WO2011132497A1 - 膜ユニット及び膜分離装置 - Google Patents

膜ユニット及び膜分離装置 Download PDF

Info

Publication number
WO2011132497A1
WO2011132497A1 PCT/JP2011/057275 JP2011057275W WO2011132497A1 WO 2011132497 A1 WO2011132497 A1 WO 2011132497A1 JP 2011057275 W JP2011057275 W JP 2011057275W WO 2011132497 A1 WO2011132497 A1 WO 2011132497A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
separation
bubbles
air
water
Prior art date
Application number
PCT/JP2011/057275
Other languages
English (en)
French (fr)
Inventor
和宏 豊岡
寛 野口
茂雄 佐藤
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to RU2012145044/05A priority Critical patent/RU2523806C1/ru
Priority to EP11771834.6A priority patent/EP2561922B1/en
Priority to CN201180019784.7A priority patent/CN102858440B/zh
Priority to US13/641,944 priority patent/US8591738B2/en
Priority to CA2796320A priority patent/CA2796320C/en
Priority to KR1020127026922A priority patent/KR101363015B1/ko
Priority to SG2012077228A priority patent/SG184911A1/en
Priority to AU2011243832A priority patent/AU2011243832B2/en
Publication of WO2011132497A1 publication Critical patent/WO2011132497A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a membrane separation apparatus, and more particularly to a membrane unit and a membrane separation apparatus used in the field of water treatment.
  • Membrane separation technology has conventionally been used in seawater desalination, water purification, gas separation, blood purification, etc. Recently, research on applying membrane separation technology to wastewater treatment has been advanced from the viewpoint of environmental protection. It is done.
  • Non-Patent Document 1 As a method of solving this subject, various methods of performing solid-liquid separation of treated water using a membrane module in which separation membranes such as microfiltration membranes and ultrafiltration membranes are disposed in recent years have been studied.
  • filtration treatment of the water to be treated is performed using the separation membrane, treated water of high water quality can be obtained (for example, Non-Patent Document 1).
  • the aeration device 2 When solid-liquid separation of water to be treated is performed using a separation membrane, clogging of the surface of the separation membrane by suspended substances proceeds as filtration continues, so the filtration flow rate decreases or the transmembrane pressure difference increases. Will occur.
  • the aeration device 2 In order to recover such a state, as shown in FIG. 8, the aeration device 2 is disposed below the membrane module 23, and air bubbles 6 are aerated from the aeration device 2.
  • suspended substances on the surface of the separation membrane 5 are peeled off by shaking (scrubbing) the treated water (for example, Patent Documents 1 and 2).
  • a blower or a compressor is used as a supply source of scrubbing air to the aeration device 2.
  • the air diffuser 2 (diffuser tube) is provided for each separation membrane 5. It is arranged. Furthermore, in order to improve the dissolution efficiency of the scrubbing air in the water to be treated, the bubble 6 diameter is reduced.
  • the larger the bubble 6 diameter of the scrubbing the higher the cleaning effect can be obtained.
  • the smaller the bubble diameter the higher the dissolution efficiency can be obtained, but there is a trade-off with the cleaning effect, so the amount of scrubbing air must be increased in order to improve the cleaning effect. Therefore, a large amount of energy is required to blow the entire scrubbing air.
  • the dissolution efficiency decreases as the bubbles 6 become larger, it is necessary to increase the amount of air blown from the supply source that supplies scrubbing air to the aeration device 2 in order to obtain the same amount of dissolution.
  • An object of the present invention is to provide a membrane separation unit and a membrane separation apparatus which contribute to the improvement of the cleaning effect of a membrane element by scrubbing in view of the above-mentioned circumstances.
  • a membrane element to be immersed in the liquid to be treated in the treatment tank, an aeration means provided below the membrane element, and between the membrane element and the aeration means. And air bubble collecting means for collecting the air bubbles diffused by the aeration means.
  • the membrane unit it is preferable that a plurality of the bubble collecting means be provided, and the bubble collecting means be disposed in multiple stages.
  • the size of the bubble collecting means disposed in the multistage may be smaller as it is separated from the aeration means.
  • the present invention relates to scrubbing of a separation membrane (membrane element) provided in a membrane unit (membrane separation unit).
  • the scrubbing is a method of removing the deposits on the surface of the separation membrane by swinging the water to be treated on the surface of the separation membrane by a water flow containing rising bubbles.
  • the separation membrane is provided with a bubble retention plate (bubble collecting means) for providing a bubble having a large particle diameter.
  • a membrane separation apparatus of a system using a membrane separation activated sludge method (Membran Bioreactor: MBR) of a lower drainage treatment facility is exemplified, but the membrane separation unit and the membrane separation apparatus according to the present invention It is not limited to the embodiment. That is, the membrane unit and the membrane separation apparatus according to the present invention can be applied to the cleaning of separation membranes in an apparatus for filtering various water to be treated (not limited to water but may be an organic solvent or the like).
  • the membrane separation unit 1 is configured of a diffuser 2, a bubble retention plate 3 (bubble collecting means), and a membrane module 4.
  • the aeration device 2 is disposed below the membrane module 4 and generates air bubbles 6 for cleaning (scrubbing) the separation membrane 5 disposed in the membrane module 4.
  • an example of the air diffuser 2 is one in which a hole 8 of about 1 to 10 mm is formed in a cylindrical member 7 made of metal or resin.
  • An air inflow pipe 9 into which scrubbing air supplied from a blower or a compressor (not shown) flows is connected to one end of the cylindrical member 7, and the scrubbing air flowing in from the air inflow pipe 9 is ejected from the hole 8. As a result, air bubbles 6 are generated.
  • the air bubble retention plate 3 is provided between the air diffuser 2 and the membrane module 4 and temporarily holds the air bubbles 6 generated from the air diffuser 2.
  • the bubbles 6 having a large particle diameter can be fed to the membrane module 4 by collecting the small bubbles 6 once and polymerizing the bubbles 6 by the bubble retention plate 3.
  • the shape of the bubble retention plate 3 is only required to be capable of polymerizing the bubbles 6 generated from the aeration device 2 to generate the bubbles 6 having a large particle diameter, it is possible to use a plate other than the flat plate illustrated in FIG. Also, as shown in FIGS. 3 (a) to 3 (f), a semi-cylindrical shape, a half-width cylindrical shape or the like may be appropriately selected and used, and these may be used in combination. Further, the material of the air bubble retention plate 3 is not particularly limited, and may be formed of metal, resin, ceramic or the like. In addition, you may provide the bubble retention board 3 in multiple numbers. In addition, the air bubble retention plate 3 may be disposed so as to be parallel or perpendicular to the film surface of the separation membrane 5.
  • the membrane module 4 includes a plurality of flat separation membranes 5, a support 10 for supporting the side end of the separation membrane 5, and a guide 11 for closing the side of the support 10.
  • the support 10 and the guide 11 constitute a housing having an opening at the top and the bottom.
  • the guide 11 is formed so that the upper open end cross-sectional area of the membrane module 4 is smaller than the lower open end cross-sectional area, the filtration efficiency by the separation membrane 5 is improved. That is, when the membrane module 4 is stacked, the space 17 is formed between the upper open end of the membrane module 4 and the lower open end of the membrane module (not shown) stacked on the membrane module 4.
  • membrane module 4 flows in, and it can reduce the density
  • a water collecting portion (not shown) communicating with a water collecting channel 5b formed in the separation membrane 5 described later is formed.
  • the water collecting portion may be provided at one end of the separation membrane 5 or at both ends.
  • the water collecting portion is in communication with the filtration suction port 12 formed in the support portion 10.
  • a piping of a pump for sucking a filtrate (not shown) is connected to the filtration suction port 12.
  • the separation membrane 5 is disposed in the membrane module 4 such that the membrane surface 5 a of the separation membrane 5 is parallel to the flow direction of the treated water flowing through the membrane module 4.
  • FIG. 5 is a cross-sectional view of the membrane module 4.
  • a flat ceramic flat membrane of (length) 100 to 200 mm ⁇ (width) 200 to 1000 mm ⁇ (thickness) 5 to 20 mm is shown.
  • ceramic flat membranes are preferred as they can be produced by extrusion. Then, in the case of extrusion molding, it is preferable to determine an appropriate size in consideration of equipment for forming a mold or the like, deformation after extrusion, and the like.
  • the separation membrane 5 is not limited to the embodiment, and for example, an organic hollow fiber membrane, an organic flat membrane, an inorganic flat membrane, an inorganic single-tubular membrane, etc., which are well-known separation membranes applied to MBR, are used. Just do it. And as a material of the separation membrane 5, cellulose, polyolefin, polysulfone, PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), ceramics etc. are illustrated.
  • the pore size of the separation membrane 5 is not particularly limited, and may be selected according to the particle size of the substance to be subjected to solid-liquid separation. For example, if it is used for solid-liquid separation of activated sludge, it may be 0.5 ⁇ m or less, and it may be 0.1 ⁇ m or less if sterilization is required like filtration of purified water. That is, the pore diameter (0.001 to 0.1 ⁇ m) generally formed in the ultrafiltration membrane or the pore diameter (0.1 to 1 ⁇ m) generally formed in the microfiltration membrane may be used.
  • a plurality of water collecting passages 5 b are formed at the end of the ceramic flat membrane as an example of the separation membrane 5.
  • the type and arrangement of the separation membrane 5 are determined in consideration of the compactness of the membrane module 4, the reduction in pressure loss when taking out the filtrate, the ease of processing when the membrane module 4 is disposed, and the like.
  • the membrane module 4 having the above configuration, solids and the like from the water to be treated are trapped on the surface of the separation membrane 5 on the membrane surface 5a of the separation membrane 5, and moisture and solids are separated.
  • the filtered water from which solids and the like have been removed reaches the water collecting channel 5b, and is collected outside the biological reaction tank (outside of the membrane separation apparatus 1) via the water collecting portion connected to the water collecting channel 5b and the filter suction port 12. Be transported.
  • the number of separation membranes 5 provided in the membrane module 4 may be appropriately selected in consideration of operability and maintainability, and may be, for example, about 10 to 30.
  • the guides 11 are provided in pairs. Good.
  • one pair of guides 11 having the same height as the height of the membrane module 4 may be installed on the left and right of the membrane element group as shown in FIG.
  • a plurality of divided guides 11 may be provided in the height direction of the membrane module.
  • the shape of the guide 11 may be formed in the flow channel of the membrane module 4 so as to narrow the flow channel in the portion where the separation membrane 5 is provided.
  • the speed of the treated water flowing between the guide 11 and the separation membrane 5 is increased, and the cleaning effect is improved.
  • the gas-liquid mixed flow including the air bubbles 6 converges, and the air bubbles can be efficiently acted on the film surface 5 a of the separation membrane 5.
  • the membrane separation apparatus 14 which concerns on Embodiment 1 of this invention is comprised from the biological reaction tank 15, the membrane separation unit 1, and the air diffuser 16 for oxygen supply.
  • the membrane separation unit 1 is configured by stacking the membrane modules 4 in the depth direction of the treated water, and is installed so as to be immersed in the liquid phase 15 in the biological reaction tank 15 of the MBR. By stacking the membrane modules 4, it is possible to cause the air bubbles 6 generated from the air diffuser 2 to act on more separation membranes 5. That is, as the number of stacked membrane modules 4 increases, the scrubbing effect on the amount of air diffused from the diffuser 2 increases.
  • the cross-sectional area of the opening of the membrane module 4 is narrow at the upper opening and wide at the lower opening.
  • the oxygen supply diffuser 16 is provided in the biological reaction tank 15 and supplies oxygen necessary for the microbial reaction to the liquid phase.
  • the number of membrane modules 4 to be stacked is selected based on the weight and the shape considering the water depth and maintainability of the biological reaction tank 15. For example, the number of membrane modules 4 is selected such that the height of the membrane separation unit 1 is about 2 m to 3 m.
  • the flow of the treated water inside the membrane separation unit 1 is a flow from the opening at the lower part of the membrane separation unit 1 toward the opening at the upper part.
  • the membrane separation unit 1 flow path is simply sealed from the external treated water, and the treated water is filtered by the separation membrane 5, so that the upper part of the membrane separation unit 1, the more the membrane separation unit 1 Activated sludge concentration of the treated water circulating inside increases.
  • the water to be treated is drawn into the membrane separation unit 1 from the gaps 17 of the stacked membrane modules 4, so a large increase in the activated sludge concentration in the membrane separation unit 1 is suppressed. Can. As a result, the load on filtration is reduced, which leads to alleviation of membrane blockage and reduction of energy consumption.
  • a diffuser is disposed below the separation membrane 5 to prevent clogging of the separation membrane 5 due to adhesion and deposition of fine particles, extracellular macromolecules and the like produced by microorganisms on the surface and inside of the separation membrane 5.
  • the aeration may be performed continuously from the aeration device 2.
  • a soaking suction filtration method, a gravity filtration method using a water head difference, or the like is used as a method of operating the membrane separation apparatus 14.
  • the separation membrane 5 When filtration is performed, air is diffused from the diffuser 2 and the diffuser 16 for oxygen supply.
  • the separation membrane 5 can be cleaned by causing flow velocity, turbulent flow, and shear force to act on the surface layer of the separation membrane 5 due to the rise of the bubbles 6 in the liquid. That is, the gas-liquid mixed flow generated by the air bubbles 6 discharged from the diffuser 2 rises and contacts the separation membrane 5. Each separation membrane 5 is scrubbed by this gas-liquid mixed flow. Further, the oxygen supply diffuser 16 dissolves oxygen in the water to be treated.
  • the water to be treated is separated into solid content and water by the filtration function of the separation membrane 5.
  • the water collection passage 5b of the separation membrane 5 communicates with the filtration suction port 12 via a water collection portion (not shown), and the other end of the filtration suction port 12 is connected via piping.
  • a suction pump (not shown) is connected. Therefore, the filtered water filtered by the separation membrane 5 is sucked by the suction pump through the filtration suction port 12 and transferred out of the membrane separation device 14.
  • the particle diameter of the air bubbles 6 used for cleaning the separation membrane 5 is larger than the distance between the separation membranes 5, a higher cleaning effect can be obtained.
  • the cleaning effect is further improved by causing the separation membrane 5 to act on the bubble 6 including the bubble 6 having a diameter of 10 mm or more. Therefore, the air bubble retention plate 3 of the membrane separation device 14 according to the embodiment of the present invention causes the air bubbles 6 from the aeration device 2 to stay, thereby collecting the air bubbles 6 and forming the air bubbles 6 having a large particle diameter. Then, the bubbles 6 having a large particle diameter are used for washing the separation membrane 5.
  • the flow velocity of the air injected from one hole 8 is 10 m / sec or more, it is surely due to the relationship of the action of pushing away the water (mixed liquid) in the cylindrical member 7 etc. It is known from experience that stable and aeration can be performed. Further, the amount of scrubbing air blowing required for cleaning the separation membrane 5 is determined based on the filtration flow rate of the membrane unit 1, and the larger the filtration flow rate, the larger the amount of scrubbing air blowing that becomes necessary.
  • the filtration flow rate is 15 m 3 / day
  • the scrubbing air blowing rate is 6 times the filtration flow rate
  • the air flow rate injected from one hole 8 is 15 m / sec.
  • the diameter ⁇ of the holes 8 is 3 mm
  • the number of the holes 8 is ten.
  • the diameter ⁇ of the holes 8 is 5 mm
  • the number of holes is three. That is, in order to improve the cleaning effect of the separation membrane 5, it is necessary to generate the large air bubbles 6, but if the holes 8 formed in the diffuser 2 are made larger in order to generate the large air bubbles 6, it is stable. In order to perform aeration, the number of holes 8 must be reduced. When the number of holes 8 decreases, it is difficult to cause the bubbles 6 to act on all the separation membranes 5 approximately uniformly. Therefore, in the conventional membrane separation apparatus, the scrubbing air blowing amount is required to be 10 to 20 times the filtration flow rate.
  • the membrane separation device 14 by providing the air bubble retention plate 3 between the air diffusion device 2 and the membrane module 4, the air bubbles 6 generated from the air diffusion device 2 are gathered to form air bubbles 6 having a large particle diameter. Act on the separation membrane 5. Therefore, the cleaning effect of separation membrane 5 can be improved. Furthermore, since the air bubbles 6 can be temporally and spatially averaged by the air bubble retention plate 3, the air bubbles 6 can be uniformly and sufficiently acted on all the separation membranes 5. Therefore, a sufficient cleaning effect can be obtained even by scrubbing with a scrubbing air flow rate of about six times the filtration flow rate.
  • the diameter of the air bubbles 6 used for aeration is large, the cleaning effect is high, and if the diameter of the air bubbles 6 used to dissolve the gas in the water to be treated is small, the dissolution efficiency is improved. Therefore, by separately designing the air diffusion device 2 for scrubbing and the air diffusion device 16 for microbial reaction, it is possible to reduce the energy consumption of the blower or compressor used in the air diffusion device 2 or the like.
  • the invention according to Embodiment 2 of the present invention relates to a method of arranging the bubble stagnation plate 3 provided in the membrane unit 18 and the membrane separation apparatus 19. Therefore, each component constituting the membrane unit 18 and the membrane separation device 19 is the same as the membrane unit 1 and the membrane separation device 14 according to the first embodiment. Therefore, the same reference numerals are given to the same parts as those in the first embodiment, and the detailed description will be omitted.
  • the operation of the membrane separation apparatus 19 is also the same as the description of the membrane separation apparatus 14 of the first embodiment.
  • the membrane separation unit 18 is configured of a diffuser 2, a bubble retention plate 3 (bubble collecting means), and a membrane module 4.
  • the bubble retention plates 3 are installed in multiple stages.
  • the bubbles 6 can be spatially dispersed by arranging the bubble retaining plates 3 in multiple stages. Further, as shown in FIG. 7, the bubbles 6 are adjusted by adjusting the width of the bubble retaining plate 3 arranged in multiple stages (for example, the width of the bubble retaining plate 3 is narrowed as it is separated from the diffuser 2). Can be adjusted to act on the entire separation membrane 5.
  • the air bubbles 6 can be made to act on the entire separation membrane 5 by the air bubble retention plate 3, so a plurality of air diffusers 2 can be provided. It is possible to prevent the phenomenon that the amount of injected air becomes nonuniform due to branching.
  • the membrane unit and the membrane separation apparatus of the present invention since bubbles having a large diameter can be made to act on the membrane element, a large cleaning effect can be obtained even if the amount of air injected from the diffuser is reduced. You can get Further, by providing the bubble stagnation plates in a plurality of stages, it is possible to make the bubbles supplied to each of the membrane elements be uniform both temporally and spatially. Since the air bubbles can be made spatially uniform by the air bubble retention means, the number of the air diffusers (or the branches of the air diffusers) can be reduced, and the air bubbles are not clogged due to clogging of the air diffuser. Uniformity can be prevented.
  • Membrane separation unit membrane unit 2
  • Aeration device (aeration means) 3
  • Bubble retention plate bubble collecting means 4
  • membrane module 5 separation membrane (membrane element) 5a: Membrane surface 5b: Water collecting channel 6: Air bubble 10: Support portion 11: Guide 12: Filtration suction port 17: Void 14: Membrane separation device 15: Biological reaction tank (treatment tank) 16 ...
  • Aeration device for oxygen supply oxygen supply means

Abstract

膜分離装置において、スクラビングによる膜エレメントの洗浄効果を向上させる。 処理槽15内の被処理液中に浸漬される分離膜5と(膜エレメント)、分離膜5を洗浄するための気泡6を散気する散気手段2と、を備えた膜分離装置14において、散気手段2と分離膜5との間に気泡滞留板3を備える。気泡滞留板3は、散気装置2から散気された気泡6を滞留させることで、気泡6を集合させ径の大きな気泡6を形成する。径の大きな気泡6を分離膜5に作用させることで、分離膜5の洗浄効果が向上する。また、気泡滞留板3を多段に備えることで、分離膜5全体に気泡6を作用させることができる。

Description

膜ユニット及び膜分離装置
 この発明は、膜分離装置に関するものであり、特に水処理の分野で用いられる膜ユニット及び膜分離装置に関する。
 膜分離技術は、従来から海水淡水化、浄水処理、ガス分離、血液浄化等で使用されてきたが、最近では環境保全の観点から、廃水処理にも膜分離技術を適用しようとする研究が進められている。
 従来、浄水処理、下排水処理、或いは産業排水の処理等、濁度の高い被処理水の固液分離を行う方法として、砂濾過や重力沈殿等が行われている。しかしながら、これら方法による固液分離は、得られる被処理水の水質が不充分となる場合が生じることや、固液分離のために広大な用地を必要とするといった課題を有している。
 この課題を解決する方法として、近年精密濾過膜、限外濾過膜等の分離膜を配設した膜モジュールを用いて被処理水の固液分離を行う方法が種々検討されている。分離膜を用いて被処理水の濾過処理を行うと、水質の高い処理水を得ることができる(例えば、非特許文献1)。
 分離膜を用いて被処理水の固液分離を行う場合、濾過処理を継続するにしたがって懸濁物質による分離膜表面の目詰まりが進行するため、濾過流量の低下、或いは膜間差圧の上昇が生じる。このような状態を回復させるため、図8に示すように、膜モジュール23の下方に散気装置2を配設し、散気装置2から気泡6の散気を行い、分離膜5表面の被処理水を揺動させる(スクラビングする)ことにより分離膜5表面の懸濁物質を引き剥がす方法が行われている(例えば、特許文献1、2)。散気装置2へのスクラビングエアの供給源にはブロワやコンプレッサが使用されている。
 特許文献1、2に記載の膜分離装置では、スクラビングするための気泡6を分離膜5全体に均等に、かつ十分に作用させるために、分離膜5ごとに散気装置2(散気管)を配設している。さらに、被処理水に対するスクラビングエアの溶解効率を向上させるために、気泡6径を小さくしている。
特開平8-281080号公報 特開2001-162141号公報
上坂太一、外3名、「排水処理の高度化・再利用に用いられる液中膜」、クボタ技報、株式会社クボタ、2005年6月、第39巻、p.42-50
 しかしながら、スクラビングの気泡6径は、大きい方が高い洗浄効果を得ることができる。つまり、気泡6径を小さくすると、高い溶解効率を得ることができるが、洗浄効果とトレードオフになるため、洗浄効果を向上させるためにスクラビングエアの量を増大させなければならず、結果的には、全体のスクラビングエアの送風に大きなエネルギーが必要となる。また、気泡6が大きくなれば溶解効率が低下するため、同じ溶解量を得るためには、散気装置2にスクラビングエアを供給する供給源の送風量を増大させる必要がある。
 省エネルギーの観点から、送風量を抑制することが求められており、少ない送風量で径の大きな気泡6を生成させる場合、散気装置2から放出される気泡6量が低減してしまう。気泡6量が減少すると、スクラビングするための気泡6を全膜エレメントに均等に、かつ十分に作用させることが困難となっていた。
 本発明は、上記事情に鑑みて、スクラビングによる膜エレメントの洗浄効果の向上に寄与する膜分離ユニット及び膜分離装置を提供することを目的とするものである。
 すなわち、本発明の膜ユニットは、処理槽内の被処理液中に浸漬される膜エレメントと、前記膜エレメントの下方に備えられる散気手段と、前記膜エレメントと前記散気手段との間に、前記散気手段より散気された気泡を集合させる気泡集合手段と、を備えたことを特徴としている。
 また、上記膜ユニットにおいて、前記気泡集合手段を複数備え、前記気泡集合手段を多段に配設するとよい。
 また、上記膜ユニットにおいて、前記多段に配設された気泡集合手段の大きさを前記散気手段から離間するほど小さくしてもよい。
 また、上記課題を解決する本発明の膜分離装置は、処理槽と、前記処理槽内の被処理液中に浸漬される膜エレメントと、前記被処理液中に酸素を供給する酸素供給手段と、前記膜エレメントの下方に備えられる散気手段と、前記膜エレメントと前記散気手段との間に、前記散気手段より散気された気泡を集合させる気泡集合手段と、を備えたことを特徴としている。
本発明の実施形態1に係る膜分離装置の例を示す概略断面図。 本発明の実施形態1に係る散気装置の例を示す断面図。 本発明の実施形態1に係る気泡滞留板の例を示す概略図。 本発明の実施形態1に係る膜モジュールの例を示す斜視図。 本発明の実施形態1に係る膜モジュールの例を示す斜視断面図。 本発明の実施形態2に係る膜分離装置の例を示す概略断面図。 本発明の実施形態2に係る膜分離装置の変形例を示す概略断面図。 従来技術に係る膜分離装置の例を示す概略断面図。
 本発明の実施形態に係る膜ユニット及び膜分離装置について図1~7を参照して詳細に説明する。
 本発明は、膜ユニット(膜分離ユニット)に備えられる分離膜(膜エレメント)のスクラビングに関するものである。スクラビングとは、上昇する気泡を含んだ水流により分離膜表面の被処理水を揺動させて分離膜表面の付着物を除去する方法である。
 スクラビングに供される気泡は、気泡の粒子径が大きい方が分離膜の洗浄効果が高いことが知られている。そこで、本発明に係る膜ユニット及び膜分離装置では、分離膜に粒子径の大きい気泡を供するための気泡滞留板(気泡集合手段)を備えている。
 なお、実施形態の説明では、下排水処理施設の膜分離活性汚泥法(Membran Bioreactor:MBR)を用いたシステムの膜分離装置を例示するが、本発明に係る膜分離ユニット及び膜分離装置はこの実施形態に限定されるものではない。すなわち、本願発明に係る膜ユニット及び膜分離装置は、さまざまな被処理水(水に限らず有機溶媒等でもよい)を濾過する装置において、分離膜の洗浄に適用することができる。
 図1に示すように、本発明の実施形態1に係る膜分離ユニット1は、散気装置2、気泡滞留板3(気泡集合手段)、及び膜モジュール4より構成される。
 散気装置2は、膜モジュール4の下方に配置され、膜モジュール4に配設される分離膜5を洗浄する(スクラビングする)ための気泡6を発生させる。図2に示すように、散気装置2は、金属または樹脂からなる筒状部材7に1~10mm程度の孔8が形成されたものが例示される。筒状部材7の一端には、ブロワやコンプレッサ(図示省略)から供給されるスクラビングエアが流入するエア流入管9が連結されており、エア流入管9より流入したスクラビングエアが孔8より射出されることにより気泡6が生成する。
 気泡滞留板3は、散気装置2と膜モジュール4間に備えられ、散気装置2から発生した気泡6を一時的に滞留させる。気泡滞留板3で、一旦小気泡6を集めて気泡6を重合させることで、膜モジュール4に大きな粒子径の気泡6を送り込むことができる。
 気泡滞留板3の形状は、散気装置2から発生する気泡6を重合させて大きな粒径を有する気泡6を生成させることができるものであればよいので、図1に例示した平板状以外にも、図3(a)~(f)に示すように半円筒状、半角筒状のもの等を適宜選択して用いればよく、これらを組み合わせて用いてもよい。また、気泡滞留板3の材質は特に限定するものでなく、金属、樹脂、セラミック等で形成すればよい。なお、気泡滞留板3は複数備えてもよい。また、気泡滞留板3は、分離膜5の膜面に対して平行となるように配置しても、垂直となるように配置してもよい。
 膜モジュール4は、例えば図4に示すように、複数の平型の分離膜5と、この分離膜5の側端部を支持する支持部10と、支持部10の側面を閉塞するガイド11より構成される。すなわち、支持部10とガイド11により、上下に開口部を有する筺体が構成される。
 このとき、膜モジュール4の上部開口端断面積が、下部開口端断面積より小さくなるように、ガイド11を形成すると、分離膜5による濾過効率が向上する。つまり、膜モジュール4を積重させた際に、膜モジュール4の上部開口端と、この膜モジュール4に積重される膜モジュール(図示省略)の下部開口端の間に形成される空隙17より、膜モジュール4の外周部にある被処理水が流入して、膜モジュール4内を流通する被処理水の濃度上昇を低減させることができる。
 支持部10には、後述の分離膜5に形成された集水路5bと連通する集水部(図示省略)が形成されている。集水部は、分離膜5の端部の一方に備えてもよく、両端に備えてもよい。集水部は、支持部10に形成された濾過吸引口12と連通している。さらに、この濾過吸引口12は、図示省略の濾過液を吸引するポンプの配管が接続される。
 分離膜5は、分離膜5の膜面5aが、膜モジュール4を流通する被処理水の流れる方向と平行となるように膜モジュール4内に配設されている。
 図5は、膜モジュール4の断面図である。膜モジュール4に備えられる分離膜5の一例として、(縦)100~200mm×(横)200~1000mm×(厚さ)5~20mmの平板状のセラミック平膜を示す。一般的に、セラミック平膜は、押し出し成型で製造することができるので好ましい。そして、押し出し成型の場合、金型等の作成機器や押し出し後の変形等を考慮して適正な大きさを決めるとよい。
 分離膜5は、実施形態に限定されるものではなく、例えば、MBRに適用されている周知の分離膜である、有機中空糸膜、有機平膜、無機平膜、無機単管膜等を用いればよい。そして、分離膜5の材質としては、セルロース、ポリオレフィン、ポリスルホン、PVDF(ポリビニリデンフロライド)、PTFE(ポリ四フッ化エチレン)、セラミックス等が例示される。
 分離膜5の孔径は、特に限定されるものではなく、固液分離の対象となる物質の粒径に応じて選択すればよい。例えば、活性汚泥の固液分離に用いるならば、0.5μm以下であればよく、また、浄水の濾過のように、除菌が必要な場合は0.1μm以下であればよい。すなわち、一般に限外濾過膜に形成されている孔径(0.001~0.1μm)、または一般に精密濾過膜に形成されている孔径(0.1~1μm)であればよい。
 図5に示すように、分離膜5の一例としたセラミック平膜の端部には集水路5bが複数形成されている。
 分離膜5の種類や配設形態は、膜モジュール4のコンパクト性、濾液取り出し時の圧損の低減、膜モジュール4配設時の加工の容易性、等を総合的に加味して決定される。
 上記構成を有する膜モジュール4において、分離膜5の膜面5aでは、被処理水から固形物等が分離膜5の表面に捕らえられ、水分と固形物等とが分離される。こうして固形物等が除去された濾過水は、集水路5bに至り、そして集水路5bに接続された集水部、濾過吸引口12を経由して生物反応槽外(膜分離装置1外)に移送される。
 膜モジュール4内に備えられる分離膜5の枚数は、操作性や保守性を考慮して適宜選択すればよく、例えば10~30枚程度であればよい。
 図5に示すように、すべての分離膜5の近傍を流通する被処理水の条件(被処理水の濃度や流速)を同じ条件とするために、ガイド11は、対となるように備えるとよい。この場合、膜モジュール4ごとに、膜モジュール4の高さと同一高さのガイド11を図1のように膜エレメント群の左右に1対設置してもよいが、膜モジュール4の高さ方向に複数分割したガイド11を膜モジュールの高さ方向に複数配設してもよい。
 ガイド11の形状は、膜モジュール4の流路において、分離膜5が備えられる部分の流路が狭まるように形成するとよい。前記流路を狭くすることにより、ガイド11と分離膜5間を流通する被処理水の速度が速くなり洗浄効果が向上する。また、流路を狭くすることにより気泡6を含む気液混合流が収束し、効率よく分離膜5の膜面5aに気泡を作用させることができる。
 また、図1に示すように、本発明の実施形態1に係る膜分離装置14は、生物反応槽15と、膜分離ユニット1と、酸素供給用散気装置16より構成される。
 膜分離ユニット1は、処理水の深さ方向に膜モジュール4を積み重ねて構成され、MBRの生物反応槽内15の液相に浸漬されるように設置される。膜モジュール4を積重させることで、散気装置2から生じる気泡6をより多くの分離膜5に作用させることができる。つまり、膜モジュール4を積重する数を増大させるほど、散気装置2から散気される空気量に対するスクラビング効果が増大する。
 また、膜モジュール4の開口部の断面積が、上部開口部で狭く、下部開口部では広くなっている。その結果、膜モジュール4を縦に積み重ねて膜分離ユニット1を構成した場合、ガイド11により、散気装置2から発生した気泡6が膜分離ユニット1の外部へ拡散せず、気泡6を分離膜5に有効に作用させることができる。
 酸素供給用散気装置16は、生物反応槽15内に備えられ、微生物反応に必要な酸素を液相に供給する。
 生物反応槽15の水深は、一般的に4m程度である場合が多いので、生物反応槽15の水深と保守性を考慮した重量や外形から、積重する膜モジュール4の個数が選定される。例えば、膜分離ユニット1の高さが、2m~3m程度となるように膜モジュール4の個数が選定される。
 この膜分離ユニット1内部での被処理水の流れは、膜分離ユニット1の下部の開口部から上部の開口部へ向かう流れとなる。膜分離ユニット1流路は、外部の被処理水から簡易的に密閉されており、被処理水は分離膜5で濾過されるので、膜分離ユニット1の上部になればなるほど、膜分離ユニット1内部を流通する被処理水の活性汚泥濃度が上昇する。膜分離ユニット1では、積重された各膜モジュール4の空隙17から被処理水が膜分離ユニット1内に吸引されるので、膜分離ユニット1内部での活性汚泥濃度の大きな上昇を抑制することができる。その結果、濾過に対しての負荷が低減し、膜閉塞の緩和、及び消費エネルギーの低減につながる。なお、被処理水を膜分離ユニット1内部に吸引する吸引力は、気泡6の上昇により生じるため、特に被処理水を吸引するための動力源を備える必要はない。
 次に、本発明の実施形態に係る膜分離装置14の動作について、図1に示すMBRに用いられる膜分離装置14を参照して詳細に説明する。MBRでは、微細な夾雑物や微生物が生産する細胞外高分子等が分離膜5表面や内部に付着・堆積することによる分離膜5の閉塞を防止するため、分離膜5の下方に散気装置2を設ける。少なくとも、濾過を行っている工程では常に連続して散気装置2より散気を行うとよい。膜分離装置14の運転方法としては浸漬吸引濾過法、水頭差による重力濾過法などが用いられる。
 濾過を行う場合、散気装置2、及び酸素供給用散気装置16から空気が散気される。散気装置2から空気を散気させることで、液中における気泡6の上昇により分離膜5表面層に対し流速、乱流、せん断力を作用させ、分離膜5を洗浄することができる。すなわち、散気装置2から放出される気泡6により発生した気液混合流は、上昇して分離膜5に接触する。この気液混合流により、各分離膜5がスクラビングされる。また、酸素供給用散気装置16により、被処理水への酸素溶解が行われる。
 そして、分離膜5の濾過機能により被処理水が固形分と水とに分離される。図4及び5に示したように、分離膜5の集水路5bは、集水部(図示省略)を介して濾過吸引口12と連通し、濾過吸引口12の他端には配管を介して吸引ポンプ(図示省略)が接続されている。したがって、この濾過吸引口12を通して、分離膜5によって濾過された濾過水が吸引ポンプにより吸引され、膜分離装置14外に移送される。
 分離膜5の洗浄に供される気泡6の粒子径は、分離膜5の間隔よりも大きな直径であるとより高い洗浄効果が得られる。例えば、分離膜5が8.5mmの間隔で配置されている場合、10mm以上の径を有する気泡6を含んだ気泡6を分離膜5に作用させるとより洗浄効果が向上する。そこで、本発明の実施形態に係る膜分離装置14の気泡滞留板3は、散気装置2からの気泡6を滞留させることで気泡6を集合させ、粒子径の大きい気泡6を形成する。そして、この粒子径の大きい気泡6が分離膜5の洗浄に供される。
 図2に示した散気装置2において、円筒部材7中の水(混合液)を押しのける作用等の関係から1つの孔8から射出されるエアの流速が10m/sec以上であれば、確実に安定して散気が行えることが経験上知られている。また、分離膜5の洗浄に必要なスクラビングエア送風量は、膜ユニット1の濾過流量に基づいて決定され、濾過流量が大きければ必要となるスクラビングエア送風量も大きくなる。
 例えば、図1のような膜分離装置14において、濾過流量が15m3/日であり、スクラビングエア送風量が濾過流量の6倍、1つの孔8から射出されるエア流速が15m/secと設定した場合、孔8の直径φが3mmとすると孔8の数は10個となる。また、孔8の直径φが5mmでは孔の数は3個になる。つまり、分離膜5の洗浄効果を向上させるために、大きな気泡6を生成させる必要があるが、大きな気泡6を生成させるために散気装置2に形成される孔8を大きくすると、安定して散気を行うためには孔8の数を少なくしなくてはならない。そして、孔8の数が少なくなると、気泡6をすべての分離膜5に概略均等に作用させることは難しくなる。したがって、従来の膜分離装置では、濾過流量の10倍~20倍のスクラビングエア送風量を必要としていた。
 本実施形態に係る膜分離装置14では、散気装置2と膜モジュール4間に気泡滞留板3を設けることにより、散気装置2から発生した気泡6を集合させて、粒子径の大きい気泡6を分離膜5に作用させる。したがって、分離膜5の洗浄効果を向上させることができる。さらに、気泡滞留板3により、気泡6を時間的、空間的に平均化することができるので、気泡6をすべての分離膜5に均等かつ十分に作用させることができる。したがって、濾過流量の6倍程度のスクラビング送風量によるスクラビングでも、十分な洗浄効果を得ることができる。
 また、散気に用いられる気泡6の径が大きいと洗浄効果が高く、被処理水に気体を溶解させるために用いられる気泡6の径が小さいと溶解効率が向上する。したがって、スクラビング用の散気装置2と微生物反応用の散気装置16を分けて設計することで、散気装置2等で使用されるブロアやコンプレッサのエネルギー使用量を低減することができる。
 次に、本発明の実施形態2に係る膜ユニット18及び膜分離装置19について図6、7を参照して詳細に説明する。
 本発明の実施形態2に係る発明は、膜ユニット18及び膜分離装置19に備えられる気泡滞留板3の配置方法に関するものである。したがって、膜ユニット18及び膜分離装置19を構成する各構成要素は、実施形態1に係る膜ユニット1及び膜分離装置14と同様である。よって、実施形態1と同様のものについては同様の符合を付し、詳細な説明は省略する。また、膜分離装置19の動作についても実施形態1の膜分離装置14の説明と同様である。
 図6に示すように、本発明の実施形態2に係る膜分離ユニット18は、散気装置2、気泡滞留板3(気泡集合手段)、及び膜モジュール4より構成される。
 実施形態2に係る膜分離ユニット18は、気泡滞留板3が多段に設置されている。気泡滞留板3を多段に配置することにより、実施形態1の膜ユニット1及び膜分離装置14の効果に加えて、気泡6を空間的に分散させることができる。また、図7に示すように、多段に配置される気泡滞留板3の幅を調節(例えば、散気装置2から離間するにしたがって気泡滞留板3の幅を狭くする)することにより、気泡6が分離膜5全体に作用するように調節することができる。さらに、散気装置2を1つの膜ユニットに対して1本とした場合においても、気泡滞留板3によって、気泡6を分離膜5全体に作用させることができるので、散気装置2を複数に分岐させることに伴う射出空気量が不均一となる現象を防止することができる。
 以上のように、本発明の膜ユニット及び膜分離装置によれば、径の大きい気泡を膜エレメントに作用させることができるので、散気装置から射出される空気量を少なくしても大きな洗浄効果を得ることができる。また、気泡滞留板を複数多段に設けることにより、それぞれの膜エレメントに供される気泡を時間的にも空間的にも均一になるように作用させることができる。気泡滞留手段により、気泡を空間的に均一になるようにできるので、散気装置の数(または、散気装置の分岐)を少なく抑えることができ、散気装置の目詰まり等による気泡の不均一を防止することができる。
 すなわち、膜分離装置を動作させるためのエネルギーの削減と、膜分離装置のメンテナンス間隔の延長することができる。
1…膜分離ユニット(膜ユニット)
2…散気装置(散気手段)
3…気泡滞留板(気泡集合手段)
4…膜モジュール
5…分離膜(膜エレメント)
5a…膜面
5b…集水路
6…気泡
10…支持部
11…ガイド
12…濾過吸引口
17…空隙
14…膜分離装置
15…生物反応槽(処理槽)
16…酸素供給用散気装置(酸素供給手段)

Claims (4)

  1.  処理槽内の被処理液中に浸漬される膜エレメントと、
     前記膜エレメントの下方に備えられる散気手段と、
     前記膜エレメントと前記散気手段との間に、前記散気手段より散気された気泡を集合させる気泡集合手段と、を備えた
    ことを特徴とする膜ユニット。
  2.  前記気泡集合手段を複数備え、
     前記気泡集合手段を多段に配設した
    ことを特徴とする請求項1に記載の膜ユニット。
  3.  前記多段に配設された気泡集合手段の大きさを前記散気手段から離間するほど小さくした
    ことを特徴とする請求項2に記載の膜ユニット。
  4.  処理槽と、
     前記処理槽内の被処理液中に浸漬される膜エレメントと、
     前記被処理液中に酸素を供給する酸素供給手段と、
     前記膜エレメントの下方に備えられる散気手段と、
     前記膜エレメントと前記散気手段との間に、前記散気手段より散気された気泡を集合させる気泡集合手段と、を備えた
    ことを特徴とする膜分離装置。
PCT/JP2011/057275 2010-04-19 2011-03-25 膜ユニット及び膜分離装置 WO2011132497A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2012145044/05A RU2523806C1 (ru) 2010-04-19 2011-03-25 Мембранный блок и мембранное сепарационное устройство
EP11771834.6A EP2561922B1 (en) 2010-04-19 2011-03-25 Membrane unit and membrane separation device
CN201180019784.7A CN102858440B (zh) 2010-04-19 2011-03-25 膜单元和膜分离装置
US13/641,944 US8591738B2 (en) 2010-04-19 2011-03-25 Membrane unit and membrane separation device
CA2796320A CA2796320C (en) 2010-04-19 2011-03-25 Membrane separation apparatus with air bubble plates
KR1020127026922A KR101363015B1 (ko) 2010-04-19 2011-03-25 막유니트 및 막분리장치
SG2012077228A SG184911A1 (en) 2010-04-19 2011-03-25 Membrane unit and membrane separation device
AU2011243832A AU2011243832B2 (en) 2010-04-19 2011-03-25 Membrane unit and membrane separation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-095787 2010-04-19
JP2010095787A JP5488156B2 (ja) 2010-04-19 2010-04-19 膜ユニット及び膜分離装置

Publications (1)

Publication Number Publication Date
WO2011132497A1 true WO2011132497A1 (ja) 2011-10-27

Family

ID=44834033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057275 WO2011132497A1 (ja) 2010-04-19 2011-03-25 膜ユニット及び膜分離装置

Country Status (11)

Country Link
US (1) US8591738B2 (ja)
EP (1) EP2561922B1 (ja)
JP (1) JP5488156B2 (ja)
KR (1) KR101363015B1 (ja)
CN (1) CN102858440B (ja)
AU (1) AU2011243832B2 (ja)
CA (1) CA2796320C (ja)
MY (1) MY161633A (ja)
RU (1) RU2523806C1 (ja)
SG (1) SG184911A1 (ja)
WO (1) WO2011132497A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196151A1 (ja) * 2013-06-03 2014-12-11 パナソニックIpマネジメント株式会社 排水処理装置
WO2014196152A1 (ja) * 2013-06-03 2014-12-11 パナソニックIpマネジメント株式会社 排水処理装置
JPWO2013103083A1 (ja) * 2012-01-05 2015-05-11 住友重機械工業株式会社 膜分離方法及び膜分離装置
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2825744C (en) * 2011-02-28 2015-10-27 Meidensha Corporation Membrane separation device with air bubble group splitting member
JP6172531B2 (ja) * 2014-08-27 2017-08-02 Jfeエンジニアリング株式会社 膜分離活性汚泥処理装置
WO2016044304A2 (en) * 2014-09-15 2016-03-24 Nanostone Water Inc. Tower filtration module assembly and related methods
DE102014218416A1 (de) * 2014-09-15 2016-03-17 Nanostone Water Gmbh Filtereinrichtung
KR101796775B1 (ko) * 2015-04-30 2017-11-10 주식회사 퓨어엔비텍 수처리 장치
JP6129389B1 (ja) * 2016-07-26 2017-05-17 株式会社リテラ ろ過装置
JP6583447B2 (ja) 2018-02-20 2019-10-02 株式会社明電舎 気泡発生装置
WO2021015156A1 (ja) * 2019-07-25 2021-01-28 三菱ケミカルアクア・ソリューションズ株式会社 膜分離装置
WO2023243445A1 (ja) * 2022-06-13 2023-12-21 阿波製紙株式会社 濾過装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281080A (ja) 1995-04-12 1996-10-29 Nitto Denko Corp 膜分離装置
JPH10192667A (ja) * 1997-01-08 1998-07-28 Keizo Iwamoto 浄化用中空糸膜束の逆洗方法及び逆洗装置
JP2001162141A (ja) 1999-12-07 2001-06-19 Hitachi Plant Eng & Constr Co Ltd 好気性生物処理装置
JP2002224685A (ja) * 2001-02-05 2002-08-13 Kobe Steel Ltd 活性汚泥処理装置及びその運転方法
JP2003053368A (ja) * 2001-08-13 2003-02-25 Ngk Insulators Ltd 膜分離活性汚泥処理装置
JP2003071255A (ja) * 2001-08-30 2003-03-11 Sumitomo Heavy Ind Ltd 膜洗浄装置及び膜分離装置
JP2009119354A (ja) * 2007-11-14 2009-06-04 Kobelco Eco-Solutions Co Ltd 生物処理装置および生物処理方法
JP2009233622A (ja) * 2008-03-28 2009-10-15 Hitachi Ltd 水処理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1528742A2 (ru) * 1987-12-30 1989-12-15 Ростовский инженерно-строительный институт Установка окислени дл очистки сточных вод
US7279215B2 (en) * 2003-12-03 2007-10-09 3M Innovative Properties Company Membrane modules and integrated membrane cassettes
JP3893402B2 (ja) * 2005-03-04 2007-03-14 シャープ株式会社 排ガス排水処理装置および排ガス排水処理方法
CA2655917A1 (en) * 2006-06-26 2008-01-03 Sumitomo Electric Fine Polymer, Inc. Filtration apparatus featuring hollow fiber membranes in a holding member
JP4614188B2 (ja) * 2007-05-15 2011-01-19 株式会社日立プラントテクノロジー 浸漬平膜ろ過装置
KR101239780B1 (ko) * 2007-05-29 2013-03-06 지멘스 인더스트리 인코포레이티드 펄스형 공기리프트 펌프를 이용한 막 세정 방법 및 장치
KR20110127123A (ko) * 2009-01-14 2011-11-24 비엘 테크놀러지스 인크. 침수된 멤브레인 카세트 및 작동 방법
JP5665307B2 (ja) * 2009-11-30 2015-02-04 株式会社クボタ 有機性排水処理装置および有機性排水処理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281080A (ja) 1995-04-12 1996-10-29 Nitto Denko Corp 膜分離装置
JPH10192667A (ja) * 1997-01-08 1998-07-28 Keizo Iwamoto 浄化用中空糸膜束の逆洗方法及び逆洗装置
JP2001162141A (ja) 1999-12-07 2001-06-19 Hitachi Plant Eng & Constr Co Ltd 好気性生物処理装置
JP2002224685A (ja) * 2001-02-05 2002-08-13 Kobe Steel Ltd 活性汚泥処理装置及びその運転方法
JP2003053368A (ja) * 2001-08-13 2003-02-25 Ngk Insulators Ltd 膜分離活性汚泥処理装置
JP2003071255A (ja) * 2001-08-30 2003-03-11 Sumitomo Heavy Ind Ltd 膜洗浄装置及び膜分離装置
JP2009119354A (ja) * 2007-11-14 2009-06-04 Kobelco Eco-Solutions Co Ltd 生物処理装置および生物処理方法
JP2009233622A (ja) * 2008-03-28 2009-10-15 Hitachi Ltd 水処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAICHI KAMISAKA: "Kubota technical report", vol. 39, June 2005, KUBOTA CORPORATION, article "Kubota Submerged Membrane Unit Applied for Upgrading of Wastewater Treatment and Water Re-use", pages: 42 - 50

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013103083A1 (ja) * 2012-01-05 2015-05-11 住友重機械工業株式会社 膜分離方法及び膜分離装置
WO2014196151A1 (ja) * 2013-06-03 2014-12-11 パナソニックIpマネジメント株式会社 排水処理装置
WO2014196152A1 (ja) * 2013-06-03 2014-12-11 パナソニックIpマネジメント株式会社 排水処理装置
JP2014233686A (ja) * 2013-06-03 2014-12-15 パナソニック株式会社 排水処理装置
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body

Also Published As

Publication number Publication date
SG184911A1 (en) 2012-11-29
KR20120139805A (ko) 2012-12-27
AU2011243832A1 (en) 2012-11-08
MY161633A (en) 2017-04-28
US8591738B2 (en) 2013-11-26
EP2561922A4 (en) 2014-01-15
KR101363015B1 (ko) 2014-02-12
EP2561922B1 (en) 2018-08-08
AU2011243832B2 (en) 2013-11-14
CA2796320A1 (en) 2011-10-27
JP5488156B2 (ja) 2014-05-14
EP2561922A1 (en) 2013-02-27
RU2012145044A (ru) 2014-06-20
US20130032526A1 (en) 2013-02-07
CA2796320C (en) 2015-05-05
JP2011224452A (ja) 2011-11-10
CN102858440A (zh) 2013-01-02
CN102858440B (zh) 2014-11-12
RU2523806C1 (ru) 2014-07-27

Similar Documents

Publication Publication Date Title
WO2011132497A1 (ja) 膜ユニット及び膜分離装置
JP5308028B2 (ja) 散気装置の洗浄方法
JP5472312B2 (ja) 膜モジュール、膜ユニット及び膜分離装置
JP5823489B2 (ja) 膜分離装置
JP5648387B2 (ja) 散気装置及び膜分離装置の運転方法
JP5238128B2 (ja) 固液混合処理液の固液分離装置
JP5094022B2 (ja) 固液混合処理液のろ過液回収時に適用される散気装置及び膜ろ過ユニット
JP2012096125A (ja) 膜分離式活性汚泥処理装置及びその方法
KR20120044594A (ko) 분리형 산기 프레임과 공기 챔버를 구비하는 산기 장치
JP5149223B2 (ja) 分離膜の洗浄装置、膜分離装置及び洗浄方法
JP2007268415A (ja) 浸漬型膜分離装置および造水方法
JP2002320828A (ja) 濾過膜式固液分離装置及びその装置を設けた排水処理装置
JP2016215165A (ja) 水処理方法及び水処理装置
JP2002035555A (ja) 分離装置及び方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019784.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2796320

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1201005427

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20127026922

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13641944

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011771834

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011243832

Country of ref document: AU

Date of ref document: 20110325

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012145044

Country of ref document: RU

Kind code of ref document: A