WO2011125534A1 - 既設管更生用ライニング材及びそれを用いた既設管更生工法 - Google Patents

既設管更生用ライニング材及びそれを用いた既設管更生工法 Download PDF

Info

Publication number
WO2011125534A1
WO2011125534A1 PCT/JP2011/057284 JP2011057284W WO2011125534A1 WO 2011125534 A1 WO2011125534 A1 WO 2011125534A1 JP 2011057284 W JP2011057284 W JP 2011057284W WO 2011125534 A1 WO2011125534 A1 WO 2011125534A1
Authority
WO
WIPO (PCT)
Prior art keywords
existing pipe
furan resin
lining material
resin
curable
Prior art date
Application number
PCT/JP2011/057284
Other languages
English (en)
French (fr)
Inventor
智行 小林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2011236216A priority Critical patent/AU2011236216B2/en
Priority to EP11765435.0A priority patent/EP2554359B1/en
Priority to JP2012509432A priority patent/JP5678037B2/ja
Priority to SG2012056651A priority patent/SG182814A1/en
Priority to US13/639,031 priority patent/US20130019982A1/en
Priority to CA2786992A priority patent/CA2786992A1/en
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201180016045.2A priority patent/CN102821932B/zh
Priority to KR1020127025619A priority patent/KR20130040797A/ko
Priority to RU2012141571/05A priority patent/RU2540627C2/ru
Priority to PL11765435T priority patent/PL2554359T3/pl
Publication of WO2011125534A1 publication Critical patent/WO2011125534A1/ja
Priority to HK13106520.1A priority patent/HK1178848A1/xx

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/26Lining or sheathing of internal surfaces
    • B29C63/34Lining or sheathing of internal surfaces using tubular layers or sheathings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/26Lining or sheathing of internal surfaces
    • B29C63/34Lining or sheathing of internal surfaces using tubular layers or sheathings
    • B29C63/36Lining or sheathing of internal surfaces using tubular layers or sheathings being turned inside out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/162Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
    • F16L55/165Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section
    • F16L55/1651Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section the flexible liner being everted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/162Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
    • F16L55/165Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section
    • F16L55/1656Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section materials for flexible liners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/005Hoses, i.e. flexible
    • B29L2023/006Flexible liners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention relates to an existing pipe rehabilitation lining material and an existing pipe rehabilitation method using the same, and more particularly, an existing pipe rehabilitation lining having a low viscosity and a very good impregnation property despite its low water content.
  • the present invention relates to an existing pipe rehabilitation method for repairing a pipeline by lining the inner surface of a material and an existing pipe (especially a buried pipe) aged using the material.
  • a tubular lining material in which an uncured curable resin is impregnated in a tubular resin-absorbing substrate whose outer surface is coated with a resin film is formed in advance, and then this tubular lining material is used.
  • a rehabilitation method in which the tubular lining material is pressed against the inner wall of the pipeline after being reversed (inverted) and inserted into the pipeline by fluid pressure, and the curable resin impregnated in this state is cured and fixed. (For example, refer to Patent Document 1).
  • the tubular lining material is flattened and folded in a closed container and deployed in a stacked state, and one end thereof is folded outward and attached to the outer periphery of the open end of the reversing nozzle connected to the sealed container, Fluid pressure (water pressure, air pressure) is applied to the sealed container, and the lining material is inverted and inserted into the pipeline. Then, the inner surface of the pipe line is lined by the lining material that is heated and cured by steam or hot water while pressing the lining material against the inner face of the pipe line.
  • unsaturated polyester or epoxy resin is generally used as the curable resin used in the above-described conventional rehabilitation method.
  • unsaturated polyesters and epoxy resins are synthetic resins mainly made of petroleum, and in recent years when the exhaustion of petroleum resources is regarded as a problem, such existing pipes derived from petroleum-based synthetic resins are repaired and rehabilitated. It is not appropriate as a material.
  • furan resin made of a furfuryl alcohol alone or a cocondensate is well known.
  • Furan resin is generally used in various industrial fields as a matrix resin for laminates and composites such as medige cement and FRP because its cured product is excellent in heat resistance, solvent resistance, and chemical resistance.
  • conventional furan-based resins contain moisture derived from a condensation reaction during resin synthesis, and when used as a matrix resin for a laminate, dimensional shrinkage of the laminate due to moisture dissipation has become a major problem.
  • the rehabilitation method requires strength properties that can withstand earth pressure, groundwater pressure, and live load.
  • the furan-based resins if you try to improve strength properties by adding fillers, the furan resin composition There is a problem that the viscosity of the product becomes excessively high and it is difficult to impregnate the base material.
  • JP 2003-165158 A Japanese Patent No. 3219769
  • the object of the present invention is to provide a lining material for existing pipe rehabilitation made of an alternative thermosetting resin of a petroleum-derived synthetic resin in view of the above-mentioned problems of the prior art, and despite having a low water content.
  • a lining material for existing pipe rehabilitation having a low viscosity and a very good impregnation property
  • to provide a lining material for existing pipe rehabilitation having a high strength property while having a good impregnation property Providing existing pipe rehabilitation lining materials made of non-petroleum materials as the base material, or using such lining materials, can be provided easily and efficiently with good quality, low cost existing pipe rehabilitation To provide a construction method.
  • the present inventor impregnates a curable furan resin composition containing a furan resin and a curing agent into a resin-absorbing substrate whose one surface is liquid-tightly film-coated.
  • a curable furan resin composition containing a furan resin and a curing agent into a resin-absorbing substrate whose one surface is liquid-tightly film-coated.
  • a resin-absorbing substrate whose one surface is liquid-tightly film-coated is impregnated with a curable furan resin composition containing a furan resin and a curing agent.
  • a characteristic existing lining material for pipe rehabilitation is provided.
  • the resin absorbent base material one surface of which is liquid-tightly film-coated, another resin absorbent base material, and the reinforcing fiber base material interposed between them,
  • An existing pipe rehabilitation lining material characterized by being impregnated with a curable furan resin composition containing a resin and a curing agent is provided.
  • the furan resin is a furan resin, an epoxy-modified furan resin, a phenol-modified furan resin, an aldehyde-modified furan resin, a urea-modified furan resin, and
  • a lining material for existing pipe rehabilitation which is at least one selected from a furan resin component group made of a melamine-modified furan resin.
  • the water content of the furan resin is 10% by weight or less. Material is provided.
  • the furan resin contains a reactive diluent in addition to the furan resin component.
  • a lining material is provided.
  • an existing pipe rehabilitation lining material according to the fifth aspect, wherein the reactive diluent is furfuryl alcohol and / or furfural. .
  • the reactive diluent is contained in an amount of 10 to 100 parts by weight with respect to 100 parts by weight of the furan resin component.
  • An existing pipe rehabilitation lining material is provided.
  • the curable furan resin composition contains an inorganic filler, and the existing pipe rehabilitation lining Material is provided.
  • an existing pipe rehabilitation lining material according to the eighth aspect wherein the pH of the inorganic filler is 10 or less.
  • an existing pipe rehabilitation lining material according to the eighth or ninth aspect, wherein the inorganic filler is subjected to an organosilane surface treatment.
  • the curable furan resin composition has a viscosity of 50 to 3000 mPa ⁇ s, A lining material is provided.
  • the existing pipe rehabilitation according to any one of the first to eleventh aspects, wherein the resin-absorbing base material and / or the reinforcing fiber base material comprises natural fibers.
  • a lining material is provided.
  • a method for rehabilitating an existing pipe by inserting a tubular lining material into the existing pipe and rehabilitating the inner wall of the existing pipe, In a non-impregnated tubular lining material, a resin absorbent substrate whose one surface is liquid-tightly film-coated, or a resin-absorbent substrate whose one surface is liquid-tightly film-coated and another resin-absorbent substrate.
  • the existing pipe rehabilitation method characterized by including is provided.
  • a method for rehabilitating an existing pipe by inserting a tubular lining material into the existing pipe and rehabilitating the inner wall of the existing pipe, In a non-impregnated tubular lining material, a resin absorbent substrate whose one surface is liquid-tightly film-coated, or a resin-absorbent substrate whose one surface is liquid-tightly film-coated and another resin-absorbent substrate.
  • the existing pipe rehabilitation method characterized by including is provided.
  • the furan resin comprises a furan resin, an epoxy-modified furan resin, a phenol-modified furan resin, an aldehyde-modified furan resin, a urea-modified furan resin, and
  • An existing pipe rehabilitation method characterized in that it is at least one selected from a furan resin component group comprising a melamine-modified furan resin is provided.
  • an existing pipe rehabilitation method according to any one of the thirteenth to fifteenth aspects, wherein the furan resin has a water content of 10% by weight or less. Provided.
  • the furan resin contains a reactive diluent in addition to the furan resin component. Is provided.
  • an existing pipe rehabilitation method characterized in that, in the seventeenth aspect, the reactive diluent is furfuryl alcohol and / or furfural.
  • the reactive diluent is contained in an amount of 10 to 100 parts by weight based on 100 parts by weight of the furan resin component.
  • An existing pipe rehabilitation method is provided.
  • an existing pipe rehabilitation method according to any one of the thirteenth to nineteenth aspects, wherein the curable furan resin composition contains an inorganic filler. Provided.
  • an existing pipe rehabilitation method characterized in that, in the twentieth aspect, the pH of the inorganic filler is 10 or less.
  • an existing pipe rehabilitation method characterized in that, in the twentieth or twenty-first invention, the inorganic filler is subjected to an organosilane surface treatment.
  • the curable furan resin composition has a viscosity of 50 to 2000 mPa ⁇ s, Construction methods are provided.
  • the resin absorbent base material and / or the reinforcing fiber base material is made of natural fiber. Construction methods are provided.
  • the curable resin is a furan resin mainly composed of biomass resources such as corn cobs, sugarcane bagasse, and straw.
  • biomass resources such as corn cobs, sugarcane bagasse, and straw.
  • carbon dioxide absorbed by plants is fixed as a lifeline that is used for a relatively long period of time, and carbon dioxide absorbed by plants is also released to the atmosphere during disposal and incineration. It can be in a so-called carbon neutral state.
  • both low viscosity and low moisture content are achieved, and further, imparting high strength characteristics is realized, so that it is cured with thin wall while maintaining high strength.
  • a lining material with small shrinkage can be provided easily with high work efficiency, and a rehabilitation method with good quality and low cost can be provided.
  • the existing pipe lining material of the present invention (hereinafter also referred to as “the present lining material”) is a curable furan containing a furan resin and a curing agent on a resin-absorbing substrate whose one surface is liquid-tightly film-coated.
  • a resin-absorbing substrate impregnated with a resin composition (hereinafter also referred to as “first embodiment”), or a resin-absorbing substrate whose one surface is liquid-tightly film-coated and another resin-absorbing substrate;
  • a reinforcing fiber substrate interposed between them is impregnated with a curable furan resin composition containing a furan resin and a curing agent (hereinafter also referred to as “second embodiment”).
  • the resin absorbing base material having a porosity of 90% or less, preferably 10 to 90% can be reliably impregnated with the curable resin, and as a result, the cured resin absorbing base material.
  • the thickness is 3 mm or more, preferably 4 mm or more because sufficient protective properties can be exhibited.
  • the resin-absorbing substrate may be any material as long as it is a substrate impregnated with a curable resin.
  • a nonwoven fabric or a chopped strand mat is used.
  • the resin-absorbing substrate may be either a single layer or a multilayered structure made of different materials. In the case of a single layer, it is preferable to form a sheet-like substrate made of nonwoven fabric or chopped strand mat into a cylindrical shape.
  • a reinforcing fiber base layer is interposed between nonwoven fabrics stacked in two layers.
  • the nonwoven fabric material is, for example, polyester, high density polyethylene (HDPE), high strength and high elasticity such as polypropylene, among which resin is preferable, and flexible and porous continuous filament or staple fiber. Felts, mats, spunbonds, webs, and the like with the can also be used.
  • a chopped strand mat for example, strands such as glass fibers are cut into a certain length and dispersed in a mat shape, and then a thermoadhesive agent such as a thermoplastic resin is uniformly applied and thermally melted. What was made into the mat
  • the chopped strand mat can provide a resin-absorbing base material layer having a higher strength than when a resin nonwoven fabric is used.
  • natural fibers are used as the resin-absorbing substrate because the entire existing lining material for pipe rehabilitation becomes a non-petroleum material.
  • natural fibers used for the resin-absorbing substrate include fibers made from cotton, linseed, flax burlap, kenaf and the like, but linseed and flax are particularly preferred from the viewpoint of resin impregnation, processability and supply stability.
  • the resin-absorbing base material is coated with a liquid-tight film on one surface in the case of a single layer and on one surface in the case of multiple layers. Specifically, one surface is coated with a water-impermeable film. It is preferable that an impermeable layer is formed on one surface.
  • This impermeable layer is made of, for example, polyethylene, polypropylene, nylon, polyester, polyvinyl chloride, or a synthetic resin material such as an elastomer or synthetic rubber, and a film material or sheet material having a thickness of about 0.2 to 2.0 mm. It can form by coating a resin absorption base material in the state made into this form.
  • the reinforcing fiber base As the material of the reinforcing fiber base, glass fiber, carbon fiber, aramid fiber, inorganic fiber, organic fiber, whisker, etc. are preferable. Among them, glass fiber is preferable from the balance of strength and price of the obtained fiber reinforced resin layer. .
  • the reinforcing fiber preferably has a fiber diameter in the range of 3 to 25 ⁇ m, and more preferably has a fiber diameter of 5 to 20 ⁇ m from the viewpoint of strength and price.
  • natural fibers as the reinforcing fiber base because the entire existing pipe lining material is a non-petroleum material.
  • natural fibers used for the resin-absorbing substrate include fibers made from Manila hemp, sisal hemp, bamboo, and the like, but bamboo is particularly preferable from the viewpoint of strength and supply stability.
  • the curable furan resin composition impregnated in the resin-absorbing base material comprises a furan resin and a curing agent, and the impregnation of the resin composition, the work of the reversing process or the drawing process of the lining material.
  • a pot life usually 2 hours or more, preferably 5 hours or more, more preferably 12 hours or more.
  • the viscosity of the curable furan resin composition When the viscosity of the curable furan resin composition is small, the resin tends to be insufficient when pressed against the inner wall. When the viscosity is large, it is difficult to impregnate the resin-absorbing substrate, so that the viscosity at 25 ° C. is usually 50 mPa ⁇ s to 3000 mPa ⁇ s. Hereinafter, it is preferably 100 mPa ⁇ s or more and 2000 mPa ⁇ s or less, more preferably 100 mPa ⁇ s or more and 1000 mPa ⁇ s or less.
  • Furan resin is a polymer starting from furfural or furfuryl alcohol or its precursor (oligomer), furfuryl alcohol type, furfuryl alcohol / furfural co-condensation type, furfuryl alcohol / aldehyde co-condensation type, furfural. -Ketone co-condensation type, furfural / phenol co-condensation type, furfuryl alcohol / urea co-condensation type, furfuryl alcohol / phenol co-condensation type, and the like.
  • Furan resin precursors include furfuryl alcohol, furfuryl alcohol / furfural co-condensation, furfuryl alcohol / aldehyde co-condensation, furfural / ketone co-condensation, furfural / phenol co-condensation, furfuryl alcohol / urea co-condensation. Examples include condensation type, furfuryl alcohol / phenol co-condensation type, and the like. Any type of furan-based resin can be used, but the properties required for the lining material include flexibility and surface hardness in addition to strength and moisture resistance, and industrial stability.
  • a furfuryl alcohol type or a furfuryl alcohol / formaldehyde cocondensation type is preferable.
  • the modified furan resin include epoxy modified, phenol modified, aldehyde modified, urea modified, melamine modified and the like.
  • the moisture content of the furan resin is preferably 10% or less, particularly preferably 9% or less, since dimensional shrinkage due to moisture dissipation during curing increases if it is too large.
  • the curing agent is not particularly limited as long as it can cure the furan resin, and examples thereof include organic acids such as organic sulfonic acid and organic carboxylic acid and aqueous solutions thereof, organic acids such as hydrochloric acid and sulfuric acid, and aqueous solutions thereof. .
  • organic sulfonic acid examples include p-toluenesulfonic acid, benzenesulfonic acid, xylenesulfonic acid, methanesulfonic acid and the like.
  • organic carboxylic acid examples include malonic acid, succinic acid, maleic acid, oxalic acid, acetic acid, lactic acid, malic acid, tartaric acid, benzoic acid, citric acid and the like.
  • the thermal reaction type latent acid curing agent it is also preferable to use the thermal reaction type latent acid curing agent alone or in combination with another curing agent from the viewpoint of shortening the curing time and pot life.
  • the heat-reactive latent acid curing agent is not particularly limited as long as it does not react with the components contained in the furan resin at room temperature and reacts quickly by heating during curing to generate an acid, but it is stable at room temperature.
  • inorganic ammonium salts at least one of inorganic ammonium salts, primary amine salts, secondary amine salts and tertiary amine salts, from the viewpoint of the reaction rate due to heating during curing, ammonium chloride, ammonium sulfate, ammonium nitrate, methylamine
  • ammonium chloride, ammonium sulfate, ammonium nitrate, methylamine It is particularly preferable to contain at least one of hydrochloride, dimethylamine hydrochloride, ethylamine hydrochloride and diethylamine hydrochloride.
  • the reactive diluent is not particularly limited as long as it has a low viscosity, is compatible with the furan resin component, and reacts and solidifies when the furan resin composition is cured. From the point of compatibility and being derived from natural products, furfuryl alcohol alone, furfural alone, or a mixture of furfuryl alcohol and furfural is particularly preferred.
  • the amount of the reactive diluent added varies depending on the type of the reactive diluent and the viscosity of the furan resin component, but if it is too small, the impregnation property to the base material may be lowered. Since sagging may occur, the amount is preferably 10 to 100 parts by weight, more preferably 10 to 90 parts by weight, and most preferably 20 to 80 parts by weight with respect to 100 parts by weight of the furan resin component.
  • an inorganic filler to the curable furan resin composition of the present invention from the viewpoint of improving strength characteristics.
  • the inorganic filler is not particularly limited as long as the elastic modulus is high and high filling is possible, but from the viewpoint of preventing curing inhibition, an inorganic filler having a pH of 10 or less is preferable. Glass powder, silica, talc, kaolin, mica and the like are preferable, and kaolin and talc are most preferable from the viewpoint of cost.
  • the inorganic filler it is preferable to perform a surface treatment from the viewpoint of improving the interfacial adhesion with the furan resin.
  • the surface treatment agent is not particularly limited as long as it can react with or bond to an inorganic filler or furan resin, but is preferably an organic silane surface treatment that easily forms a bond.
  • an aminosilane-based surface treatment agent an epoxysilane-based surface treatment agent, and an acrylicsilane-based surface treatment agent.
  • the addition amount of the inorganic filler varies depending on the viscosity of the furan resin, but if it is too small, the effect of improving the strength characteristics cannot be obtained, whereas if it is too large, the impregnation property to the base material may decrease due to thickening. Therefore, the amount is preferably 10 to 200 parts by weight, more preferably 20 to 150 parts by weight, and most preferably 30 to 100 parts by weight with respect to 100 parts by weight of the furan resin.
  • FIG. 1 is a partial cross-sectional view of a lining material according to an embodiment (second aspect) of the present invention
  • FIG. 2 is a cross-sectional view showing an example of an unimpregnated lining material formed in a tubular shape in advance. is there.
  • FIG. 3 is a cross-sectional view showing an example of the present lining material disposed in the existing pipe
  • FIG. 4 shows an example of the present lining material in a state where the diameter is expanded in the existing pipe and integrated with the inner wall. It is sectional drawing shown.
  • a lining material 1 includes a coating layer 11 made of an impermeable material, resin-absorbing base layers 12 and 12 provided inside the coating layer 11 and impregnated with a curable resin, and And a reinforcing fiber base layer 13 impregnated with a curable resin.
  • This coating layer 11 is provided as a water-impermeable layer that is coated with a highly liquid-tight resin film material that is impermeable to the outermost layer, and is elastic and flexible so that it can follow the shape of a pipe such as a bent portion of an existing pipe. Alternatively, it is preferably formed so as to have flexibility.
  • an unimpregnated lining material 1 formed in advance as a tubular shape corresponding to the circular cross section of the existing tube 9 is used, and a curable furan resin composition is used therefor.
  • a curable resin composition is used therefor.
  • a curable resin is injected into the outer surface of the coating layer 11 in a state where the coating layer 11 is disposed.
  • the inside of the tubular lining material 1 is decompressed to efficiently deaerate the air in the resin adsorbing base material layer 12 and the reinforcing fiber base layer 13, and the curable resin is used as the resin adsorbing base material layer 12 and the reinforcing fiber base material.
  • Layer 13 is impregnated.
  • the gap between the fibers of the resin adsorbing base material layer 12 and the reinforcing fiber base layer 13 acts as a degassing path, and the curable resin flows during vacuum suction to form the resin adsorbing base material layer 12 and the reinforcing fiber base layer 13. Smoothly impregnated.
  • the lining material 1 impregnated with the curable furan resin composition is drawn into or inserted into the existing pipe 9 as shown in FIG. 3 so as to be in close contact with the inner wall by applying pressure from the inside. The diameter is expanded. And as shown in FIG. 4, it is made to contact
  • the lining material 1 has a coating layer 11 and a resin absorbent base impregnated with a curable resin in order from the side forming the inner peripheral surface.
  • the material layer 12, the reinforcing fiber base layer 13 impregnated with the curable resin, and the resin absorbing base layer 12 impregnated with the curable resin are formed in a cylindrical shape with a four-layer structure.
  • the outermost layer is the coating layer 11 in the previous step of lining the inner wall of the existing pipe 9, and the resin-absorbing base layer 12 impregnated with the curable resin in that order in order,
  • the impregnated reinforcing fiber base layer 13 and the resin-absorbing base layer 12 impregnated with a curable resin are provided.
  • the reinforcing fiber base layer 13 is formed by arranging a plurality of sheet-like bases 2 and 2 so as to overlap each other as shown in FIG. Moreover, the overlap part of the reinforced fiber base material layer 13 is arrange
  • the reinforcing fiber base layer 13 is divided and formed so as to overlap each other, so that the outer diameter of the tubular lining material 1 is smaller than the pipe diameter of the existing pipe 9 as shown in FIG. It is possible to form and expand the diameter in the existing pipe 9, can correspond to the irregularities, steps, gaps, etc. of the inner wall of the existing pipe 9, and can evenly arrange the reinforcing fibers after the diameter expansion It is possible to secure high pressure resistance and appropriate strength.
  • a portion indicated by double hatching indicates an overlap portion 20 formed by the sheet-like base materials 2.
  • the tubular lining material 1 formed in this way can be carried into the repair target part in the state where the existing pipe 9 is rehabilitated and alternately folded into a flat shape and sequentially stacked.
  • One aspect of the present rehabilitation method is a method for rehabilitating an existing pipe by inserting a tubular lining material into an existing pipe and rehabilitating the inner wall of the existing pipe.
  • a resin-absorbing substrate coated with a liquid-tight film or on a resin-absorbing substrate coated with a liquid-tight film on one surface, another resin-absorbing substrate, and a reinforcing fiber substrate interposed between them.
  • Another aspect of the present rehabilitation method is a method for rehabilitating an existing pipe by inserting a tubular lining material into an existing pipe and rehabilitating the inner wall of the existing pipe.
  • Reinforcing fiber interposed between a resin-absorbing substrate whose one surface is liquid-tightly film-coated, or a resin-absorbing substrate whose one surface is liquid-tightly film-coated, and another resin-absorbing substrate
  • Injecting and impregnating a base material with a curable furan resin composition containing a furan resin and a curing agent and inserting a tubular lining material impregnated with the curable furan resin composition into an existing pipe; and And a step of curing the impregnated curable furan resin composition to cover the inner wall of the existing pipe while the inserted tubular lining material is pressed against the inner wall of the existing pipe.
  • the present rehabilitation method embodiments of the existing pipe rehabilitation method of the present invention (hereinafter also referred to as the present rehabilitation method) will be described with reference to FIGS.
  • the present rehabilitation method the following method is preferable from the viewpoint of shortening the working time, maintaining the working environment, and the efficiency of the curable material.
  • manholes M ⁇ b> 1 and M ⁇ b> 2 are provided at appropriate intervals in the pipe line of the existing pipe 9, and a damming member 3 is provided on the upstream side of the nearby manhole.
  • the dammed fluid bypasses the ground through the manholes M1 and M2, and is discharged to the existing pipe 9 on the downstream side. Further, foreign matter such as sediments and wood chips existing in the existing pipe 9 is removed and high pressure water washing is performed, and then the rehabilitation work in the pipe is started.
  • the tubular lining material 1 is attached to the reversing device 4 on the ground, and the tubular lining material 1 is reversed and inserted into the existing pipe (reversing step).
  • a known device can be used as the reversing device.
  • the reversing device is supplied with a pressurized fluid and is reversed from the distal end side of the tubular lining material 1 while being sufficiently expanded in diameter by the internal pressure and closely contacting the inner wall of the existing tube. Make it progress. That is, as shown in FIG. 3, a wide range of uniform force is applied in the existing pipe 9 by pressurization of the reversing device, and the resin adsorbing base material layer impregnated with the curable resin in the tubular lining material 1. 12 adheres to the inner wall. Further, the tubular lining material 1 is arranged with the coating layer 11 serving as the inner surface of the existing tube 9.
  • the process of inserting the tubular lining material 1 into the existing pipe 9 is not limited to being inserted while being reversed by the fluid pressure in this way, but is reversed using a tubular lining material provided with the covering layer 11 as the innermost layer. You may insert by drawing in in the existing pipe
  • the fluid is heated in a state where the tubular lining material 1 inverted and inserted into the existing tube 9 is pressed against the inner wall of the existing tube 9, and the resin adsorption substrate layer 12, the reinforcing fiber substrate
  • the curable resin impregnated in the layer 13 is cured, and the inner wall of the existing pipe 9 is lined (curing step).
  • the tubular lining material 1 thus cured is arranged in accordance with the rehabilitation section of the existing pipe 9, and the existing pipe 9 is restored by the tubular lining material 1.
  • the reversing operation can be performed while maintaining proper flexibility of the tubular lining material 1 including the resin adsorbing base material layer 12 and the reinforcing fiber base material layer 13 sufficiently impregnated with the resin. It can be performed smoothly and work efficiency can be improved.
  • Example 1 Only the furan resin component (furfuryl alcohol and formaldehyde cocondensate, viscosity 2700 mPa ⁇ s, moisture content 7.4 wt%) was used as the furan resin. Further, 3 parts by weight of a curing agent (paratoluenesulfonic acid 65% aqueous solution) was added to 100 parts by weight of a furan resin, and then stirred at 1000 rpm for 10 minutes using a homodisper to prepare a curable furan resin composition.
  • a curing agent paratoluenesulfonic acid 65% aqueous solution
  • This curable furan resin composition is composed of a resin nonwoven fabric (polyester nonwoven fabric, porosity 85%, 460 g / m 2 ) and a resin nonwoven fabric (polyester nonwoven fabric, porosity 85%, 600 g / m) whose outer surface is coated with a water-impermeable layer. 2 ) 7500 g / m 2 was injected into the inside of the base material for tubular lining comprising the tubular laminate, and then the inside of the base material was depressurized to deaerate the air in the base material, and a curable furan resin composition was obtained. The substrate was impregnated to obtain a tubular lining material having a thickness of 6 mm.
  • the obtained tubular lining material was attached to an inversion device on the ground, and the tubular lining material 1 was inverted with compressed air and inserted into a buried pipe having an inner diameter of 200 mm. Subsequently, the tubular lining material reversely inserted into the buried pipe was pressed against the inner wall of the buried pipe for 4 hours with hot water at 90 ° C. to cure the curable furan resin composition, and the rehabilitated buried pipe Got.
  • Table 1 The evaluation results are shown in Table 1.
  • Example 2 After adding 40 parts by weight of furfural to 100 parts by weight of furan resin component (furfuryl alcohol and formaldehyde co-condensate, viscosity 2700 mPa ⁇ s, moisture content 7.4% by weight), using homodisper, 5 at 1000 rpm The mixture was stirred for a minute to prepare a furan resin. Thereafter, using this furan resin, a rehabilitated buried pipe was obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • furan resin component furfuryl alcohol and formaldehyde co-condensate, viscosity 2700 mPa ⁇ s, moisture content 7.4% by weight
  • Example 3 After adding 50 parts by weight of furfuryl alcohol to 100 parts by weight of furan resin component (furfuryl alcohol and formaldehyde cocondensate, viscosity 2700 mPa ⁇ s, moisture content 7.4% by weight), using homodisper, 1000 rpm For 5 minutes to prepare a furan resin. Thereafter, using this furan resin, a rehabilitated buried pipe was obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 4 After adding 50 parts by weight of furfuryl alcohol to 100 parts by weight of furan resin component (furfuryl alcohol and formaldehyde co-condensate, viscosity 14,000 mPa ⁇ s, water content 1.3% by weight), 1000 rpm using a homodisper For 5 minutes to prepare a furan resin. Thereafter, using this furan resin, a rehabilitated buried pipe was obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 5 After adding 50 parts by weight of furfuryl alcohol to 100 parts by weight of furan resin component (furfuryl alcohol and formaldehyde co-condensate, viscosity 2700 mPa ⁇ s, moisture content 7.4% by weight), using a homodisper at 1000 rpm The mixture was stirred for 5 minutes to prepare a furan resin. Furthermore, 40 parts by weight of an inorganic filler kaolin (calcined kaolin, average particle size 1.4, pH 5.5) and 3 parts by weight of a curing agent (65% aqueous solution of paratoluenesulfonic acid) were added to 100 parts by weight of a furan resin.
  • furan resin component furfuryl alcohol and formaldehyde co-condensate, viscosity 2700 mPa ⁇ s, moisture content 7.4% by weight
  • Example 6 A rehabilitated buried pipe was obtained in the same manner as in Example 5, except that the inorganic filler was kaolin (baked kaolin, average particle size 1.4, pH 9.0, aminosilane surface treatment). The evaluation results are shown in Table 1.
  • Example 7 From Table 1, in Examples (Examples 1 to 7) of the present invention using a natural product-derived furan-based resin as the curable resin, all were compared with Comparative Examples using a petroleum-derived curable resin. It can be seen that the existing pipe rehabilitation lining material exhibits at least equivalent characteristics. In particular, in Examples 2 to 4, it was possible to achieve both low viscosity and impregnation while maintaining strength characteristics even in a furan resin having a low moisture content. In Examples 5 and 6, It can be seen that even when strength characteristics are improved by high filling with an inorganic filler, low viscosity can be maintained and impregnation can be ensured. On the other hand, in Example 7, it turns out that the lining material for the existing pipe rehabilitation which a base material also consists of a non-petroleum type material was provided.
  • the existing pipe rehabilitation lining material of the present invention was embedded in an existing pipe, for example, the ground, because the viscosity was low and the impregnation property was very good despite the low moisture content. It is suitable as an existing pipe rehabilitation lining material for rehabilitating the inner peripheral surface of various existing pipes such as sewer pipes, water pipes, agricultural water pipes, and buried pipes such as gas pipes. Therefore, the industrial applicability of the existing pipe rehabilitation method using the lining material having such desirable characteristics is extremely large.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

水分含有率が少ないにもかかわらず粘度が低く含浸性が非常に良好である既設管更生用ライニング材、及び、それを用いて老朽化した既設管の内面にライニングを施して管路を補修する既設管更生工法を提供するために、上記既設管更生用ライニング材を、片表面が液密にフィルムコーティングされた樹脂吸収基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を含浸させた構成とする。

Description

既設管更生用ライニング材及びそれを用いた既設管更生工法
 本発明は、既設管更生用ライニング材及びそれを用いた既設管更生工法に関し、さらに詳しくは、水分含有率が少ないにもかかわらず粘度が低く含浸性が非常に良好である既設管更生用ライニング材、及びそれを用いて老朽化した既設管(特に埋設管)の内面にライニングを施して管路を補修するための既設管更生工法に関する。
 既設管、例えば地中に埋設された下水道管、上水道管、農水管等の埋設管などが老朽化した場合に、管路の内面にライニングを施して管路を補修する既設管更生工法が種々提案されており、実用化されている。
 かかる更生工法の一つとして、未硬化の硬化性樹脂を外表面が樹脂フィルムで被覆された管状樹脂吸収基材に含浸させた管状ライニング材を事前に形成してから、この管状ライニング材を用いて、流体圧によって管路内に反転(裏返し)挿入した後、この管状ライニング材を管路の内壁に押圧し、その状態で含浸されている硬化性樹脂を硬化させて固定する更生工法がある(例えば、特許文献1参照。)。
 この種の工法では、管状ライニング材を平坦状として密閉容器内に折り畳んで積み重ねた状態で配備し、その一端を外側に折り曲げてこれを密閉容器に接続された反転ノズルの開口端外周に取り付け、密閉容器内に流体圧(水圧、エア圧)を作用させて、ライニング材を管路内に反転挿入する。そして、ライニング材を管路の内面に押圧しながら蒸気あるいは温水により加熱し、硬化させたライニング材によって管路の内面がライニングされる。
 上記した従来の更生工法に用いられる硬化性樹脂としては、不飽和ポリエステルやエポキシ樹脂が一般的である。しかしながら、不飽和ポリエステルやエポキシ樹脂は、石油を主原料とする合成樹脂であり、石油資源の枯渇が問題視される昨今、このような石油由来合成樹脂が老朽化した既設管を補修・更生する材料として適切とは言えない。
 一方、非石油系硬化性樹脂としては、フルフリルアルコールの単独あるいは共縮合物からなる、いわゆるフラン系樹脂がよく知られている。
 フラン系樹脂は、一般に、その硬化物が耐熱性・耐溶剤性・耐薬品性に優れていることから、メジセメント、FRP等の積層体及び複合材のマトリックス樹脂として各種産業分野において使用されている。
 しかしながら、従来のフラン系樹脂は、樹脂合成時の縮合反応に由来する水分を含有しており、積層体のマトリックス樹脂として使用した際、水分放散による積層体の寸法収縮が大きな問題となった。
 この問題を解消するために、フラン系樹脂の縮合水を合成終了後留去することで水分含有率を低下させる方法(特許文献2参照)が提案されている。
 しかしながら、この方法では、水分の減少に伴いフラン系樹脂の粘度が指数的に増加し、積層体のマトリックス樹脂として必要不可欠である含浸性を十分に確保することが困難であった。
 更に、更生工法では、土圧・地下水圧・活荷重に耐えうる強度特性が必要であるが、フラン系樹脂の場合、充填剤を添加することで強度特性を向上させようとすると、フラン樹脂組成物の粘度が過度に高くなり、基材に含浸することが困難になるという問題があった。
 こうした状況下に、従来のフラン系樹脂を用いた更生工法のもつ問題点を解消し、水分含有率が少ないにもかかわらず粘度が低く含浸性が非常に良好である既設管更生用ライニング材の開発が望まれていた。
特開2003-165158号公報 特許3219769号公報
 本発明の目的は、上記従来技術の問題点に鑑み、石油系由来合成樹脂の代替熱硬化性樹脂からなる既設管更生用ライニング材を提供すること、また、水分含有率が少ないにもかかわらず粘度が低く含浸性が非常に良好である既設管更生用ライニング材を提供すること、また、含浸性が良好でありながら高い強度特性を有する既設管更生用ライニング材を提供すること、更には、基材も非石油系材料からなる既設管更生用ライニング材を提供すること、あるいは、かかるライニング材を用いることによって作業効率よく簡便に与えることができ、品質が良好でかつ低コストの既設管更生工法を提供することにある。
 本発明者は、上記課題を解決すべく鋭意研究した結果、片表面が液密にフィルムコーティングされた樹脂吸収基材にフラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を含浸させてなるものを調製し、それを既設管更生用ライニング材として用いたところ、上記課題の解決に資することを見出し、この知見に基づいて本発明を完成するに至った。
 すなわち、本発明の第1の発明によれば、片表面が液密にフィルムコーティングされた樹脂吸収基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を含浸させてなることを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第2の発明によれば、片表面が液密にフィルムコーティングされた樹脂吸収基材と別の樹脂吸収基材とこれらの間に介装された強化繊維基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を含浸させてなることを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第3の発明によれば、第1または2の発明において、前記フラン系樹脂が、フラン樹脂、エポキシ変性フラン樹脂、フェノール変性フラン樹脂、アルデヒド変性フラン樹脂、尿素変性フラン樹脂およびメラミン変性フラン樹脂からなるフラン樹脂成分群から選ばれた少なくとも1種であることを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第4の発明によれば、第1~3のいずれかの発明において、前記フラン系樹脂の水分含有率が、10重量%以下であることを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第5の発明によれば、第3または4の発明において、前記フラン系樹脂が、前記フラン樹脂成分に加え、反応性希釈剤を含有することを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第6の発明によれば、第5の発明において、前記反応性希釈剤が、フルフリルアルコール及び/又はフルフラールであることを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第7の発明によれば、第5または6の発明において、前記反応性希釈剤が、フラン樹脂成分100重量部に対して、10~100重量部含有されることを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第8の発明によれば、第1~7のいずれかの発明において、前記硬化性フラン樹脂組成物が、無機系充填剤を含有することを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第9の発明によれば、第8の発明において、前記無機系充填剤のpHが10以下であることを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第10の発明によれば、第8または9の発明において、前記無機系充填剤が、有機シラン系表面処理を施されていることを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第11の発明によれば、第1~10のいずれかの発明において、前記硬化性フラン樹脂組成物は、粘度が50~3000mPa・sであることを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第12の発明によれば、第1~11のいずれかの発明において、前記樹脂吸収基材及び/又は強化繊維基材が、天然繊維からなることを特徴とする既設管更生用ライニング材が提供される。
 また、本発明の第13の発明によれば、管状ライニング材を既設管内に挿入し、既設管の内壁を更生することによって既設管を更生するための工法であって、
 未含浸の管状ライニング材における、片表面が液密にフィルムコーティングされた樹脂吸収基材に、或いは片表面が液密にフィルムコーティングされた樹脂吸収基材と別の樹脂吸収基材とこれらの間に介装された強化繊維基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を注入し含浸させる工程と、
 硬化性フラン樹脂組成物が含浸された管状ライニング材を、流体圧によって既設管内に反転させつつ挿入する工程と、
 挿入した管状ライニング材を既設管の内壁に押圧した状態で、含浸された硬化性フラン樹脂組成物を硬化させて既設管の内壁を被覆する工程と、
を含むことを特徴とする既設管更生工法が提供される。
 また、本発明の第14の発明によれば、管状ライニング材を既設管内に挿入し、既設管の内壁を更生することによって既設管を更生するための工法であって、
 未含浸の管状ライニング材における、片表面が液密にフィルムコーティングされた樹脂吸収基材に、或いは片表面が液密にフィルムコーティングされた樹脂吸収基材と別の樹脂吸収基材とこれらの間に介装された強化繊維基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を注入し含浸させる工程と、
 硬化性フラン樹脂組成物が含浸された管状ライニング材を、既設管内に引き込み挿入する工程と、
 挿入した管状ライニング材を既設管の内壁に押圧した状態で、含浸された硬化性フラン樹脂組成物を硬化させて既設管の内壁を被覆する工程と、
を含むことを特徴とする既設管更生工法が提供される。
 また、本発明の第15の発明によれば、第13または14の発明において、前記フラン系樹脂が、フラン樹脂、エポキシ変性フラン樹脂、フェノール変性フラン樹脂、アルデヒド変性フラン樹脂、尿素変性フラン樹脂およびメラミン変性フラン樹脂からなるフラン樹脂成分群から選ばれた少なくとも1種であることを特徴とする既設管更生工法が提供される。
 また、本発明の第16の発明によれば、第13~15のいずれかの発明において、前記フラン系樹脂の水分含有率が、10重量%以下であることを特徴とする既設管更生工法が提供される。
 また、本発明の第17の発明によれば、第15または16の発明において、前記フラン系樹脂が、前記フラン樹脂成分に加え、反応性希釈剤を含有することを特徴とする既設管更生工法が提供される。
 また、本発明の第18の発明によれば、第17の発明において、前記反応性希釈剤が、フルフリルアルコール及び/又はフルフラールであることを特徴とする既設管更生工法が提供される。
 また、本発明の第19の発明によれば、第17または18の発明において、前記反応性希釈剤が、フラン樹脂成分100重量部に対して、10~100重量部含有されることを特徴とする既設管更生工法が提供される。
 また、本発明の第20の発明によれば、第13~19のいずれかの発明において、前記硬化性フラン樹脂組成物が、無機系充填剤を含有することを特徴とする既設管更生工法が提供される。
 また、本発明の第21の発明によれば、第20の発明において、前記無機系充填剤のpHが10以下であることを特徴とする既設管更生工法が提供される。
 また、本発明の第22の発明によれば、第20または21の発明において、前記無機系充填剤が、有機シラン系表面処理を施されていることを特徴とする既設管更生工法が提供される。
 また、本発明の第23の発明によれば、第13~22のいずれかの発明において、前記硬化性フラン樹脂組成物は、粘度が50~2000mPa・sであることを特徴とする既設管更生工法が提供される。
 また、本発明の第24の発明によれば、第13~23のいずれかの発明において、前記樹脂吸収基材及び/又は強化繊維基材が、天然繊維からなることを特徴とする既設管更生工法が提供される。
 本発明の既設管更生用ライニング材やそれを用いた既設管更生工法によれば、硬化性樹脂がトウモロコシ穂軸・サトウキビバガス・麦わら等のバイオマス資源を主原料とするフラン系樹脂であることから、石油資源の枯渇に対応しうると共に、植物が吸収する二酸化炭素を比較的長期間使用されるライフラインとして固定化し、また廃棄・焼却の際にも植物が吸収した二酸化炭素を大気開放しているに留まる、いわゆるカーボンニュートラルな状態となりうる。
 また、本発明のライニング材では、硬化性フラン樹脂組成物において、低粘度と低水分含有率の両立、更に高強度特性の付与も実現されていることから、高い強度を保持しながら薄肉で硬化収縮の小さなライニング材を、作業効率よく簡便に与えることができ、品質が良好でかつ低コストの更生工法を提供することが出来る。
本発明のライニング材(第2の態様)の一例の部分断面図である。 未含浸の管状のライニング材の一例の断面図である。 図2のライニング材が含浸された本発明のライニング材を反転させて既設管内に配設させた実施態様の一例の断面図である。 既設管内で拡径されて既設管内壁に一体化させた状態の本発明のライニング材の一例の断面図である。 既設管の更生工法の一工程を示す説明図である。 既設管の更生工法の一工程を示す説明図である。
 本発明の既設管更生用ライニング材(以下、「本ライニング材」ともいう。)は、片表面が液密にフィルムコーティングされた樹脂吸収基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を含浸させてなるもの(以下、「第1の形態」ともいう。)であるか、或いは、片表面が液密にフィルムコーティングされた樹脂吸収基材と別の樹脂吸収基材とこれらの間に介装された強化繊維基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を含浸させてなるもの(以下、「第2の形態」ともいう。)である。
 本ライニング材において、樹脂吸収基材は、空隙率が90%以下、好ましくは10~90%であるのが硬化性樹脂を確実に含浸させることができ、その結果、硬化後の樹脂吸収基材にボイド等が形成される不具合を最小限に抑えうるので好ましく、また、肉厚が3mm以上、好ましくは4mm以上であるのが十分な保護特性を発現させうるので好ましい。
 樹脂吸収基材は、硬化性樹脂を含浸させる基材である限り、どんな材質であってもよいが、樹脂吸収基材には、例えば不織布やチョップドストランドマット等が用いられる。
 また、樹脂吸収基材としては、単層又は異なる材料から成る複層の構造形態のいずれでもよく、単層の場合、不織布やチョップドストランドマットからなるシート状基材を筒状にするのが好ましく、また、複層の場合、後述の図1に示されるように、二層に重ねた不織布間に、強化繊維基材層が介装されて形成されているのが好ましい。
 不織布の材料としては、例えばポリエステル、高密度ポリエチレン(HDPE)、ポリプロピレン等の高強度で高弾性のもの、中でも樹脂が好ましく、また、可撓性を有し多孔質である、連続フィラメント又はステープルファイバーを備えたフェルト、マット、スパンボンド、ウェブなども使用可能である。
 チョップドストランドマットとしては、例えばガラス繊維等のストランドを一定長さに切断し、マット状に分散させた後、熱可塑性樹脂等の粘接着剤を均一に付与して熱溶融し、ストランド同士を接着させてマットとしたものなどが好ましい。チョップドストランドマットの方が、樹脂不織布を用いた場合よりも高い強度の樹脂吸収基材層を得ることができる。
 樹脂吸収基材として天然繊維を用いる事は、既設管更生用ライニング材全体が非石油系材料となるため好ましい。樹脂吸収基材に用いられる天然繊維としては、木綿・苧麻・亜麻黄麻・ケナフ等から作られる繊維が例示できるが、樹脂含浸性や加工性・供給安定性の点から苧麻・亜麻が特に好ましい。
 樹脂吸収基材は、単層のときにはその片表面が、複層のときにはその一方の片表面が、液密にフィルムコーティングされており、具体的には片表面が不透水性フィルムで被着され、片表面に不透水性層の形成されているのが好ましい。この不透水層は、例えば、ポリエチレン、ポリプロピレン、ナイロン、ポリエステル、ポリ塩化ビニル、或いはエラストマーや合成ゴム等の合成樹脂系材料を、0.2~2.0mm程度の厚さのフィルム材やシート材の形態にした状態で、樹脂吸収基材にコーティングすることにより形成することができる。
 強化繊維基材の材料としては、ガラス繊維、炭素繊維、アラミド繊維、無機繊維、有機繊維、ウィスカー等が好ましく、中でもガラス繊維が、得られる繊維強化樹脂層の強度と価格のバランスからして好ましい。また、強化繊維は繊維径が3~25μmの範囲のものであることが好ましく、強度及び価格の観点から5~20μmの繊維径のものがより好ましい。
 強化繊維基材として天然繊維を用いる事は、既設管更生用ライニング材全体が非石油系材料となるため好ましい。樹脂吸収基材に用いられる天然繊維としては、マニラ麻・サイザル麻・竹等から作られる繊維が例示できるが、強度や供給安定性の点から竹が特に好ましい。
 本ライニング材において、樹脂吸収基材に含浸された硬化性フラン樹脂組成物は、フラン系樹脂と硬化剤を含んでなり、該樹脂組成物の含浸、本ライニング材の反転工程若しくは引込工程の作業時間確保のため、通常2時間以上、好ましくは5時間以上、さらに好ましくは12時間以上のポットライフを有せしめるのがよい。
 硬化性フラン樹脂組成物の粘度は、小さいと内壁に押圧した際、樹脂不足となり易く、大きいと樹脂吸収基材に含浸しにくいため、25℃での粘度が通常50mPa・s以上、3000mPa・s以下、好ましくは100mPa・s以上、2000mPa・s以下、より好ましくは100mPa・s以上、1000mPa・s以下であるのがよい。
 フラン系樹脂としては、フラン樹脂、変性フラン樹脂が好ましい。
 フラン樹脂は、フルフラールやフルフリルアルコールを出発物質とする重合物あるいはその前駆体(オリゴマー)であり、フルフリルアルコール型、フルフリルアルコール・フルフラール共縮合型、フルフリルアルコール・アルデヒド共縮合型、フルフラール・ケトン共縮合型、フルフラール・フェノール共縮合型、フルフリルアルコール・尿素共縮合型、フルフリルアルコール・フェノール共縮合型等が挙げられる。
 フラン樹脂の前駆体は、フルフリルアルコール型、フルフリルアルコール・フルフラール共縮合型、フルフリルアルコール・アルデヒド共縮合型、フルフラール・ケトン共縮合型、フルフラール・フェノール共縮合型、フルフリルアルコール・尿素共縮合型、フルフリルアルコール・フェノール共縮合型等が挙げられる。
 フラン系樹脂としていずれの種類のものも使用可能であるが、ライニング材に要求される特性として、強度や耐湿性以外にも可撓性や表面硬度等が挙げられることや、工業的に安定に供給されていることから、フルフリルアルコール型やフルフリルアルコール・ホルムアルデヒド共縮合型が好ましい。
 変性フラン樹脂としては、例えばエポキシ変性、フェノール変性、アルデヒド変性、尿素変性、メラミン変性等のものが挙げられる。
 フラン系樹脂の水分含有率は、大きすぎると硬化時の水分放散による寸法収縮が大きくなるため、10%以下が好ましく、特に好ましくは9%以下である。
 硬化剤は、フラン系樹脂を硬化しうるものであれば、特に限定されず、例えば有機スルホン酸、有機カルボン酸等の有機酸並びにその水溶液、塩酸、硫酸等の有機酸並びにその水溶液が挙げられる。
 有機スルホン酸としては、例えばパラトルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸、メタンスルホン酸等が挙げられる。
 有機カルボン酸としては、例えば、マロン酸、コハク酸、マレイン酸、シュウ酸、酢酸、乳酸、リンゴ酸、酒石酸、安息香酸、クエン酸等が挙げられる。
 硬化剤としては、硬化時間の短縮とポットライフの両立の点から、熱反応型潜在性酸硬化剤を単独あるいは他の硬化剤と併用使用する事も好ましい。熱反応型潜在性酸硬化剤としては、フラン系樹脂に含有する成分と常温では反応しにくく硬化時の加熱ですばやく反応し酸を発生させるものであれば特に限定されないが、常温時の安定性と硬化時の加熱による反応速度の点から、無機アンモニウム塩、1級アミン塩、2級アミン塩・3級アミン塩の少なくともいずれかを含有することが好ましく、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、メチルアミン塩酸塩、ジメチルアミン塩酸塩、エチルアミン塩酸塩、ジエチルアミン塩酸塩の少なくともいずれかを含有することが特に好ましい。
 本発明のフラン系樹脂には、粘度調整や反応性調整の点から、反応性希釈剤を添加する事も好ましい。その際、反応性希釈剤としては、粘度が低く、フラン樹脂成分と相溶性があり、フラン樹脂組成物が硬化する際に反応・固化するものであれば特に限定されないが、フラン樹脂成分との相溶性の点や天然物由来である点から、フルフリルアルコール単独、フルフラール単独、あるいはフルフリルアルコールとフルフラールの混合物が特に好ましい。
 反応性希釈剤の添加量は、反応性希釈剤の種類、フラン樹脂成分の粘度により異なるが、少なすぎると基材への含浸性が低下するおそれがあり、一方、多すぎると積層体成形時にタレが発生するおそれがあることから、フラン樹脂成分100重量部に対して、10~100重量部であることが好ましく、10~90重量部が更に好ましく、20~80重量部が最も好ましい。
 本発明の硬化性フラン樹脂組成物には、強度特性の向上の点から、無機系充填材を添加する事も好ましい。その際、無機系充填材としては、弾性率が高く、高充填が可能であれば特に限定されないが、硬化阻害を防止する観点から、pHが10以下の無機系フィラーが好ましく、具体的には、ガラスパウダー・シリカ・タルク・カオリン・マイカ等が好ましく、コストの点からカオリン・タルクが最も好ましい。
 また、無機系充填材としては、フラン系樹脂との界面接着力向上の点から、表面処理を施すことは好ましい。その際、表面処理剤としては、無機系充填材やフラン系樹脂と反応、あるいは結合が可能であれば特に限定さないが、結合が形成しやすい、有機シラン系表面処理が好ましく、具体的には、アミノシラン系表面処理剤、エポキシシラン系表面処理剤、アクリルシラン系表面処理剤が最も好ましい。
 無機系充填材の添加量は、フラン系樹脂の粘度により異なるが、少なすぎると強度特性向上の効果が得られず、一方、多すぎると増粘による基材への含浸性低下が発生するおそれがあることから、フラン系樹脂100重量部に対して、10~200重量部であることが好ましく、20~150重量部が更に好ましく、30~100重量部が最も好ましい。
 以下、本ライニング材の実施形態について、図面を参照しつつ説明する。
 図1は、本発明の一実施形態(第2の態様)に係るライニング材の部分断面図であり、図2は、あらかじめ管状に形成された、未含浸のライニング材の一例を示す断面図である。また、図3は、既設管内に配設された本ライニング材の一例を示す断面図であり、図4は、既設管内で拡径されて内壁に一体化させた状態の本ライニング材の一例を示す断面図である。
 図1に示すように、ライニング材1は、不透過性材料からなる被覆層11と、被覆層11の内側に設けられ、硬化性樹脂の含浸された樹脂吸収基材層12,12と、それらの間に介装させた、硬化性樹脂の含浸された強化繊維基材層13とを有する。
 この被覆層11は、最外層に不透水性を有する液密性の高い樹脂フィルム材により被覆した不透水層として設けられ、既設管の屈曲部等の配管形状に追従しうる弾性、可撓性、又は柔軟性を有するように形成されているのが好ましい。
 以下の説明では、図2に示すように、あらかじめ既設管9の円形断面に対応しうる筒状形態として管状に形成した、未含浸状態のライニング材1を用い、これに硬化性フラン樹脂組成物を以下のように含浸させたライニング材1の場合について行う。
 図2に示すように、外表面に被覆層11を配置した状態で、その内部に硬化性樹脂を注入する。次いで、管状ライニング材1の内部を減圧して樹脂吸着基材層12、強化繊維基材層13内のエアを効率よく脱気し、硬化性樹脂を樹脂吸着基材層12、強化繊維基材層13に含浸させる。樹脂吸着基材層12、強化繊維基材層13の繊維間の隙間が脱気経路として作用し、真空吸引時に硬化性樹脂が流動して樹脂吸着基材層12、強化繊維基材層13に円滑に含浸される。
 このようにして硬化性フラン樹脂組成物の含浸されたライニング材1は、図3に示すように既設管9内に引き込まれ又は挿入されて、内側から圧力を加えることによって内壁に密着するように拡径される。そして図4に示すように、既設管9の内壁に密着させ、ライニングされる。
 このライニング材1は、図4に示すように補修対象の既設管9の内面をライニングしたときに、内周面を形成する側から順に、被覆層11、硬化性樹脂の含浸された樹脂吸収基材層12、硬化性樹脂の含浸された強化繊維基材層13、および硬化性樹脂の含浸された樹脂吸収基材層12となるように、4層構造で筒状に形成されている。また、ライニング材1は、既設管9の内壁をライニングする前工程では、最外層が被覆層11であり、その内側に順に硬化性樹脂の含浸された樹脂吸収基材層12、硬化性樹脂の含浸された強化繊維基材層13及び硬化性樹脂の含浸された樹脂吸収基材層12が設けられた形態とされている。
 上記強化繊維基材層13は、図2におけるように、複数枚のシート状基材2、2を互いにオーバーラップさせるように配設して形成されている。また、強化繊維基材層13のオーバーラップ部分は、互いに対向して配置され、管軸方向に沿って二重の強化繊維基材層を形成している。このように強化繊維基材層13を分割形成し、互いにオーバーラップさせていることにより、図3に示されるように、管状ライニング材1の外径を既設管9の管径よりも小径にて形成し、既設管9内で拡径させることが可能となり、既設管9の内壁の凹凸や段差、隙間等に対応させることができ、また拡径後の強化繊維の配置を均等にすることができて、高い耐圧性能と適切な強度確保が可能となる。なお、図3及び図4において、ダブルハッチングにより示された箇所は、シート状基材2同士によるオーバーラップ部20を示している。
 このように形成される管状ライニング材1は、既設管9の更生に際し、平坦状に交互に折り畳まれて順次積み重ねられた状態で補修対象箇所に搬入することができる。
 次に、本発明の既設管更生工法(以下、本更生工法ともいう。)について説明する。
 本更生工法の1つの態様は、管状ライニング材を既設管内に挿入し、既設管の内壁を更生することによって既設管を更生するための工法であって、未含浸の管状ライニング材における、片表面が液密にフィルムコーティングされた樹脂吸収基材に、或いは片表面が液密にフィルムコーティングされた樹脂吸収基材と別の樹脂吸収基材とこれらの間に介装された強化繊維基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を注入し含浸させる工程と、硬化性フラン樹脂組成物が含浸された管状ライニング材を、流体圧によって既設管内に反転させつつ挿入する工程と、挿入した管状ライニング材を既設管の内壁に押圧した状態で、含浸された硬化性フラン樹脂組成物を硬化させて既設管の内壁を被覆する工程とを含むことを特徴とする。
 また、本更生工法のもう1つの態様は、管状ライニング材を既設管内に挿入し、既設管の内壁を更生することによって既設管を更生するための工法であって、未含浸の管状ライニング材における、片表面が液密にフィルムコーティングされた樹脂吸収基材に、或いは片表面が液密にフィルムコーティングされた樹脂吸収基材と別の樹脂吸収基材とこれらの間に介装された強化繊維基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を注入し含浸させる工程と、硬化性フラン樹脂組成物が含浸された管状ライニング材を、既設管内に引き込み挿入する工程と、挿入した管状ライニング材を既設管の内壁に押圧した状態で、含浸された硬化性フラン樹脂組成物を硬化させて既設管の内壁を被覆する工程とを含むことを特徴とする。
 以下、本発明の既設管更生工法(以下、本更生工法ともいう。)の実施形態について図5、6を用いて説明する。本更生工法では、作業時間短縮、作業環境維持、硬化性材料効率の点から次のような方法が好ましい。
 既設管更生作業に先立ち、既設管9に下水等の流体がある場合には、管路からいったん除去することが好ましい。図5に示すように、既設管9の管路には、適当な間隔でマンホールM1、M2が設けられており、近傍のマンホールの上流側に堰き止め部材3を設ける。堰き止めた流体は、マンホールM1、M2を通して地上を迂回させ、下流側の既設管9へ排出する。さらに、既設管9内に存在する堆積物や木片等の異物を除去し、高圧水洗浄を行ってから、管内の更生作業に入る。
 図5に示すように、管状ライニング材1を地上の反転装置4に装着し、管状ライニング材1を反転させつつ、既設管内へ挿入する(反転工程)。反転装置には公知の装置を用いることができ、反転装置により加圧流体が供給されて管状ライニング材1の先端側から反転させ、内圧により十分に拡径させて既設管の内壁に密着させながら進行させる。すなわち、反転装置の加圧によって、図3に示すように、既設管9内では、広範囲で均一な力が付与されて、管状ライニング材1における、硬化性樹脂の含浸された樹脂吸着基材層12が内壁に接着する。また、管状ライニング材1は、被覆層11が既設管9の内面となって配置されている。
 なお、既設管9内へ管状ライニング材1を挿入する工程は、このように流体圧によって反転させつつ挿入するのに限らず、最内層に被覆層11を設けた管状ライニング材を用いて、反転させることなく既設管9内へ引き込むことにより挿入してもよい。すなわち、この場合には、管状ライニング材1は最外層に樹脂吸着基材層12が設けられている。
 続いて、図6に示すように、既設管9内に反転挿入した管状ライニング材1を、既設管9の内壁に押圧した状態で流体を加熱し、樹脂吸着基材層12、強化繊維基材層13に含浸された硬化性樹脂を硬化させ、既設管9の内壁をライニングする(硬化工程)。こうして硬化した管状ライニング材1は、既設管9の更生区間に合わせて配備され、既設管9が管状ライニング材1により修復される。前記のような硬化性樹脂を用いることにより、これの十分に含浸された樹脂吸着基材層12、強化繊維基材層13を備える管状ライニング材1の適正な柔軟性を維持しつつ反転作業をスムーズに行うことができ、作業効率を高めることができる。
 以下においては、実施例及び比較例を挙げて本発明をさらに詳細に説明し、本発明の卓越性と本発明の構成における優位性を実証するが、本発明はこれらの実施例によって限定されるものではない。
 なお、実施例及び比較例において使用した評価・測定方法は、以下の通りである。
[管状ライニング材および修復された更生埋設管の評価方法]
(1)水分含有率
 JIS K0113-8『カールフィッシャー滴定方法』における定量滴定方法に準拠してフラン系樹脂の水分含有率を測定した。
(2)粘度
 JIS K7117-1『ブルックフィールド形回転粘度計による見かけ粘度の測定方法』におけるB型粘度計法に準拠して硬化性フラン樹脂組成物の粘度を測定した。
(3)含浸性
 硬化性フラン樹脂組成物を基材内に含浸する際の含浸度合いを目視にて観察した。
(4)曲げ弾性率
 JIS K7171『曲げ特性の求め方』に準拠して修復された更生埋設管から切り出したサンプルの曲げ弾性率を測定した
<実施例1>
 フラン樹脂成分(フルフリルアルコールとホルムアルデヒド共縮合物、粘度2700mPa・s、水分含有率7.4重量%)のみをフラン系樹脂とした。
 更にフラン系樹脂100重量部に対し硬化剤(パラトルエンスルホン酸65%水溶液)3重量部を添加した後、ホモディスパーを用い、1000rpm10分間攪拌し、硬化性フラン樹脂組成物を調製した。
 この硬化性フラン樹脂組成物を、外表面に不透水層がコートされた樹脂不織布(ポリエステル不織布、空隙率85%、460g/m)および樹脂不織布(ポリエステル不織布、空隙率85%、600g/m)の管状積層体からなる管状ライニング用基材の内部に7500g/m注入し、次いで該基材の内部を減圧して基材内のエアを脱気し、硬化性フラン樹脂組成物を基材内に含浸させ、厚さ6mmの管状ライニング材を得た。
 得られた管状ライニング材を地上の反転装置に装着し、圧縮空気にて管状ライニング材1を反転させつつ内径200mmの埋設管に挿入した。続いて、埋設管内に反転挿入した管状ライニング材を、埋設管の内壁に押圧した状態で、内部から90℃の温水にて4時間加熱し、硬化性フラン樹脂組成物を硬化させ、更生埋設管を得た。その評価結果を表1に示した。
<実施例2>
 フラン樹脂成分(フルフリルアルコールとホルムアルデヒド共縮合物、粘度2700mPa・s、水分含有率7.4重量%)100重量部に対し、フルフラール40重量部を添加した後、ホモディスパーを用い、1000rpmで5分間攪拌し、フラン系樹脂を調製した。その後、このフラン系樹脂を用いて、実施例1と同様の方法で更生埋設管を得た。その評価結果を表1に示した。
<実施例3>
 フラン樹脂成分(フルフリルアルコールとホルムアルデヒド共縮合物、粘度2700mPa・s、水分含有率7.4重量%)100重量部に対し、フルフリルアルコール50重量部を添加した後、ホモディスパーを用い、1000rpmで5分間攪拌し、フラン系樹脂を調製した。その後、このフラン系樹脂を用いて、実施例1と同様の方法で更生埋設管を得た。その評価結果を表1に示した。
<実施例4>
 フラン樹脂成分(フルフリルアルコールとホルムアルデヒド共縮合物、粘度14000mPa・s、水分含有率1.3重量%)100重量部に対し、フルフリルアルコール50重量部を添加した後、ホモディスパーを用い、1000rpmで5分間攪拌し、フラン系樹脂を調製した。その後、このフラン系樹脂を用いて、実施例1と同様の方法で更生埋設管を得た。その評価結果を表1に示した。
<実施例5>
 フラン樹脂成分(フルフリルアルコールとホルムアルデヒド共縮合物、粘度2700mPa・s、水分含有率7.4重量%)100重量部に対しフルフリルアルコール50重量部を添加した後、ホモディスパーを用い、1000rpmで5分間攪拌し、フラン系樹脂を調製した。
 更にフラン系樹脂100重量部に対し、無機充填材カオリン(焼成カオリン、平均粒径1.4、pH5.5)40重量部、硬化剤(パラトルエンスルホン酸65%水溶液)3重量部を添加した後、ホモディスパーを用い、1000rpmで10分間攪拌し、硬化性フラン樹脂組成物を調製した。その後、この硬化性フラン樹脂組成物を用いて、実施例1と同様の方法で更生埋設管を得た。その評価結果を表1に示した。
<実施例6>
 無機充填材カオリン(焼成カオリン、平均粒径1.4、pH9.0、アミノシラン系表面処理)に変えた以外は、実施例5と同様の方法で更生埋設管を得た。その評価結果を表1に示した。
<実施例7>
 管状ライニング用基材を、外表面に不透水層がコートされた天然繊維不織布(亜麻不織布、空隙率85%、460g/m2)および天然繊維不織布(亜麻不織布、空隙率85%、600g/m2)の管状積層体に変えた以外は、実施例3と同様の方法で更生埋設管を得た。その評価結果を表1に示した。
<比較例1>
 硬化性フラン樹脂組成物を、不飽和ポリエステル樹脂(イソフタル酸系、粘度1900mPa・s)100重量部に硬化剤(パーオキサイド)1重量部、を添加した後、ディスパーにより1000rpmで10分間攪拌して硬化性不飽和ポリエステル樹脂組成物を調製した。その後、この硬化性不飽和ポリエステル樹脂組成物を用いて、実施例1と同様の方法で更生埋設管を得た。その評価結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1より、硬化性樹脂として天然物由来のフラン系樹脂を用いた本発明の実施例(実施例1~7)では、石油由来の硬化性樹脂を用いた比較例と比較して、いずれも、既設管更生用ライニング材として少なくとも同等以上の特性を示すことが分かる。
 特に、実施例2~4においては、水分含有率の低いフラン系樹脂においても強度特性を維持しつつ、低粘度と含浸性の両立を達成しえたことが、また実施例5、6においては、無機系充填材を高充填することで強度特性を向上させても、低粘度を維持でき含浸性の確保を達成しえたことが分かる。
 一方、実施例7においては、基材も非石油系材料からなる既設管更生用ライニング材が提供されたことが分かる。
 以上から明らかなように、本発明の既設管更生用ライニング材は、水分含有率が少ないにもかかわらず粘度が低く含浸性が非常に良好であるので、既設管、例えば地中に埋設された下水道管、上水道管、農業用水管、ガス管等の埋設管などの種々の既設管の内周面を更生するための既設管更生用ライニング材として好適である。
 したがって、このような望ましい特性を有するライニング材を用いた本発明の既設管更生工法のもつ産業上の利用可能性は極めて大きい。
 1  ライニング材
 11 被覆層
 12 樹脂吸収基材層
 13 強化繊維基材層
 4  反転装置
 9  既設管

Claims (24)

  1.  片表面が液密にフィルムコーティングされた樹脂吸収基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を含浸させてなることを特徴とする既設管更生用ライニング材。
  2.  片表面が液密にフィルムコーティングされた樹脂吸収基材と別の樹脂吸収基材とこれらの間に介装された強化繊維基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を含浸させてなることを特徴とする既設管更生用ライニング材。
  3.  前記フラン系樹脂が、フラン樹脂、エポキシ変性フラン樹脂、フェノール変性フラン樹脂、アルデヒド変性フラン樹脂、尿素変性フラン樹脂およびメラミン変性フラン樹脂からなるフラン樹脂成分群から選ばれた少なくとも1種であることを特徴とする請求項1または2に記載の既設管更生用ライニング材。
  4.  前記フラン系樹脂の水分含有率が、10重量%以下であることを特徴とする請求項1~3のいずれか1項に記載の既設管更生用ライニング材。
  5.  前記フラン系樹脂が、前記フラン樹脂成分に加え、反応性希釈剤を含有することを特徴とする請求項3または4に記載の既設管更生用ライニング材。
  6.  前記反応性希釈剤が、フルフリルアルコール及び/又はフルフラールであることを特徴とする請求項5に記載の既設管更生用ライニング材。
  7.  前記反応性希釈剤が、フラン樹脂成分100重量部に対して、10~100重量部含有されることを特徴とする請求項5または6に記載の既設管更生用ライニング材。
  8.  前記硬化性フラン樹脂組成物が、無機系充填剤を含有することを特徴とする請求項1~7のいずれかに1項に記載の既設管更生用ライニング材。
  9.  前記無機系充填剤のpHが10以下であることを特徴とする請求項8に記載の既設管更生用ライニング材。
  10.  前記無機系充填剤が、有機シラン系表面処理を施されていることを特徴とする請求項8または9に記載の既設管更生用ライニング材
  11.  前記硬化性フラン樹脂組成物は、粘度が50~3000mPa・sであることを特徴とする請求項1~10のいずれか1項に記載の既設管更生用ライニング材。
  12.  前記樹脂吸収基材及び/又は強化繊維基材が、天然繊維からなることを特徴とする請求項1~11のいずれか1項に記載の既設管更生用ライニング材。
  13.  管状ライニング材を既設管内に挿入し、既設管の内壁を更生することによって既設管を更生するための工法であって、
     未含浸の管状ライニング材における、片表面が液密にフィルムコーティングされた樹脂吸収基材に、或いは片表面が液密にフィルムコーティングされた樹脂吸収基材と別の樹脂吸収基材とこれらの間に介装された強化繊維基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を注入し含浸させる工程と、
     硬化性フラン樹脂組成物が含浸された管状ライニング材を、流体圧によって既設管内に反転させつつ挿入する工程と、
     挿入した管状ライニング材を既設管の内壁に押圧した状態で、含浸された硬化性フラン樹脂組成物を硬化させて既設管の内壁を被覆する工程と、
    を含むことを特徴とする既設管更生工法。
  14.  管状ライニング材を既設管内に挿入し、既設管の内壁を更生することによって既設管を更生するための工法であって、
     未含浸の管状ライニング材における、片表面が液密にフィルムコーティングされた樹脂吸収基材に、或いは片表面が液密にフィルムコーティングされた樹脂吸収基材と別の樹脂吸収基材とこれらの間に介装された強化繊維基材に、フラン系樹脂と硬化剤を含む硬化性フラン樹脂組成物を注入し含浸させる工程と、
     硬化性フラン樹脂組成物が含浸された管状ライニング材を、既設管内に引き込み挿入する工程と、
     挿入した管状ライニング材を既設管の内壁に押圧した状態で、含浸された硬化性フラン樹脂組成物を硬化させて既設管の内壁を被覆する工程と、
    を含むことを特徴とする既設管更生工法。
  15.  前記フラン系樹脂が、フラン樹脂、エポキシ変性フラン樹脂、フェノール変性フラン樹脂、アルデヒド変性フラン樹脂、尿素変性フラン樹脂およびメラミン変性フラン樹脂からなるフラン樹脂成分群から選ばれた少なくとも1種であることを特徴とする請求項13または14に記載の既設管更生工法。
  16.  前記フラン系樹脂の水分含有率が、10重量%以下であることを特徴とする請求項13~15のいずれか1項に記載の既設管更生工法。
  17.  前記フラン系樹脂が、前記フラン樹脂成分に加え、反応性希釈剤を含有することを特徴とする請求項15または16に記載の既設管更生工法。
  18.  前記反応性希釈剤が、フルフリルアルコール及び/又はフルフラールであることを特徴とする請求項17に記載の既設管更生工法。
  19.  前記反応性希釈剤が、フラン樹脂成分100重量部に対して、10~100重量部含有されることを特徴とする請求項17または18に記載の既設管更生工法。
  20.  前記硬化性フラン樹脂組成物が、無機系充填剤を含有することを特徴とする請求項13~19のいずれかに1項に記載の既設管更生工法。
  21.  前記無機系充填剤のpHが10以下であることを特徴とする請求項20に記載の既設管更生工法。
  22.  前記無機系充填剤が、有機シラン系表面処理を施されていることを特徴とする請求項20または21に記載の既設管更生工法
  23.  前記硬化性フラン樹脂組成物は、粘度が50~2000mPa・sであることを特徴とする請求項13~22のいずれか1項に記載の既設管更生工法。
  24.  前記樹脂吸収基材及び/又は強化繊維基材が、天然繊維からなることを特徴とする請求項13~23のいずれか1項に記載の既設管更生工法。
PCT/JP2011/057284 2010-04-02 2011-03-25 既設管更生用ライニング材及びそれを用いた既設管更生工法 WO2011125534A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP11765435.0A EP2554359B1 (en) 2010-04-02 2011-03-25 Lining material for rehabilitating existing pipe and method for rehabilitating existing pipe using same
JP2012509432A JP5678037B2 (ja) 2010-04-02 2011-03-25 既設管更生用ライニング材及びそれを用いた既設管更生工法
SG2012056651A SG182814A1 (en) 2010-04-02 2011-03-25 Lining material for rehabilitating existing pipe and method for rehabilitating existing pipe using same
US13/639,031 US20130019982A1 (en) 2010-04-02 2011-03-25 Lining material for rehabilitating host pipe and method for rehabilitating host pipe using same
CA2786992A CA2786992A1 (en) 2010-04-02 2011-03-25 Lining material for rehabilitating host pipe and method for rehabilitating host pipe using same
AU2011236216A AU2011236216B2 (en) 2010-04-02 2011-03-25 Lining material for rehabilitating existing pipe and method for rehabilitating existing pipe using same
CN201180016045.2A CN102821932B (zh) 2010-04-02 2011-03-25 用于修复已设置管的衬套材料和使用该材料修复已设置管的方法
KR1020127025619A KR20130040797A (ko) 2010-04-02 2011-03-25 기설관 갱생용 라이닝재 및 이를 이용한 기설관 갱생 공법
RU2012141571/05A RU2540627C2 (ru) 2010-04-02 2011-03-25 Облицовочный материал для восстановления существующей трубы и использующий его способ восстановления существующей трубы
PL11765435T PL2554359T3 (pl) 2010-04-02 2011-03-25 Materiał wykładzinowy do renowacji istniejącej rury i sposób renowacji istniejącej rury przy użyciu tegoż
HK13106520.1A HK1178848A1 (en) 2010-04-02 2013-06-04 Lining material for rehabilitating existing pipe and method for rehabilitating existing pipe using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-086403 2010-04-02
JP2010086403 2010-04-02

Publications (1)

Publication Number Publication Date
WO2011125534A1 true WO2011125534A1 (ja) 2011-10-13

Family

ID=44762488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057284 WO2011125534A1 (ja) 2010-04-02 2011-03-25 既設管更生用ライニング材及びそれを用いた既設管更生工法

Country Status (12)

Country Link
US (1) US20130019982A1 (ja)
EP (1) EP2554359B1 (ja)
JP (1) JP5678037B2 (ja)
KR (1) KR20130040797A (ja)
CN (1) CN102821932B (ja)
AU (1) AU2011236216B2 (ja)
CA (1) CA2786992A1 (ja)
HK (1) HK1178848A1 (ja)
PL (1) PL2554359T3 (ja)
RU (1) RU2540627C2 (ja)
SG (1) SG182814A1 (ja)
WO (1) WO2011125534A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153652A1 (ja) * 2012-04-12 2013-10-17 芦森工業株式会社 管路の内張り方法、及び、管路の内張り材
JP2013215928A (ja) * 2012-04-05 2013-10-24 Sekisui Chem Co Ltd 既設管更生用ライニング材及びその製造方法、並びにそれを用いた既設管更生工法
JP2013249936A (ja) * 2012-06-04 2013-12-12 Yoshika Engineering Kk 管路の補修構造及び補修工法
JP2014214248A (ja) * 2013-04-26 2014-11-17 積水化学工業株式会社 フラン樹脂硬化物の製造方法
EP2832790A4 (en) * 2012-03-26 2015-11-18 Sekisui Chemical Co Ltd THERMOSETTING FURANNIC RESIN COMPOSITION AND LAMINATE OF FURANNIC RESIN USING THE SAME
WO2016175247A1 (ja) * 2015-04-30 2016-11-03 日立化成株式会社 熱硬化性樹脂材料、硬化物及びその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012245500B2 (en) 2011-04-18 2015-12-17 Fyfe Co., Llc Expandable liner for the protection and strengthening of existing pipes
US10316994B2 (en) 2012-10-29 2019-06-11 Elegant Technical Solutions Pty Limited Method and apparatus for winding a liner inside a host pipe
WO2014110544A1 (en) * 2013-01-14 2014-07-17 Fyfe Co. Llc High strength liner and method of use
US20140373956A1 (en) * 2013-06-24 2014-12-25 Jeffrey M. Tanner Laminated Pipe Lining System
EP2913175B1 (de) * 2014-02-28 2016-04-20 PHT Handel und Technik GmbH Verfahren zum Auskleiden einer Rohrleitung
WO2016009361A1 (en) 2014-07-14 2016-01-21 Fyfe Co. Llc Method of reininforcing a pipe with a pipe lining, reinforced pipe and method of waterproofing a reinforced pipe
WO2016031988A1 (ja) 2014-08-29 2016-03-03 積水化学工業株式会社 フラン樹脂及びその製造方法、熱硬化性フラン樹脂組成物、硬化物、並びにフラン樹脂複合体
US9993992B2 (en) 2015-04-17 2018-06-12 Fyfe Co. Llc Structural fabric useful for lining pipe
US10077855B2 (en) 2015-09-22 2018-09-18 Ina Acquisition Corp. Method of lining pipe with high strength liner, high strength liner, and pipe lined with high strength liner
US10502356B2 (en) * 2016-12-06 2019-12-10 SAK Construction, LLC Liner for lateral pipe line
US10131766B2 (en) 2017-04-24 2018-11-20 Interplastic Corporation Unsaturated polyester resin system for cured in-place piping
US11173634B2 (en) 2018-02-01 2021-11-16 Ina Acquisition Corp Electromagnetic radiation curable pipe liner and method of making and installing the same
US10704728B2 (en) 2018-03-20 2020-07-07 Ina Acquisition Corp. Pipe liner and method of making same
CN110939819B (zh) * 2019-11-27 2021-04-06 成都龙之泉科技股份有限公司 一种用于管道修复内衬软管的材料层
US11746932B2 (en) * 2020-07-02 2023-09-05 Hempvana, Llc Expandable and retractable hose reinforced with hemp

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257323A (ja) * 1988-08-22 1990-02-27 Osaka Gas Co Ltd 管内面のライニング方法
JPH04337193A (ja) * 1991-05-10 1992-11-25 Santou Kakougiyou Kk 管体の補強方法および補強部材
JPH0752245A (ja) * 1993-08-18 1995-02-28 Sekisui Chem Co Ltd 複合管及びその製造方法
JP3219769B2 (ja) 1993-02-02 2001-10-15 ペルストルプ・ケミテック・アクチボラグ 樹脂バインダー組成物
JP2003165158A (ja) 2001-11-29 2003-06-10 Shonan Plastic Mfg Co Ltd 管ライニング工法
JP2008087442A (ja) * 2006-10-05 2008-04-17 Japan Engineering Kk 管体の再生方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2771985A (en) * 1955-05-09 1956-11-27 Atlas Mineral Products Company Corrosion resistant structure
US3487043A (en) * 1966-12-23 1969-12-30 Interpace Corp Furane resins with silane coupling agents
US4042559A (en) * 1972-03-23 1977-08-16 The Carborundum Company Abrasion resistant coated abrasive pipe lining sheet
US4064211A (en) * 1972-12-08 1977-12-20 Insituform (Pipes & Structures) Ltd. Lining of passageways
US4495316A (en) * 1976-09-23 1985-01-22 Acme Resin Corporation Acid-curable fluoride-containing no-bake foundry resins
DE3236585A1 (de) * 1982-10-02 1984-04-05 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung einer kittharzloesung
IE832804L (en) * 1983-11-29 1985-05-29 Attwell Ronald Leslie Applying a lining to a conduit such as a chimney flue
DE3412104A1 (de) * 1984-03-31 1985-10-10 Rütgerswerke AG, 6000 Frankfurt Bindemittel auf basis furfurylalkohol, verfahren zu ihrer herstellung und verwendung
US4644022A (en) * 1985-11-27 1987-02-17 Acme Resin Corporation Cold-setting compositions for foundry sand cores and molds
JPH0641173B2 (ja) * 1986-10-16 1994-06-01 ハンス・ミユラ− 地中に敷設された導管を補修する方法
US5296520A (en) * 1992-12-09 1994-03-22 Borden, Inc. Latent acid curable compositions
RU2037420C1 (ru) * 1993-08-30 1995-06-19 Дрейцер Владимир Исаакович Способ покрытия внутренней поверхности трубопровода
US5799705A (en) * 1995-10-25 1998-09-01 Ameron International Corporation Fire resistant pipe
US5955023A (en) * 1996-11-27 1999-09-21 Callutech, Llc Method of forming composite particle products
EP1443257A1 (en) * 2003-02-03 2004-08-04 NordiTube Technologies AB Lining material for pipelines
EP1945992A1 (en) * 2005-10-26 2008-07-23 E.I. Du Pont De Nemours And Company Process for adhering a liner to the surface of a pipe by induction heating
US9096790B2 (en) * 2007-03-22 2015-08-04 Hexion Inc. Low temperature coated particles comprising a curable liquid and a reactive powder for use as proppants or in gravel packs, methods for making and using the same
DE602009001146D1 (de) * 2009-02-27 2011-06-09 Aarsleff As Auskleidungsanordnung zum Erneuern einer Rohrleitung durch Verwendung einer Auskleidung und eines transparenten Bandes
JP5755911B2 (ja) * 2010-03-18 2015-07-29 花王株式会社 鋳型造型用粘結剤組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257323A (ja) * 1988-08-22 1990-02-27 Osaka Gas Co Ltd 管内面のライニング方法
JPH04337193A (ja) * 1991-05-10 1992-11-25 Santou Kakougiyou Kk 管体の補強方法および補強部材
JP3219769B2 (ja) 1993-02-02 2001-10-15 ペルストルプ・ケミテック・アクチボラグ 樹脂バインダー組成物
JPH0752245A (ja) * 1993-08-18 1995-02-28 Sekisui Chem Co Ltd 複合管及びその製造方法
JP2003165158A (ja) 2001-11-29 2003-06-10 Shonan Plastic Mfg Co Ltd 管ライニング工法
JP2008087442A (ja) * 2006-10-05 2008-04-17 Japan Engineering Kk 管体の再生方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2554359A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2832790A4 (en) * 2012-03-26 2015-11-18 Sekisui Chemical Co Ltd THERMOSETTING FURANNIC RESIN COMPOSITION AND LAMINATE OF FURANNIC RESIN USING THE SAME
US9376543B2 (en) 2012-03-26 2016-06-28 Sekisui Chemical Co., Ltd. Thermosetting furan resin composition and furan resin laminated body using the same
JP2013215928A (ja) * 2012-04-05 2013-10-24 Sekisui Chem Co Ltd 既設管更生用ライニング材及びその製造方法、並びにそれを用いた既設管更生工法
WO2013153652A1 (ja) * 2012-04-12 2013-10-17 芦森工業株式会社 管路の内張り方法、及び、管路の内張り材
US9429265B2 (en) 2012-04-12 2016-08-30 Ashimori Industry Co., Ltd. Lining method for conduit and lining material composite for conduit
JP2013249936A (ja) * 2012-06-04 2013-12-12 Yoshika Engineering Kk 管路の補修構造及び補修工法
JP2014214248A (ja) * 2013-04-26 2014-11-17 積水化学工業株式会社 フラン樹脂硬化物の製造方法
WO2016175247A1 (ja) * 2015-04-30 2016-11-03 日立化成株式会社 熱硬化性樹脂材料、硬化物及びその製造方法

Also Published As

Publication number Publication date
PL2554359T3 (pl) 2015-06-30
RU2540627C2 (ru) 2015-02-10
AU2011236216A1 (en) 2012-08-02
CA2786992A1 (en) 2011-10-13
KR20130040797A (ko) 2013-04-24
JP5678037B2 (ja) 2015-02-25
JPWO2011125534A1 (ja) 2013-07-08
AU2011236216A2 (en) 2012-12-20
CN102821932A (zh) 2012-12-12
AU2011236216B2 (en) 2015-01-29
HK1178848A1 (en) 2013-09-19
SG182814A1 (en) 2012-09-27
RU2012141571A (ru) 2014-05-10
CN102821932B (zh) 2015-06-10
US20130019982A1 (en) 2013-01-24
EP2554359A1 (en) 2013-02-06
EP2554359B1 (en) 2015-01-14
EP2554359A4 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5678037B2 (ja) 既設管更生用ライニング材及びそれを用いた既設管更生工法
US9688045B2 (en) Liner for reinforcing a pipe and method of making the same
EP3443254B1 (en) Composite insulation system
US11946584B2 (en) Composite insulation system
EP2390547A2 (en) Method for the repair and/or prevention of leaks in pressure vessels or pipes and structural composite reinforcement used
CN1202958A (zh) 耐火管
JP5886675B2 (ja) 既設管更生用ライニング材及びその製造方法、並びにそれを用いた既設管更生工法
RU192353U1 (ru) Рукав для ремонта трубопровода большого диаметра
JP2011042164A (ja) 既設管の更生工法
JP2016104561A (ja) 既設管更生用ライニング材及びそれを用いた既設管の更生方法
RU192354U1 (ru) Рукав для ремонта трубопровода
JP2012121264A (ja) ライニング材
RU2234412C1 (ru) Способ изготовления изделия трубчатой формы с конусообразным участком и изделие трубчатой формы с конусообразным участком в виде оболочки сооружения или конструкции
JP2014104719A (ja) 既設管の更生方法
JP2017080972A (ja) 既設管更生用ライニング材及びそれを用いた既設管更生工法
KR200352875Y1 (ko) 상/하수관 보강용 에폭시 수지 조성물 함침 튜브
JP2017154356A (ja) トンネル内消火配管更生用ライニング材およびトンネル内消火配管の更生方法
JP5582777B2 (ja) 耐食層を有する管状繊維強化複合材料
JP6043449B1 (ja) トンネル内消火配管更生用ライニング材およびトンネル内消火配管の更生方法
JP2015208949A (ja) 更生既設管の製造方法
KR100566603B1 (ko) 비굴착 상하수관 부분보수용 에폭시 수지 조성물
US20050281970A1 (en) Lateral liner substrates
JP2012016834A (ja) 既設管の更生方法
JP2016098283A (ja) 熱硬化性フラン樹脂組成物及びこれを用いた熱硬化性フラン樹脂積層体
JP2003025443A (ja) 管内ライニング材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016045.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011236216

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2786992

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2011236216

Country of ref document: AU

Date of ref document: 20110325

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011765435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012509432

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127025619

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13639031

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012141571

Country of ref document: RU

Kind code of ref document: A