WO2011125357A1 - エンコーダ、駆動装置、絶対位置算出方法及びエンコーダ製造方法 - Google Patents

エンコーダ、駆動装置、絶対位置算出方法及びエンコーダ製造方法 Download PDF

Info

Publication number
WO2011125357A1
WO2011125357A1 PCT/JP2011/051108 JP2011051108W WO2011125357A1 WO 2011125357 A1 WO2011125357 A1 WO 2011125357A1 JP 2011051108 W JP2011051108 W JP 2011051108W WO 2011125357 A1 WO2011125357 A1 WO 2011125357A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
section
absolute position
resolution
unit
Prior art date
Application number
PCT/JP2011/051108
Other languages
English (en)
French (fr)
Inventor
幾磨 室北
康 吉田
次郎 村岡
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to EP11765259.4A priority Critical patent/EP2554950B1/en
Priority to JP2012509329A priority patent/JP5408342B2/ja
Priority to CN201180016560.0A priority patent/CN102822636B/zh
Publication of WO2011125357A1 publication Critical patent/WO2011125357A1/ja
Priority to US13/629,606 priority patent/US8912928B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2449Error correction using hard-stored calibration data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49004Electrical device making including measuring or testing of device or component part

Definitions

  • the present invention relates to an encoder, a drive device, an absolute position calculation method, and an encoder manufacturing method.
  • An encoder is used to specify the position of the moving object.
  • the accuracy of encoder position identification has been improved.
  • One example of such a method for improving the position specifying accuracy is position specifying by a so-called “stacking method”.
  • the position of the moving object is represented by a plurality of position data with different resolutions, and the position of the moving object is specified sequentially from the position data with lower resolution (upper data) to the higher position data (lower data). Then, position data representing an accurate absolute position of the moving body is generated.
  • the absolute position with high resolution can be specified by including the absolute position data of the moving body in the position data with the lowest resolution.
  • encoders such as Patent Document 1 and Patent Document 2 have been developed. According to these encoders, although the method is different, in the position data generation process, the lower data and the upper data are used to identify the section in the upper data from which the lower data was obtained. To generate position data representing the absolute position. Therefore, accurate position data is generated by compensating for the phase error when specifying the section as compared with the case of simple accumulation.
  • the phase error is corrected based on two or more position data having different resolutions.
  • the limit amount also depends on the correction method and the resolution of each position data. For example, even when the limit amount is the largest, the position data on the low resolution side has half the phase of the position data on the high resolution side. If it exceeds, it is difficult to correct the phase error.
  • the cause of the phase error is, for example, an error included in the detection signal used for generating the position data.
  • the phase error is caused by non-reproducible errors caused by real-time driving conditions such as movement and vibration of the moving body, and by the detection mechanism itself such as manufacturing errors. It is roughly divided into reproducible errors. Therefore, for example, according to the encoders described in Patent Document 1 and Patent Document 2, the error that is inherently inherent in the encoder itself and the error that is not reproducible according to the real-time driving situation are accumulated. In fact, the limit amount of correction may be exceeded.
  • an object of the present invention is to provide an encoder, a drive that can correct the error even when a relatively large error occurs.
  • An apparatus, an absolute position calculation method, and an encoder manufacturing method are provided.
  • the correction value capable of correcting the shift amount generated in advance based on the shift amount generated in the higher data relative to the lower data is an absolute position having a lower resolution than the lower data of the moving body.
  • a storage unit that is associated and recorded; Based on the low-resolution absolute position when the high-order data is acquired by the position data acquisition unit, the correction value associated with the absolute position is acquired from the storage unit, and based on the correction value, A correction unit for correcting upper data, A section identifying unit that identifies the lower section from which the lower data is acquired based on the upper data corrected by the correction unit and the lower data when the upper data is acquired, with respect to the upper section When, An encoder is provided.
  • the position data acquisition unit is configured so that, in each of a plurality of sections that divide the movable range of the moving body with different division numbers, the resolution increases as the division number increases.
  • Acquire three or more position data representing the position In the storage unit, the correction value is recorded for each of a plurality of pairs of two position data that are adjacent to each other in high and low resolution and have a relationship between the upper data and the lower data, The correction unit corrects position data corresponding to the upper data based on the correction value for each of the plurality of pairs,
  • the section specifying unit for each of the plurality of pairs, the lower section in which the lower data is acquired based on the upper data corrected by the correction unit and the lower data when the upper data is acquired Is identified for the upper section
  • the absolute position calculation unit is configured to perform the movement at the same resolution as the position data having the highest resolution based on all the sections specified by the section specifying unit for each of the plurality of pairs and the position data having the highest resolution.
  • the absolute position of the body may be calculated.
  • the correction value is recorded in the storage unit in association with the absolute position of the same degree of resolution as the upper data of the pair for the upper data of the plurality of pairs,
  • the correction unit may acquire, for each of the plurality of pairs, the correction value for correcting the upper data in the pair based on an absolute position having a resolution comparable to that of the upper data in the pair. .
  • the absolute position calculation unit is configured to select a lower section specified by the section specifying unit for at least one of the two pairs of position data and the pair whose lower section is already specified by the section specifying unit. Based on the subordinate data with the highest resolution among the included position data, an intermediate absolute position with the same resolution as the subordinate data is calculated,
  • the correction unit is When the upper data included in the pair to be corrected represents the absolute position of the mobile object, the correction value for correcting the upper data is acquired based on the absolute position represented by the upper data, When the upper data included in the correction target pair does not represent the absolute position of the mobile object, the absolute position calculation unit has the same resolution as the upper data included in the correction target pair.
  • the correction value for correcting the higher order data may be acquired based on the intermediate absolute position already calculated in step (b).
  • correction values for upper data in a plurality of adjacent upper sections may be set to the same value and recorded.
  • a motor that moves a movable body within a movable range;
  • the upper data representing the position of the moving body in the upper section included in the movable range and the position of the moving body in the lower section repeated a plurality of times in the upper section are represented with higher resolution than the upper data.
  • the correction value capable of correcting the shift amount generated in advance based on the shift amount generated in the higher data relative to the lower data is an absolute position having a lower resolution than the lower data of the moving body.
  • a storage unit that is associated and recorded; Based on the low-resolution absolute position when the high-order data is acquired by the position data acquisition unit, the correction value associated with the absolute position is acquired from the storage unit, and based on the correction value, A correction unit for correcting upper data, A section identifying unit that identifies the lower section from which the lower data is acquired based on the upper data corrected by the correction unit and the lower data when the upper data is acquired, with respect to the upper section When, Absolute position calculation for calculating an absolute position at the same resolution as the lower data of the mobile body based on at least the lower section specified by the section specifying unit and the lower data when the upper data is acquired And A control device for controlling the motor based on the absolute position calculated by the absolute position calculator; A drive device is provided.
  • upper data representing a position of the moving body in an upper section in which the moving body can move, and a lower order repeated a plurality of times in the upper section
  • the correction value capable of correcting the shift amount generated in advance based on the shift amount generated in the higher data relative to the lower data is an absolute position having a lower resolution than the lower data of the moving body.
  • a correction value associated with the absolute position is acquired based on an absolute position having a lower resolution than the lower data when the upper data is acquired in the position data acquisition step, from a storage unit that is recorded in association with it.
  • a section specifying step for specifying the lower section from which the lower data is acquired with respect to the upper section based on the upper data corrected in the correction step and the lower data when the upper data is acquired When, An absolute position calculation method is provided.
  • upper data representing a position of the moving body in an upper section in which the moving body can move, and a lower order repeated a plurality of times in the upper section A position data acquisition step of acquiring lower data representing the position of the moving body in the section with higher resolution than the upper data; Based on the upper data and lower data acquired by the position data acquisition unit, a section specifying step for specifying the lower section from which the lower data is acquired with respect to the upper section; An absolute position calculating step for calculating an absolute position at the same resolution as the lower data of the mobile body based on at least the lower section specified in the section specifying step and the lower data acquired in the position data acquiring step; When, A reference absolute position calculating step for calculating a true absolute value of the moving body based on the lower data acquired in the position data acquiring step; A deviation amount for measuring a deviation amount in the upper data with respect to the lower data based on the absolute position calculated in the absolute position calculating step and the true absolute position calculated in the reference
  • a correction value generating step for generating a correction value capable of correcting the shift amount based on the shift amount measured in the shift amount measuring step
  • the error can be corrected.
  • FIG. 1 is an explanatory diagram for explaining a drive device according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for describing the encoder according to the embodiment.
  • FIG. 3 is an explanatory diagram for explaining the operation of the encoder according to the embodiment.
  • FIG. 4 is an explanatory diagram for describing a first error correction example by the encoder according to the embodiment.
  • FIG. 5 is an explanatory diagram for describing a first error correction example by the encoder according to the embodiment.
  • FIG. 6 is an explanatory diagram for describing a first error correction example by the encoder according to the embodiment.
  • FIG. 7 is an explanatory diagram for describing a first error correction example by the encoder according to the embodiment.
  • FIG. 1 is an explanatory diagram for explaining a drive device according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for describing the encoder according to the embodiment.
  • FIG. 3 is an explanatory diagram for explaining the operation of the encoder according
  • FIG. 8 is an explanatory diagram for describing a first error correction example by the encoder according to the embodiment.
  • FIG. 9 is an explanatory diagram for describing a second error correction example by the encoder according to the embodiment.
  • FIG. 10 is an explanatory diagram for explaining an example of the configuration of the encoder manufacturing apparatus according to the embodiment.
  • FIG. 11 is an explanatory diagram for explaining an example of the operation of the encoder manufacturing apparatus according to the embodiment.
  • Encoder according to this embodiment> (1-1. Configuration of Drive Device) (1-2. Error of multiplication and accumulation method and encoder) (1-2-1. Multiplication accumulation method) (1-2-2. Encoder error) (1-3. Configuration of encoder) (1-4. Encoder operation) (1-5. Example of error correction by encoder) (1-5-1. First error correction example) (1-5-2. Second error correction example) (1-6. Examples of effects according to this embodiment) ⁇ 2. Production of encoder according to this embodiment> (2-1. Configuration of encoder manufacturing apparatus) (2-2. Operation of encoder manufacturing equipment)
  • FIG. 1 is an explanatory diagram for explaining a drive device according to an embodiment of the present invention.
  • the drive device DV includes a power generation device PG and a control device CT.
  • the power generation device PG includes a motor M and an encoder 100.
  • the motor M is an example of a power generation source that does not include the encoder 100, and drives a drive target (not shown) that is a target to be driven by the drive device DV with the generated power. At this time, the motor M is controlled by the control device CT based on the absolute position data output from the encoder 100.
  • the operation principle and type of the motor M are not particularly limited. That is, the motor M is not limited to an electric motor unit that uses electricity as a power source. For example, other power sources such as a hydraulic motor unit, an air motor unit, and a steam motor unit may be used. The motor used may be used. Further, the motor M may be, for example, a rotary type motor that rotates a driving target, or a linear type motor that moves the driving target on a line such as a straight line or a curve.
  • the motor M is a rotary type electric motor. That is, the motor M according to the present embodiment has the rotation shaft SH1 on at least one side, and outputs the rotational force by rotating the rotation shaft SH1 around the rotation axis. At this time, the motor M according to the present embodiment acquires an electrical signal (for example, an applied voltage or current of the motor M) from the control device CT as the control signal Icont, and rotates the rotating shaft SH1 according to the electrical signal.
  • an electrical signal for example, an applied voltage or current of the motor M
  • the encoder 100 is disposed on the side opposite to the rotating shaft SH1 on the output side of the motor M, and is connected to another rotating shaft SH2 that rotates corresponding to the rotating shaft SH1.
  • the encoder 100 detects the absolute position (rotation angle or the like) of the rotation shaft SH2 to detect the absolute position of the rotation shaft SH1 and / or the drive target (not shown) connected to the rotation shaft SH1. )) Is detected.
  • the encoder 100 outputs absolute position data representing the detected absolute position to the control device CT.
  • the encoder 100 uses an “accumulation method” accompanied by a so-called “multiplication process” as a highly accurate absolute position as absolute position data so that an absolute position with high resolution and high accuracy can be detected. Can be output (hereinafter referred to as “multiplication and accumulation method”). This “multiplication accumulation method” will be described later in detail.
  • the encoder 100 may detect the absolute position at any time by a multiplication / accumulation method.
  • the multiplication / accumulation is performed only at the start of a predetermined operation, for example, when an error occurs in the drive device DV or the like.
  • the absolute position can also be detected by the method. In this case, for example, when an absolute position request signal (not shown) from the outside (for example, the control device CT) is received, when the encoder 100 is turned on, or when the motor M performs a predetermined operation.
  • the absolute position is detected by the multiplication and accumulation method.
  • the encoder 100 can detect the absolute position by counting up the detection signal having the highest resolution. In the present embodiment, for the sake of convenience of explanation, the case where the absolute position is detected by the multiplication and accumulation method will be described in detail.
  • the encoder 100 may detect not only the absolute position of the rotary shaft SH2 and the like, but also at least one of the rotational speed (also referred to as angular velocity) and the rotational acceleration (also referred to as angular acceleration) of the rotary shaft SH2.
  • the angular velocity and the angular acceleration are obtained by differentiating the absolute position once or twice with respect to time, or measuring the change amount of the absolute position per unit time or the change amount of the change amount per unit time (for example, counting). It can be detected by the encoder 100 by such processes.
  • the absolute position detected by the encoder 100 is the absolute position depending on which of the rotation shaft SH2, the rotation shaft SH1, and the drive target (not shown) is the drive device DV. It does not matter. Therefore, depending on which absolute position is detected, the target from which the absolute position is detected is an example of the moving body. In the present embodiment, for convenience of explanation, a case where the absolute position of the rotary shaft SH2 is detected by the encoder 100 will be described.
  • the arrangement position of the encoder 100 is not particularly limited to this embodiment.
  • the encoder 100 may be arranged so as to be directly connected to the rotary shaft SH1 to which power is output, depending on the origin of the absolute position used by the drive device DV, the arrangement of the device itself, and the like. It may be connected to a rotating body such as a rotating shaft via another mechanism such as a machine or a rotating direction changer.
  • the control device CT acquires the absolute position data output from the encoder 100, and controls the power generation state of the power generation device PG, that is, the rotation of the motor M, based on the absolute position represented in the absolute position data. Therefore, in this embodiment in which an electric motor unit is used as the motor M, the control device CT controls the current or voltage to be applied to the motor M as the control signal Icont based on the absolute position data. Control the rotation of M.
  • the control device CT controls the rotation of the motor M by controlling the supply of these power sources. Is possible.
  • the control device CT acquires a higher control signal from a higher control device (not shown), and controls the motor M so that the position or the like represented by the higher control signal is output from the rotating shaft of the motor M. It goes without saying that it is also possible to do.
  • the drive device DV drives the drive target by rotating the motor M in accordance with the absolute position detected by the encoder 100. Therefore, when the absolute position detected by the encoder 100 includes an error, the driving accuracy of the driving target of the driving device DV itself may be greatly affected.
  • the encoder 100 according to the present embodiment not only employs the above-described multiplication and accumulation method, but also corrects an error generated in the position detection mechanism of the encoder 100 within a very wide allowable range, and has extremely high accuracy. It is possible to detect an accurate absolute position. Therefore, in the following, the encoder 100 according to this embodiment will be described in detail.
  • Encoders are roughly classified into, for example, absolute encoders and incremental encoders according to position information to be detected.
  • the absolute encoder detects a detection signal that uniquely represents the absolute position within one rotation of the rotary shaft SH2 (an example of the movable range or upper section of the moving body), and based on the detection signal, the absolute encoder of the rotary shaft SH2 is detected. Calculate the position. Therefore, the absolute encoder can determine the absolute position immediately after the power is turned on. That is, the absolute encoder uses this absolute position as an initial value, and thereafter, the position in a section (an example of an upper section and a lower section, also referred to as a pitch) that is repeated a plurality of times within one rotation of the rotating shaft SH2 is uniquely defined.
  • a high-resolution absolute position can be calculated by processing such as counting detection signals (incremental signals) to be expressed.
  • the incremental encoder has zero position data when the power is turned on, and the absolute position cannot be specified.
  • the incremental encoder detects a detection signal that uniquely represents a position in a section that is repeated a plurality of times within one rotation of the rotary shaft SH2 after setting the position data at power-on to 0, and is generated from a predetermined origin position.
  • the relative position is calculated by processing such as counting the detected signals. Therefore, the incremental encoder uses a single origin signal for one rotation provided separately, and calculates a pseudo absolute position by taking into account the relative correction amount obtained by passing through this origin signal.
  • the detection signal detected by the absolute encoder is also called “absolute signal” or “1X signal”, and the detection signal detected by the incremental encoder is “n times the incremental signal” or “nX” depending on the “increment signal” or its division number n. It is also called “signal”.
  • Each of the absolute signal and the incremental signal has a periodic signal having one period for each rotation (movable range) or for each section (divided section). It can be said that the absolute signal of one cycle with one rotation is a periodic signal having one cycle within a section (that is, one rotation) that divides the movable range (one rotation) into one.
  • the detection signal is converted from analog to digital and then converted into a phase angle within a cycle, thereby including a position within one section (a position within one rotation (absolute position)). It is also referred to as an intra-section position).
  • a position (angle) within one section is also referred to as an “electrical angle” in the sense that a position within one cycle is indicated by an angle of 0 ° to 360 °.
  • the absolute encoder and the incremental encoder must once multiply each periodic detection signal, for example, after analog-digital conversion and before converting it into position data (here, the multiplication number is m).
  • the multiplication number is m
  • the encoder 100 acquires, for example, one absolute signal and one or more incremental signals at substantially the same time, and based on the absolute signal and the incremental signal, the absolute signal in the resolution of the incremental signal is obtained. Measure the position.
  • the processing contents of the encoder 100 are conceptually described as follows. That is, the encoder 100 performs a multiplication process on each detection signal to improve the resolution, and then calculates the absolute position from the absolute signal having the lowest resolution, while the interval corresponding to the resolution of the incremental signal from each incremental signal. The inner position is calculated.
  • the encoder 100 then superimposes (accumulates) the intra-section positions represented by the incremental signals in the descending order of resolution with respect to the absolute position with the lowest resolution, and specifies the absolute position in the resolution of the incremental signal with the highest resolution.
  • the absolute position detection method that achieves such high resolution is referred to herein as a “multiplication and accumulation method” in the sense that after the detection signal is multiplied, the position data based on the detection signals having different resolutions are superimposed (accumulated). Although it is possible to simply pile up without performing multiplication processing, in this embodiment, the multiplication and accumulation method will be described.
  • the method of accumulating the positions of sections (one rotation or one section) having different resolutions and the number of divisions in the movable range is conceptual, but specifically described as follows.
  • the first position data representing the absolute position obtained from the absolute signal
  • the second position data representing the position obtained from the incremental signal having the next highest resolution after the first position data
  • the second position data representing the third position data representing a position obtained from an incremental signal having a high resolution.
  • the third section in which the third position data represents the position in the section is a plurality of third sections included in the absolute position represented by the second position data. Which of the third sections is specified. As a result, after the specified two sections are superimposed, the position in the section in the third section having the highest resolution is further superimposed, whereby the absolute position in the resolution of the third position data can be calculated.
  • Various methods can be considered as the section specifying process, but at least in the relative relationship of resolution, two position data (higher data and higher data) that are in a relationship of higher order (low separability) and lower order (high resolution).
  • a section (an example of the lower section) from which the lower position data is acquired is identified with respect to a section of the upper position data (an example of the upper section) from the example of the lower data.
  • a detection error may occur in the detection signal of each resolution.
  • an incorrect section may be specified when the section is specified during the processing by the multiplication and accumulation method.
  • a lower section is specified, if there is a shift in the lower position data with a higher resolution and a lower position data with a lower resolution, an error occurs in the synchronization state between the two position data, and the synchronization shift occurs.
  • an erroneous lower section may be identified.
  • reproducible errors also referred to as “reproducibility errors”
  • non-reproducible errors also referred to as “non-reproducibility errors”.
  • reproducibility errors is mainly caused by an error of the apparatus itself in the detection signal detection mechanism or the apparatus configuration inside the encoder 100
  • non-reproducibility error is mainly caused when the detection signal is acquired. It is often caused by noise that changes in real time, such as vibration and stray light. Note that, by the section specifying process, the deviation amount can be corrected to some extent, and an accurate section can be specified.
  • the encoder 100 can appropriately correct even when a shift amount of about half of the lower position data section occurs in the upper position data as described above. It is possible to accurately specify the data section. Therefore, the encoder 100 can calculate the absolute position accurately and with high resolution.
  • the encoder 100 obtains three position data (first position data to third position data including absolute positions) having different resolutions in the same manner as in the above example, and a multiplication and accumulation method.
  • the case where the absolute position is calculated based on the resolution of the position data with the highest resolution will be described with an example. This is merely an example, and the encoder 100 can also calculate the absolute position by acquiring two position data or three or more position data having different resolutions.
  • the plurality of position data acquired by the encoder 100 and used for calculating the absolute position include at least position data representing an absolute position having a lower resolution than other position data (for example, the resolution is the highest). Low position data).
  • the first position data d1 is the least possible of the three position data, and is the absolute position (an example of the movable range or the upper section, also referred to as the first section T1) of the rotation shaft SH2.
  • first position p1 and “reference position Dorg”
  • An intra-section position (hereinafter also referred to as “second position p2”) in the section T2 (an example of an upper section or a lower section).
  • the position data with the higher resolution is also called “lower data”, and the position data with the lower resolution is also called “upper data”.
  • the sections represented by the positions in the sections of the lower data and the higher data are also referred to as “lower section” and “upper section”.
  • the first position data d1 and the second position data d2 is upper data and the second position data d2 is lower data.
  • a section T1 (movable range) in which the first position data d1 represents a position is an upper section
  • a second section T2 in which the second position data d2 represents a position is a lower section.
  • the second position data d2 and the third position data d3 is upper data
  • the third position data d3 is lower data.
  • the second section T2 in which the second position data d2 represents a position is an upper section
  • the third section T3 in which the third position data d3 represents a position is a lower section.
  • the third position data d3 with the highest resolution does not become the upper data
  • the first position data d1 with the lowest resolution does not become the lower data because of the relative resolution.
  • FIG. 2 is an explanatory diagram for describing an encoder according to an embodiment of the present invention. As shown in FIG. 2, the encoder 100 is roughly divided into a disk 110, a position data acquisition unit 120, a storage unit 130, a correction unit 140, a section specifying unit 150, and an absolute position calculation unit 160. Have.
  • the disk 110 is connected to the rotation shaft SH2 and rotates with the rotation of the rotation shaft SH2.
  • n1 1
  • n2 4
  • n3 16X signal
  • the first detection mechanism to the third detection mechanism are not particularly limited as long as the detection mechanism can obtain a detection signal of each cycle.
  • a magnet in which magnetic poles are arranged in a plane parallel to the disk 110 and arranged at the rotation center of the disk 110 is used as the first detection mechanism.
  • a track by a plurality of slits corresponding to each of the second detection mechanism and the third detection mechanism is formed using an optical detection principle.
  • the track of the second detection mechanism is formed with n2 slits so that one rotation is divided by the division number n2 and a detection signal having an n2 period is obtained within one rotation.
  • the track of the third detection mechanism is formed with n2 ⁇ n3 slits so that one rotation is divided by the division number n2 ⁇ n3 and a detection signal of n2 ⁇ n3 periods is obtained within one rotation.
  • the first detection mechanism to the third detection mechanism described here are merely examples, and the present embodiment is not limited to the examples of such detection mechanisms, as described above.
  • the third position data acquisition unit 123 irradiates the track of the third detection mechanism of the disk 110 with light, and detects reflected light from a plurality of slits formed in the track. Then, in the present embodiment, the detection signal is a substantially sinusoidal signal that is repeated in a cycle corresponding to the number of slits (that is, the number of divisions n2 ⁇ n3) within one rotation.
  • the third position data acquisition unit 123 converts the sinusoidal detection signal from analog to digital, multiplies it by m3, and converts it to an electrical angle, thereby converting the third position data in the third section T3.
  • the third position data d3 representing p3 is acquired.
  • the first position data acquisition unit 121 and the second position data acquisition unit 122 are each the first position in the first section T1 (one rotation), like the third position data acquisition unit 123, although the detection mechanism and the resolution are different.
  • First position data d1 representing p1 and second position data d2 representing a second position p2 in the second section T2 are acquired.
  • the encoder 100 according to the present embodiment is not particularly limited with respect to the position data acquisition mechanism, that is, the detection mechanism of the detection signal, the conversion direction from the detection signal to the position data, and the like. It goes without saying that it is not limited.
  • the correction value used when the correction unit 140 (described later) corrects the upper data with respect to the lower data has a lower resolution than the lower data when the upper data is acquired. Recorded in relation to the absolute position.
  • an absolute position having the same resolution as that of the upper data to be corrected is used as the low-resolution absolute position associated with the correction value.
  • the correction unit 140 which will be described later, corrects the shift amount of the upper data with respect to the lower data for each pair of two position data that has a relationship between the upper data and the lower data in a relative relationship of resolution. Therefore, the encoder 100 according to the present embodiment has the amount of deviation generated in the first position data d1 with respect to the second position data d2 in the first pair and the second amount with respect to the third position data d3 in the second pair. The amount of deviation occurring in the position data d2 is corrected.
  • the correction value r1 is recorded in the storage unit 130 as a correction value for correcting the shift amount of the first position data d1, and the correction value r2 is stored as a correction value for correcting the shift amount of the second position data d2. Recorded in the unit 130.
  • the encoder 100 calculates the absolute position from the position data of 2, since only one pair is formed, one type of correction value is recorded in the storage unit 130.
  • the encoder 100 calculates the absolute position from j position data of 3 or more, since j-1 pairs are formed, j ⁇ 1 types of correction values are recorded in the storage unit 130. become.
  • the storage unit 130 includes the first storage unit 131 in which the correction value r1 is recorded.
  • the second storage unit 132 in which the correction value r2 is recorded.
  • the correction values r1 and r2 are absolute positions having a lower resolution than the lower data in the pair to be corrected, and are associated with the absolute positions when the upper data to be corrected is acquired. Are recorded in the first storage unit 131 and the second storage unit 132, respectively.
  • the absolute position with which the correction values r1 and r2 are associated an absolute position having a resolution comparable to that of the upper data having a lower resolution than the lower data is used. That is, the correction value r1 is recorded in the first storage unit 131 in association with the absolute position having the same resolution as the first position data d1 as the upper data.
  • the correction value r2 is recorded in the second storage unit 132 in association with the absolute position having the same resolution as the second position data d2 as the upper data.
  • the encoder manufacturing apparatus or the like calculates or acquires the absolute position in the resolution of the upper data when the correction values r1 and r2 are calculated. Then, the encoder manufacturing apparatus or the like records the correction values r1 and r2 in association with the absolute position in the storage unit 130.
  • the correction value r2 for the second position data d2 that is repeated a plurality of times within one rotation (movable range) of the rotation shaft SH2
  • if the synchronization deviation is a local one in the second section T2, It is recorded in the second storage unit 132 in association with the local absolute position.
  • the correction value r2 is set to the same value in the plurality of second sections T2 and recorded in the second storage unit 132. It is desirable.
  • the correction unit 140 stores a correction value associated with the absolute position based on an absolute position having a resolution comparable to the resolution of the upper data when the upper data acquired by the position data acquisition unit 120 is acquired. From 130. Then, the correction unit 140 corrects the upper data using the acquired correction value. In other words, the correction unit 140 corrects the lower resolution upper data for each pair of two position data of the upper data and the lower data that are continuously in a high and low relationship with respect to the resolution.
  • the correction unit 140 uses the first position data d1 and the second position data d2 that are the first pair. From the relationship between the second position data d2 and the third position data d3, which are the second pair, based on the correction value r2. The shift amount of the second position data d2 is corrected.
  • the correction unit 140 includes a first correction unit 141 that corrects the first position data d1 and a second correction unit 142 that corrects the second position data d2. And have.
  • the correction values r1 and r2 used when the correction unit 140 performs correction are absolute values having the same resolution as that of the upper data when the upper data to be corrected is acquired, as described above. It is associated with the position and recorded in the first storage unit 131 or the second storage unit 132, respectively.
  • the first position data d1 (an example of upper data) corrected by the first correction unit 141 represents the absolute position of the rotary shaft SH2 with the lowest resolution among the three position data, and is also the reference absolute position data Dorg. Accordingly, the first correction unit 141 acquires the correction value r1 associated with the first position data d1 itself and recorded in the first storage unit 131 based on the first position data d1 itself. Then, for example, the first correction unit 141 adds (or subtracts) the acquired correction value r1 to the first position data d1 to correct a deviation amount with respect to the second position data d2 generated in the first position data d1. .
  • the first position data d1 after correction is referred to as “first correction data d1 ′” in order to distinguish it from data before correction.
  • the second position data d2 (an example of the higher order data) corrected by the second correction unit 142 represents the position in the section instead of the absolute position
  • the correction value r2 is obtained as it is based on the second position data d2. I can't.
  • the absolute position calculation unit 160 Prior to the correction process of the second correction unit 142, the absolute position calculation unit 160, which will be described later, uses the second position data d2 as lower data and calculates an absolute position having a resolution comparable to that of the second position data d2. Is done. Therefore, the second correction unit 142 acquires the absolute position calculated by the absolute position calculation unit 160.
  • This absolute position is also referred to as “intermediate absolute position”, and absolute position data representing the intermediate absolute position is also referred to as “intermediate absolute position data Dmid”.
  • the second correction unit 142 acquires intermediate absolute position data Dmid from the absolute position calculation unit 160 described later, and is recorded in the second storage unit 132 in association with the intermediate absolute position represented by the intermediate absolute position data Dimd.
  • the correction value r2 is acquired based on the intermediate absolute position data Dmid.
  • the second correction unit 142 adds (or subtracts) the acquired correction value r2 to the second position data d2, and corrects a deviation amount with respect to the third position data d3 generated in the second position data d2.
  • the second position data d2 after correction is referred to as “second correction data d2 ′” in order to distinguish it from the data before correction.
  • the correction value r2 is an absolute value having a lower resolution than the lower data (third position data d3), in addition to the absolute position having the same resolution as the higher data (second position data d2).
  • the information may be recorded in the storage unit 130 (second storage unit 132) in association with the position.
  • the correction unit (second correction unit 142) for example, includes first position data that represents an absolute position having a lower resolution than the second position data d2 that is the upper data as well as the third position data d3 that is the lower data.
  • d1 that is, the reference absolute position data Dorg
  • the correction value r2 associated with the first position data d1 may be acquired from the second storage unit 132.
  • the correction unit (second correction unit 142) has an absolute position (intermediate absolute) having the same resolution as the upper data (second position data d2) in the pair to be corrected. Position) is acquired from the absolute position calculation unit 160 (first absolute position calculation unit 161), and the correction value r2 associated with the intermediate absolute position is acquired. Therefore, in the case of the present embodiment, it is possible to improve the accuracy with respect to the correction position by the correction unit, and it is possible to appropriately correct more local displacement.
  • the correction unit 140 can correct only one pair of the two position data of the upper data and the lower data.
  • the encoder 100 does not correct the deviation amount including the reproducibility error and the non-reproducibility error. It is possible to increase the tolerance and calculate the absolute position with high accuracy more stably.
  • the section specifying unit 150 specifies the lower section from which the lower data has been acquired with respect to the upper section based on the upper data corrected by the correcting unit 140 and the lower data when the upper data is acquired. That is, the section specifying unit 150 uses the corrected upper data and the lower data paired with the higher data for each of the two position data pairs that are corrected by the correction unit 140, and uses the lower data. It is specified which of the plurality of lower sections included in the upper section is the lower section to which the subordinate belongs.
  • the lower data represents the position in the lower section uniquely, while the lower section is obtained by dividing the upper section by a predetermined number of divisions. Repeated several times in the upper section. Therefore, from only the lower data, it is impossible to determine which lower section the lower data belongs to among the plurality of lower sections included in the upper section. Therefore, the section specifying unit 150 uses the upper data together with the lower data to specify the lower section to which the lower data belongs. At this time, the section specifying unit 150 uses the higher-order data after correction corrected by the correction unit 140, not the higher-order data acquired by the position data acquisition unit 120. Therefore, the section specifying unit 150 can greatly improve the section specifying accuracy.
  • the section specifying unit 150 will be described.
  • the section specifying unit 150 specifies the lower section (first section T1 or second section T2) of the lower data (first position data d1 or second position data d2) for each pair. Therefore, the section specifying unit 150 includes a first section specifying unit 151 and a second section specifying unit 152 corresponding to each pair.
  • the first section specifying unit 151 and the second section specifying unit 152 are basically configured in the same manner, although the pair for specifying the section is different. Therefore, here, the first section specifying unit 151 will be described as an example.
  • the first section specifying unit 151 acquires the second position data d2 acquired by the second position data acquiring unit 122 as lower data. Further, the first section specifying unit 151 does not directly acquire the first position data d1 acquired by the first position data acquisition unit 121 as the upper data, but instead of the corrected first corrected by the first correction unit 141. One position data d1 ′ is acquired. Then, the first section specifying unit 151 specifies the second section T2 based on the acquired second position data d2 and the corrected first position data d1 '.
  • the section identification method performed here can be used as the section identification method performed here. That is, in the plurality of lower sections included in the upper section, the lower section from which the lower data is acquired may be clearly specified.For example, the upper data and the lower data are subjected to processing such as superposition or addition, The lower section may be implicitly specified by specifying the position of the lower data with respect to the upper data. Further, the processing when the lower section is clearly specified is not particularly limited, and for example, the following processing can be used. That is, for example, a lower section may be specified based on a combination of a position represented by higher data after correction and lower data and a code after processing.
  • the corrected upper data is converted to the resolution of the number of divisions of the lower data by multiplication processing, filtering processing, or comparison processing with a threshold, and the position represented by the upper data of the resolution is directly lower data. May be specified as a lower section.
  • a section specifying process that is less likely to cause an error when specifying a section than these section specifying processes is used.
  • the following position data is used as the first position data d1 to the third position data d3 for this section specifying process. That is, as the second position data d2 that is the lower data, the position data that is shifted by a half cycle of the lower section of the lower data with respect to the first position data d1 that is the higher data is used.
  • the third position data d3, which is lower data uses position data that is shifted from the second position data d2, which is higher data, by a half cycle of the lower section of the lower data.
  • a detection mechanism in which the position data acquisition unit 120 acquires position data.
  • Mechanism Each is formed by being shifted by a half period of the lower section. That is, the period of the plurality of lower sections (pitch) of the third detection mechanism using the optical detection principle does not exactly match the period of one upper section (pitch) of the upper second detection mechanism, and the lower section Are formed so as to be shifted by a half period (a half pitch).
  • the second detection mechanism and the first detection mechanism are also formed in the same formation position relationship. As a result, as described above, a plurality of position data shifted by one-half circumference in the lower section is generated.
  • the first section specifying unit 151 is generated as described above, and the periods of the first section specifying unit 151 are one half of the second section T2, which is the lower section.
  • the shifted first position data d1 ′ and second position data d2 are acquired.
  • the first section specifying unit 151 first performs resolution changing processing, and obtains the resolution of the second position data d2 corresponding to the lower data with high resolution and the resolution of the first position data d1 ′ corresponding to the upper data. Match pseudo.
  • the resolution changing process may be performed by artificially improving the resolution by multiplying the first position data d1 ′, or by performing the frequency dividing process on the second position data d2.
  • the resolution may be lowered.
  • the first position data d1 'and the second position data d2 can be multiplied or divided to match the resolution so that the subsequent process can be facilitated.
  • the resolution changing process may be performed in a multiplication process or the like in the position data acquiring unit 120 other than in the section specifying unit 150, for example.
  • the first section specifying unit 151 subtracts the second position data d2 having the same resolution from the first position data d1 '. Then, the first section specifying unit 151 divides the above subtraction result by the number of divisions in the second section T2 when the resolution is aligned, and performs an operation such as rounding off the result of the division to the integer. Turn into. Then, the integer which is the calculation result after these processes uniquely represents the second section T2 which is the lower section with respect to the upper section (see FIG. 5 and FIG. 6).
  • the amount of deviation of the higher-order data from the lower-order data is mainly included in the division result as a value below the decimal point less than 1. Therefore, when the division result is converted to an integer, even a relatively large shift amount is corrected.
  • this section specifying process it is not necessary to perform a determination process by a predetermined logic or the like, and the lower section can be specified by direct calculation, so that the processing load can be reduced.
  • this section specifying process when the resolutions of the upper data and the lower data are made to coincide in a pseudo manner, the higher the resolution is set, the more the shift amount that can be corrected increases.
  • the encoder 100 includes the correction unit 140 and the like, so that the upper data used for the section specifying process is corrected in advance with the correction value, and the lower data is subordinate to the corrected upper data and lower data. Identify the section. Therefore, for example, by recording a value that can correct the reproducibility error in the storage unit 130 in advance as such a correction value, the encoder 100 according to the present embodiment can detect the reproducibility error before the section specifying process.
  • the encoder 100 can stably generate a high-accuracy absolute position even when a relatively large amount of deviation occurs by accurately identifying a section. .
  • the first section specifying unit 151 outputs the specified second section T2 to the absolute position calculating unit 160.
  • the second section specifying unit 152 specifies the third section T3 by the same processing as the first section specifying unit 151, and outputs the specified third section T3 to the absolute position calculating unit 160.
  • the absolute position calculation unit 160 calculates an absolute position at a resolution comparable to that of the lower data based on the lower section already specified by the section specifying unit 150 and the lower data on which the lower section is specified. As a result, the absolute position calculation unit 160 can calculate absolute position data Dabs representing an absolute position comparable to the position data with the highest resolution and output the absolute position data Dabs to the control device CT.
  • the absolute position calculation unit 160 determines all the lower sections that have already been specified by the section specifying unit 150 and the lower section that has already been specified by the section specifying unit 150 before calculating the final absolute position with the highest resolution.
  • An intermediate absolute position Dmid representing an intermediate absolute position having an intermediate resolution that is approximately the same resolution as the lower data is calculated based on the lower data having the highest resolution among the position data included in the identified pair, The data is output to the correction unit 140.
  • the absolute position calculation unit 160 includes the first absolute position calculation unit 161 as a configuration for calculating the latter intermediate absolute position and the second absolute position calculation as a configuration for calculating the final absolute position of the former. Part 162.
  • the first absolute position calculation unit 161 acquires the second section T2 specified by the first section specifying unit 151 and the second position data d2 acquired by the second position data acquisition unit 122. Then, the first absolute position calculation unit 161 calculates the intermediate absolute position based on the acquired second section T2 and second position data d2.
  • the specified second section T2 represents the position of the second section T2 with respect to the first section T1 (that is, one rotation of the movable range).
  • the second position data d2 represents an intra-section position within the second section T2.
  • the first absolute position calculation unit 161 calculates the intermediate absolute position by a stacking process such as setting the second section T2 as the upper bits of the intermediate absolute position and setting the second position data d2 as the lower bits of the intermediate absolute position. It is possible to calculate.
  • the first absolute position calculation unit 161 It is desirable to calculate the intermediate absolute position after the second position data d2 is subjected to multiplication processing or the like to increase the resolution of the second position data d2 to the inherent resolution.
  • the intermediate absolute position data Dmid calculated by the first absolute position calculation unit 161 is output to the second correction unit 142 and used for obtaining the correction value r2 in the second correction unit 142 as described above. Then, after that, the second correction unit 142 corrects the second position data d2, and the second section specifying unit 152 uses the corrected second position data d2 ′ to the second position data d2 ′.
  • the third section T3 is specified.
  • the second absolute position calculation unit 162 acquires the second interval T2 and the third interval T3 specified by the first interval specifying unit 151 and the second interval specifying unit 152, and the third position data acquiring unit 123 The acquired third position data d3 is acquired.
  • the third position data d3 is converted to a lower resolution in a pseudo manner than the original resolution by the position data acquisition unit 120 or the section specifying unit 150 or the like.
  • the second absolute position calculation unit 162 increases the resolution to the original resolution of the third position data d3 by performing multiplication processing or the like on the third position data d3.
  • the second absolute position calculation unit 162 sets the specified second section T2 as the most significant bit of the final absolute position data Dabs, and specifies the specified third section Absolute position data Dabs representing an extremely high-resolution absolute position is calculated by a stacking process such that T3 is the middle bit and the high-resolution third position data d3 is the least significant bit. Then, the calculated absolute position data Dabs is output to the control device CT.
  • FIG. 3 is an explanatory diagram for explaining the operation of the encoder according to the present embodiment.
  • the encoder 100 first processes step S101.
  • step S101 (an example of a position data acquisition step) the position data acquisition unit 120 acquires a plurality of detection signals (1X signal, 4X signal, 16X signal) including an absolute signal almost simultaneously.
  • the position data acquisition unit 120 generates a plurality of first position data d1 to third position data d3 having different resolutions by performing digital-analog conversion processing, multiplication processing, and the like on each detection signal. .
  • step S103 the process proceeds to step S103.
  • steps S103 to S107 are repeated until the calculation of the final high-resolution absolute position data Dabs is completed.
  • steps S103 to S107 are repeated until the calculation of the final high-resolution absolute position data Dabs is completed.
  • steps S103 to S107 will be described.
  • the second processing from step S103 to step S109 will be described after the description of step S109.
  • step S103 an example of a correction step started after the process of step S101
  • the first correction unit 141 is based on the first position data d1 that is the reference absolute position data Dorg representing the absolute position.
  • the correction value r1 associated with the absolute position is acquired from the first storage unit 131.
  • the first correction unit 141 generates (corrects) the first position data d1 'by adding (or subtracting) the acquired correction value r1 to the first position data d1.
  • the process proceeds to step S105.
  • the first section specifying unit 151 is based on the first correction data d1 ′ corrected in step S103 and the second position data d2 acquired in step S101.
  • the second section T2 of the second position data d2 is specified for the first position data d1. Then, the process proceeds to step S107.
  • step S107 an example of an absolute position calculation step
  • the first absolute position calculation unit 161 is based on the second section T2 specified in step S105 and the second position data d2 acquired in step S101.
  • an intermediate absolute position which is an absolute position with a resolution comparable to that of the second position data d2, is calculated. Then, the process proceeds to step S109.
  • step S109 the encoder 100 confirms whether or not the absolute position calculated in step S107 is an absolute position (absolute position data Dabs) having a final high resolution. If it is not absolute position data Dabs, that is, if it is intermediate absolute position data Dmid, the process proceeds to step S103.
  • step S103 processed after step S109, that is, in the second step S103 (an example of a correction step)
  • the second correction unit 142 determines the absolute position based on the intermediate absolute position data Dmid calculated in step S107.
  • the correction value r2 associated with is acquired from the second storage unit 132.
  • the second correction unit 142 adds (or subtracts) the acquired correction value r2 to the second position data d2, thereby generating corrected second position data d2 '.
  • the process proceeds to step S105.
  • the second section specifying unit 152 is based on the second correction data d2 ′ corrected in step S103 and the third position data d3 acquired in step S101.
  • the third section T3 of the third position data d3 is specified for the second position data d2. Then, the process proceeds to step S107.
  • step S107 an example of the absolute position calculation step
  • the second absolute position calculation unit 162 performs the second section T2 and the third section T3 specified in step S105, and the third position acquired in step S101. Based on the data d3, an absolute position having a final high resolution comparable to that of the third position data d3 is calculated. Then, the process proceeds to step S109.
  • step S109 the encoder 100 confirms whether or not the absolute position calculated in step S107 is an absolute position (absolute position data Dabs) having a final high resolution. After the second processing in step S107, it is determined that the absolute position data is Dabs, the absolute position data Dabs is output to the control device CT, and the operation is terminated.
  • the case where the plurality of position data used for the absolute position calculation is the three first position data d1 to the third position data d3 has been described as an example.
  • processes such as correction, section identification, and absolute position calculation are basically performed for each pair of two position data, upper data and lower data. Therefore, the following description will be made without limiting particularly whether the upper data and the lower data are used, and the difference between the first position data d1 to the third position data d3 will be appropriately supplemented.
  • the upper data is not locally synchronized with the lower data, and the profile of the upper data is the upper position pu indicated by the solid line.
  • the profile of the lower data is indicated by a lower position pd where the position increases regularly in one cycle in which no synchronization shift occurs in FIG. 4 for convenience. Yes.
  • the profile of the upper data when there is no synchronization shift is locally the upper position pu0 indicated by a broken line. Therefore, for example, at time point t1, a deviation amount ⁇ p1 occurs in the upper data, and at time point t2, a deviation amount ⁇ p2 occurs in the upper data.
  • FIG. 5 shows a digital display of the subtraction result
  • FIG. 6 shows a graph.
  • errors corresponding to the shift amounts ⁇ p1 and ⁇ p2 are included at both the time t1 and the time t2.
  • the result of subtracting the lower data from the upper data is divided by the number of divisions in the lower section Td of 1 of the lower data (4 divisions of 0 to 3 in FIG. 4 and the like).
  • the lower section Td is directly calculated by rounding down.
  • the specified lower section Td is shown in FIGS.
  • the error due to the shift amount ⁇ p1 is appropriately corrected, and an accurate lower section Td (0) is calculated.
  • the specified lower section Td (0) includes an error, and an error occurs with respect to the true lower section Td (3) ( +1).
  • FIG. 6 shows the absolute position Pabs calculated by the absolute position calculation unit 160 from the specified lower section Td and lower data. As shown in the absolute position Pabs at the time point t2, the error generated when the section is specified by the section specifying unit 150 is also included in the absolute position Pabs.
  • the encoder 100 includes a storage unit 130 and a correction unit 140.
  • the correction value r recorded in advance in the storage unit 130 is shown in FIG.
  • the deviation amount ⁇ p2 at the time point t2 is +2. Therefore, the correction value r is set to ⁇ 1 so that the error due to the deviation amount ⁇ p2 can be corrected.
  • the deviation amount ⁇ p2 is set as the correction value r with respect to the time point t2, but the correction value r is recorded in the storage unit 130 in association with the absolute position having the same resolution as the high-order data.
  • the upper data indicates an absolute position.
  • the correcting unit 140 corrects the upper data by adding the acquired correction value r to the upper data.
  • the section specifying unit 150 subtracts the lower data from the corrected higher data.
  • FIG. 7 and FIG. 8 show the subtraction result and the lower section Td specified from the subtraction result, and FIG. 8 shows the absolute position Pabs calculated from the lower section Td.
  • the specified lower section Td is appropriately corrected even at time t2 when an error has occurred in the lower section Td shown in FIGS. Therefore, according to the encoder 100 according to the present embodiment, as shown in FIG. 8, even when a relatively large deviation amount ⁇ p2 occurs, it can be corrected appropriately, and as a result, an absolute value that does not include an error. It is possible to generate the position Pabs.
  • the encoder 100 can appropriately correct not only the local error but also a long-cycle error that spans a plurality of upper sections Tu. Accordingly, error correction in the encoder 100 when such an error occurs across a plurality of upper sections Tu will be described below as a second error correction example.
  • FIG. 9 shows not the absolute position but the upper data representing the upper position pu of the upper section Tu repeated a plurality of times within the movable range (one rotation) and the lower position of the lower section Td repeated a plurality of times in the upper section Tu.
  • the lower data representing pd is shown.
  • the upper data is not local, and in a plurality of upper sections Tu (all upper sections Tu shown in FIG. 9), a synchronization shift (shift amount ⁇ p) occurs with respect to the lower data. Yes.
  • the lower section Td specified by the section specifying section 150 has an error over the entire upper section Tu where the synchronization shift occurs due to the influence of the shift amount ⁇ p, as shown in FIG. Will occur. In such a case, it is difficult to identify even that an error has occurred by only error correction by the section identifying unit 150.
  • the correction value r in which the same value is set over a plurality of adjacent upper sections Tu is recorded in association with each absolute position.
  • the This correction value r is schematically shown in FIG.
  • the encoder 100 according to the present embodiment uses the correction values r set to the same value over a plurality of upper sections Tu, so that all the upper sections in the plurality of upper sections Tu. It is possible to correct the entire data. Therefore, the encoder 100 appropriately corrects errors that cannot be corrected by the section specifying process by the section specifying unit 150, as in the first error correction example, over the entire range in which such a long-cycle error has occurred. Thus, it is possible to stably generate a highly accurate absolute position.
  • the encoder 100 according to the embodiment of the present invention, the operation of the encoder 100, and the driving device DV including the encoder 100 have been described.
  • the encoders 100 and the like when calculating a high-resolution absolute position by the multiplication and accumulation method, before specifying the lower section by the section specifying unit 150, the upper data used for specifying the section is converted to the correcting section 140. Correct by Therefore, even when a shift amount larger than the shift amount that can be corrected by the section specifying unit 150 is generated, the encoder 100 or the like corrects the influence of the shift amount to stably set the high-resolution absolute position. Can be measured.
  • the correction value r used for correcting the upper data in the correction unit 140 is determined based on a deviation amount ⁇ p measured in advance. Therefore, it can be said that the component of the shift amount ⁇ p corrected by the correction value r is a reproducibility error.
  • the non-reproducibility error is corrected by the section specifying unit 150, so that the robustness against the error can be dramatically improved. Is possible.
  • the encoder 100 When calculating the absolute position from three or more position data, the encoder 100 corrects the higher order data for any one of a plurality of pairs of the higher order data and the lower order data as described above. It is possible to improve error resistance performance. However, when the correction unit 140 performs correction for all pairs as in the encoder 100 of the present embodiment, the error tolerance performance can be further improved.
  • the absolute position calculation unit in order to specify the error value r, the absolute position calculation unit has the same resolution as the upper data. Based on the intermediate absolute position already calculated by 160, the correction unit 140 acquires the correction value r associated with the intermediate absolute position, and corrects the upper data. Therefore, the correction unit 140 can perform the correction with sufficiently fine accuracy, and can improve the correction accuracy.
  • section specifying process used by the section specifying unit 150 in this embodiment has a higher tolerance for errors and less load on the section specifying process than other section specifying processes.
  • the section specifying process according to the present embodiment can easily determine the correction value r used in the correcting unit 140 because the lower section can be directly calculated. Therefore, when the section specifying process according to the present embodiment is used, the encoder 100 and the like can be manufactured more easily.
  • the method for generating the correction value r is not particularly limited as long as it is a method that can generate the correction value r that can appropriately correct the shift amount generated in the upper data with respect to the lower data, and will be described below.
  • Various generation methods similar to the generation method to be performed may be used.
  • a method that can generate the correction value r more easily and accurately will be described with an example.
  • FIG. 10 is an explanatory diagram for explaining an example of the configuration of the encoder manufacturing apparatus according to the present embodiment.
  • the manufacturing apparatus 200 includes a position data acquisition unit 210, a section identification unit 150, an absolute position calculation unit 160, a reference absolute position calculation unit 220, a deviation amount measurement unit 230, and a correction value generation.
  • Unit 240, recording unit 250, and control unit 260 includes a position data acquisition unit 210, a section identification unit 150, an absolute position calculation unit 160, a reference absolute position calculation unit 220, a deviation amount measurement unit 230, and a correction value generation.
  • Unit 240 recording unit 250, and control unit 260.
  • the manufacturing apparatus 200 is connected to the drive device DV, for example, acquires position data acquired from the drive device DV inside the encoder 100, and causes the control device CT of the drive device DV to control the drive device DV. Output a signal. Therefore, in this manufacturing apparatus 200, the control device CT controls the power generation device PG based on the higher order command signal of the manufacturing apparatus 200.
  • the manufacturing apparatus 200 can be changed such as having the control device CT and the motor M which are the configuration of the drive device DV shown in FIG.
  • the control unit 260 included in the manufacturing apparatus 200 generates a higher order command signal and outputs it to the control apparatus CT in order to realize the operation described below.
  • the control unit 260 also controls other configurations of the manufacturing apparatus 200 in order to realize the operations described below. Configuration of the manufacturing apparatus 200 other than the control unit 260 (position data acquisition unit 210, section specifying unit 150, absolute position calculation unit 160, reference absolute position calculation unit 220, deviation amount measurement unit 230, correction value generation unit 240, recording unit 250) will be described in detail in the operation example described below in order to avoid redundant description.
  • FIG. 11 is an explanatory diagram for explaining an example of the operation of the encoder manufacturing apparatus according to the present embodiment.
  • the manufacturing apparatus 200 processes the steps shown in FIG. 11 for all of one or more upper data (for example, the first position data d1 or the second position data d2) that can be corrected, thereby obtaining the correction value r. It is generated and recorded in the storage unit 130 of the encoder 100. At this time, the manufacturing apparatus 200 specifies the correction value r for each pair of two position data to be corrected. Therefore, in the case where there are a plurality of pairs, that is, when the absolute position is measured using three or more position data, the manufacturing apparatus 200 has an order of decreasing resolution of the upper data to be corrected for each of the plurality of pairs.
  • the steps shown in FIG. 11 are processed for each pair, and the correction value r is stored in the encoder 100. Therefore, in the following, a case where steps are processed for a pair having upper data with the lowest resolution will be described as an example, and differences in the steps for other pairs will be supplementarily described as appropriate.
  • the manufacturing apparatus 200 generates a correction value r over the entire movable range (that is, one rotation) of the rotating shaft SH2 that is a moving body by processing the steps shown in FIG. Let Therefore, the manufacturing apparatus 200 needs to generate the correction value r at each absolute position. However, there is a case where the correction value r is 0. In this manner, the process of generating the correction value r over the entire rotation in this way is conceptually shown as a loop process by branching in step S211. In this case, the steps that are loop-processed in step S211 mean processing for generating the correction value r at one position and storing it in the encoder 100. However, the operation of the encoder manufacturing apparatus 200 according to the present embodiment is not limited to this.
  • step S209 is processed after the loop processing in step S211.
  • the generation of the correction value r for one absolute position of one pair will be described in detail below, but the timing and method for storing the correction value r in the encoder 100 and the generation of the correction value r of another pair.
  • the timing and method in relation to the processing are not particularly limited to an example of the operation described below, and various variations are conceivable.
  • step S201 is processed, and in this step S201, the position data acquisition unit 210 of the manufacturing apparatus 200 acquires the upper data and the lower data acquired by the position data acquisition unit 120 of the encoder 100. . Then, the process proceeds to step S105 and subsequent step S107.
  • step S105 and step S107 as in the processing in the operation of the encoder 100 shown in FIG. 3, the section specifying unit 150 of the manufacturing apparatus 200 specifies the lower section of the lower data for the upper data, and the absolute value of the manufacturing apparatus 200 is determined.
  • the position calculation unit 160 generates an absolute position based on the specified lower section and lower data.
  • the absolute position generated after the processing of step S105 and step S107 is the absolute position with the highest resolution that can be derived by the pair in which the correction value r is generated.
  • the absolute position data representing the absolute position becomes, for example, the intermediate absolute position data Dmid representing the intermediate absolute position when the pair of the first position data d1 and the second position data d2 is processed,
  • the absolute position data Dabs representing the final absolute position is obtained.
  • the absolute position is calculated from the position data that has not been corrected by the correction unit 140 in the processes in steps S105 and S107 in the manufacturing apparatus 200.
  • the absolute position calculated by the absolute position calculation unit 160 after the processing of step S105 and step S107 is also referred to as an absolute position before correction in the sense that the absolute position is not corrected.
  • the calculated absolute position before correction is output to the deviation amount measuring unit 230.
  • step S203 is processed.
  • step S203 the reference absolute position calculation unit 220 acquires the lower data acquired in step S201, and calculates a true absolute position as a reference that does not include the shift amount included in the upper data based on the lower data. To do.
  • the reference absolute position calculation unit 220 can count the lower section from a predetermined timing, and calculate the true absolute position based on the counted value and the position in the section represented by the lower data. Then, the calculated true absolute position is output to the deviation amount measuring unit 230.
  • the process proceeds to step S205.
  • step S205 the deviation amount measuring unit 230 measures the deviation amount ⁇ p based on the absolute position before correction calculated in step S107 and the true absolute position calculated in step S203. That is, the deviation amount measurement unit 230 calculates the deviation amount ⁇ p by taking the difference between the true absolute position and the absolute position before correction.
  • the processing in step S205 will be conceptually described with reference to FIG.
  • the absolute position Pabs in FIG. 8 is an absolute position calculated after correction in the description of the encoder 100, but here represents a true absolute position.
  • the broken line in FIG. 8 is the absolute position including the error before correction shown in FIG. 6 in the description of the encoder 100, but here also represents the absolute position before correction.
  • the deviation amount measuring unit 230 measures the deviation amount ⁇ p.
  • the absolute position is expressed as position data of 16 levels from 0 to 15. Accordingly, when the absolute position exceeds 15, the absolute position returns to 0. The same applies to the deviation amount ⁇ p, and in the example shown in FIG. 8, the deviation amount ⁇ p is expressed as 4 (takes a value of 0 to 15).
  • the calculated deviation amount ⁇ p is output to the correction value generation unit 240, and the process proceeds to step S207.
  • step S207 the correction value generation unit 240 generates a correction value r that can correct the deviation amount ⁇ p based on the deviation amount ⁇ p measured in step S205.
  • ⁇ p + 4 is measured as described above.
  • the deviation amount ⁇ p is an error in the absolute position, and is therefore expressed with the same resolution as the lower data. Therefore, the correction value generation unit 240 divides the deviation amount ⁇ p by the resolution magnification m (the number of divisions for the upper section) with respect to the upper data of the lower data, and converts it to a resolution comparable to that of the upper data.
  • the error r is output to the recording unit 250, and the process proceeds to step S209.
  • step S209 the recording unit 250 records the error r generated in step S207 in the storage unit 130 of the encoder 100 in association with the absolute position having a lower resolution than the lower data. Therefore, the recording unit 250 may acquire an absolute position having a lower resolution than the lower data from the encoder 100, or may generate the absolute position from the higher data acquired from the encoder 100 or the like.
  • the correction data is associated with an absolute position having the same resolution as the upper data. Therefore, when the upper data is the first position data d1 representing the absolute position, the recording unit 250 is recorded in the storage unit 130 in association with the upper data at the time when the correction value r is generated.
  • the recording unit 250 acquires the intermediate absolute position data Dmid representing the absolute position similar to the upper data from the encoder 100, and the intermediate data The correction value r is associated with the absolute position and recorded in the storage unit 130. Then, the process proceeds to step S211.
  • step S211 as described above, it is confirmed whether or not the above steps have been processed for all the positions within one rotation. If processed, the operation is terminated. Proceeding to S213, after the control unit 260 rotates the motor M by a predetermined amount, the processing after step S201 is repeated.
  • the manufacturing apparatus 200 for the encoder 100 according to an embodiment of the present invention has been described above. According to such a manufacturing apparatus 200, it is possible to easily manufacture the encoder 100 that can stably measure a high-resolution absolute position as described above.
  • DV drive device PG power generation device M motor SH1, SH2 rotary shaft CT control device 100 encoder 110 disk 120 position data acquisition unit 121 first position data acquisition unit 122 second position data acquisition unit 123 third position data acquisition unit 130 storage unit 131 First storage unit 132 Second storage unit 140 Correction unit 141 First correction unit 142 Second correction unit 150 Section specifying unit 151 First section specifying unit 152 Second section specifying unit 160 Absolute position calculating unit 161 First absolute position calculating Unit 162 second absolute position calculation unit 200 manufacturing apparatus 210 position data acquisition unit 220 reference absolute position calculation unit 230 deviation amount measurement unit 240 correction value generation unit 250 recording unit 260 control unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 比較的大きな誤差が生じた場合でも誤差を補正することができるエンコーダ、駆動装置、絶対位置算出方法及びエンコーダ製造方法を提供することを課題とする。この課題を解決するために、このエンコーダは、移動体が移動可能な上位区間における移動体の位置を表す上位データと、上位区間内で複数回繰り返される下位区間における位置を上位データより高分解能に表す下位データとを取得する位置データ取得部(120)と、下位データに対して上位データにおいて生じるズレ量を補正可能な補正値が上位データと同程度の分解能による絶対位置に関連付けられて記録される記憶部(130)と、かかる補正値を記憶部(130)から取得して上位データを補正する補正部(140)と、補正部(140)が補正した上位データと上位データが取得された際の下位データとに基づき、下位データが取得された下位区間を上位区間に対して特定する区間特定部(150)とを有する。

Description

エンコーダ、駆動装置、絶対位置算出方法及びエンコーダ製造方法
 本発明は、エンコーダ、駆動装置、絶対位置算出方法及びエンコーダ製造方法に関する。
 移動体の位置を特定する際にエンコーダが使用される。一方、近年サーボモータ等の動作精度の向上に伴い、エンコーダの位置特定精度の向上が図られている。このような位置特定精度の向上方法の一例として、いわゆる「積上げ方式」による位置特定が挙げられる。
 積上げ方式によれば、移動体の位置を分解能の異なる複数の位置データで表し、分解能の低い位置データ(上位データ)から高い位置データ(下位データ)へと順次移動体の位置を特定することにより、正確な移動体の絶対位置を表す位置データを生成する。この積上げ方式によれば、例えば最も分解能の低い位置データに、移動体の絶対位置(アブソリュートポジション)のデータを含ませることにより、分解能の高い絶対位置をも特定することが可能である。
特許第3551252号公報 特許第3336396号公報
 一方、このような積上げ方式によれば、分解能の異なる2以上の位置データ間に誤差(「位相誤差」ともいう。)が生じると、その2以上の位置データを積み上げた位置データが正確でなくなる場合がある。
 そこで、このような誤差が生じた場合でも正確な位置データを生成するために、例えば特許文献1や特許文献2のようなエンコーダが開発されている。これらのエンコーダによれば、方法は異なるものの、位置データ生成過程で、下位データと上位データとを使用して、下位データが得られた上位データにおける区間を特定して、特定した区間と下位データとから絶対位置を表す位置データを生成する。従って、単純に積み上げる場合に比べて、区間特定の際に上記位相誤差を補償することにより、正確な位置データを生成する。
 しかし、特許文献1や特許文献2に記載のエンコーダによれば、位置データ生成過程で、分解能が相異なる2以上の位置データに基づいて上記位相誤差を補正するが、補正が可能なズレ量には限界がある。その限界量は、補正方法や各位置データの分解能等にも依存するが、例えば、もっとも限界量が大きい場合でも、低分解能側の位置データが高分解能側の位置データの位相の1/2を超えると、位相誤差を補正することが難しい。
 一方、位相誤差が生じる要因としては、例えば、位置データの生成に使用される検出信号に含まれた誤差が挙げられる。そして、その検出信号に含まれた誤差の特性に応じて、位相誤差は、移動体の移動や振動等のリアルタイムな駆動状況に起因した再現性のない誤差と、製造誤差など検出機構自身に起因して再現性のある誤差とに大別される。したがって、例えば、上記特許文献1や特許文献2に記載のエンコーダによれば、もともとエンコーダ自身が有する再現性のある誤差に、リアルタイムな駆動状況に応じた再現性のない誤差が積み重なる結果、上記の補正の限界量を超えてしまうことがあるのが実情である。
 そこで、本発明は、このような問題に鑑みてなされたものであり、本発明の目的とするところは、比較的大きな誤差が生じた場合でも当該誤差を補正することが可能な、エンコーダ、駆動装置、絶対位置算出方法及びエンコーダ製造方法を提供することにある。
 上記課題を解決するために、本発明のある観点によれば、移動体が移動可能な上位区間における上記移動体の位置を表す上位データと、上記上位区間内で複数回繰り返される下位区間における上記移動体の位置を上記上位データよりも高分解能に表す下位データとを取得する位置データ取得部と、
 上記下位データに対して上記上位データにおいて生じ予め測定されたズレ量に基づいて予め生成された該ズレ量を補正可能な補正値が、上記移動体の上記下位データよりも低分解能な絶対位置に関連付けられて記録される記憶部と、
 上記位置データ取得部により上記上位データが取得された際の上記低分解能な絶対位置に基づいて、当該絶対位置に関連付けられた補正値を上記記憶部から取得し、当該補正値に基づいて、上記上位データを補正する補正部と、
 上記補正部が補正した上位データと、当該上位データが取得された際の上記下位データとに基づいて、当該下位データが取得された上記下位区間を、上記上位区間に対して特定する区間特定部と、
を有する、エンコーダが提供される。
 また、少なくとも、上記区間特定部が特定した下位区間と、上記上位データが取得された際の下位データとに基づいて、上記移動体の上記下位データと同程度の分解能における絶対位置を算出する絶対位置算出部を更に有してもよい。
 また、上記位置データ取得部は、上記移動体の移動可能範囲内を相異なる分割数で分割する複数の区間のそれぞれにおいて、該分割数が多くなるほど分解能が高くなる相異なる分解能により上記移動体の位置を表す3以上の位置データを取得し、
 上記記憶部には、分解能の高低において相隣接して上記上位データ及び上記下位データの関係にある2の位置データの複数のペアそれぞれについて、上記補正値が記録され、
 上記補正部は、上記複数のペアそれぞれについて、上記補正値に基づいて上記上位データに相当する位置データを補正し、
 上記区間特定部は、上記複数のペアそれぞれについて、上記補正部が補正した上位データと、当該上位データが取得された際の上記下位データとに基づいて、当該下位データが取得された上記下位区間を、上記上位区間に対して特定し、
 上記絶対位置算出部は、上記区間特定部が上記複数のペアそれぞれについて特定した区間全てと、最も分解能が高い位置データとに基づいて、上記最も分解能が高い位置データと同程度の分解能における上記移動体の絶対位置を算出してもよい。
 また、上記記憶部には、上記複数のペアそれぞれの上位データに対して、該ペアの上位データと同程度の分解能の絶対位置に関連付けられて上記補正値が記録され、
 上記補正部は、上記複数のペアそれぞれに対して、当該ペア中の上位データと同程度の分解能の絶対位置に基づいて、当該ペア中の上位データを補正する上記補正値を取得してもよい。
 また、上記絶対位置算出部は、上記2の位置データのペアの少なくとも1つに対して上記区間特定部で特定された下位区間と、上記区間特定部で既に下位区間が特定された上記ペアに含まれる位置データのうち最も分解能が高い下位データとに基づいて、当該下位データと同程度の分解能による中間的な絶対位置を算出し、
 上記補正部は、
 補正対象となる上記ペアに含まれる上位データが上記移動体の絶対位置を表す場合には、当該上位データが表す絶対位置に基づいて、当該上位データを補正する上記補正値を取得し、
 上記補正対象となるペアに含まれる上位データが上記移動体の絶対位置を表さない場合には、上記補正対象となるペアに含まれる上位データと同程度の分解能を有し上記絶対位置算出部で既に算出された中間的な絶対位置に基づいて、当該上位データを補正する上記補正値を取得してもよい。
 また、上記上位区間は、上記移動体の移動可能範囲内で複数回繰り返され、
 上記記憶部には、相隣接する複数の上記上位区間内の上位データに対する補正値が、同一の値に設定されて記録されてもよい。
 また、上記課題を解決するために、本発明の別の観点によれば、移動体を移動可能範囲内で移動させるモータと、
 上記移動可能範囲内に含まれた上位区間における上記移動体の位置を表す上位データと、上記上位区間内で複数回繰り返される下位区間における上記移動体の位置を上記上位データよりも高分解能に表す下位データとを取得する位置データ取得部と、
 上記下位データに対して上記上位データにおいて生じ予め測定されたズレ量に基づいて予め生成された該ズレ量を補正可能な補正値が、上記移動体の上記下位データよりも低分解能な絶対位置に関連付けられて記録される記憶部と、
 上記位置データ取得部により上記上位データが取得された際の上記低分解能な絶対位置に基づいて、当該絶対位置に関連付けられた補正値を上記記憶部から取得し、当該補正値に基づいて、上記上位データを補正する補正部と、
 上記補正部が補正した上位データと、当該上位データが取得された際の上記下位データとに基づいて、当該下位データが取得された上記下位区間を、上記上位区間に対して特定する区間特定部と、
 少なくとも、上記区間特定部が特定した下位区間と、上記上位データが取得された際の下位データとに基づいて、上記移動体の上記下位データと同程度の分解能における絶対位置を算出する絶対位置算出部と、
 上記絶対位置算出部が算出した絶対位置に基づいて、上記モータを制御する制御装置と、
を有する、駆動装置が提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、移動体が移動可能な上位区間における上記移動体の位置を表す上位データと、上記上位区間内で複数回繰り返される下位区間における上記移動体の位置を上記上位データよりも高分解能に表す下位データとを取得する位置データ取得ステップと、
 上記下位データに対して上記上位データにおいて生じ予め測定されたズレ量に基づいて予め生成された該ズレ量を補正可能な補正値が、上記移動体の上記下位データよりも低分解能な絶対位置に関連付けられて記録される記憶部から、上記位置データ取得ステップで上記上位データが取得された際の上記下位データよりも低分解能な絶対位置に基づいて、当該絶対位置に関連付けられた補正値を取得し、当該補正値に基づいて、上記上位データを補正する補正ステップと、
 上記補正ステップで補正した上位データと、当該上位データが取得された際の上記下位データとに基づいて、当該下位データが取得された上記下位区間を、上記上位区間に対して特定する区間特定ステップと、
を有する、絶対位置算出方法が提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、移動体が移動可能な上位区間における上記移動体の位置を表す上位データと、上記上位区間内で複数回繰り返される下位区間における上記移動体の位置を上記上位データよりも高分解能に表す下位データとを取得する位置データ取得ステップと、
 上記位置データ取得部で取得した上位データ及び下位データに基づいて、当該下位データが取得された上記下位区間を、上記上位区間に対して特定する区間特定ステップと、
 少なくとも、上記区間特定ステップで特定した下位区間と、上記位置データ取得ステップで取得した下位データとに基づいて、上記移動体の上記下位データと同程度の分解能における絶対位置を算出する絶対位置算出ステップと、
 上記位置データ取得ステップで取得した下位データに基づいて、上記移動体の真の絶対値を算出する基準絶対位置算出ステップと、
 上記絶対位置算出ステップで算出された絶対位置と、上記基準絶対位置算出ステップで算出された真の絶対位置とに基づいて、上記下位データに対して上記上位データにおいて生じるズレ量を測定するズレ量測定ステップと、
 上記ズレ量測定ステップで測定されたズレ量に基づいて、該ズレ量を補正可能な補正値を生成する補正値生成ステップと、
 上記補正値生成ステップで生成された補正値を、上記移動体の上記下位データよりも低分解能な絶対位置に関連付けて、エンコーダ内の記憶部に記録する記録ステップと、
を有する、エンコーダ製造方法が提供される。
 以上説明したように本発明によれば、比較的大きな誤差が生じた場合でも当該誤差を補正することができる。
図1は、本発明の一実施形態に係る駆動装置について説明するための説明図である。 図2は、同実施形態に係るエンコーダについて説明するための説明図である。 図3は、同実施形態に係るエンコーダの動作について説明するための説明図である。 図4は、同実施形態に係るエンコーダによる第1の誤差補正例について説明するための説明図である。 図5は、同実施形態に係るエンコーダによる第1の誤差補正例について説明するための説明図である。 図6は、同実施形態に係るエンコーダによる第1の誤差補正例について説明するための説明図である。 図7は、同実施形態に係るエンコーダによる第1の誤差補正例について説明するための説明図である。 図8は、同実施形態に係るエンコーダによる第1の誤差補正例について説明するための説明図である。 図9は、同実施形態に係るエンコーダによる第2の誤差補正例について説明するための説明図である。 図10は、同実施形態に係るエンコーダの製造装置の構成の一例について説明するための説明図である。 図11は、同実施形態に係るエンコーダの製造装置の動作の一例について説明するための説明図である。
 以下に添付図面を参照して、本発明の実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能を有する構成要素は、原則として同一の符号で表し、これらの構成要素についての重複説明は、適宜省略するものとする。
 なお、以下では説明の便宜上、本発明の一実施形態の理解が容易になるように次の順序で説明する。
 <1.本実施形態に係るエンコーダ等>
  (1-1.駆動装置の構成)
  (1-2.逓倍積上げ方式及びエンコーダの誤差)
   (1-2-1.逓倍積上げ方式)
   (1-2-2.エンコーダの誤差)
  (1-3.エンコーダの構成)
  (1-4.エンコーダの動作)
  (1-5.エンコーダによる誤差補正例)
   (1-5-1.第1の誤差補正例)
   (1-5-2.第2の誤差補正例)
  (1-6.本実施形態による効果の例)
 <2.本実施形態に係るエンコーダの製造>
  (2-1.エンコーダ製造装置の構成)
  (2-2.エンコーダ製造装置の動作)
 <1.本実施形態に係るエンコーダ等>
  (1-1.駆動装置の構成)
 まず、図1を参照しつつ、本発明の一実施形態に係る駆動装置の構成について説明する。図1は、本発明の一実施形態に係る駆動装置について説明するための説明図である。
 図1に示すように、本実施形態に係る駆動装置DVは、動力発生装置PGと、制御装置CTとを有する。そして、動力発生装置PGは、モータMと、エンコーダ100とを有する。
 モータMは、エンコーダ100を含まない動力発生源の一例であり、駆動装置DVが駆動させる対象である駆動対象(図示せず)を、発生させた動力により駆動させる。この際、モータMは、エンコーダ100から出力される絶対位置データに基づいて制御装置CTにより制御される。
 モータMは、動作原理や種類などは特に限定されるものではない。
 つまり、モータMは、動力源として電気を使用する電動式モータ部である場合に限られるものではなく、例えば、油圧式モータ部、エア式モータ部、蒸気式モータ部等の他の動力源を使用したモータであってもよい。
 また、モータMは、例えば、駆動対象を回転させるロータリタイプのモータであってもよく、駆動対象を直線又は曲線などの線上で移動させるリニアタイプのモータであってもよい。
 ただし、説明の便宜上、以下ではモータMがロータリタイプの電動式モータである場合について例を挙げて説明する。つまり、本実施形態に係るモータMは、少なくとも一側に回転シャフトSH1を有し、この回転シャフトSH1を回転軸周りに回転させることにより、回転力を出力する。この際、本実施形態に係るモータMは、制御信号Icontとして、制御装置CTから電気信号(例えばモータMの印加電圧又は電流など)を取得して、該電気信号に応じて回転シャフトSH1を回転させる。
 なお、動作原理又は種類などが異なるモータMに本実施形態が適用される場合の相違点等については、適宜補足説明する。
 エンコーダ100は、本実施形態では、モータMの出力側の回転シャフトSH1とは逆側に配置されて当該回転シャフトSH1に対応して回転する他の回転シャフトSH2に連結される。そして、エンコーダ100は、回転シャフトSH2の絶対位置(回転角度等)を検出することにより、回転力が出力される回転シャフトSH1の絶対位置及び/又は回転シャフトSH1に接続された駆動対象(図示せず)の絶対位置を検出する。更に、エンコーダ100は、検出した絶対位置を表す絶対位置データを、制御装置CTに出力する。
 このエンコーダ100は、分解能が高く精度の高い絶対位置を検出することが可能なように、いわゆる「逓倍処理」を伴った「積上げ方式」により、非常に高精度な絶対位置を、絶対位置データとして出力することができる(以下「逓倍積上げ方式」という。)。この「逓倍積上げ方式」については、詳しく後述する。
 この際、エンコーダ100は、随時、逓倍積上げ方式により、絶対位置を検出してもよいが、例えば、電源投入時や駆動装置DVにエラーが発生した場合など、所定の動作開始時にだけ、逓倍積上げ方式により、絶対位置を検出することも可能である。この場合、例えば、外部(例えば制御装置CT)からの絶対位置要求信号(図示せず)を受け取ったときや、エンコーダ100に電源が投入されたとき、モータMが所定の動作をしたときなどに、上記逓倍積上げ方式により絶対位置を検出する。一方、エンコーダ100は、一旦絶対位置を逓倍積上げ方式により検出した後は、最も分解能が高い検出信号をカウントアップするなどにより、絶対位置を検出することが可能である。本実施形態では、説明の便宜上、逓倍積上げ方式により絶対位置を検出する場合について詳しく説明することにする。
 なお、エンコーダ100は、回転シャフトSH2等の絶対位置だけでなく、回転シャフトSH2等の回転速度(角速度ともいう。)及び回転加速度(角加速度ともいう。)の少なくとも一方を検出してもよい。この場合、角速度及び角加速度は、絶対位置を時間で1又は2回微分したり、絶対位置の単位時間あたりの変化量又はその変化量の単位時間あたりの変化量を測定(例えばカウント等)するなどの処理により、エンコーダ100により検出され得る。
 エンコーダ100が検出する絶対位置は、回転シャフトSH2、回転シャフトSH1及び駆動対象(図示せず)のいずれの絶対位置に基づいて駆動装置DVが駆動対象とするかに応じて、いずれの絶対位置であっても構わない。従って、いずれの絶対位置を検出するかによって、その絶対位置が検出された対象が移動体の一例となる。本実施形態では、説明の便宜上、回転シャフトSH2の絶対位置がエンコーダ100により検出される場合について説明する。
 エンコーダ100の配置位置は、本実施形態に特に限定されるものではない。例えば、エンコーダ100は、駆動装置DVが使用する絶対位置の出所や装置自体の配置等に応じて、動力が出力される回転シャフトSH1に直接連結されるように配置されてもよく、また、減速機や回転方向変換機などの他の機構を介して回転シャフト等の回転体に連結されてもよい。
 制御装置CTは、エンコーダ100が出力する絶対位置データを取得し、該絶対位置データに表された絶対位置に基づいて、動力発生装置PGの動力発生状態、つまり、モータMの回転を制御する。従って、モータMとして電動式モータ部が使用される本実施形態では、制御装置CTは、絶対位置データに基づいて、制御信号IcontとしてモータMに印加する電流又は電圧等を制御することにより、モータMの回転を制御する。モータMが、油圧式、エア式、蒸気式などの他の動力源を使用する場合には、制御装置CTは、それらの動力源の供給を制御することにより、モータMの回転を制御することが可能である。
 この制御装置CTは、上位制御装置(図示せず)から上位制御信号を取得して、当該上位制御信号に表された位置等がモータMの回転軸から出力されるように、モータMを制御することも可能であることは言うまでもない。
  (1-2.逓倍積上げ方式及びエンコーダの誤差)
 このように駆動装置DVは、エンコーダ100が検出する絶対位置に応じて、モータMを回転させて、駆動対象を駆動させる。従って、エンコーダ100が検出する絶対位置に誤差が含まれる場合、駆動装置DV自身の駆動対象の駆動精度等に多大なる影響を与えてしまう場合がある。これに対して、本実施形態に係るエンコーダ100は、上記逓倍積上げ方式を採用するばかりか、エンコーダ100の位置検出機構で生じる誤差を、非常に広い許容範囲で補正して、非常に精度の高い正確な絶対位置を検出することを可能にしている。そこで、以下では、この本実施形態に係るエンコーダ100について詳細に説明する。
 ただし、エンコーダ100について詳細に説明する前に、このエンコーダ100の格別な作用及び効果の理解が容易になるように、本実施形態に係るエンコーダ100による逓倍積上げ方式及びエンコーダで生じ得る誤差について説明する。
   (1-2-1.逓倍積上げ方式)
 エンコーダは、検出する位置情報に応じて、例えば、アブソリュートエンコーダとインクリメンタルエンコーダとに大別される。
 アブソリュートエンコーダは、回転シャフトSH2の1回転(移動体の移動可能範囲又は上位区間の一例。)内の絶対位置を一義に表す検出信号を検出し、その検出信号に基づいて、回転シャフトSH2の絶対位置を算出する。従って、アブソリュートエンコーダは、電源が投入された直後に絶対位置を確定することができる。つまり、アブソリュートエンコーダは、この絶対位置を初期値とし、以降は、回転シャフトSH2の1回転内で複数回繰り返される区間(上位区間及び下位区間の一例。ピッチともいう。)内の位置を一義に表す検出信号(インクリメンタル信号)をカウントするなどの処理により高分解能な絶対位置を算出できる。
 これに対して、インクリメンタルエンコーダは、電源投入時の位置データは0となり絶対位置は特定できない。つまり、インクリメンタルエンコーダは、電源投入時の位置データを0とした後、回転シャフトSH2の1回転内で複数回繰り返される区間内の位置を一義に表す検出信号を検出し、所定の原点位置から生じた検出信号をカウントするなどの処理により相対的な位置を算出する。従ってインクリメンタルエンコーダでは、別途設けられた1回転に1つの原点信号等を使い、この原点信号を通過することによって得られる相対補正量を加味することによって擬似的に絶対位置を算出する。
 アブソリュートエンコーダが検出する検出信号を「アブソ信号」や「1X信号」ともいい、インクリメンタルエンコーダが検出する検出信号を、「インクレ信号」やその分割数nに応じて「n倍インクレ信号」又は「nX信号」ともいう。アブソ信号やインクレ信号は、それぞれ1回転(移動可能範囲)又は1区間(分割された区間)毎に1周期を有する周期信号を有する。1回転で1周期のアブソ信号は、移動可能範囲(1回転)を1分割する区間(つまり1回転)内で1周期を有する周期信号であるとも言える。
 このようなアブソ信号又はインクレ信号からは、検出信号をアナログ-デジタル変換した後、周期内の位相角度に変換することにより、1区間内の位置(1回転内の位置(絶対位置)を含む。区間内位置ともいう。)が算出される。1区間内の位置(角度)を、1周期内での位置を0°~360°の角度で示したという意味で「電気角」ともいう。そして、アブソリュートエンコーダ及びインクリメンタルエンコーダは、それぞれの周期的な検出信号を、例えば、アナログ-デジタル変換した後、位置データに変換する前に、一旦逓倍処理(ここでは逓倍数をmとする)することにより、各検出信号の分解能をm倍に向上させて、1区間内の位置の検出精度を向上させることが可能である。
 より具体的な逓倍積上げ方式の例について説明する。本実施形態に係るエンコーダ100は、例えば、1のアブソ信号と1又は2以上のインクレ信号とを実質的には同時に取得し、そのアブソ信号とインクレ信号とに基づいて、インクレ信号の分解能における絶対位置を測定する。このエンコーダ100による処理内容を概念的に説明すれば以下のとおりである。つまり、エンコーダ100は、各検出信号に逓倍処理等を施して分解能を向上させた後、最も分解能が低いアブソ信号から絶対位置を算出する一方、各インクレ信号からそのインクレ信号の分解能に応じた区間内位置を算出する。そして、エンコーダ100は、最も分解能が低い絶対位置に対して、分解能が低い順にインクレ信号が表す区間内位置を重畳(積上げ)して、最も分解能が高いインクレ信号の分解能における絶対位置を特定する。このように高分解能を実現する絶対位置検出方式を、検出信号を逓倍した後、分解能の異なる検出信号による位置データを重畳(積上げ)するという意味で、ここでは「逓倍積上げ方式」という。なお、逓倍処理を施さずに、単に積み上げることも可能だが、本実施形態では逓倍積上げ方式について説明する。
 ここで、分解能及び移動可能範囲における分割数が相異なる区間(1回転又は1区間)の位置を積み上げる方式について、概念的ではあるが、具体的に説明すると以下のとおりである。例えば、アブソ信号から得られる絶対位置を表す第1位置データと、その第1位置データの次に分解能が高いインクレ信号から得られる位置を表す第2位置データと、その第2位置データの次に分解能が高いインクレ信号から得られる位置を表す第3位置データと、を例に挙げる。すると、まず、この積上げ方式では、第1位置データと第2位置データとに基づいて、第2位置データが区間内位置を表すその第2区間が、第1位置データが表す絶対位置中に含まれる複数の第2区間のうちのいずれの第2区間であるのかが特定される。そして、第2位置データと第3位置データとに基づいて、第3位置データが区間内位置を表すその第3区間が、第2位置データが表す絶対位置中に含まれる複数の第3区間のうちのいずれの第3区間であるのかが特定される。その結果、特定された2の区間を重畳した後、最も分解能が高い第3区間内の区間内位置を更に重畳することにより、第3位置データの分解能における絶対位置が算出され得る。なお、区間特定処理の方法は様々な方法が考えられるが、少なくとも分解能の相対関係において、上位(分可能が低い)と下位(分解能が高い)との関係にある2の位置データ(上位データ及び下位データの一例)から、下位の位置データが取得された区間(下位区間の一例)が、上位の位置データの区間(上位区間の一例)に対して特定される。
   (1-2-2.エンコーダの誤差)
 一方、例えば、各分解能の検出信号には、検出誤差が生じ得る。検出誤差が生じた場合、上記の逓倍積上げ方式による処理の途中で、区間特定の際に、誤った区間が特定されることがある。つまり、下位の区間の特定の際、より高分解能な下位の位置データに対して、より低分解能な上位の位置データにズレが生じると、両位置データの同期状態に誤差が生じ、同期のズレ量に応じて、誤った下位の区間が特定されてしまうことがある。このようなズレ量が生じる原因としては、大きく分けて、再現性のある誤差(「再現性誤差」ともいう。)と、再現性のない誤差(「非再現性誤差」ともいう。)とが挙げられる。再現性誤差は、主には、検出信号の検出機構やエンコーダ100内部の装置構成などにおける装置自身が有する誤差に起因することが多い一方、非再現性誤差は、主には、検出信号取得時の振動や迷光などのようにリアルタイムに変化するノイズに起因することが多い。なお、区間特定処理によって、上記ズレ量はある程度補正され得、正確な区間が特定され得る。しかしながら、上位の位置データの下位の位置データに対する同期ズレのズレ量が、下位の位置データの区間の約半分程度に達すると、上位の位置データと下位の位置データとの組み合わせから、正確な区間を特定することは難しい。しかしながら、本実施形態に係るエンコーダ100は、このように下位の位置データの区間の約半分程度のズレ量が、上位の位置データに生じた場合でも、適切に補正が可能であり、下位の位置データの区間を正確に特定することが可能である。従って、このエンコーダ100は、正確かつ高分解能な絶対位置の算出が可能である。
 そこで、以下では、本実施形態に係るエンコーダ100について、図2を参照しつつ詳細に説明する。
 なお、以下では説明の便宜上、エンコーダ100は、上記の例示と同様に、分解能が相異なる3の位置データ(絶対位置を含む第1位置データ~第3位置データ)を取得して、逓倍積上げ方式により最も分解能が高い位置データの分解能による絶対位置を算出する場合について例を挙げつつ説明する。これはあくまで例示であり、エンコーダ100は、分解能が相異なる2の位置データ又は3以上の位置データを取得して、絶対位置を算出することも可能である。ただし、これらの場合であっても、エンコーダ100が取得して絶対位置算出に使用する複数の位置データには、少なくとも他の位置データよりも分解能の低い絶対位置を表す位置データ(例えば分解能が最も低い位置データ)が含まれることになる。
 ここで、第1位置データd1は、3つの位置データのうち最も分可能が低く、回転シャフトSH2の1回転(移動可能範囲又は上位区間の一例。第1区間T1ともいう。)における絶対位置(以下「第1位置p1」「基準位置Dorg」ともいう。)を表し、基準絶対位置データともいう。
 第2位置データd2は、第1位置データd1の次に分解能が高く、1回転を2以上の第2分割数n2(例えばn2=4)で分割して1回転内でn2回繰り返される第2区間T2内(上位区間又は下位区間の一例)における区間内位置(以下「第2位置p2」ともいう。)を表す。
 そして、第3位置データd3は、最も分解能が高く、第2区間T2内を2以上の第3分割数n3(例えばn3=4)で分割して第2区間内でn3回繰り返される第3区間T3(下位区間の一例)における区間内位置(以下「第3位置p3」ともいう。)を表す。
 なお、第1位置データは、上述の通り、最も分解能が低く、移動可能範囲(1回転)を第1分割数n1(n1=1)で分割する第1区間T1内の位置(「基準位置」ともいう。)を表す位置データ(「基準絶対位置データDorg」ともいう。)と表現することも可能である。
 分解能の相対関係において、分解能の高低で相隣接する2の位置データのうち、分解能が高い方の位置データを「下位データ」ともいい、分解能が低い方の位置データを「上位データ」ともいう。そして、この場合、下位データ及び上位データの区間内位置がそれぞれ表す区間を、「下位区間」及び「上位区間」ともいう。
 より具体的には、第1位置データd1と第2位置データd2とを例に挙げると、第1位置データd1は上位データであり、第2位置データd2は下位データとなる。そして、第1位置データd1が位置を表す区間T1(移動可能範囲)が上位区間となり、第2位置データd2が位置を表す第2区間T2が下位区間となる。一方、第2位置データd2と第3位置データd3とを例に挙げると、第2位置データd2は上位データであり、第3位置データd3は下位データとなる。そして、第2位置データd2が位置を表す第2区間T2が上位区間となり、第3位置データd3が位置を表す第3区間T3が下位区間となる。なお、分解能の相対関係上、最も分解能が高い第3位置データd3は、上位データにはならず、最も分解能が低い第1位置データd1は、下位データにはならないことは、言うまでもない。
  (1-3.エンコーダの構成)
 図2は、本発明の一実施形態に係るエンコーダについて説明するための説明図である。
 図2に示すように、エンコーダ100は、大きく分けて、ディスク110と、位置データ取得部120と、記憶部130と、補正部140と、区間特定部150と、絶対位置算出部160と、を有する。
 ディスク110は、回転シャフトSH2に接続され、回転シャフトSH2の回転とともに回転する。一方、このディスク110には、それぞれ1回転でn1周期(n1=1)、1回転でn2周期(例えばn2=4)、1回転でn2×n3周期(例えばn3=4)の3つの検出信号(以下「1X信号、4X信号、16X信号」ともいう。)が得られるように、それぞれ第1検出機構~第3検出機構が設けられている。
 なお、この第1検出機構から第3検出機構は、各周期の検出信号が得られる検出機構であれば特に限定されるものではない。例えば、本実施形態では、磁極がディスク110と平行な面内で並べられてディスク110の回転中心に配置された磁石が、第1検出機構として使用される。一方、ディスク110上には、光学的な検出原理を利用して第2検出機構及び第3検出機構それぞれに対応した複数のスリットによるトラックが形成される。第2検出機構のトラックは、1回転を分割数n2で分割して1回転内でn2周期の検出信号が得られるように、n2本のスリットが形成される。なお、本実施形態では、n2=4である場合を例に挙げて説明するが、実際はn2はより大きな値に設定されることが望ましい。一方、第3検出機構のトラックは、1回転を分割数n2×n3で分割して1回転内でn2×n3周期の検出信号が得られるように、n2×n3本のスリットが形成される。なお、ここであげた第1検出機構~第3検出機構は、あくまで一例であり、本実施形態は、かかる検出機構の例に限定されるものではないことは上述のとおりである。
 位置データ取得部120は、ディスク110が有する第1検出機構~第3検出機構から、各検出機構における分解能(1:n2:n2×n3=1:4:16など)の3の位置データ(第1位置データd1~第3位置データd3)を取得する。より具体的には、位置データ取得部120は、第1位置データd1~第3位置データd3をそれぞれ取得する第1位置データ取得部121~第3位置データ取得部123を有する。そして、第1位置データ取得部121~第3位置データ取得部123は、それぞれ対応した第1検出機構~第3検出機構から、各検出原理を利用して、各分解能を有する第1位置データd1~第3位置データd3を取得する。
 ここで、第1位置データ取得部121~第3位置データ取得部123による位置データ取得について第3位置データ取得部123を例に挙げて説明する。第3位置データ取得部123は、ディスク110の第3検出機構のトラックに光を照射して、そのトラックに形成された複数のスリットからの反射光を検出する。すると、検出信号は、本実施形態では1回転内でスリット本数(つまり分割数n2×n3)に応じた周期繰り返される略正弦波状の信号となる。そこで、第3位置データ取得部123は、この正弦波状の検出信号を、アナログ-デジタル変換してm3倍に逓倍した後、電気角へと変換することにより、第3区間T3内における第3位置p3を表す第3位置データd3を取得する。第1位置データ取得部121及び第2位置データ取得部122は、検出機構や分解能が異なるものの第3位置データ取得部123と同様に、それぞれ、第1区間T1(1回転)内における第1位置p1を表す第1位置データd1、及び、第2区間T2内における第2位置p2を表す第2位置データd2を取得する。
 なお、本実施形態に係るエンコーダ100は、位置データ取得機構、つまり検出信号の検出機構及び検出信号から位置データへの変換方向等については、特に限定されるものではなく、ここで説明した例に限定されないことは言うまでもない。
 記憶部130には、後述する補正部140で下位データに対する上位データの補正が行われる際に使用される補正値が、上位データが取得された際の下位データよりも低分解能な回転シャフトSH2の絶対位置に関連付けられて記録されている。なお、本実施形態においては、補正値が関連付けられる低分解能な絶対位置としては、補正対象となる上位データと同程度の分解能な絶対位置が使用される。
 本実施形態においては、2種類の補正値r1,r2が使用される。後述する補正部140は、分解能の相対関係で上位データと下位データの関係にある2の位置データのペアそれぞれについて、下位データに対する上位データのズレ量を補正する。従って、本実施形態に係るエンコーダ100は、第1のペア中第2位置データd2に対して第1位置データd1に生じるズレ量と、第2のペア中第3位置データd3に対して第2位置データd2に生じるズレ量とを、補正する。そこで、第1位置データd1のズレ量を補正する補正値として、補正値r1が記憶部130に記録され、かつ、第2位置データd2のズレ量を補正する補正値として、補正値r2が記憶部130に記録される。エンコーダ100が2の位置データから絶対位置を算出する場合には、ペアが1つしか形成されないため、1種類の補正値が記憶部130に記録されることになる。一方、エンコーダ100が3以上のj個の位置データから絶対位置を算出する場合には、ペアがj-1つ形成されるため、j-1種類の補正値が記憶部130に記録されることになる。本実施形態では、本実施形態で使用される2種類の補正値r1,r2が格納される記憶部を区別するために、記憶部130は、補正値r1が記録される第1記憶部131と、補正値r2が記録される第2記憶部132とを有する。
 また、補正値r1,r2は、上述の通り、補正対象となるペア中の下位データよりも低分解能な絶対位置であって、補正対象となる上位データが取得された際の絶対位置に関連付けられて、それぞれ第1記憶部131及び第2記憶部132に記録される。ここで、本実施形態では、補正値r1,r2が関連付けられる絶対位置として、下位データより低分解能な上位データと同程度の分解能を有する絶対位置が使用される。つまり、補正値r1は、上位データとしての第1位置データd1と同程度の分解能の絶対位置に関連付けられて、第1記憶部131に記録される。一方、補正値r2は、上位データとしての第2位置データd2と同程度の分解能の絶対位置に関連付けられて、第2記憶部132に記録される。
 この補正値r1,r2の生成方法等の例については、後述のエンコーダ製造装置についての説明において、詳述することとし、補正値r1,r2が関連付けられる絶対位置については、後述するエンコーダ製造装置と共に下記の補正部140において、詳述する。ただし、この生成方法等の概要としては、以下のとおりである。つまり、例えば、エンコーダ製造装置等が、予め、補正が行われる上位データにおいて下位データに対して生じるズレ量を測定し、そのズレ量に基づいて、そのズレ量を補正可能な補正値r1,r2を算出する。一方、エンコーダ製造装置等は、その補正値r1,r2が算出された際の、上位データの分解能における絶対位置を算出又は取得する。そして、エンコーダ製造装置等は、補正値r1,r2と絶対位置とを関連付けて、記憶部130に記録する。
 なお、回転シャフトSH2の1回転(移動可能範囲)内で複数繰り返される第2位置データd2に対する補正値r2については、同期ズレが1の第2区間T2内の局所的なものであれば、その局所的な絶対位置に対応付けられて第2記憶部132に記録される。一方、同期ズレが相隣接した複数の第2区間T2に跨る場合には、補正値r2は、その複数の第2区間T2内で同一の値に設定されて、第2記憶部132に記録されることが望ましい。
 補正部140は、位置データ取得部120により取得された上位データが取得された際の上位データの分解能と同程度の分解能の絶対位置に基づいて、その絶対位置に関連付けられた補正値を記憶部130から取得する。そして、補正部140は、取得した補正値を使用して、上位データを補正する。つまり、補正部140は、分解能の相対関係で連続した高低の関係にある上位データ及び下位データの2つの位置データのペア毎に、そのうち低分解能な上位データを補正する。
 つまり、本実施形態では、第1位置データd1~第3位置データd3の3つの位置データが使用されるが、補正部140は、第1ペアである第1位置データd1と第2位置データd2との関係から、補正値r1に基づいて第1位置データd1のズレ量を補正し、第2ペアである第2位置データd2と第3位置データd3との関係から、補正値r2に基づいて第2位置データd2のズレ量を補正する。なお、各補正を区別して説明するために、本実施形態に係る補正部140は、第1位置データd1を補正する第1補正部141と、第2位置データd2を補正する第2補正部142とを有する。
 補正部140が補正を行う際に使用する補正値r1,r2は、本実施形態では上述の通り、それぞれの補正対象となる上位データが取得された際におけるその上位データと同程度の分解能の絶対位置に対して関連付けられて、第1記憶部131又は第2記憶部132にそれぞれ記録される。
 第1補正部141が補正する第1位置データd1(上位データの一例)は、3の位置データのうち最も低い分解能により回転シャフトSH2の絶対位置を表し、基準絶対位置データDorgでもある。従って、第1補正部141は、この第1位置データd1自身に関連付けられて第1記憶部131に記録された補正値r1を、第1位置データd1自身に基づいて取得する。そして、第1補正部141は、例えば、取得した補正値r1を、第1位置データd1に加算(又は減算)して、第1位置データd1に生じる第2位置データd2に対するズレ量を補正する。なお、補正後の第1位置データd1を補正前のものと区別するために「第1補正データd1’」という。
 一方、第2補正部142が補正する第2位置データd2(上位データの一例)は、絶対位置ではなく区間内位置を表すため、そのまま第2位置データd2に基づいて補正値r2を取得することはできない。そして、第2補正部142の補正処理に先立ち、後述する絶対位置算出部160では第2位置データd2を下位データとして使用してその第2位置データd2と同程度の分解能を有する絶対位置が算出される。そこで、第2補正部142は、その絶対位置算出部160で算出された絶対位置を取得する。この絶対位置を「中間絶対位置」ともいい、中間絶対位置を表す絶対位置データを「中間絶対位置データDmid」ともいう。すると、第2補正部142は、後述する絶対位置算出部160から中間絶対位置データDmidを取得し、その中間絶対位置データDimdが表す中間絶対位置に関連付けられて第2記憶部132に記録された補正値r2を、中間絶対位置データDmidに基づいて取得する。そして、第2補正部142は、例えば、取得した補正値r2を、第2位置データd2に加算(又は減算)して、第2位置データd2に生じる第3位置データd3に対するズレ量を補正する。補正後の第2位置データd2を補正前のものと区別するために「第2補正データd2’」という。
 なお、本実施形態とは異なり、補正値r2は、上位データ(第2位置データd2)と同程度の分解能の絶対位置以外に、各下位データ(第3位置データd3)よりも低分解能な絶対位置に関連付けられて、記憶部130(第2記憶部132)に記録されてもよい。この場合、補正部(第2補正部142)は、例えば、下位データである第3位置データd3だけでなく上位データである第2位置データd2よりも低分解能な絶対位置を表す第1位置データd1(つまり基準絶対位置データDorg)を取得して、その第1位置データd1に関連付けられた補正値r2を第2記憶部132から取得してもよい。なお、本実施形態では、上述の通り、補正部(第2補正部142)が、補正対象となるペア中の上位データ(第2位置データd2)と同程度の分解能を有する絶対位置(中間絶対位置)を絶対位置算出部160(第1絶対位置算出部161)から取得して、その中間絶対位置に関連付けられた補正値r2を取得する。従って、本実施形態の場合、補正部による補正の位置に対する精度を向上させることが可能であり、より局所的なズレに対する補正を適切に行うことが可能である。
 また、本実施形態に係る補正部140は、上位データ及び下位データの2つの位置データの1ペアだけについて補正することも可能である。しかし、本実施形態のように、補正部140が上位データ及び下位データの2つの位置データの全てのペアそれぞれについて補正する場合、エンコーダ100は、再現性誤差及び非再現性誤差を含むズレ量に対する許容値を高め、精度の高い絶対位置をより安定的に算出することが可能である。
 区間特定部150は、補正部140が補正した上位データと、その上位データが取得された際の下位データとに基づいて、下位データが取得された下位区間を、上位区間に対して特定する。つまり、区間特定部150は、補正部140が補正の対象とした2の位置データのペアそれぞれについて、補正後の上位データと、その上位データとペアを成す下位データとを使用して、下位データが属する下位区間が、上位区間中に含まれる複数の下位区間のいずれの下位区間であるのかを特定する。
 換言すれば、補正部140が補正の対象としたペアにおいて、下位データは、下位区間内における位置を一義に表す一方、その下位区間は、上位区間を所定の分割数で分割したものであり、上位区間内で複数回繰り返される。従って、下位データのみからは、上位区間に含まれる複数の下位区間のうち、いずれの下位区間に下位データが属しているのかを判別することができない。そこで、区間特定部150は、下位データと共に上位データを使用して、下位データが属する下位区間を特定する。この際、区間特定部150は、位置データ取得部120で取得された上位データではなく、補正部140で補正された補正後の上位データを使用する。従って、区間特定部150は、区間特定精度を非常に向上させることが可能である。
 より具体的に、区間特定部150について説明する。
 本実施形態では、上位データと下位データとの関係を形成する2の位置データのペアが2つ(第1位置データd1及び第2位置データd2のペア、並びに、第2位置データd2及び第3位置データd3のペア)形成される。従って、区間特定部150は、各ペアについて、その下位データ(第1位置データd1又は第2位置データd2)の下位区間(第1区間T1又は第2区間T2)を特定する。そこで、各ペアに対応して、区間特定部150は、第1区間特定部151と、第2区間特定部152とを有する。
 第1区間特定部151と第2区間特定部152とは、区間特定をおこなうペアが異なるものの基本的には同様に構成される。そこで、ここでは、第1区間特定部151を例に挙げて説明する。この第1区間特定部151は、下位データとして、第2位置データ取得部122が取得した第2位置データd2を取得する。更に、第1区間特定部151は、上位データとして、第1位置データ取得部121が取得した第1位置データd1を直接取得するのではなく、第1補正部141により補正された補正後の第1位置データd1’を取得する。そして、第1区間特定部151は、取得した第2位置データd2と補正後の第1位置データd1’とに基づいて、第2区間T2を特定する。
 なお、ここで行われる区間特定方法は、様々な方法が使用可能である。つまり、上位区間に含まれる複数の下位区間において、下位データが取得された下位区間が明に特定されてもよいが、例えば、上位データと下位データが重畳又は加算等の処理を施されて、上位データに対する下位データの位置が特定されることにより、下位区間が暗に特定されてもよい。また、下位区間を明に特定する場合の処理も特に限定されるものではなく、例えば、以下のような処理が使用可能である。つまり、例えば、補正後の上位データと下位データが表す位置や処理後の符号の組み合わせに基づいて、下位区間が特定されてもよい。また、例えば、補正後の上位データが、逓倍処理、フィルタリング処理又は閾値との比較処理などにより、上位データを下位データの分割数の分解能にされ、その分解能の上位データがあらわす位置が直接下位データの下位区間として特定されてもよい。なお、本実施形態では、これらの区間特定処理よりも区間特定時の誤差が生じにくい区間特定処理が使用される。
 この区間特定処理のために本実施形態では、第1位置データd1~第3位置データd3として以下のような位置データが使用される。つまり、下位データである第2位置データd2は、上位データである第1位置データd1に対して、下位データの下位区間の2分の1周期だけズレた位置データが使用される。そして、下位データである第3位置データd3は、上位データである第2位置データd2に対して、下位データの下位区間の2分の1周期だけズレた位置データが使用される。
 なお、このような相互の下位区間の2分の1周期だけズレた複数の位置データを生成するには、位置データ取得部120が位置データを取得する検出機構(第1検出機構~第3検出機構)それぞれが、下位区間の2分の1周期分だけズレて形成されることになる。つまり、光学式の検出原理を使用する第3検出機構の複数の下位区間(ピッチ)の周期が、上位の第2検出機構の1の上位区間(ピッチ)の周期とぴったり一致せず、下位区間の2分の1周期(2分の1ピッチ分)だけズレて形成される。そして、第2検出機構と第1検出機構も同様な形成位置関係で形成される。その結果、上述のように、下位区間で2分の一周囲だけズレた複数の位置データが生成される。
 上述と同様に、第1区間特定部151を例に挙げると、第1区間特定部151は、上記のように生成され、下位区間である第2区間T2の2分の1周期だけ互いに周期がズレた第1位置データd1’と第2位置データd2とを取得する。すると、第1区間特定部151は、まず、分解能変更処理を行い、分解能が高い下位データに相当する第2位置データd2の分解能と、上位データに相当する第1位置データd1’の分解能とを擬似的に一致させる。なお、この分解能変更処理は、第1位置データd1’に対して逓倍処理することにより擬似的に分解能を向上させて行ってもよく、第2位置データd2に対して分周処理することにより擬似的に分解能を低下させて行ってもよい。更に、分解能変更処理として、後続の処理が容易になるように、第1位置データd1’及び第2位置データd2それぞれに逓倍又は分周処理を施して分解能を一致させることも可能である。また、この分解能変更処理は、例えば、区間特定部150内以外でも、位置データ取得部120における逓倍処理等において行われてもよい。
 この分解能変更処理後、第1区間特定部151は、第1位置データd1’から、分解能が揃えられた第2位置データd2を減算する。そして、第1区間特定部151は、分解能が揃えられた際の第2区間T2内の分割数で、上記の減算結果を除算し、その除算結果を、小数点以下切り捨て処理等を施すことにより整数化する。すると、これらの処理後の計算結果である整数は、下位区間である第2区間T2を上位区間に対して一義的に表すことになる(図5及び図6等参照)。
 このような本実施形態に係る区間特定処理によれば、上位データにおける下位データに対するズレ量は、除算結果に主には1未満の小数点以下の値として含まれる。従って、その除算結果を整数化する際に、比較的大きなズレ量であっても補正される。一方、この区間特定処理によれば、所定のロジック等による判断処理等が必要ではく、直接算出により下位区間を特定可能であるため、処理負荷を低減することができる。
 なお、この区間特定処理によれば、上位データと下位データの分解能を擬似的に一致させる際に、その分解能を高く設定するほど、補正可能なズレ量が増加する。しかしながら、分解能を向上させたとしても、例えば、下位区間の2分の1以上、上位データがズレた場合、そのズレ量は除算結果に1以上の値として含まれることとなり、この区間特定処理によっても補正することが難しくなる。
 しかしながら、本実施形態に係るエンコーダ100は、補正部140等を有することにより、区間特定処理に使用する上位データを予め補正値により補正しておき、その補正後の上位データと下位データとから下位区間を特定する。従って、このような補正値として、例えば再現性誤差を補正可能な値を予め記憶部130に記録させておくことにより、本実施形態に係るエンコーダ100は、再現性誤差を、区間特定処理前に低減させることができ、区間特定部150における区間特定における精度を向上させることが可能である。つまり、本実施形態に係るエンコーダ100は、正確に区間特定を行うことにより、比較的大きなズレ量が生じた場合であっても、精度の高い絶対位置を安定的に生成することが可能である。
 そして、第1区間特定部151は、特定した第2区間T2を絶対位置算出部160に出力する。一方、第2区間特定部152は、第1区間特定部151と同様な処理により第3区間T3を特定し、その特定した第3区間T3を絶対位置算出部160に出力する。
 絶対位置算出部160は、区間特定部150が既に特定した下位区間と、その下位区間が特定された下位データとに基づいて、その下位データと同程度の分解能における絶対位置を算出する。その結果、絶対位置算出部160は、最も分解能が高い位置データと同程度の絶対位置を表す絶対位置データDabsを算出して、制御装置CTに出力することが可能である。
 この際、絶対位置算出部160は、最終的な最も分解能が高い絶対位置を算出する前の段階で、区間特定部150が既に特定した全ての下位区間と、区間特定部150が既に下位区間を特定したペアに含まれる位置データのうち最も分解能が高い下位データとに基づいて、下位データと同程度の分解能である中間的な分解能を有する中間絶対位置を表す中間絶対位置Dmidをも算出し、補正部140に出力する。
 3つの位置データが使用される本実施形態に係るエンコーダ100では、最も分解能が高い第3位置データd3と同程度の分解能の絶対位置が算出されるとともに、中間絶対位置として、中間的な分解能を有する第2位置データd2と同程度の分解能の絶対位置が算出される。そこで、本実施形態に係る絶対位置算出部160は、後者の中間絶対位置を算出する構成として第1絶対位置算出部161と、前者の最終的な絶対位置を算出する構成として第2絶対位置算出部162とを有する。
 第1絶対位置算出部161は、第1区間特定部151が特定した第2区間T2と、第2位置データ取得部122が取得した第2位置データd2とを取得する。そして、第1絶対位置算出部161は、取得した第2区間T2及び第2位置データd2に基づいて、中間絶対位置を算出する。換言すれば、特定された第2区間T2は、第1区間T1(つまり移動可能範囲の1回転)に対する第2区間T2の位置を表す。一方、第2位置データd2は、その第2区間T2内の区間内位置を表す。従って、第1絶対位置算出部161は、例えば、第2区間T2を中間絶対位置の上位ビットとし、第2位置データd2を中間絶対位置の下位ビットとするなどの積上げ処理により、中間絶対位置を算出することが可能である。
 なお、第2位置データd2が、位置データ取得部120又は区間特定部150等により、本来有する分解能よりも擬似的に低分解能に変換されている場合には、第1絶対位置算出部161は、この第2位置データd2に逓倍処理等を施すことにより、第2位置データd2を本来有する分解能に高分解能化した後、中間絶対位置を算出することが望ましい。
 第1絶対位置算出部161が算出した中間絶対位置データDmidは、第2補正部142に出力され、上述のとおり、第2補正部142における補正値r2の取得に使用される。そして、その後、第2補正部142は、第2位置データd2を補正し、その補正後の第2位置データd2’を使用して、第2区間特定部152が、第2位置データd2’に対する第3区間T3を特定することになる。
 一方、第2絶対位置算出部162は、第1区間特定部151及び第2区間特定部152が特定した第2区間T2及び第3区間T3を取得し、かつ、第3位置データ取得部123が取得した第3位置データd3を取得する。
 この際、上記第1絶対位置算出部161と同様に、第3位置データd3が、位置データ取得部120又は区間特定部150等により、本来有する分解能よりも擬似的に低分解能に変換されている場合には、第2絶対位置算出部162は、この第3位置データd3に逓倍処理等を施すことにより、第3位置データd3を本来有する分解能に高分解能化する。
 そして、第2絶対位置算出部162は、上記第1絶対位置算出部161と同様に、特定された第2区間T2を最終的な絶対位置データDabsの最上位ビットとし、特定された第3区間T3を中位ビットとし、高分解能な第3位置データd3を最下位ビットとするなどの積上げ処理により、非常に高分解能な絶対位置を表す絶対位置データDabsを算出する。そして、算出された絶対位置データDabsは、制御装置CTに出力される。
  (1-4.エンコーダの動作)
 次に、以上で説明した本発明の一実施形態に係るエンコーダ100による絶対位置算出動作について、図3を参照しつつ説明する。図3は、本実施形態に係るエンコーダの動作について説明するための説明図である。
 例えば制御装置CT等の指令信号に基づき絶対位置算出処理が開始されると、エンコーダ100は、まず、ステップS101を処理する。
 このステップS101(位置データ取得ステップの一例)では、位置データ取得部120が、アブソ信号を含む複数の検出信号(1X信号、4X信号、16X信号)をほぼ同時に取得する。そして、位置データ取得部120は、各検出信号に対して、デジタル-アナログ変換処理や逓倍処理等を施すことにより、分解能が相異なる複数の第1位置データd1~第3位置データd3を生成する。このステップS101の処理後は、ステップS103に進む。
 なお、ステップS103~ステップS107は、最終的な高分解能な絶対位置データDabsの算出が完了するまで繰り返されることになるが、まず、1回目のステップS103~ステップS107における処理について説明する。そして、2回目のステップS103~ステップS109における処理については、ステップS109の説明の後に説明する。
 ステップS101の処理後に開始される1回目のステップS103(補正ステップの一例)の処理では、第1補正部141が、絶対位置を表す基準絶対位置データDorgである第1位置データd1に基づいて、その絶対位置に関連付けられた補正値r1を、第1記憶部131から取得する。そして、第1補正部141は、取得した補正値r1を、第1位置データd1に加算(又は減算)することにより、補正後の第1位置データd1’を生成する。そして、ステップS105に進む。
 1回目のステップS105(区間特定ステップの一例)では、第1区間特定部151が、ステップS103で補正された第1補正データd1’と、ステップS101で取得された第2位置データd2とに基づいて、第2位置データd2の第2区間T2を第1位置データd1に対して特定する。そして、ステップS107に進む。
 1回目のステップS107(絶対位置算出ステップの一例)では、第1絶対位置算出部161が、ステップS105で特定された第2区間T2と、ステップS101で取得された第2位置データd2とに基づいて、その第2位置データd2と同程度の分解能の絶対位置である中間絶対位置を算出する。そして、ステップS109に進む。
 ステップS109では、エンコーダ100が、ステップS107で算出された絶対位置が最終的な高分解能を有する絶対位置(絶対位置データDabs)であるか否かを確認する。絶対位置データDabsでない場合、つまり中間絶対位置データDmidである場合には、ステップS103に進む。
 ステップS109の処理後に処理されるステップS103、つまり2回目のステップS103(補正ステップの一例)では、第2補正部142が、ステップS107で算出された中間絶対位置データDmidに基づいて、その絶対位置に関連付けられた補正値r2を、第2記憶部132から取得する。そして、第2補正部142は、取得した補正値r2を、第2位置データd2に加算(又は減算)することにより、補正後の第2位置データd2’を生成する。そして、ステップS105に進む。
 2回目のステップS105(区間特定ステップの一例)では、第2区間特定部152が、ステップS103で補正された第2補正データd2’と、ステップS101で取得された第3位置データd3とに基づいて、第3位置データd3の第3区間T3を第2位置データd2に対して特定する。そして、ステップS107に進む。
 2回目のステップS107(絶対位置算出ステップの一例)では、第2絶対位置算出部162が、ステップS105で特定された第2区間T2及び第3区間T3と、ステップS101で取得された第3位置データd3とに基づいて、その第3位置データd3と同程度の最終的な高分解能を有する絶対位置を算出する。そして、ステップS109に進む。
 ステップS109では、エンコーダ100が、上述の通り、ステップS107で算出された絶対位置が最終的な高分解能を有する絶対位置(絶対位置データDabs)であるか否かを確認する。そして、2回目のステップS107の処理後は、絶対位置データDabsであると判断され、絶対位置データDabsが制御装置CTに出力されて、動作を終了する。
  (1-5.エンコーダによる誤差補正例)
 以上、本実施形態に係るエンコーダ100等の構成及び動作について説明したが、ここでこのエンコーダ100等の格別な作用効果等の理解が容易になるように、エンコーダ100による誤差補正例について、図4~図9を参照しつつ説明する。図4~図8は、本実施形態に係るエンコーダによる第1の誤差補正例について説明するための説明図である。図9は、本実施形態に係るエンコーダによる第2の誤差補正例について説明するための説明図である。
 なお、上記実施形態では、絶対位置算出に使用される複数の位置データが3つの第1位置データd1~第3位置データd3である場合を例に説明した。一方、補正・区間特定・絶対地位算出等の処理は、基本的には上位データと下位データの2つの位置データのペア毎に行われる。そこで、以下では、特に上位データ及び下位データがいずれの場合であるのかを限定せずに説明し、第1位置データd1~第3位置データd3によって相違する点については適宜補足説明する。
 また、図4~図9では、移動体である回転シャフトSH2が定速で回転している場合を示し、横軸に時間tを取っている。そして、区間特定処理等の説明の便宜上、上位データの分解能と下位データの分解能とは、擬似的に一致させられている場合について説明する。
   (1-5-1.第1の誤差補正例)
 まず、図4~図8を参照しつつ、上位データが下位データに対して局所的にズレて、両者の間に同期ズレが生じている場合について、第1誤差補正例として説明する。
 図4に示すように、ここでは本実施形態の区間特定処理が使用されるため、下位データは、上位データに対して下位データの下位区間Tdの周期の2分の1(ΔT)だけずれて生成される。つまり、この例の場合、下位データの下位区間Tdの切れ目は、上位データの上位区間Tuの切れ目から、ディレイΔT(=Td/2)だけ遅れて到来する。なお、このディレイΔTは、第2誤差補正例も同様である。
 上位データが下位データに対して局所的に同期しておらず、上位データのプロファイルは、実線で示した上位位置puとなっている。一方、下位データは上位データに比べて正確な位置を示すため、下位データのプロファイルは、図4では、便宜上、同期ズレが生じていない1周期内で規則正しく位置が増加する下位位置pdで示している。なお、同期ズレが生じていない場合の上位データのプロファイルは、局所的には破線で示した上位位置pu0となる。従って、例えば、時点t1では、上位データにズレ量Δp1が生じており、時点t2では、上位データにズレ量Δp2が生じている。
 このように局所的にズレ量Δp1,Δp2が生じている上位データと、誤差のない下位データとを、図5にデジタル表示する。一方、本実施形態における区間特定部150における区間特定処理では、上位データから下位データが減算される。この減算結果をデジタルで表示したものを図5に示し、グラフ化したものを図6に示す。図5及び図6に示すように、この区間特定部150における区間特定処理の中間段階では、時点t1及び時点t2の両時点において、ズレ量Δp1,Δp2に応じた誤差が含まれている。一方、この上位データから下位データを減算した結果は、下位データの1の下位区間Td内の分割数(図4等では0~3の4分割)で除算され、その計算結果は、小数点以下が切り捨てられて、下位区間Tdが直接算出される。この特定された下位区間Tdを、図5及び図6に示す。図5及び図6に示す下位区間Tdでは、時点t1においては、ズレ量Δp1に起因した誤差が適切に補正され、正確な下位区間Td(0)が算出されている。一方、時点t2においては、ズレ量Δp2が許容値よりも大きいため、特定された下位区間Td(0)は、誤差を含み、真の下位区間Td(3)に対して誤差が生じている(+1)。特定された下位区間Tdと下位データとから絶対位置算出部160で算出される絶対位置Pabsを、図6に示す。時点t2における絶対位置Pabsに示すように、区間特定部150による区間特定時に生じた誤差は、この絶対位置Pabsにも含まれる。
 このような誤差を補正するために、本実施形態に係るエンコーダ100は、記憶部130と補正部140とを有する。記憶部130に予め記録される補正値rを図7に示す。上記時点t2におけるズレ量Δp2は+2である。そこで、この補正値rとしては、ズレ量Δp2による誤差を補正可能なように-1が設定される。
 上記時点t2に対してズレ量Δp2を補正値rとして設定するが、補正値rは、上位データと同程度の分解能の絶対位置に関連付けられて記憶部130に記録されるため、ここでは上位データpu(=2)の場合に関連付けられて補正値r(=-1)が記憶部130に記録されることになる。図7では上位データが絶対位置を示すものと仮定して図示している。
 そこで、補正部140は、例えば時点t2においては、上位データと同程度の分解能の絶対位置に基づいて、その絶対位置に関連付けられた補正値r(=-1)を取得する。そして、補正部140は、取得した補正値rを上位データに加算して上位データを補正する。そして、区間特定部150は、補正後の上位データから下位データを減算する。この減算結果と、減算結果から特定される下位区間Tdを図7及び図8に示し、更に図8には下位区間Tdから算出された絶対位置Pabsを示す。
 図7及び図8に示すように、特定された下位区間Tdは、補正をしない図5及び図6に示す下位区間Tdでは誤差が生じていた時点t2においても、適切に補正がなされている。従って、本実施形態に係るエンコーダ100によれば、図8に示すように、比較的大きなズレ量Δp2が生じた場合であっても適切に補正することができ、結果として、誤差を含まない絶対位置Pabsを生成することが可能である。
 この第1誤差補正例では、上位データに局所的に同期ズレが生じた場合について説明した。しかし、例えば、移動可能範囲(1回転)内で複数の第2区間T2が繰り返される上記第2位置データd2において第3位置データd3に対して生じる同期ズレの場合には、局所的な誤差だけではなく、複数の上位区間Tu(この場合複数の第2区間T2)に跨るような誤差が生じることがある。このような誤差をここでは長周期誤差ともいう。
 一方、本実施形態に係るエンコーダ100は、上記局所的な誤差だけではなく、複数の上位区間Tuに跨るような長周期誤差をも適切に補正することが可能である。そこで、このような複数の上位区間Tuに跨るような誤差が生じた場合のエンコーダ100に誤差補正を、第2誤差補正例として以下で説明する。
   (1-5-2.第2の誤差補正例)
 図9には、絶対位置ではなく移動可能範囲(1回転)内で複数回繰り返される上位区間Tuの上位位置puを表す上位データと、その上位区間Tuにおいて複数回繰り返される下位区間Tdの下位位置pdを表す下位データを示す。図9に示すように、上位データは、局所的ではなく、複数の上位区間Tu(図9に示した全ての上位区間Tu)において、下位データに対して同期ズレ(ズレ量Δp)が生じている。この場合、補正部140による補正を行わなければ、区間特定部150が特定する下位区間Tdは、図9に示すように、ズレ量Δpによる影響により、同期ズレが生じた上位区間Tu全域にわたり誤差が生じてしまう。このような場合、もはや区間特定部150による誤差補正のみでは誤差が生じていることすら特定することは難しい。
 このような場合、本実施形態に係るエンコーダ100の記憶部130には、相隣接する複数の上位区間Tuにわたり同一の値が設定された補正値rが、それぞれの絶対位置に関連付けられて記録される。この補正値rを模式的に図9に示す。このような長周期誤差が生じている場合には、本実施形態に係るエンコーダ100は、複数の上位区間Tuにわたり同一の値に設定された補正値rにより、複数の上位区間Tu内の全上位データ全体を補正することが可能である。従って、エンコーダ100は、このような長周期誤差が生じた範囲全体について、上記第1誤差補正例と同様に、区間特定部150による区間特定処理では補正し切れない誤差をも、適切に補正して、精度の高い絶対位置を安定して生成することが可能である。
  (1-6.本実施形態による効果の例)
 以上、本発明の一実施形態に係るエンコーダ100と、エンコーダ100の動作と、そのエンコーダ100を備えた駆動装置DVとについて説明した。これらのエンコーダ100等によれば、逓倍積上げ方式により高分解能な絶対位置を算出する際、区間特定部150により下位区間の特定を行う前に、その区間特定に使用する上位データを、補正部140により補正する。従って、区間特定部150が補正可能なズレ量よりも大きなズレ量が生じた場合であっても、このエンコーダ100等は、ズレ量による影響を補正して、高分解能な絶対位置を、安定的に測定することが可能である。なお、この際、補正部140で上位データに対する補正に使用される補正値rは、予め測定されたズレ量Δpに基づいて決定される。従って、補正値rが補正するズレ量Δpの成分は、再現性誤差であるともいえる。このエンコーダ100等のように、補正部140により、予め再現性誤差を補正した後に、区間特定部150により、非再現性誤差を補正することにより、誤差に対するロバスト性を飛躍的に向上させることが可能である。
 なお、3以上の位置データから絶対位置を算出する場合、エンコーダ100は、上位データ及び下位データの複数のペアのうち、いずれか1のペアについてその上位データを補正することにより、上記のような耐誤差性能を向上させることが可能である。しかしながら、本実施形態のエンコーダ100のように、全てのペアについて、補正部140による補正が行われる場合には、耐誤差性能をより一層向上させることが可能である。
 また、絶対位置を表さない位置データが上位データとして補正の対象となる場合、本実施形態では、誤差値rを特定するために、上位データと同程度の分解能を有して絶対位置算出部160により既に算出されている中間絶対位置に基づいて、補正部140は、その中間絶対位置に関連付けられた補正値rを取得して、上位データの補正を行う。従って、補正部140は、補正を十分に細やかな精度で行うことが可能であり、補正の精度を向上させることが可能である。
 なお、本実施形態で区間特定部150が使用した区間特定処理は、他の区間特定処理に比べて、誤差に対する許容値が高く、また、区間特定処理における負荷も少ない。そればかりか、本実施形態に係る区間特定処理は、下位区間を直接計算処理により求めることが可能であるため、補正部140で使用する補正値rの特定が容易である。従って、本実施形態に係る区間特定処理を使用する場合、エンコーダ100等は、より一層容易に製造することが可能である。
 <2.本実施形態に係るエンコーダの製造>
 以下では、本発明の一実施形態に係るエンコーダの製造等について、補正値rの生成方法等に触れつつ説明する。なお、補正値rの生成方法等は、下位データに対して上位データに生じるズレ量を適切に補正可能な補正値rを生成可能な方法であれば特に限定されるものではなく、以下で説明する生成方法等と同様な様々な生成方法であってもよい。なお、以下では、様々なバリエーションの中でも、より容易により正確な補正値rを生成可能な方法について例を挙げつつ説明することにする。
  (2-1.エンコーダ製造装置の構成)
 まず、図10を参照しつつ、本実施形態に係るエンコーダの製造装置200の構成の一例について説明する。図10は、本実施形態に係るエンコーダの製造装置の構成の一例について説明するための説明図である。
 図10に示すように、製造装置200は、位置データ取得部210と、区間特定部150と、絶対位置算出部160と、基準絶対位置算出部220と、ズレ量測定部230と、補正値生成部240と、記録部250と、制御部260とを有する。
 この製造装置200は、例えば、駆動装置DVに接続されて、駆動装置DVからエンコーダ100の内部で取得される位置データを取得し、駆動装置DVの制御装置CTに駆動装置DVを制御させる上位指令信号を出力する。従って、この製造装置200では、制御装置CTが製造装置200の上位指令信号に基づいて動力発生装置PGを制御する。ただし、製造装置200がエンコーダ100単体を製造する場合には、製造装置200が、図10に示す駆動装置DVの構成である制御装置CT及びモータMを有するなどのように変更が可能である。
 製造装置200が有する制御部260は、以下で説明する動作を実現すべく、上位指令信号を生成して制御装置CTに対して出力する。一方、この制御部260は、以下で説明する動作を実現すべく、製造装置200が有する他の構成の制御も行う。この制御部260以外の製造装置200の構成(位置データ取得部210・区間特定部150・絶対位置算出部160・基準絶対位置算出部220・ズレ量測定部230・補正値生成部240・記録部250)の各機能等については、重複説明を省略するために以下で説明する動作の例において、詳しく説明する。
  (2-2.エンコーダ製造装置の動作)
 次に、図11を参照しつつ、図10に例示したエンコーダの製造装置200による動作の一例について説明する。図11は、本実施形態に係るエンコーダの製造装置の動作の一例について説明するための説明図である。
 製造装置200は、補正の対象となり得る1又は2以上の上位データ(例えば第1位置データd1又は第2位置データd2)全てについて、図11に示す諸ステップを処理することにより、補正値rを生成してエンコーダ100の記憶部130に記録させる。この際、製造装置200は、補正の対象となる2の位置データのペア毎に、補正値rを特定することになる。よって、製造装置200は、複数のペアがある場合、つまり3以上の位置データを使用して絶対位置を測定する場合、その複数のペアそれぞれの補正対象となる上位データの分解能が低い順に、1つ1つのペアに対して図11に示す諸ステップを処理して、補正値rをエンコーダ100に格納する。そこで、以下では、最も分解能が低い上位データを有するペアに対して諸ステップが処理された場合を例に挙げて説明し、他のペアに対する諸ステップにおける相違点について適宜補足説明することにする。
 また、製造装置200は、移動体である回転シャフトSH2の移動可能範囲(つまり1回転)の全域に亘る補正値rを、図11に示す諸ステップを処理することにより生成してエンコーダ100に格納させる。そのために、製造装置200は、各絶対位置において、補正値rを生成する必要がある。ただし、補正値rが0となる場合も存在する。このように1回転の全域に亘る補正値rを生成する処理を、図11では、ステップS211における分岐によるループ処理として概念的に示している。この場合、ステップS211によりループ処理される諸ステップは、1の位置における補正値rを生成してエンコーダ100に格納させる処理を意味する。ただし、本実施形態に係るエンコーダの製造装置200の動作は、これに限られるものではなく、まず全域について補正値rを順次生成して、全域の補正値rが生成された後に、全ての補正値rをエンコーダ100に格納させることも可能である。この場合、ステップS209は、ステップS211によるループ処理の後に処理されることになる。
 つまり、1のペアの1の絶対位置に対する補正値rの生成等について以下では詳しく説明するが、その補正値rをエンコーダ100に格納させるタイミングや方法、及び、他のペアの補正値rの生成処理との相対関係におけるタイミングや方法は、以下で説明する動作の一例に特に限定されるものではなく、様々なバリエーションが考えられる。
 以下、具体的に、最も分解能が低い上位データを含むペアに対して、その上位データを補正する補正値rを生成して、エンコーダ100にその補正値rを格納させる過程について詳しく説明する。
 図11に示すように、まず、ステップS201が処理され、このステップS201では、製造装置200の位置データ取得部210が、エンコーダ100の位置データ取得部120が取得した上位データ及び下位データを取得する。そして、ステップS105とそれに続くステップS107に進む。
 ステップS105及びステップS107では、図3に示したエンコーダ100の動作における処理と同様に、製造装置200の区間特定部150が下位データの下位区間を上位データに対して特定し、製造装置200の絶対位置算出部160が、特定された下位区間と下位データとに基づいて絶対位置を生成する。このステップS105及びステップS107の処理後に生成される絶対位置は、補正値rが生成されるペアにより導出可能な最も分解能が高い絶対位置となる。従って、この絶対位置を表す絶対位置データは、例えば、第1位置データd1と第2位置データd2のペアが処理されている場合には、中間絶対位置を表す中間絶対位置データDmidとなり、第2位置データd2と第3位置データd3のペアが処理されている場合には、最終的な絶対位置を表す絶対位置データDabsとなる。
 ただし、この製造装置200におけるステップS105及びステップS107での処理では、エンコーダ100の内部における絶対位置算出過程とは異なり、補正部140による補正が行われていない位置データにより絶対位置が算出される。ここでは、このステップS105及びステップS107の処理後に絶対位置算出部160で算出される絶対位置を、補正が行われていない絶対位置という意味で補正前絶対位置ともいう。そして、算出された補正前絶対位置は、ズレ量測定部230に出力される。
 一方、これらのステップS105及びステップS107の処理後(これらの処理前又は同時処理であってもよい。)は、ステップS203が処理される。
 ステップS203では、基準絶対位置算出部220が、ステップS201で取得された下位データを取得し、その下位データに基づいて、上位データに含まれるズレ量を含まない基準となる真の絶対位置を算出する。基準絶対位置算出部220は、例えば、所定のタイミングから下位区間をカウントし、そのカウントした値と下位データが表す区間内位置とに基づいて、真の絶対位置を算出することが可能である。そして、算出された真の絶対位置は、ズレ量測定部230に出力される。ステップS203の処理後はステップS205に進む。
 ステップS205では、ズレ量測定部230が、ステップS107で算出された補正前絶対位置と、ステップS203で算出された真の絶対位置とに基づいて、ズレ量Δpを測定する。つまり、ズレ量測定部230は、真の絶対位置と補正前の絶対位置との差分を取り、ズレ量Δpを算出する。このステップS205の処理を図8を参照しつつ概念的に説明する。図8における絶対位置Pabsは、上記エンコーダ100の説明では補正後に算出される絶対位置であったが、ここでは真の絶対位置を表す。一方、図8における破線は、上記エンコーダ100の説明では図6に示す補正前の誤差を含む絶対位置であったが、ここでも補正前絶対位置を表す。すると、真の絶対位置Pabsと破線で示した補正前絶対位置との差分が、ズレ量Δpに相当することになり、ズレ量測定部230は、このズレ量Δpを測定する。なお、図8に示した例では、絶対位置は、0~15の16段階の位置データとして表される。従って、絶対位置は、15を超えると0に戻ることになる。このことは、ズレ量Δpについても同様であり、図8に示した例では、ズレ量Δpは、4と表される(0~15の値をとる)。この算出されたズレ量Δpは、補正値生成部240に出力され、ステップS207に進む。
 ステップS207では、補正値生成部240が、ステップS205で測定されたズレ量Δpに基づいて、そのズレ量Δpを補正可能な補正値rを生成する。図8に示した例では、上述の通りΔp=+4と測定される。一方、このズレ量Δpは、絶対位置における誤差であるため、下位データと同程度の分解能で表されている。そこで、補正値生成部240は、このズレ量Δpを下位データの上位データに対する分解能の倍率m(上位区間に対する分割数)で除算して、上位データと同程度の分解能に変換する。この上位データの分解能のズレ量Δp’は、図8に示す例では、倍率が4であるため、Δp’=4/4=1と算出される。次に、補正値生成部240は、この分解能変換したズレ量Δp’の符号を反転させて誤差rを生成する(r=-Δp’=-Δp/m)。この誤差rは、記録部250に出力され、ステップS209に進む。
 ステップS209では、記録部250が、ステップS207で生成された誤差rを、下位データよりも低分解能な絶対位置に関連付けて、エンコーダ100の記憶部130に記録する。そのために、記録部250は、下位データよりも低分解能な絶対位置を、エンコーダ100内部から取得してもよく、また、エンコーダ100から取得された上位データ等から生成してもよい。なお、本実施形態では、補正データは、上位データと同程度の分解能の絶対位置に関連付けられる。そこで、上位データが絶対位置を表した第1位置データd1である場合には、記録部250は、補正値rが生成された時点における上位データに関連付けられて、記憶部130に記録される。一方、上位データが絶対位置以外の第2位置データd2である場合には、記録部250は、エンコーダ100から上位データと同程度の絶対位置を表した中間絶対位置データDmidを取得し、その中間絶対位置に補正値rを関連付けて記憶部130に記録する。そして、ステップS211に進む。
 ステップS211では、上述の通り、1回転内全てのポジションに対して上記諸ステップが処理されたかを確認し、処理された場合には、動作を終了する一方、処理されていない場合には、ステップS213に進み、制御部260がモータMを所定量回転させた後、ステップS201以降の処理が繰り返されることになる。
 以上、本発明の一実施形態に係るエンコーダ100の製造装置200等について説明した。このような製造装置200によれば、上述のように高分解能な絶対位置を安定的に測定可能なエンコーダ100を容易に製造することが可能である。
 以上、添付図面を参照しながら本発明の実施形態について詳細に説明した。しかしながら、本発明はこれらの実施形態の例に限定されないことは言うまでもない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、様々な変更や修正を行うことに想到できることは明らかである。従って、これらの変更後や修正後の技術も、当然に本発明の技術的範囲に属するものである。
 尚、本明細書において、フローチャートに記述されたステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的に又は個別的に実行される処理をも含む。また時系列的に処理されるステップでも、場合によっては適宜順序を変更することが可能であることは言うまでもない。
 DV  駆動装置
 PG  動力発生装置
 M   モータ
 SH1,SH2  回転シャフト
 CT  制御装置
 100  エンコーダ
 110  ディスク
 120  位置データ取得部
 121  第1位置データ取得部
 122  第2位置データ取得部
 123  第3位置データ取得部
 130  記憶部
 131  第1記憶部
 132  第2記憶部
 140  補正部
 141  第1補正部
 142  第2補正部
 150  区間特定部
 151  第1区間特定部
 152  第2区間特定部
 160  絶対位置算出部
 161  第1絶対位置算出部
 162  第2絶対位置算出部
 200  製造装置
 210  位置データ取得部
 220  基準絶対位置算出部
 230  ズレ量測定部
 240  補正値生成部
 250  記録部
 260  制御部

Claims (9)

  1.  移動体が移動可能な上位区間における前記移動体の位置を表す上位データと、前記上位区間内で複数回繰り返される下位区間における前記移動体の位置を前記上位データよりも高分解能に表す下位データとを取得する位置データ取得部と、
     前記下位データに対して前記上位データにおいて生じ予め測定されたズレ量に基づいて予め生成された該ズレ量を補正可能な補正値が、前記移動体の前記下位データよりも低分解能な絶対位置に関連付けられて記録される記憶部と、
     前記位置データ取得部により前記上位データが取得された際の前記低分解能な絶対位置に基づいて、当該絶対位置に関連付けられた補正値を前記記憶部から取得し、当該補正値に基づいて、前記上位データを補正する補正部と、
     前記補正部が補正した上位データと、当該上位データが取得された際の前記下位データとに基づいて、当該下位データが取得された前記下位区間を、前記上位区間に対して特定する区間特定部と、
    を有する、エンコーダ。
  2.  少なくとも、前記区間特定部が特定した下位区間と、前記上位データが取得された際の下位データとに基づいて、前記移動体の前記下位データと同程度の分解能における絶対位置を算出する絶対位置算出部を更に有する、請求項1に記載のエンコーダ。
  3.  前記位置データ取得部は、前記移動体の移動可能範囲内を相異なる分割数で分割する複数の区間のそれぞれにおいて、該分割数が多くなるほど分解能が高くなる相異なる分解能により前記移動体の位置を表す3以上の位置データを取得し、
     前記記憶部には、分解能の高低において相隣接して前記上位データ及び前記下位データの関係にある2の位置データの複数のペアそれぞれについて、前記補正値が記録され、
     前記補正部は、前記複数のペアそれぞれについて、前記補正値に基づいて前記上位データに相当する位置データを補正し、
     前記区間特定部は、前記複数のペアそれぞれについて、前記補正部が補正した上位データと、当該上位データが取得された際の前記下位データとに基づいて、当該下位データが取得された前記下位区間を、前記上位区間に対して特定し、
     前記絶対位置算出部は、前記区間特定部が前記複数のペアそれぞれについて特定した区間全てと、最も分解能が高い位置データとに基づいて、前記最も分解能が高い位置データと同程度の分解能における前記移動体の絶対位置を算出する、請求項2に記載のエンコーダ。
  4.  前記記憶部には、前記複数のペアそれぞれの上位データに対して、該ペアの上位データと同程度の分解能の絶対位置に関連付けられて前記補正値が記録され、
     前記補正部は、前記複数のペアそれぞれに対して、当該ペア中の上位データと同程度の分解能の絶対位置に基づいて、当該ペア中の上位データを補正する前記補正値を取得する、請求項3に記載のエンコーダ。
  5.  前記絶対位置算出部は、前記2の位置データのペアの少なくとも1つに対して前記区間特定部で特定された下位区間と、前記区間特定部で既に下位区間が特定された前記ペアに含まれる位置データのうち最も分解能が高い下位データとに基づいて、当該下位データと同程度の分解能による中間的な絶対位置を算出し、
     前記補正部は、
     補正対象となる前記ペアに含まれる上位データが前記移動体の絶対位置を表す場合には、当該上位データが表す絶対位置に基づいて、当該上位データを補正する前記補正値を取得し、
     前記補正対象となるペアに含まれる上位データが前記移動体の絶対位置を表さない場合には、前記補正対象となるペアに含まれる上位データと同程度の分解能を有し前記絶対位置算出部で既に算出された中間的な絶対位置に基づいて、当該上位データを補正する前記補正値を取得する、請求項4に記載のエンコーダ。
  6.  前記上位区間は、前記移動体の移動可能範囲内で複数回繰り返され、
     前記記憶部には、相隣接する複数の前記上位区間内の上位データに対する補正値が、同一の値に設定されて記録される、請求項1に記載のエンコーダ。
  7.  移動体を移動可能範囲内で移動させるモータと、
     前記移動可能範囲内に含まれた上位区間における前記移動体の位置を表す上位データと、前記上位区間内で複数回繰り返される下位区間における前記移動体の位置を前記上位データよりも高分解能に表す下位データとを取得する位置データ取得部と、
     前記下位データに対して前記上位データにおいて生じ予め測定されたズレ量に基づいて予め生成された該ズレ量を補正可能な補正値が、前記移動体の前記下位データよりも低分解能な絶対位置に関連付けられて記録される記憶部と、
     前記位置データ取得部により前記上位データが取得された際の前記低分解能な絶対位置に基づいて、当該絶対位置に関連付けられた補正値を前記記憶部から取得し、当該補正値に基づいて、前記上位データを補正する補正部と、
     前記補正部が補正した上位データと、当該上位データが取得された際の前記下位データとに基づいて、当該下位データが取得された前記下位区間を、前記上位区間に対して特定する区間特定部と、
     少なくとも、前記区間特定部が特定した下位区間と、前記上位データが取得された際の下位データとに基づいて、前記移動体の前記下位データと同程度の分解能における絶対位置を算出する絶対位置算出部と、
     前記絶対位置算出部が算出した絶対位置に基づいて、前記モータを制御する制御装置と、
    を有する、駆動装置。
  8.  移動体が移動可能な上位区間における前記移動体の位置を表す上位データと、前記上位区間内で複数回繰り返される下位区間における前記移動体の位置を前記上位データよりも高分解能に表す下位データとを取得する位置データ取得ステップと、
     前記下位データに対して前記上位データにおいて生じ予め測定されたズレ量に基づいて予め生成された該ズレ量を補正可能な補正値が、前記移動体の前記下位データよりも低分解能な絶対位置に関連付けられて記録される記憶部から、前記位置データ取得ステップで前記上位データが取得された際の前記下位データよりも低分解能な絶対位置に基づいて、当該絶対位置に関連付けられた補正値を取得し、当該補正値に基づいて、前記上位データを補正する補正ステップと、
     前記補正ステップで補正した上位データと、当該上位データが取得された際の前記下位データとに基づいて、当該下位データが取得された前記下位区間を、前記上位区間に対して特定する区間特定ステップと、
    を有する、絶対位置算出方法。
  9.  移動体が移動可能な上位区間における前記移動体の位置を表す上位データと、前記上位区間内で複数回繰り返される下位区間における前記移動体の位置を前記上位データよりも高分解能に表す下位データとを取得する位置データ取得ステップと、
     前記位置データ取得部で取得した上位データ及び下位データに基づいて、当該下位データが取得された前記下位区間を、前記上位区間に対して特定する区間特定ステップと、
     少なくとも、前記区間特定ステップで特定した下位区間と、前記位置データ取得ステップで取得した下位データとに基づいて、前記移動体の前記下位データと同程度の分解能における絶対位置を算出する絶対位置算出ステップと、
     前記位置データ取得ステップで取得した下位データに基づいて、前記移動体の真の絶対値を算出する基準絶対位置算出ステップと、
     前記絶対位置算出ステップで算出された絶対位置と、前記基準絶対位置算出ステップで算出された真の絶対位置とに基づいて、前記下位データに対して前記上位データにおいて生じるズレ量を測定するズレ量測定ステップと、
     前記ズレ量測定ステップで測定されたズレ量に基づいて、該ズレ量を補正可能な補正値を生成する補正値生成ステップと、
     前記補正値生成ステップで生成された補正値を、前記移動体の前記下位データよりも低分解能な絶対位置に関連付けて、エンコーダ内の記憶部に記録する記録ステップと、
    を有する、エンコーダ製造方法。
PCT/JP2011/051108 2010-04-02 2011-01-21 エンコーダ、駆動装置、絶対位置算出方法及びエンコーダ製造方法 WO2011125357A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11765259.4A EP2554950B1 (en) 2010-04-02 2011-01-21 Encoder, drive device, absolute position calculation method, and encoder manufacturing method
JP2012509329A JP5408342B2 (ja) 2010-04-02 2011-01-21 エンコーダ、駆動装置、絶対位置算出方法及びエンコーダ製造方法
CN201180016560.0A CN102822636B (zh) 2010-04-02 2011-01-21 编码器、驱动装置以及绝对位置计算方法
US13/629,606 US8912928B2 (en) 2010-04-02 2012-09-28 Encoder, driving apparatus, method for calculating absolute position, and method for manufacturing encoder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010085800 2010-04-02
JP2010-085800 2010-04-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/629,606 Continuation US8912928B2 (en) 2010-04-02 2012-09-28 Encoder, driving apparatus, method for calculating absolute position, and method for manufacturing encoder

Publications (1)

Publication Number Publication Date
WO2011125357A1 true WO2011125357A1 (ja) 2011-10-13

Family

ID=44762324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051108 WO2011125357A1 (ja) 2010-04-02 2011-01-21 エンコーダ、駆動装置、絶対位置算出方法及びエンコーダ製造方法

Country Status (5)

Country Link
US (1) US8912928B2 (ja)
EP (1) EP2554950B1 (ja)
JP (1) JP5408342B2 (ja)
CN (1) CN102822636B (ja)
WO (1) WO2011125357A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151230A1 (ja) * 2014-04-01 2015-10-08 株式会社安川電機 エンコーダ、エンコーダ制御装置及びエンコーダの異常検出方法
WO2015151232A1 (ja) * 2014-04-01 2015-10-08 株式会社安川電機 エンコーダ、エンコーダ付きモータ、サーボシステム
KR102226760B1 (ko) * 2019-10-14 2021-03-12 세메스 주식회사 Oht의 비이클 제어 방법과 장치

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401361B (zh) * 2013-08-12 2015-07-22 展鹏科技股份有限公司 电机智能化磁编码系统及其工作方法
JP6334892B2 (ja) * 2013-10-30 2018-05-30 キヤノン株式会社 位置検出装置及びそれを有するレンズ装置及び撮影装置
JP5910958B2 (ja) * 2013-11-05 2016-04-27 株式会社安川電機 サーボシステム及びエンコーダ
CN103715963A (zh) * 2013-12-31 2014-04-09 山东新风光电子科技发展有限公司 一种基于绝对位置编码器的速度和位置信号抗干扰处理方法
JP6274153B2 (ja) * 2015-05-22 2018-02-07 株式会社安川電機 エンコーダ、コントローラ、モータ制御システム、ロボット制御システム、ロボット、データ送信方法、及び情報処理方法
US9477221B1 (en) * 2015-06-02 2016-10-25 Goodrich Corporation Hybrid architecture and method for absolute position to quadrature synthesis for motion detection and control
JP6268218B2 (ja) * 2016-05-17 2018-01-24 ミネベアミツミ株式会社 呼吸波形描画システム及び呼吸波形描画方法
JP6428817B2 (ja) * 2017-03-22 2018-11-28 株式会社安川電機 モータ制御システム、制御方法、エンコーダ及びモータ制御装置
CN109213109A (zh) * 2017-06-29 2019-01-15 沈阳新松机器人自动化股份有限公司 编码器分辨率检测方法
WO2019123594A1 (ja) * 2017-12-21 2019-06-27 三菱電機株式会社 モータ制御装置
JP6781226B2 (ja) * 2018-09-25 2020-11-04 ファナック株式会社 エンコーダ及び制御システム
JP7160737B2 (ja) * 2019-03-25 2022-10-25 ファナック株式会社 機械の制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225316A (ja) * 1983-06-06 1984-12-18 Toyoda Mach Works Ltd 回転形絶対値検出器を用いた絶対位置検出方法
JP3336396B2 (ja) 1994-03-29 2002-10-21 株式会社ニコン アブソリュートエンコーダ
JP2003121135A (ja) * 2001-10-10 2003-04-23 Futaba Corp リニヤスケールの読出装置
JP3551252B2 (ja) 1998-07-23 2004-08-04 株式会社安川電機 アブソリュートエンコーダ
JP2010025879A (ja) * 2008-07-24 2010-02-04 Mitsutoyo Corp アブソリュート型リニアエンコーダ、及び、その位置調整方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501227B2 (ja) * 1988-05-30 1996-05-29 ファナック株式会社 絶対位置エンコ―ダ
JP3772121B2 (ja) * 2002-02-28 2006-05-10 ファナック株式会社 エンコーダの信号処理装置
JP2005337843A (ja) * 2004-05-26 2005-12-08 Canon Inc 光学式エンコーダ
JPWO2007055092A1 (ja) * 2005-11-09 2009-04-30 株式会社安川電機 エンコーダ信号処理装置
JP4005096B2 (ja) * 2005-11-29 2007-11-07 ファナック株式会社 エンコーダの信号処理回路
GB0601174D0 (en) * 2006-01-20 2006-03-01 Renishaw Plc Multiple readhead apparatus
JP5083108B2 (ja) * 2008-08-06 2012-11-28 ヤマハ株式会社 制御データ発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225316A (ja) * 1983-06-06 1984-12-18 Toyoda Mach Works Ltd 回転形絶対値検出器を用いた絶対位置検出方法
JP3336396B2 (ja) 1994-03-29 2002-10-21 株式会社ニコン アブソリュートエンコーダ
JP3551252B2 (ja) 1998-07-23 2004-08-04 株式会社安川電機 アブソリュートエンコーダ
JP2003121135A (ja) * 2001-10-10 2003-04-23 Futaba Corp リニヤスケールの読出装置
JP2010025879A (ja) * 2008-07-24 2010-02-04 Mitsutoyo Corp アブソリュート型リニアエンコーダ、及び、その位置調整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2554950A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151230A1 (ja) * 2014-04-01 2015-10-08 株式会社安川電機 エンコーダ、エンコーダ制御装置及びエンコーダの異常検出方法
WO2015151232A1 (ja) * 2014-04-01 2015-10-08 株式会社安川電機 エンコーダ、エンコーダ付きモータ、サーボシステム
KR102226760B1 (ko) * 2019-10-14 2021-03-12 세메스 주식회사 Oht의 비이클 제어 방법과 장치

Also Published As

Publication number Publication date
EP2554950A4 (en) 2014-10-22
EP2554950B1 (en) 2016-01-20
JP5408342B2 (ja) 2014-02-05
EP2554950A1 (en) 2013-02-06
JPWO2011125357A1 (ja) 2013-07-08
US20130020917A1 (en) 2013-01-24
CN102822636A (zh) 2012-12-12
US8912928B2 (en) 2014-12-16
CN102822636B (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5408342B2 (ja) エンコーダ、駆動装置、絶対位置算出方法及びエンコーダ製造方法
JP5058334B2 (ja) 回転角度検出装置
JP5356979B2 (ja) 位置測定装置及び位置測定装置の動作方法
JP5945973B2 (ja) エンコーダ、エンコーダ付きモータ、サーボシステム、エンコーダの信号処理方法
JP6143885B2 (ja) ロータリエンコーダを自己較正するための方法
JPH0373808B2 (ja)
JP5995589B2 (ja) 補正値導出装置、変位量導出装置、制御装置、および補正値導出方法
WO2018190019A1 (ja) 位置検出装置及び位置検出方法
JP6103927B2 (ja) 位置検出装置、駆動制御装置及びレンズ装置
CN110617760B (zh) 旋转角检测装置的初始设定方法以及初始设定装置
JP5182309B2 (ja) 位置データ補正装置、エンコーダ、モータシステム及び位置データ補正方法
JPWO2018190018A1 (ja) 位置検出装置及び位置検出方法
JP2012118064A (ja) インクリメンタル位置測定機構の位置信号を監視するための監視ユニットおよび方法
JP7240387B2 (ja) 角度検出器
US9372100B2 (en) Digital opto-electric pulse application method for correcting bit error of vernier-type optical encoder
CN116892970B (zh) 基于时间戳寄存器评判磁编码器稳定性的方法及电机
JP2013238431A (ja) レゾルバ装置
KR101271828B1 (ko) 차량 조향각 감지 장치를 이용한 조향각 산출 방법
JP3685944B2 (ja) エンコーダ装置の高精度化方法及び高精度エンコーダ装置
JP4917185B1 (ja) アブソリュートエンコーダ
JP6951804B2 (ja) エンコーダ開発用信号発生装置
JP5341267B1 (ja) 変位量検出装置、およびその誤差・検出・評価方法
CN104718432A (zh) 电磁感应式位置检测器的检测位置校正方法
WO2021140937A1 (ja) エンコーダ開発用信号発生装置
TWI521188B (zh) Error Correction Method for Position Detector

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016560.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509329

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2916/KOLNP/2012

Country of ref document: IN

Ref document number: 2011765259

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE