WO2011125822A1 - 目標速度算出機能を備えた列車制御装置 - Google Patents

目標速度算出機能を備えた列車制御装置 Download PDF

Info

Publication number
WO2011125822A1
WO2011125822A1 PCT/JP2011/058180 JP2011058180W WO2011125822A1 WO 2011125822 A1 WO2011125822 A1 WO 2011125822A1 JP 2011058180 W JP2011058180 W JP 2011058180W WO 2011125822 A1 WO2011125822 A1 WO 2011125822A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
target speed
section
speed
travel
Prior art date
Application number
PCT/JP2011/058180
Other languages
English (en)
French (fr)
Inventor
山本 純子
道王 金山
憲二 吉田
康弘 寺門
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201180017439.XA priority Critical patent/CN102834293B/zh
Priority to EP11765722.1A priority patent/EP2554427B1/en
Publication of WO2011125822A1 publication Critical patent/WO2011125822A1/ja
Priority to US13/493,503 priority patent/US8374739B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0062On-board target speed calculation or supervision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/16Trackside optimisation of vehicle or train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/32Auto pilot mode

Definitions

  • Embodiment of this invention is related with the technique which adjusts the travel plan of a train adaptively so that it may drive
  • an automatic train operation device (ATO: Automatic Train Operation) has been proposed in order to maintain uniform operation of vehicles such as trains and reduce the risk of travel delay.
  • the ATO performs operation control based on a travel plan calculated according to data such as route data or vehicle model data.
  • the train is equipped with an automatic train control device (ATC: Automatic Train Control) which is a safety device.
  • ATC Automatic Train Control
  • the ATC activates the brake when the traveling speed of the train exceeds a predetermined speed or when the distance from the preceding train is too close.
  • Patent Document 1 describes coasting, acceleration, and the like based on the timing at which the preceding train is moved from the blocked section to the next blocked section, and the timing at which the subsequent train is accelerated to the brake pattern due to the presence of the preceding train.
  • a configuration for controlling the running state of the following train is disclosed.
  • Patent Document 2 discloses a configuration that calculates a traveling pattern of a train that observes a predetermined traveling distance and a speed limit by using a reverse curve, a notch switching reference parameter, and an upper limit speed in consideration of energy saving and riding comfort. .
  • JP 2004-266986 A Japanese Patent Laid-Open No. 5-193502
  • the following trains repeatedly accelerate and decelerate as they approach the preceding train as much as possible due to diamond disruption, and the riding comfort deteriorates.
  • the following train coasts when it is likely to accelerate and reach the speed limit pattern.
  • the target speed is set to the maximum speed within the range that does not reach the brake pattern, so that the ride time is minimized and the delay in travel time is minimized. Must be minimized.
  • Patent Document 2 is directed to a short railway between stations. Calculation of a travel plan based on such geographical conditions as a gradient requires enormous time and processing load, so it is not suitable for high-speed railways that require a long-distance / long-time travel plan because of the long distance between stations.
  • An object of the present invention is to provide a train control device that adaptively calculates a target speed of a train on the condition of traveling on a diagram.
  • the train control device sets a brake pattern behind a first acquisition unit that acquires a change history of the number of open sections, which is the number of closed sections between the own train and the preceding train, and the preceding train.
  • a setting unit; and a calculating unit that calculates a time until the vehicle passes through the blockage section where the preceding train is present based on the change history, and calculates a target speed that does not conflict with the brake pattern.
  • the train control device includes a setting unit that sets a travel plan to the next station, a calculation unit that calculates a travel time from the current position to the next station based on the travel plan, and the travel time. Adjusting means for comparing the predetermined time and adjusting the travel time of the travel plan.
  • FIG. 1 is a block diagram illustrating a system including a plurality of trains and a track circuit including the train control device according to the first embodiment.
  • FIG. 2A is a diagram illustrating the movement of the brake pattern and the adjustment of the traveling speed according to the first embodiment.
  • FIG. 2B is a diagram for explaining the movement of the brake pattern and the adjustment of the traveling speed according to the first embodiment.
  • FIG. 3 is a diagram illustrating a change in traveling speed when traveling in a section from the station X to the station Y according to the second embodiment.
  • FIG. 4 is a diagram illustrating a change in traveling speed when traveling in a section from the station X to the station Y according to the second embodiment.
  • FIG. 1 is a block diagram illustrating a system including a plurality of trains and a track circuit including the train control device according to the first embodiment.
  • FIG. 2A is a diagram illustrating the movement of the brake pattern and the adjustment of the traveling speed according to the first embodiment.
  • FIG. 2B is a
  • FIG. 5 is a diagram showing a power running curve and a deceleration curve calculated for a travel plan for phase 0 according to the second embodiment.
  • FIG. 6 is a diagram illustrating a travel plan for phase 0 according to the second embodiment.
  • FIG. 7 is a diagram illustrating a change in the deceleration curve in phase 1 according to the second embodiment.
  • FIG. 8A is a diagram illustrating a change from power running to coasting in phase 1 according to the second embodiment.
  • FIG. 8B is a diagram illustrating a change from power running to coasting in phase 1 according to the second embodiment.
  • FIG. 9 is a diagram illustrating a change in the constant speed in the phase 1 according to the second embodiment.
  • FIG. 10 is a diagram illustrating another example of changing the constant speed in the phase 1 according to the second embodiment.
  • FIG. 11 is a diagram illustrating a change from deceleration to coasting in phase 1 according to the second embodiment.
  • FIG. 1 is a block diagram illustrating a system including a plurality of trains and a track circuit including the train control device according to the first embodiment.
  • the first embodiment is a system for long-distance and high-speed railways.
  • the train A10 includes a reception unit 101, an ATC 102, a target speed calculation unit 103, a display device 104, an ATO 105, and an on-board wireless device 106.
  • the train control device includes an ATC 102, a target speed calculation unit 103, and an ATO 105.
  • the receiving unit 101 acquires various types of information via the track circuit 30 that is a ground system.
  • the receiving unit 101 acquires the number of open sections with the train preceding the own train via the track circuit 30.
  • the open section number information is the number of closed sections between the closed section in which the preceding train is traveling and the closed section in which the own train is traveling.
  • the receiving unit 101 acquires an ID assigned to each block section indicating which block section the host train is traveling from the track circuit 30.
  • the ATC 102 automatically performs brake control on the train A10.
  • the ATC 102 acquires the number of open sections received by the receiving unit 101.
  • the ATC 102 acquires each control cycle and the number of open sections via the receiving unit 101.
  • a case where the ATC 102 is a digital ATC will be described. This is because the analog ATC has a small amount of information that can be acquired, and thus the number of open sections cannot be acquired.
  • the target speed calculation unit 103 receives information on the number of open sections from the ATC 102, holds a change history of the number of open sections, and calculates the target speed of the train A10 based on the information on the number of open sections. Further, the target speed calculation unit 103 calculates a travel plan to the next station.
  • the display device 104 displays various information on the display based on the request from the target speed calculation unit 103.
  • the ATO 105 automatically operates the train A10 based on the travel plan calculated by the target speed calculation unit 103.
  • the on-vehicle wireless device 106 transmits and receives information between trains via a network (not shown) in the ground system.
  • Train B20 is a subsequent train that runs after train A.
  • the train B20 includes a reception unit 201, an ATC 202, a target speed calculation unit 203, a display device 204, an ATO 205, and an on-board wireless device 206.
  • Receiving unit 201, ATC 202, target speed calculating unit 203, display device 204, ATO 205, and on-board wireless device 206 are respectively configured as receiving unit 101, ATC 102, target speed calculating unit 103, display device 104, ATO 105, on-board wireless device.
  • the configuration is the same as that of 106.
  • the track circuit 30 transmits information on the number of open sections with the preceding train to the following train. Each blockage section is assigned a unique ID.
  • the train B20 which is the subsequent train, adjusts the target speed according to the traveling speed of the train A10, which is the preceding train, will be described.
  • the train A10 and the train B20 travel with power running, constant speed running, coasting, and deceleration in one section from departure to stop.
  • the target speed calculation unit 203 sets a brake pattern starting from the end point of the blockage section immediately before the blockage section where the train A10 is located.
  • the brake pattern is a curve in which the traveling speed of the train B20 and the brake activation position by the ATC 202 are associated with each other.
  • the brake pattern is positioned closer to the front of the brake pattern as the speed increases.
  • the ATC 202 activates the brake when the train B20 conflicts with the brake pattern so that the train B20 does not enter the closed section where the preceding train A10 is present.
  • the target speed calculation unit 203 sets the travel speed (averaged travel speed) in the blockage section where the preceding train A10 has passed (the blockage section immediately before the blockage section where the preceding train A10 is located) as follows. To calculate.
  • the target speed calculation unit 203 holds closed section length information of each closed section. Therefore, the target speed calculation unit 203 calculates the traveling speed in the blocked section in which the train A10 has passed from the blockage section length information and the history of the number of opened sections in which the train A10 has passed, that is, the time interval in which the opened section increases. To do.
  • the target speed calculation unit 203 calculates the time predicted to pass through the blocked section where the train A10 is present as follows.
  • the target speed calculation unit 203 is predicted to pass through the blocked section where the train A10 is present based on the traveling speed in the blocked section where the preceding train A10 has passed and the blocked section length information of the blocked section where the train A10 is present. Can be calculated.
  • the target speed calculation unit 203 sets a brake pattern, which starts from the end point of the blockage section immediately preceding the blockage section where the train A10 is located, by moving from the end point of the next blockage section to the start point. Predict when to perform.
  • the target speed calculation unit 203 applies the brake pattern set from the end point of the blockage section immediately before the blockage section where the train A10 is located as a starting point when moving from the end point of the next blockage section to the start point.
  • the traveling speed of the train B20 that travels to the position immediately before the conflict with the pattern is calculated as follows.
  • the target speed calculation unit 203 calculates the distance from the current position of the train B20 calculated based on the ID of the closed section where the train B20 is present acquired from the track circuit 30 to the position immediately before the conflict with the brake pattern. Further, the target speed calculation unit 203 determines that the time during which the train A10 passes through the blocked section is the time that can be traveled to the position immediately before the conflict with the brake pattern. Therefore, the target speed calculation unit 203 can calculate the target speed that is the traveling speed of the train B20 from the distance to the position immediately before the conflict with the brake pattern and the time that can travel to the position immediately before the conflict with the brake pattern.
  • the target speed calculation unit 203 transmits the calculated target speed to the ATO 205.
  • the ATO 205 automatically operates the train B20 by controlling the traveling speed of the train B20 according to the target speed.
  • the target speed calculation unit 203 transmits target speed information to the display device 204.
  • the display device 204 displays the target speed on a display (not shown). Based on the target speed displayed on the display device 204, the driver operates a master controller (not shown) to control the traveling speed of the train B20 to manually operate the train B20.
  • FIG. 2A and FIG. 2B are diagrams showing the movement of the brake pattern described above, the train A10 and the train B20, and the travel position relationship.
  • FIG. 2A is a case where the target speed calculation unit 203 according to the first embodiment does not calculate the target speed of the train B20 based on the traveling speed of the train A10 as a comparative example.
  • FIG. 2B is a case where the target speed of the train B20 is calculated based on the traveling speed of the train A10 by the target speed calculation unit 203 according to the first embodiment.
  • the horizontal axis indicates the travel positions of the train A10 and the train B20.
  • shaft shows the traveling speed of the train A10 and the train B20.
  • 2A and 2B show changes in the travel positions of the train A10 and the train B20 as time elapses.
  • the train B20 conflicts with the brake pattern set with the end point of the closed section a as the starting point because the train A10 does not pass through the closed section b. Therefore, the ATC 202 activates the brake.
  • the train B20 is in the closed section b, and the train A10 is in the closed section c.
  • the target speed calculation unit 203 sets the starting point of the brake pattern by moving from the end point of the closed section a to the end point of the closed section b.
  • the ATO 205 performs power running to increase the traveling speed as the brake pattern moves.
  • the train B20 is in the closed section b, and the train A10 is in the closed section c.
  • the train B20 conflicts with the brake pattern set with the end point of the closed section b as the starting point because the train A10 does not pass through the closed section c. Therefore, the ATC 202 activates the brake.
  • the ATO 205 performs power running in order to increase the traveling speed as the start point of the brake pattern moves from the end point of the closed section b to the end point of the closed section c.
  • the train B20 conflicts with the brake pattern set with the end point of the closed section c as the starting point because the train A10 does not pass through the closed section d. Therefore, the ATC 202 activates the brake.
  • the ATO 205 performs power running in order to increase the traveling speed with the movement of the starting point of the brake pattern from the end point of the closed section c to the end point of the closed section d.
  • the train B20 travels by repeatedly accelerating and decelerating in order to travel according to the schedule.
  • the target speed calculation unit 203 sets the base point of the brake pattern as the end point of the closed section a.
  • the target speed calculation unit 203 predicts the timing at which the train A10 enters the next blockage section c, that is, the timing at which the start point of the brake pattern is moved to the end point of the next blockage section b.
  • the train B20 travels at the target speed calculated by the target speed calculation unit 203 based on the movement timing of the brake pattern.
  • the target speed calculation unit 203 sets the start point of the brake pattern to the end point of the closed section b. Therefore, ATC 202 does not activate the brake.
  • the target speed calculation unit 203 sets the start point of the brake pattern as the end point of the closed section b. The train B20 travels at the target speed calculated by the target speed calculation unit 203 based on the movement timing of the brake pattern.
  • the target speed calculation unit 203 sets the start point of the brake pattern as the end point of the closed section c immediately before the train B20 conflicts with the brake pattern set as the start point of the closed section b. Move and set.
  • the train B20 travels at the target speed calculated by the target speed calculation unit 203 based on the movement timing of the starting point of the brake pattern from the end point of the closed section b to the end point of the closed section c.
  • the target speed calculation unit 203 sets the start point of the brake pattern to the end point of the closed section d.
  • the delay from the diamond can be minimized while reducing unnecessary brake activation by the ATC 202.
  • the target speed calculation unit 203 calculates the target speed of the train B based on the traveling speed of the train A10. There is no need to travel based on a travel plan created in advance.
  • the target speed calculation unit 203 of the train B20 calculates the traveling speed of the train A10 from the change history of the number of open sections.
  • the traveling speed of the preceding train A10 calculated by the target speed calculation unit 203 is an average traveling speed in the closed section immediately before the closed section where the train A10 is located. That is, the target speed calculation unit 203 assumes that the traveling speed in the closed section where the train A10 is present is the same as the traveling speed in the previous closed section. Therefore, when the train A10 starts powering and braking in the closed section where the train is present, the train B20 cannot recognize the speed change of the train A10.
  • the target speed calculation unit 203 actually needs to delay the movement timing of the brake pattern. Therefore, the possibility that the train B20 conflicts with the brake pattern and the ATC 202 activates the brake increases.
  • the target speed calculation unit 103 holds the ID of the closed section where the own train is located, the corresponding closed section length information, and information on the target speed or traveling speed of the train A10 (each train). . Therefore, the target speed calculation unit 103 predicts the time from the closed section where the tail end of the train A10 is present to the next closed section based on these pieces of information.
  • the on-board wireless device 106 transmits the passage time information of the closed section by the train A calculated by the target speed calculation unit 103 to the on-board wireless device 206 of the train B20 via the network.
  • the target speed calculation unit 203 of the train B20 predicts the movement timing of the brake pattern more accurately based on the passage time information of the closed section transmitted from the train A10.
  • the target speed calculation unit 203 trains in a brake pattern set with the end point of the blockage section immediately before the blockage section where the train A10 is located as the starting point before the passage time of the blockage section calculated by the train A10 has elapsed. If it is determined that B conflicts, the target speed of the train B20 is calculated again. The ATO 205 may adjust the traveling speed based on the target speed calculated again by the target speed calculation unit 203. Therefore, according to this example, the conflict with the brake pattern of the train B20 can be prevented.
  • the target speed calculation unit 203 predicts and corrects the movement timing of the brake pattern every time the on-board wireless device 206 periodically acquires the passage time information of the closed section calculated in the preceding train A10. do it. The same applies when the train A10 is accelerated. In the train B20, the target speed calculation unit 203 may correct the brake pattern movement timing to advance and increase the target speed.
  • the first embodiment it is possible to provide a traveling speed guideline such that the train reaches the position immediately before the brake pattern during the time until the starting point of the brake pattern moves to the next blockage section. Therefore, it is possible to realize energy saving, improved ride comfort, and driving on a schedule. Furthermore, since the time (or distance) interval between running trains can be approached within a range in which safety is maintained, a diagram with a shortened interval can be realized. Even in the case of manual driving, the driver only needs to drive according to the target speed. Therefore, according to the first embodiment, it is possible to reduce the driving variation due to the difference in skill for each driver.
  • a system including a plurality of trains and track circuits provided with the train control device according to the second embodiment is the same as that of the first embodiment shown in FIG.
  • the travel plan is calculated so that the time required for the train A to depart from the station and stop after the departure is set as a diagram.
  • the second embodiment is a system for long-distance and high-speed railways, and assumes that the train travels at a constant speed for a long time.
  • traveling of the train B20 will be described.
  • FIG. 3 is calculated by the target speed calculation unit 203 according to the second embodiment when the distance between the stations is relatively short and the specified time between the stations is relatively short, such as a suburb section of a city. It is a travel plan and is a figure which shows target speed change in case train B20 drive
  • the horizontal axis indicates the position, and the vertical axis indicates the target speed.
  • the thick line is the threshold for the speed limit.
  • a thin line is a travel plan calculated by the target speed calculation unit 203 based on the threshold and the travel time of the XY section.
  • the target speed calculation unit 203 has geographical information such as a gradient in the XY section.
  • the target speed calculation unit 203 calculates air resistance information.
  • the target speed calculation unit 203 simulates a change in train speed during coasting based on geographical information and air resistance information, and increases the traveling speed by coasting downhill in a range that does not cause a delay in the traveling time of the XY section. If it is determined, the power running location in the travel plan in FIG.
  • the target speed calculation unit 203 replaces the deceleration portion of the travel plan in FIG. 3 with coasting as shown by a broken line so that the terminal portion of the constant speed traveling section is replaced with coasting and the vehicle slowly decelerates.
  • the target speed calculation unit 203 transmits, to the ATO 205, a travel plan adjusted so as to replace the end portion of the power running and constant speed travel section with coasting.
  • the ATO 205 automatically operates the train B20 based on the travel plan calculated again. In many cases, the train B20 cannot travel as planned due to external factors such as weather, boarding rate, and manual intervention. Therefore, the target speed calculation unit 203 adjusts the travel plan a plurality of times in the XY section.
  • the train B20 partially travels on the coast, leading to the promotion of energy saving.
  • the configuration in which the power running location and the terminal portion of the constant speed travel section are replaced with coasting has been described.
  • the target speed change in the constant speed travel section will be described.
  • FIG. 4 is calculated by the target speed calculation unit 203 according to the second embodiment when the distance between the stations is relatively long and the prescribed time between the stations is relatively long, such as an intercity high-speed railway.
  • FIG. 6 is a diagram showing a change in target speed when a train B20 travels from a station X to a station Y. The horizontal axis indicates the position, and the vertical axis indicates the target speed. The thick line is the threshold for the speed limit. A thin line is a travel plan calculated by the target speed calculation unit 203 based on the threshold and the travel time of the XY section.
  • Phase 0 is a period until a travel plan is obtained
  • Phase 1 is a section where the distance to the next station is large after the travel plan is obtained
  • Phase 2 is a section where the distance to the next station is short thereafter.
  • the target speed calculation unit 203 appropriately adjusts the travel plan in phase 1 based on simple calculation, and adjusts the travel plan in phase 2 based on strict simulation calculation.
  • FIG. 5 is a diagram illustrating a power running curve and a deceleration curve calculated for a travel plan by the target speed calculation unit 203 according to the second embodiment.
  • the target speed calculation unit 203 is offline, before starting or immediately after departure, a power running curve when the departure position and the speed limit increase, a speed reduction curve where the speed limit decreases, a deceleration curve at the next station, and a station Y stop position.
  • the deceleration curve is calculated, for example, in increments of 1 to 2 seconds until the power running curve and deceleration curve are equal to or higher than the target speed.
  • the target speed calculation unit 203 calculates a deceleration curve by reverse lookup using a deceleration pattern of the ATC 202, for example.
  • the target speed calculation unit 203 also calculates a deceleration deceleration curve that is weaker than the ATC 202 by, for example, one notch.
  • the target speed calculation unit 203 connects the power running curve and the deceleration curve with a straight line having a margin lower than the limit speed to calculate a travel plan.
  • FIG. 6 is a diagram illustrating a travel plan calculated by the target speed calculation unit 203.
  • FIG. 6 shows a state where the train B20 is present at a position where the distance to the next station is still large.
  • the target speed calculation unit 203 calculates a target speed that is a margin lower than the speed limit until the travel plan is calculated, and the ATO 205 starts automatic operation according to the target speed.
  • FIG. 7 is a diagram showing a travel plan in phase 1 adjusted by the target speed calculation unit 203.
  • the travel plan shown in FIG. 7 changes the deceleration curve with respect to the travel plan shown in FIG. 6 when there is a margin in travel time.
  • FIG. 7 shows a state where the train B20 is in a position where the distance to the next station is still large.
  • target travel time determined by the diagram – predicted travel time until stopping at station Y + elapsed time from departure from station X to present
  • adjust means that the train B20 arrives at the station Y on the street when it is expected to arrive at the station Y earlier than or later than the target travel time determined by the diagram. This is a predetermined time range in which the time can be adjusted.
  • station Y It means the case of arriving earlier than the time determined by the diamond. Therefore, the target speed calculation unit 203 needs to calculate the travel plan again in order to adjust the travel time to the station Y.
  • the target speed calculation unit 203 replaces a deceleration curve with a slightly weaker deceleration among the plurality of deceleration curves calculated in phase 0 for the same deceleration location.
  • the target speed calculation unit 203 adjusts the deceleration curve in order from the station Y that is the stop target position.
  • the target speed calculation unit 203 shortens the constant speed travel section connected to the deceleration curve by replacing the deceleration curve with a weak deceleration. Since it is only necessary to reselect the deceleration curve that has been calculated in advance, it is not necessary to recalculate the deceleration curve and the processing load can be reduced.
  • FIGS. 8A and 8B are diagrams showing a travel plan in phase 1 adjusted by the target speed calculation unit 203.
  • FIG. The travel plans shown in FIGS. 8A and 8B change the power running location or the constant speed travel section to coasting with respect to the travel plan shown in FIG. 7 when there is a surplus in travel time.
  • 8A and 8B show a state where the train B20 is still at a position where the distance to the next station is still large.
  • the target speed calculation unit 203 further adjusts the travel plan in the phase 1 when it is determined that the travel plan after replacing the deceleration curve with the one having a weak deceleration satisfies the formula (1).
  • the target speed calculation unit 203 adjusts the travel plan so as to change the power running location or the constant speed travel section to coasting as follows.
  • the target speed calculation unit 203 performs a coasting simulation for a short time based on the current position and the current travel speed. If the travel speed of the train B20 reaches the speed of the travel plan before correction before the simulation ends, even if the coasting time can be secured for a certain time or more and the travel time of the phase 1 increases, the formula (1) is satisfied. If it is judged, target speed calculation part 203 will adjust a run plan so that a power running location or a constant speed run section may be changed to coasting.
  • the simulation at the coast requires consideration of geographical conditions such as gradient and air resistance, but since it is a short-time simulation, it is not necessary to greatly increase the processing load.
  • FIG. 9 is a diagram showing a travel plan in phase 1 adjusted by the target speed calculation unit 203.
  • the travel plan shown in FIG. 9 changes the target speed with respect to the travel plan shown in FIG. 7 when there is a margin in travel time.
  • FIG. 9 shows a state where the train B20 is present at a position where the distance to the next station is still large.
  • the target speed calculation unit 203 further adjusts the travel plan in the phase 1 when it is determined that the travel plan after replacing the deceleration curve with the one having a weak deceleration satisfies the formula (1).
  • the target speed calculation unit 203 adjusts the travel plan so as to lower the target speed in the constant speed travel section as follows.
  • the target speed calculation unit 203 similarly adjusts whether or not the power running location or the constant speed traveling section as shown in FIGS. 8A and 8B is changed to coasting.
  • the target speed calculation unit 203 lowers the constant speed from the part where the constant speed travel section is long in the constant speed travel section sandwiched between the power running curve and the deceleration curve.
  • the ATO 205 adjusts the current travel speed to be lowered to the target speed.
  • the target speed calculation unit 203 When adjusting the target speed of the constant speed travel section up and down, the target speed calculation unit 203 does not need to consider geographical conditions such as the gradient of the constant speed travel section and air resistance, so that the processing load can be reduced. it can.
  • FIG. 10 is a diagram showing a travel plan in phase 1 adjusted by the target speed calculation unit 203.
  • the travel plan shown in FIG. 11 further adjusts the target speed adjusted in FIG. FIG. 11 shows a state where the train B20 is present at a position where the distance to the next station is still large.
  • the target speed calculation unit 203 determines that the expression (1) is not satisfied, the target speed calculation unit 203 further adjusts the travel plan in the phase 1. In this case, in order to adjust the travel time to the station Y, the target speed calculation unit 203 needs to recalculate the travel plan so as to pass through the phase 1 section earlier.
  • the target speed calculation unit 203 increases the constant speed of the constant speed traveling section nearest to the current position among the constant speed traveling sections adjusted to be lower than the target speed determined from the speed limit.
  • the target speed calculation unit 203 when there is no constant speed travel section for increasing the target speed, or when the target speed is still not satisfied even when the target speed is increased, the constant speed section nearest to the current position is calculated. Replace the deceleration curve that leads to the one with strong deceleration.
  • the target speed calculation unit 203 When adjusting the target speed of the constant speed travel section up and down, the target speed calculation unit 203 does not need to consider geographical conditions such as the gradient of the constant speed travel section, air resistance, and the deceleration curve of the travel plan. When changing the deceleration, it is only necessary to select a deceleration curve calculated in advance, so that the processing load can be reduced.
  • FIG. 11 is a diagram showing a travel plan in phase 2 that is adjusted by the target speed calculation unit 203.
  • the travel plan shown in FIG. 11 changes the constant speed travel section or the deceleration point to coasting with respect to the travel plan shown in FIG. 6 when there is a margin in travel time.
  • the target speed calculation unit 203 predicts the required time based on the distance from the current position to the stop target position in consideration of geographical conditions such as gradient and air resistance.
  • the target speed calculation unit 203 adjusts the travel plan so that the train B20 arrives at the station Y, which is the stop target position, in the same way as the travel plan adjustment in the short distance section. That is, the target speed calculation unit 203 replaces the constant speed traveling part or the deceleration part with coasting based on the geographical condition and the air resistance.
  • the second embodiment it is possible to provide a traveling speed guideline based on a simple calculation that realizes traveling according to a diagram mainly by changing the target speed of the constant speed traveling section. Therefore, even between long-distance and long-time stations, it is possible to realize energy saving, improved ride comfort, and driving on a schedule without increasing the processing load. Even in the case of manual driving, the driver only needs to drive according to the target speed in the constant speed travel section, so according to the second embodiment, the variation in driving due to the difference in skills for each driver is reduced. Can do.
  • a system including a plurality of trains and a track circuit including the train control device according to the third embodiment is the same as that of the first embodiment shown in FIG.
  • traveling of the train B20 will be described.
  • the target speed calculation unit 203 travels to a position just before conflicting with the brake pattern set as the starting point at the end point of the blockage section immediately before the blockage section where the train A10 is located.
  • the target speed is calculated. This target speed is set as the first target speed.
  • the target speed calculation unit 203 determines that the travel time from the current position to the stop position based on the travel plan is shorter or longer than the predetermined time by a predetermined time or longer.
  • the target speed is calculated by adjusting the speed set in the plan up and down. This target speed is set as the second target speed.
  • the target speed calculation unit 203 calculates a target speed by subtracting a predetermined speed from a predetermined speed limit in the travel section. The reason why the predetermined speed is subtracted is to allow the target speed to have a margin with respect to the speed limit. This target speed is set as the third target speed.
  • the target speed calculation unit 203 sets the slowest speed among the first target speed, the second target speed, and the third target speed as the target speed of the train B.
  • the ATO 205 automatically operates the train B20 by controlling the traveling speed of the train B20 according to the set target speed. According to the third embodiment, it is possible to reduce unnecessary brake activation by the ATC 202 even between long-distance / long-time stations, save energy without increasing the processing load, improve ride comfort, travel on the road, Safe driving without exceeding the speed limit can be realized.
  • DESCRIPTION OF SYMBOLS 10 ... Train A, 20 ... Train B, 30 ... Track circuit, 101 ... Reception part, 102 ... ATC, 103 ... Target speed calculation part, 104 ... Display apparatus, 105 ... ATO, 106 ... On-vehicle radio apparatus, 201 ... Reception , 202 ... ATC, 203 ... target speed calculation unit, 204 ... display device, 205 ... ATO, 206 ... on-vehicle wireless device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 自列車と先行列車との間の閉塞区間数である開通区間数の変更履歴を取得する第1の取得手段と、前記先行列車が在線する閉塞区間の1つ前の閉塞区間の終点を起点にブレーキパターンを設定する設定手段と、前記変更履歴に基づいて、前記先行列車が在線する閉塞区間を抜けるまでの時間を算出し、前記ブレーキパターンと抵触しない範囲での最高速度を前記自列車の目標速度として算出する算出手段とを備える。

Description

目標速度算出機能を備えた列車制御装置
 本発明の実施形態は、ダイヤ通りに走行するために列車の走行計画を適応的に調整する技術に関する。
 近年、列車などの車両の均一な運転を維持し、かつ、走行遅延の虞を低減するため、自動列車運転装置(ATO:Automatic Train Operation)が提案されている。たとえば、ATOは、路線データあるいは車両モデルデータなどのデータに従って算出した走行計画に基づいて運転制御する。
 また、列車には、保安装置である自動列車制御装置(ATC:Automatic Train Control)が搭載されている。ATCは、列車の走行スピードが所定速度を超過したり、先行列車との間隔が近づき過ぎたりする場合、ブレーキを起動する。
 現在、ダイヤ通りの走行を前提として、省エネ及び乗り心地を追求する技術が開発されている。特許文献1には、先行列車が在線する閉塞区間から次閉塞区間に進むタイミングと、先行列車の存在によるブレーキパターンに後続列車が加速した時に到達すると予測されるタイミングに基づいて、惰行、加速など後続列車の走行状態を制御する構成が開示されている。
 特許文献2には、省エネ及び乗り心地を考慮して、逆行カーブとノッチ切り換え基準パラメータと上限速度を用いて、所定走行距離と速度制限を守る列車の走行パターンを算出する構成が開示されている。
特開2004-266986号公報 特開平5-193502号公報
 後続列車は、ダイヤ乱れなどで先行列車に接近するように目一杯突っ込んでいくと、加減速を繰り返し、乗心地が悪化する。特許文献1では、後続列車は、加速して制限速度パターンに到達しそうなときは惰行する。しかしながら、後続列車は、惰行することでブレーキパターンへの到達を回避することで乗り心地を維持できるが、惰行による走行時間の遅れを見込めないため、定時性を損なう可能性がある。しがたって、後続列車は、ブレーキパターンに到達しない範囲での最高速度を目標速度とすることで、乗り心地の悪化を防ぎながら、走行時間の遅れも最小限にし、その後の後続列車への影響も最小限に抑制する必要がある。
 また、特許文献2の構成は、駅間の短い鉄道に向けられている。このような勾配などの地理的条件に基づく走行計画の算出は膨大な時間及び処理負荷を要するため、駅間が長く、長距離・長時間の走行計画を必要とする高速鉄道には馴染まない。
 さらに、特許文献1、2の構成では、運転士の運転技術に依存する割合が高い。そのため、このような運転技術のばらつきは、省エネ、乗り心地、ダイヤの乱れに影響を及ぼす。
 この発明は、ダイヤ通りの走行を条件として列車の目標速度を適応的に算出する列車制御装置を提供することを目的とする。
 実施形態に係る列車制御装置は、自列車と先行列車との間の閉塞区間数である開通区間数の変更履歴を取得する第1の取得手段と、前記先行列車の後方にブレーキパターンを設定する設定手段と、前記変更履歴に基づいて、前記先行列車が在線する閉塞区間を抜けるまでの時間を算出し、前記ブレーキパターンと抵触しないための目標速度を算出する算出手段とを備える。
 さらに、実施形態に係る列車制御装置は、次駅までの走行計画を設定する設定手段と、走行計画に基づいて現在位置から前記次駅までの走行時間を算出する算出手段と、前記走行時間と前記既定時間を比較して、走行計画の走行時間を調整する調整手段とを備える。
図1は、第1の実施形態に係る列車制御装置を備える複数の列車及び軌道回路を含むシステムを示すブロック図である。 図2Aは、第1の実施形態に係るブレーキパターンの移動及び走行速度の調整を説明する図である。 図2Bは、第1の実施形態に係るブレーキパターンの移動及び走行速度の調整を説明する図である。 図3は、第2の実施形態に係る駅Xから駅Yまでの区間を走行する場合の走行速度変化を示す図である。 図4は、第2の実施形態に係る駅Xから駅Yまでの区間を走行する場合の走行速度変化を示す図である。 図5は、第2の実施形態に係るフェーズ0の走行計画のために算出される力行曲線と減速曲線を示す図である。 図6は、第2の実施形態に係るフェーズ0の走行計画を示す図である。 図7は、第2の実施形態に係るフェーズ1における減速曲線の変更を示す図である。 図8Aは、第2の実施形態に係るフェーズ1における力行から惰行への変更を示す図である。 図8Bは、第2の実施形態に係るフェーズ1における力行から惰行への変更を示す図である。 図9は、第2の実施形態に係るフェーズ1における定速速度の変更を示す図である。 図10は、第2の実施形態に係るフェーズ1における定速速度の変更の他の例を示す図である。 図11は、第2の実施形態に係るフェーズ1における減速から惰行への変更を示す図である。
 以下、図面を参照して、本実施形態について説明する。図1は、第1の実施形態に係る列車制御装置を備える複数の列車及び軌道回路を含むシステムを示すブロック図である。第1の実施形態は、長距離かつ高速鉄道向けのシステムである。列車A10は、受信部101、ATC102、目標速度算出部103、表示装置104、ATO105、車上無線装置106を備える。ここでは、列車制御装置は、ATC102、目標速度算出部103、ATO105を含んでいるものとする。
 受信部101は、地上システムである軌道回路30を介して各種情報を取得する。受信部101は、軌道回路30を介して、自列車に先行する列車との間の開通区間数情報を取得する。開通区間数情報とは、先行列車が走行している閉塞区間と自列車が走行している閉塞区間との間の閉塞区間数である。また、受信部101は、軌道回路30から自列車がどの閉塞区間を走行しているのかを示す閉塞区間毎に割り当てられたIDを取得する。
 ATC102は、列車A10に対して自動的にブレーキ制御する。ATC102は、受信部101で受信した開通区間数情報を取得する。ATC102は、毎制御周期、開通区間数を受信部101を介して取得する。ここでは、ATC102がデジタルATCである場合について説明する。これは、アナログATCでは、取得できる情報量が少ないため、開通区間数情報を取得できないためである。
 目標速度算出部103は、ATC102から開通区間数情報を受け取り、開通区間数の変動履歴を保持し、開通区間数情報等に基づいて列車A10の目標速度を算出する。また、目標速度算出部103は、次駅までの走行計画を算出する。表示装置104は、目標速度算出部103による要求に基づいて、各種情報をディスプレイに表示する。ATO105は、目標速度算出部103で算出された走行計画に基づいて、列車A10を自動運転する。車上無線装置106は、地上システムにおける図示しないネットワークを介して、列車間で情報を送受信する。
 列車B20は、列車Aの後を走行する後続列車である。列車B20は、受信部201、ATC202、目標速度算出部203、表示装置204、ATO205、車上無線装置206を備える。受信部201、ATC202、目標速度算出部203、表示装置204、ATO205、車上無線装置206それぞれの構成は、受信部101、ATC102、目標速度算出部103、表示装置104、ATO105、車上無線装置106の構成と同様である。軌道回路30は、先行列車との間の開通区間数の情報を後続の列車に伝送する。個々の閉塞区間には固有のIDが割り当てられている。
 次に、先行列車である列車A10の走行速度に応じて、後続列車である列車B20が目標速度を調整する場合について説明する。列車A10及び列車B20は、出発から停止までの1区間において、力行、定速走行、惰行、減速を行って走行する。
 はじめに、目標速度算出部203は、列車A10が在線する閉塞区間の1つ前の閉塞区間の終点を起点としてブレーキパターンを設定する。ブレーキパターンは、列車B20の走行速度とATC202によるブレーキ起動位置を関連付けた曲線である。ブレーキパターンは、速度が高くなるほど、ブレーキパターンの起点から手前に位置する。ATC202は、先行列車A10が在線する閉塞区間に列車B20が進入しないように、列車B20がブレーキパターンと抵触すると、ブレーキを起動する。次に、目標速度算出部203は、先行列車A10が通過した閉塞区間(先行列車A10が在線する閉塞区間の1つ前の閉塞区間)での走行速度(平均化した走行速度)を以下のようにして算出する。
 目標速度算出部203は、各閉塞区間の閉塞区間長情報を保持している。そのため、目標速度算出部203は、列車A10が通過した閉塞区間の閉塞区間長情報及び開通区間数の変動履歴、つまり開通区間の増える時間間隔から列車A10が通過した閉塞区間での走行速度を算出する。
 次に、目標速度算出部203は、列車A10が在線する閉塞区間を通過すると予測される時間を以下のように算出する。目標速度算出部203は、先行列車A10が通過した閉塞区間での走行速度及び列車A10が在線する閉塞区間の閉塞区間長情報に基づいて、列車A10が在線する閉塞区間を通過すると予測される時間を算出できる。言い換えると、目標速度算出部203は、列車A10が在線する閉塞区間の1つ前の閉塞区間の終点を起点に設定したブレーキパターンを、1つ先の閉塞区間の終点を起点に移動して設定するタイミングを予測する。
 次に、目標速度算出部203は、列車A10が在線する閉塞区間の1つ前の閉塞区間の終点を起点に設定されたブレーキパターンを1つ先の閉塞区間の終点を起点に移動する時にブレーキパターンと抵触する直前の位置まで走行するような列車B20の走行速度を以下のように算出する。目標速度算出部203は、軌道回路30から取得した列車B20が在線する閉塞区間のIDに基づいて算出した列車B20の現在位置から、ブレーキパターンと抵触する直前の位置までの距離を算出する。また、目標速度算出部203は、列車A10が在線する閉塞区間を通過する時間をブレーキパターンと抵触する直前の位置まで走行できる時間と判断する。したがって、目標速度算出部203は、ブレーキパターンと抵触する直前の位置までの距離及びブレーキパターンと抵触する直前の位置まで走行できる時間から、列車B20の走行速度である目標速度を算出できる。
 自動運転の場合、目標速度算出部203は、ATO205に算出した目標速度を送信する。ATO205は、目標速度に従って列車B20の走行速度を制御することで列車B20を自動運転する。マニュアル運転の場合、目標速度算出部203は、目標速度情報を表示装置204に送信する。表示装置204は、目標速度を図示しないディスプレイに表示する。運転士は、表示装置204に表示された目標速度に基づいて、図示しないマスターコントローラを操作し、列車B20の走行速度を制御して列車B20をマニュアル運転する。
 図2A及び図2Bは、上記説明したブレーキパターンの移動、列車A10と列車B20と走行位置関係を示す図である。図2Aは、比較例として、第1の実施形態に係る目標速度算出部203による列車A10の走行速度に基づく列車B20の目標速度の算出を実行しない場合である。図2Bは、第1の実施形態に係る目標速度算出部203による列車A10の走行速度に基づく列車B20の目標速度の算出を実行する場合である。
 図2A及び図2Bにおいて、横軸は、列車A10及び列車B20の走行位置を示す。縦軸は、列車A10及び列車B20の走行速度を示す。図2A及び図2Bは、時間経過毎に、列車A10及び列車B20の走行位置の変化を示している。図2Aの時間T=dtでは、列車B20は閉塞区間aに在線し、先行列車A10は閉塞区間bに在線する。列車B20は、列車A10が閉塞区間bを通過していないため、閉塞区間aの終点を起点に設定されたブレーキパターンと抵触する。そのため、ATC202はブレーキを起動する。
 時間T=2dtでは、列車B20は閉塞区間bに在線し、列車A10は閉塞区間cに在線する。目標速度算出部203は、ブレーキパターンの起点を閉塞区間aの終点から閉塞区間bの終点に移動して設定する。ATO205は、ブレーキパターンの移動に伴い、走行速度を上げるために、力行を行う。時間T=3dtでは、列車B20は閉塞区間bに在線し、列車A10は閉塞区間cに在線する。列車B20は、列車A10が閉塞区間cを通過していないため、閉塞区間bの終点を起点に設定されたブレーキパターンと抵触する。そのため、ATC202はブレーキを起動する。
 以降同様に、時間T=4dtでは、ATO205は、閉塞区間bの終点から閉塞区間cの終点へのブレーキパターンの起点の移動に伴い、走行速度を上げるために、力行を行う。時間T=5dtでは、列車B20は、列車A10が閉塞区間dを通過していないため、閉塞区間cの終点を起点に設定されたブレーキパターンと抵触する。そのため、ATC202は、ブレーキを起動する。時間T=6dtでは、ATO205は、閉塞区間cの終点から閉塞区間dの終点へのブレーキパターンの起点の移動に伴い、走行速度を上げるために、力行を行う。以上のように、列車B20は、ダイヤ通りに走行するために、加減速を繰り返して走行する。
 図2Bの時間T=dtでは、列車B20は閉塞区間aに在線し、列車A10は閉塞区間bに在線する。したがって、目標速度算出部203は、ブレーキパターンを閉塞区間aの終点に基点を設定している。目標速度算出部203は、列車A10が次閉塞区間cに進入するタイミング、つまり、ブレーキパターンの起点を次閉塞区間bの終点に移動して設定するタイミングを予測する。列車B20は、ブレーキパターンの移動タイミングに基づいて目標速度算出部203で算出した目標速度で走行する。
 時間T=2dtでは、列車B20は閉塞区間aに在線し、列車A10は閉塞区間bを通過して閉塞区間cに在線する。列車B20が閉塞区間aの終点を起点に設定されたブレーキパターンと抵触する直前に、目標速度算出部203は、ブレーキパターンの起点を閉塞区間bの終点に移動して設定する。したがって、ATC202はブレーキを起動しない。時間T=3dtでは、列車B20は閉塞区間bに在線し、列車A10は閉塞区間cに在線する。したがって、目標速度算出部203は、ブレーキパターンの起点を閉塞区間bの終点に設定している。列車B20は、ブレーキパターンの移動タイミングに基づいて目標速度算出部203で算出した目標速度で走行する。
 以降同様に、時間T=4dtでは、列車B20が閉塞区間bの終点を起点に設定されたブレーキパターンと抵触する直前に、目標速度算出部203は、ブレーキパターンの起点を閉塞区間cの終点に移動して設定する。時間T=5dtでは、列車B20は、閉塞区間bの終点から閉塞区間cの終点へのブレーキパターンの起点の移動タイミングに基づいて目標速度算出部203で算出した目標速度で走行する。時間T=6dtは、列車B20が閉塞区間cの終点に設定されたブレーキパターンと抵触する直前に、目標速度算出部203は、ブレーキパターンの起点を閉塞区間dの終点に移動して設定する。第1の実施形態によれば、ATC202による不必要なブレーキ起動を削減しながら、ダイヤからの遅れを最小限に抑制できる。
 なお、列車B20の出発から停止までの1走行区間において列車A10が走行していない場合、列車B20は、目標速度算出部203が列車A10の走行速度に基づいて列車Bの目標速度を算出することはなく、予め作成した走行計画に基づいて走行すればよい。
 次に、第1の実施形態の変形例について説明する。上記説明したように、列車B20の目標速度算出部203は、列車A10の走行速度を開通区間数の変動履歴から算出している。しかしながら、目標速度算出部203が算出した先行列車A10の走行速度は、列車A10が在線する閉塞区間の1つ前の閉塞区間での平均走行速度である。つまり、目標速度算出部203は、列車A10が在線する閉塞区間での走行速度を1つ前の閉塞区間での走行速度と同じと仮定している。したがって、列車A10が、在線する閉塞区間で力行やブレーキを起動した場合、列車B20では列車A10の速度変化を認識できない。例えば、列車A10が在線する閉塞区間で減速した場合、目標速度算出部203は、実際はブレーキパターンの移動タイミングを遅くする必要がある。したがって、列車B20がブレーキパターンに抵触し、ATC202がブレーキを起動する可能性が高まる。
 ここでは、列車A10(各列車)では、目標速度算出部103は、自列車が在線する閉塞区間のID、それに対応する閉塞区間長情報、自身の目標速度または走行速度の情報を保持している。したがって、目標速度算出部103は、これらの情報に基づいて、列車A10の尾端が在線する閉塞区間から次閉塞区間に入りきるまでの時間を予測する。車上無線装置106は、列車B20の車上無線装置206にネットワークを介して、目標速度算出部103で算出された列車Aによる閉塞区間の通過時間情報を伝送する。列車B20の目標速度算出部203は、列車A10から伝送された閉塞区間の通過時間情報に基づいて、ブレーキパターンの移動タイミングをより正確に予測する。
 つまり、目標速度算出部203は、列車A10で算出された閉塞区間の通過時間経過前に、列車A10が在線する閉塞区間の1つ前の閉塞区間の終点を起点に設定されたブレーキパターンに列車Bが抵触すると判断した場合、列車B20の目標速度を再度算出する。ATO205は、目標速度算出部203で再度算出された目標速度に基づいて、走行速度を調整すればよい。したがって、この例によれば、列車B20のブレーキパターンへの抵触を防止できる。
 なお、列車B20では、目標速度算出部203は、先行列車A10で算出された閉塞区間の通過時間情報を車上無線装置206で周期的に取得する毎にブレーキパターンの移動タイミングを予測し、修正すればよい。また、列車A10が加速した場合も同様である。列車B20では、目標速度算出部203は、ブレーキパターンの移動タイミングを早めるように修正し、目標速度を上げればよい。
 第1の実施形態によれば、ブレーキパターンの起点が次閉塞区間に移動するまでの時間に列車がブレーキパターンの直前の位置に達するような走行速度ガイドラインを提供できる。したがって、省エネ、乗り心地の改善、ダイヤ通りの走行を実現できる。さらに、走行中の列車間の時間(または距離)間隔を安全性が保たれる範囲内で接近させることができるので、間隔を短縮したダイヤを実現することもできる。マニュアル運転の場合であっても、運転士は目標速度に従って運転すればいいため、第1の実施形態によれば、運転士毎の技量の差による運転のばらつきを小さくすることができる。
 次に第2の実施形態について説明する。第2の実施形態に係る列車制御装置を備える複数の列車及び軌道回路を含むシステムは、図1に示す第1の実施形態と同様なので、説明を省略する。第2の実施形態は、例えば列車Aが駅間で出発後停止するまでの所要時間をダイヤ通りとするように走行計画を算出するものである。第2の実施形態では、長距離かつ高速鉄道向けのシステムであって、列車が長時間定速走行することを前提とする。ここでは、列車B20の走行について説明する。
 図3は、例えば都市近郊区間などの、駅間が比較的短距離で、駅間の規定時間が比較的短時間の場合に、第2の実施形態に係る目標速度算出部203によって算出される走行計画であって、列車B20が駅Xから駅Yまでの区間を走行する場合の目標速度変化を示す図である。
 横軸は位置、縦軸は目標速度を示している。太線は、制限速度の閾値である。細線は、目標速度算出部203がこの閾値及びXY区間の走行時間に基づいて算出した走行計画である。ここで、目標速度算出部203は、XY区間における勾配などの地理情報を有している。また、目標速度算出部203は、空気抵抗情報を算出する。目標速度算出部203は、地理情報及び空気抵抗情報に基づいて惰行時の列車速度の変化を模擬して、XY区間の走行時間に遅延を生じない範囲で、下り坂を惰行で走行速度を上げられると判断すれば、図3における走行計画において力行箇所を破線のように惰行に置き換える。同様に、目標速度算出部203は、定速走行区間の終端部分を惰行に置き換えて緩やかに減速するように、図3における走行計画の減速箇所を破線のように惰行に置き換える。目標速度算出部203は、力行及び定速走行区間の終端部分を惰行に置き換えるように調整した走行計画をATO205に送信する。ATO205は、再度算出された走行計画に基づいて列車B20を自動運行する。列車B20は、天候、乗車率、手動介入操作などの外的要因によって、走行計画通りには走行できないことが多い。そのため、目標速度算出部203は、XY区間で複数回走行計画の調整を行う。第2の実施形態によれば、列車B20が部分的に惰行で走行することにより、省エネの促進につながる。ここでは、力行箇所及び定速走行区間の終端部分を惰行に置き換える構成について説明したが、次に、定速走行区間の目標速度変更について説明する。
 図4は、例えば都市間高速鉄道などの、駅間が比較的長距離で、駅間の規定時間が比較的長時間の場合に、第2の実施形態に係る目標速度算出部203によって算出される走行計画であって、列車B20が駅Xから駅Yまでの区間を走行する場合の目標速度変化を示す図である。横軸は位置、縦軸は目標速度を示している。太線は、制限速度の閾値である。細線は、目標速度算出部203がこの閾値及びXY区間の走行時間に基づいて算出した走行計画である。ここでは、走行計画が得られるまでをフェーズ0、走行計画が得られた後、次駅までの距離が大きい区間をフェーズ1、その後の次駅までの距離が短い区間をフェーズ2とする。後述するように、目標速度算出部203は、フェーズ1における走行計画を簡易計算に基づいて適宜調整し、フェーズ2における走行計画を厳密な模擬計算に基づいて調整する。
 はじめに、フェーズ0における走行計画の算出について説明する。図5は、第2の実施形態に係る目標速度算出部203によって走行計画のために算出される力行曲線と減速曲線を示す図である。目標速度算出部203は、オフライン、出発前または出発直後に、出発位置および制限速度が上がる箇所での力行曲線と、制限速度が下がる箇所および次駅での減速曲線、駅Yの停止箇所での減速曲線を例えば1~2秒刻みのシミュレーションで、力行曲線及び減速曲線を目標速度以上になるところまで算出する。目標速度算出部203は、減速曲線を例えばATC202の減速パターンを利用して逆引きで算出する。目標速度算出部203は、ATC202よりも例えばノッチ一段分弱い減速度の減速曲線も算出する。目標速度算出部203は、これらの力行曲線と減速曲線を、制限速度より余裕分低い速度の直線でつなぎ合わせて、走行計画を算出する。図6は、目標速度算出部203によって算出された走行計画を示す図である。図6は、列車B20が次駅までの距離がまだ大きい位置に在線している状態を示している。目標速度算出部203は、走行計画を算出し終わるまでの間、制限速度より余裕分低い速度を目標速度として算出し、ATO205は、この目標速度に従って、自動運転を開始する。
 次に、目標速度算出部203によるフェーズ1の走行計画の調整について説明する。
 図7は、目標速度算出部203によって調整されるフェーズ1における走行計画を示す図である。図7に示す走行計画は、走行時間に余裕がある場合に図6に示す走行計画に対して減速曲線を変更するものである。図7は、列車B20が次駅までの距離がまだ大きい位置に在線している状態を示している。走行時間の余裕がある場合とは、「ダイヤで決められている目標走行時間-(駅Yに停止するまでの走行時間の予測値+駅X出発から現在までの経過時間)>フェーズ2用の調整しろ  (1)式」が成立する場合である。ここで、「調整しろ」とは、ダイヤで決められている目標走行時間よりも早く、または遅く駅Yに到着すると予想される場合に、列車B20がダイヤ通りに駅Yに到着するように、時間調整可能な所定時間範囲である。また、フェーズ2用の調整しろよりも走行時間の余裕がある場合とは、列車B20が現在の走行計画に沿って走行した場合、フェーズ2用の調整しろを最大限活用しても駅Yにダイヤで決められている時刻よりも早く到着する場合を意味する。したがって、目標速度算出部203は、駅Yまでの走行時間を調整するために、走行計画を再度算出する必要がある。
 目標速度算出部203は、同じ減速箇所に対してフェーズ0で算出した複数の減速曲線のうち、一段弱い減速度の減速曲線に置き換える。目標速度算出部203は、停止目標位置である駅Yから近い順に、減速曲線を調整する。目標速度算出部203は、減速曲線を減速度の弱いものに置き換える分、その減速曲線とつながれる定速走行区間を短くする。 あらかじめ算出しておいた減速曲線を選択しなおすだけなので、減速曲線を算出しなおす必要がなく、処理負荷を軽減することができる。
 図8A及び図8Bは、目標速度算出部203によって調整されるフェーズ1における走行計画を示す図である。図8A及び図8Bに示す走行計画は、走行時間に余裕がある場合に図7に示す走行計画に対して力行箇所または定速走行区間を惰行へ変更するものである。図8A及び図8Bは、列車B20が次駅までの距離がまだ大きい位置に在線している状態を示している。目標速度算出部203は、減速曲線を減速度の弱いものに置き換えた後の走行計画であっても(1)式を満たすと判断した場合、フェーズ1における走行計画をさらに調整する。目標速度算出部203は、以下のように力行箇所または定速走行区間を惰行へ変更するように走行計画を調整する。目標速度算出部203は、現在位置及び現在の走行速度に基づいて、短時間の惰行シミュレーションを行う。シミュレーション終了前に列車B20の走行速度が修正前の走行計画の速度に達した場合、惰行する時間が一定時間以上確保でき、かつ、フェーズ1の走行時間が増えても、(1)式を満たすと判断したら、目標速度算出部203は、力行箇所または定速走行区間を惰行へ変更するように走行計画を調整する。
 惰行でのシミュレーションは、勾配などの地理的条件、空気抵抗を考慮する必要があるが、短時間のシミュレーションなので、処理負荷を大きく増大させずに済む。
 図9は、目標速度算出部203によって調整されるフェーズ1における走行計画を示す図である。図9に示す走行計画は、走行時間に余裕がある場合に図7に示す走行計画に対して目標速度を変更するものである。図9は、列車B20が次駅までの距離がまだ大きい位置に在線している状態を示している。目標速度算出部203は、減速曲線を減速度の弱いものに置き換えた後の走行計画であっても(1)式を満たすと判断した場合、フェーズ1における走行計画をさらに調整する。目標速度算出部203は、以下のように定速走行区間の目標速度を下げるように走行計画を調整する。目標速度算出部203は、図8A及び図8Bに示すような力行箇所または定速走行区間を惰行へ変更をした場合もしていない場合も同様に調整する。
 目標速度算出部203は、力行曲線と減速曲線に挟まれた定速走行区間のうち、定速走行区間が時間的に長い部分から定速速度を下げる。現在の走行速度よりも目標速度が低くなる場合、ATO205は、現在の走行速度を下げて目標速度となるように調整する。
 目標速度算出部203は、定速走行区間の目標速度を上下に調整する場合、定速走行区間の勾配などの地理的条件、空気抵抗を考慮する必要がないので、処理負荷を軽減することができる。
 図10は、目標速度算出部203によって調整されるフェーズ1における走行計画を示す図である。図11に示す走行計画は、図9で調整した目標速度をさらに調整するものである。図11は、列車B20が次駅までの距離がまだ大きい位置に在線している状態を示している。目標速度算出部203は、(1)式を満たさないと判断した場合、フェーズ1における走行計画をさらに調整する。この場合、目標速度算出部203は、駅Yまでの走行時間を調整するために、フェーズ1の区間を早めに通過するように走行計画を再度算出する必要がある。はじめに、目標速度算出部203は、制限速度から決まる目標速度よりも低いところに調整された定速走行区間のうち、現在位置から一番手前の定速走行区間の定速速度を上げる。次に、目標速度算出部203は、目標速度を上げる定速走行区間がない場合、または、目標速度を上げてもなお(1)式を満たさない場合、現在位置から一番手前の定速区間につながる減速曲線を減速度の強いものに置き換える。
 目標速度算出部203は、定速走行区間の目標速度を上下に調整する場合、定速走行区間の勾配などの地理的条件、空気抵抗を考慮する必要がなく、また、走行計画の減速曲線の減速度を変更する場合、あらかじめ算出した減速曲線を選択するだけでよいので、処理負荷を軽減することができる。
 なお、図7から図10を用いてフェーズ1における走行計画の調整について説明したが、走行計画に対して減速曲線の置き換え、力行または定速走行から惰行への変更、目標速度の変更を実行する順番、組み合わせは任意である。
 図11は、目標速度算出部203によって調整されるフェーズ2における走行計画を示す図である。図11に示す走行計画は、走行時間に余裕がある場合に図6に示す走行計画に対して定速走行区間または減速箇所を惰行へ変更するものである。目標速度算出部203は、現在位置から停止目標位置までの距離に基づいて、所要時間の予測を勾配などの地理的条件、空気抵抗を考慮して行う。目標速度算出部203は、短距離区間での走行計画の調整と同様に、列車B20が停止目標位置である駅Yにダイヤ通りに到着するように走行計画を調整する。つまり、目標速度算出部203は、地理的条件、空気抵抗に基づいて、定速走行部分または減速箇所を惰行に置き換える。
 第2の実施形態によれば、主として定速走行区間の目標速度を変更することでダイヤ通りの走行を実現するような簡易計算に基づく走行速度ガイドラインを提供できる。したがって、長距離・長時間の駅間でも、処理負荷を増大させることなく、省エネ、乗り心地の改善、ダイヤ通りの走行を実現できる。マニュアル運転の場合であっても、運転士は定速走行区間で目標速度に従って運転すればいいため、第2の実施形態によれば、運転士毎の技量の差による運転のばらつきを小さくすることができる。
 次に第3の実施形態について説明する。第3の実施形態に係る列車制御装置を備える複数の列車及び軌道回路を含むシステムは、図1に示す第1の実施形態と同様なので、説明を省略する。ここでは、列車B20の走行について説明する。
 目標速度算出部203は、第1の実施形態で説明したように、列車A10が在線する閉塞区間の1つ前の閉塞区間の終点を起点に設定されたブレーキパターンと抵触する直前の位置まで走行するような目標速度を算出する。この目標速度を第1の目標速度とする。さらに、目標速度算出部203は、第2の実施形態で説明したように、走行計画に基づく現在位置から停止位置までの走行時間が既定時間よりも所定時間以上短いあるいは長いと判断する場合、走行計画で設定された速度を上下に調整して目標速度を算出する。この目標速度を第2の目標速度とする。さらに、目標速度算出部203は、走行計画を設定していない場合、走行区間で既定の制限速度から所定速度分減算した速度を目標速度として算出する。所定速度分減算するのは、目標速度が制限速度に対して余裕を持つようにするためである。この目標速度を第3の目標速度とする。
 目標速度算出部203は、第1の目標速度、第2の目標速度、第3の目標速度のうち最も遅い速度を列車Bの目標速度として設定する。ATO205は、設定された目標速度に従って列車B20の走行速度を制御することで列車B20を自動運転する。第3の実施形態によれば、長距離・長時間の駅間でも、ATC202による不必要なブレーキ起動を削減すると共に、処理負荷を増大させることなく省エネ、乗り心地の改善、ダイヤ通りの走行、制限速度を超えることのない安全走行を実現できる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 10…列車A、20…列車B、30…軌道回路、101…受信部、102…ATC、103…目標速度算出部、104…表示装置、105…ATO、106…車上無線装置、201…受信部、202…ATC、203…目標速度算出部、204…表示装置、205…ATO、206…車上無線装置。

Claims (10)

  1.  自列車と先行列車との間の閉塞区間数である開通区間数の変更履歴を取得する第1の取得手段と、
     前記先行列車が在線する閉塞区間の1つ前の閉塞区間の終点にブレーキパターンの起点を設定する設定手段と、
     前記変更履歴に基づいて、前記先行列車が在線する閉塞区間を抜けるまでの時間を算出し、前記ブレーキパターンと抵触しない範囲での最高速度を前記自列車の目標速度として算出する算出手段と、
     を備えることを特徴とする列車制御装置。
  2.  前記算出手段は前記先行列車が在線する閉塞区間の1つ前の閉塞区間を抜けるまでの経過時間及び前記1つ前の閉塞区間の距離情報に基づいて前記先行列車の走行速度を算出し、前記先行列車の走行速度及び前記先行列車が在線する閉塞区間の距離情報に基づいて、前記先行列車が在線する閉塞区間を抜ける時間を算出することを特徴とする請求項1記載の列車制御装置。
  3.  前記算出手段で算出した前記目標速度の情報を表示装置に表示するように出力する出力手段をさらに備えることを特徴とする請求項1記載の列車制御装置。
  4.  前記先行列車が在線する閉塞区間を抜けるまでの時間の情報を前記先行列車から取得する第2の取得手段をさらに備え、
     前記算出手段は、前記第2の取得手段で取得した情報に基づいて、前記目標速度を再算出することを特徴とする請求項1記載の列車制御装置。
  5.  出発位置から停止目標位置までの走行計画を設定する設定手段と、
     前記走行計画に基づいて現在位置から前記停止位置までの走行時間を算出する算出手段と、
     前記走行時間が既定時間よりも所定時間以上短いあるいは長いと判断される場合、走行計画の走行時間を調整する調整手段と、
     を備えることを特徴とする列車制御装置。
  6.  前記調整手段は、定速走行区間における走行速度を前記走行計画で設定された速度よりも上下に調整することを特徴とする請求項5記載の列車制御装置。
  7.  前記調整手段は、現在位置から惰行した場合の挙動を短時間予測した結果に基づいて走行計画の定速走行部分を惰行に置き換えることを特徴とする請求項6記載の列車制御装置。
  8.  前記調整手段は、前記定速走行区間の終端部分の減速度を前記走行計画で設定された減速曲線の減速度よりも上下に調整することを特徴とする請求項5記載の列車制御装置。
  9.  前記調整手段は、自列車位置が前記停止目標位置に接近した後は、空気抵抗、地理的条件を考慮した模擬計算を行って前記走行計画を調整することを特徴とする請求項5記載の列車制御装置。
  10.  自列車と先行列車との間の閉塞区間数である開通区間数の変更履歴に基づいて、前記先行列車が在線する閉塞区間を抜けるまでの時間を算出し、前記先行列車が在線する閉塞区間の1つ前の閉塞区間の終点に設定したブレーキパターンと抵触しない範囲での最高速度を前記自列車の第1の目標速度として算出する第1の算出手段と、
     出発位置から停止目標位置までの走行計画に基づいて現在位置から前記停止位置までの走行時間が既定時間よりも所定時間以上短いあるいは長いと判断される場合、前記走行計画で設定された速度を上下に調整して定速走行区間における第2の目標速度を算出する第2の算出手段と、
     前記走行計画が設定されていない場合、制限速度から所定速度分減算した第3の目標速度を算出する第3の算出手段と、
     前記第1の目標速度、前記第2の目標速度、前記第3の目標速度のうち最も遅い速度を前記自列車に設定する設定手段と、
     を備えることを特徴とする列車制御装置。
PCT/JP2011/058180 2010-04-01 2011-03-31 目標速度算出機能を備えた列車制御装置 WO2011125822A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180017439.XA CN102834293B (zh) 2010-04-01 2011-03-31 具备目标速度计算功能的列车控制装置
EP11765722.1A EP2554427B1 (en) 2010-04-01 2011-03-31 Train control device equipped with target speed calculating function
US13/493,503 US8374739B2 (en) 2010-04-01 2012-06-11 Train control device having a target speed calculation function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010085247A JP5586308B2 (ja) 2010-04-01 2010-04-01 目標速度算出機能を備えた列車制御装置
JP2010-085247 2010-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/493,503 Continuation US8374739B2 (en) 2010-04-01 2012-06-11 Train control device having a target speed calculation function

Publications (1)

Publication Number Publication Date
WO2011125822A1 true WO2011125822A1 (ja) 2011-10-13

Family

ID=44762760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058180 WO2011125822A1 (ja) 2010-04-01 2011-03-31 目標速度算出機能を備えた列車制御装置

Country Status (5)

Country Link
US (1) US8374739B2 (ja)
EP (1) EP2554427B1 (ja)
JP (1) JP5586308B2 (ja)
CN (1) CN102834293B (ja)
WO (1) WO2011125822A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857255A4 (en) * 2012-05-30 2016-06-22 Toshiba Kk ZUGSTEUERUNGSVORRICHTUNG
CN114889675A (zh) * 2022-05-31 2022-08-12 交控科技股份有限公司 基于在线速度规划的精确停车控制方法、设备、存储介质

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9733625B2 (en) 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US10308265B2 (en) 2006-03-20 2019-06-04 Ge Global Sourcing Llc Vehicle control system and method
US10569792B2 (en) 2006-03-20 2020-02-25 General Electric Company Vehicle control system and method
US9950722B2 (en) 2003-01-06 2018-04-24 General Electric Company System and method for vehicle control
US9828010B2 (en) 2006-03-20 2017-11-28 General Electric Company System, method and computer software code for determining a mission plan for a powered system using signal aspect information
US8989917B2 (en) * 2006-03-20 2015-03-24 General Electric Company System, method, and computer software code for controlling speed regulation of a remotely controlled powered system
JP5220109B2 (ja) * 2008-07-11 2013-06-26 三菱電機株式会社 列車制御システム、及び車上制御装置
US9834237B2 (en) 2012-11-21 2017-12-05 General Electric Company Route examining system and method
JP5568040B2 (ja) * 2011-03-16 2014-08-06 公益財団法人鉄道総合技術研究所 列車運転曲線編集方法及び列車運転曲線編集システム
JP2013095169A (ja) * 2011-10-28 2013-05-20 Nippon Signal Co Ltd:The 地上装置、車上装置及び車両制御装置
DE102012014468A1 (de) * 2012-07-21 2014-05-15 Volkswagen Aktiengesellschaft Verfahren zum Verändern einer Fahrstrategie für ein Fahrzeug und Fahrzeugsteuergerät für ein Fahrzeug
US9669851B2 (en) 2012-11-21 2017-06-06 General Electric Company Route examination system and method
JP6296716B2 (ja) * 2013-07-19 2018-03-20 株式会社東芝 運転曲線作成装置、運転曲線作成装置の制御方法及び制御プログラム
JP6305238B2 (ja) * 2013-10-25 2018-04-04 三菱電機株式会社 走行曲線作成装置および走行支援装置
JP6087805B2 (ja) * 2013-12-26 2017-03-01 株式会社東芝 運転曲線作成装置、運転支援装置、運転制御装置および運転曲線作成方法
JP6366165B2 (ja) 2014-01-23 2018-08-01 三菱重工エンジニアリング株式会社 走行制御装置、車両、交通システム、制御方法、及びプログラム
JP6334282B2 (ja) * 2014-06-11 2018-05-30 株式会社東芝 情報処理装置および運転曲線作成方法
JP6382618B2 (ja) * 2014-07-29 2018-08-29 株式会社東芝 列車制御装置
JP6421030B2 (ja) * 2014-12-19 2018-11-07 公益財団法人鉄道総合技術研究所 プログラム及び運行シミュレーション装置
US10457307B2 (en) 2016-06-08 2019-10-29 Westinghouse Air Brake Technologies Corporation Wireless crossing activation system and method
US10654500B2 (en) * 2015-06-12 2020-05-19 Westinghouse Air Brake Technologies Corporation Arrival time and location targeting system and method
US10279823B2 (en) * 2016-08-08 2019-05-07 General Electric Company System for controlling or monitoring a vehicle system along a route
JP6723121B2 (ja) * 2016-09-08 2020-07-15 株式会社日立製作所 列車運転支援装置
JP6712959B2 (ja) * 2017-01-25 2020-06-24 株式会社日立製作所 走行制御装置、走行制御方法、および走行制御システム
JP6846946B2 (ja) 2017-02-24 2021-03-24 三菱重工エンジニアリング株式会社 車両制御装置、車両制御方法、プログラム
CN108945006B (zh) * 2018-05-30 2020-09-04 中国铁道科学研究院集团有限公司通信信号研究所 一种缩短ctcs-2级列控系统行车间隔的方法
US12024214B2 (en) * 2019-12-20 2024-07-02 Transportation Ip Holdings, Llc Vehicle control system
JP7413177B2 (ja) * 2020-07-21 2024-01-15 株式会社東芝 運転曲線作成装置、運転支援装置および運転制御装置
CN112015203B (zh) * 2020-09-07 2024-04-02 深圳大漠大智控技术有限公司 一种无人机集群轨迹跟踪方法及系统
CN112918520B (zh) * 2021-03-23 2022-08-05 北京和利时系统工程有限公司 一种高速铁路列车的节能运行控制方法
CN113212503B (zh) * 2021-05-11 2023-03-10 卡斯柯信号(成都)有限公司 一种用于轨道交通车辆调车计划冲突的检测方法
CN113401182B (zh) * 2021-06-28 2023-01-10 通号城市轨道交通技术有限公司 列车运行控制方法、装置和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193502A (ja) 1991-10-25 1993-08-03 Toshiba Corp 最適走行パターン算出装置および算出システム
JPH0740835A (ja) * 1993-07-30 1995-02-10 Nippon Signal Co Ltd:The ディジタル伝送式自動列車制御装置
JP2002101504A (ja) * 2000-09-25 2002-04-05 Kawasaki Heavy Ind Ltd 移動体の運転制御方法および装置
JP2002204507A (ja) * 2001-01-05 2002-07-19 Hitachi Ltd 列車群制御システム、列車群制御方法、車上ato装置及び地上制御装置
JP2003174706A (ja) * 2001-12-04 2003-06-20 Hitachi Ltd 列車制御方法および装置
JP2004266986A (ja) 2003-02-13 2004-09-24 Mitsubishi Electric Corp 列車走行制御システムおよび列車走行制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200910A (ja) * 1996-01-12 1997-07-31 Toshiba Corp 自動列車運転装置
JP3431430B2 (ja) * 1996-12-12 2003-07-28 株式会社日立製作所 列車情報伝送方法、列車速度制御方法および列車制御システム
WO1999047402A1 (en) * 1998-03-19 1999-09-23 Ge Harris Railway Electronics Segmented brake pipe train control system and related method
DE19822803A1 (de) * 1998-05-20 1999-11-25 Alcatel Sa Verfahren zum Betrieb von Schienenfahrzeugen sowie Zugsteuerzentrale und Fahrzeuggerät hierfür
JP4374559B2 (ja) * 2000-03-30 2009-12-02 西日本旅客鉄道株式会社 自動列車制御装置
US6922619B2 (en) * 2002-02-28 2005-07-26 General Electric Company System and method for selectively limiting tractive effort to facilitate train control
BR0213469A (pt) * 2001-10-22 2005-01-04 Cascade Eng Inc Métodos para controlar um ou uma pluralidade de veìculos e sistemas de transporte automatizado e de monitoração de patinagem e de desgaste de roda
US6865454B2 (en) * 2002-07-02 2005-03-08 Quantum Engineering Inc. Train control system and method of controlling a train or trains
US7715956B2 (en) * 2004-02-27 2010-05-11 General Electric Company Method and apparatus for swapping lead and remote locomotives in a distributed power railroad train
JP2005280542A (ja) * 2004-03-30 2005-10-13 Nippon Signal Co Ltd:The Atc/o装置
US8370006B2 (en) * 2006-03-20 2013-02-05 General Electric Company Method and apparatus for optimizing a train trip using signal information
BRPI0722058B1 (pt) * 2006-12-21 2019-11-26 Rail Veyor Systems Inc método para controlar o movimento de um trem ao longo de uma linha férrea
BRPI0920235A2 (pt) * 2008-10-16 2015-12-29 Toshiba Kk aparelho de controle de veículo

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193502A (ja) 1991-10-25 1993-08-03 Toshiba Corp 最適走行パターン算出装置および算出システム
JPH0740835A (ja) * 1993-07-30 1995-02-10 Nippon Signal Co Ltd:The ディジタル伝送式自動列車制御装置
JP2002101504A (ja) * 2000-09-25 2002-04-05 Kawasaki Heavy Ind Ltd 移動体の運転制御方法および装置
JP2002204507A (ja) * 2001-01-05 2002-07-19 Hitachi Ltd 列車群制御システム、列車群制御方法、車上ato装置及び地上制御装置
JP2003174706A (ja) * 2001-12-04 2003-06-20 Hitachi Ltd 列車制御方法および装置
JP2004266986A (ja) 2003-02-13 2004-09-24 Mitsubishi Electric Corp 列車走行制御システムおよび列車走行制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857255A4 (en) * 2012-05-30 2016-06-22 Toshiba Kk ZUGSTEUERUNGSVORRICHTUNG
CN114889675A (zh) * 2022-05-31 2022-08-12 交控科技股份有限公司 基于在线速度规划的精确停车控制方法、设备、存储介质

Also Published As

Publication number Publication date
CN102834293B (zh) 2015-10-07
EP2554427B1 (en) 2020-10-14
EP2554427A4 (en) 2017-02-08
US8374739B2 (en) 2013-02-12
JP2011217564A (ja) 2011-10-27
US20120245770A1 (en) 2012-09-27
CN102834293A (zh) 2012-12-19
EP2554427A1 (en) 2013-02-06
JP5586308B2 (ja) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2011125822A1 (ja) 目標速度算出機能を備えた列車制御装置
CN109070765B (zh) 列车控制装置、方法以及计算机可读取的记录介质
US5440489A (en) Regulating a railway vehicle
KR101684585B1 (ko) 차량의 종가속도 조절 장치 및 방법
US8774992B2 (en) Operation support device and automatic operation device
AU2014203110B2 (en) Methods and systems for speed management within a transportation network
JP5559671B2 (ja) 走行制御支援方法及び走行制御支援装置
CN111301491B (zh) 一种列车运行计划调整方法及系统
WO2020192030A1 (zh) 一种提高过分相区舒适度的方法
JP2021165139A (ja) 運行制御システム
JP5476070B2 (ja) 列車制御システム
JP5512193B2 (ja) 列車制御方法、列車制御装置、および車両
JP2009027784A (ja) 自動列車運転装置
CN110626391A (zh) 一种乘客信息系统的信息预测方法
JP2005280542A (ja) Atc/o装置
Xun et al. Optimization of speed profile for delayed train entering station
JP2005124291A (ja) 制御装置および制御装置を備えた走行体
JP7476017B2 (ja) 列車制御装置、方法及びプログラム
JP7311472B2 (ja) 走行パタン作成装置および走行パタン作成方法
JP5453466B2 (ja) 列車制御装置、及び車両
Kakuhama et al. Ultra-high frequency train operation using the soft coupling technique Headway evaluations
JP2018137875A (ja) 列車制御装置、制御方法及びプログラム
JP4504398B2 (ja) 制御装置
JP2019092347A (ja) 自動運転制御装置
JP2007244198A (ja) 制御装置および制御装置を備えた走行体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017439.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765722

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011765722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE