (19)

  1.  二次電池に対して充電を行う充電器と、
     前記二次電池に対する充電中の電気特性を示す情報である電気特性情報を蓄積する蓄積サーバとを備え、
     前記充電器は、
     充電中の電気特性を測定する電気特性測定手段を備え、
     前記蓄積サーバは、
     測定された電気特性情報の履歴を二次電池ごとに記憶する測定情報記憶手段と、
     前記電気特性測定手段が測定している二次電池の電気特性情報と、前記測定情報記憶手段に記憶された同一の二次電池に対する電気特性情報とを比較して、当該二次電池の状態を判定する電池状態判定手段とを備えた
     ことを特徴とする二次電池状態管理システム。
  2.  充電器の電気特性測定手段は、電気特性として、二次電池と充電器とを接続する給電線間の電圧値と、少なくとも当該給電線に流れる電流値、電力または電力量のうちの1つを測定する
     請求項1記載の二次電池状態管理システム。
  3.  充電器は、二次電池と充電器とを接続する給電線に交流信号を重畳する交流信号重畳手段を備え、
     充電器の電気特性測定手段は、前記給電線に交流信号が重畳されたときに、当該給電線間の交流電圧と、前記交流信号とをもとにインピーダンスを算出し、
     蓄積サーバの測定情報記憶手段は、算出されたインピーダンスの履歴を二次電池ごとに記憶し、
     蓄積サーバの電池状態判定手段は、算出されたインピーダンスと、測定情報記憶手段に記憶された同一の二次電池に対するインピーダンスとを比較して、当該二次電池の状態を判定する
     請求項1または請求項2記載の二次電池状態管理システム。
  4.  蓄積サーバの電池状態判定手段は、電気特性測定手段が測定している二次電池の電気特性情報と、測定情報記憶手段に記憶された電圧値及び電流値が同一である当該二次電池の電気特性情報とを、単一時間あたりの電圧値の変化について比較することにより、当該二次電池の状態を判定する
     請求項1または請求項2記載の二次電池状態管理システム。
  5.  蓄積サーバの電池状態判定手段は、電気特性測定手段が測定している二次電池の電気特性情報と、測定情報記憶手段に記憶された当該二次電池の電気特性情報とを、予め定められた電圧値の変化に伴って二次電池に供給される電力量について比較することにより、当該二次電池の状態を判定する
     請求項1または請求項2記載の二次電池状態管理システム。
  6.  蓄積サーバは、二次電池の識別情報とともに、充電器の電気特性測定手段が測定した二次電池の電気特定情報と、当該電気特定情報をもとに算出された情報のうちの少なくとも1つの情報を充電器から受信し、受信した情報を測定情報記憶手段に記憶させる登録処理手段を備えた
     請求項1から請求項5のうちのいずれか1項に記載の二次電池状態管理システム。
  7.  充電器の電気特性測定手段は、二次電池に接続されたときに通知される当該二次電池の識別情報をもとに、電気特性を測定する対象の二次電池を識別し、
     蓄積サーバの測定情報記憶手段は、測定された二次電池の電気特性情報の履歴を前記二次電池の識別情報ごとに記憶し、
     蓄積サーバの電池状態判定手段は、前記二次電池の識別情報に対応する電気特性情報を測定情報記憶手段から抽出する
     請求項1から請求項6のうちのいずれか1項に記載の二次電池状態管理システム。
  8.  充電器の電気特性測定手段は、充電器を二次電池に接続したときに、当該二次電池を搭載する移動体に表わされた識別番号を読み取る移動体識別番号読取手段が読み取った移動体の識別番号を受信し、当該移動体の識別番号に基づいて、電気特性を測定する対象の二次電池を識別し、
     蓄積サーバの測定情報記憶手段は、測定された二次電池の電気特性情報の履歴を前記移動体の識別番号ごとに記憶し、
     蓄積サーバの電池状態判定手段は、前記移動体の識別番号に対応する電気特性情報を測定情報記憶手段から抽出する
     請求項1から請求項6のうちのいずれか1項に記載の二次電池状態管理システム。
  9.  充電器の電気特性測定手段は、充電器を二次電池に接続したときに、当該二次電池を搭載する移動体に備えられた車載器の識別情報を、当該充電器から無線通信回線を介して受信する車載器識別情報検知手段から受信し、受信した車載器の識別情報に基づいて、電気特性を測定する対象の二次電池を識別し、
     蓄積サーバの測定情報記憶手段は、測定された二次電池の電気特性情報の履歴を前記車載器の識別情報ごとに記憶し、
     蓄積サーバの電池状態判定手段は、前記車載器の識別情報に対応する電気特性情報を測定情報記憶手段から抽出する
     請求項1から請求項6のうちのいずれか1項に記載の二次電池状態管理システム。
  10.  充電器の電気特性測定手段は、二次電池に関連付けられた媒体に付与される一意の識別情報を、当該媒体の識別情報を読み取る媒体識別情報読取手段から受信し、受信した媒体の識別情報に基づいて、電気特性を測定する対象の二次電池を識別し、
     蓄積サーバの測定情報記憶手段は、測定された二次電池の電気特性情報の履歴を前記媒体の識別情報ごとに記憶し、
     蓄積サーバの電池状態判定手段は、前記媒体の識別情報に対応する電気特性情報を測定情報記憶手段から抽出する
     請求項1から請求項6のうちのいずれか1項に記載の二次電池状態管理システム。
  11.  電池状態判定手段は、二次電池の表面温度と、充電器の周辺気温のうちの少なくとも1つを当該二次電池の状態の判定に用いる
     請求項1から請求項10のうちのいずれか1項に記載の二次電池状態管理システム。
  12.  二次電池に対して充電を行う充電器であって、
     前記二次電池に対する充電中の電気特性を測定する電気特性測定手段と、
     前記電気特性測定手段が測定した二次電池の電気特性を示す情報である電気特性情報を、蓄積された同一の二次電池に対する電気特性情報の履歴と受信した電気特性情報とを比較して二次電池の状態を判定する判定装置に対して送信する送信手段とを備えた
     ことを特徴とする充電器。
  13.  電気特性測定手段は、電気特性として、二次電池と充電器とを接続する給電線間の電圧値と、少なくとも当該給電線に流れる電流値、電力または電力量のうちの1つを測定する
     請求項12記載の充電器。
  14.  二次電池に対して充電を行う充電器が、充電中の電気特性を測定し、
     電気特性を示す情報である電気特性情報の履歴を二次電池ごとに記憶する測定情報記憶手段を備えた蓄積サーバが、充電中に測定された二次電池の電気特性情報と、前記測定情報記憶手段に記憶された同一の二次電池に対する電気特性情報とを比較して、当該二次電池の状態を判定する
     ことを特徴する二次電池状態管理方法。
  15.  電気特性の測定に際し、二次電池と充電器とを接続する給電線間の電圧値と、少なくとも当該給電線に流れる電流値、電力または電力量のうちの1つを電気特性として測定する
     請求項14記載の二次電池状態管理方法。
  16.  二次電池に対して充電を行う充電器が、当該二次電池に対する充電中の電気特性を測定し、
     前記充電器が、測定した二次電池の電気特性を示す情報である電気特性情報を、蓄積された同一の二次電池に対する電気特性情報の履歴と受信した電気特性情報とを比較して二次電池の状態を判定する判定装置に対して送信する
     ことを特徴とする電気特性測定方法。
  17.  電気特性の測定に際し、二次電池と充電器とを接続する給電線間の電圧値と、少なくとも当該給電線に流れる電流値、電力または電力量のうちの1つを電気特性として測定する
     請求項16記載の電気特性測定方法。
  18.  二次電池に対して充電を行うコンピュータに搭載される電気特性測定プログラムであって、
     前記コンピュータに、
     前記二次電池に対する充電中の電気特性を測定する電気特性測定処理、および、
     前記電気特性測定処理で測定された二次電池の電気特性を示す情報である電気特性情報を、蓄積された同一の二次電池に対する電気特性情報の履歴と受信した電気特性情報とを比較して二次電池の状態を判定する判定装置に対して送信する送信処理
     を実行させるため電気特性測定プログラム。
  19.  コンピュータに、
     電気特性測定処理で、二次電池と充電器とを接続する給電線間の電圧値と、少なくとも当該給電線に流れる電流値、電力または電力量のうちの1つを電気特性として測定させる
     請求項18記載の電気特性測定プログラム。
PCT/JP2011/002358 2010-04-26 2011-04-22 二次電池状態管理システム、充電器、二次電池状態管理方法及び電気特性測定方法 WO2011135813A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012512656A JP5895839B2 (ja) 2010-04-26 2011-04-22 二次電池状態管理システム、充電器、二次電池状態管理方法及び電気特性測定方法
US13/643,230 US9287729B2 (en) 2010-04-26 2011-04-22 Secondary battery state management system, battery charger, secondary battery state management method, and electrical characteristics measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010101223 2010-04-26
JP2010-101223 2010-04-26

Publications (1)

Publication Number Publication Date
WO2011135813A1 true WO2011135813A1 (ja) 2011-11-03

Family

ID=44861138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002358 WO2011135813A1 (ja) 2010-04-26 2011-04-22 二次電池状態管理システム、充電器、二次電池状態管理方法及び電気特性測定方法

Country Status (3)

Country Link
US (1) US9287729B2 (ja)
JP (1) JP5895839B2 (ja)
WO (1) WO2011135813A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020487A (ja) * 2011-07-12 2013-01-31 Toyota Motor Corp データ収集方法およびデータ収集システム
JP2013117483A (ja) * 2011-12-05 2013-06-13 Toshiba Corp 電力量計、蓄電池ユニット、蓄電池劣化度判定システム、電力量計の制御方法及び制御プログラム
JP2013218909A (ja) * 2012-04-10 2013-10-24 Toshiba Corp 電池情報管理サーバ、電池情報記録装置、及び電池情報管理システム
JP2014007919A (ja) * 2012-06-27 2014-01-16 Konica Minolta Inc 充電システム、電子機器および充電装置
JP2014110106A (ja) * 2012-11-30 2014-06-12 Brother Ind Ltd バッテリ管理システム及び端末装置
WO2014208546A1 (ja) * 2013-06-26 2014-12-31 矢崎総業株式会社 電池状態検出装置
WO2015041094A1 (ja) * 2013-09-19 2015-03-26 株式会社 東芝 充電装置およびその方法、ならびに放電装置およびその方法
WO2015125279A1 (ja) * 2014-02-21 2015-08-27 株式会社安川電機 電力変換システム、電力変換装置、及び蓄電装置の状態診断方法
JP2017004944A (ja) * 2015-06-04 2017-01-05 パナソニックIpマネジメント株式会社 蓄電池パックの制御方法及び蓄電池パック
JP2018048893A (ja) * 2016-09-21 2018-03-29 Ntn株式会社 二次電池の劣化判定装置
JP2020010493A (ja) * 2018-07-06 2020-01-16 東芝テック株式会社 充電装置及びプログラム
US10644505B2 (en) 2016-03-04 2020-05-05 Nec Corporation Technique for evaluating an output performance of an electric power output apparatus connected to an electric power distribution network
EP2965400B1 (en) * 2013-03-06 2020-05-06 Gogoro Inc. Apparatus, method and article for authentication, security and control of portable charging devices and power storage devices, such as batteries
JP2021184261A (ja) * 2017-09-15 2021-12-02 日東工業株式会社 車両用充電器
WO2023001906A1 (de) 2021-07-20 2023-01-26 volytica diagnostics GmbH Verfahren zur bestimmung der leistungsfähigkeit von elektrischen fahrzeug-energiespeichern

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123035B2 (en) 2011-04-22 2015-09-01 Angel A. Penilla Electric vehicle (EV) range extending charge systems, distributed networks of charge kiosks, and charge locating mobile apps
US10217160B2 (en) 2012-04-22 2019-02-26 Emerging Automotive, Llc Methods and systems for processing charge availability and route paths for obtaining charge for electric vehicles
US9285944B1 (en) 2011-04-22 2016-03-15 Angel A. Penilla Methods and systems for defining custom vehicle user interface configurations and cloud services for managing applications for the user interface and learned setting functions
US8560147B2 (en) 2011-07-26 2013-10-15 Gogoro, Inc. Apparatus, method and article for physical security of power storage devices in vehicles
US9830753B2 (en) 2011-07-26 2017-11-28 Gogoro Inc. Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines
US8862388B2 (en) 2011-07-26 2014-10-14 Gogoro, Inc. Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines
WO2013016540A1 (en) 2011-07-26 2013-01-31 Gogoro, Inc. Apparatus, method and article for collection, charging and distributing power storage devices, such as batteries
WO2013016570A1 (en) 2011-07-26 2013-01-31 Gogoro, Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries, based on user profiles
WO2013016562A2 (en) 2011-07-26 2013-01-31 Gogoro, Inc. Apparatus, method and article for providing information regarding availability of power storage devices at a power storage device collection, charging and distribution machine
TWI618019B (zh) 2011-07-26 2018-03-11 Gogoro Inc. 用於攜帶型電能儲存器件之方法、系統及媒體
JP6096773B2 (ja) 2011-07-26 2017-03-15 ゴゴロ インク 電池などの電力貯蔵装置の認証、セキュリティ、及び制御用の装置、方法、及び物品
WO2013016542A2 (en) 2011-07-26 2013-01-31 Gogoro, Inc. Dynamically limiting vehicle operation for best effort economy
US8996212B2 (en) 2011-07-26 2015-03-31 Gogoro Inc. Apparatus, method and article for providing vehicle diagnostic data
TWI517078B (zh) 2011-07-26 2016-01-11 睿能創意公司 用於電力儲存器件收容空間之裝置、方法及物品
US10186094B2 (en) 2011-07-26 2019-01-22 Gogoro Inc. Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines
US9118183B2 (en) * 2012-06-07 2015-08-25 Schneider Electric USA, Inc. Auto detection of vehicle type connected to an EVSE
US9216687B2 (en) 2012-11-16 2015-12-22 Gogoro Inc. Apparatus, method and article for vehicle turn signals
WO2014164812A1 (en) 2013-03-12 2014-10-09 Gogoro, Inc. Apparatus, method and article for changing portable electrical power storage device exchange plans
US11222485B2 (en) 2013-03-12 2022-01-11 Gogoro Inc. Apparatus, method and article for providing information regarding a vehicle via a mobile device
US8798852B1 (en) 2013-03-14 2014-08-05 Gogoro, Inc. Apparatus, system, and method for authentication of vehicular components
CN105210257B (zh) 2013-03-15 2018-11-13 睿能创意公司 用于对电存储设备进行收集和分配的模块化系统
US9440544B2 (en) * 2013-03-15 2016-09-13 Columbia Insurance Company Battery management system and method
JP5765375B2 (ja) * 2013-07-25 2015-08-19 トヨタ自動車株式会社 制御装置及び制御方法
CN105829160B (zh) 2013-08-06 2017-10-24 睿能创意公司 使用单个或多个电池单元为电动车供电的系统和方法
TWI644194B (zh) 2013-08-06 2018-12-11 睿能創意公司 電能儲存裝置熱分布調節控制器、方法及其電動車系統
KR101635665B1 (ko) * 2013-10-31 2016-07-01 주식회사 엘지화학 응용 모듈 데이터제어장치 및 그 데이터제어방법
US9124085B2 (en) 2013-11-04 2015-09-01 Gogoro Inc. Apparatus, method and article for power storage device failure safety
US9390566B2 (en) 2013-11-08 2016-07-12 Gogoro Inc. Apparatus, method and article for providing vehicle event data
JP6629213B2 (ja) 2014-01-23 2020-01-15 ゴゴロ インク バッテリなどの電力貯蔵装置アレイを利用するシステム及び方法
EP3180821B1 (en) 2014-08-11 2019-02-27 Gogoro Inc. Multidirectional electrical connector and plug
USD789883S1 (en) 2014-09-04 2017-06-20 Gogoro Inc. Collection, charging and distribution device for portable electrical energy storage devices
JP2016063581A (ja) * 2014-09-16 2016-04-25 株式会社東芝 電力変換装置
CN104467121B (zh) * 2014-12-31 2017-03-15 展讯通信(上海)有限公司 充电方法、装置、充电器、待充电设备及充电系统
JP6887718B2 (ja) 2015-06-05 2021-06-16 ゴゴロ インク 車両、及び、電動車両の負荷の特定の種類を判定する方法
JP2017073951A (ja) * 2015-10-09 2017-04-13 キヤノン株式会社 電子機器及びプログラム
JP6856063B2 (ja) * 2016-03-04 2021-04-07 日本電気株式会社 端末装置、制御装置、サーバ、評価方法及びプログラム
JP6348629B1 (ja) * 2017-03-23 2018-06-27 本田技研工業株式会社 管理装置、管理システム及びプログラム
US10923944B2 (en) * 2018-03-05 2021-02-16 Eaton Intelligent Power Limited Methods, systems and devices for managing batteries of uninterruptible power supplies (UPSs) and related external battery modules (EBMs)
US11307262B2 (en) * 2018-05-17 2022-04-19 Ford Global Technologies, Llc Cloud managed high voltage battery profile recovery
EP3816644A4 (en) * 2018-06-27 2021-08-25 Nuvoton Technology Corporation Japan BATTERY MONITORING DEVICE, INTEGRATED CIRCUIT AND BATTERY MONITORING SYSTEM
US10996255B2 (en) * 2019-03-26 2021-05-04 Ford Global Technologies, Llc Voltage-characteristic-based vehicle identification number
JP7243425B2 (ja) * 2019-05-14 2023-03-22 トヨタ自動車株式会社 電池情報管理システムおよび電池情報管理方法
SE543436C2 (en) * 2019-06-03 2021-02-16 Alelion Energy Systems Ab Method for estimating state of health of a battery
EP3993222A4 (en) * 2019-06-27 2023-02-01 Nuvoton Technology Corporation Japan BATTERY MANAGEMENT CIRCUIT, BATTERY MANAGEMENT DEVICE AND BATTERY MANAGEMENT NETWORK
CN111452660B (zh) * 2019-10-29 2023-04-18 浙江安伴汽车安全急救技术股份有限公司 新能源汽车充电管理方法、装置、服务器及充电管理系统
KR20210076365A (ko) * 2019-12-16 2021-06-24 현대자동차주식회사 차량 및 차량의 제어방법
US11498446B2 (en) * 2020-01-06 2022-11-15 Ford Global Technologies, Llc Plug-in charge current management for battery model-based online learning
JP7225153B2 (ja) * 2020-03-13 2023-02-20 株式会社東芝 充放電制御方法、電池搭載機器、管理システム、充放電制御プログラム、管理方法、管理サーバ及び管理プログラム
JP2021163388A (ja) * 2020-04-02 2021-10-11 富士通株式会社 異常検知プログラム、異常検知方法および異常検知装置
EP4238807A1 (en) * 2022-03-01 2023-09-06 Siemens Schweiz AG Electro vehicle charging infrastructure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182063A (ja) * 1989-12-11 1991-08-08 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池の劣化状態検知方法
JPH08273705A (ja) * 1995-03-28 1996-10-18 Tokyo Eretetsuku Kk 二次電池の寿命判定方法及び寿命判定器
JP2000131404A (ja) * 1998-10-27 2000-05-12 Denso Corp 電池劣化度判定装置
JP2006172884A (ja) * 2004-12-15 2006-06-29 Olympus Corp 充電装置および充電システム
JP2010022155A (ja) * 2008-07-11 2010-01-28 Toyota Motor Corp 蓄電装置の劣化判定装置および蓄電装置の劣化判定方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433294A (en) * 1981-06-05 1984-02-21 Firing Circuits, Inc. Method and apparatus for testing a battery
GB2176902B (en) * 1985-06-19 1989-10-11 Bl Tech Ltd Method and apparatus for determining the state of charge of a battery
DE4038225A1 (de) * 1990-11-30 1992-06-04 Bosch Gmbh Robert Verfahren und vorrichtung zur spannungsregelung in abhaengigkeit vom batterie-ladezustand
AT406719B (de) * 1991-06-05 2000-08-25 Enstore Forschungs Entwicklung Verfahren zum vorzugsweisen schnellen laden von batterien
JP3048755B2 (ja) 1992-07-10 2000-06-05 三洋電機株式会社 2次電池の充電装置
JP3193486B2 (ja) * 1992-11-27 2001-07-30 本田技研工業株式会社 電動車両におけるバッテリー残量表示方法及び装置
JPH0837036A (ja) 1994-07-26 1996-02-06 Sony Corp バッテリ電源システム
JPH0888026A (ja) * 1994-09-16 1996-04-02 Canon Inc 充電装置
US5661463A (en) * 1995-04-17 1997-08-26 Communications Test Design, Inc. D.C. battery plant alarm monitoring remote apparatus
JP3349031B2 (ja) * 1996-02-23 2002-11-20 ユニデン株式会社 電池残量表示手段および電池残量表示方法
JP3659772B2 (ja) * 1997-08-07 2005-06-15 三菱自動車工業株式会社 バッテリの劣化判定装置
US6049193A (en) * 1998-12-23 2000-04-11 Twinhead International Corp. Method and device for executing a battery auto-learning
JP2000215923A (ja) * 1999-01-25 2000-08-04 Matsushita Electric Ind Co Ltd 電池劣化判定装置
JP4126144B2 (ja) * 2000-05-11 2008-07-30 インターナショナル・ビジネス・マシーンズ・コーポレーション 充電システム、インテリジェント電池、および充電方法
US20020120906A1 (en) * 2000-07-17 2002-08-29 Lei Xia Behavioral modeling and analysis of galvanic devices
DE10045622A1 (de) * 2000-09-15 2002-03-28 Nbt Gmbh Verfahren zur Überwachung der Ladung gasdichter alkalischer Akkumulatoren
JP4228760B2 (ja) * 2002-07-12 2009-02-25 トヨタ自動車株式会社 バッテリ充電状態推定装置
US7259538B2 (en) * 2002-11-14 2007-08-21 Hewlett-Packard Development Company, L.P. Adaptive battery conditioning employing battery chemistry determination
EP1571457A4 (en) * 2002-12-11 2010-04-21 Gs Yuasa Corp BATTERY CHARGING STATUS CALCULATION DEVICE AND BATTERY CHARGING STATE CALCULATION METHOD
JP4161854B2 (ja) * 2003-09-02 2008-10-08 ソニー株式会社 電池残容量算出方法、電池残容量算出装置および電池残容量算出プログラム
US7429849B2 (en) * 2003-11-26 2008-09-30 Toyo System Co., Ltd. Method and apparatus for confirming the charge amount and degradation state of a battery, a storage medium, an information processing apparatus, and an electronic apparatus
JP2007526456A (ja) * 2004-02-25 2007-09-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 充電状態を評価する方法、充電式バッテリーの残使用時間を評価する方法およびそのような方法を実施する機器
US8344685B2 (en) * 2004-08-20 2013-01-01 Midtronics, Inc. System for automatically gathering battery information
JP2006211787A (ja) * 2005-01-26 2006-08-10 Brother Ind Ltd 電子機器
US7498767B2 (en) * 2005-02-16 2009-03-03 Midtronics, Inc. Centralized data storage of condition of a storage battery at its point of sale
KR100903187B1 (ko) * 2005-06-25 2009-06-17 주식회사 엘지화학 모바일 디바이스의 정품 전지 인식 시스템
JP2007166789A (ja) * 2005-12-14 2007-06-28 Toyota Motor Corp 二次電池の満充電容量の推定方法と判別装置
JP4207984B2 (ja) 2006-06-19 2009-01-14 東京電力株式会社 充電システム及びその制御方法
JP5228322B2 (ja) * 2006-08-30 2013-07-03 トヨタ自動車株式会社 蓄電装置の劣化評価システム、車両、蓄電装置の劣化評価方法およびその劣化評価方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
US7710075B1 (en) * 2007-01-31 2010-05-04 Network Appliance, Inc. Apparatus and implementation of a battery in a non volatile memory subsystem
JP5067707B2 (ja) * 2007-05-31 2012-11-07 トヨタ自動車株式会社 燃料電池システム
DE102007052929A1 (de) * 2007-11-07 2009-05-20 Braun Gmbh Schaltungsanordnung mit einer Akkumulatorkaskade
JP5160934B2 (ja) * 2008-03-28 2013-03-13 新電元工業株式会社 バッテリ充電装置、バッテリ充電制御方法
JP4499810B2 (ja) * 2008-05-28 2010-07-07 株式会社日本自動車部品総合研究所 車載バッテリの状態推定装置
JP4893703B2 (ja) * 2008-07-11 2012-03-07 トヨタ自動車株式会社 蓄電装置の劣化表示システムおよび蓄電装置の劣化表示方法
JP4983818B2 (ja) * 2009-02-12 2012-07-25 ソニー株式会社 電池パックおよび電池容量計算方法
US8370659B2 (en) * 2009-09-21 2013-02-05 Dell Products L.P. Systems and methods for time-based management of backup battery life in memory controller systems
JP5668753B2 (ja) * 2010-04-26 2015-02-12 日本電気株式会社 二次電池管理システム、電池システム、二次電池管理方法及び二次電池管理プログラム
US20110273181A1 (en) * 2010-05-07 2011-11-10 Mansik Park Battery testing system
US8558712B2 (en) * 2010-06-03 2013-10-15 C&C Power, Inc. Battery system and management method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182063A (ja) * 1989-12-11 1991-08-08 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池の劣化状態検知方法
JPH08273705A (ja) * 1995-03-28 1996-10-18 Tokyo Eretetsuku Kk 二次電池の寿命判定方法及び寿命判定器
JP2000131404A (ja) * 1998-10-27 2000-05-12 Denso Corp 電池劣化度判定装置
JP2006172884A (ja) * 2004-12-15 2006-06-29 Olympus Corp 充電装置および充電システム
JP2010022155A (ja) * 2008-07-11 2010-01-28 Toyota Motor Corp 蓄電装置の劣化判定装置および蓄電装置の劣化判定方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020487A (ja) * 2011-07-12 2013-01-31 Toyota Motor Corp データ収集方法およびデータ収集システム
JP2013117483A (ja) * 2011-12-05 2013-06-13 Toshiba Corp 電力量計、蓄電池ユニット、蓄電池劣化度判定システム、電力量計の制御方法及び制御プログラム
JP2013218909A (ja) * 2012-04-10 2013-10-24 Toshiba Corp 電池情報管理サーバ、電池情報記録装置、及び電池情報管理システム
JP2014007919A (ja) * 2012-06-27 2014-01-16 Konica Minolta Inc 充電システム、電子機器および充電装置
JP2014110106A (ja) * 2012-11-30 2014-06-12 Brother Ind Ltd バッテリ管理システム及び端末装置
EP2965400B1 (en) * 2013-03-06 2020-05-06 Gogoro Inc. Apparatus, method and article for authentication, security and control of portable charging devices and power storage devices, such as batteries
CN105247758A (zh) * 2013-06-26 2016-01-13 矢崎总业株式会社 电池状态检测装置
WO2014208546A1 (ja) * 2013-06-26 2014-12-31 矢崎総業株式会社 電池状態検出装置
JP2015008614A (ja) * 2013-06-26 2015-01-15 矢崎総業株式会社 電池状態検出装置
JP2015061445A (ja) * 2013-09-19 2015-03-30 株式会社東芝 充電装置およびその方法、ならびに放電装置およびその方法
WO2015041094A1 (ja) * 2013-09-19 2015-03-26 株式会社 東芝 充電装置およびその方法、ならびに放電装置およびその方法
WO2015125279A1 (ja) * 2014-02-21 2015-08-27 株式会社安川電機 電力変換システム、電力変換装置、及び蓄電装置の状態診断方法
JPWO2015125279A1 (ja) * 2014-02-21 2017-03-30 株式会社安川電機 電力変換システム、電力変換装置、及び蓄電装置の状態診断方法
JP2017004944A (ja) * 2015-06-04 2017-01-05 パナソニックIpマネジメント株式会社 蓄電池パックの制御方法及び蓄電池パック
US10644505B2 (en) 2016-03-04 2020-05-05 Nec Corporation Technique for evaluating an output performance of an electric power output apparatus connected to an electric power distribution network
JP2018048893A (ja) * 2016-09-21 2018-03-29 Ntn株式会社 二次電池の劣化判定装置
JP2021184261A (ja) * 2017-09-15 2021-12-02 日東工業株式会社 車両用充電器
JP7289606B2 (ja) 2017-09-15 2023-06-12 日東工業株式会社 車両用充電器
JP2020010493A (ja) * 2018-07-06 2020-01-16 東芝テック株式会社 充電装置及びプログラム
WO2023001906A1 (de) 2021-07-20 2023-01-26 volytica diagnostics GmbH Verfahren zur bestimmung der leistungsfähigkeit von elektrischen fahrzeug-energiespeichern
DE102021118781A1 (de) 2021-07-20 2023-01-26 volytica diagnostics GmbH Verfahren zur Bestimmung der Leistungsfähigkeit von elektrischen Fahrzeug-Energiespeichern
EP4350938A2 (de) 2021-07-20 2024-04-10 volytica diagnostics GmbH Verfahren zur bestimmung der leistungsfähigkeit von elektrischen energiespeichern

Also Published As

Publication number Publication date
US9287729B2 (en) 2016-03-15
JP5895839B2 (ja) 2016-03-30
JPWO2011135813A1 (ja) 2013-07-18
US20130093384A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5895839B2 (ja) 二次電池状態管理システム、充電器、二次電池状態管理方法及び電気特性測定方法
JP6607255B2 (ja) バッテリ劣化度推定装置および推定方法
US10479204B2 (en) Failure determination apparatus and method for determining failure
CN104781683B (zh) 蓄电装置的状态探测方法
KR101610507B1 (ko) 차량의 고전압 배터리 열화 진단 장치 및 방법
JP5489302B2 (ja) 電動車両用給電システム
US11796596B2 (en) Method of managing battery, battery management system, and electric vehicle charging system having the battery management system
EP2339361A2 (en) Battery diagnosis device and method
EP3018795B1 (en) Power feed device, power reception device and power feed method
KR20100133557A (ko) 차량용 무접점 충전 시스템 및 충전 제어 방법
EP2783905A2 (en) Battery monitoring system, battery cartridge, battery package, and ridable machine
US10860828B2 (en) Battery degradation authentication device and battery degradation authentication system
KR102382606B1 (ko) 자동 인증이 가능한 전기차 충전 장치
JP5668753B2 (ja) 二次電池管理システム、電池システム、二次電池管理方法及び二次電池管理プログラム
US11180051B2 (en) Display apparatus and vehicle including the same
US11685285B2 (en) Replacement fee setting apparatus, method and system
US20210408616A1 (en) Battery management support device and battery management support method
KR20230000479U (ko) 차량용 배터리 모니터링 시스템
KR20110002905A (ko) 전기 자동차 축전지의 충전과 방전 이력 관리 방법과 시스템
KR102673053B1 (ko) 전기차의 배터리 수명 예측 시스템
KR102649165B1 (ko) 배터리와 전력변환장치부가 착탈 용이하고 배터리 추가 연결이 가능한 차량용 배터리
KR102552030B1 (ko) 배터리 관리 시스템을 구비한 전기 자동차 충전 시스템
JP7314918B2 (ja) 制御装置、非接触給電診断プログラム、及び、非接触給電システム
KR20230008511A (ko) 차량용 배터리 모니터링 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512656

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13643230

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11774601

Country of ref document: EP

Kind code of ref document: A1