WO2011135616A1 - 冷凍サイクル装置 - Google Patents
冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2011135616A1 WO2011135616A1 PCT/JP2010/003017 JP2010003017W WO2011135616A1 WO 2011135616 A1 WO2011135616 A1 WO 2011135616A1 JP 2010003017 W JP2010003017 W JP 2010003017W WO 2011135616 A1 WO2011135616 A1 WO 2011135616A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- refrigerant
- radiator
- refrigeration cycle
- pressure side
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0409—Refrigeration circuit bypassing means for the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/07—Exceeding a certain pressure value in a refrigeration component or cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/08—Exceeding a certain temperature value in a refrigeration component or cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/17—Control issues by controlling the pressure of the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2509—Economiser valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/195—Pressures of the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/027—Condenser control arrangements
Definitions
- the present invention relates to a refrigeration cycle apparatus that uses a refrigerant that transitions to a supercritical state, and more particularly to a refrigeration cycle apparatus that includes an injection circuit.
- the conventional vapor compression refrigeration cycle has the following problems. Under an overload condition in which the inlet air temperature of the radiator and the evaporator becomes high, the high pressure side pressure and the low pressure side pressure become high. If it does so, the pressure of one refrigerant
- a vapor compression refrigeration cycle as described in Patent Document 1 when an overload condition occurs, the degree of superheat at the outlet of one refrigerant of the cooler cannot be calculated, and the specific enthalpy of the other refrigerant is controlled. You may not be able to.
- one refrigerant is in a supercritical state, there is no change in latent heat in the process of heating the refrigerant, so that the effect of cooling the other refrigerant with a cooler cannot be expected so much.
- the present invention has been made to solve the above-described problems.
- An object of the present invention is to provide a refrigeration cycle apparatus capable of increasing the cooling capacity.
- the refrigeration cycle apparatus includes a compressor that compresses a refrigerant, a radiator that dissipates heat of the refrigerant compressed by the compressor, a refrigerant that passes through the radiator, and the compressor that passes through the radiator.
- a main refrigerant circuit in which an evaporator for evaporating the decompressed refrigerant is connected in order, a second decompression device that decompresses the refrigerant that passes through the radiator and is injected into the compressor, and two internal heat exchangers.
- a refrigerant flowing through the main refrigerant circuit by controlling an injection circuit in which a secondary flow path, an injection port of the compressor are connected in order, and an opening degree of the second decompression device and a heat transfer area of the radiator Characterized in that it comprises a control unit for adjusting the high side pressure, the.
- the high pressure side pressure of the refrigerant flowing through the main refrigerant circuit can be adjusted by controlling the opening of the second decompression device and the heat transfer area of the radiator. Even in an operating condition in which the cooling operation is an overload condition and the intermediate pressure is supercritical, the high-pressure side pressure can be reliably increased and the cooling capacity can be increased.
- FIG. 6 is a Ph diagram showing the transition of the refrigerant during the cooling operation of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. It is a flowchart which shows the flow of the concrete control processing of the 2nd expansion valve and electromagnetic valve which the control apparatus of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention performs.
- FIG. 1 is a circuit configuration diagram schematically showing a refrigerant circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic longitudinal sectional view showing a sectional configuration of the compressor 1.
- FIG. 3 is an explanatory diagram for explaining an example of the configuration of the radiator 2.
- FIG. 4 is a Ph diagram showing the transition of the refrigerant during the cooling operation of the refrigeration cycle apparatus 100.
- the circuit configuration and operation of the refrigeration cycle apparatus 100 will be described with reference to FIGS.
- a refrigeration cycle apparatus 100 includes an apparatus having a refrigeration cycle for circulating a refrigerant, such as a refrigerator, a freezer, a vending machine, an air conditioner (for example, for home use, business use, or vehicle use), a refrigeration apparatus. It is used as a hot water supply device.
- a refrigeration cycle apparatus using a refrigerant in which the high pressure side is in a supercritical state.
- the relationship of the size of each component may be different from the actual one.
- the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification.
- the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
- the refrigeration cycle apparatus 100 includes a compressor 1, a radiator 2, an internal heat exchanger 3, a first expansion valve 4 that is a decompression device, an evaporator 5, and a second expansion valve that is a decompression device. Have at least. And the main refrigerant circuit is formed by connecting the compressor 1, the heat radiator 2, the primary flow path of the internal heat exchanger 3, the first expansion valve 4, and the evaporator 5. In addition, an injection circuit is formed by pipe connection of the compressor 1, the radiator 2, the second expansion valve 6, the secondary flow path of the internal heat exchanger 3, and the injection port 113 of the compressor 1. . Furthermore, the refrigeration cycle apparatus 100 includes a control device 50 that regulates overall control of the refrigeration cycle apparatus 100.
- the refrigeration cycle apparatus 100 uses carbon dioxide (CO 2 ) as a refrigerant.
- CO 2 carbon dioxide
- Carbon dioxide has the characteristics that the ozone layer depletion coefficient is zero and the global warming coefficient is small as compared with conventional fluorocarbon refrigerants.
- the refrigerant is not limited to carbon dioxide, and another single refrigerant or a mixed refrigerant (for example, a mixed refrigerant of carbon dioxide and diethyl ether) that transitions to a supercritical state may be used as the refrigerant.
- the compressor 1 compresses the refrigerant sucked by the electric motor 102 and the drive shaft 103 driven by the electric motor 102 into a high temperature / high pressure state.
- the compressor 1 may be composed of, for example, an inverter compressor capable of capacity control. The details of the compressor 1 will be described later with reference to FIG.
- the heat radiator 2 radiates heat of the refrigerant to the heat medium by exchanging heat between the refrigerant flowing through the main refrigerant circuit and the heat medium (for example, air or water).
- the radiator 2 performs heat exchange between, for example, air supplied from a blower (not shown) and the refrigerant.
- the radiator 2 includes, for example, a heat transfer tube that allows the refrigerant to pass therethrough and fins (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the air, and the refrigerant and air (outside air). It exchanges heat with and functions as a condenser or gas cooler.
- the gas may not be completely gasified and vaporized, but may be in a state of two-phase mixing of liquid and gas (gas-liquid two-phase refrigerant).
- the radiator 2 may be divided so that the refrigerant flows in parallel with the first radiator 2a and the second radiator 2b. And it is good to provide the solenoid valve 41a which is an opening / closing device in the refrigerant
- segmented the heat radiator 2 into 2 was shown as an example, However, You may make it divide
- the internal heat exchanger 3 is an injection between the refrigerant (primary side) flowing through the main refrigerant circuit between the radiator 2 and the first expansion valve 4 and between the second expansion valve 6 and the injection port 113 of the compressor 1. Heat is exchanged with the refrigerant (secondary side) flowing through the circuit.
- the internal heat exchanger 3 connects one refrigerant inlet to a pipe 13 through which one refrigerant (secondary refrigerant) branched after flowing out of the radiator 2 flows, and the other refrigerant inlet, It is connected to a pipe 12 through which the other refrigerant (primary refrigerant) branched after flowing out of the radiator 2 flows.
- the pipe 13 is provided with a second expansion valve 6, and decompresses one refrigerant flowing into the internal heat exchanger 3. As a result, the temperature of the secondary-side refrigerant is lower than that of the primary-side refrigerant. Therefore, in the internal heat exchanger 3, the primary-side refrigerant is cooled and the secondary-side refrigerant is heated. .
- the first expansion valve 4 is configured to decompress and expand the refrigerant flowing through the main refrigerant circuit, and may be configured with a valve whose opening degree can be variably controlled, such as an electronic expansion valve.
- the evaporator 5 causes the refrigerant to absorb the heat of the heat medium by exchanging heat between the refrigerant flowing through the main refrigerant circuit and the heat medium (for example, air or water).
- the radiator 2 performs heat exchange between, for example, air supplied from a blower (not shown) and the refrigerant.
- the evaporator 5 has, for example, a heat transfer tube through which the refrigerant passes and fins (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the air, and the refrigerant and air (room air). The heat exchange between the two is performed, and the refrigerant is evaporated to gas (gas).
- the second expansion valve 6 is configured to decompress and expand the refrigerant flowing through the injection circuit, and may be configured with a valve whose opening degree can be variably controlled, such as an electronic expansion valve.
- refrigerant pipes connecting the constituent devices are the discharge pipe 16 of the compressor 1, the pipe 11 on the refrigerant outlet side of the radiator 2, the pipe 12 on the primary side inlet of the internal heat exchanger 3, and the evaporator. 5 is configured with a pipe 14 on the refrigerant outlet side.
- the refrigerant pipes in the injection circuit are branched from the pipe 11 and connected to the secondary side inlet of the internal heat exchanger 3, the secondary side outlet of the internal heat exchanger 3, and the injection port 113 of the compressor 1. It is comprised by the piping 15 which connects.
- the refrigeration cycle apparatus 100 includes a pressure sensor 21 as a first pressure detection means, a temperature sensor 31 as a first temperature detection means, a pressure sensor 22 as a second pressure detection means, and a temperature sensor 23 as a temperature detection means.
- the temperature sensor 32 which is a 2nd temperature detection means is provided. Information (pressure information and temperature information) detected by these various detection means is sent to the control device 50 and used for control of each device constituting the refrigeration cycle apparatus 100.
- the pressure sensor 21 is provided in the refrigerant outlet pipe 11 of the radiator 2 and detects the refrigerant pressure on the refrigerant outlet side of the radiator 2.
- the temperature sensor 31 is provided in the vicinity of the radiator 2, such as the outer surface of the radiator 2, and detects the temperature of a heat medium such as air entering the radiator 2, and may be constituted by, for example, a thermistor.
- the pressure sensor 22 is provided in the refrigerant outlet pipe 14 of the evaporator 5 and detects the refrigerant pressure on the refrigerant outlet side of the evaporator 5.
- the temperature sensor 23 is provided in the refrigerant outlet pipe 14 of the evaporator 5 and detects the refrigerant temperature on the refrigerant outlet side of the evaporator 5, and may be composed of, for example, a thermistor.
- the temperature sensor 32 is provided in the vicinity of the evaporator 5 such as the outer surface of the evaporator 5 and detects the temperature of a heat medium such as air entering the evaporator 5, and may be composed of, for example, a thermistor.
- the installation positions of the pressure sensor 21, the temperature sensor 31, the pressure sensor 22, the temperature sensor 23, and the temperature sensor 32 are not limited to the positions shown in FIG.
- the temperature of the heat medium entering the radiator 2, the pressure of the refrigerant exiting the evaporator 5, the temperature of the refrigerant exiting the evaporator 5, and the temperature of the heat medium entering the evaporator 5 may be used.
- the control device 50 includes a drive frequency of the compressor 1, a rotation speed of a blower (not shown) provided near the radiator 2 and the evaporator 5, an opening degree of the first expansion valve 4, and an opening degree of the second expansion valve 6. If installed, it controls the opening and closing of the solenoid valve 41a and the solenoid valve 41b.
- the compressor 1 is attached to the tip of an electric motor 102 that is a driving source, a driving shaft 103 that is rotationally driven by the electric motor 102, and a driving shaft 103 inside a shell 101 that constitutes the outline of the compressor 1.
- An orbiting scroll 104 that rotates with the drive shaft 103, a fixed scroll 105 that is disposed on the upper side of the orbiting scroll 104 and has a spiral body that meshes with the spiral body of the orbiting scroll 104, and the like are housed and configured.
- the shell 101 is connected to an inflow pipe 106 for allowing the refrigerant to flow into the shell 101, an outflow pipe 112 connected to the discharge pipe 16, and an injection pipe 114 connected to the pipe 15.
- a low-pressure space 107 that is in communication with the inflow pipe 106 is formed inside the shell 101 and on the outermost peripheral portion of the spiral body of the swing scroll 104 and the fixed scroll 105.
- a high-pressure space 111 that is electrically connected to the outflow pipe 112 is formed in the upper part of the shell 101.
- a plurality of compression chambers whose volumes are relatively changed are formed by meshing the spiral body of the orbiting scroll 104 and the spiral body of the fixed scroll (for example, the compression chamber 108 and the compression chamber 109).
- a compression chamber 109 is a compression chamber formed at a substantially central portion of the swing scroll 104 and the fixed scroll 105.
- a compression chamber 108 is a compression chamber formed in the middle of the compression process outside the compression chamber 109.
- An outflow port 110 that connects the compression chamber 109 and the high-pressure space 111 is provided at a substantially central portion of the fixed scroll 105.
- An injection port 113 is provided in the middle of the compression process of the fixed scroll 105 to connect the compression chamber 108 and the injection pipe 114.
- an Oldham ring (not shown) for preventing the rotational movement of the orbiting scroll 104 during the eccentric orbiting movement is disposed. The Oldham ring functions to prevent the swinging movement of the swing scroll 104 and to enable a revolving motion.
- the fixed scroll 105 is fixed in the shell 101. Further, the orbiting scroll 104 revolves without rotating with respect to the fixed scroll 105.
- the electric motor 102 includes at least a stator fixedly held inside the shell 101 and a rotor that is rotatably disposed on the inner peripheral surface side of the stator and is fixed to the drive shaft 103. Yes.
- the stator has a function of rotating the rotor when energized.
- the rotor has a function of rotating and driving the drive shaft 103 by energizing the stator.
- the operation of the compressor 1 will be briefly described.
- the electric motor 102 When the electric motor 102 is energized, torque is generated in the stator and the rotor constituting the electric motor 102, and the drive shaft 103 rotates.
- a swing scroll 104 is attached to the tip of the drive shaft 103, and the swing scroll 104 performs a revolving motion.
- the compression chamber moves toward the center while decreasing the volume, and the refrigerant is compressed.
- the refrigerant flowing through the pipe 15 constituting the injection circuit flows into the compressor 1 from the injection pipe 114.
- the refrigerant flowing through the pipe 14 flows into the compressor 1 from the inflow pipe 106.
- the refrigerant flowing in from the inflow pipe 106 flows into the low-pressure space 107, is confined in the compression chamber, and is gradually compressed.
- the compression chamber reaches the compression chamber 108 which is an intermediate position in the compression process, the refrigerant flows into the compression chamber 108 from the injection port 113.
- the refrigerant flowing in from the injection pipe 114 and the refrigerant flowing in from the inflow pipe 106 are mixed in the compression chamber 108. Thereafter, the mixed refrigerant is gradually compressed and reaches the compression chamber 109.
- the refrigerant that has reached the compression chamber 109 passes through the outflow port 110 and the high-pressure space 111 and is then discharged out of the shell 101 through the outflow pipe 112, thereby conducting the discharge pipe 16.
- the level of pressure in the refrigerant circuit or the like of the refrigeration cycle apparatus 100 is not determined by the relationship with the reference pressure, but is increased by the compressor 1, the first expansion valve 4, and the second expansion valve 6.
- the relative pressure generated by reducing the pressure or the like is expressed as a high pressure or a low pressure.
- the temperature level is not determined by the relationship with the reference pressure, but is increased by the compressor 1, the first expansion valve 4, and the second expansion valve 6.
- the relative pressure generated by reducing the pressure or the like is expressed as a high pressure or a low pressure.
- the cooling operation in the case where the radiator 2 is an outdoor heat exchanger and the evaporator 5 is an indoor heat exchanger will be described. That is, the refrigerant exchanges heat with the outdoor air using the radiator 2 and exchanges heat with the indoor air using the evaporator 5.
- a low-pressure refrigerant is sucked into the compressor 1.
- the low-pressure refrigerant sucked into the compressor 1 is compressed to become a medium-pressure refrigerant (from state A to state H).
- intermediate pressure refrigerant (state G) is injected from the pipe 15 constituting the injection circuit, and is mixed inside the compressor 1 (state I).
- the mixed refrigerant is further compressed to become a high-temperature and high-pressure refrigerant (from state I to state B).
- the high-temperature and high-pressure refrigerant compressed by the compressor 1 is discharged from the compressor 1 and flows into the radiator 2.
- the refrigerant flowing into the radiator 2 dissipates heat by exchanging heat with the outdoor air supplied to the radiator 2, and transfers heat to the outdoor air to become a low-temperature and high-pressure refrigerant (from state B to state C). .
- the low-temperature and high-pressure refrigerant flows out of the radiator 2, and one refrigerant is decompressed by the second expansion valve 6 to become an intermediate-pressure refrigerant and flows into the internal heat exchanger 3 through the pipe 13.
- the other refrigerant that flows out from the radiator 2 and is divided flows into the internal heat exchanger 3 through the pipe 12 without changing the state.
- the refrigerant flowing into the internal heat exchanger exchanges heat with each other.
- One refrigerant is heated (from state F to state G) and injected into the compressor 1.
- the other refrigerant is cooled (from state C to state D) and flows into the first expansion valve 4.
- the refrigerant that has flowed into the first expansion valve 4 is decompressed to a low temperature, and the degree of dryness is low (from state D to state E).
- the refrigerant that has flowed out of the first expansion valve 4 absorbs heat from the indoor air in the evaporator 5 and evaporates, and remains in a low pressure state and a high dryness state (from state E to state A). Thereby, indoor air is cooled.
- the refrigerant flowing out of the evaporator 5 is sucked into the compressor 1 again. By repeating the above-described operation, the heat of the indoor air is transmitted to the outdoor air, and the room is cooled.
- the compressor 1 is a type in which the rotation speed is controlled by an inverter and the capacity is controlled, and the cooling capacity is controlled by the rotation speed of the compressor 1.
- the flow rate of the refrigerant flowing through the evaporator 5 is adjusted by the opening degree of the first expansion valve 4 based on the refrigerant outlet superheat degree of the evaporator 5.
- the refrigerant outlet superheat degree of the evaporator 5 is calculated from the refrigerant saturation temperature calculated by the control device 50 and the temperature detected by the temperature sensor 23 based on the pressure detected by the pressure sensor 22. If the degree of superheat of the evaporator 5 is too large, the heat transfer performance in the evaporator 5 is deteriorated. If it is too small, a large amount of refrigerant liquid flows into the compressor 1 and the compressor 1 may be damaged. It is desirable to set the temperature to about 10 ° C.
- the refrigerant before flowing out of the radiator 2 and flowing into the first expansion valve 4 is further cooled by the internal heat exchanger 3, so that the supercritical state is set on the high pressure side like carbon dioxide. Even with such a refrigerant, the refrigerant enthalpy difference in the evaporator 5 can be increased.
- the intermediate-pressure refrigerant heated by the internal heat exchanger 3 is injected in the middle of the compression stroke of the compressor 1. Therefore, the refrigeration cycle apparatus 100 cools the refrigerant at the intermediate pressure in the compressor 1, can prevent the discharge temperature of the compressor 1 from becoming too high, and places a heavy burden on the refrigeration oil and the sealing surface. Can be prevented.
- the overload condition is a condition in which the air temperature increases both outdoors and indoors in summer and the like. For example, it is a condition when the outdoor air temperature is about 45 ° C. and the indoor air temperature is about 35 ° C.
- the cooling operation in the case where the outdoor temperature and the indoor temperature are such will be described.
- the high-pressure side pressure is 11.5 MPa. Since the outdoor air temperature is as high as 45 ° C., the refrigerant of the radiator 2 cannot be sufficiently cooled, and becomes as high as about 49 ° C. Further, when the high pressure side pressure becomes a supercritical state, if the high pressure side pressure is not sufficiently high due to the influence of the isotherm, the heat dissipation capability is small and the enthalpy difference in the evaporator is small. On the other hand, in the evaporator 5, the evaporation temperature increases to about 20 ° C. (about 5.5 MPa at saturation pressure) due to the influence of the indoor air temperature increasing to 35 ° C.
- the intermediate pressure PM is a geometric average of the high pressure side pressure PH and the low pressure side pressure PL, it can be expressed by the following formula (2). From this equation (2), when the high pressure side pressure PH is 11.5 MPa and the low pressure side pressure PL is 5.5 MPa, the intermediate pressure PM is about 8.0 MPa, which is higher than the critical point pressure of 7.38 MPa.
- the internal heat exchanger 3 cannot be changed in latent heat, so that the refrigerant flowing into the first expansion valve 4 cannot be sufficiently cooled.
- the cooling capacity of the internal heat exchanger 3 is controlled by the opening of the second expansion valve 6, the intermediate pressure refrigerant becomes supercritical and does not have a saturation temperature. It is difficult to detect the saturation temperature of the intermediate pressure refrigerant by the refrigerant temperature of the pipe 13 between the heat exchangers 3, and to calculate the superheat degree by the difference from the outlet temperature, and to control the cooling capacity. It is.
- the refrigeration cycle apparatus 100 injects the intermediate-pressure refrigerant heated by the internal heat exchanger 3 in the middle of the compression stroke of the compressor 1, and further divides the radiator 2
- the heat transfer area is reduced, the high-pressure side pressure in the radiator 2 is increased, the amount of heat release is increased, and the cooling capacity is increased.
- ⁇ Dividing heat radiator> A method for reducing the heat transfer area of the radiator 2 will be described. As described above, the radiator 2 is divided so that the refrigerant flows in parallel with the first radiator 2a and the second radiator 2b, and when the heat transfer area is reduced, the solenoid valve 41a and the solenoid valve 41b. Is closed so that the refrigerant flows only in the first radiator 2a.
- the refrigerant in the supercritical state has a property that the enthalpy decreases as the pressure increases on the isotherm. In particular, the higher the temperature, the greater the change in enthalpy with respect to pressure.
- the refrigerant outlet temperature in the radiator 2 is governed by the air inlet temperature. Therefore, as the air inlet temperature of the radiator 2, that is, the outdoor air temperature increases, the amount of heat radiation increases by increasing the high-pressure side pressure. Accordingly, the refrigerant inlet enthalpy of the evaporator 5 is also reduced, and the refrigerant enthalpy difference in the evaporator 5 is increased, so that the cooling capacity can be increased.
- FIG. 5 is a flowchart showing a flow of specific control processing of the second expansion valve 6, the electromagnetic valve 41a, and the electromagnetic valve 41b executed by the control device 50. Next, a specific operation method of the second expansion valve 6, the electromagnetic valve 41a, and the electromagnetic valve 41b will be described with reference to FIG.
- the control device 50 detects the high pressure side pressure PH based on the information from the pressure sensor 21 and the low pressure side pressure PL based on the information from the pressure sensor 22 (step 201). From the high pressure side pressure PH and the low pressure side pressure PL, the control device 50 calculates the intermediate pressure PM (step 202). This intermediate pressure PM is obtained by the above-described equation (2). Note that an intermediate pressure PM may be detected directly from the refrigerant outlet of the second expansion valve 6 by separately providing a pressure sensor in the piping 15 of the injection circuit.
- the control device 50 determines whether or not the intermediate pressure PM is higher than the critical point pressure PCR (step 203).
- the critical point pressure PCR of carbon dioxide is about 7.38 MPa as described above.
- the control device 50 determines whether or not the electromagnetic valve 41a and the electromagnetic valve 41b are open (step 204). If the solenoid valve 41a and the solenoid valve 41b are open (step 204; Yes), the control device 50 closes the solenoid valve 41a and the solenoid valve 41b so that the refrigerant flows only in the first radiator 2a ( Step 205). Thereafter, the control device 50 sets the target high pressure side pressure PHM (step 206). The target high pressure side pressure PHM will be described later.
- the control device 50 After setting the target high-pressure side pressure PHM, the control device 50 detects the high-pressure side pressure PH again (step 207). Then, the control device 50 determines whether or not the high pressure side pressure PH is higher than the target high pressure side pressure PHM (step 208). If the high-pressure side pressure PH is higher than the target high-pressure side pressure PHM (step 208; Yes), the control device 50 operates so that the opening degree of the second expansion valve 6 becomes small in order to reduce the high-pressure side pressure PH (step). 209).
- step 208 if the high-pressure side pressure PH is lower than the target high-pressure side pressure PHM (step 208; No), the control device 50 operates to increase the opening of the second expansion valve 6 in order to increase the high-pressure side pressure PH. (Step 210). Thereafter, the process returns to step 201.
- the control device 50 determines whether or not the electromagnetic valve 41a and the electromagnetic valve 41b are closed (step 211). If the solenoid valve 41a and the solenoid valve 41b are closed (step 211; Yes), the control device 50 opens the solenoid valve 41a and the solenoid valve 41b so that the refrigerant flows through the second radiator 2b (step 212). ). Thereafter, the process returns to step 201.
- the control device 50 repeats the above operation to execute an operation for increasing the cooling capacity.
- FIG. 6 is a graph showing the relationship between the capacity ratio with respect to the injection rate and the heat transfer area of the radiator 2.
- FIG. 7 is a graph showing the relationship between the COP ratio with respect to the injection rate and the heat transfer area of the radiator 2.
- FIG. 8 is a graph showing the relationship between the high-pressure side pressure and the heat transfer area of the radiator 2 with respect to the injection rate.
- the injection rate is defined as the ratio of Ginj, that is, Ginj / Gsuc, to the refrigerant flow rate injected with respect to the refrigerant flow rate Gsuc sucked from the low pressure in the compressor 1.
- the standard of capacity and COP is that the heat transfer area is set to 100% without dividing the radiator 2 and injection is not performed.
- the refrigeration cycle apparatus 100 in order to increase the capacity ratio and not deteriorate the COP, a suitable high-pressure side pressure exists. Since the refrigeration cycle apparatus 100 is particularly effective in an overload condition in which the room air temperature becomes high, the refrigeration cycle apparatus 100 needs to be operated to increase the cooling capacity as much as possible to lower the room air temperature. Therefore, from FIGS. 6 to 8, when the heat transfer area of the radiator 2 is about 85%, the injection rate is about 0.15, and the high pressure side pressure is about 14.2 MPa, the heat transfer area is 100% and the injection rate is 0. It can be seen that the cooling capacity can be increased by about 35% without lowering the COP because the COP is 100% compared to the operating conditions.
- the heat transfer area of the first radiator 2a is about 85% of the entire radiator 2 and the target high-pressure side pressure PHM is 14.2 MPa.
- the ratio of the heat transfer area of the radiator 2 and the value of the target high-pressure side pressure PHM are particularly suitable values, and are not limited to these values.
- the refrigeration cycle apparatus 100 according to Embodiment 1 can increase the cooling capacity under an overload condition in which the indoor air temperature is high, the indoor temperature can be lowered more quickly.
- control for increasing the cooling capacity is performed by detecting the high-pressure side pressure and the low-pressure side pressure
- Control for increasing the cooling capacity may be performed based on the detected inlet air temperature of the evaporator 5. This is because when the inlet air temperature of the radiator 2 is high, the refrigerant outlet temperature of the radiator 2 is naturally high, and it is necessary to increase the cooling capacity.
- the evaporating temperature of the refrigerant naturally increases as the evaporator inlet air temperature increases, there is a correlation between the indoor air temperature and the low-pressure side pressure.
- Embodiment 2 FIG. In the first embodiment, the cooling capacity is increased when the intermediate pressure is in a supercritical state. However, in the second embodiment, the cooling capacity is increased when the refrigeration cycle apparatus is started. .
- the basic configuration and operation of the refrigeration cycle apparatus according to Embodiment 2 are the same as those of refrigeration cycle apparatus 100 according to Embodiment 1. In the second embodiment, the difference from the first embodiment will be mainly described, and the same reference numerals as those used in the first embodiment will be used.
- FIG. 9 is a flowchart showing a specific control process flow of the second expansion valve 6, the electromagnetic valve 41a, and the electromagnetic valve 41b executed by the control device 50 of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. Based on FIG. 9, the specific operation method of the 2nd expansion valve 6, the solenoid valve 41a, and the solenoid valve 41b is demonstrated.
- the control apparatus 50 When the refrigeration cycle apparatus starts the cooling operation, the control apparatus 50 first sets the target indoor air temperature Tam (step 301). The target indoor air temperature Tam will be described later. Then, the control device 50 detects the indoor air temperature Ta based on the information from the temperature sensor 32 (step 302). The control device 50 determines whether or not the indoor air temperature Ta is higher than the target indoor air temperature Tam (step 303). When the indoor air temperature Ta is higher than the target indoor air temperature Tam (step 303; Yes), the control device 50 determines whether or not the electromagnetic valve 41a and the electromagnetic valve 41b are open (step 304).
- step 304 If the solenoid valve 41a and the solenoid valve 41b are open (step 304; Yes), the control device 50 closes the solenoid valve 41a and the solenoid valve 41b so that the refrigerant flows only in the first radiator 2a ( Step 305). Thereafter, the control device 50 sets the target high pressure side pressure PHM (step 306).
- the control device 50 After setting the target high-pressure side pressure PHM, the control device 50 detects the high-pressure side pressure PH (step 307). Then, the control device 50 determines whether or not the high pressure side pressure PH is higher than the target high pressure side pressure PHM (step 308). If the high-pressure side pressure PH is higher than the target high-pressure side pressure PHM (step 308; Yes), the control device 50 operates so as to reduce the opening of the second expansion valve 6 in order to reduce the high-pressure side pressure PH (step). 309). On the other hand, if the high pressure side pressure PH is lower than the target high pressure side pressure PHM (step 308; No), the control device 50 operates to increase the opening of the second expansion valve 6 in order to increase the high pressure side pressure PH. (Step 310). Thereafter, the process returns to step 302.
- the control device 50 determines whether or not the electromagnetic valve 41a and the electromagnetic valve 41b are closed (step 311). . If the solenoid valve 41a and the solenoid valve 41b are closed (step 311; Yes), the control device 50 opens the solenoid valve 41a and the solenoid valve 41b so that the refrigerant flows through the second radiator 2b (step 312). ). Thereafter, the process shifts to the scheduled control (step 313).
- the scheduled control refers to a normal cooling operation performed based on a command from the control device 50.
- the target indoor air temperature Tam described above may be set to 27 ° C., which is the indoor air temperature for standard cooling operation, for example.
- the refrigeration cycle apparatus can increase the cooling capacity by increasing the high-pressure side pressure when the room temperature is higher than the room air temperature in the standard cooling operation.
- the temperature can be lowered faster. Therefore, the user's comfort can be further obtained.
- the target high pressure side pressure PHM, the ratio of the heat transfer area of the first radiator 2a to the heat transfer area of the entire radiator 2, and the like have been described in the first embodiment. It may be determined similarly to. Further, since the refrigeration cycle apparatus according to Embodiment 2 shifts to the regular control in step 313 when the indoor air temperature becomes lower than the target indoor air temperature in step 303, the high-pressure side pressure is increased. Too much room air is not cooled, and power is not wasted.
- Embodiment 1 and Embodiment 2 has been described as detecting the low-pressure side pressure with the pressure sensor 22 provided at the refrigerant outlet of the evaporator 5, instead of the pressure sensor 22.
- a temperature sensor may be separately provided between the refrigerant outlet of the first expansion valve 4 and the refrigerant inlet of the evaporator 5, and the low-pressure side pressure may be calculated from the saturation temperature of the refrigerant detected by the temperature sensor.
- the opening of the second expansion valve 6 is adjusted with the high-pressure side pressure as a target value. Even under the condition that the saturation pressure cannot be calculated due to the supercritical state, the cooling capacity can be reliably increased.
- the operation during the cooling operation of the refrigeration cycle apparatus has been described.
- a four-way valve for switching the refrigerant flow path is provided, and the radiator 2 It may be possible to execute a heating operation for heating the. Even when the heating operation can be performed, the heating capacity can be increased by performing the operation described in the first and second embodiments.
- the case where the electromagnetic valve 41a and the electromagnetic valve 41b that are two-way valves are provided in order to block the refrigerant flowing through the second radiator 2b is described as an example.
- the refrigerant outlet side of the second radiator 2b may be a check valve, and any means for blocking the refrigerant may be used.
- Embodiment 1 and Embodiment 2 although the heat radiator 2 and the evaporator 5 are demonstrated as what is a heat exchanger which heat-exchanges with air, it is not limited to this, Other than air A heat exchanger that exchanges heat with a heat medium such as water or brine may be used.
- the high pressure side pressure is increased by injecting the compressor 1 and reducing the heat transfer area of the radiator 2, but the present invention is not limited to this. .
- the air volume of a fan (not shown) for forcing air to pass through the outer surface of the radiator 2 may be reduced.
- the flow rate of a pump (not shown) for circulating the heat medium may be reduced. Also by doing so, the pressure of the radiator 2 can be increased.
- the case where the intermediate-pressure refrigerant is injected into the compression chamber 108 of the compressor 1 has been described as an example.
- the compression mechanism of the compressor 1 is compressed in two stages.
- the injection may be performed in a path connecting the lower-stage compression chamber and the rear-stage compression chamber.
- the compressor 1 may be configured to perform two-stage compression with a plurality of compressors.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
放熱器と蒸発器の入口空気温度が高くなる過負荷条件になると、高圧側圧力と低圧側圧力が高くなる。そうすると、放熱器から分岐して減圧された一方の冷媒の圧力も高くなり、超臨界状態となる場合がある。特許文献1に記載されているような蒸気圧縮式冷凍サイクルでは、過負荷条件となった場合に、冷却器の一方の冷媒の出口の過熱度を算出できず、他方の冷媒の比エンタルピを制御することができなくなる場合がある。また、一方の冷媒が超臨界状態となると、冷媒が加熱される過程で潜熱変化を伴わないので、冷却器で他方の冷媒を冷却する効果があまり期待できない。
実施の形態1.
図1は、本発明の実施の形態1に係る冷凍サイクル装置100の冷媒回路構成を模式的に表す回路構成図である。図2は、圧縮機1の断面構成を示す概略縦断面図である。図3は、放熱器2の形態の一例を説明するための説明図である。図4は、冷凍サイクル装置100の冷房運転時における冷媒の変遷を示すP-h線図である。図1~図4に基づいて、冷凍サイクル装置100の回路構成及び動作について説明する
圧縮機1は、圧縮機1の外郭を構成するシェル101の内部に、駆動源である電気モーター102や、電気モーター102によって回転駆動される駆動軸103、駆動軸103に先端部に取り付けられ、駆動軸103とともに回転駆動する揺動スクロール104、揺動スクロール104の上側に配置され、揺動スクロール104の渦巻体と噛み合う渦巻体が形成されている固定スクロール105等が収納され、構成されている。また、シェル101には、シェル101内に冷媒を流入させる流入配管106、吐出配管16に接続される流出配管112、及び、配管15に接続されるインジェクション配管114が連接されている。
電気モーター102に通電されると、電気モーター102を構成している固定子と回転子とにトルクが発生し、駆動軸103が回転する。駆動軸103の先端部には揺動スクロール104が装着されており、揺動スクロール104が公転運動を行なう。揺動スクロール104の旋回運動とともに圧縮室が中心に向かって容積を減少させながら移動し、冷媒が圧縮される。
圧縮機1は、インバーターにより回転数が制御され容量制御されるタイプであり、冷房能力は圧縮機1の回転数によって制御される。蒸発器5を流れる冷媒流量は、蒸発器5の冷媒出口過熱度を基に、第1膨張弁4の開度で調整する。蒸発器5の冷媒出口過熱度は、圧力センサー22が検知する圧力を基に、制御装置50で演算される冷媒の飽和温度と、温度センサー23が検知する温度によって算出する。蒸発器5の過熱度は、大きすぎると蒸発器5での伝熱性能が悪化し、小さすぎると圧縮機1に多量の冷媒液が流れ込んで圧縮機1が破損する恐れがあるため、およそ2~10℃程度とするのが望ましい。
冷凍サイクル装置100では、放熱器2から流出して第1膨張弁4に流入する前の冷媒を内部熱交換器3でさらに冷却しているため、二酸化炭素のように高圧側で超臨界状態となるような冷媒でも、蒸発器5での冷媒エンタルピ差を大きくすることができる。また、冷凍サイクル装置100では、内部熱交換器3で加熱された中間圧の冷媒を圧縮機1の圧縮行程の途中にインジェクションする。したがって、冷凍サイクル装置100は、圧縮機1では中間圧で冷媒を冷却することになり、圧縮機1の吐出温度が高くなりすぎるのを防止でき、冷凍機油やシール面等に大きな負担がかかるのを防止できる。
冷凍サイクル装置100では、圧縮機1の圧縮行程途中に冷媒をインジェクションすることにより以下のような効果が得られる。圧縮機1で低圧から吸入される冷媒流量をGsuc、インジェクションされる冷媒流量をGinj、圧縮機1から吐出される冷媒流量をGdisとすると、下記式(1)の関係が成立する。
式(1) Gdis=Gsuc+Ginj
そのため、圧縮機1に冷媒をインジェクションすることによって、放熱器2に入る冷媒流量が増加する。このため、放熱器2の放熱量が増加することになる。
ここで、冷凍サイクル装置100が過負荷条件で冷房運転をする場合について説明する。過負荷条件とは、夏期などで室外、室内共に空気温度が高くなる条件であり、例として室外空気温度45℃、室内空気温度35℃程度である場合における条件である。室外温度及び室内温度がこのような場合における冷房運転について説明する。
そこで、冷凍サイクル装置100は、運転状態が過負荷条件となるとき、内部熱交換器3で加熱された中間圧の冷媒を圧縮機1の圧縮行程の途中にインジェクションし、さらに放熱器2を分割して伝熱面積を小さくして、放熱器2での高圧側圧力を上昇させて、放熱量を増加させて冷房能力を大きくするようにしている。
放熱器2の伝熱面積を小さくする方法について述べる。前述したように、放熱器2は、第1放熱器2a、第2放熱器2bに並列に冷媒が流れるように分割されていて、伝熱面積を小さくする際は、電磁弁41a、電磁弁41bを閉止して、第1放熱器2aのみに冷媒が流れるようにする。
高圧側圧力が上昇する原理について述べる。前述したように、圧縮機1の圧縮行程の途中に冷媒をインジェクションすると、放熱器2を流れる冷媒流量が増加し、放熱量が増加する。放熱器2での放熱量を増加させるために、高圧側圧力を上昇させて冷媒と空気との温度差を大きくし、放熱器2での冷媒エンタルピ差を大きくするように冷凍サイクルが変化する。このとき、放熱器2では冷媒出口温度は空気入口温度よりも低くすることはできないため、冷媒出口温度は空気入口温度におよそ支配されることになる。また、第1放熱器2aのみに冷媒が流れるようにすることで、伝熱面積が小さくなり、冷凍サイクルのバランスにより冷媒と空気との温度差を大きくする必要があるため、高圧側圧力がさらに上昇する。
しかしながら、放熱器2の伝熱面積を小さくするのみでは、冷媒と空気との温度差が大きくなり高圧側圧力は高くなるが、放熱量はあまり大きくならないため、放熱器2での冷媒エンタルピ差を大きくすることができない。そこで、前述したように、圧縮機1の圧縮行程の途中に冷媒をインジェクションすることにより、放熱量を大きくすることができる。すなわち、冷凍サイクル装置100は、圧縮機1の圧縮行程の途中に冷媒をインジェクションすることと、放熱器2の伝熱面積を小さくすることにより、高圧側圧力を上昇させて放熱量を増加させているのである。
高圧側圧力を高くして、放熱量を増加させることによって、以下の効果がある。図4に示すP-h線図上で、超臨界状態の冷媒は、等温線上では圧力が高いほどエンタルピが低くなる性質がある。特に、温度が高くなるほど圧力に対するエンタルピの変化が大きい。また、前述したように、放熱器2での冷媒出口温度は、空気入口温度に支配される。よって、放熱器2の空気入口温度、すなわち室外空気温度が高くなる条件ほど、高圧側圧力を高くすることで、放熱量が増加する。これによって、蒸発器5の冷媒入口エンタルピも低くなり、蒸発器5での冷媒エンタルピ差が大きくなるので、冷房能力を増加させることができる。
ここで、目標高圧側圧力PHMについて説明する。図6は、インジェクション率に対する能力比と放熱器2の伝熱面積との関係を示したグラフである。図7は、インジェクション率に対するCOP比と放熱器2の伝熱面積との関係を示したグラフである。図8は、インジェクション率に対する高圧側圧力と放熱器2の伝熱面積との関係を示したグラフである。ここで、インジェクション率とは、圧縮機1で低圧から吸入される冷媒流量Gsucに対するインジェクションされる冷媒流量をGinjの比、すなわちGinj/Gsucとして定義する。また、能力とCOPの基準は、放熱器2を分割せずに伝熱面積を100%にして、インジェクションを行なわない場合とする。
実施の形態1では、中間圧が超臨界状態となるときに冷房能力を大きくするようにしたものであるが、実施の形態2では、冷凍サイクル装置の起動時に冷房能力を大きくするようにしている。実施の形態2に係る冷凍サイクル装置の基本的な構成及び動作は、実施の形態1に係る冷凍サイクル装置100と同様である。なお、実施の形態2では上述した実施の形態1との相違点を中心に説明するものとし、実施の形態1で使用した符号と同一の符号を用いて説明するものとする。
それから、制御装置50は、温度センサー32からの情報によって室内空気温度Taを検知する(ステップ302)。制御装置50は、室内空気温度Taが目標室内空気温度Tamより高いか否かを判定する(ステップ303)。室内空気温度Taが目標室内空気温度Tamより高い場合(ステップ303;Yes)、制御装置50は、電磁弁41a、電磁弁41bが開いているか否かを判定する(ステップ304)。
Claims (13)
- 冷媒を圧縮する圧縮機、前記圧縮機で圧縮された冷媒の熱を放散する放熱器、前記放熱器を通過した冷媒と前記放熱器を通過して前記圧縮機にインジェクションされる冷媒との間で熱交換させる内部熱交換器の一次側流路、前記内部熱交換器の一次側流路を通過した冷媒を減圧する第1減圧装置、前記第1減圧装置で減圧された冷媒が蒸発する蒸発器、を順に配管接続した主冷媒回路と、
前記放熱器を通過して前記圧縮機にインジェクションされる冷媒を減圧する第2減圧装置、前記内部熱交換器の二次側流路、前記圧縮機のインジェクションポートを順に配管接続したインジェクション回路と、
前記第2減圧装置の開度及び前記放熱器の伝熱面積を制御することによって、前記主冷媒回路を流れる冷媒の高圧側圧力を調整する制御装置と、を備えている
ことを特徴とする冷凍サイクル装置。 - 前記圧縮機の吐出部から前記第1減圧装置の入口までの間の冷媒の高圧側圧力を検知する第1圧力検知手段を設け、
前記制御装置は、
前記第1圧力検知手段で検知された前記高圧側圧力が所定の値よりも高いときに前記第2減圧装置の開度を小さくし、前記高圧側圧力が所定の値よりも低いときに前記第2減圧装置の開度を大きくすることで、前記主冷媒回路を流れる冷媒の高圧側圧力を調整している
ことを特徴とする請求項1に記載の冷凍サイクル装置。 - 前記放熱器を流れる冷媒の流れが並列になるように前記放熱器を複数に分割し、
前記制御装置は、
少なくとも前記分割された放熱器の一部に対しての冷媒の流出入により前記放熱器の伝熱面積を制御することで、前記主冷媒回路を流れる冷媒の高圧側圧力を調整している
ことを特徴とする請求項1又は2に記載の冷凍サイクル装置。 - 前記分割された放熱器の一部の出入口側に冷媒を流出入させる開閉装置を設け、
前記制御装置は、
前記開閉装置の開閉を制御することで、前記主冷媒回路を流れる冷媒の高圧側圧力を調整している
ことを特徴とする請求項3に記載の冷凍サイクル装置。 - 前記開閉装置が電磁弁で構成されている
ことを特徴とする請求項4に記載の冷凍サイクル装置。 - 前記開閉装置が電磁弁と逆止弁で構成されている
ことを特徴とする請求項4に記載の冷凍サイクル装置。 - 前記第1減圧装置の出口から前記圧縮機の吸入部までの間の冷媒の低圧側圧力を検知する第2圧力検知手段を設け、
前記制御装置は、
前記前記高圧側圧力と前記第2圧力検知手段で検知された前記低圧側圧力とを基に中間圧を演算し、前記中間圧が冷媒の臨界圧力より高いとき、前記第2減圧装置の開度及び前記放熱器の伝熱面積を変更することで、前記主冷媒回路を流れる冷媒の高圧側圧力を調整している
ことを特徴とする請求項1~6のいずれか一項に記載の冷凍サイクル装置。 - 前記制御装置は、
前記第2減圧装置の出口から前記圧縮機のインジェクションポートまでの間の冷媒の中間圧を検知し、前記中間圧が冷媒の臨界圧力より高いとき、前記第2減圧装置の開度及び前記放熱器の伝熱面積を変更することで、前記主冷媒回路を流れる冷媒の高圧側圧力を調整している
ことを特徴とする請求項1~6のいずれか一項に記載の冷凍サイクル装置。 - 前記放熱器の入口空気温度を検知する第1温度検知手段、前記蒸発器の入口空気温度を検知する第2温度検知手段を設け、
前記制御装置は、
前記第1温度検知手段で検知された温度及び前記第2温度検知手段で検知された温度が所定の温度よりも高いとき、前記第2減圧装置の開度及び前記放熱器の伝熱面積を変更することで、前記主冷媒回路を流れる冷媒の高圧側圧力を調整している
ことを特徴とする請求項1~6のいずれか一項に記載の冷凍サイクル装置。 - 前記制御装置は、
冷房運転を開始するとき、前記蒸発器の入口空気温度が所定の温度より高い間、前記第2減圧装置の開度及び前記放熱器の伝熱面積を変更することで、前記主冷媒回路を流れる冷媒の高圧側圧力を調整している
ことを特徴とする請求項1~9のいずれか一項に記載の冷凍サイクル装置。 - 前記放熱器に強制的に空気を通過させるファンを設け、
前記制御装置は、
前記ファンの回転数も変更することで、前記主冷媒回路を流れる冷媒の高圧側圧力を調整している
ことを特徴とする請求項1~10のいずれか一項に記載の冷凍サイクル装置。 - 前記放熱器に熱媒体を通過させる循環装置を設け、
前記制御装置は、
前記循環装置の回転数も変更することで、前記主冷媒回路を流れる冷媒の高圧側圧力を調整している
ことを特徴とする請求項1~10のいずれか一項に記載の冷凍サイクル装置。 - 冷媒として高圧側において超臨界状態となるものを用いている
ことを特徴とする請求項1~12のいずれか一項に記載の冷凍サイクル装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080066443.0A CN102859294B (zh) | 2010-04-27 | 2010-04-27 | 冷冻循环装置 |
JP2012512530A JP5349686B2 (ja) | 2010-04-27 | 2010-04-27 | 冷凍サイクル装置 |
PCT/JP2010/003017 WO2011135616A1 (ja) | 2010-04-27 | 2010-04-27 | 冷凍サイクル装置 |
ES10850639T ES2869237T3 (es) | 2010-04-27 | 2010-04-27 | Aparato de ciclo de refrigeración |
EP10850639.5A EP2565555B1 (en) | 2010-04-27 | 2010-04-27 | Refrigeration cycle apparatus |
US13/634,562 US9341393B2 (en) | 2010-04-27 | 2010-04-27 | Refrigerating cycle apparatus having an injection circuit and operating with refrigerant in supercritical state |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/003017 WO2011135616A1 (ja) | 2010-04-27 | 2010-04-27 | 冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011135616A1 true WO2011135616A1 (ja) | 2011-11-03 |
Family
ID=44860970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/003017 WO2011135616A1 (ja) | 2010-04-27 | 2010-04-27 | 冷凍サイクル装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9341393B2 (ja) |
EP (1) | EP2565555B1 (ja) |
JP (1) | JP5349686B2 (ja) |
CN (1) | CN102859294B (ja) |
ES (1) | ES2869237T3 (ja) |
WO (1) | WO2011135616A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099898A1 (ja) * | 2011-12-28 | 2013-07-04 | ダイキン工業株式会社 | 冷凍装置 |
WO2014065094A1 (ja) * | 2012-10-26 | 2014-05-01 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP2014145541A (ja) * | 2013-01-29 | 2014-08-14 | Daikin Ind Ltd | 冷凍装置 |
WO2014136187A1 (ja) * | 2013-03-04 | 2014-09-12 | 三菱電機株式会社 | 空気調和装置 |
JP2016106211A (ja) * | 2016-01-20 | 2016-06-16 | 三菱電機株式会社 | 空気調和装置 |
US9518754B2 (en) | 2012-01-24 | 2016-12-13 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
WO2019215813A1 (ja) * | 2018-05-08 | 2019-11-14 | 三菱電機株式会社 | 空気調和機 |
WO2019234986A1 (ja) * | 2018-06-07 | 2019-12-12 | パナソニックIpマネジメント株式会社 | 冷凍サイクル装置およびそれを備えた液体加熱装置 |
JP2020115068A (ja) * | 2019-01-18 | 2020-07-30 | パナソニックIpマネジメント株式会社 | 冷凍サイクル装置及びそれを備えた液体加熱装置 |
CN111578547A (zh) * | 2020-05-28 | 2020-08-25 | 珠海格力电器股份有限公司 | 双回热制冷系统及其控制方法 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014084343A1 (ja) * | 2012-11-30 | 2014-06-05 | サンデン株式会社 | 車両用空気調和装置 |
KR102163859B1 (ko) * | 2013-04-15 | 2020-10-12 | 엘지전자 주식회사 | 공기조화기 및 그 제어방법 |
US9709325B2 (en) * | 2013-11-25 | 2017-07-18 | Chevron U.S.A. Inc. | Integration of a small scale liquefaction unit with an LNG plant to convert end flash gas and boil-off gas to incremental LNG |
KR102240070B1 (ko) * | 2014-03-20 | 2021-04-13 | 엘지전자 주식회사 | 공기조화기 및 그 제어방법 |
CA2952828C (en) * | 2014-07-01 | 2023-05-16 | Evapco, Inc. | Evaporator liquid preheater for reducing refrigerant charge |
EP3023712A1 (en) * | 2014-11-19 | 2016-05-25 | Danfoss A/S | A method for controlling a vapour compression system with a receiver |
CN107429948B (zh) * | 2015-03-19 | 2019-12-13 | 三菱电机株式会社 | 热泵系统 |
JP6814974B2 (ja) * | 2015-09-11 | 2021-01-20 | パナソニックIpマネジメント株式会社 | 冷凍装置 |
CN106403334A (zh) * | 2016-09-13 | 2017-02-15 | 克莱门特捷联制冷设备(上海)有限公司 | 能优化控制冷水机组的压力比的制冷系统 |
CN106766306A (zh) * | 2016-11-29 | 2017-05-31 | 天津商业大学 | 一种双级压缩低温热泵系统 |
US10422562B2 (en) * | 2017-02-14 | 2019-09-24 | Heatcraft Refrigeration Products Llc | Cooling system with intermediary heat exchange |
US10352605B2 (en) * | 2017-02-14 | 2019-07-16 | Heatcraft Refrigerator Products, LLC | Cooling system with intermediate heat exchange fluid loop |
JPWO2018216187A1 (ja) * | 2017-05-26 | 2019-12-19 | 三菱電機株式会社 | 冷凍サイクル装置 |
CN107120859A (zh) * | 2017-06-06 | 2017-09-01 | 珠海格力节能环保制冷技术研究中心有限公司 | 一种冰箱制冷循环系统 |
KR102372489B1 (ko) * | 2017-07-10 | 2022-03-08 | 엘지전자 주식회사 | 증기 분사 사이클을 이용한 공기조화장치 및 그 제어방법 |
US10684052B2 (en) * | 2017-12-01 | 2020-06-16 | Johnson Controls Technology Company | Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit |
CN108692477A (zh) * | 2018-04-19 | 2018-10-23 | 广东美的暖通设备有限公司 | 空调热水器系统 |
JP6986675B2 (ja) * | 2018-05-31 | 2021-12-22 | パナソニックIpマネジメント株式会社 | 超臨界蒸気圧縮式冷凍サイクル及び液体加熱装置 |
EP3628940B1 (en) | 2018-09-25 | 2022-04-20 | Danfoss A/S | A method for controlling a vapour compression system based on estimated flow |
PL3628942T3 (pl) | 2018-09-25 | 2021-10-04 | Danfoss A/S | Sposób sterowania układem sprężania pary przy zmniejszonym ciśnieniu ssania |
CN111288690A (zh) * | 2020-02-24 | 2020-06-16 | 广东美的暖通设备有限公司 | 冷水机系统、冷水机系统的控制方法和可读存储介质 |
CN111426037B (zh) * | 2020-04-03 | 2021-07-30 | 广东美的暖通设备有限公司 | 空调设备、空调设备的运行控制方法和可读存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH046372A (ja) * | 1990-04-23 | 1992-01-10 | Mitsubishi Electric Corp | 空気調和装置 |
JPH10288411A (ja) * | 1997-01-09 | 1998-10-27 | Nippon Soken Inc | 蒸気圧縮式冷凍サイクル |
JP2005164103A (ja) * | 2003-12-01 | 2005-06-23 | Matsushita Electric Ind Co Ltd | 冷凍サイクル装置およびその制御方法 |
JP2007503571A (ja) * | 2003-06-11 | 2007-02-22 | キャリア コーポレイション | エコノマイザ冷凍システムの超臨界圧の調整 |
JP2007170683A (ja) * | 2005-12-19 | 2007-07-05 | Hitachi Ltd | 空気調和機 |
JP2010091135A (ja) * | 2008-10-03 | 2010-04-22 | Tokyo Electric Power Co Inc:The | 二段圧縮式給湯装置およびその起動制御方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6418735B1 (en) * | 2000-11-15 | 2002-07-16 | Carrier Corporation | High pressure regulation in transcritical vapor compression cycles |
US7631510B2 (en) * | 2005-02-28 | 2009-12-15 | Thermal Analysis Partners, LLC. | Multi-stage refrigeration system including sub-cycle control characteristics |
JP5196452B2 (ja) * | 2007-04-24 | 2013-05-15 | キャリア コーポレイション | 充填量管理を備えた遷臨界冷媒蒸気圧縮システム |
-
2010
- 2010-04-27 WO PCT/JP2010/003017 patent/WO2011135616A1/ja active Application Filing
- 2010-04-27 EP EP10850639.5A patent/EP2565555B1/en active Active
- 2010-04-27 JP JP2012512530A patent/JP5349686B2/ja not_active Expired - Fee Related
- 2010-04-27 CN CN201080066443.0A patent/CN102859294B/zh active Active
- 2010-04-27 US US13/634,562 patent/US9341393B2/en active Active
- 2010-04-27 ES ES10850639T patent/ES2869237T3/es active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH046372A (ja) * | 1990-04-23 | 1992-01-10 | Mitsubishi Electric Corp | 空気調和装置 |
JPH10288411A (ja) * | 1997-01-09 | 1998-10-27 | Nippon Soken Inc | 蒸気圧縮式冷凍サイクル |
JP4207235B2 (ja) | 1997-01-09 | 2009-01-14 | 株式会社日本自動車部品総合研究所 | 蒸気圧縮式冷凍サイクル |
JP2007503571A (ja) * | 2003-06-11 | 2007-02-22 | キャリア コーポレイション | エコノマイザ冷凍システムの超臨界圧の調整 |
JP2005164103A (ja) * | 2003-12-01 | 2005-06-23 | Matsushita Electric Ind Co Ltd | 冷凍サイクル装置およびその制御方法 |
JP2007170683A (ja) * | 2005-12-19 | 2007-07-05 | Hitachi Ltd | 空気調和機 |
JP2010091135A (ja) * | 2008-10-03 | 2010-04-22 | Tokyo Electric Power Co Inc:The | 二段圧縮式給湯装置およびその起動制御方法 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099898A1 (ja) * | 2011-12-28 | 2013-07-04 | ダイキン工業株式会社 | 冷凍装置 |
JP2013139924A (ja) * | 2011-12-28 | 2013-07-18 | Daikin Industries Ltd | 冷凍装置 |
CN104024764A (zh) * | 2011-12-28 | 2014-09-03 | 大金工业株式会社 | 制冷装置 |
CN104024764B (zh) * | 2011-12-28 | 2015-05-20 | 大金工业株式会社 | 制冷装置 |
US9518754B2 (en) | 2012-01-24 | 2016-12-13 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
WO2014065094A1 (ja) * | 2012-10-26 | 2014-05-01 | 三菱電機株式会社 | 冷凍サイクル装置 |
US9797637B2 (en) | 2012-10-26 | 2017-10-24 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
JP2014145541A (ja) * | 2013-01-29 | 2014-08-14 | Daikin Ind Ltd | 冷凍装置 |
JP5963941B2 (ja) * | 2013-03-04 | 2016-08-03 | 三菱電機株式会社 | 空気調和装置 |
WO2014136187A1 (ja) * | 2013-03-04 | 2014-09-12 | 三菱電機株式会社 | 空気調和装置 |
JP2016106211A (ja) * | 2016-01-20 | 2016-06-16 | 三菱電機株式会社 | 空気調和装置 |
WO2019215813A1 (ja) * | 2018-05-08 | 2019-11-14 | 三菱電機株式会社 | 空気調和機 |
JPWO2019215813A1 (ja) * | 2018-05-08 | 2021-02-25 | 三菱電機株式会社 | 空気調和機 |
WO2019234986A1 (ja) * | 2018-06-07 | 2019-12-12 | パナソニックIpマネジメント株式会社 | 冷凍サイクル装置およびそれを備えた液体加熱装置 |
JPWO2019234986A1 (ja) * | 2018-06-07 | 2021-06-17 | パナソニックIpマネジメント株式会社 | 冷凍サイクル装置およびそれを備えた液体加熱装置 |
JP2020115068A (ja) * | 2019-01-18 | 2020-07-30 | パナソニックIpマネジメント株式会社 | 冷凍サイクル装置及びそれを備えた液体加熱装置 |
JP7012208B2 (ja) | 2019-01-18 | 2022-01-28 | パナソニックIpマネジメント株式会社 | 冷凍サイクル装置及びそれを備えた液体加熱装置 |
CN111578547A (zh) * | 2020-05-28 | 2020-08-25 | 珠海格力电器股份有限公司 | 双回热制冷系统及其控制方法 |
CN111578547B (zh) * | 2020-05-28 | 2021-06-08 | 珠海格力电器股份有限公司 | 双回热制冷系统的控制方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2565555B1 (en) | 2021-04-21 |
EP2565555A4 (en) | 2014-09-03 |
EP2565555A1 (en) | 2013-03-06 |
ES2869237T3 (es) | 2021-10-25 |
CN102859294A (zh) | 2013-01-02 |
US20130000340A1 (en) | 2013-01-03 |
US9341393B2 (en) | 2016-05-17 |
JPWO2011135616A1 (ja) | 2013-07-18 |
JP5349686B2 (ja) | 2013-11-20 |
CN102859294B (zh) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5349686B2 (ja) | 冷凍サイクル装置 | |
JP5710007B2 (ja) | 冷凍サイクル装置 | |
JP5984914B2 (ja) | 空気調和装置 | |
US9222706B2 (en) | Refrigeration cycle apparatus and operating method of same | |
JP4242131B2 (ja) | 冷凍サイクル装置 | |
JP2004150750A (ja) | 冷凍サイクル装置の高圧冷媒圧力の決定方法 | |
JP2007278686A (ja) | ヒートポンプ給湯機 | |
JP2004150748A (ja) | 冷凍サイクル装置 | |
JP2013148331A (ja) | ヒートポンプシステム | |
JP2007218460A (ja) | 冷凍サイクル装置および保冷庫 | |
WO2014129361A1 (ja) | 空気調和装置 | |
JP2009014208A (ja) | 冷凍装置 | |
JP4650049B2 (ja) | 冷凍装置 | |
JP4887929B2 (ja) | 冷凍装置 | |
JP4552721B2 (ja) | 冷凍装置 | |
JP2006258331A (ja) | 冷凍装置 | |
WO2022230034A1 (ja) | 空気調和装置 | |
JP3863555B2 (ja) | 冷凍サイクル装置 | |
JP7078724B2 (ja) | 冷凍サイクル装置およびその制御方法 | |
JP2009008350A (ja) | 冷凍装置 | |
JP4644278B2 (ja) | 冷凍サイクル装置 | |
WO2015140950A1 (ja) | 空気調和装置 | |
JP2012052801A (ja) | 冷凍装置 | |
JP2006220356A (ja) | 空気調和装置 | |
JP2013108713A (ja) | 冷凍装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080066443.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10850639 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012512530 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13634562 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010850639 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |