WO2011129196A1 - ハイブリッド自動車 - Google Patents

ハイブリッド自動車 Download PDF

Info

Publication number
WO2011129196A1
WO2011129196A1 PCT/JP2011/057930 JP2011057930W WO2011129196A1 WO 2011129196 A1 WO2011129196 A1 WO 2011129196A1 JP 2011057930 W JP2011057930 W JP 2011057930W WO 2011129196 A1 WO2011129196 A1 WO 2011129196A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
mode
predetermined
vehicle
travel
Prior art date
Application number
PCT/JP2011/057930
Other languages
English (en)
French (fr)
Inventor
幸浩 新里
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to US13/641,430 priority Critical patent/US8965614B2/en
Priority to EP11768717.8A priority patent/EP2559577B1/en
Priority to CN201180019189.3A priority patent/CN102844212B/zh
Priority to KR1020127026871A priority patent/KR101406536B1/ko
Publication of WO2011129196A1 publication Critical patent/WO2011129196A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a hybrid vehicle that can travel both as a series hybrid vehicle that travels using the rotation of a motor as energy and as a parallel hybrid vehicle that travels using engine rotation as energy.
  • a series hybrid vehicle that drives a motor by a power generation output of a generator driven by an engine and a discharge output of a battery, and drives a wheel by the motor
  • a parallel hybrid vehicle that drives a wheel by a mechanical output of the engine
  • series-parallel hybrid vehicles that can travel in both the series hybrid mode and the parallel hybrid mode, which are the travel modes of these vehicles.
  • a series hybrid vehicle drives wheels with an electric motor
  • a parallel hybrid vehicle drives wheels with engine mechanical output.When starting, accelerating, braking, etc., the mechanical output of the engine with respect to the required output is reduced. The difference can be driven by a rotating machine provided on the engine shaft.
  • acceleration is achieved by operating the rotating machine as an electric motor
  • deceleration is achieved by operating the rotating machine as a generator.
  • the on-board battery supplies electric power to the rotating machine (electric motor) or the rotating machine (electric generator). Machine).
  • the capacity (SOC) of the battery mounted on the vehicle is charged not only by the regenerative power of the rotating machine or the power from the external power supply but also by the power generation output of the generator driven by the engine.
  • SOC battery capacity
  • a generator and an electric motor are mechanically connected to each other by a mechanism such as a clutch.
  • the clutch is disengaged and the mechanical connection between the generator and the motor is disconnected. Then, the power generation output of the generator driven by the engine is supplied to the electric motor via the battery.
  • the vehicle can run as a series hybrid vehicle.
  • the generator is coupled to the motor by coupling the clutch.
  • the engine output of the engine is mechanically transmitted to the drive wheels via the generator, the clutch, and the motor, and the engine can be accelerated and decelerated using the generator and the motor.
  • the vehicle can travel as a parallel hybrid vehicle.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-209706
  • This series-parallel hybrid vehicle has two motors that can be switched and driven as a generator and an electric motor between an engine output shaft and a drive shaft on the driving wheel side, and is provided with a clutch and a brake between them.
  • the clutch is disengaged when traveling in the series hybrid mode
  • the front motor is used as a generator
  • the rear motor is operated as an electric motor
  • the clutch is engaged when traveling in the parallel hybrid mode
  • the engine is rotated.
  • the front and rear motors are driven to facilitate acceleration / deceleration.
  • the operating range of the motor mounted on the series parallel type hybrid vehicle is divided into a series type hybrid mode range (including the EV mode range for engine stop and motor driving) and a parallel type hybrid mode range.
  • the switching is performed by switching the clutch controlled by the control means.
  • the control means performs mode switching control using a motor operation range setting map.
  • each information of the vehicle speed obtained from the vehicle speed sensor, the required torque calculated based on the accelerator pedal position and the vehicle speed, and the remaining battery capacity obtained from the remaining capacity sensor is input to the control means.
  • the control means basically selects the series mode when the engine is in an operating state for starting and stopping, and starts the engine when the remaining capacity of the battery falls below a predetermined value. Electric power is generated and the battery is charged. When the remaining capacity of the battery exceeds a predetermined value, the engine operation is stopped and power generation by the generator is stopped to prevent overcharging of the battery.
  • a region where the required torque is low is set as a series hybrid mode region, and a region where the required torque is high is set as a parallel hybrid mode region.
  • the control means determines the driving mode range, and then, the inverter is switched so that the current driving mode range becomes the determined target driving mode range, and the motor switching functions as a generator or a motor. Switching control is performed via
  • Patent Document 2 Japanese Patent Laid-Open No. 4-297330 discloses a series having a drive system in which a continuously variable transmission and a clutch are connected in series between a generator on the engine side and a motor on the drive wheel side, and parallel.
  • a hybrid hybrid car system is disclosed.
  • the series travel mode of motor travel is usually used, and in the power shortage region, the clutch is connected to the parallel travel mode, and the gear ratio of the continuously variable transmission is controlled to operate the engine in the fuel efficient operation region.
  • Driving Further, the regenerative torque in the high-speed rotation region during regenerative braking is absorbed by engine friction by controlling the speed ratio.
  • the rotation of the drive shaft on the engine side is relatively high, the rotation of the output shaft on the drive wheel side is relatively low, and the rotation difference is relatively large.
  • torque shock is likely to occur on the output shaft on the drive wheel side, and it is necessary to reduce the rotational difference by switching the transmission to a high gear ratio.
  • the speed change is performed according to the increase variation of the vehicle speed. It is necessary to change the gear ratio of the machine, and shift control tends to be complicated.
  • the problems to be solved by the present invention are to reduce the torque shock when the traveling mode is switched and to eliminate the shift control after switching to the parallel hybrid mode region.
  • the present invention includes an engine mounted on a vehicle 1, a traveling motor, a battery that supplies power to the traveling motor, a generator that supplies power to the battery, and a vehicle speed detection that detects the speed of the vehicle. And a remaining capacity detecting means for detecting a remaining capacity of the battery, wherein the engine is stopped and the vehicle is driven by driving the driving motor, and the generator is driven by the engine.
  • a hybrid vehicle having a second traveling mode in which the vehicle is driven by driving the driving motor and a third traveling mode in which the vehicle is driven by driving the engine and the driving motor.
  • the first traveling mode or the first A mode selection means for selecting a travel mode so that the vehicle travels in the travel mode and travels in the third travel mode when the speed is equal to or higher than the predetermined first speed, and the mode selection means has the remaining capacity equal to the predetermined capacity. If the speed detected by the vehicle speed detection means is equal to or higher than a predetermined second speed smaller than the predetermined first speed under the condition less than the first threshold, the third traveling mode is selected, and the predetermined second speed is selected.
  • the second travel mode is selected when the speed is less than the predetermined third speed that is lower than the predetermined second speed, and the first travel mode or the second speed is selected when the speed is less than the predetermined third speed.
  • 2 driving mode is selected, It is characterized by the above-mentioned.
  • the mode selecting means is in a situation where the remaining capacity is a predetermined first threshold value or more.
  • the speed detected by the vehicle speed detecting means is less than a predetermined fourth speed that is smaller than a predetermined first speed
  • the first required driving force is detected in a region below a predetermined first driving force boundary.
  • the traveling mode is selected and the speed detected by the vehicle speed detecting means is equal to or higher than a predetermined fourth speed and lower than the predetermined first speed
  • the detected required driving force is determined to be the predetermined first speed.
  • the first traveling mode is selected in a region below a second driving force boundary that decreases as the vehicle speed increases from the driving force boundary, and the second traveling mode is selected in a region greater than the second driving force boundary.
  • the mode selection means detects the detection when the remaining capacity is less than a predetermined first threshold value and the speed detected by the vehicle speed detection means is less than the predetermined third speed.
  • the first driving mode is selected in a region where the requested driving force is less than or equal to a third driving force boundary smaller than the first driving force boundary, and the second driving mode is selected in a region larger than the third driving force boundary. Can be selected.
  • the mode selection means is configured such that the speed detected by the vehicle speed detection means is the predetermined third speed under a situation where the remaining capacity is smaller than a predetermined second threshold value that is smaller than a predetermined first threshold value.
  • the third travel mode can be selected when the speed is smaller than the predetermined fifth speed, and the first travel mode can be selected when the speed is smaller than the predetermined fifth speed.
  • the mode selection means selects the third travel mode simultaneously with the start of the vehicle under a situation where the remaining capacity is smaller than a predetermined third threshold value smaller than the predetermined second threshold value. Can do.
  • the vehicle includes a drive shaft provided with drive wheels, a transmission path for transmitting the power of the engine to the drive shaft, and friction engagement means for connecting and disconnecting the transmission path,
  • the switching between the traveling mode or the second traveling mode and the third traveling mode can be performed by the friction engagement means connecting and disconnecting the transmission path.
  • the driving force of the engine in the third traveling mode can be transmitted to the driving wheels by a reduction gear having a fixed ratio.
  • the first traveling mode and the second traveling Since the travel mode is selected so that the vehicle travels in either the mode or the third travel mode, the remaining capacity exceeds the first threshold value that is the steady determination capacity, and the series is easily set in each region. It is possible to run in the parallel hybrid mode, and in particular, if the output of the engine is transmitted to the drive wheels at a fixed ratio in each mode, it is necessary to perform shift control at the time of mode switching control and thereafter at the high speed range side. Therefore, traveling control can be facilitated.
  • the driving range in the first driving mode can be expanded and the driving in the second driving mode can be performed.
  • the engine can be quickly shifted to the engine driving mode and switched to the third driving mode driven by the engine, so that it is possible to ensure a state where the engine is driven and moved quickly to a place where maintenance is performed to avoid an emergency state such as the inability to generate power.
  • the friction engagement means is joined to switch to the third traveling mode in which the mechanical output of the engine can be transmitted to the drive shaft. It is possible to travel only by driving the engine to a place where maintenance is performed to avoid emergency conditions such as inability to generate power.
  • the friction engagement means gradually switches the transmission path from the slip joint to the complete coupling, so that the transmission path adopts a fixed ratio.
  • torque shock at the time of mode switching can be alleviated.
  • FIG. 1 is a configuration diagram of a hybrid vehicle to which the present invention is applied.
  • FIG. 2A is a function explanatory diagram of the drive system of the hybrid vehicle in FIG. 1 and shows a series hybrid mode state.
  • FIG. 2B shows a parallel hybrid mode state.
  • FIG. 3A is a characteristic explanatory diagram of a driving mode setting map in a steady state used in the hybrid vehicle of FIG.
  • FIG. 3 (b) shows a battery capacity explanatory diagram in a steady state.
  • FIG. 4A shows a characteristic explanatory diagram of the travel mode setting map when the remaining battery capacity used in the hybrid vehicle of FIG. 1 is lower than the steady-state determination capacity.
  • FIG. 4B shows a battery capacity explanatory diagram.
  • FIG. 5A is a characteristic explanatory diagram of a travel mode setting map when the remaining battery capacity used in the hybrid vehicle of FIG. 1 is lower than the emergency determination capacity.
  • FIG. 5B shows a battery capacity explanatory diagram.
  • FIG. 6A is a characteristic explanatory diagram of the travel mode setting map when the remaining battery capacity used in the hybrid vehicle of FIG. 1 is lower than the emergency determination capacity.
  • FIG. 6B shows a battery capacity explanatory diagram.
  • FIG. 7 is a flowchart of a travel control routine used in the hybrid vehicle of FIG.
  • FIG. 8 is a flowchart of a travel mode switching routine used in the hybrid vehicle of FIG.
  • FIG. 9 is a flowchart of a combined vehicle speed setting routine used in the hybrid vehicle of FIG. FIG.
  • FIG. 10 is a flowchart of a start / stop process routine used in the hybrid vehicle of FIG.
  • FIG. 11 is a flowchart of a parallel travel control routine used in the hybrid vehicle of FIG.
  • FIG. 12 is an operating region characteristic diagram of the engine used in the hybrid vehicle of FIG.
  • a hybrid vehicle to which the present invention is applied will be described.
  • the traveling mode is easily switched to the series hybrid mode or the parallel hybrid mode in each region depending on whether or not the remaining battery capacity exceeds the first threshold value, and the torque shock at that time is reduced. I realized to run.
  • An outline of a hybrid vehicle (hereinafter simply referred to as a vehicle) 1 as “Example 1” is shown in FIG.
  • the vehicle 1 travels by transmitting rotational outputs from both drive sources of the engine 2 and the motor 4 to the rear wheels wr as drive wheels using the transmission path 11, and travels only by the motor 4.
  • the transmission path 11 of the vehicle 1 is connected via an engine 2, a generator 3 connected to the output shaft J1 of the engine, and a differential gear (hereinafter simply referred to as diff) 8 serving as a speed reducer on the rear wheel wr side.
  • a clutch 6 as a friction engagement means for intermittently connecting a transmission path 11 having a drive shaft J2 on the wheel side, a motor 4 connected to the drive shaft J2, and an output shaft J1 and a drive shaft J2 ′ on the motor 4 side.
  • the output shaft J1 of the engine 2 is connected to the generator 3 via a speed increaser (not shown), thereby increasing the rotation speed to a rotation speed region suitable for input to the generator 3.
  • the clutch 6 When the clutch 6 between the generator 3 and the motor 4 is off (disconnected state), the output shaft J1 which is the shaft of the generator 3 and the drive shaft J2 'on the motor 4 side are independent from each other, and the clutch 6 is on (joined). State).
  • the clutch 6 is a wet multi-plate clutch 6a having a joining force adjusting means 602.
  • the wet multi-plate clutch 6a When the wet multi-plate clutch 6a is in a clutch-off (disengaged) state (see FIG. 2A), a plurality of wheel-side drive shafts J2 with respect to a plurality of rotating plates (not shown) of the engine-side output shaft J1 are provided.
  • a rotating plate not shown
  • the wet multi-plate clutch 6 a adjusts its joining force by the joining force adjusting means 602.
  • the joining force adjusting means 602 is a stepwise joining state from the disconnected state to the half-clutch state and the direct-coupled state by operating the relative distance between the rotating plates of both axes J1 and J2 ′ by the action of the electromagnetic solenoid.
  • the clutch solenoid is driven and controlled by an ECU 9 which is a control means described later.
  • a joining adjusting means for switching the single-plate clutch 6 (not shown) by hydraulic control by a hydraulic actuator may be used.
  • the clutch 6a controlled by the ECU 9 switches the clutch from sliding to full coupling at the time of mode switching. In particular, switching from the travel area EV in the first travel mode (EV travel mode) and the travel area Ms in the second travel mode (series mode) to the travel area Mp in the third travel mode (parallel mode) starts.
  • the clutch When the vehicle speed Sv is increased by a predetermined amount (for example, about 5%) from the combined vehicle speed Sc, the clutch is held in the half-clutch connection by the connection force adjusting means 602 and gradually changed from the slip connection to the complete connection. Clutch control is performed so that the clutch is completely engaged when the switching and the coupled vehicle speed increase by a predetermined amount.
  • a predetermined amount for example, about 5%
  • Clutch control is performed so that the clutch is completely engaged when the switching and the coupled vehicle speed increase by a predetermined amount.
  • the battery 12 is connected to the generator 3 and the motor 4 via inverters 501 and 502 that are switched and controlled by an ECU 9 described later.
  • the generator 3 and / or the motor 4 that are rotating machines are in the operating range in which they function as a generator
  • the charging power is input to the battery 12 via the inverters 501 and 502 and in the operating range in which they function as an electric motor.
  • the discharge power is supplied to the generator 3 and / or the motor 4 via the inverter 501 or 502.
  • the vehicle 1 is provided with an ECU 9 which is a control means for performing traveling control of the transmission path 11 of the vehicle 1.
  • the ECU 9 is a microcomputer having a CPU, a ROM, a RAM, and the like inside, and the CPU executes a fuel injection amount and other controls of the engine 2 in accordance with a program recorded in the ROM.
  • the ECU 9 is connected to various sensors that indicate the operating state of the engine 2, and is also electrically connected to the vehicle control unit 17. Information is exchanged by communication. Further, the ECU 9 receives various command values relating to the operating state of the engine 2 from the control unit 17 and controls the engine 2.
  • Reference numeral 13 denotes a fuel tank.
  • the ECU 9 includes an accelerator opening sensor 15 that outputs an accelerator opening ⁇ a that indicates an acceleration request from the vehicle operator, a brake sensor 14 that outputs pedal force bp information that indicates a deceleration request, and vehicle speeds of the left and right front wheels wf.
  • the sensor se1 and the vehicle speed sensors se2 of the left and right rear wheels wr are connected.
  • the ECU 9 calculates the vehicle speed Sv from the average value for each unit time from the information of the front and rear wheel speeds ssf and ssr. Further, the ECU 9 includes a rotation speed sensor 18 that outputs the rotation speed Ng of the generator 3, a rotation speed sensor 19 that outputs the rotation speed Nd of the motor 4, and an SOC sensor (remaining capacity detection) that outputs the remaining capacity Eq of the battery 12. Means) 16 and a voltage sensor 21 for outputting the voltage sbv of the battery 12 are connected to each other.
  • the ECU 9 determines whether the generator 3 and the motor 4 are operated as a generator or an electric motor, and controls the torque of the generator 3 and the motor 4 by controlling the switching operation of the inverters 501 and 502. Although the engine 2 is based on the throttle fully open (WOT) operation, the ECU 9 controls the throttle opening of the engine 2 in a region where the efficiency is improved by operating the throttle opening. The ECU 9 also controls the hydraulic braking force acting on the front and rear wheels wf and wr within the range of the required braking force by controlling the braking of a brake device (not shown).
  • the ECU 9 has a function as the mode selection means A1.
  • the driving range of the vehicle 1 is, for example, as shown in FIG. 3 (a), a first travel mode (EV mode) region EV in which the engine is stopped and the vehicle is driven by driving the travel motor, and the engine.
  • Type hybrid mode and is set to a region Mp, and the vehicle 1 travels in any one of these mode regions.
  • the mode selection means A1 has a function of setting the travel mode according to the remaining capacity Eq of the battery 12.
  • a plurality of travel mode area setting maps (examples shown in FIGS. 3 (a) to 6 (a)) that are vehicle speed “km / h” -driving force “Nm” diagrams for the setting process are stored in advance. Has been processed. Each map is stored in a ROM in the ECU 9.
  • the ECU 9 sets the vehicle operation mode with reference to the map based on the vehicle speed Sv and the driving force Nm (requested torque).
  • the travel mode area setting map is set in advance according to the drive characteristics of the in-vehicle engine 2, the motor 4, and the generator 3, and a curve LIM in the figure indicates a limit area in which the vehicle can travel. .
  • the mode selection means A1 is detected by the vehicle speed detection means se1 and se2 under a steady-state situation where the remaining capacity Eq is equal to or greater than a first threshold value Eq1 (see FIG. 3B), which is a predetermined steady-state determination capacity.
  • a first threshold value Eq1 which is a predetermined steady-state determination capacity.
  • the speed Sv is less than the predetermined first speed Sc1
  • the vehicle travels in the first travel mode area EV or the second travel mode area Ms and is equal to or higher than the predetermined first speed Sc1.
  • the travel mode is selected so that the vehicle travels in the third travel mode region Mp, and is shown as a steady travel map in FIG.
  • the mode selection means A1 detects the speed detected by the vehicle speed detection means se1 and se2 in a low capacity state where the remaining capacity is less than a first threshold value Eq1 (see FIG. 3B) which is a predetermined steady state determination capacity.
  • a first threshold value Eq1 see FIG. 3B
  • the third travel mode region Mp is selected (FIG. 4 (a)).
  • the second travel mode Ms is selected when the speed is lower than the predetermined second speed Sc2 and is equal to or higher than the predetermined third speed Sc3 (see FIG. 4A) that is smaller than the predetermined second speed Sc2.
  • the first travel mode range EV or the second travel mode Ms is selected and is shown as an unsteady capacity travel map.
  • the ECU 9 has a function as requested driving force detection means A2 for detecting the requested driving force Nm.
  • the requested driving force detection means A2 calculates the requested driving force Nm from the accelerator opening ⁇ a (output from the accelerator opening sensor 15) indicating the acceleration request from the vehicle operator when traveling in the ECU 9, and the latest obtained
  • the first driving mode EV is selected in a region where the required driving force Nm is equal to or lower than the predetermined first driving force boundary R1 line (R1 line in FIG. 3A), and the speed Sv is equal to or higher than the predetermined fourth speed Sc4.
  • the detected second driving force boundary R2 (FIG. 3A) decreases when the required driving force is less than the predetermined first speed Sc1.
  • the first traveling mode EV is selected in the region below the line R2), and the second traveling mode Ms is selected in the region larger than the second driving force boundary R2.
  • the clutch 6a is switched from disengagement to engagement, The switching is performed when the vehicle speed Sv exceeds the combined vehicle speed Sc (Sc1, Sc2).
  • the combined vehicle speed Sc is set in advance according to the maximum capacity SOC (100%) of the vehicle-mounted battery 12. That is, the combined vehicle speed Sc is basically set to a larger value as the maximum capacity SOC of the battery 12 mounted on the vehicle is larger.
  • the stationary combined vehicle speed Sc1 at the steady state is set to a value equal to or higher than the medium speed of the vehicle.
  • the medium speed is a lower limit value that can prevent a joint shock caused by the rotation of the drive shaft J2 on the wheel side with respect to the output shaft J1 when the clutch 6a is engaged, for example, a value of 40 [km / h] or more.
  • an upper limit value that can prevent a joint shock due to the rotational speed of the drive shaft J2 on the wheel side being too high, for example, a value of 60 [km / h] or less is set.
  • the medium speed value is an example, and is set in advance according to the vehicle.
  • the medium speed value is set to 50 [km / h], and this value is set as the steady coupled vehicle speed Sc1. Is set.
  • the steady driving vehicle speed Sc1 is set to a value near the middle speed of the vehicle, so that the second traveling mode (series hybrid mode) on the low speed side is set.
  • the region Ms can be relatively enlarged, and the shift process in the second traveling mode (series hybrid mode) region Ms can be eliminated, so that traveling control can be facilitated.
  • the clutch switching at the steady coupled vehicle speed Sc1 is performed in the vicinity of the medium speed, the rotational difference between the output shaft J1 and the motor-side drive shaft J2 'is a relatively small operating range, and the occurrence of shift shock can be suppressed. .
  • the remaining capacity Eq is equal to the steady determination capacity (first threshold) Eq1 (see FIG. 4B). It falls below dq1 and reaches the emergency determination capacity Eq2.
  • the emergency travel map in FIG. 4A since it is highly necessary to expand the operating range for recovery charging, as shown in the emergency travel map in FIG. 4A, when the capacity is low, which is a predetermined amount dv1 lower than the steady coupled vehicle speed Sc1 (medium speed).
  • the combined vehicle speed Sc2 is set. In this way, the low-capacity combined vehicle speed Sc2 is set to be shifted to a relatively low speed side lower than the medium speed of the vehicle. However, the combined vehicle speed Sc2 at the time of low capacity is often exceeded.
  • the clutch 6a is engaged and switched to the third traveling mode (parallel hybrid mode) region Mp, the driving region of the engine 2 is expanded, and the battery 12 Can be shifted to the increasing side relatively early.
  • the requested driving force detected by the requested driving force detection means A2 is the first driving force boundary.
  • the first travel mode region EV is selected in the region below the third driving force boundary R3 smaller than R1 (see FIG. 4A), and the second traveling mode Ms is selected in the region larger than the third driving force boundary R3.
  • the clutch 6a is quickly disengaged from the first travel mode region EV and the engine 2 is turned off.
  • the engine is started, the clutch is engaged, and the operation in the parallel mode region Mp is started.
  • the remaining capacity Eq of the battery 12 decreases excessively and falls below the emergency determination capacity Eq3
  • EV remaining is not performed with such remaining capacity Eqn, and the state of the stop vehicle speed Sc0 (see FIG. 6A) is maintained.
  • the clutch is disengaged, and the engine 2 is started using the remaining capacity Eqn.
  • the clutch is controlled from half-clutch engagement to complete engagement and started, that is, the engine starts in the third driving mode (parallel hybrid mode) region Mp, and maintenance is performed to avoid failure conditions such as inability to generate power. Ensure that the factory is ready to move and move quickly.
  • FIG. 7 is a flowchart of the travel control process.
  • the ECU 9 first executes a travel mode switching process (step a1). A flowchart of the travel mode switching process is shown in FIG.
  • the ECU 9 reads various parameters related to the driving state of the vehicle (step s1).
  • the parameters here are wheel speed ssr, ssf (vehicle speed Sv), driving force Nm detected by the required driving force detection means A2, remaining battery capacity Eqn, battery voltage sbv, accelerator pedal position ⁇ a, brake pedal operation bp , Shift position, engine operation information, etc.
  • the vehicle speed Sv is detected according to the average value of the wheel speeds ssr and ssf of the four axles wf and wr.
  • the driving force Nm can be calculated based on the accelerator pedal position ⁇ a detected by the accelerator pedal position sensor 15 and the vehicle speed Sv.
  • the remaining capacity Eqn of the battery 12 is detected by the SOC (remaining capacity) sensor 16, and the voltage sbv of the battery 12 is detected by the voltage sensor 21.
  • the shift position is received by the shift position sensor 22 of a shift lever (not shown), such as reverse R, travel D, and parking Pk.
  • the engine operating state means whether or not the engine 2 is currently operating, and can be detected by communication with the control unit 17 of the vehicle. Based on the driving information thus detected, the ECU 9 sequentially switches the traveling mode according to preset conditions. First, when step s2 of the travel mode switching routine is reached, the process for setting the combined vehicle speed Sc for turning on the clutch 6a for mode switching is started.
  • FIG. 9 shows a combined vehicle speed setting routine.
  • step b1 of this combined vehicle speed setting routine it is determined whether the remaining capacity Eqn of the battery 12 exceeds the steady determination capacity (first threshold value) Eq1 shown in FIG. 3B.
  • the combined vehicle speed Sc1 which is a speed value, is set, and the process returns to step s3.
  • the steady judgment capacity (first threshold value) Eq1 here is set as a capacity at the time of discharging at a level at which recovery near the full capacity (100%) of the battery can be easily performed by steady charging processing.
  • the combined vehicle speed Sc1, which is a medium speed value is set to 60 “km / h” here.
  • step b3 it is determined whether or not the remaining capacity Eqn of the battery 12 exceeds the emergency determination capacity Eq2 shown in FIG. 4B. If the remaining capacity Eqn is lower, the combined vehicle speed Sc2 for low capacity is set in step b4. Return to step s3 of the switching routine. In step b5, it is determined whether or not the remaining capacity Eqn of the battery 12 exceeds the emergency determination capacity Eq3 shown in FIG. 5B. If the remaining capacity Eqn is lower, the emergency combined vehicle speed Sc3 is set in step b7. Return to step s3 of the routine.
  • the combined vehicle speed Sc is set such that the combined vehicle speed Sc decreases as the remaining capacity Eqn of the battery 12 decreases, and then the process proceeds to step s3 of the travel mode switching routine.
  • step s3 of the travel mode switching routine of FIG. 8 it is determined here whether or not the current shift position is reverse R. In reverse R, the inverter 502 is switched to reverse the rotation of the motor 4. Then, the process proceeds to step s6, otherwise, the process proceeds to step s4, and it is determined whether the current travel mode is the second travel mode (series hybrid mode) region Ms. In the second travel mode range Ms, the process proceeds to step s6, otherwise the process proceeds to step s5, it is determined whether the engine is being started, the process proceeds to step s6 if the engine is being started, and otherwise the process proceeds to step s7. Assume that step s6 is reached while the second travel mode region Ms is continuing. Here, while not in the first travel mode area EV, the second travel mode area Ms is set, and the process proceeds to step s8.
  • step s8 If it is determined in step s8 that the current mode is the second travel mode (series hybrid mode) region Ms and it is necessary to change the travel mode, the process proceeds to step s9, and if not, the process proceeds to step a2 of the travel control routine shown in FIG. .
  • step s9 the joining force adjusting means 602 (see FIG. 1) of the wet multi-plate clutch 6a is switched to the clutch-off (disconnected) state, and relative rotation between the engine-side output shaft J1 and the wheel-side drive shaft J2 is permitted.
  • the motor 4 which is an electric motor is driven so as to output a driving force Nm corresponding to the accelerator opening ⁇ a at that time.
  • the rear wheel wr which is a driving wheel, is driven via the differential 8 by the output of the motor 4.
  • step s9 the process proceeds to step a2 of the travel control routine shown in FIG.
  • the engine proceeds to step s7 for normal travel, not during engine start.
  • step s9 it is determined whether or not the vehicle speed Sv has reached the combined vehicle speed Sc (Sc1, Sc2, Sc5, Sc0) set in step s2. If not, the process proceeds to step s9 to maintain the second traveling mode range Ms. When it reaches, the process proceeds to step s10, where the current travel mode is set to the third travel mode (parallel hybrid mode) region Mp, and then in step s11 the current mode is already in the third travel mode region Mp as shown in FIG. In step a2 of the travel control routine, the process proceeds to step s12 in the second travel mode (series hybrid mode) region Ms. In step s12, it is confirmed that the combined vehicle speed Sc (Sc1, Sc2, Sc5, Sc0) has been reached, and the process proceeds to switching to the third travel mode region Mp.
  • step s 13 the joining force adjusting means 602 of the wet multi-plate clutch 6 a is operated to switch the engine-side output shaft J 1 and the wheel-side drive shaft J 2 to a half-clutch, drive the engine 2, and drive the motor 4 via the inverter 502. Is controlled to drive. Further, in step s14, the process waits for the elapse of a predetermined elapsed time Td, and then proceeds to step s15.
  • the joining force adjusting means 602 is operated to switch to the clutch-on (completely joined) state (see FIG. 2 (b)), and after achieving mode switching without any sense of incongruity, step a2 of the travel control routine shown in FIG. Proceed to Switching from the second travel mode (series hybrid mode) region Ms to the third travel mode region Mp in step s12 described above differs depending on the combined vehicle speed Sc (Sc1, Sc2, Sc5, Sc0).
  • switching to the third travel mode region Mp is Sc1 near the medium speed when the steady judgment capacity (first threshold value) Eq1 or more, and when it is more than the emergency judgment capacity Eq2, a predetermined amount dv1 lower speed side than the middle speed.
  • the emergency determination capacity Eq3 is greater than or equal to the emergency determination capacity Eq3
  • Sc5 is performed at Sc5 on the lower speed side by a predetermined amount dv2 than at Sc2, and at the emergency determination capacity Eq3 or less, at the stop vehicle speed Sc0.
  • the steady determination vehicle speed Sc1 is set to a value near the medium speed, and the motor drive range (second travel mode range Ms).
  • the travel area is prioritized to preserve the environment.
  • the low-speed driving range continues and the remaining capacity Eqn of the battery falls below the steady judgment capacity (first threshold) Eq1 and reaches the emergency judgment capacity Eq2
  • the low capacity combined vehicle speed Sc2 is changed to the steady state combined vehicle speed.
  • the power generation area is expanded by lowering Sc1 so that the remaining capacity Eqn of the battery exceeds the steady-state determination capacity (first threshold) Eq1.
  • the power generation circuit system when the power generation circuit system is broken, if the remaining capacity Eqn of the battery falls below the combined vehicle speed Sc2 at the time of low capacity and reaches between the emergency determination capacity Eq3, the emergency combined vehicle speed Sc3 is combined with the emergency The vehicle speed Sc2 is further reduced, and when the vehicle starts EV traveling, the engine is driven immediately, and the engine is allowed to travel to the factory so as to receive maintenance for avoiding trouble.
  • the power generation circuit system is faulty and the remaining battery capacity Eqn is less than the emergency judgment capacity Eq3
  • the engine is started directly with the clutch disengaged without EV traveling, and maintenance is performed to avoid the malfunction by driving the engine after starting. It was possible to travel to the factory that received it.
  • step a3 it is determined whether or not the engine 2 is being driven.
  • step a4 output control is performed during start-up, EV running, and stop operations.
  • step c1 if the vehicle speed Sc is smaller than a predetermined value and the vehicle can be considered to be stopped, the voltage sbv of the battery 12 detected by the voltage sensor 21 is larger than a predetermined value (a voltage that can be started); Check that the start command is input.
  • the ECU 9 calculates a driving output Pds for starting from a predetermined starting output map (not shown), and controls the starting of the motor 4 in step c2.
  • the target acceleration torque Tac is calculated based on the accelerator depression amount ⁇ a
  • the battery remaining capacity Eqn is set in accordance with the preset steady travel map of FIG. 4A to 6A), the driving force Tv “Nm” per vehicle speed Sv is obtained.
  • the driving force Tv “Nm” in this case is appropriately set in proportion to the accelerator depression amount ⁇ a.
  • the drive output Pd “kW” is divided by the total torque Tt to obtain the target rotational speed Nd of the drive shaft J2, and the motor 4 is controlled so as to obtain the target rotational speed Nd, thereby the driver. It is possible to travel according to the requirements of In step c2, when the operating point in the second traveling mode (series hybrid mode) region Ms other than EV traveling is reached, the engine is started if the engine is not started. At this time, the engine is started by switching the joining force adjusting means 602 of the wet multi-plate clutch 6a to the clutch-off (disconnected) state and operating the generator 3 mechanically connected to the engine 2 as an electric motor. The engine starting control is performed in a control mode set in advance so that the engine can be driven with high efficiency.
  • step s4 of the traveling control routine of FIG. 7 because the engine is being driven.
  • the routine returns to the start / stop process routine of step a3, and the engine is being driven in the third travel mode area Mp.
  • the process proceeds to step d1 of the parallel travel control routine shown in FIG. In step d1 in the parallel travel control routine shown in FIG.
  • the driving force Tv “Nm” per vehicle speed Sv is obtained.
  • the driving force Tv “Nm” in this case is appropriately set according to the accelerator depression amount ⁇ a and the value of the steady travel map of FIG.
  • charge / discharge power Pb and auxiliary machine drive energy Ph are calculated (steps d2, d3).
  • the charge / discharge power Pb is energy required for charging / discharging the battery 12, and takes a positive value when the battery 12 needs to be charged and takes a negative value when the battery 12 needs to be discharged.
  • the auxiliary machine drive energy Ph is electric power required to drive an auxiliary machine such as an air conditioner. The sum total of the electric power calculated in this way becomes the required driving force PO (step d4).
  • the ECU 9 is preset with an engine speed Ne (Nea>Neb> Nec) and an engine torque Te (Tea>Teb> Tec) that form an operation point of the engine 2 based on the required driving force PO thus set. It is set from the operation map (FIG. 12) of the engine 2 being operated (step 5).
  • FIG. 12 shows the operating state of the engine 2 with the engine speed Ne on the horizontal axis and the torque Te on the vertical axis.
  • a curve M in the figure indicates a limit range in which the engine 2 can be operated.
  • Curves ⁇ 1 to ⁇ 6 indicate operating points at which the operating efficiency of the engine 2 is constant. Operating efficiency decreases in the order of ⁇ 1 to ⁇ 6.
  • Curves ⁇ a to ⁇ c indicate lines ( ⁇ a> ⁇ b> ⁇ c) at which the power (rotation speed ⁇ torque) output from the engine 2 is constant.
  • the engine 2 has greatly different operating efficiencies depending on the rotational speed and torque.
  • the change locus of each torque whose operating efficiency always increases in accordance with the increasing change in the engine speed is shown as, for example, a curve Ln in FIG. 12 (differs depending on the fluctuation range of the engine speed).
  • Such an operation map is stored in the ROM of the ECU 9.
  • the current operation point of the engine 2 is set as an operation point where the operation efficiency is increased. That is, in order to obtain a target engine torque Te as an operation point at which the operation efficiency corresponding to the current accelerator opening ⁇ a becomes high, a target engine speed Neo having a high engine efficiency is obtained from the map.
  • the fuel supply amount is controlled so that the rotation speed of the crankshaft converges to the target engine rotation speed Neo.
  • the fuel injection amount Qt to the engine 2 is controlled by adding a reference injection amount Qb according to the operation information and a correction amount (+ dq or -dq) that increases or decreases according to the deviation of the engine speed.
  • the actual engine speed is controlled to converge to the target engine speed Neo (step d6).
  • the motor 4 is driven when it is determined that the engine operating region has reached a rapid acceleration or a high load operation exceeding a predetermined level.
  • the ECU 9 performs control so as to improve the responsiveness to fluctuations in the driving range of the vehicle by exerting a predetermined motor driving force in accordance with a predetermined driving mode set in advance. It becomes.
  • the third traveling mode is performed by joining the clutch 6a when the vehicle speed Sv is on the low speed side and in the second traveling mode region Ms, and when the vehicle speed exceeds the predetermined combined vehicle speed Sc and reaches the high speed region side.
  • the fixed speed ratio (fixed ratio) is maintained at the time of switching to the mode area Mp, switching control of the mode, and at the subsequent high speed area side, it is not necessary to perform the speed change control, and traveling control is facilitated.
  • the remaining capacity Eq of the battery 12 is greater than or equal to a steady determination capacity (first threshold) Eq1 that repeats steady recovery charging, clutch switching is performed in the vicinity of the medium speed, so the output shaft J1 and the drive shaft J2 ' The rotational difference becomes relatively small, and the occurrence of shift shock can be suppressed.
  • the combined vehicle speed Sc is set to be larger as the maximum capacity SOC of the battery 12 is larger, and the traveling area in the second traveling mode area Ms due to electric power energy can be expanded to promote pollution-free. Further, since the generated torque of the motor decreases as the remaining battery capacity Eq decreases, the combined vehicle speed Sc is decreased so as to speed up the switching to the third driving mode region Mp of engine drive, for example, lower than the combined vehicle speed Sc1 at the steady state.
  • the emergency combined vehicle speed Sc5 lower than the low-capacity combined vehicle speed Sc2, or the stop vehicle speed Sc0 is set and falls below the combined vehicle speed that is a threshold set according to the remaining capacity Eq of the battery 12
  • the operating range of the generator 3 can be expanded to recover the remaining capacity Eq of the battery at an early stage, and the engine can be quickly moved to the place where maintenance is performed to avoid an emergency state such as the inability to generate power. Can be ensured and stable running.
  • the half clutch is held for a predetermined elapsed time Td from the time when the vehicle speed Sv exceeds the combined vehicle speed Sc, Since switching to complete coupling after a lapse of time, even when the rotation transmission path 11 adopts a fixed speed ratio (fixed ratio), the shock at the time of mode switching can be reliably mitigated.
  • the clutch is described as the wet multi-plate clutch 6a. However, a single-plate clutch or a fluid clutch may be used. In either case, the operation is similar to that of the wet multi-plate clutch 6a of FIG. An effect is obtained.
  • the hybrid vehicle according to the present invention is a plurality of travel modes suitable for the travel region, that is, the first travel mode that travels with the motor 4 and the second travel mode that travels with the motor 4 while charging the battery 12. And a third traveling mode in which the vehicle 2 travels with both driving forces of the engine 2 and the motor 4 can be selected and traveled, and can be effectively used for passenger cars, trucks, and other various vehicles.

Abstract

残容量が第1閾値を上回るか否か判断した上で、第1速度、第2速度、第3速度に応じて、第1走行モード、第2走行モード、第3走行モードのいずれかを選択して走行するので、残容量が定常判定容量である第1閾値を上回るか否かに応じて、各領域において容易に適正なシリーズ式ハイブリッドモードまたはパラレル式ハイブリッドモードを選択して走行でき、走行制御の安定化や容易化を図れる。

Description

ハイブリッド自動車
 本発明は、モータの回転をエネルギーとして走行するシリーズ式ハイブリッド車としても、エンジン回転をエネルギーとして走行するパラレル式ハイブリッド車としても走行できるハイブリッド自動車に関するものである。
 現在、エンジンに駆動される発電機の発電出力及びバッテリの放電出力によりモータを駆動し、モータにより車輪を駆動するシリーズ式ハイブリッド車と、エンジンの機械出力によって車輪を駆動するパラレル式ハイブリッド車と、これら車両の走行モードであるシリーズ式ハイブリッドモードとパラレル式ハイブリッドモードでの走行を共に可能としたシリーズパラレル式ハイブリッド車が知られている。
 シリーズ式ハイブリッド車が電動機により車輪を駆動するのに対し、パラレル式ハイブリッド車はエンジンの機械出力によって車輪を駆動するが、発進、加速、制動等の際には、要求出力に対するエンジンの機械出力の差をエンジンの軸上に設けた回転機により補うよう駆動できる。この場合、回転機を電動機として動作させることにより加速が、発電機として動作させることにより減速が実現され、その際、車載のバッテリは回転機(電動機)に電力を供給し、又は回転機(発電機)から電力を回生する。
 ここで、車載されるバッテリの容量(SOC)は、回転機の回生電力や外部電源からの電力の他に、エンジン駆動による発電機の発電出力によっても充電される。特に、走行時に所定バッテリ容量を下回るとエンジン駆動の発電機の電力により充電制御が繰り返され、バッテリ容量(SOC)の過度の低下を抑制している。
 ところで、シリーズパラレル式ハイブリッド車は、発電機と電動機の間がクラッチ等の機構にて断続可能に機械連結される。このシリーズパラレル式ハイブリッド車をシリーズ式ハイブリッド車として走行させる際には、クラッチを切って発電機と電動機の機械連結を切り離す。すると、エンジンにより駆動される発電機の発電出力が、バッテリを介して、電動機に供給される。この状態では、シリーズ式ハイブリッド車として走行できる。逆に、パラレル式ハイブリッド車として走行させる際には、クラッチを結合して発電機と電動機を機械連結させる。すると、エンジンの機械出力が発電機、クラッチ及び電動機を介して駆動輪に機械的に伝達される状態となり、また発電機や電動機を用いて加減速可能な状態となる。この状態ではパラレル式ハイブリッド車として走行できる。
 このようなシリーズパラレル式ハイブリッド車の一例が特許文献1(特開2000−209706号公報)に開示される。このシリーズパラレル式ハイブリッド車は、エンジン出力軸と駆動輪側の駆動軸との間に発電機及び電動機として切換え駆動できる2つのモータを配し、その間にはクラッチ及びブレーキを備えている。ここでシリーズ式ハイブリッドモードでの走行時にはクラッチを切り、前段のモータを発電機とし、後段のモータを電動機として作動させ、パラレル式ハイブリッドモードでの走行時にはクラッチを接合し、エンジン回転で走行し、あるいは前後のモータを駆動して加減速を容易化している。
 ところで、シリーズパラレル式ハイブリッド車に搭載されるモータの運転域は、シリーズ式ハイブリッドモード域(エンジン停止、モータ走行のEVモード域を含む)とパラレル式ハイブリッドモード域とに区分され、両モード域の切り換えは制御手段が制御するクラッチの切り換えにより行われる。
 たとえば、特許文献1には、モータ運転域設定マップを用いて制御手段がモード切換え制御を行うようにしている。ここで、制御手段には車速センサから得られる車速と、アクセルペダルポジション及び車速に基づいて算出する要求トルクと、残容量センサから得られるバッテリの残容量との各情報が入力されている。その上で、制御手段は基本的に、エンジンが始動および停止を行う運転状態にあるとシリーズモードを選択し、バッテリの残容量が所定値以下になった場合にはエンジンを始動し発電機で発電してバッテリの充電を行い、バッテリの残容量が所定値以上になった場合にはエンジンの運転を停止し発電機での発電を停止してバッテリの過充電を防ぐよう制御している。更に、要求トルクの低い領域をシリーズ式ハイブリッドモード域とし、要求トルクが高い領域をパラレル式ハイブリッドモード域に設定している。制御手段は走行モード域を判定し、その上で、現走行モード域が判定された目標の走行モード域となるようにクラッチ切換え制御や、モータの機能が発電機や電動機の機能を成すようインバータを介して切換え制御している。
 更に、特許文献2(特開平4−297330号公報)にはエンジン側の発電機と駆動輪側のモータとの間に無段変速機とクラッチを直列状に接続した駆動系を有するシリーズ、パラレル複合ハイブリッドカーシステムが開示される。ここでは通常はモータ走行のシリーズ走行モードを採り、パワー不足域ではクラッチを結合してパラレル走行モードとし、かつ、無段変速機の変速比を制御して、燃料効率のよい運転域でエンジンを駆動している。また、回生制動時における高速回転域での回生トルクを変速比を制御することでエンジンフリクションにより吸収するようにしている。
特開2000−209706号公報 特開平4−297330号公報
 ところで、特許文献1、2に開示するシリーズパラレル式ハイブリッドモードで走行するハイブリッド自動車では、シリーズモードでの走行から車両の運転情報の変動、例えば、バッテリ容量(SOC)の低下や走行負荷が急増し出力アップが要求される高負荷走行に入るような場合、要求トルクが急増し、車両の駆動系をパラレル式ハイブリッドモード域に移行するよう制御している。
 この場合、エンジン側の駆動軸と駆動輪側である出力軸(モータ側出力軸)とは分離状態であったクラッチを接合状態に切換える。
 この際、特に、低速運転域にあると、エンジン側の駆動軸の回転が比較的高く、駆動輪側の出力軸の回転が比較的低く、回転差が比較的大きいことより、クラッチ接合の際に駆動輪側の出力軸にトルクショックが生じやすく、変速機を高変速比に切換え回転差を低減させる必要があった。更に、パラレル式ハイブリッドモードで低速域で増減変動を繰り返す運転域では変速比を切換える必要があり、更に、低車速運転から高車速に増速する場合には、車速の増加変動に応じて、変速機の変速比を切換える必要があり、変速制御が複雑化しやすい。
 本発明が解決しようとする問題点は、走行モードが切換えられる際のトルクショックを低減する点と、パラレル式ハイブリッドモード域への切換え後の変速制御を排除する点にある。
 この発明は、車両1に搭載されるエンジンと、走行用モータと、前記走行用モータに電力を供給するバッテリと、前記バッテリに電力を供給する発電機と、前記車両の速度を検出する車速検出手段と、前記バッテリの残容量を検出する残容量検出手段と、を具備し、前記エンジンを停止して前記走行用モータの駆動により走行する第1走行モードと、前記エンジンの駆動により前記発電機を作動させると共に前記走行用モータの駆動により走行する第2走行モードと、前記エンジンの駆動及び前記走行用モータの駆動により走行する第3走行モードとを有するハイブリッド自動車において、前記残容量が所定の第1閾値以上の状況下では前記車速検出手段により検出された速度が所定の第1速度未満の場合に前記第1走行モード又は前記第2走行モードで走行し、前記所定の第1速度以上の場合に前記第3走行モードで走行するように走行モードを選択するモード選択手段を備え、前記モード選択手段は、前記残容量が前記所定の第1閾値未満の状況下では前記車速検出手段により検出された速度が前記所定の第1速度より小さい所定の第2速度以上の場合に前記第3走行モードを選択し、前記所定の第2速度未満の場合であって前記所定の第2速度より更に小さい所定の第3速度以上の場合に前記第2走行モードを選択し、前記所定の第3速度未満の場合に前記第1走行モード又は第2走行モードを選択する、ことを特徴とする。
 更に、別発明として、前記車両の走行に要求される要求駆動力を検出する要求駆動力検出手段を更に備え、前記モード選択手段は、前記残容量が所定の第1閾値以上の状況下で、前記車速検出手段により検出された速度が所定の第1速度より小さい所定の第4速度未満の場合において、前記検出された要求駆動力が所定の第1の駆動力境界以下の領域で前記第1走行モードを選択し、前記車速検出手段により検出された速度が所定の第4速度以上であって前記所定の第1速度未満の場合において、前記検出された要求駆動力が前記所定の第1の駆動力境界から前記車速が増加するにつれて減少する第2の駆動力境界以下の領域で前記第1走行モードを選択し、前記第2の駆動力境界より大きい領域で前記第2走行モードを選択することができる。
 更に、別発明として、前記モード選択手段は、前記残容量が所定の第1閾値未満の状況下で、前記車速検出手段により検出された速度が前記所定の第3速度未満の場合において、前記検出された要求駆動力が前記第1の駆動力境界より小さい第3の駆動力境界以下の領域で前記第1走行モードを選択し、前記第3の駆動力境界より大きい領域で前記第2走行モードを選択することができる。
 更に、別発明として、前記モード選択手段は、前記残容量が所定の第1閾値より小さい所定の第2閾値より更に小さい状況下では前記車速検出手段により検出された速度が前記所定の第3速度より小さい所定の第5速度より大きい場合に前記第3走行モードを選択し、前記所定の第5速度より小さい場合に前記第1走行モードを選択することができる。
 更に、別発明として、前記モード選択手段は、前記残容量が前記所定の第2閾値より小さい所定の第3閾値より更に小さい状況下では前記車両の発進と同時に前記第3走行モードを選択することができる。
 更に、別発明として、前記車両は駆動輪が設けられた駆動軸と、前記エンジンの動力を前記駆動軸に伝達する伝達経路と、前記伝達経路を断接する摩擦契合手段とを備え、前記第1走行モード又は第2走行モードと第3走行モードとの切替えは、前記摩擦契合手段が前記伝達経路を断接することにより行われるようにできる。
 更に、別発明として、前記第3走行モードにおける前記エンジンの駆動力は固定比の減速機により前記駆動輪に伝達されるようにできる。
 従って、本発明によれば、残容量が第1閾値を上回るか否かに応じ、それぞれの場合に、第1速度、第2速度、第3速度に応じて、第1走行モード、第2走行モード、第3走行モードのいずれかで走行するように走行モードを選択して走行するので、残容量が定常判定容量である第1閾値を上回るか否かに区分し、各領域において容易にシリーズパラレル式ハイブリッドモードで走行でき、特に、各モードにおいてエンジンの出力を固定比のままで駆動輪に伝えるようにすれば、モードの切換え制御時及びその後の高速域側での変速制御を行う必要がなく、走行制御を容易化できる。
 更に、第1走行モードの運転域を拡大すると共に第2走行モードでの走行を行うことができる。
 更に、第1走行モードを狭め、バッテリの残容量を回復を早期に図るようにして、第2走行モードで走行を継続することができる。
 更に、モータ発進後エンジン走行に速やかに移行してエンジン駆動の第3走行モードへ切替え、発電不能等の緊急状態を回避するメンテナンスを受ける場所に速やかにエンジン駆動により走行移動する状態を確保できる。
 更に、停車状態で直ちに、クラッチを分離した状態でのエンジン始動が成され、車両の発進と同時に摩擦契合手段を接合することによりエンジンの機械出力が駆動軸に伝達可能な第3走行モードに切替え、発電不能等の緊急状態を回避するメンテナンスを受ける場所へエンジン駆動のみで走行することができる。
 更に、第1走行モード又は第2走行モードと第3走行モードとの切替え時に、摩擦契合手段が伝達経路を滑り接合から徐々に完全結合に切換えるので、伝達経路が固定比を採用しているとしても、モード切換え時のトルクショックを緩和できる。
 更に、第3走行モードにおけるエンジンの駆動力は固定比の減速機により駆動輪に伝達されるので、第3走行モードでの変速制御を行う必要がなく、走行制御が容易化される。
 図1は本発明の適用されたハイブリッド自動車の構成図である。
 図2(a)は図1のハイブリッド自動車の駆動系の機能説明図であってシリーズハイブリッドモード状態を示す。
 図2(b)はパラレルハイブリッドモード状態を示す。
 図3(a)は図1のハイブリッド自動車で用いる定常時の走行モード設定マップの特性説明図を示す。
 図3(b)に定常時のバッテリ容量説明図を示す。
 図4(a)は図1のハイブリッド自動車で用いるバッテリ残容量が定常判定容量を下回る時の走行モード設定マップの特性説明図を示す。
 図4(b)はバッテリ容量説明図を示す。
 図5(a)は図1のハイブリッド自動車で用いるバッテリ残容量が非常判定容量を下回る時の走行モード設定マップの特性説明図を示す。
 図5(b)はバッテリ容量説明図を示す。
 図6(a)は図1のハイブリッド自動車で用いるバッテリ残容量が緊急判定容量を下回る時の走行モード設定マップの特性説明図を示す。
 図6(b)はバッテリ容量説明図を示す。
 図7は図1のハイブリッド自動車で用いる走行制御ルーチンのフローチャートである。
 図8は図1のハイブリッド自動車で用いる走行モード切換えルーチンのフローチャートである。
 図9は図1のハイブリッド自動車で用いる結合車速設定ルーチンのフローチャートである。
 図10は図1のハイブリッド自動車で用いる始動、停止処理ルーチンのフローチャートである。
 図11は図1のハイブリッド自動車で用いるパラレル走行制御ルーチンのフローチャートである。
 図12は図1のハイブリッド自動車で用いるエンジンの運転域特性線図である。
 本発明を適用したハイブリッド自動車を説明する。
 このハイブリッド自動車は、バッテリ残容量が第1閾値を上回るか否かに応じて、各領域において容易に走行モードがシリーズ式ハイブリッドモードまたはパラレル式ハイブリッドモードに切換えられ、その際のトルクショックを低減して走行することを実現した。
 「実施例1」としてのハイブリッド自動車(以後、単に車両と記す)1の概略を図1に示す。
 この車両1はエンジン2とモータ4の両駆動源からの回転出力を伝達経路11を用いて駆動輪である後輪wrに伝達して走行するもので、モータ4のみで走行する第1走行モードと、シリーズ式ハイブリッドモード(以下第2走行モードと記す)と、パラレル式ハイブリッドモード(以下第3走行モードと記す)、との両モードでの走行を可能とする。
 この車両1の伝達経路11はエンジン2と、同エンジンの出力軸J1に連結された発電機3と、後輪wr側に減速機であるデファレンシャルギア(以後単にデフと記す)8を介して連結された車輪側の駆動軸J2と、駆動軸J2に連結されたモータ4と、出力軸J1とモータ4側の駆動軸J2’を備えた伝達経路11を断続する摩擦契合手段としてのクラッチ6とを有する。しかも、エンジン2の出力軸J1は、不図示の増速機を介して発電機3に連結され、これにより回転数を発電機3への入力に適する回転数領域まで高めている。
 また、発電機3とモータ4の間のクラッチ6はオフ(切断状態)では発電機3の軸である出力軸J1とモータ4側の駆動軸J2’は互いに独立し、クラッチ6がオン(接合状態)では連結する。
 ここで、クラッチ6は接合力調整手段付602の湿式多板クラッチ6aである。
 この湿式多板クラッチ6aは、クラッチオフ(切断)にあると(図2(a)参照)、エンジン側の出力軸J1の複数の回転板(不図示)に対する車輪側の駆動軸J2の複数の回転板(不図示)の相対回転を許容し、クラッチオン(接合)にあると(図2(b)参照)、両軸J1、J2’の相対回転を無くして、エンジン側の出力軸J1と駆動軸J2’、車輪wfを直結する。しかも、湿式多板クラッチ6aはその接合力を接合力調整手段602により調整する。接合力調整手段602は電磁ソレノイドの働きで両軸J1、J2’の各回転板相互の相対間隔を接離操作することで、切断状態より半クラッチ状態、直結状態へと段階的に接合の状態を切り換えでき、このクラッチ用ソレノイドは後述の制御手段であるECU9により駆動制御される。
 なお、上述の接合力調整手段602付の湿式多板クラッチ6aに代えて、不図示の単板のクラッチ6を油圧アクチュエーターによる油圧制御により切換える接合調整手段(不図示)を用いてもよい。
 ここでECU9に制御されるクラッチ6aはモード切換え時にクラッチを滑り接合から完全結合への切換えを行う。特に、第1走行モード(EV走行モード)での走行域EVや第2走行モード(シリーズモード)での走行域Msより、第3走行モード(パラレルモード)での走行域Mpへの切換えが開始された際に、車速Svが結合車速Scより所定量(たとえば、5%程度)増加するまでの間はクラッチを接合力調整手段602により半クラッチ接合に保持し、滑り接合から徐々に完全結合に切換え、結合車速が所定量増加するとクラッチを完全結合させるようクラッチ制御を行う。これによって、伝達経路11が固定変速比(固定比)を採用していても、中速以上での切換えにもかかわらず、モード切換え時のショックを緩和できる。
 次に、発電機3及びモータ4には後述のECU9に切換え制御されるインバータ501及び502を介してバッテリ12が接続されている。ここで回転機である発電機3及び/又はモータ4が発電機として機能する運転域にあると、インバータ501、502を介して充電電力がバッテリ12に入力され、電動機として機能する運転域にあると、発電機3及び/又はモータ4に対しインバータ501又は502を介して放電電力が供給される。 車両1には同車両1の伝達経路11の走行制御を行う制御手段であるECU9が配備される。
 ECU9は内部にCPU、ROM、RAM等を有するマイクロコンピュータであり、ROMに記録されたプログラムに従いCPUがエンジン2の燃料噴射量その他の制御を実行する。
 これらの制御を可能とするために、ECU9にはエンジン2の運転状態を示す種々のセンサが接続され、しかも、車両の制御ユニット17とも電気的に接続され、制御ユニット17との間で種々の情報を、通信によってやりとりしている。更に、ECU9は制御ユニット17からエンジン2の運転状態に関する種々の指令値を受けてエンジン2を制御している。なお、符号13は燃料タンクを示す。
 このようなECU9には、車両操縦者からの加速要求を示すアクセル開度θaを出力するアクセル開度センサ15、減速要求を示す踏力bp情報を出力するブレーキセンサ14、左右の前輪wfの各車速センサse1、左右後輪wrの各車速センサse2が接続される。ここで、ECU9は前後車輪速ssf、ssrの各情報よりそれらの単位時間ごとの平均値より車速Svを算出している。更に、ECU9には、発電機3の回転数Ngを出力する回転数センサ18、モータ4の回転数Ndを出力する回転数センサ19、バッテリ12の残容量Eqを出力するSOCセンサ(残容量検出手段)16、バッテリ12の電圧sbvを出力する電圧センサ21がそれぞれ接続される。
 ECU9は、発電機3及びモータ4を発電機として動作させるかそれとも電動機として動作させるかを決定し、インバータ501及び502のスイッチング動作を制御することにより発電機3及びモータ4のトルクを制御する。エンジン2はスロットル全開(WOT)運転を基本としているが、ECU9は、スロットル開度を操作したほうが効率が良くなる領域ではエンジン2のスロットル開度を制御する。ECU9は、また、不図示のブレーキ装置の制動制御をすることにより、前後輪wf、wrに作用する油圧制動力を要求制動力の範囲内で制御する。
 次に、実施例1としての車両1の走行制御の特徴を説明する。
 第1の特徴は、ECU9がモード選択手段A1としての機能を備える。
 なお、ここで、車両1の運転域は、例えば、図3(a)に示すように、エンジンを停止して走行用モータの駆動により走行する第1走行モード(EVモード)域EVと、エンジンの駆動により前記発電機を作動させると共に走行用モータの駆動により走行する第2走行モード(シリーズ式ハイブリッドモード)域Msと、エンジンの駆動及び走行用モータの駆動により走行する第3走行モード(パラレル式ハイブリッドモード)域Mpとに区分され、設定され、これらいずれかのモード域で車両1は走行する。
 モード選択手段A1はバッテリ12の残容量Eqに応じて走行モードを設定する機能を備える。この設定処理に用いる車両の車速「km/h」—駆動力「Nm」線図である走行モード域設定マップ(一例を図3(a)~図6(a)に示した)を予め複数記憶処理されている。各マップはECU9内のROMに記憶されている。ECU9は車速Svおよび駆動力Nm(要求トルク)に基づいてかかるマップを参照して、車両の運転モードを設定する。
 ここで、走行モード域設定マップは、車載のエンジン2、モータ4及び発電機3の駆動特性に沿って予め設定されており、図中の曲線LIMは車両が走行可能な限界領域を示している。
 モード選択手段A1は、まず、残容量Eqが所定の定常判定容量である第1閾値Eq1(図3(b)参照)以上の定常時状況下においては、車速検出手段se1、se2により検出された速度Svが所定の第1速度Sc1未満の場合に、図3(a)に示すように、第1走行モード域EV又は第2走行モード域Msで走行し、所定の第1速度Sc1以上の場合に、第3走行モード域Mpで走行するように走行モードを選択するもので、図3(a)に定常走行マップとして示した。
 更に、モード選択手段A1は、残容量が所定の定常判定容量である第1閾値Eq1(図3(b)参照)未満の低容量状況下においては、車速検出手段se1、se2により検出された速度が所定の第1速度Sc1(図3(a)参照)より小さい所定の第2速度Sc2(図4(a)参照)以上の場合に第3走行モード域Mpを選択し(図4(a)参照)、所定の第2速度Sc2未満の場合であって所定の第2速度Sc2より更に小さい所定の第3速度Sc3(図4(a)参照)以上の場合に第2走行モードMsを選択し、所定の第3速度Sc3未満の場合に第1走行モード域EV又は第2走行モードMsを選択するもので、に非定常容量走行マップとして示した。
 更に、ECU9は要求駆動力Nmを検出する要求駆動力検出手段A2としての機能を備える。
 要求駆動力検出手段A2はECU9内で走行時に車両操縦者からの加速要求を示すアクセル開度θa(アクセル開度センサ15が出力)から要求駆動力NmをECU9が算出し、得られた最新の要求駆動力Nmが所定の第1の駆動力境界R1のライン(図3(a)中のR1ライン)以下の領域で第1走行モードEVを選択し、速度Svが所定の第4速度Sc4以上であって所定の第1速度Sc1未満の場合において、検出された要求駆動力が第1の駆動力境界R1から車速Svが増加するにつれて減少する第2の駆動力境界R2(図3(a)中のR2のライン)以下の領域で第1走行モードEVを選択し、第2の駆動力境界R2より大きい領域で第2走行モードMsを選択する。
 更に、第1走行モード域EV、第2走行モード(シリーズ式ハイブリッドモード)域Msより第3走行モード(パラレル式ハイブリッドモード)域Mpへの切換え時において、クラッチ6aを切断より接合へ切換え、その切換えは車速Svが結合車速Sc(Sc1、Sc2)を上回る際に行うようにしている。
 ここで結合車速Scは車載のバッテリ12の最大容量SOC(100%)に応じて予め設定する。即ち、基本的には車載されているバッテリ12の最大容量SOCが大きいほど、結合車速Scを大きな値に設定する。これによりバッテリ12の電力エネルギーによる第2走行モード(シリーズ式ハイブリッドモード)域Msでの走行域を拡大させ、環境保全に好ましい無公害走行域の拡大を図るようにしている。
 更に、バッテリ12がフル充電により最大容量SOC(100%)を保持する状態より、第2走行モード(シリーズ式ハイブリッドモード)域Msでの走行を続けた場合には、バッテリ12の残容量Eqが低下し、定常走行状態で回復充電を必要とする定常判定容量である第1閾値Eq1(図3(b)参照)を下回らない間は、図3(a)の定常走行用マップに示すように、定常時の定常結合車速Sc1を車両の中速以上の値に設定する。
 この中速とは、クラッチ6aの接合時に出力軸J1に対する車輪側である駆動軸J2の回転が低すぎることによる接合ショックを防止できる下限値、たとえば40[km/h]以上の値とする。逆に、車輪側である駆動軸J2の回転速度が高すぎることによる接合ショックを防止できる上限値、たとえば60[km/h]以下の値が設定される。なお、この中速値は一例であり、車両に応じて予め設定され、ここでは、図3(a)に示すように、50[km/h]に設定され、この値が定常結合車速Sc1として設定される。
 このように、定常判定容量(第1閾値)Eq1を下回らない間、定常結合車速Sc1を車両の中速度近傍の値に設定することで、低速域側である第2走行モード(シリーズ式ハイブリッドモード)域Msを比較的拡大することができ、この第2走行モード(シリーズ式ハイブリッドモード)域Msでの変速処理を排除できるので、走行制御を容易化できる。しかも、定常結合車速Sc1でのクラッチ切換えが中速度近傍で行われるので、出力軸J1とモータ側の駆動軸J2’との回転差が比較的小さい運転域であり、変速ショックの発生を抑制できる。
 次に、車両が低車速での走行を続け、定常結合車速Sc1を上回る運転域が少なかった場合、残容量Eqが定常判定容量(第1閾値)Eq1(図4(b)参照)を所定量dq1下回って非常判定容量Eq2との間に達する。
 この場合、回復充電する運転域を拡大する必要性が高いことより、図4(a)の非常時走行用マップに示すように、定常結合車速Sc1(中速度)より所定量dv1低い低容量時結合車速Sc2が設定される。
 このように、低容量時結合車速Sc2を車両の中速度より低く比較的低速側にずらして設定することで、第2走行モード(シリーズ式ハイブリッドモード)域Msで低速走行が続く運転域であっても、低容量時結合車速Sc2を上回る場合が多くなり、この際クラッチ6aを接合させ、第3走行モード(パラレル式ハイブリッドモード)域Mpに切換え、エンジン2の駆動域を拡大させ、バッテリ12の残容量Eqを比較的早期に増加側に変移させることができる。
 更に、残容量Eqが第1閾値Eq1未満の状況下で、速度Svが所定の第3速度Sc3未満の場合において、要求駆動力検出手段A2により検出された要求駆動力が第1の駆動力境界R1より小さい第3の駆動力境界R3以下の領域(図4(a)参照)で第1走行モード域EVを選択し、第3の駆動力境界R3より大きい領域で第2走行モードMsを選択するように設定する。
 なお、図4(a)の低容量時走行用マップにおいて、エンジン非作動の第1走行モード域EVは、図3(a)の定常走行用マップに示す第1走行モード域EVよりも低速側に狭めて設定され、これによりバッテリ12の残容量Eqを早期に回復するようにしている。
 次に、車両が低車速での走行を続けている際に、発電機側の発電回路が異常状態に陥っているような場合、バッテリ12の残容量Eqが過度に低下し、非常判定容量Eq2を所定量dq2下回り、緊急判定容量Eq3(図5(b)参照)との間に達するとする。
 この場合、発電機側の発電回路が異常状態に陥っていると見做され、モータ発進(EV走行)後、エンジン駆動である第3走行モード(パラレル式ハイブリッドモード)域Mpに速やかに移行する必要がある。
 そこで、図5(a)の非常時走行用マップに示すように、バッテリの残容量Eqが非常判定容量Eq2を下回るような場合には、低容量時結合車速Sc2より所定量dv2低い値である非常時結合車速Sc5が設定される。
 このように、発電機側の発電回路が異常状態に陥って定常の発電機能が働かない緊急状態と見做される場合は、第1走行モード域EVより速やかにクラッチ6aを切ってエンジン2を始動して、クラッチを接合させてパラレルモード域Mpの運転に入る。これにより、発電不可による緊急状態を回避するためメンテナンスを受ける工場等に速やかにエンジン駆動により走行移動することを可能としている。
 次に、バッテリ12の残容量Eqが過度に低下し、緊急判定容量Eq3を下回ると、そのような残容量EqnではEV走行も行わず、停止車速Sc0(図6(a)参照)の状態を判断して、クラッチを切って、残容量Eqnを使ってエンジン2を始動する。その上でクラッチを半クラッチ接合より完全接合に制御して発進し、すなわち、エンジン駆動の第3走行モード(パラレル式ハイブリッドモード)域Mpで発進し、発電不能等の故障状態を回避するメンテナンスを受ける工場等に速やかに走行移動する状態を確保する。
 このように、クラッチを切断より接合に切換える判定値を結合車速Scにより設定し、しかもバッテリの残容量Eqが低くなるとモータの発生トルクが低下するため、エンジン駆動の第3走行モード域Mpへの切換えを早めて残容量Eqの回復を図るようにする。すなわち、結合車速Scをバッテリの残容量Eqの低下に応じて低い値、即ち、Sc1>Sc2>Sc5>Sc0に設定した。これにより、バッテリの残容量Eqの低下に応じてモータ駆動域を狭め、エンジン駆動および発電機駆動域を拡大し、発電機3の運転域を拡大してバッテリの残容量Eqの回復を早期に図ることができる。
 次に、車両1の駆動系の作動を図7の走行制御ルーチンと共に説明する。
 図7は走行制御処理のフローチャートである。この処理が開始されると、ECU9はまず走行モード切換え処理を実行する(ステップa1)。走行モード切換え処理のフローチャートを図8に示す。
 走行モード切換え処理ルーチンでECU9は車両の運転状態に関与する種々のパラメータを読み込む(ステップs1)。ここでのパラメータとしては、車輪速ssr、ssf(車速Sv)、要求駆動力検出手段A2により検出された駆動力Nm、バッテリの残容量Eqn、バッテリ電圧sbv、アクセルペダルポジションθa、ブレーキ踏み操作bp、シフトポジション、エンジン運転情報、などがある。
 車速Svは4車軸wf、wrの車輪速ssr、ssfの平均値に応じて検出される。駆動力Nmは、アクセルペダルポジションセンサ15により検出されたアクセルペダルポジションθaと車速Svに基づいて算出することができる。バッテリ12の残容量Eqnは、SOC(残容量)センサ16により、バッテリ12の電圧sbvは電圧センサ21により検出される。
 更に、シフトポジションはシフトレバー(不図示)のシフト位置センサ22によりリバースR、走行D、パーキングPkの各情報を受ける。更に、エンジン運転状態とは、エンジン2が現在運転されているか否かを意味しており、車両の制御ユニット17との通信により検出することができる。
 こうして検出された運転情報に基づき、予め設定された条件に従ってECU9は走行モードを順次切換える。
 まず、走行モード切換えルーチンのステップs2に達すると、モード切換のため行うクラッチ6aをオンする結合車速Scの設定処理に入る。
 ここで結合車速設定ルーチンを図9に示す。
 この結合車速設定ルーチンのステップb1ではバッテリ12の残容量Eqnが図3(b)に示す定常判定容量(第1閾値)Eq1を上回るか判断し、下回るとステップb3に、上回るとステップb2で中速値である結合車速Sc1を設定し、ステップs3にリターンする。ここでの定常判定容量(第1閾値)Eq1はバッテリ12の回復充電によりバッテリの全容量(100%)に近い回復を定常の充電処理で容易に行えるレベルの放電時の容量として設定される。中速値である結合車速Sc1はここでは60「km/h」に設定されている。
 ステップb3ではバッテリ12の残容量Eqnが図4(b)に示す非常判定容量Eq2を上回るか判断し、下回るとステップb5に、上回るとステップb4で低容量用結合車速Sc2を設定し、走行モード切換えルーチンのステップs3にリターンする。ステップb5ではバッテリ12の残容量Eqnが図5(b)に示す緊急判定容量Eq3を上回るか判断し、下回るとステップb7に、上回るとステップb6で非常用結合車速Sc3を設定し、走行モード切換えルーチンのステップs3にリターンする。ステップb7ではバッテリ12の残容量Eqnが緊急判定容量Eq3を下回る場合であり、停車車速Sc4=0を設定しステップs3にリターンする。
 このように、図9の結合車速設定ルーチンでは、バッテリ12の残容量Eqnが低下するほど低い値の結合車速Scが設定され、次いで、走行モード切換えルーチンのステップs3に進む。
 図8の走行モード切換えルーチンのステップs3に達すると、ここでは、現シフト位置がリバースRか否か判断され、リバースRでは、モータ4の回転を逆転すべくインバータ502の切換えを行う。その上でステップs6に、そうでないとステップs4に進み、現走行モードが第2走行モード(シリーズ式ハイブリッドモード)域Msか判断する。第2走行モード域Msではステップs6に、そうでないとステップs5に進み、エンジン始動中か判断し、始動中であるとステップs6に、そうでないと、ステップs7に進む。
 第2走行モード域Ms継続中において、ステップs6に達するとする。ここで、第1走行モード域EVにない間は第2走行モード域Msを設定し、ステップs8に進む。
 ステップs8で現モードが第2走行モード(シリーズ式ハイブリッドモード)域Msで走行モードの変更が必要と判断するとステップs9に進み、必要ないとそのまま、図7に示す走行制御ルーチンのステップa2に進む。
 ステップs9では、湿式多板クラッチ6aの接合力調整手段602(図1参照)をクラッチオフ(切断)状態に切換え、エンジン側の出力軸J1と車輪側の駆動軸J2の相対回転を許容する。ここでは電動機であるモータ4をそのときのアクセル開度θa相当の駆動力Nmを出力するように駆動する。このモータ4出力により、駆動輪である後輪wrをデフ8を介して駆動する。
 更に、走行域が第1走行モード域EVに入るとエンジン2を停止し、第1走行モード域EVを外れると第2走行モード域Msではエンジンを高効率運転域において、所定の回転数Nenで、所定のスロットル開度θs(たとえば、全開)で駆動するよう制御する。このステップs9の処理の後は、図7に示す走行制御ルーチンのステップa2に進む。
 図8の走行モード切換えルーチンにおいて、エンジン始動中でなく、通常走行ではステップs7に進む。
 ここでは車速Svがステップs2で設定された結合車速Sc(Sc1、Sc2、Sc5、Sc0)に達したか判断し、達しないと第2走行モード域Msに保持すべくステップs9に進む。達するとステップs10に進み、ここで、現走行モードを第3走行モード(パラレル式ハイブリッドモード)域Mpと設定し、次いで、ステップs11で現モードがすでに第3走行モード域Mpでは図7に示す走行制御ルーチンのステップa2に、第2走行モード(シリーズ式ハイブリッドモード)域Msではステップs12に進む。
 ステップs12では、結合車速Sc(Sc1、Sc2、Sc5、Sc0)に達しているのを確認し、第3走行モード域Mpへの切換えに進む。
 ステップs13では、湿式多板クラッチ6aの接合力調整手段602を操作し、エンジン側の出力軸J1と車輪側の駆動軸J2を半クラッチに切換え、エンジン2を駆動し、インバータ502を介しモータ4を駆動に制御する。更に、ステップs14では所定経過時間Tdの経過を待ち、経過後にはステップs15に進む。ここでは接合力調整手段602を操作し、クラッチオン(完全接合)状態に切換え(図2(b)参照)、違和感のないモード切換えを達成した上で、図7に示す走行制御ルーチンのステップa2に進む。
 上述のステップs12での第2走行モード(シリーズ式ハイブリッドモード)域Msより第3走行モード域Mpへの切換えは結合車速Sc(Sc1、Sc2、Sc5、Sc0)の大小により切換え時点が異なる。
 即ち、第3走行モード域Mpへの切換えは、定常判定容量(第1閾値)Eq1以上であると中速近傍のSc1で、非常判定容量Eq2以上であると中速近傍より所定量dv1低速側の非常時Sc2で、緊急判定容量Eq3以上であるとSc2でより所定量dv2低速側のSc5で、緊急判定容量Eq3以下では停車車速Sc0で、それぞれ行われる。
 これにより、基本的には、定常判定容量(第1閾値)Eq1以上の定常運転時は、定常判定車速Sc1を中速近傍の値に設定して、モータ駆動域(第2走行モード域Ms)を比較的拡大して、即ち、環境保持を優先した走行域を拡大する。
 一方、低速運転域が続き、バッテリの残容量Eqnが定常判定容量(第1閾値)Eq1を下回り、非常判定容量Eq2との間に達した場合は、低容量時結合車速Sc2を定常時結合車速Sc1より低下させ、発電域を拡大し、バッテリの残容量Eqnが定常判定容量(第1閾値)Eq1を上回るようにする。
 更に、発電回路系が故障のような場合に、バッテリの残容量Eqnが低容量時結合車速Sc2を下回り、緊急判定容量Eq3との間に達した場合は、非常時結合車速Sc3を非常時結合車速Sc2より更に低下させ、EV走行に入ると速やかにエンジン駆動を行い、故障回避のメンテナンスを受けるように、工場へのエンジン駆動での走行を可能とした。
 特に、発電回路系が故障で、バッテリの残容量Eqnが緊急判定容量Eq3を下回る場合は、EV走行無しに、直接、クラッチ切断のままエンジン始動を行い、始動後にエンジン駆動により故障回避のメンテナンスを受ける工場への走行を可能とした。
 次に、図7の走行制御ルーチンのステップa2に戻るとする。
 ここでは、エンジン2が駆動中か否か判断し、駆動前ではステップa3の始動、停止処理ルーチンに進み、駆動中にあると、ステップa4に進む。
 ここで、図10に示すように、始動、停止処理ルーチンでは、始動及びEV走行、停止の運転時の出力制御を行う。ステップc1では、車速Scが所定値より小さく車両が停止しているとみなせる場合であると、電圧センサ21により検出されるバッテリ12の電圧sbvが所定値(始動可能な電圧)より大きい点と、始動指令が入力されていることを確認する。次いで、モータ4発進すべく、ECU9は、発進用の駆動出力Pdsを所定の発進出力マップ(不図示)より算出し、ステップc2でモータ4での発進制御をする。この発進の後、第1走行モード域EVにある間は、ステップc1、c2において、アクセル踏み込み量θaに基づき目標加速トルクTacを、ブレーキ踏力bpに基づき目標制動トルクTbpを、それぞれ演算する。更に、これら目標加速トルクTac、目標制動トルクTbpのトータルトルクTt=Tac+Tbpを求める。ここで、トータルトルクTtと駆動軸J2の目標回転数Ndの積より駆動出力Pd「kW」が定まる点より、予め設定されている図3(a)の定常走行マップに沿い(バッテリ残容量Eqnによりその他の図4(a)~図6(a)に示す走行マップを採用する)、車速Svあたりの駆動力Tv「Nm」を求める。この場合の駆動力Tv「Nm」は、アクセル踏み込み量θaに比例して適宜設定する。
 ここでは、駆動出力Pd「kW」をトータルトルクTtにより除算して、駆動軸J2の目標回転数Ndを求め、その目標回転数Ndが得られるように、モータ4を制御し、これにより運転者の要求に沿った走行を可能としている。なお、ステップc2において、EV走行以外の第2走行モード(シリーズ式ハイブリッドモード)域Msの運転点に達した時点においては、エンジン始動が成されていないと、エンジン始動が成される。この際、エンジン始動は、湿式多板クラッチ6aの接合力調整手段602をクラッチオフ(切断)状態に切換え、エンジン2に機械連結されている発電機3を電動機として動作させることで行われ、その際のエンジン始動制御は高効率でエンジン駆動を行えるよう予め設定された制御モードで行われる。
 一方、第1走行モード域以外の第2走行モード域Msや第3走行モード域Mpでは、エンジン駆動中にあることより、図7の走行制御ルーチンのステップs4に進む。ここでエンジン駆動時で第1走行モード域以外の第2走行モード域Msで駆動時にはステップa3の始動、停止処理ルーチに戻り、第3走行モード域Mpでのエンジン駆動中にあると、図11に示すパラレル走行制御ルーチンのステップd1に進む。
 図11に示すパラレル走行制御ルーチンでのステップd1においては、ステップc1の場合のように、アクセル踏み込み量θaに基づき目標加速トルクTacを、ブレーキ踏力bpに基づき目標制動トルクTbpを、それぞれ演算する。更に、これら目標加速トルクTac、目標制動トルクTbpのトータルトルクTt=Tac+Tbpを求める。ここで、トータルトルクTtと駆動軸J2の目標回転数Ndの積より駆動出力Pd「kW」が定まる点より、予め設定されている図3(a)の定常走行マップに沿い(バッテリ残容量Eqnによりその他の図4(a)~図6(a)に示す走行マップを採用する)、車速Svあたりの駆動力Tv「Nm」を求める。この場合の駆動力Tv「Nm」は、アクセル踏み込み量θaと図3(a)の定常走行マップの値に沿い適宜設定する。
 次いで、充放電電力Pbおよび補機駆動エネルギーPhを算出する(ステップd2、d3)。充放電電力Pbとは、バッテリ12の充放電に要するエネルギーであり、バッテリ12を充電する必要がある場合には正の値、放電する必要がある場合には負の値を取る。補機駆動エネルギーPhとは、エアコンなどの補機を駆動するために必要となる電力である。こうして算出された電力の総和が要求駆動力POとなる(ステップd4)。
 次に、ECU9は、こうして設定された要求駆動力POに基づいてエンジン2の運転ポイントを成すエンジン回転数Ne(Nea>Neb>Nec)、エンジントルクTe(Tea>Teb>Tec)を予め設定されているエンジン2の運転マップ(図12)より設定する(ステッd5)。
 なお、図12はエンジンの回転数Neを横軸に、トルクTeを縦軸に取り、エンジン2の運転状態を示している。図中の曲線Mはエンジン2の運転が可能な限界範囲を示している。曲線α1からα6まではエンジン2の運転効率が一定となる運転ポイントを示している。α1からα6の順に運転効率は低くなっていく。また、曲線ηaからηcはそれぞれエンジン2から出力される動力(回転数×トルク)が一定となるライン(ηa>ηb>ηc)を示している。
 エンジン2は図12に示す通り、回転数およびトルクに応じて、運転効率が大きく相違する。ここでは、エンジン回転数の上昇変化に応じて常に運転効率が高くなる各トルクの変化軌跡を、例えば、図12中の曲線Ln(回転数の変動域により相違する)として示した。このような、運転マップはECU9のROMに記憶される。
 そこで、現在のエンジン2の運転ポイントを運転効率が高くなる運転ポイントとして設定する。即ち、現在のアクセル開度θa相当の運転効率が高くなる運転ポイントとしての目標とするエンジントルクTeを得る上で、目標とするエンジン効率の良い回転数Neoをマップより求める。
 ここでは、クランク軸の回転数が目標とするエンジン回転数Neoに収束するように燃料供給量を制御する。この場合、エンジン2への燃料噴射量Qtは運転情報に応じた基準噴射量Qbと、これにエンジン回転数のずれに応じて増減する補正量(+dq、あるいは−dq)を加えて制御することで、実エンジン回転数を目標エンジン回転数Neoに収束させるように制御することとなる(ステップd6)。
 このような、第3走行モード域Mpにおいて、モータ4はエンジン運転域が急加速時や、所定レベルを上回る高負荷運転時に達していると判断された場合に駆動する。
 この過渡運転時が検出されると、ECU9は予め設定された所定の駆動モードに沿って所定のモータ駆動力を発揮して、車両の運転域の変動に対する応答性の改善を図るよう制御することとなる。
 このようにして駆動するハイブリッド自動車では、車速Svが低速側にあると第2走行モード域Msで、車速が所定の結合車速Scを上回り高速域側に達するとクラッチ6aを接合して第3走行モード域Mpへ切換え、そのモードの切換え制御時及びその後の高速域側で、固定変速比(固定比)を保持するので変速制御を行う必要がなく、走行制御が容易化される。特に、バッテリ12の残容量Eqが定常回復充電を繰り返す定常判定容量(第1閾値)Eq1以上にある場合は、クラッチ切換えが中速度近傍で行われるので、出力軸J1と駆動軸J2’との回転差が比較的小さくなり、変速ショックの発生を抑制できる。
 しかも、結合車速Scはバッテリ12の最大容量SOCが大きいほどを大きく設定して電力エネルギーによる第2走行モード域Msでの走行域を拡大させ、無公害化を促進できる。
 更に、バッテリの残容量Eqが低くなるとモータの発生トルクが低下するため、エンジン駆動の第3走行モード域Mpへの切換えを早めるよう結合車速Scを低く、たとえば、定常時結合車速Sc1より低い低容量時結合車速Sc2や、低容量時結合車速Sc2より低い非常時結合車速Sc5や、停止車速Sc0を設定し、これらバッテリ12の残容量Eqに応じて設けた閾値となる結合車速を下回ると、発電機3の運転域を拡大してバッテリの残容量Eqの回復を早期に図ることができ、しかも、発電不能等の緊急状態を回避するメンテナンスを受ける場所に速やかにエンジン駆動により走行移動することができ、安定した走行を確保できる。
 更に、第2走行モード域Msより第3走行モード域Mpへの切換えが開始された際に、車速Svが結合車速Scを上回る時点より所定経過時間Tdが経過する間は半クラッチを保持し、経過すると完全結合に切換えるので、回転伝達経路11が固定変速比(固定比)を採用しているとしても、モード切換え時のショックを確実に緩和できる。
 図1のハイブリッド自動車では、湿式多板クラッチ6aの接合力を接合力調整手段602により調整することで、モード切換え時にクラッチを滑り接合から完全結合への切換えを容易化できる。
 上述のところにおいて、クラッチは湿式多板クラッチ6aとして説明したが、単板のクラッチを用いてもよく、流体クラッチを用いてもよく、いずれの場合も図1の湿式多板クラッチ6aに近い作用効果が得られる。
 以上のように、本発明にかかるハイブリッド自動車は走行域に適した複数の走行モードである、モータ4で走行する第1走行モードと、バッテリ12を充電すると同時にモータ4で走行する第2走行モードと、エンジン2及びモータ4の両駆動力で走行する第3走行モードとのいずれかを選択し、走行でき、乗用車、トラック、その他の各種の車両に有効利用できる。
 1  車両
 2  エンジン
 3  発電機
 4  モータ
 501  インバータ
 502  インバータ
 6  クラッチ(摩擦契合手段)
 6a  湿式多板クラッチ
 602  接合力調整手段
 8  デファレンシャルギア(減速機)
 9  制御手段
 11  伝達経路
 12  バッテリ
 13  燃料タンク
 14  ブレーキセンサ
 15  アクセル開度センサ
 16  SOCセンサ(残容量検出手段)
 17  制御ユニット
 18  発電機の回転数センサ
 19  モータの回転数センサ
 21  電圧センサ
 22  シフト位置センサ
 se1  車速センサ(前輪の車速検出手段)
 se2  車速センサ(後輪の車速検出手段)
 ssf  車輪速(前輪)
 ssr  車輪速(後輪)
 wf  車輪(前輪)
 wr  車輪(後輪)
 A1  モード選択手段
 A2  要求駆動力検出手段
 Eq  残容量
 Eqn  残容量(現在値)
 Eq1  定常判定容量(第1閾値)
 Eq2  非常判定容量(第2閾値)
 Eq3  緊急判定容量(第3閾値)
 EV  第1走行モード(EVモード)域
 J1  エンジン出力軸
 J2  駆動軸(駆動輪側)
 J2’  駆動軸(モータ側)
 Ms  第2走行モード(シリーズハイブリッドモード)域
 Mp  第3走行モード(パラレルハイブリッドモード)域
 Nen  エンジン高効率運転域時の回転数
 R1  第1の駆動境界線
 R2  第2の駆動境界線
 R3  第3の駆動境界線
 Sc  結合車速
 Sc1  第1速度
 Sc2  第2速度
 Sc3  第3速度
 Sc4  第4速度
 Sc5  第5速度
 Sc0  停止速度
 Sv  車速
 SOC  バッテリ容量

Claims (7)

  1.  車両1に搭載されるエンジンと、走行用モータと、前記走行用モータに電力を供給するバッテリと、前記バッテリに電力を供給する発電機と、前記車両の速度を検出する車速検出手段と、前記バッテリの残容量を検出する残容量検出手段と、を具備し、前記エンジンを停止して前記走行用モータの駆動により走行する第1走行モードと、前記エンジンの駆動により前記発電機を作動させると共に前記走行用モータの駆動により走行する第2走行モードと、前記エンジンの駆動及び前記走行用モータの駆動により走行する第3走行モードとを有するハイブリッド自動車において、前記残容量が所定の第1閾値以上の状況下では前記車速検出手段により検出された速度が所定の第1速度未満の場合に前記第1走行モード又は前記第2走行モードで走行し、前記所定の第1速度以上の場合に前記第3走行モードで走行するように走行モードを選択するモード選択手段を備え、前記モード選択手段は、前記残容量が前記所定の第1閾値未満の状況下では前記車速検出手段により検出された速度が前記所定の第1速度より小さい所定の第2速度以上の場合に前記第3走行モードを選択し、前記所定の第2速度未満の場合であって前記所定の第2速度より更に小さい所定の第3速度以上の場合に前記第2走行モードを選択し、前記所定の第3速度未満の場合に前記第1走行モード又は第2走行モードを選択する、ことを特徴とするハイブリッド自動車。
  2.  前記車両の走行に要求される要求駆動力を検出する要求駆動力検出手段を更に備え、
     前記モード選択手段は、前記残容量が所定の第1閾値以上の状況下で、前記車速検出手段により検出された速度が所定の第1速度より小さい所定の第4速度未満の場合において、前記検出された要求駆動力が所定の第1の駆動力境界以下の領域で前記第1走行モードを選択し、前記車速検出手段により検出された速度が所定の第4速度以上であって前記所定の第1速度未満の場合において、前記検出された要求駆動力が前記所定の第1の駆動力境界から前記車速が増加するにつれて減少する第2の駆動力境界以下の領域で前記第1走行モードを選択し、前記第2の駆動力境界より大きい領域で前記第2走行モードを選択する、ことを特徴とする請求項1記載のハイブリッド自動車。
  3.  前記モード選択手段は、前記残容量が所定の第1閾値未満の状況下で、前記車速検出手段により検出された速度が前記所定の第3速度未満の場合において、前記検出された要求駆動力が前記第1の駆動力境界より小さい第3の駆動力境界以下の領域で前記第1走行モードを選択し、前記第3の駆動力境界より大きい領域で前記第2走行モードを選択することを特徴とする請求項2に記載のハイブリッド自動車。
  4.  前記モード選択手段は、前記残容量が所定の第1閾値より小さい所定の第2閾値より更に小さい状況下では前記車速検出手段により検出された速度が前記所定の第3速度より小さい所定の第5速度より大きい場合に前記第3走行モードを選択し、前記所定の第5速度より小さい場合に前記第1走行モードを選択することを特徴とする請求項1乃至3のいずれか一つに記載のハイブリッド自動車。
  5.  前記モード選択手段は、前記残容量が前記所定の第2閾値より小さい所定の第3閾値より更に小さい状況下では前記車両の発進と同時に前記第3走行モードを選択することを特徴とする請求項1乃至4のいずれか一つに記載のハイブリッド自動車。
  6.  前記車両は駆動輪が設けられた駆動軸と、前記エンジンの動力を前記駆動軸に伝達する伝達経路と、前記伝達経路を断接する摩擦契合手段とを備え、前記第1走行モード又は第2走行モードと第3走行モードとの切替えは、前記摩擦契合手段が前記伝達経路を断接することにより行われることを特徴とする請求項1乃至5のいずれか一つに記載のハイブリッド自動車。
  7.  前記第3走行モードにおける前記エンジンの駆動力は固定比の減速機により前記駆動輪に伝達されることを特徴とする請求項1乃至6のいずれか一つに記載のハイブリッド自動車。
PCT/JP2011/057930 2010-04-15 2011-03-23 ハイブリッド自動車 WO2011129196A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/641,430 US8965614B2 (en) 2010-04-15 2011-03-23 Hybrid vehicle
EP11768717.8A EP2559577B1 (en) 2010-04-15 2011-03-23 Hybrid automobile
CN201180019189.3A CN102844212B (zh) 2010-04-15 2011-03-23 混合动力车辆
KR1020127026871A KR101406536B1 (ko) 2010-04-15 2011-03-23 하이브리드 자동차

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-094391 2010-04-15
JP2010094391A JP5338743B2 (ja) 2010-04-15 2010-04-15 ハイブリッド自動車

Publications (1)

Publication Number Publication Date
WO2011129196A1 true WO2011129196A1 (ja) 2011-10-20

Family

ID=44798574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057930 WO2011129196A1 (ja) 2010-04-15 2011-03-23 ハイブリッド自動車

Country Status (6)

Country Link
US (1) US8965614B2 (ja)
EP (1) EP2559577B1 (ja)
JP (1) JP5338743B2 (ja)
KR (1) KR101406536B1 (ja)
CN (1) CN102844212B (ja)
WO (1) WO2011129196A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746083A1 (en) 2012-12-21 2014-06-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Traveling mode switching controller of hybrid electric vehicle
WO2015145237A2 (en) 2014-03-24 2015-10-01 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6019732B2 (ja) * 2012-05-15 2016-11-02 三菱自動車工業株式会社 ハイブリッド自動車の制御装置
JPWO2014109064A1 (ja) * 2013-01-11 2017-01-19 本田技研工業株式会社 ハイブリッド車両及びその制御方法
JP5989235B2 (ja) * 2013-04-24 2016-09-07 三菱電機株式会社 変速機制御装置、および、変速機制御方法
JP2015033292A (ja) * 2013-08-06 2015-02-16 トヨタ自動車株式会社 車両制御装置
JP5967051B2 (ja) * 2013-10-21 2016-08-10 トヨタ自動車株式会社 移動支援装置、移動支援方法、及び運転支援システム
KR102009481B1 (ko) * 2013-12-26 2019-08-09 한화디펜스 주식회사 이동체 주행 제어 장치 및 방법
KR101588790B1 (ko) * 2014-07-29 2016-01-26 현대자동차 주식회사 하이브리드 차량의 변속 제어 장치
CN105383274A (zh) * 2014-09-04 2016-03-09 罗伯特·博世有限公司 车辆驱动系统以及其控制方法
CN104670218A (zh) * 2014-12-14 2015-06-03 励春亚 混联式混合动力系统分层结构多能源综合控制方法
CN104553853A (zh) * 2015-01-14 2015-04-29 唐健 汽车用双动力变换驱动系统
DE102015203491A1 (de) * 2015-02-26 2016-09-01 Bayerische Motoren Werke Aktiengesellschaft Limp Home Mode für ein Fahrzeug mit Elektroantrieb
TWI592335B (zh) * 2015-09-24 2017-07-21 財團法人船舶暨海洋產業研發中心 船舶動力控制方法
US10112597B2 (en) 2016-08-23 2018-10-30 Ford Global Technologies, Llc Automatic drive mode selection
JP6955524B2 (ja) * 2019-03-26 2021-10-27 株式会社日立建機ティエラ バッテリ式作業機械
CN114056113A (zh) * 2020-08-09 2022-02-18 广汽埃安新能源汽车有限公司 一种电动汽车节能模式控制方法及系统
CN114248752B (zh) * 2020-09-24 2024-04-12 广州汽车集团股份有限公司 动力分配方法、动力控制方法、车载控制器、汽车及介质
CN112896142A (zh) * 2020-12-30 2021-06-04 东风小康汽车有限公司重庆分公司 一种车辆的控制方法、装置、存储介质和整车控制器
WO2022259876A1 (ja) * 2021-06-08 2022-12-15 三菱自動車工業株式会社 車両制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198607A (ja) * 1997-09-22 1999-04-09 Mitsubishi Motors Corp ハイブリッド電気自動車
JP2006077641A (ja) * 2004-09-08 2006-03-23 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2006104992A (ja) * 2004-10-04 2006-04-20 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2961920B2 (ja) 1991-03-26 1999-10-12 トヨタ自動車株式会社 シリーズ、パラレル複合ハイブリッドカーシステム
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
JP3402236B2 (ja) 1999-01-13 2003-05-06 トヨタ自動車株式会社 動力出力装置およびハイブリッド車両並びにその制御方法
JP3352987B2 (ja) * 1999-12-20 2002-12-03 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3593983B2 (ja) * 2001-01-16 2004-11-24 日産自動車株式会社 車両の駆動力制御装置
US20030144773A1 (en) * 2001-12-27 2003-07-31 Tatsuya Sumitomo Control unit for hybrid vehicle
US6941198B2 (en) * 2003-09-10 2005-09-06 Ford Motor Company Method for controlling activation of a power source of a hybrid electric vehicle
US8010263B2 (en) * 2006-03-22 2011-08-30 GM Global Technology Operations LLC Method and apparatus for multivariate active driveline damping
JP4680124B2 (ja) * 2006-04-28 2011-05-11 本田技研工業株式会社 ハイブリッド車両の駆動制御装置
JP5019870B2 (ja) 2006-12-27 2012-09-05 ボッシュ株式会社 ハイブリッド車両の制御方法
CN101445041B (zh) * 2008-10-11 2012-03-21 比亚迪股份有限公司 一种混合动力驱动系统及采用该系统的汽车
US8315751B2 (en) * 2008-02-29 2012-11-20 GM Global Technology Operations LLC Methods, program products, and systems for controlling braking in a hybrid vehicle
WO2011025540A1 (en) * 2009-08-28 2011-03-03 Bellweather Farms Chemical induction of lactation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198607A (ja) * 1997-09-22 1999-04-09 Mitsubishi Motors Corp ハイブリッド電気自動車
JP2006077641A (ja) * 2004-09-08 2006-03-23 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2006104992A (ja) * 2004-10-04 2006-04-20 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746083A1 (en) 2012-12-21 2014-06-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Traveling mode switching controller of hybrid electric vehicle
CN103879399A (zh) * 2012-12-21 2014-06-25 三菱自动车工业株式会社 混合动力车辆的行驶模式切换控制器
JP2014121962A (ja) * 2012-12-21 2014-07-03 Mitsubishi Motors Corp ハイブリッド車の走行モード切換制御装置
US9376103B2 (en) 2012-12-21 2016-06-28 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Traveling mode switching controller of hybrid electric vehicle
CN103879399B (zh) * 2012-12-21 2016-09-21 三菱自动车工业株式会社 混合动力车辆的行驶模式切换控制器
WO2015145237A2 (en) 2014-03-24 2015-10-01 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
JP2015182550A (ja) * 2014-03-24 2015-10-22 トヨタ自動車株式会社 ハイブリッド車両
US9724992B2 (en) 2014-03-24 2017-08-08 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle

Also Published As

Publication number Publication date
US8965614B2 (en) 2015-02-24
JP2011225034A (ja) 2011-11-10
EP2559577B1 (en) 2020-10-07
CN102844212A (zh) 2012-12-26
EP2559577A1 (en) 2013-02-20
KR20130014683A (ko) 2013-02-08
CN102844212B (zh) 2015-07-22
JP5338743B2 (ja) 2013-11-13
US20130030638A1 (en) 2013-01-31
EP2559577A4 (en) 2017-11-01
KR101406536B1 (ko) 2014-06-13

Similar Documents

Publication Publication Date Title
JP5338743B2 (ja) ハイブリッド自動車
CN102806901B (zh) 用于混合电动车辆的发动机停止控制系统
JP5382223B2 (ja) ハイブリッド車両の制御装置
JP4743218B2 (ja) ハイブリッド車両のクラッチ制御装置
US9376006B2 (en) Vehicle
KR101800143B1 (ko) 차량용 제어 장치
JP5373371B2 (ja) ハイブリッド電気自動車の制御装置
CN109624962B (zh) 混合动力车辆
JP5790625B2 (ja) ハイブリッド車両の制御装置
WO2014109064A1 (ja) ハイブリッド車両及びその制御方法
CA2935041A1 (en) Vehicle
CN105291814A (zh) 一种电动四驱混合动力系统
JP5181847B2 (ja) 複合ブレーキの協調制御装置
KR101518898B1 (ko) 플러그인 하이브리드 자동차의 충전지향모드 제어장치 및 방법
JP2006327315A (ja) 車両の駆動制御装置
JP4449825B2 (ja) ハイブリッド車両の走行モード制御装置
JP7042757B2 (ja) ハイブリッドパワートレインの電気トラクションチェーンで利用可能な電力を制御するための方法およびデバイス
KR100980966B1 (ko) 하이브리드 차량의 변속 방법
KR101013879B1 (ko) 하이브리드 차량의 제동 제어 방법
JP5724484B2 (ja) 電気自動車
JP2006298283A (ja) 車両制御装置
JP7355060B2 (ja) 車両用駆動装置
JP2022063546A (ja) ハイブリッド車両
JP2021165090A (ja) 車両の制御装置
JP2015096340A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019189.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127026871

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13641430

Country of ref document: US

Ref document number: 2011768717

Country of ref document: EP