WO2011125308A1 - 永久磁石形回転電機の回転子 - Google Patents

永久磁石形回転電機の回転子 Download PDF

Info

Publication number
WO2011125308A1
WO2011125308A1 PCT/JP2011/001860 JP2011001860W WO2011125308A1 WO 2011125308 A1 WO2011125308 A1 WO 2011125308A1 JP 2011001860 W JP2011001860 W JP 2011001860W WO 2011125308 A1 WO2011125308 A1 WO 2011125308A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
magnetic pole
center
type rotating
Prior art date
Application number
PCT/JP2011/001860
Other languages
English (en)
French (fr)
Inventor
良 宇津野
英男 廣瀬
享 谷口
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201180001660.6A priority Critical patent/CN102369650B/zh
Priority to JP2011537465A priority patent/JP5533879B2/ja
Publication of WO2011125308A1 publication Critical patent/WO2011125308A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a rotor in which a permanent magnet of a permanent magnet type rotary electric machine is embedded, and to a rotor of a permanent magnet type rotary electric machine that can suppress an excessive increase in cogging torque.
  • Permanent magnet type rotating electrical machines are roughly classified into two types according to the magnet arrangement.
  • a surface magnet type rotating electrical machine having a structure in which a permanent magnet is attached to the surface of the rotor core, and a magnet insertion slot provided in the rotor core, there is permanent.
  • a permanent magnet In a surface magnet type rotary electric machine, a permanent magnet is usually bonded and fixed to the surface of a rotor core with an adhesive. However, when the rotor is rotated at a high speed, the centrifugal force applied to the permanent magnet is increased accordingly, and the permanent magnet may be peeled off and scattered from the rotor core.
  • the embedded magnet type rotating electric machine has an advantage that the permanent magnet is not peeled off because the permanent magnet is embedded in the rotor core, and the durability is good.
  • the rotor core is usually configured by laminating electromagnetic steel plates.
  • this rotor core is generally a bolt in which end plates 101 made of a nonmagnetic material are disposed at both ends in the axial direction of a rotor core 100 on which electromagnetic steel plates are laminated, and these are penetrated.
  • the nut 103 is screwed onto the nut 102 and tightened to be integrated.
  • rectangular magnet mounting holes are equally spaced by the number of rotor poles in the circumferential direction of the rotor core.
  • Permanent magnets are mounted in each of the magnet mounting holes so that the magnetic pole surfaces are in the radial direction of the core and adjacent magnetic poles are different, and the outer peripheral shape of the core magnetic pole portion formed on the outer peripheral side magnetic pole surface of each permanent magnet is Permanent magnet type rotor of permanent magnet type motor in which the distance from the center of the core is the largest in the center in the circumferential direction and the distance between the magnetic poles is the smallest from the center of the core in the arc direction for each core pole part Has been proposed (see, for example, Patent Document 1).
  • At least one of the inner rotor and the outer rotor is formed by integrating electromagnetic steel sheets by a plurality of welds.
  • a rotating electrical machine has been proposed in which the plurality of welds in the integrated rotor are provided at positions where the integrated value of the magnetic flux density associated with the rotation of the other rotor that alternates the plane surrounded by the weld is zero. (For example, refer to Patent Document 2).
  • a plurality of permanent magnets are respectively provided inside the rotor core.
  • the iron core is formed by laminating a plurality of electromagnetic steel plates, and is on the outer periphery of the iron core, and the magnetic pole surface of the iron core is oriented in the radial direction of the rotor.
  • a permanent magnet type motor that is welded in parallel with the rotation axis of the rotor only at a position in the radial direction from the magnetic pole center of each of the plurality of permanent magnets (see, for example, Patent Document 3).
  • a permanent magnet rotating electrical machine that can reduce cogging torque and is excellent in workability and mechanical strength
  • it is arranged on the inner periphery of the stator so as to be rotatable via a rotating gap, and in a block shape.
  • a plurality of permanent magnets each having a trapezoidal shape and an arc shape with the convex portion facing the stator, are embedded inside the iron core so as to be circumferential and the polarities of the permanent magnets are alternately arranged.
  • a permanent magnet rotating electrical machine provided with a groove for generating magnetic fluctuations for reducing cogging torque caused by magnetic fluctuations during rotation of the stator and the rotor (see, for example, Patent Document 4). .
  • JP 2000-197292 A Japanese Patent No. 4220324 Japanese Patent No. 3778271 Japanese Patent No. 3807214
  • the outer peripheral shape of the core magnetic pole portion formed on each outer peripheral side magnetic pole surface of the permanent magnet is the distance from the center of the core at the center in the circumferential direction. It has a rotor shape that has an arc shape for each core magnetic pole part so that the distance from the center of the core becomes the smallest at the interpole part, and the welding position is the interpole part on the outer periphery of the iron core magnetic pole part, Welding at this position is a place where the effect on the cogging torque is small but difficult to weld, and there is an unsolved problem that it takes time and cost in the manufacturing process.
  • the plurality of welded portions in the rotor are positions at which the integral value associated with the rotation of the other rotor that alternates the plane surrounded by the welded portions becomes zero. It is said.
  • the inner rotor side it indicates that the gap between each pole pair is welded, and since there are only the number of pole pairs, there is a problem with the rotor welding strength especially in rotating electrical machines with a small number of poles. There is an unresolved issue that there is.
  • a permanent magnet rotating electrical machine that reduces the overall cogging torque by providing a groove at a position where the cogging torque is generated in order to cancel the cogging torque.
  • the rotor is shown.
  • the cogging torque may be increased in consideration of manufacturing variations. Further, the cogging torque may be increased even when the step skew structure is used.
  • the position of the groove is near the center position of the magnetic pole, and there is a groove that generates a cogging torque of almost the same phase as the cogging torque, but a clear position is not shown.
  • there are unsolved problems such as unclear methods for integrating laminated electromagnetic steel sheets as a rotor with low cost and mechanical strength.
  • An object of the present invention is to provide a rotor of a permanent magnet type rotating electrical machine having a weld groove that can be manufactured at low cost without a large fluctuation in induced voltage.
  • a rotor of a permanent magnet type rotating electrical machine is a permanent magnet type rotation having a stator wound with a coil and a rotor embedded with a permanent magnet. This is an electric rotor. And, on the outer peripheral surface of the rotor core constituted by laminating electromagnetic steel plates, a line connecting the center point and the center between the adjacent magnetic poles constituted by the embedded permanent magnets is represented by an electrical angle. As a reference for the angle ⁇ ⁇ / 6 ⁇ ⁇ / 2 [rad] and ⁇ / 2 ⁇ ⁇ 5 ⁇ / 6 [rad] A welding groove extending in the axial direction is formed in one of the ranges.
  • the cross-sectional shape may be any of a bent shape such as a V shape and a U shape, and a flat plate shape.
  • the rotor of the permanent magnet type rotating electrical machine includes a first laminated body constituted by laminating electromagnetic steel sheets, and a second laminated body constituted by turning over the electromagnetic steel sheets. The stacked grooves are arranged in a straight line in the axial direction to form a step skew structure.
  • the rotor of the permanent magnet type rotating electrical machine is such that the permanent magnet has a rotor outer peripheral side magnetic pole surface constituting a magnetic pole, the rotor center point and the magnetic pole circle. It arrange
  • the permanent magnet is disposed on a line orthogonal to a magnetic pole center line passing through a center point of the rotor and a circumferential center of the magnetic pole. Has been.
  • a rotor of a permanent magnet type rotating electrical machine is a rotor of a permanent magnet type rotating electrical machine having a stator around which a coil is wound and a rotor in which a permanent magnet is embedded. . And, on the rotor core constituted by laminating the electromagnetic steel plates of the rotor, the rotor outer peripheral side magnetic pole surface of the permanent magnet constituting the magnetic pole passes through the center point of the rotor and the circumferential center of the magnetic pole. An electric line connecting the center point and the center between adjacent magnetic poles composed of embedded permanent magnets on the outer peripheral surface of the rotor core is arranged so as to face each other with the magnetic pole center line interposed therebetween.
  • a welding groove extending in the axial direction is formed on the outer peripheral surface within the range of.
  • cross-sectional shape is made into bent shapes, such as V shape and U shape.
  • a rotor of a rotating electrical machine can be provided.
  • FIG. 1 It is sectional drawing of the rotor core of FIG. It is a characteristic diagram which shows the relationship between arrangement angle (theta) (electrical angle) of the welding groove on the basis of the line which connects the rotation center and center position between magnetic poles in 2nd Embodiment, and cogging torque. It is a characteristic diagram which shows the relationship between the arrangement
  • FIG. 1 is a cross-sectional view showing a first embodiment when a rotor according to the present invention is applied to a permanent magnet type rotating electrical machine.
  • reference numeral 1 denotes a permanent magnet type rotating electric machine constituted by an embedded magnet type rotating electric machine.
  • This permanent magnet type rotating electrical machine 1 is opposed to, for example, a cylindrical stator 2 and an inner peripheral surface of the stator 2 via a predetermined gap 3, and is attached to a rotating shaft 4 and supported rotatably. And a rotor 5.
  • the stator 2 has a stator core 6 formed by laminating electromagnetic steel sheets.
  • the stator core 6 includes a cylindrical yoke portion 7 and a large number of stator slots 8 formed on the inner peripheral surface of the yoke portion 7 so as to extend in the radial direction at a predetermined interval in the circumferential direction.
  • the teeth portion 9 is formed between the stator slots 8.
  • the rotor 5 has a rotor core 11 formed by laminating electromagnetic steel plates.
  • the rotor core 11 is configured such that, for example, six magnetic poles 12 are formed at equal intervals in the circumferential direction, and the radial magnetization direction is reversed between adjacent magnetic poles.
  • the magnetic pole 12 has two permanent magnet slots 13a and 13b penetrating in the axial direction so that the inner angle ⁇ having an apex on the inner side from the outer peripheral surface of the rotor core 11 becomes an obtuse angle is V-shaped. Is formed.
  • These permanent magnet slots 13 a and 13 b are formed symmetrically about the circumferential center line Lc of the magnetic pole 12.
  • rare earth permanent magnets 14a and 14b are inserted into the permanent magnet slots 13a and 13b and fixed by a fixing means such as an adhesive. Therefore, the outer peripheral side magnetic pole surfaces of the permanent magnets 14a and 14b face each other across the center line Lc.
  • a welding groove 15 having a semicircular cross section is formed on the outer peripheral surface of the rotor core 11 constituting the magnetic pole 12 so as to extend in the axial direction.
  • the weld groove 15 suppresses an excessive increase in cogging torque, and a boundary line Lb that is the center between the magnetic pole 12 that passes through the rotation center O and is adjacent to the clockwise direction, for example, so that there is no large variation in induced voltage.
  • the angle ⁇ is formed at a position where ⁇ / 6 ⁇ ⁇ 5 ⁇ / 6.
  • the permanent magnet type rotating electrical machine 1 since the permanent magnet type rotating electrical machine 1 has the configuration of the embedded permanent magnet type rotating electrical machine, the middle part of the permanent magnets 14a and 14b of the rotor 5 is the d-axis, The boundary position with the adjacent magnetic pole 12 is the q axis, and the rotor 5 can be driven to rotate by energizing an exciting coil (not shown) and controlling the dq axis current, for example.
  • stacked electromagnetic steel plate which comprises the rotor core 11 is set to angle (theta) in the range of (pi) / 6 ⁇ (theta) ⁇ 5 (pi) / 6. Therefore, an excessive increase in the cogging torque is suppressed, there is no large fluctuation of the induced voltage, and the installation position of the welding groove 15 is the cylindrical surface of the rotor core 11, which is manufactured at a low cost because no special processing is required. Can do.
  • the fluctuation range of the cogging torque can be within ⁇ 10%.
  • an excessive increase in cogging torque can be suppressed.
  • the welding groove 15 is formed at the central position between the magnetic poles 12, it becomes an obstacle to the magnetic flux that tends to flow through the central portion between the magnetic poles during the load operation of the permanent magnet type rotating electrical machine 1, and the reluctance torque is effectively increased. Since it cannot be used, it leads to deterioration of characteristics.
  • channel 15 is formed in any one angle range of (pi) / 2 ⁇ (theta) ⁇ 5 (pi) / 6 [rad].
  • a step skew structure in which the magnetic poles 12 are shifted by 2 ⁇ can be formed by the first stacked body 21a and the second stacked body 21b.
  • the electromagnetic steel sheets are processed using one press mold. This makes it possible to reduce mold costs.
  • the welding groove 15 of the 1st laminated body 21a and the 2nd laminated body 21b becomes a linear form, welding can be performed easily.
  • the rotor since the rotor has a two-stage skew structure, the cogging torque can be further suppressed.
  • FIG. 6 shows the result of simulating the relationship between the represented angle ⁇ and the cogging torque.
  • the cogging torque can be reduced by half compared to FIG. 2 of the first embodiment described above.
  • the fluctuation range of the cogging torque [Nm] is suppressed within 1% of the rated torque. can do.
  • the fluctuation range of the cogging torque should be within 1% of the rated torque.
  • an excessive increase in cogging torque can be suppressed, and the cogging torque itself can be reduced.
  • the induced voltage fluctuation is at least 3% or less. It is possible to prevent large fluctuations in
  • the key groove 22 is linear in the axial direction even in the case of a step skew structure. It becomes possible to play a role of positioning during welding.
  • the rotor 5 has a two-stage skew structure.
  • the present invention is not limited to this. It is possible to configure the rotor 5 having a three-stage skew structure including the three stacked bodies and a four-stage skew structure including the fourth stacked bodies.
  • FIG.8 (a) A welding groove 31 having a semi-elliptical cross section, a welding groove 32 having a rectangular cross section shown in FIG. 8B, a welding groove 33 having a W-shaped cross section shown in FIG. Can be applied.
  • the depth of the welding groove from the outer periphery of the rotor be as shallow as possible.
  • the width of the welding groove in the rotation direction on the outer periphery of the rotor is preferably as narrow as possible, and more preferably a shape equal to or smaller than the slot opening width of the stator 2.
  • the permanent magnet 41 is arranged in a U-shaped cross section that is curved so that the radius of the magnetic pole center position becomes the smallest as shown in FIG. 9A, or as shown in FIG.
  • a plurality of permanent magnets 42a to 42c circumscribing can be arranged.
  • the outer peripheral side magnetic pole surface of the permanent magnet is disposed so as to face each other with the center line Lc of the magnetic pole 12 in between, it can have any shape such as a V shape or a U shape.
  • a plate-shaped permanent magnet 43 along a direction orthogonal to the center line of the magnetic pole may be arranged.
  • this flat permanent magnet 43 it is necessary to form the arrangement angle ⁇ (electrical angle) of the welding groove 15 at a position excluding ⁇ / 2 as described above when the step skew structure is used.
  • the angle ⁇ (electrical angle) at which the welding groove 15 is disposed is preferably formed at a position excluding ⁇ / 2.
  • the present invention specifies an arrangement range of the welding grooves of the laminated electromagnetic steel sheet, and suppresses an excessive increase in cogging torque even when there are variations in the welding groove position and the welding process during manufacturing. It is possible to provide a rotor of a permanent magnet type rotating electrical machine that can be manufactured at low cost without large fluctuations in induced voltage.
  • SYMBOLS 1 Permanent magnet type rotary electric machine, 2 ... Stator, 3 ... Air gap, 4 ... Rotary shaft, 5 ... Rotor, 6 ... Stator core, 12 ... Magnetic pole, 13a, 13b ... Permanent magnet slot, 14a, 14b ... Permanent Magnets 15 ... welded grooves 21a ... first laminated body 21b ... second laminated bodies 22 ... key grooves 31-33 ... welded grooves 41, 42a-42c, 43 ... permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 製造時における溶接溝位置及び溶接にバラツキがあった場合でも、コギングトルクの過大な増加を抑制し、大きな誘起電圧の変動が無く、安価に製造可能な溶接溝を持つ永久磁石形回転電機の回転子を提供する。コイルを巻装した固定子(2)と、永久磁石(14a),(14b)が埋め込まれた回転子5とを有する永久磁石形回転電機(1)の回転子であって、電磁鋼板を積層して構成される回転子コア(11)の外周面における、中心点と埋設された永久磁石で構成される磁極の隣接する磁極との間の中心とを結ぶ線を電気角で表される角度θの基準とするとき、π/6<θ<π/2[rad]及びπ/2<θ<5π/6[rad]の何れか一方の範囲内に軸方向に延長する溶接溝(15)が形成されている。

Description

永久磁石形回転電機の回転子
 本発明は、永久磁石形回転電機の永久磁石が埋め込まれた回転子に関し、コギングトルクの過大な増加を抑制することができる永久磁石形回転電機の回転子に関する。
 近年、電動モータの高効率化のため、従来から用いられている誘導電動機に代えて、永久磁石を用いた永久磁石形回転電機が注目を浴び、その適用が拡大している。
 永久磁石形回転電機は磁石配置によって2種類に大別され、回転子コアの表面に永久磁石を貼り付けた構成の表面磁石形回転電機と、回転子コアに磁石挿入スロットを設け、そこに永久磁石を挿入する埋込磁石形回転電機とがある。
 表面磁石形回転電機においては、通常、回転子コアの表面に永久磁石を接着剤で接着して固定するようにしている。しかしながら、回転子を高速回転させると、これに応じて永久磁石に掛かる遠心力が大きくなり、永久磁石が回転子コアから剥がれて飛散することがある。
 これに対して埋込磁石形回転電機では、永久磁石が回転子コア内に埋め込まれていることから永久磁石が剥がれることはなく、耐久性が良い利点がある。
 このような埋込磁石形回転電機において、回転子コアは通常電磁鋼板を積層して構成されている。この回転子コアは、一般的には、図10に示すように、電磁鋼板が積層された回転子コア100の軸方向両端に非磁性材料の端板101を配置し、これらを貫通させたボルト102にナット103を螺合させて締めつけることで一体化するようにしている。
 このような構成とすることで、単に積層された複数の電磁鋼板を一体化するだけではなく、端板にバランスウェイトを取付又は端板を削ることで回転子の静的バランスを保持することが可能となる。
 しかし,このボルト締めによる方法では、回転子の外径が大きくなるほど非磁性材料の端板の外径も大きくなることから非磁性材料の端板の使用量が増加し、また回転子の軸方向が長くなるほど長い締め付けボルトが必要となるため製造コストが嵩むことになる。また、回転子の軸方向全長が長くなり、回転子質量も大きくなってしまう。
 この問題点を解決するために、ボルト締めに代えて、電磁鋼板の外周面を溶接することが実施されている。
 例えば、コスト高を招くことなく、コギングトルクが小さく、振動や騒音、ひいては回転むらを小さくできることを目的として、回転子鉄心の円周方向に回転子の極数分等間隔に矩形の磁石装着孔を設け、磁石装着孔の各々に磁極面を鉄心径方向として互いに隣接する磁極が異なるように永久磁石を装着し、永久磁石の各々の外周側磁極面に形成される鉄心磁極部の外周形状を、周方向中央部で鉄心中心よりの距離が最も大きくなり、磁極間部で鉄心中心よりの距離が最も小さくなるような鉄心磁極部毎に円弧状とした永久磁石型電動機の永久磁石型回転子が提案されている(例えば、特許文献1参照)。
 また、磁束交番により誘導電流が流れて発生するジュール損を抑え、高いモータ効率を実現することを目的として、インナーロータ、アウターロータの少なくとも1つは、電磁鋼板を複数の溶接部により一体化すると共に、一体化したロータにおける複数の溶接部は、溶接部で囲まれた平面を交番する他方のロータの回転に伴う磁束密度の積分値がゼロとなる位置に設けた回転電機が提案されている(例えば、特許文献2参照)。
 さらに、渦電流の発生を極めて低く抑えることができ、また内部に配置される永久磁石のレイアウトを自由に構成することができることを目的として、ロータの鉄心の内部に、複数の永久磁石が、それぞれの磁極面がロータの半径方向を向くように、ロータの回転軸を中心に配置され、前記鉄心は、複数の電磁鋼板が積層されて形成されるとともに、前記鉄心の外周上にあって、かつ前記複数の永久磁石のそれぞれの磁極中心から前記半径方向にある位置においてのみ、前記ロータの回転軸と平行に溶接された永久磁石型モータが提案されている(例えば、特許文献3参照)。
 さらにまた、コギングトルクを低減でき、加工性、機械強度に優れた永久磁石回転電機を提供することを目的として、固定子の内周に回転空隙を介して回転可能に配置されるとともに、ブロック形状、台形状及び凸部が固定子側を向くアーク形状のいずれかの形状からなる複数個の永久磁石が鉄心内部に円周状にかつ前記永久磁石の極性が交互になるように埋込配置された回転子を有し、前記鉄心の表面であって、前記鉄心の外周部の前記永久磁石の周方向幅の外面との間における部分かつ前記永久磁石の磁極の中心付近に対応する位置には、前記固定子と前記回転子の回転時の磁気変動によって生じるコギングトルクの低減のための磁気変動を生じさせる溝が設けられている永久磁石回転電機が提案されている(例えば、特許文献4参照)。
特開2000-197292号公報 特許第4220324号公報 特許第3778271号公報 特許第3807214号公報
 しかしながら、上記特許文献1に記載された従来例にあっては、永久磁石のそれぞれの外周側磁極面に形成される鉄心磁極部の外周形状が、周方向中央部で鉄心中心よりの距離か最も大きくなり、極間部で鉄心中心よりの距離が最も小さくなるように鉄心磁極部毎の円弧状をなしている回転子形状を有し、溶接位置は鉄心磁極部外周の極間部としており、この位置での溶接は、コギングトルクへの影響は少ないが溶接し難い場所であり、製造過程において時間とコストが掛かるという未解決の課題がある。
 また、上記特許文献2に記載された従来例にあっては、ロータにおける複数の溶接部は、該溶接部で囲まれた平面を交番する他方のロータの回転に伴う積分値がゼロとなる位置としている。インナーロータ側に着目した場合、極対間毎の極間部を溶接することを示しており、溶接個所が極対数しか存在しないことから、特に極数が少ない回転電機ではロータの溶接強度に関して問題があるという未解決の課題がある。
 さらに、上記特許文献3に記載された従来例にあっては、溶接部が永久磁石のそれぞれの磁極中心から半径方向にある位置においてのみ、ロータの回転軸と平行に溶接するようにしており、磁石形状が一文字などに限定されており、また、コギングトルクを低減させるために2段以上の段スキューを設けた回転子構造では溶接が困難となるという未解決の課題がある。
 さらにまた、上記特許文献4に記載された従来例にあっては、コギングトルクを打ち消すために、コギングトルクが発生する位置に溝を設けることで、全体のコギングトルクを低減させる永久磁石回転電機の回転子を示している。しかしながら、製造時のバラツキを考慮した場合、コギングトルクが大きくなる可能性がある。また、段スキュー構造とした場合もコギングトルクが大きくなる可能性がある。溝の位置は、磁極の中心位置付近であり、コギングトルクと同じ次数でほぼ逆相のコギングトルクを発生させる溝とあるが明確な位置は示されていない。さらにリラクタンストルクを有効に活用できる2枚の磁石で1極を構成するV字形状の回転子構造については明確でない。さらにまた、積層された電磁鋼板を安価、かつ機械強度をもつ回転子として一体化する方法が明確でない等の未解決の課題がある。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、製造時における溶接溝位置及び溶接にバラツキがあった場合でも、コギングトルクの過大な増加を抑制し、大きな誘起電圧の変動が無く、安価に製造可能な溶接溝を持つ永久磁石形回転電機の回転子を提供することを目的としている。
 上記目的を達成するために、本発明の一の形態に係る永久磁石形回転電機の回転子は、コイルを巻装した固定子と、永久磁石が埋め込まれた回転子とを有する永久磁石形回転電機の回転子である。そして、電磁鋼板を積層して構成される回転子コアの外周面における、中心点と埋設された永久磁石で構成される磁極の隣接する磁極との間の中心とを結ぶ線を電気角で表される角度θの基準とするとき、
 π/6<θ<π/2[rad]及びπ/2<θ<5π/6[rad]
の何れか一方の範囲内に軸方向に延長する溶接溝が形成されている。
 ここで、永久磁石としては、断面形状がV字形状、U字形状等の屈曲形状や平板形状の何れであってもよい。
 また、本発明の他の形態に係る永久磁石形回転電機の回転子は、電磁鋼板を積層して構成される第1の積層体と、前記電磁鋼板を裏返して積層して構成される第2の積層体とを互いの前記溶接溝を軸方向に直線状に配置して段スキュー構造としている。
 さらに、本発明の他の形態に係る永久磁石形回転電機の回転子は、前記永久磁石が、磁極を構成する永久磁石の回転子外周側磁極面が前記回転子の中心点と前記磁極の円周方向中心を通る磁極中心線を挟んで対向するように配置されている。
 また、本発明の他の形態に係る永久磁石形回転電機の回転子は、前記永久磁石が、前記回転子の中心点と前記磁極の円周方向中心を通る磁極中心線と直交する線上に配置されている。
 また、本発明の一の形態に係る永久磁石形回転電機の回転子は、コイルを巻装した固定子と、永久磁石が埋め込まれた回転子とを有する永久磁石形回転電機の回転子である。そして、前記回転子の電磁鋼板を積層して構成される回転子コアに、磁極を構成する永久磁石の回転子外周側磁極面が前記回転子の中心点と前記磁極の円周方向中心を通る磁極中心線を挟んで対向するように配置され、前記回転子コアの外周面における、中心点と埋設された永久磁石で構成される磁極の隣接する磁極との間の中心とを結ぶ線を電気角で表される角度θの基準とするとき、
 π/6<θ<5π/6[rad]
の範囲内の外周面に軸方向に延長する溶接溝が形成されている。
 ここで、永久磁石としては、断面形状がV字形状、U字形状等の屈曲形状とされている。
 本発明によれば、製造時において、溶接溝位置及び溶接工程にバラツキがあっても、コギングトルクの過大な増加を抑制し、大きな誘起電圧の変動がなく、安価に製造が可能な永久磁石形回転電機の回転子を提供することができる。
本発明の第1の実施形態を示す永久磁石形回転電機の1磁極分を示すモデル図である。 第1の実施形態における回転中心と磁極間の中心位置とを結ぶ線を基準とする溶接溝の配置角度θ(電気角)とコギングトルクとの関係を示す特性線図である。 第1の実施形態における回転中心と磁極間の中心位置とを結ぶ線を基準とする溶接溝の配置角度θ(電気角)と誘起電圧との関係を示す特性線図である。 本発明の第2の実施形態を示す回転子の側面図である。 図4の回転子コアの断面図である。 第2の実施形態における回転中心と磁極間の中心位置とを結ぶ線を基準とする溶接溝の配置角度θ(電気角)とコギングトルクとの関係を示す特性線図である。 第2の実施形態における回転中心と磁極間の中心位置とを結ぶ線を基準とする溶接溝の配置角度θ(電気角)と誘起電圧との関係を示す特性線図である。 溶接溝の変形例を示す拡大断面図である。 回転子の永久磁石形状の変形例を示す図である。 従来例の回転子を示す側面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は本発明に係る回転子を永久磁石形回転電機に適用した場合の第1の実施形態を示す断面図である。
 この図1において、1は埋込磁石形回転電機で構成されている永久磁石形回転電機である。この永久磁石形回転電機1は、例えば円筒状の固定子2と、この固定子2の内周面に所定の空隙3を介して対向し、回転軸4に取付けられて回転自在に支持された回転子5とを備えている。
 固定子2は、電磁鋼板を積層して形成した固定子コア6を有する。この固定子コア6は、円筒状のヨーク部7と、このヨーク部7の内周面に円周方向に所定間隔を保って半径方向に延長して形成された多数の固定子スロット8と、これら固定子スロット8間に形成されたティース部9とから構成されている。
 回転子5は、電磁鋼板を積層して形成された回転子コア11を有する。この回転子コア11は、例えば円周方向に等間隔で6個の磁極12が形成され、隣接する磁極間で半径方向の着磁方向が逆となるように設定されている。
 磁極12には、回転子コア11の外周面から内側に頂部が回転中心側となる内側角φが鈍角のV字形状となるように2つの永久磁石スロット13a及び13bが軸方向に貫通して形成されている。これら永久磁石スロット13a及び13bは、磁極12の円周方向の中心線Lcを中心として線対称に形成されている。各永久磁石スロット13a及び13bには、例えば希土類の永久磁石14a及び14bが挿通されて接着剤等の固定手段で固定されている。したがって、永久磁石14a及び14bの外周側磁極面が中心線Lcを挟んで互いに対向している。
 また、磁極12を構成する回転子コア11の外周面に断面半円状の溶接溝15が軸方向に延長して形成されている。この溶接溝15は、コギングトルクの過大な増加を抑制し、大きな誘起電圧の変動が無いように、回転中心Oを通り例えば時計方向側に隣接する磁極12との間の中心となる境界線Lbを基準(0rad)とする電気角で表される角度θを考えたときに、角度θがπ/6<θ<5π/6の範囲となる位置に形成されている。
 このように、上記第1の実施形態によると、永久磁石形回転電機1が埋込永久磁石形回転電機の構成を有するので、回転子5の永久磁石14a及び14bの中間部がd軸となり、隣接する磁極12との境界位置がq軸となって、励磁コイル(図示せず)に通電して例えばd-q軸電流制御することにより、回転子5を回転駆動することができる。
 上記構成を有する第1の実施形態では、回転子コア11を構成する積層された電磁鋼板を溶接する溶接溝15をπ/6<θ<5π/6の範囲内の角度θに設定しているので、コギングトルクの過大な増加を抑制し、大きな誘起電圧の変動がなく、さらに溶接溝15の設置位置は回転子コア11の円筒面であり、特殊な加工を必要としないので低コストで製造することできる。
 すなわち、一例として固定子スロット8の数を36とし、回転子5の磁極12の数を6とした永久磁石形回転電機1を用いて、溶接溝15を形成する角度θとコギングトルクとの関係をシミュレーションした結果を図2に示す。この図2から明らかなように、溶接溝15をπ/6<θ<5π/6の範囲に設けることにより、コギングトルク[Nm]の変動幅を±10%以内に抑制することができる。回転電機の定格トルクに対しては約2%である。このため、溶接溝15の製造時に溶接溝15の形成位置がずれたり、溶接溝15での溶接工程にバラツキがあったりしても、コギングトルクの変動幅は±10%の範囲内に収まることになり、コギングトルクの過大な増加を抑制することができる。
 また、上記と同様の固定子スロット数36及び回転子5の磁極数6の永久磁石形回転電機1を用いて、溶接溝15を形成する角度θと誘起電圧[V]との関係をシミュレーションした結果を図3に示す。この図3から明らかなように、溶接溝15をπ/6<θ<5π/6の範囲に設けることにより、誘起電圧の変動幅は3%以下に抑制することができる。このため、溶接溝15の製造時に溶接溝15の形成位置がずれたり、溶接溝15での溶接工程にバラツキがあったりしても、誘起電圧の変動は少なくとも3%以下となることから誘起電圧の大きな変動を防止することができる。
 さらに、溶接溝15の位置を固定子2のスロット開口部中央とすることで、コギングトルクの増大を抑制することが可能となる。
 なお、溶接溝15を前述した角度θの範囲外であるθ=0すなわち隣接する磁極12間の中央位置に形成する場合には、図2から明らかなように、コギングトルクを最も小さく抑えることが可能である。しかし、この磁極12間の中央位置に溶接溝15を形成する場合には、永久磁石形回転電機1の負荷運転時において磁極間中央部を流れようとする磁束の障害となり、リラクタンストルクを有効に活用できないことから特性の低下につながる。
 次に、本発明の第2の実施形態を図4及び図5について説明する。
 この第2の実施形態は、回転子5に段スキューを形成するようにしたものである。
 すなわち、第2の実施形態では、図5に示すように、回転子コア11を、電磁鋼板を積層した第1の積層体21aと、同じ電磁鋼板を裏返して積層した第2の積層体21bとを軸方向に結合して形成されている。このとき、溶接溝15は、図4に示すように、磁極12の円周方向の中心線Lo位置すなわち角度θ=π/2を避けた位置すなわちπ/6<θ<π/2[rad]及びπ/2<θ<5π/6[rad]の何れか一方の角度範囲内に溶接溝15を形成する。これにより、第1の積層体21a及び第2の積層体21bの溶接溝15を軸方向に直線上に揃えたときに、第1の積層体21aでは、永久磁石スロット13a及び13bが図4で実線図示のように回転中心Oと溶接溝15の円周方向の中心を通る線Laに対して反時計方向に角度δだけずれて配置されることになる。一方、第2の積層体21bでは、永久磁石スロット13a及び13bが図4で破線図示のように前記線Laに対して時計方向に角度δだけずれて配置されることになる。
 このため、第1の積層体21a及び第2の積層体21bとで磁極12が2δ分ずれた段スキュー構造を形成することができる。このとき、第1の積層体21a及び第2の積層体21bとは同じ形状に形成した電磁鋼板を裏返した状態で積層するだけであるので、一つのプレス金型を利用して電磁鋼板を加工することができ、金型費を抑制することが可能となる。
 また、第1の積層体21a及び第2の積層体21bの溶接溝15が直線状となるので、溶接を容易に行うことができる。
 このように、上記第2の実施形態では、回転子を2段スキュー構造としたので、コギングトルクをより抑制することができる。
 すなわち、一例として固定子スロット8の数を36とし、回転子5の磁極12の数を6とした2段スキュー構造の永久磁石形回転電機1を用いて、溶接溝15を形成する電気角で表される角度θとコギングトルクとの関係をシミュレーションした結果を図6に示す。この図6から明らかなように、コギングトルクを前述した第1の実施形態の図2に比較して略半減させることができる。そして、上述した第1の実施形態と同様に、溶接溝15をπ/6<θ<5π/6の範囲に設けることにより、コギングトルク[Nm]の変動幅を定格トルクの1%以内に抑制することができる。このため、溶接溝15の製造時に溶接溝15の形成位置がずれたり、溶接溝15での溶接工程にバラツキがあったりしても、コギングトルクの変動幅は定格トルクの1%以内に収まることになり、コギングトルクの過大な増加を抑制することができ、コギングトルク自体を低減することができる。
 また、上記と同様の固定子スロット数36及び回転子5の磁極数6の永久磁石形回転電機1を用いて、溶接溝15を形成する電気角で表される角度θと誘起電圧[V]との関係をシミュレーションした結果を図7に示す。この図7から明らかなように、溶接溝15をπ/6<θ<5π/6の範囲に設けることにより、誘起電圧の変動幅は前述した第1の実施形態と同様に3%以下に抑制することができる。このため、溶接溝15の製造時に溶接溝15の形成位置がずれたり、溶接溝15での溶接工程にバラツキがあったりしても、誘起電圧の変動は少なくとも3%以下となることから誘起電圧の大きな変動を防止することができる。
 さらに、図4に示すように、一つ溶接溝15の円周方向の中心点を通る線上にキー溝22を形成することにより、段スキュー構造とした場合でもキー溝22は軸方向に直線上に配列されることになり、溶接時の位置決めの役割を果たすことが可能となる。
 なお、上記第2の実施形態においては、回転子5を2段スキュー構造とした場合について説明したが、これに限定されるものではなく、電磁鋼板を表・裏・表と積層することで第3の積層体を合わせた3段のスキュー構造、第4の積層体を合わせた4段のスキュー構造を持つ回転子5を構成することが可能である。
 また、上記第1及び第2の実施形態においては、溶接溝15の断面形状が半円形である場合について説明したが、これに限定されるものではなく、図8(a)に示すように、断面半楕円形状の溶接溝31としたり、図8(b)に示す断面矩形形状の溶接溝32としたり、図8(c)に示す断面W字形状の溶接溝33としたり、任意の溝形状を適用することができる。ここで、コギングトルクの過大な増加を抑制するためには、回転子外周からの溶接溝の深さはできるだけ浅い形状とすることが望ましい。さらにコギングトルクの過大な増加を抑制するために、回転子外周における回転方向の溶接溝の幅はできるだけ狭い形状が望ましく、固定子2のスロット開口幅以下の形状がより望ましい。
 また、上記第1及び第2の実施形態においては、回転子コア11にV字形状に永久磁石14a及び14bを配置して磁極12を形成した場合について説明したが、これに限定されるものではなく、図9(a)に示すように磁極中心位置の半径が一番小さくなるように湾曲させた断面U字形状に永久磁石41を配置したり、図9(b)に示すように、円弧に外接する複数の永久磁石42a~42cを配置したりすることができる。要は、永久磁石の外周側磁極面が磁極12の中心線Lcを挟んで対向するように配置すれば、V字形状、U字形状等の任意の形状とすることができる。また、図9(c)に示すように、磁極の中心線に対して直交する方向に沿う平板形状の永久磁石43を配置するようにしてもよい。この平板形状の永久磁石43を適用する場合には、段スキュー構造とするときには前述したように溶接溝15の配置角度θ(電気角)をπ/2を除く位置に形成する必要があることから、溶接溝15を配置する角度θ(電気角)をπ/2を除く位置に形成することが好ましい。
 以上のように本発明は、積層電磁鋼板の溶接溝の配置範囲を特定することにより、製造時において、溶接溝位置及び溶接工程にバラツキがあっても、コギングトルクの過大な増加を抑制し、大きな誘起電圧の変動がなく、安価に製造が可能な永久磁石形回転電機の回転子を提供できる。
 1…永久磁石形回転電機、2…固定子、3…空隙、4…回転軸、5…回転子、6…固定子コア、12…磁極、13a,13b…永久磁石スロット、14a,14b…永久磁石、15…溶接溝、21a…第1の積層体、21b…第2の積層体、22…キー溝、31~33…溶接溝、41、42a~42c、43…永久磁石

Claims (6)

  1.  コイルを巻装した固定子と、永久磁石が埋め込まれた回転子とを有する永久磁石形回転電機の回転子であって、
     電磁鋼板を積層して構成される回転子コアの外周面における、中心点と埋設された永久磁石で構成される磁極の隣接する磁極との間の中心とを結ぶ線を電気角で表される角度θの基準とするとき、
    π/6<θ<π/2[rad]及びπ/2<θ<5π/6[rad]
    の何れか一方の範囲内に軸方向に延長する溶接溝が形成されていることを特徴とする永久磁石形回転電機の回転子。
  2.  電磁鋼板を積層して構成される第1の積層体と、前記電磁鋼板を裏返して積層して構成される第2の積層体とを互いの前記溶接溝を軸方向に直線状に配置して段スキュー構造としたことを特徴とする請求項1に記載の永久磁石形回転電機の回転子。
  3.  前記永久磁石は、磁極を構成する永久磁石の回転子外周側磁極面が前記回転子の中心点と前記磁極の円周方向中心を通る磁極中心線を挟んで対向するように配置されていることを特徴とする請求項1又は2に記載の永久磁石形回転電機の回転子。
  4.  前記永久磁石は、前記回転子の中心点と前記磁極の円周方向中心を通る磁極中心線と直交する線上に配置されていることを特徴とする請求項1又は2に記載の永久磁石形回転電機の回転子。
  5.  コイルを巻装した固定子と、永久磁石が埋め込まれた回転子とを有する永久磁石形回転電機の回転子であって、
     前記回転子の電磁鋼板を積層して構成される回転子コアに、磁極を構成する永久磁石の回転子外周側磁極面が前記回転子の中心点と前記磁極の円周方向中心を通る磁極中心線を挟んで対向するように配置され、前記回転子コアの外周面における、中心点と前記磁極の隣接する磁極との間の中心とを結ぶ線を電気角で表される角度θの基準とするとき、
     π/6<θ<5π/6[rad]
    の範囲内の外周面に軸方向に延長する溶接溝が形成されていることを特徴とする永久磁石形回転電機の回転子。
  6.  前記溶接溝は、断面形状が円弧形状、半楕円形状、矩形形状及びW字形状の何れか1つの形状とされていることを特徴とする請求項1乃至5の何れか1項に記載の永久磁石形回転電機の回転子。
PCT/JP2011/001860 2010-04-01 2011-03-29 永久磁石形回転電機の回転子 WO2011125308A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180001660.6A CN102369650B (zh) 2010-04-01 2011-03-29 永磁式旋转电机的转子
JP2011537465A JP5533879B2 (ja) 2010-04-01 2011-03-29 永久磁石形回転電機の回転子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-085446 2010-04-01
JP2010085446 2010-04-01

Publications (1)

Publication Number Publication Date
WO2011125308A1 true WO2011125308A1 (ja) 2011-10-13

Family

ID=44762279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001860 WO2011125308A1 (ja) 2010-04-01 2011-03-29 永久磁石形回転電機の回転子

Country Status (3)

Country Link
JP (1) JP5533879B2 (ja)
CN (1) CN102369650B (ja)
WO (1) WO2011125308A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099047A (ja) * 2011-10-31 2013-05-20 Toyota Industries Corp 永久磁石式回転電機の回転子、及び永久磁石式回転電機
CN107276283A (zh) * 2017-08-09 2017-10-20 哈尔滨电气动力装备有限公司 屏蔽泵电动机转子联接环结构
EP3273573A4 (en) * 2015-03-16 2018-03-28 Kabushiki Kaisha Toyota Jidoshokki Rotor for rotating electrical machine
JP2019103187A (ja) * 2017-11-29 2019-06-24 トヨタ自動車株式会社 回転電機のロータ
CN111799960A (zh) * 2019-04-08 2020-10-20 株式会社电装 层叠芯、旋转电机和制造层叠芯的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593987A (zh) * 2012-03-20 2012-07-18 中科盛创(青岛)电气有限公司 两端插入式永磁电机转子
CN102983698A (zh) * 2012-12-20 2013-03-20 安徽巨一自动化装备有限公司 一种混合动力汽车用永磁同步电机
DE112014002763B8 (de) * 2013-06-10 2024-05-16 Mitsubishi Electric Corporation Elektrische Rotationsmaschine
CN106357072A (zh) * 2016-08-31 2017-01-25 湖北立锐机电有限公司 一种Spoke‑型转子结构以及使用其的内置式永磁电机
DE102017209207A1 (de) 2016-09-27 2018-03-29 Robert Bosch Gmbh Elektrische Maschine umfassend einen Rotor und einen Stator
CN109038890B (zh) * 2018-07-31 2020-01-14 珠海格力电器股份有限公司 电机
CN109149816A (zh) * 2018-09-28 2019-01-04 苏州润吉驱动技术有限公司 一种拼接式永磁电机外转子
CN114378433A (zh) * 2022-03-02 2022-04-22 常州神力电机股份有限公司 一种轨道电机转子生产用自动化焊接装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176424A (ja) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd 回転電機の回転子
JP3778271B2 (ja) * 2001-06-06 2006-05-24 株式会社荏原製作所 永久磁石型モータ
JP2009207351A (ja) * 2009-06-15 2009-09-10 Daikin Ind Ltd 回転子及び回転機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736472B2 (ja) * 2005-02-28 2011-07-27 パナソニック株式会社 電動機
JP2006304546A (ja) * 2005-04-22 2006-11-02 Toshiba Corp 永久磁石式リラクタンス型回転電機
CN101322303B (zh) * 2006-04-20 2010-12-29 松下电器产业株式会社 电机
JP4404086B2 (ja) * 2006-11-22 2010-01-27 ダイキン工業株式会社 回転子及び回転機
JP5260563B2 (ja) * 2010-01-07 2013-08-14 株式会社日立製作所 永久磁石式発電機またはモータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3778271B2 (ja) * 2001-06-06 2006-05-24 株式会社荏原製作所 永久磁石型モータ
JP2005176424A (ja) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd 回転電機の回転子
JP2009207351A (ja) * 2009-06-15 2009-09-10 Daikin Ind Ltd 回転子及び回転機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099047A (ja) * 2011-10-31 2013-05-20 Toyota Industries Corp 永久磁石式回転電機の回転子、及び永久磁石式回転電機
EP3273573A4 (en) * 2015-03-16 2018-03-28 Kabushiki Kaisha Toyota Jidoshokki Rotor for rotating electrical machine
US10923973B2 (en) 2015-03-16 2021-02-16 Kabushiki Kaisha Toyota Jidoshokki Rotor for rotating electrical machine
CN107276283A (zh) * 2017-08-09 2017-10-20 哈尔滨电气动力装备有限公司 屏蔽泵电动机转子联接环结构
JP2019103187A (ja) * 2017-11-29 2019-06-24 トヨタ自動車株式会社 回転電機のロータ
CN111799960A (zh) * 2019-04-08 2020-10-20 株式会社电装 层叠芯、旋转电机和制造层叠芯的方法
CN111799960B (zh) * 2019-04-08 2024-01-02 株式会社电装 层叠芯、旋转电机和制造层叠芯的方法

Also Published As

Publication number Publication date
CN102369650B (zh) 2015-08-05
JP5533879B2 (ja) 2014-06-25
JPWO2011125308A1 (ja) 2013-07-08
CN102369650A (zh) 2012-03-07

Similar Documents

Publication Publication Date Title
JP5533879B2 (ja) 永久磁石形回転電機の回転子
US9071118B2 (en) Axial motor
US7595575B2 (en) Motor/generator to reduce cogging torque
JP5370433B2 (ja) 永久磁石埋設型電動モータ
JP5332082B2 (ja) モータ
JP5210150B2 (ja) 永久磁石式回転電機、エレベータ装置、及び永久磁石式回転電機の製造方法
JP5259927B2 (ja) 永久磁石式回転電機
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
WO2013018245A1 (ja) 電動機
WO2007072707A1 (ja) 電動機並びにその回転子及び回転子用磁心
JP2008206308A (ja) 永久磁石式回転電機
WO2014115436A1 (ja) 永久磁石式回転電機
JP2008271640A (ja) アキシャルギャップ型モータ
WO2019064801A1 (ja) 永久磁石式回転電機
JP5365074B2 (ja) アキシャルギャップ型回転電機
JP2008148391A (ja) 回転電機の回転子及び回転電機
WO2014162804A1 (ja) 永久磁石埋め込み式回転電機
JP5589418B2 (ja) 永久磁石形回転機の製造方法
JP2014107939A (ja) ブラシレスモータ
JP2013132124A (ja) 界磁子用コア
JP4855747B2 (ja) 永久磁石型リラクタンス回転電機
JPWO2020194390A1 (ja) 回転電機
JP4080273B2 (ja) 永久磁石埋め込み型電動機
JP6857514B2 (ja) 回転電機のステータ
JP5904188B2 (ja) マルチギャップ型回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001660.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011537465

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765210

Country of ref document: EP

Kind code of ref document: A1