WO2011121950A1 - 非水電解質二次電池用負極、およびその製造方法、ならびに非水電解質二次電池 - Google Patents

非水電解質二次電池用負極、およびその製造方法、ならびに非水電解質二次電池 Download PDF

Info

Publication number
WO2011121950A1
WO2011121950A1 PCT/JP2011/001741 JP2011001741W WO2011121950A1 WO 2011121950 A1 WO2011121950 A1 WO 2011121950A1 JP 2011001741 W JP2011001741 W JP 2011001741W WO 2011121950 A1 WO2011121950 A1 WO 2011121950A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
current collector
carbon layer
electrolyte secondary
active material
Prior art date
Application number
PCT/JP2011/001741
Other languages
English (en)
French (fr)
Inventor
裕 天明
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2011800030020A priority Critical patent/CN102473901A/zh
Priority to JP2011540639A priority patent/JP4920803B2/ja
Priority to US13/388,642 priority patent/US20120135306A1/en
Publication of WO2011121950A1 publication Critical patent/WO2011121950A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and in particular, to an improvement of a negative electrode used therefor.
  • non-aqueous electrolyte secondary batteries having high electromotive force and energy density have been widely used as power sources for portable electronic devices.
  • non-aqueous electrolyte secondary batteries are used as in-vehicle batteries, and studies have been conducted for the purpose of improving performance suitable for in-vehicle use such as output characteristics.
  • the electrode of a nonaqueous electrolyte secondary battery generally has a current collector made of metal and a mixture layer containing an active material formed on the surface of the current collector.
  • the current collector is a porous substrate (Patent Documents 1 and 2) or a metal foil having a plurality of through holes (Patent Documents 3 and 4). ) Is under consideration.
  • JP-A-9-45334 JP 2008-41971 A Japanese Patent Laid-Open No. 11-67218 JP 2008-59765 A
  • an object of the present invention is to provide a nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics.
  • One aspect of the present invention is: A sheet-like current collector having a plurality of through holes; A carbon layer formed in the surface of the current collector and in the through hole; A mixture layer formed on the surface of the carbon layer; With The mixture layer includes an active material and a conductive agent, The active material includes a lithium-titanium-containing composite oxide having a spinel crystal structure, The current collector has a porosity of 20 to 60%; The carbon layer has an average density of 0.05 to 0.4 g / cm 3 ; The present invention relates to a non-aqueous electrolyte secondary battery.
  • Another aspect of the present invention relates to a nonaqueous electrolyte secondary battery including a positive electrode, the negative electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • Still another aspect of the present invention provides: (A) applying a first paste containing a carbon material to the surface of a sheet-like current collector having a plurality of through-holes and a porosity of 20 to 60%, and drying the current collector; Forming a carbon layer on the surface and in the through hole; (B) On the surface of the carbon layer, a second paste containing a lithium-titanium-containing composite oxide having a spinel crystal structure and a conductive agent as an active material is applied and dried to form a mixture layer.
  • the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery can be improved.
  • the negative electrode for a non-aqueous electrolyte secondary battery of the present invention has the following features i) to iv).
  • the negative electrode has a plurality of through holes, a sheet-like current collector, a surface of the current collector and a carbon layer formed in the through holes, and a mixture formed on the surface of the carbon layer A layer.
  • the mixture layer includes a lithium-titanium-containing composite oxide (hereinafter, titanium-based active material) having a spinel crystal structure as an active material, and a conductive agent.
  • the current collector has a porosity of 20 to 60%.
  • the average density of the carbon layer is 0.05 to 0.4 g / cm 3 .
  • the carbon layer formed on the surface of the current collector of i) refers to a carbon layer covering the main surface of the current collector.
  • the carbon layer formed in the through hole of i) refers to a part where a part of the carbon layer covering the main surface of the current collector enters the through hole. This part occupies a part of the space in the through hole.
  • a titanium-based active material that hardly expands or contracts during charge / discharge is used as the negative electrode active material. Accordingly, it is possible to prevent the active material from dropping from the current collector during charging / discharging, or the electron conductivity between the active material particles from being deteriorated due to the poor contact state between the active material particles.
  • the titanium-based active material since the titanium-based active material has poor thermal conductivity, there is a problem that heat unevenness is likely to occur inside the battery during the charge / discharge cycle.
  • the current collector is provided with a plurality of through-holes penetrating in the thickness direction, the electrolyte is held in the through-holes, and the thermal conductivity in the thickness direction of the current collector is improved. It is considered effective to do this.
  • a mixture paste containing an active material is directly applied to the surface of a current collector having a plurality of through holes and dried to form a mixture layer, The active material enters the through hole, and it is difficult to secure the through hole as a part for holding the electrolyte.
  • the surface of the current collector is coated with a carbon layer so that the mixture does not enter the through-holes of the current collector, and the mixture layer is disposed via the carbon layer. Furthermore, the area
  • the carbon layer has both the role of improving the electron conductivity between the current collector and the mixture layer and the role of improving the retention of the electrolyte. Since the carbon layer includes a low density region, the average density of the carbon layer as a whole is 0.05 to 0.4 g / cm 3 , which is a density compared to the case where no through hole exists (about 0.5 g / cm 3 ). Becomes lower. When the average density of the carbon layer is in the above range, an electrode excellent in electron conductivity and electrolyte retention can be obtained.
  • the porosity of the current collector is the ratio of the total volume of the through holes to the total occupied volume of the current collector and the through holes.
  • the through hole of the current collector is a hole provided to hold the electrolyte. At least the hole penetrating in the thickness direction of the current collector, that is, from one surface of the sheet-like current collector to the other It is a hole that penetrates the surface.
  • the shape of the cross section of the through hole perpendicular to the thickness direction of the current collector is, for example, a substantially polygonal shape such as a substantially circular shape, an elliptical shape, or a substantially rectangular shape.
  • the average diameter of the through-holes (the average maximum diameter if not substantially circular) is preferably 100 to 700 ⁇ m, more preferably 200 to It is 600 ⁇ m, more preferably 250 to 500 ⁇ m.
  • a punching metal, an expanded metal, or a mesh metal plate is used for the current collector.
  • the mixture layer and the carbon layer may be formed on one side or both sides of the current collector.
  • the content of the active material in the mixture layer is preferably 1.5 to 2.3 g per 1 cm 3 of the mixture layer.
  • the content of the active material in the mixture layer is preferably 1.5 to 2.3 g per 1 cm 3 of the mixture layer.
  • the present invention relates to a nonaqueous electrolyte secondary battery including a positive electrode, the above negative electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • a nonaqueous electrolyte secondary battery including a positive electrode, the above negative electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • 30 to 90% by volume of the inner space of the through hole (the current collector gap) is preferably filled with a non-aqueous electrolyte. That is, the carbon material and the binder preferably occupy 10 to 70% by volume of the inner space in the through hole. If at least 30% by volume of the inner space of the through hole is filled with the nonaqueous electrolyte, the charge / discharge cycle characteristics are improved.
  • the ratio P (volume%) that the nonaqueous electrolyte occupies in the through-hole is obtained by, for example, the following method.
  • a cross section in the thickness direction of the negative electrode is observed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the image processing SEM, to volume Q v occupied by the through holes, the ratio of the volume R v occupied by the space in which the electrolyte is retained in the through hole: Request R v / Q v. R v / Q v ⁇ 100 is set as the value of P.
  • Volume R v the space occupied by the electrolyte is retained in the through hole, for example, as can be clearly discriminated space formed by the through holes, obtained by performing a binarization process on the SEM image.
  • the magnification of the image (projected image) is, for example, 200 to 1000 times.
  • the area of the image (projected image) is, for example, 50 to 100 ⁇ m ⁇ 50 to 100 ⁇ m.
  • the number of pixels (pixels) that divide the image (projected image) is, for example, 480 to 1024 ⁇ 480 to 1024. Each pixel is binarized. This treatment is performed on the cross section in the thickness direction of the negative electrode in one through hole.
  • the positive electrode has a current collector and a mixture layer formed on the surface of the current collector.
  • the mixture layer of the positive electrode includes, for example, an active material, a conductive agent, and a binder.
  • the positive electrode is obtained, for example, by the following method. A paste in which a dispersion medium is added to a mixture of an active material, a conductive agent, and a binder is obtained. This paste is applied to the surface of the current collector to form a coating film. After the coating film is dried to form a mixture layer, it is compressed.
  • the positive electrode mixture layer may be formed on one side or both sides of the positive electrode current collector.
  • a lithium-containing composite oxide capable of reversibly occluding and releasing lithium is used.
  • the lithium-containing composite oxide LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiNi 1-y Co y O 2 (0 ⁇ y ⁇ 1), LiNi 1-yz Co y Mn and z O 2 (0 ⁇ y + z ⁇ 1).
  • the positive electrode binder for example, a fluororesin such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) is used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the same material as the negative electrode conductive agent is used for the positive electrode conductive agent.
  • a metal foil such as an aluminum foil or an aluminum alloy foil is used.
  • the thickness of the positive electrode current collector is, for example, 10 to 30 ⁇ m.
  • an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used.
  • an olefin polymer or a glass fiber sheet or non-woven fabric obtained by combining polypropylene or polyethylene alone or in combination thereof is used.
  • the pore diameter of the separator is preferably in a range in which the active material, the binder, the conductive agent and the like detached from the electrode sheet do not permeate, and is preferably 0.1 to 1 ⁇ m, for example.
  • the thickness of the separator is preferably 10 to 100 ⁇ m.
  • the porosity is determined according to the permeability of electrons and ions, the material, and the film thickness, but is generally preferably 30 to 80%.
  • the non-aqueous electrolyte is composed of a non-aqueous solvent and a lithium salt dissolved in the solvent.
  • a non-aqueous solvent for example, a cyclic carbonate, a cyclic carboxylic acid ester, an acyclic carbonate, or an aliphatic carboxylic acid ester is used.
  • the non-aqueous solvent is preferably a mixed solvent containing a cyclic carbonate and an acyclic carbonate, or a mixed solvent containing a cyclic carboxylic acid ester and a cyclic carbonate.
  • non-aqueous solvent examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). ), Ethyl methyl carbonate (EMC), and acyclic carbonates such as dipropyl carbonate (DPC), methyl formate (MF), methyl acetate (MA), methyl propionate (MP), and ethyl propionate (MA).
  • cyclic carboxylic acid esters such as aliphatic carboxylic acid esters and ⁇ -butyrolactone (GBL).
  • cyclic carbonate EC, PC, and VC are preferable.
  • GBL is preferred as the cyclic carboxylic acid ester.
  • acyclic carbonate DMC, DEC, and EMC are preferable.
  • aliphatic carboxylic acid ester is included as needed.
  • lithium salt examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , lithium chloroborane such as LiB 10 Cl 10 , lower aliphatic lithium carboxylate, lithium tetraphenylborate, LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 ) and LiN (CF 3 SO 2 ) 2 and imides such as LiN (C 2 F 5 SO 2 ) 2 and LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ).
  • LiPF 6 is preferable.
  • the concentration of the lithium salt in the nonaqueous electrolyte is not particularly limited, but is preferably 0.2 to 2 mol / L, more preferably 0.5 to 1.5 mol / L.
  • any of a coin type, a button type, a sheet type, a cylindrical type, a flat type and a square type may be adopted.
  • the negative electrode 11 has a sheet-like current collector 12 and a multilayer 14 formed on both surfaces of the current collector 12.
  • the multilayer 14 includes a carbon layer 15 containing a carbon material and a mixture layer 16 containing an active material.
  • the current collector 12 is made of a punching metal having a plurality of through holes 13.
  • the mixture layer 16 is formed on the current collector 12 via the carbon layer 15.
  • the carbon layer 15 includes a surface covering portion 17 that is a portion covering one surface S 1 and the other surface S 2 of the current collector 12, and a hole filling portion 18 that fills the hole 13.
  • a portion (hereinafter referred to as a sparse portion) that combines the hole filling portion 18 and the extension portion 17a corresponding to the portion extending in the thickness direction of the current collector 12 from the hole filling portion 18 is sparsely filled with a carbon material and has a density. Lower. Thereby, in this sparse part, the space
  • the low density carbon layer is mainly formed in the hole filling portion 18. That is, most of the voids are formed in the through holes 13.
  • a large number of small voids may be formed, or a large void may be locally formed.
  • the sparse filling of the carbon material in the sparse part can be confirmed, for example, by observing the cross section of the negative electrode with a scanning electron microscope (SEM) or the like.
  • the average density of the carbon layer 15 is preferably 0.05 to 0.3 g / cm 3 .
  • the average density of the carbon layer 15 is more preferably 0.1 to 0.3 g / cm 3 .
  • the lower limit of the average density of the carbon layer is 0.05 g / cm 3, preferably 0.1 g / cm 3, more preferably 0.15 g / cm 3 It is.
  • the upper limit of the average density of the carbon layer is 0.4 g / cm 3 , preferably 0.3 g / cm 3 , more preferably 0.25 g / cm 3 .
  • the range of the average density of a carbon layer you may combine said upper limit and a lower limit arbitrarily.
  • the weight of the carbon material contained per 1 cm 3 of the through holes is preferably 0.05 to 0.35 g, more preferably 0.05 to 0.15 g.
  • the through-hole 13 reaches from the one surface S 1 in the thickness direction X of the current collector 12 to the other surface S 2 .
  • the cross-sectional shape along the surface direction Y of the current collector 12 of the through hole 13 is substantially circular.
  • the average diameter of the through holes 13 is preferably 100 to 700 ⁇ m, more preferably 200 to 600 ⁇ m, and even more preferably 250 to 500 ⁇ m.
  • the upper limit of the average diameter of the through holes 13 is preferably 700 ⁇ m, more preferably 600 ⁇ m, and even more preferably 500 ⁇ m.
  • the lower limit of the average diameter of the through holes 13 is preferably 100 ⁇ m, more preferably 200 ⁇ m, and even more preferably 250 ⁇ m.
  • the distance L between the through holes 13 in FIG. 1 is preferably 100 to 1000 ⁇ m.
  • the interval L between the through holes 13 is set to 100 ⁇ m or more, the surface of the current collector 12 can be stably covered with the carbon layer.
  • the interval L between the through holes 13 is set to 1000 ⁇ m or less, it is possible to sufficiently ensure the thermal conductivity in the thickness direction of the current collector.
  • the through holes 13 are preferably provided with a constant size and a constant interval.
  • the porosity of the current collector 12 is 20 to 60%.
  • the porosity means the ratio of the total volume of the through holes 13 to the total occupied volume of the current collector 12 and the through holes 13.
  • the lower limit of the porosity of the current collector is 20%, preferably 30%, more preferably 35%.
  • the upper limit of the porosity of the current collector is 60%, preferably 50%, More preferably, it is 45%.
  • the range of the porosity of the current collector the above upper limit and lower limit may be arbitrarily combined.
  • the porosity of the current collector can be adjusted by changing the size of the through holes, the interval L, and the like.
  • the porosity of the current collector can be obtained by calculation from the average diameter of the through holes and the thickness of the current collector.
  • the thickness T of the current collector 12 is preferably 5 to 40 ⁇ m, more preferably 5 to 25 ⁇ m. By setting the thickness T of the current collector 12 to 5 ⁇ m or more, a sufficient amount of electrolyte can be retained in the current collector, and charge / discharge cycle characteristics can be significantly improved. By setting the thickness T of the current collector 12 to 40 ⁇ m or less, the thickness of the negative electrode can be sufficiently reduced, and a battery having a high energy density can be obtained.
  • the ratio of the average diameter R of the through holes 13 to the thickness T of the current collector 12: R / T is preferably 2.5-60. More preferably, it is 15-50.
  • the material constituting the current collector 12 is preferably aluminum or an aluminum alloy. From the viewpoint of electrolyte resistance and strength, the aluminum alloy preferably contains at least one selected from the group consisting of copper, manganese, silicon, magnesium, zinc, and nickel in addition to aluminum. In the aluminum alloy, the content of elements other than aluminum is preferably 0.05 to 0.3% by weight.
  • the carbon layer 15 includes a carbon material and a first binder.
  • the carbon material for example, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, carbon fiber, and graphite are used. Among these, acetylene black is preferable as the carbon material.
  • the carbon material may be particulate or fibrous.
  • the particulate carbon material preferably has a volume-based average particle diameter (D50) of 10 to 50 nm.
  • the fibrous carbon material preferably has an average fiber length of 0.1 to 20 ⁇ m and an average fiber diameter of 5 to 150 nm.
  • Examples of the first binder include styrene butadiene rubber (SBR), polyethylene (PE), polypropylene (PP), and fluororesin.
  • Examples of the fluororesin include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA).
  • PTFE and PVDF are preferable from the viewpoint of the strength of the carbon layer.
  • the content of the first binder in the carbon layer 15 is preferably 150 to 300 parts by weight per 100 parts by weight of the carbon material, more preferably 175 to 275 parts by weight per 100 parts by weight of the carbon material, and even more preferably the carbon material 100 200 to 250 parts by weight per part by weight.
  • the content of the first binder in the carbon layer 15 is preferably 150 to 300 parts by weight per 100 parts by weight of the carbon material, more preferably 175 to 275 parts by weight per 100 parts by weight of the carbon material, and even more preferably the carbon material 100 200 to 250 parts by weight per part by weight.
  • the lower limit of the content of the first binder in the carbon layer is preferably 150 parts by weight per 100 parts by weight of the carbon material. More preferably, it is 175 parts by weight per 100 parts by weight of the carbon material, and more preferably 200 parts by weight per 100 parts by weight of the carbon material.
  • the upper limit of the content of the first binder in the carbon layer is preferably 300 parts by weight per 100 parts by weight of the carbon material, more preferably 275 parts by weight per 100 parts by weight of the carbon material. More preferably, it is 250 parts by weight per 100 parts by weight of the carbon material.
  • the range of content of the 1st binder in a carbon layer what is necessary is just to combine said upper limit and a lower limit arbitrarily.
  • the thickness T c (thickness per layer) of the surface covering portion 17 of the carbon layer 15 is preferably 5 to 30 ⁇ m, more preferably. Is 5 to 20 ⁇ m.
  • the thickness Tc of the surface covering portion 17 of the carbon layer 15 is preferably 5 to 30 ⁇ m, more preferably. Is 5 to 20 ⁇ m.
  • the mixture layer 16 includes an active material and a conductive agent, and further includes a second binder as necessary.
  • a titanium-based active material is used as the active material. Since the titanium-based active material has almost no volume change due to expansion / contraction associated with charge / discharge, a decrease in the binding property of the mixture layer associated with the charge / discharge cycle is suppressed.
  • the titanium-based active material preferably has a structure represented by the general formula: Li 4 + x Ti 5-y M y O 12 + z .
  • M is at least one selected from the group consisting of Mg, Al, Ca, Ba, Bi, Ga, V, Nb, W, Mo, Ta, Cr, Fe, Ni, Co, and Mn.
  • x is a value immediately after synthesis or in a completely discharged state.
  • the conductive agent is acetylene black, which is the same carbon black as the carbon material of the carbon layer.
  • metal fibers, carbon fluoride, metal (for example, aluminum) powders, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, or Organic conductive materials such as phenylene derivatives are listed.
  • nickel powder is particularly preferable.
  • the content of the conductive agent in the mixture layer 16 is preferably 2 to 15 parts by weight per 100 parts by weight of the active material, and more preferably 3 to 12 parts by weight per 100 parts by weight of the active material.
  • the content of the conductive agent in the mixture layer 16 is preferably 2 to 15 parts by weight per 100 parts by weight of the active material, and more preferably 3 to 12 parts by weight per 100 parts by weight of the active material.
  • the content of the second binder in the mixture layer 16 is preferably 2 to 6 parts by weight per 100 parts by weight of the active material, and more preferably 3 to 5 per 100 parts by weight of the active material.
  • the content of the second binder in the mixture layer 16 is preferably 2 to 6 parts by weight per 100 parts by weight of the active material, and more preferably 3 to 5 per 100 parts by weight of the active material.
  • the thickness T m (thickness per layer) of the mixture layer 16 is preferably 20 to 150 ⁇ m, more preferably 20 to 50 ⁇ m. It is.
  • the ratio of the thickness T c of the surface covering portion 17 of the carbon layer 15 to the thickness T m of a mixture layer 16: T c / T m is preferably from 0.03 to 1.5, more preferably 0.1 to 1. 5.
  • the content of the active material in the mixture layer 16 is preferably 1.5 to 2.3 g per 1 cm 3 of the mixture layer.
  • the content of the active material in the mixture layer 16 is preferably 1.5 to 2.3 g per 1 cm 3 of the mixture layer.
  • the method is (A) A first paste containing a carbon material is applied to the surface of a sheet-like current collector having a plurality of through holes and a porosity of 20 to 60%, and then dried to obtain a surface of the current collector And forming the carbon layer in the through hole; (B) applying a second paste containing a titanium-based active material and a conductive agent to the surface of the carbon layer and drying to form a mixture layer to obtain a negative electrode precursor; (C) compressing the negative electrode precursor to obtain a negative electrode having an average density of the carbon layer of 0.05 to 0.4 g / cm 3 ; including.
  • a first binder is added to a powdery carbon material, and an appropriate amount of a first dispersion medium is further added to obtain a first paste.
  • a first dispersion medium water, N-methyl-2-pyrrolidone, or the like is used.
  • a 1st paste is apply
  • the ratio of the dispersion medium in the first paste is preferably 800 parts by weight or less per 100 parts by weight of the carbon material.
  • the proportion of the dispersion medium in the first paste is more preferably 300 parts by weight or more per 100 parts by weight of the carbon material.
  • a general method can be used as a method for applying the first paste.
  • a general method can be used as a method for applying the first paste.
  • examples thereof include a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a casting method, a dip method, and a squeeze method.
  • blade method, knife method and extrusion method are preferred.
  • the coating method may be continuous, intermittent, or striped. In order to make it difficult for the first coating film to enter the through hole, the blade method is particularly preferable.
  • the first paste it is preferable to apply the first paste at a speed of 0.5 to 12 m / min in order to prevent the first paste from excessively entering the through hole and to form a good coating film.
  • coating method according to the drying property of a 1st coating film Thereby, a favorable surface state of the carbon layer can be obtained.
  • the first coating film is dried to form a carbon layer.
  • drying conditions a drying temperature of 80 to 120 ° C. and a drying time of 10 to 30 minutes are preferable.
  • the second paste is obtained, for example, by adding a conductive agent and a second binder to the active material, and further adding an appropriate amount of the second dispersion medium.
  • the second dispersion medium water, N-methyl-2-pyrrolidone, or the like is used.
  • the second dispersion medium may be the same as or different from the first dispersion medium.
  • the second binder may be the same as or different from the first binder.
  • the proportion of the dispersion medium in the second paste is preferably 80 to 150 parts by weight per 100 parts by weight of the active material.
  • a second paste is applied on the carbon layer to form a second coating film.
  • the same method as that for the first paste is used.
  • the second paste is preferably applied at a speed of 0.5 to 5 m / min.
  • the second coating film is blown and dried to form a mixture layer.
  • drying conditions a drying temperature of 80 to 120 ° C. and a drying time of 10 to 30 minutes are preferable.
  • a negative electrode precursor in which a carbon layer and a mixture layer are formed on both sides of the current collector is used as a pair of rollers. Is compressed at a predetermined linear pressure to obtain a negative electrode.
  • the linear pressure applied to the negative electrode precursor by the pair of rollers is preferably 1000 to 3000 kgf / cm, more preferably 1500 to 2500 kgf / cm.
  • the linear pressure By setting the linear pressure to 3000 kgf / cm or less, the carbon layer can be reliably prevented from entering the through hole.
  • the linear pressure By setting the linear pressure to 1000 kgf / cm or more, the active material density of the mixture layer can be increased, and the energy density of the battery can be increased. Further, the strength of the negative electrode (binding property of the mixture layer and the carbon layer) can be sufficiently obtained.
  • the carbon layer present in the through hole and in the region extending from the through hole in the thickness direction of the current collector is not sufficiently compressed in the step (c) due to the presence of the through hole. Therefore, even after the step (c), the carbon material is not densely filled in the through hole and in the region extending from the through hole in the thickness direction of the current collector, and a sparse carbon layer is formed. This sparse carbon layer has a low density particularly in the through holes.
  • the carbon layer existing on the surface of the current collector is pressed against the current collector and sufficiently compressed in step (c), so that it becomes a dense layer, and the current collector, the mixture layer and the current collector Good adhesion to the body is obtained.
  • a negative electrode having a structure as shown in FIG. 1 was produced by the following procedure. a) Formation of carbon layer 100 parts by weight of acetylene black powder (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 35 nm) as a carbon material, and 230 weight of polyvinylidene fluoride resin (manufactured by Kureha Co., Ltd.) as a binder 700 parts by weight of N-methyl-2-pyrrolidone as a dispersion medium was added to the mixture with the parts to obtain a first paste.
  • acetylene black powder manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 35 nm
  • polyvinylidene fluoride resin manufactured by Kureha Co., Ltd.
  • the first paste was applied to both surfaces of the negative electrode current collector by a comma coater at a speed of 1 m / min to form a first coating film.
  • a sheet-like aluminum punching metal obtained by punching (porosity 40%, thickness T 20 ⁇ m, average pore diameter 500 ⁇ m, interval L 500 ⁇ m) was used.
  • the first coating film was not interrupted and did not enter the through-hole, and both surfaces of the negative electrode current collector were covered in a planar shape.
  • the first coating film was blown and dried to form a carbon layer (first layer).
  • the drying temperature was 80 ° C. and the drying time was 20 minutes.
  • the second paste was applied to the surface of the carbon layer with a comma coater at a speed of 1 m / min to form a second coating film.
  • the coating amount of the second coating film was 7.5 mg / cm 2 .
  • the second coating film was blown and dried to form a mixture layer (second layer).
  • the drying temperature was 80 ° C. and the drying time was 20 minutes. In this way, a negative electrode precursor was obtained.
  • the negative electrode precursor was compressed with a pair of rollers and cut into a predetermined band-like size (longitudinal dimension 240 mm, width direction dimension 55 mm) to obtain a negative electrode.
  • the collector exposed part for welding the negative electrode lead mentioned later was provided in the one end part of the negative electrode.
  • the average density of the carbon layer was changed to the values shown in Table 1, and negative electrodes A1 to A4 of Examples 1 to 4 and negative electrodes B1 to B2 of Comparative Examples 1 to 2 were produced.
  • the linear pressure applied by the pair of rollers during compression of the negative electrode precursor was changed in the range of 500 to 3500 kgf / cm.
  • the amount of the first paste applied was changed in the range of 0.05 to 0.8 mg / cm 2 so that the thickness T c of the surface coating after compression was about 15 ⁇ m.
  • the thickness T m of the negative electrode mixture layer is 37 to 44 ⁇ m
  • the thickness T c of the surface covering portion of the carbon layer is 14 to 17 ⁇ m
  • the amount of active material per 1 cm 3 of the negative electrode mixture layer is 2.0 to 2 0.5 g.
  • Average density of carbon layer (Filling amount of carbon material) / (volume of surface coating portion + total volume of through holes)
  • the volume of the surface covering portion was obtained by multiplying the area of the surface covering portion facing the current collector (including the through hole) by the thickness dimension of the surface covering portion.
  • the total volume of the through holes was obtained by multiplying the volume of the through holes obtained using the average diameter of the through holes and the thickness of the current collector by the number of through holes.
  • the ratio P (volume%) which a nonaqueous electrolyte accounts in the through-hole of a collector was calculated
  • a cross section in the thickness direction of the negative electrode (a cross section including the axis of the cylindrical through hole) was observed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the SEM image is image processing, with respect to the volume Q v occupied by the through holes, the ratio of the volume R v occupied by the space in which the electrolyte is retained in the through-hole: sought R v / Q v.
  • R v / Q v ⁇ 100 was taken as the value of P.
  • the magnification of the image (projected image) was 600 times.
  • the area of the image (projected image) was 100 ⁇ m ⁇ 100 ⁇ m.
  • the number of pixels (pixels) for dividing the image (projected image) was 1024 ⁇ 1024. Each pixel was binarized. This treatment was performed on the cross section in the thickness direction of the negative electrode in one through hole. This operation was repeated for five through holes in the current collector. And the average value was calculated
  • the positive electrode precursor was compressed at a linear pressure of 2000 kgf / cm and cut into a predetermined band-like size (longitudinal dimension 200 mm, width direction dimension 50 mm) to obtain a positive electrode. At this time, the thickness of the mixture layer was 30 ⁇ m.
  • the collector exposed part for welding the positive electrode lead mentioned later was provided in the one end part of the positive electrode.
  • the positive electrode and the negative electrode were spirally wound between the positive electrode and the negative electrode with a separator interposed therebetween, whereby an electrode group 4 was obtained.
  • a separator a polyethylene microporous film (thickness 20 ⁇ m) was used.
  • the electrode group 4 was housed in a battery case 1 made of stainless steel.
  • One end of the positive electrode lead 5 made of aluminum was connected to the positive electrode.
  • the other end of the positive electrode lead 5 was connected to the sealing plate 2.
  • One end of an aluminum negative electrode lead 6 was connected to the negative electrode.
  • the other end of the negative electrode lead 6 was connected to the bottom of the battery case 1.
  • Resin insulating rings 7 were respectively disposed on the upper and lower portions of the electrode group 4.
  • a nonaqueous electrolyte was injected into the battery case 1.
  • a non-aqueous solvent in which LiPF 6 was dissolved was used.
  • a mixed solvent (volume ratio 3: 7) of ethylene carbonate (EC) and diethyl carbonate (DEC) was used.
  • the concentration of LiPF 6 in the nonaqueous electrolyte was 1.0 mol / L.
  • the opening end portion of the battery case 1 was caulked to the peripheral edge portion of the sealing plate 2 through the resin sealing body 3 to seal the battery case 1. In this way, the cylindrical battery (diameter 18 mm, height 65 mm) of FIG. 2 was obtained.
  • batteries A1 to A4 were produced using the negative electrodes A1 to A4 of Examples 1 to 4.
  • batteries B1 and B2 were fabricated using the negative electrodes B1 and B2 of Comparative Examples 1 and 2.
  • the negative electrode paste was directly applied to the surface of the negative electrode current collector by the blade method at a speed of 1 m / min to form a coating film.
  • the second paste of Example 1 was used as the negative electrode current collector.
  • the negative electrode current collector of Example 1 was used as the negative electrode current collector.
  • the drying temperature was 80 ° C. and the drying time was 20 minutes. A part of the mixture layer was formed in the through hole. In this way, a negative electrode precursor was obtained.
  • a negative electrode C was obtained in the same manner as in Example 1. At this time, the thickness of the mixture layer was 41 ⁇ m.
  • a cylindrical battery C was produced in the same manner as in Example 1 except that the negative electrode C was used instead of the negative electrode A1.
  • a negative electrode D was produced in the same manner as in Example 1 except that an aluminum foil (thickness: 15 ⁇ m) having no through hole was used instead of the punching metal for the negative electrode current collector.
  • a cylindrical battery D was produced in the same manner as in Example 1 except that the negative electrode D was used instead of the negative electrode A1.
  • Comparative Example 5 Without forming the carbon layer, the negative electrode paste was directly applied to the negative electrode current collector at a speed of 1 m / min with a comma coater to form a coating film.
  • the negative electrode paste the second paste of Example 1 was used.
  • the aluminum foil (thickness 15 ⁇ m) of Comparative Example 4 was used.
  • the coating film was dried to form a mixture layer. The drying temperature was 80 ° C. and the drying time was 20 minutes. In this way, a negative electrode precursor was obtained.
  • a negative electrode E was obtained in the same manner as in Example 1 using the negative electrode precursor. At this time, the thickness of the mixture layer was 39 ⁇ m.
  • a cylindrical battery E was produced in the same manner as in Example 1 except that the negative electrode E was used instead of the negative electrode A1. The production conditions for the negative electrode are summarized in Table 1.
  • the discharge voltage 10 seconds after the start of discharge in steps 1, 3, 5, 7, and 9 was measured and plotted against the current value.
  • the plot was subjected to linear approximation by the least square method, and the value of the slope was defined as a direct current internal resistance (DCIR; Direct Current Current Internal Resistance).
  • DCIR Direct Current Current Internal Resistance
  • a smaller DCIR value indicates higher output characteristics and better rate characteristics.
  • non-aqueous electrolyte secondary battery of the present invention is excellent in output characteristics, it is suitably used as a vehicle battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 本発明の非水電解質二次電池用負極は、複数の貫通孔を有する、シート状の集電体と、集電体の表面および貫通孔内に形成されたカーボン層と、カーボン層の表面に形成された合剤層と、を備える。合剤層が、活物質および導電剤を含み、活物質が、スピネル型の結晶構造を有するリチウムチタン含有複合酸化物を含む。集電体の空隙率が、20~60%である。カーボン層の平均密度が、0.05~0.4g/cm3である。この負極を用いることにより、優れたレート特性およびサイクル特性を有する非水電解質二次電池が得られる。

Description

非水電解質二次電池用負極、およびその製造方法、ならびに非水電解質二次電池
 本発明は、非水電解質二次電池に関し、特にそれに用いられる負極の改良に関する。
 従来から、携帯電子機器の電源として、高い起電力およびエネルギー密度を有する非水電解質二次電池が広く用いられている。また、非水電解質二次電池は、車載用電池として用いられ、出力特性等の車載用に適した性能向上を目的とした検討が行われている。
 非水電解質二次電池の電極は、一般に、金属製の集電体、および集電体の表面に形成された、活物質を含む合剤層を有する。
 電極における集電効率の向上および合剤層の保持性の改善を目的として、集電体に多孔質基材(特許文献1および2)または複数の貫通孔を有する金属箔(特許文献3および4)を用いることが検討されている。
特開平9-45334号公報 特開2008-41971号公報 特開平11-67218号公報 特開2008-59765号公報
 しかし、特許文献1~4の方法では、充放電の繰り返しに伴い、集電体の孔内に充填された合剤層中の活物質の膨張および収縮により、集電体の変形、断裂、および合剤層の剥離を生じ易い。合剤層が剥離すると、電極抵抗が上昇し、充放電サイクル特性が低下する。
 これに対しては、充放電時に膨張および収縮をほとんど生じないスピネル構造の結晶構造を有するリチウムチタン含有複合酸化物(以下、チタン系活物質)を活物質に用いることが考えられる。
 しかし、チタン系活物質は熱伝導性に乏しいため、充放電サイクル時に電池内部に熱ムラを生じ易く、依然として、充放電サイクル特性の改善は不十分である。
 そこで、本発明は、充放電サイクル特性に優れた非水電解質二次電池を提供することを目的とする。
 本発明の一局面は、
 複数の貫通孔を有する、シート状の集電体と、
 前記集電体の表面および前記貫通孔内に形成されたカーボン層と、
 前記カーボン層の表面に形成された合剤層と、
を備え、
 前記合剤層が、活物質および導電剤を含み、
 前記活物質が、スピネル型の結晶構造を有するリチウムチタン含有複合酸化物を含み、
 前記集電体の空隙率が、20~60%であり、
 前記カーボン層の平均密度が、0.05~0.4g/cm3である、
非水電解質二次電池に関する。
 本発明の他の一局面は、正極、上記の負極、前記正極と前記負極との間に配されたセパレータ、および非水電解質を備えた非水電解質二次電池に関する。
 本発明のさらに他の一局面は、
 (a)複数の貫通孔を有し、空隙率が20~60%である、シート状の集電体の表面に、炭素材料を含む第1ペーストを塗布し、乾燥させて、前記集電体の表面および前記貫通孔内にカーボン層を形成する工程と、
 (b)前記カーボン層の表面に、活物質としてスピネル型の結晶構造を有するリチウムチタン含有複合酸化物および導電剤を含む第2ペーストを塗布し、乾燥させて、合剤層を形成し、負極前駆体を得る工程と、
 (c)前記負極前駆体を圧縮し、前記カーボン層の平均密度が0.05~0.4g/cm3である負極を得る工程と、を含む非水電解質二次電池用負極の製造方法に関する。
 本発明によれば、非水電解質二次電池の充放電サイクル特性を改善することができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の非水電解質二次電池用負極の一例を示す概略縦断面図である。 本発明の実施例において作製した円筒型非水電解質二次電池の一部を断面にした正面図である。
 本発明の非水電解質二次電池用負極は、下記のi)~iv)の特徴を有する。
i)負極は、複数の貫通孔を有する、シート状の集電体と、前記集電体の表面および前記貫通孔内に形成されたカーボン層と、前記カーボン層の表面に形成された合剤層と、を備える。
ii)合剤層が、活物質としてスピネル型の結晶構造を有するリチウムチタン含有複合酸化物(以下、チタン系活物質)、および導電剤を含む。
iii)集電体の空隙率が20~60%である。
iV)カーボン層の平均密度が0.05~0.4g/cm3である。
 上記i)の集電体の表面に形成されたカーボン層とは、集電体の主面を覆うカーボン層を指す。上記i)の貫通孔内に形成されたカーボン層とは、集電体の主面を覆うカーボン層の一部が貫通孔内に入り込んだ部分を指す。この部分は貫通孔内の空間の一部を占める。
 本発明は、負極活物質に、充放電時において、ほとんど膨張および収縮しないチタン系活物質を用いる。従って、充放電時に、集電体から活物質が脱落したり、活物質粒子間の接触状態が悪くなることにより活物質粒子間の電子伝導性が低下したりするのが抑制される。しかし、チタン系活物質は熱伝導性に乏しいため、充放電サイクル時に電池内部に熱ムラを生じ易いという問題がある。
 このような熱ムラを解消するためには、集電体に、厚み方向に貫通する、複数の貫通孔を設け、貫通孔に電解質を保持させ、集電体の厚み方向の熱伝導性を改善することが有効と考えられる。しかし、複数の貫通孔を有する集電体の表面に、活物質を含む合剤ペーストを直接塗布し、乾燥させて、合剤層を形成するという従来の電極の製造法では、集電体の貫通孔内に活物質が入り込み、貫通孔を、電解質を保持する部分として確保することが困難である。
 そこで、本発明では、集電体の貫通孔内に合剤が入り込まないように、集電体の表面をカーボン層でコートし、カーボン層を介して合剤層を配置している。さらに、カーボン層における、貫通孔内に形成される部分と、その部分から集電体の厚み方向に延びる部分とを合わせた領域を、低密度とする。これにより、負極内部に、熱容量が高く、かつ熱が拡散し易い非水電解質を保持する空間を十分に確保することができ、集電体の厚み方向の熱伝導性が改善される。よって、チタン系活物質を用いることによる、充放電の繰り返し時に生じる電池の熱ムラが抑制され、充放電サイクル特性が向上する。
 カーボン層は、集電体と合剤層との間の電子伝導性を改善する役割とともに、電解質の保持性を改善する役割を併せ持つ。カーボン層は低密度の領域を含むため、カーボン層全体としての平均密度は0.05~0.4g/cm3となり、貫通孔が存在しない場合(0.5g/cm3程度)と比べて密度は低くなる。カーボン層の平均密度が上記範囲の場合、電子伝導性および電解質保持性に優れた電極が得られる。
 さらに、集電体の空隙率を20~60%とすることにより、集電体の強度が十分に確保されるとともに、集電体の電解質保持部に十分量の電解質が確保され、負極内部へのリチウムイオンの移動がスムーズに行われるため、非水電解質二次電池のレート特性が向上する。なお、空隙率とは、集電体および貫通孔の合計占有体積に対する貫通孔の総容積の割合をいう。
 上記i)~iv)の条件を満たすことにより、充放電サイクル特性およびレート特性に優れた非水電解質二次電池を提供することができる。
 上記の集電体の貫通孔は、電解質を保持するために設けられる孔であり、少なくとも、集電体の厚み方向に貫通する孔、すなわちシート状の集電体の一方の表面から、他方の表面に貫通する孔である。貫通孔の集電体の厚み方向に垂直な断面の形状は、例えば、略円形状、楕円形状、略四角形状等の略多角形状である。
 集電体の強度および厚み方向の熱伝導性をバランス良く得るためには、貫通孔の平均径(略円形状でない場合、平均の最大径)は、好ましくは100~700μm、より好ましくは200~600μm、さらに好ましくは250~500μmである。
 集電体には、例えば、パンチングメタル、エキスパンドメタル、またはメッシュ状の金属板が用いられる。合剤層およびカーボン層の形成は、集電体の片面でもよく、両面でもよい。
 電池の出力特性および容量の観点から、合剤層中の活物質の含有量は、合剤層1cm3あたり1.5~2.3gが好ましい。合剤層中の活物質の含有量を、合剤層1cm3あたり1.5g以上とすることで、十分量の活物質を含む合剤層が得られ、負極容量が十分に得られる。合剤層中の活物質の含有量を、合剤層1cm3あたり2.3g以下とすることで、合剤層中に電解質を十分に保持することができ、優れた充放電サイクル特性が得られる。
 本発明は、正極、上記の負極、前記正極と前記負極との間に配されたセパレータ、および非水電解質を備える非水電解質二次電池に関する。
 電池内において、貫通孔の内空間(集電体の空隙)の30~90体積%は、非水電解質で満たされているのが好ましい。すなわち、貫通孔内の内空間の10~70体積%は、炭素材料および結着剤が占めるのが好ましい。少なくとも貫通孔の内空間の30体積%が非水電解質で満たされていれば、充放電サイクル特性が向上する。
 貫通孔内にて非水電解質が占める割合P(体積%)は、例えば、以下の方法により求められる。負極の厚み方向の断面を走査型電子顕微鏡(SEM)を用いて観察する。SEMの画像処理により、貫通孔が占める容積Qに対する、貫通孔内にて電解質が保持された空間が占める容積Rの比:R/Qを求める。そして、R/Q×100をPの値とする。
 貫通孔内にて電解質が保持された空間が占める容積Rは、例えば、貫通孔内にて形成される空間を明確に判別できるように、SEM像に二値化処理を施して求められる。画像(投影像)の倍率は、例えば、200~1000倍である。画像(投影像)の面積は、例えば、50~100μm×50~100μmである。画像(投影像)を分割するピクセル(画素)数は、例えば、480~1024×480~1024である。各ピクセルを二値化処理する。この処理を、1つの貫通孔における負極の厚み方向の断面に対して行う。
 正極は、集電体、および集電体の表面に形成された合剤層を有する。正極の合剤層は、例えば、活物質、導電剤、および結着剤を含む。正極は、例えば、以下の方法により得られる。活物質、導電剤、および結着剤の混合物に、分散媒を加えたペースト得る。このペーストを、集電体の表面に塗布し、塗膜を形成する。塗膜を乾燥させて、合剤層を形成した後、それを圧縮する。正極の合剤層の形成は、正極の集電体の片面でもよく、両面でもよい。
 正極の活物質には、リチウムを可逆的に吸蔵および放出可能なリチウム含有複合酸化物が用いられる。リチウム含有複合酸化物の代表的な例としては、LiCoO2、LiNiO2、LiMn24、LiMnO2、LiNi1-yCoy2(0<y<1)、LiNi1-y-zCoyMnz2(0<y+z<1)等を挙げることができる。
 正極の結着剤には、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂が用いられる。正極の導電剤には、負極の導電剤と同様の材料が用いられる。
 正極の集電体には、例えば、アルミニウム箔またはアルミニウム合金箔等の金属箔が用いられる。正極の集電体の厚みは、例えば、10~30μmである。
 セパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性の微多孔性薄膜が用いられる。具体的には、ポリプロピレン、ポリエチレンなどを単独またはこれらを組み合わせたオレフィン系ポリマーあるいはガラス繊維のシートまたは不織布が用いられる。
 セパレータの孔径は、電極シートより脱離した活物質、結着剤および導電剤などが透過しない範囲であることが望ましく、例えば、0.1~1μmであるのが望ましい。セパレータの厚みは、一般的には、10~100μmが好ましく用いられる。また、空孔率は、電子やイオンの透過性と素材や膜厚に応じて決定されるが、一般的には30~80%であることが望ましい。
 非水電解質は、非水溶媒、およびその溶媒に溶解したリチウム塩からなる。
 非水溶媒には、例えば、環状カーボネート、環状カルボン酸エステル、非環状カーボネート、脂肪族カルボン酸エステルが用いられる。非水溶媒は、環状カーボネートと非環状カーボネートとを含む混合溶媒、または環状カルボン酸エステルと環状カーボネートとを含む混合溶媒が好ましい。
 非水溶媒としては、具体的には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびビニレンカーボネート(VC)などの環状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、およびジプロピルカーボネート(DPC)などの非環状カーボネート、ギ酸メチル(MF)、酢酸メチル(MA)、プロピオン酸メチル(MP)、およびプロピオン酸エチル(MA)などの脂肪族カルボン酸エステル、γ-ブチロラクトン(GBL)などの環状カルボン酸エステルが挙げられる。
 環状カーボネートとしては、EC、PC、およびVCが好ましい。環状カルボン酸エステルとしてはGBLが好ましい。非環状カーボネートとしては、DMC、DEC、およびEMCが好ましい。また、必要に応じ、脂肪族カルボン酸エステルを含むのが好ましい。
 リチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiAsF6、LiN(CF3SO22、LiB10Cl10などのクロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム、LiN(CF3SO2)(C25SO2)ならびにLiN(CF3SO22、LiN(C25SO22およびLiN(CF3SO2)(C49SO2)などのイミド類を挙げることができる。なかでも、LiPF6が好ましい。
 非水電解質中のリチウム塩の濃度は、特に限定されないが、好ましくは0.2~2mol/L、より好ましくは0.5~1.5mol/Lである。
 電池の形状としては、コイン型、ボタン型、シート型、円筒型、偏平型および角型などいずれを採用してもよい。
 以下、本発明の負極の一実施形態を、図1を参照しながら説明するが、本発明はこれに限定されない。なお、図1は、模式的に示すものであり実際の寸法とは異なる。
 図1に示すように、負極11は、シート状の集電体12、および集電体12の両面に形成された複層14を有する。複層14は、炭素材料を含むカーボン層15、および活物質を含む合剤層16からなる。集電体12は、複数の貫通孔13を有するパンチングメタルからなる。合剤層16は、カーボン層15を介して集電体12上に形成されている。
 カーボン層15は、集電体12の一方の表面Sおよび他方の表面Sを覆う部分である表面被覆部17と、孔13内に充填される孔充填部18とからなる。孔充填部18と、孔充填部18から集電体12の厚み方向に延びる部分に相当する延長部17aと、をあわせた部分(以下、疎部)では、炭素材料を疎に充填し、密度を低くする。これにより、この疎部において、電解質を保持するための空隙が形成される。低密度のカーボン層は、主に、孔充填部18において形成される。すなわち、空隙の大部分は、貫通孔13内にて形成される。貫通孔13内では、小さな空隙が多数形成されてもよく、局所的に大きな空隙が形成されてもよい。
 疎部にて炭素材料が疎に充填されていることは、例えば、走査型電子顕微鏡(SEM)等による負極の断面観察により確認することができる。
 カーボン層15の平均密度を0.05~0.4g/cm3とすることで、レート特性および充放電サイクル特性が向上する。優れたレート特性および充放電サイクル特性を得るためには、カーボン層15の平均密度は、0.05~0.3g/cm3が好ましい。特に優れた充放電サイクル特性を得るためには、カーボン層15の平均密度は、0.1~0.3g/cm3がより好ましい。
 活物質の貫通孔内への入り込みを抑制するためには、カーボン層の平均密度の下限は、0.05g/cm3、好ましくは0.1g/cm3、より好ましくは0.15g/cm3である。負極の電解液保持性の観点から、カーボン層の平均密度の上限は、0.4g/cm3、好ましくは0.3g/cm3、より好ましくは0.25g/cm3である。カーボン層の平均密度の範囲については、上記の上限と下限とを任意に組み合わせてもよい。
 カーボン層15の平均密度は、下記式より求められる。
 カーボン層15の平均密度=
 (炭素材料の充填量)/(表面被覆部17の体積+貫通孔13の総容積)
 表面被覆部17の体積は、表面被覆部17の集電体(貫通孔13を含む)との対向面積に、表面被覆部17の厚みを乗じることにより求められる。
 レート特性および充放電サイクル特性の観点から、貫通孔1cm3あたりに含まれる炭素材料の重量は、好ましくは0.05~0.35g、より好ましくは0.05~0.15gである。
 貫通孔13は、集電体12の厚み方向Xにおける一方の表面Sから他方の表面Sに達する。貫通孔13の集電体12の面方向Yに沿った断面形状は、略円形状である。
 集電体の強度および厚み方向の熱伝導性をバランス良く得るためには、貫通孔13の平均径は、好ましくは100~700μm、より好ましくは200~600μm、さらに好ましくは250~500μmである。
 集電体の強度の観点から、貫通孔13の平均径の上限は、好ましくは700μm、より好ましくは600μm、さらに好ましくは500μmである。集電体の厚み方向の熱伝導性および充放電サイクル特性の観点から、貫通孔13の平均径の下限は、好ましくは100μm、より好ましくは200μm、さらに好ましくは250μmである。貫通孔の平均値の範囲については、上記の上限と下限とを任意に組み合わせてもよい。
 図1中の貫通孔13の間隔Lは、100~1000μmであるのが好ましい。貫通孔13の間隔Lを100μm以上とすることで、集電体12の表面をカーボン層で安定して覆うことができる。貫通孔13の間隔Lを1000μm以下とすることで、集電体の厚み方向の熱伝導性を十分に確保することができる。負極反応の均一性の観点から、貫通孔13は、一定の大きさで、かつ一定の間隔で設けるのが好ましい。
 集電体12の空隙率は20~60%である。なお、空隙率とは、集電体12および貫通孔13の合計占有体積に対する貫通孔13の総容積の割合をいう。
 集電体の空隙率を20%以上とすることで、集電体が電解液を十分に保持することができ、レート特性が向上する。また、集電体の厚み方向の熱伝導性が十分に改善される。集電体の空隙率が60%以下とすることで、集電体の強度が十分に確保され、また、貫通孔内に炭素材料が過度に充填されない。集電体12の空隙率は、30~50%が好ましく、35~45%がより好ましい。
 集電体の電解液保持性の観点から、集電体の空隙率の下限は、20%、好ましくは30%、より好ましくは35%である。集電体の強度を十分に確保し、かつ貫通孔内に炭素材料が過度に充填されるのを抑制するためには、集電体の空隙率の上限は、60%、好ましくは50%、より好ましくは45%である。集電体の空隙率の範囲については、上記の上限と下限とを任意に組み合わせてもよい。
 集電体の空隙率は、貫通孔の大きさおよび間隔L等を変えることにより調整することができる。集電体の空隙率は、貫通孔の平均径および集電体の厚みから計算で求めることができる。
 集電体12の厚みTは、好ましくは5~40μm、より好ましくは5~25μmである。集電体12の厚みTを5μm以上とすることで、集電体の電解質保持量を十分に確保することができ、充放電サイクル特性を大幅に向上することができる。集電体12の厚みTを40μm以下とすることで、負極の厚みを十分に小さくすることができ、高エネルギー密度の電池を得ることができる。
 集電体の強度、電解質保持性、厚み方向の熱伝導性の観点から、集電体12の厚みTに対する貫通孔13の平均径Rの比:R/Tは、好ましくは2.5~60、より好ましくは15~50である。
 集電体12を構成する材料は、アルミニウムまたはアルミニウム合金が好ましい。耐電解質性および強度の観点から、アルミニウム合金は、アルミニウム以外に、銅、マンガン、珪素、マグネシウム、亜鉛、およびニッケルからなる群より選択される少なくとも1種を含むのが好ましい。アルミニウム合金中にて、アルミニウム以外の元素の含有量は、0.05~0.3重量%が好ましい。
 カーボン層15は、炭素材料および第1結着剤を含む。
 炭素材料には、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維、グラファイトが用いられる。これらの中でも、炭素材料は、アセチレンブラックが好ましい。
 炭素材料は、粒子状でも繊維状でもよい。粒子状の炭素材料は、体積基準の平均粒径(D50)10~50nmが好ましい。繊維状の炭素材料は、平均繊維長0.1~20μmおよび平均繊維径5~150nmが好ましい。
 第1結着剤としては、例えば、スチレンブタジエンゴム(SBR)、ポリエチレン(PE)、ポリプロピレン(PP)、フッ素樹脂が挙げられる。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体およびフッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体が挙げられる。カーボン層の強度の観点から、これらの中でも、PTFE、PVDFが好ましい。
 カーボン層15中の第1結着剤の含有量は、好ましくは炭素材料100重量部あたり150~300重量部、より好ましくは炭素材料100重量部あたり175~275重量部、さらに好ましくは炭素材料100重量部あたり200~250重量部である。
 カーボン層15中の第1結着剤の含有量を、炭素材料100重量部あたり150重量部以上とすることで、炭素材料間の結着性およびカーボン層と集電体との結着性を十分に確保することができる。カーボン層15中の第1結着剤の含有量を、炭素材料100重量部あたり300重量部以下とすることで、十分量の炭素材料を含むカーボン層を得ることができ、合剤層と集電体との間の電子伝導性を十分に確保することができる。
 炭素材料間の結着性およびカーボン層と集電体との結着性の観点から、カーボン層中の第1結着剤の含有量の下限は、好ましくは炭素材料100重量部あたり150重量部、より好ましくは炭素材料100重量部あたり175重量部、さらに好ましくは炭素材料100重量部あたり200重量部である。カーボン層の電子伝導性の観点から、カーボン層中の第1結着剤の含有量の上限は、好ましくは炭素材料100重量部あたり300重量部、より好ましくは炭素材料100重量部あたり275重量部、さらに好ましくは炭素材料100重量部あたり250重量部である。カーボン層中の第1結着剤の含有量の範囲については、上記の上限と下限とを任意に組み合わせればよい。
 集電体と合剤層との間の電子伝導性およびエネルギー密度の観点から、カーボン層15の表面被覆部17の厚みTc(1層あたりの厚み)は、好ましくは5~30μm、より好ましくは5~20μmである。
 カーボン層15の表面被覆部17の厚みTcを5μm以上とすることで、カーボン層により集電体(貫通孔)が十分に保護され、活物質の貫通孔への侵入が抑制される。カーボン層15の表面被覆部17の厚みTcを30μm以下とすることで、負極の厚みを十分に小さくすることができ、高エネルギー密度の電池を得ることができる。
 合剤層16は、活物質および導電剤を含み、必要に応じて、さらに第2結着剤を含む。活物質には、チタン系活物質が用いられる。チタン系活物質は、充放電に伴う膨張収縮による体積変化がほとんどないため、充放電サイクルに伴う合剤層の結着性の低下が抑制される。
 チタン系活物質は、一般式:Li4+xTi5-y12+zで表される構造を有するのが好ましい。ここで、Mは、Mg、Al、Ca、Ba、Bi、Ga、V、Nb、W、Mo、Ta、Cr、Fe、Ni、Co、およびMnからなる群より選択された少なくとも1種であり、-1≦x≦1、0≦y≦1、および-1≦z≦1である。なお、xは合成直後または完全放電状態における値である。Tiの一部を、Mg、Al、Ca、Ba、Gaで置換することにより、熱安定性が向上する。これらのなかでも、MgおよびAlがより好ましい。Tiの一部を、Bi、V、Nb、W、Mo、Ta、Cr、Fe、Ni、Co、Mnで置換することにより、サイクル特性が向上する。これらのなかでも、BiおよびVがより好ましい。充放電に伴う膨張収縮による体積変化が特に小さいことから、チタン系活物質は、Li4Ti512が特に好ましい。チタン系活物質の体積基準の平均粒径(D50)は、0.2~30μmが好ましい。
 導電剤には、カーボン層15で用いられるカーボンブラック類以外に、天然黒鉛、人造黒鉛などのグラファイト類が用いられる。これらのなかでも、人造黒鉛、アセチレンブラックが好ましい。導電剤に、カーボン層の炭素材料と同じカーボンブラック類であるアセチレンブラックを用いるのがより好ましい。
 また、炭素材料以外に、金属繊維類、フッ化カーボン、金属(例えば、アルミニウム)粉末類、酸化亜鉛やチタン酸カリウムのような導電性ウィスカー類、酸化チタンのような導電性金属酸化物、またはフェニレン誘導体のような有機導電性材料が挙げられる。これらのなかでも、ニッケル粉末が特に好ましい。
 合剤層16中の導電剤の含有量は、活物質100重量部あたり2~15重量部が好ましく、活物質100重量部あたり3~12重量部がより好ましい。合剤層16中の導電剤の含有量を、活物質100重量部あたり2重量部以上とすることで、活物質粒子間の電子伝導性および合剤層とカーボン層との電子伝導性が十分に得られる。合剤層16中の導電剤の含有量を、活物質100重量部あたり15重量部以下とすることで、十分量の活物質を含む合剤層が得られ、負極容量が十分に得られる。
 合剤層16中の第2結着剤には、例えば、カーボン層中に用いられる第1結着剤に例示したものを任意に選択して用いることができる。
 合剤層16中の第2結着剤の含有量は、活物質100重量部あたり2~6重量部が好ましく、活物質100重量部あたり3~5がより好ましい。合剤層16中の第2結着剤の含有量を、活物質100重量部あたり2重量部以上とすることで、活物質粒子間の結着性および合剤層とカーボン層との結着性が十分に得られる。合剤層16中の第2結着剤の含有量を、活物質100重量部あたり6重量部以下とすることで、十分量の活物質を含む合剤層が得られ、負極容量が十分に得られる。
 合剤層16の内部への非水電解質の供給および活物質量の観点から、合剤層16の厚みTm(1層あたりの厚み)は、20~150μmが好ましく、より好ましくは20~50μmである。
 合剤層16の厚みTmに対するカーボン層15の表面被覆部17の厚みTcの比:Tc/Tmは、0.03~1.5が好ましく、より好ましくは0.1~1.5である。
 電池の出力特性および容量の観点から、合剤層16中の活物質の含有量は、合剤層1cm3あたり1.5~2.3gが好ましい。合剤層16中の活物質の含有量を、合剤層1cm3あたり1.5g以上とすることで、十分量の活物質を含む合剤層が得られ、負極容量が十分に得られる。合剤層16中の活物質の含有量を、合剤層1cm3あたり2.3g以下とすることで、合剤層中に電解質を十分に保持することができ、良好な充放電サイクル特性が得られる。
 以下、本発明の非水電解質二次電池用負極の製造方法の一例について説明する。その方法は、
 (a)複数の貫通孔を有し、空隙率が20~60%である、シート状の集電体の表面に炭素材料を含む第1ペーストを塗布し、乾燥させて、集電体の表面および貫通孔内に前記カーボン層を形成する工程と、
 (b)前記カーボン層の表面に、チタン系活物質および導電剤を含む第2ペーストを塗布し、乾燥させて、合剤層を形成し、負極前駆体を得る工程と、
 (c)前記負極前駆体を圧縮し、前記カーボン層の平均密度が0.05~0.4g/cm3である負極を得る工程と、
を含む。
工程(a):カーボン層形成工程
 例えば、粉末状の炭素材料に、第1結着剤を加え、さらに適量の第1分散媒を加え、第1ペーストを得る。第1分散媒には、水またはN-メチル-2-ピロリドン等が用いられる。
 第1ペーストを、集電体の両面に塗布し、第1塗膜を形成する。
 第1塗膜を貫通孔内に入り難くさせるためには、第1ペースト内に占める分散媒の割合を、炭素材料100重量部あたり800重量部以下とするのが好ましい。
 集電体の両面への安定した塗布性を確保するためには、第1ペースト内に占める分散媒の割合を、炭素材料100重量部あたり300重量部以上とするのがより好ましい。
 第1ペーストの塗布方法は、一般的な方法を用いることができる。例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、キャスティング法、ディップ法およびスクイーズ法等が挙げられる。そのなかでもブレード法、ナイフ法およびエクストルージョン法が好ましい。また、塗布方法は連続でも間欠方式でもストライプ方式でもよい。
 貫通孔内に第1塗膜を入り込み難くさせるためには、塗布方法は、特に、ブレード法が好ましい。
 第1ペーストが貫通孔内に入り込み過ぎないようにしつつ、かつ良好な塗膜を形成するためには、第1ペーストの塗布は、0.5~12m/分の速度で実施するのが好ましい。この際、第1塗膜の乾燥性に合わせて、上記の塗布方法を選定すればよい。これにより、良好なカーボン層の表面状態を得ることができる。
 次に、第1塗膜を乾燥させて、カーボン層を形成する。
 第1塗膜が貫通孔内に入り込み過ぎることなく、カーボン層を安定して形成するためには、第1塗膜を送風乾燥機により乾燥させるのが好ましい。乾燥条件としては、乾燥温度80~120℃、乾燥時間10~30分が好ましい。上記条件を採用することにより、工程(a)において、貫通孔の開口部上に塗布された第1ペーストの大部分は、開口部付近で貫通孔の開口を覆うように塗布され、第1塗膜は貫通孔内に密には入り込まない。よって、貫通孔内および貫通孔から集電体の厚み方向に延びる領域(孔充填部および延長部)では、炭素材料は密には充填されず、疎なカーボン層が形成される。
工程(b):合剤層形成工程
 第2ペーストは、例えば、活物質に、導電剤および第2結着剤を加え、さらに適量の第2分散媒を加えることにより得られる。第2分散媒には、水またはN-メチル-2-ピロリドン等が用いられる。第2分散媒は、第1分散媒と同じでもよく、異なっていてもよい。第2結着剤は、第1結着剤と同じでもよく、異なっていてもよい。
 カーボン層の表面に安定して塗膜を形成するためには、第2ペースト中に占める分散媒の割合を、活物質100重量部あたり80~150重量部とするのが好ましい。
 第2ペーストを、カーボン層上に塗布し、第2塗膜を形成する。第2ペーストの塗布方法としては、第1ペーストと同様の方法が用いられる。良好な塗膜を形成するためには、第2ペーストの塗布は、0.5~5m/分の速度で実施するのが好ましい。
 第2塗膜を送風乾燥させて合剤層を形成する。乾燥条件としては、乾燥温度80~120℃、乾燥時間10~30分間が好ましい。
工程(c):集電体、カーボン層、および合剤層の密着工程
 工程(b)の後、集電体の両面にカーボン層および合剤層が形成された負極前駆体を、一対のローラを用いて所定の線圧で圧縮し、負極を得る。
 一対のローラにより負極前駆体に加えられる線圧は、好ましくは1000~3000kgf/cm、より好ましくは1500~2500kgf/cmである。線圧を3000kgf/cm以下とすることで、カーボン層が貫通孔内に密に入り込むのを確実に抑制することができる。線圧を1000kgf/cm以上とすることで、合剤層の活物質密度を大きくすることができ、電池のエネルギー密度を高めることができる。また、負極の強度(合剤層およびカーボン層の結着性)が十分に得られる。
 工程(a)にて、貫通孔内および貫通孔から集電体の厚み方向に延びる領域に存在するカーボン層は、貫通孔の存在により、工程(c)にて十分に圧縮されない。よって、工程(c)の後においても、貫通孔内および貫通孔から集電体の厚み方向に延びる領域において、炭素材料は密には充填されず、疎なカーボン層が形成される。この疎なカーボン層は、特に、貫通孔内にて低密度となる。
 一方、集電体の表面に存在するカーボン層は、工程(c)にて、集電体に押さえつけられ十分に圧縮されるため、密な層となり、集電体と、合剤層および集電体との間の良好な密着性が得られる。
 以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
《実施例1~4および比較例1~2》
(1)負極の作製
 以下の手順で、図1に示すような構造の負極を作製した。
a)カーボン層の形成
 炭素材料としてのアセチレンブラック粉末(電気化学工業(株)製、平均粒径35nm)100重量部と、結着剤としてのポリフッ化ビニリデン樹脂((株)クレハ製)230重量部との混合物に、分散媒としてのN-メチル-2-ピロリドンを700重量部加え、第1ペーストを得た。第1ペーストを、コンマコーターにより、負極集電体の両面に1m/分の速度で塗布し、第1塗膜を形成した。負極集電体には、パンチング加工にて得られたシート状のアルミニウム製のパンチングメタル(空隙率40%、厚みT20μm、平均孔径500μm、間隔L500μm)を用いた。このとき、第1塗膜は途切れることなく、かつ貫通孔内に入り込み過ぎず、負極集電体の両面を平面状に覆った。第1塗膜を送風乾燥させ、カーボン層(第1層)を形成した。乾燥温度は80℃とし、乾燥時間は20分間とした。
b)合剤層の形成
 活物質としてのLi4Ti512(Li[Li1/3Ti5/3]O4)粉末(平均粒径1μm)85重量部と、導電剤としてのアセチレンブラック粉末(電気化学工業(株)製、平均粒径35nm)10重量部と、結着剤としてのポリフッ化ビニリデン樹脂((株)クレハ製)5重量部との混合物に、分散媒としてのN-メチル-2-ピロリドンを100重量部加え、第2ペーストを得た。第2ペーストを、コンマコーターにて、カーボン層の表面に1m/分の速度で塗布し、第2塗膜を形成した。第2塗膜の塗布量は、7.5mg/cm2とした。第2塗膜を送風乾燥させ、合剤層(第2層)を形成した。乾燥温度は80℃とし、乾燥時間は20分間とした。このようにして、負極前駆体を得た。
 一対のローラで負極前駆体を圧縮し、帯状の所定の大きさ(長手方向の寸法240mm、幅方向の寸法55mm)に切断し、負極を得た。なお、負極の一端部には、後述する負極リードを溶接するための集電体露出部を設けた。
 上記の負極作製時において、カーボン層の平均密度を表1に示す値に変えて、それぞれ実施例1~4の負極A1~A4および比較例1~2の負極B1~B2を作製した。具体的には、負極前駆体の圧縮時に一対のローラにより加えられる線圧を、500~3500kgf/cmの範囲で変えた。圧縮後の表面被覆部の厚みTcが約15μmとなるように、第1ペーストの塗布量を、0.05~0.8mg/cm2の範囲で変えた。圧縮後において、負極合剤層の厚みTは37~44μm、カーボン層の表面被覆部の厚みTは14~17μm、および負極合剤層1cm3あたりの活物質量は2.0~2.5gであった。
 各負極について、カーボン層の平均密度を、以下の式により求めた。
 カーボン層の平均密度=
   (炭素材料の充填量)/(表面被覆部の体積+貫通孔の総容積)
 表面被覆部の体積は、表面被覆部の集電体(貫通孔を含む)との対向面積に、表面被覆部の厚み寸法を乗じて求めた。貫通孔の総容積は、貫通孔の平均径および集電体の厚みを用いて求めた貫通孔の体積に貫通孔の数を乗じて求めた。
 各負極について、集電体の貫通孔内にて非水電解質が占める割合P(体積%)を、以下の方法により求めた。
 負極の厚み方向の断面(円柱状の貫通孔の軸心を含む断面)を、走査型電子顕微鏡(SEM)を用いて観察した。その結果、孔貫通部、特に孔充填部では炭素材料が密に充填されず、電解質を保持する空間が形成されていることがわかった。
 SEM像を画像処理し、貫通孔が占める容積Qに対して、貫通孔内にて電解質が保持された空間が占める容積Rの比:R/Qを求めた。R/Q×100をPの値とした。
 貫通孔内にて電解質が保持された空間が占める容積Rは、貫通孔内にて形成される空間を明確に判別できるように、SEM像に二値化処理を施して求めた。画像(投影像)の倍率は、600倍とした。画像(投影像)の面積は、100μm×100μmとした。画像(投影像)を分割するピクセル(画素)数は、1024×1024とした。各ピクセルを二値化処理した。この処理を、1つの貫通孔における負極の厚み方向の断面に対して行った。
 集電体における5個の貫通孔に対してこの作業を繰り返し実施した。そして、その平均値を求めた。
(2)正極の作製
 活物質としてのコバルト酸リチウム(LiCoO2)粉末85重量部と、導電剤としてのアセチレンブラック粉末10重量部と、結着剤としてのポリフッ化ビニリデン樹脂5重量部との混合物に、分散媒としてのN-メチル-2-ピロリドンを50重量部加え、正極ペーストを得た。正極ペーストを、コンマコーターにて、アルミニウム箔(厚み15μm)からなる正極集電体の両面に1m/分の速度で塗布し、塗膜を形成した。この塗膜を送風乾燥させ、合剤層を形成し、正極前駆体を得た。乾燥温度は80℃とし、乾燥時間は20分間とした。
 正極前駆体を線圧2000kgf/cmで圧縮し、帯状の所定の大きさ(長手方向の寸法200mm、幅方向の寸法50mm)に切断し、正極を得た。このとき、合剤層の厚みは30μmであった。なお、正極の一端部には、後述する正極リードを溶接するための集電体露出部を設けた。
(3)電池の組立て
 正極と、負極とを、正極と負極との間にセパレータを介して、渦巻状に巻回し、電極群4を得た。セパレータには、ポリエチレン製の微多孔フィルム(厚み20μm)を用いた。電極群4を、ステンレス鋼製の電池ケース1内に収納した。アルミニウム製の正極リード5の一端を正極に接続した。正極リード5の他端を封口板2に接続した。アルミニウム製の負極リード6の一端を負極に接続した。負極リード6の他端を電池ケース1の底部に接続した。電極群4の上下部に、それぞれ樹脂製の絶縁リング7を配した。電池ケース1内に非水電解質を注入した。非水電解質には、LiPF6が溶解した非水溶媒を用いた。非水溶媒には、エチレンカーボネート(EC)およびジエチルカーボネート(DEC)の混合溶媒(体積比3:7)を用いた。非水電解質中のLiPF6の濃度は1.0mol/Lとした。電池ケース1の開口端部を、樹脂製の封口体3を介して、封口板2の周縁部にかしめつけ、電池ケース1を密封した。このようにして、図2の円筒型電池(直径18mm、高さ65mm)を得た。具体的には、実施例1~4の負極A1~A4を用いて、電池A1~A4を作製した。また、比較例1~2の負極B1~B2を用いて、電池B1~B2を作製した。
《比較例3》
 カーボン層を形成せずに、負極ペーストを、ブレード法にて、直接負極集電体の表面に1m/分の速度で塗布し、塗膜を形成した。負極ペーストには、実施例1の第2ペーストを用いた。負極集電体には、実施例1の負極集電体を用いた。このとき、塗膜の一部が、貫通孔内に入り込んだ。塗膜を送風乾燥させ、合剤層を形成した。乾燥温度は80℃とし、乾燥時間は20分間とした。合剤層の一部は、貫通孔内に形成された。このようにして、負極前駆体を得た。
 負極前駆体を用いて、実施例1と同様の方法により、負極Cを得た。このとき、合剤層の厚みは41μmであった。負極A1の代わりに、負極Cを用いた以外、実施例1と同様の方法により、円筒型電池Cを作製した。
《比較例4》
 負極集電体に、パンチングメタルの代わりに、貫通孔を有さないアルミニウム箔(厚み15μm)を用いた以外、実施例1と同様の方法により、負極Dを作製した。負極A1の代わりに、負極Dを用いた以外、実施例1と同様の方法により、円筒型電池Dを作製した。
《比較例5》
 カーボン層を形成せず、負極ペーストを、コンマコーターにて、直接負極集電体に1m/分の速度で塗布し、塗膜を形成した。負極ペーストには、実施例1の第2ペーストを用いた。負極集電体には、比較例4のアルミニウム箔(厚み15μm)を用いた。塗膜を乾燥させ、合剤層を形成した。乾燥温度は80℃とし、乾燥時間は20分間とした。このようにして、負極前駆体を得た。
 負極前駆体を用いて、実施例1と同様の方法により、負極Eを得た。このとき、合剤層の厚みは39μmであった。負極A1の代わりに、負極Eを用いた以外、実施例1と同様の方法により、円筒型電池Eを作製した。
 上記負極の作製条件を表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
[評価]
(1)直流内部抵抗の測定
 レート特性を評価するため、以下の測定を実施した。
 25℃の環境下において、充電容量が満充電の60%に達するまで、電池を1Aの定電流で充電した。SOC60%の電池を用い、下記の表2に示す条件で、100~2000mAの範囲内で電流値を変えながら間欠的に充電および放電した。
Figure JPOXMLDOC01-appb-T000002
 ステップ1、3、5、7、および9の放電開始から10秒後の放電電圧をそれぞれ測定し、電流値に対してプロットした。このプロットに対して最小二乗法による直線近似を行い、その傾きの値を直流内部抵抗(DCIR;Direct Current Internal Resistance)とした。DCIRの値が小さいほど、出力特性が高く、レート特性に優れていることを示す。
(2)充放電サイクル試験
 25℃の環境下において、下記に示す条件で充放電サイクル試験を実施した。
 充電条件:電池電圧が4.2Vに達するまで1Aの定電流で充電した後、電流値が0.1Aに減衰するまで4.2Vの定電圧で充電
 放電条件:電池電圧が1.5Vに達するまで1Aの定電流で放電
 そして、充放電サイクルは500サイクルとし、1サイクル目および500サイクル目の放電容量を用いて、下記式より容量維持率を求めた。
 容量維持率(%)=500サイクル目の放電容量/1サイクル目の放電容量×100
 その試験結果を表3に示す。
 本発明の実施例1~4の電池A1~A4では、電解質保持性および電子伝導性に優れた負極を用いたため、比較例1~5の電池B1~B2およびC~Eに比べて、レート特性およびサイクル特性が大幅に向上した。
 比較例3の電池Cでは、実施例1の電池A1と同じ集電体を用いたが、電池Cを解体し、負極の断面を観察した結果、貫通孔内に合剤層が密に充填され、電解質を保持する空間が形成されていないことが確かめられた。
 なお、上記実施例では、空隙率が40%の集電体を用いたが、集電体の空隙率が40%以外の場合でも、集電体の空隙率が20~60%であれば、上記実施例と同様の本発明の効果が得られる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本発明の非水電解質二次電池は、出力特性に優れているため、車載用電池として好適に用いられる。

Claims (8)

  1.  複数の貫通孔を有する、シート状の集電体と、
     前記集電体の表面および前記貫通孔内に形成されたカーボン層と、
     前記カーボン層の表面に形成された合剤層と、
    を備え、
     前記合剤層が、活物質および導電剤を含み、
     前記活物質が、スピネル型の結晶構造を有するリチウムチタン含有複合酸化物を含み、
     前記集電体の空隙率が、20~60%であり、
     前記カーボン層の平均密度が、0.05~0.4g/cm3である、ことを特徴とする非水電解質二次電池用負極。
  2.  前記貫通孔の平均径が、100~700μmである、請求項1記載の非水電解質二次電池用負極。
  3.  前記合剤層中の前記活物質の含有量は、合剤層1cm3あたり1.5~2.3gである、請求項1または2記載の非水電解質二次電池用負極。
  4.  前記リチウムチタン含有複合酸化物が、一般式:
     Li4+xTi5-y12+z
    (式中、Mは、Mg、Al、Ca、Ba、Bi、Ga、V、Nb、W、Mo、Ta、Cr、Fe、Ni、Co、およびMnからなる群より選択された少なくとも1種であり、-1≦x≦1、0≦y≦1、および-1≦z≦1)で表される、請求項1~3のいずれか1項に記載の非水電解質二次電池用負極。
  5.  正極、負極、前記正極と前記負極との間に配されたセパレータ、および非水電解質を備え、
     前記負極が、請求項1~4のいずれか1項に記載の負極である非水電解質二次電池。
  6.  前記集電体の貫通孔の内空間の30~90体積%が、前記非水電解質で満たされている、請求項5記載の非水電解質二次電池。
  7.  (a)複数の貫通孔を有し、空隙率が20~60%である、シート状の集電体の表面に、炭素材料を含む第1ペーストを塗布し、乾燥させて、前記集電体の表面および前記貫通孔内にカーボン層を形成する工程と、
     (b)前記カーボン層の表面に、活物質としてスピネル型の結晶構造を有するリチウムチタン含有複合酸化物および導電剤を含む第2ペーストを塗布し、乾燥させて、合剤層を形成し、負極前駆体を得る工程と、
     (c)前記負極前駆体を圧縮し、前記カーボン層の平均密度が0.05~0.4g/cm3である負極を得る工程と、
    を含む、非水電解質二次電池用負極の製造方法。
  8.  前記リチウムチタン含有複合酸化物が、一般式:
     Li4+xTi5-y12+z
    (式中、Mは、Mg、Al、Ca、Ba、Bi、Ga、V、Nb、W、Mo、Ta、Cr、Fe、Ni、Co、およびMnからなる群より選択された少なくとも1種であり、-1≦x≦1、0≦y≦1、および-1≦z≦1)で表される、請求項7記載の非水電解質二次電池用負極の製造方法。
PCT/JP2011/001741 2010-03-29 2011-03-24 非水電解質二次電池用負極、およびその製造方法、ならびに非水電解質二次電池 WO2011121950A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800030020A CN102473901A (zh) 2010-03-29 2011-03-24 非水电解质二次电池用负极及其制造方法、以及非水电解质二次电池
JP2011540639A JP4920803B2 (ja) 2010-03-29 2011-03-24 非水電解質二次電池用負極、およびその製造方法、ならびに非水電解質二次電池
US13/388,642 US20120135306A1 (en) 2010-03-29 2011-03-24 Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-074737 2010-03-29
JP2010074737 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011121950A1 true WO2011121950A1 (ja) 2011-10-06

Family

ID=44711717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001741 WO2011121950A1 (ja) 2010-03-29 2011-03-24 非水電解質二次電池用負極、およびその製造方法、ならびに非水電解質二次電池

Country Status (4)

Country Link
US (1) US20120135306A1 (ja)
JP (1) JP4920803B2 (ja)
CN (1) CN102473901A (ja)
WO (1) WO2011121950A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127964A (ja) * 2011-12-16 2013-06-27 Prologium Holding Inc 給電システムおよびその給電素子
JP2013214460A (ja) * 2012-04-03 2013-10-17 Toyota Motor Corp 非水電解質二次電池、及びその製造方法
JP2015515722A (ja) * 2012-04-18 2015-05-28 エルジー・ケム・リミテッド 電極及びそれを含む二次電池
JP2016115664A (ja) * 2014-12-11 2016-06-23 株式会社エムアンドジーエコバッテリー 電気化学応用製品用の三次元状電極基体を用いる電極の製造法
WO2018110708A1 (ja) 2016-12-16 2018-06-21 宇部興産株式会社 蓄電デバイスの電極用チタン酸リチウム粉末および活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス
CN113066956A (zh) * 2021-03-17 2021-07-02 宁德新能源科技有限公司 电化学装置及电子装置
JP2022523812A (ja) * 2019-10-15 2022-04-26 エルジー エナジー ソリューション リミテッド 貫通ホールが形成された金属プレートと貫通ホールを充填する多孔性補強材を含む電池用集電体及びそれを含む二次電池
WO2022230240A1 (ja) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 集電体および電池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904284A (zh) * 2012-12-29 2014-07-02 深圳市沃特玛电池有限公司 大容量高倍率的二次电池
JP6338116B2 (ja) * 2015-11-12 2018-06-06 トヨタ自動車株式会社 非水電解液二次電池
WO2017094381A1 (ja) * 2015-12-03 2017-06-08 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2018043188A1 (ja) * 2016-08-31 2018-03-08 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極、及び非水電解質二次電池
KR102039909B1 (ko) * 2016-09-01 2019-11-04 주식회사 엘지화학 관통형의 기공 또는 구멍들이 형성된 집전체를 사용하여 전극을 제조하는 방법
CN107369837A (zh) * 2017-08-29 2017-11-21 力信(江苏)能源科技有限责任公司 一种电芯极片及锂离子电池电芯
DE102018112641A1 (de) * 2018-05-25 2019-11-28 Volkswagen Aktiengesellschaft Lithiumanode und Verfahren zu deren Herstellung
CN109786661B (zh) * 2019-01-14 2020-10-30 天能电池集团股份有限公司 一种填涂导电剂的锂电池极片及其制备方法和应用
CN109841830B (zh) * 2019-02-14 2021-10-26 河南电池研究院有限公司 一种锂离子电池负极材料的制备方法
KR20210015079A (ko) * 2019-07-31 2021-02-10 삼성전자주식회사 전극 구조체 및 이를 포함하는 이차 전지
JP7488639B2 (ja) * 2019-10-15 2024-05-22 本田技研工業株式会社 リチウムイオン二次電池用電極、およびリチウムイオン二次電池
CN113161623B (zh) * 2021-04-15 2023-08-04 宇恒电池股份有限公司 一种高安全性高比能低自放电可充电电池
CN114068943A (zh) * 2021-09-24 2022-02-18 恒大新能源技术(深圳)有限公司 集流体及其制备方法以及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021556A (ja) * 2006-07-13 2008-01-31 Sharp Corp リチウム二次電池及びその製造方法
JP2008511528A (ja) * 2004-08-31 2008-04-17 コミサリア、ア、レネルジ、アトミク 緻密な混合チタンリチウム酸化物の粉末状化合物、該化合物の製造方法および該化合物を含んでなる電極
JP2008159355A (ja) * 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd コイン型リチウム電池
WO2009103202A1 (en) * 2008-02-22 2009-08-27 Byd Company Limited Negative electrode for battery and lithium battery using the same
JP2011003795A (ja) * 2009-06-19 2011-01-06 Asahi Kasei Corp 電極集電体及びその製造方法、電極並びに蓄電素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292357A (en) * 1979-07-25 1981-09-29 Eagle-Picher Industries, Inc. Zinc/zinc oxide laminated anode assembly
JPH11250900A (ja) * 1998-02-26 1999-09-17 Sony Corp 非水電解液二次電池用電極の製造方法、製造装置、および電極ならびにこの電極を用いた非水電解液二次電池
US6528211B1 (en) * 1998-03-31 2003-03-04 Showa Denko K.K. Carbon fiber material and electrode materials for batteries
JP4019518B2 (ja) * 1998-09-08 2007-12-12 三菱化学株式会社 リチウム二次電池
JP4944341B2 (ja) * 2002-02-26 2012-05-30 日本電気株式会社 リチウムイオン二次電池用負極の製造方法
CN1945878A (zh) * 2006-09-22 2007-04-11 任晓平 一种提高二次锂离子电池容量和倍率放电性能的方法、应用该方法的二次锂离子电池或电池组
JP2008269890A (ja) * 2007-04-18 2008-11-06 Nissan Motor Co Ltd 非水電解質二次電池用電極

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511528A (ja) * 2004-08-31 2008-04-17 コミサリア、ア、レネルジ、アトミク 緻密な混合チタンリチウム酸化物の粉末状化合物、該化合物の製造方法および該化合物を含んでなる電極
JP2008021556A (ja) * 2006-07-13 2008-01-31 Sharp Corp リチウム二次電池及びその製造方法
JP2008159355A (ja) * 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd コイン型リチウム電池
WO2009103202A1 (en) * 2008-02-22 2009-08-27 Byd Company Limited Negative electrode for battery and lithium battery using the same
JP2011003795A (ja) * 2009-06-19 2011-01-06 Asahi Kasei Corp 電極集電体及びその製造方法、電極並びに蓄電素子

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127964A (ja) * 2011-12-16 2013-06-27 Prologium Holding Inc 給電システムおよびその給電素子
JP2013214460A (ja) * 2012-04-03 2013-10-17 Toyota Motor Corp 非水電解質二次電池、及びその製造方法
JP2015515722A (ja) * 2012-04-18 2015-05-28 エルジー・ケム・リミテッド 電極及びそれを含む二次電池
US9786916B2 (en) 2012-04-18 2017-10-10 Lg Chem, Ltd. Electrode and secondary battery including the same
JP2016115664A (ja) * 2014-12-11 2016-06-23 株式会社エムアンドジーエコバッテリー 電気化学応用製品用の三次元状電極基体を用いる電極の製造法
WO2018110708A1 (ja) 2016-12-16 2018-06-21 宇部興産株式会社 蓄電デバイスの電極用チタン酸リチウム粉末および活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス
JP2022523812A (ja) * 2019-10-15 2022-04-26 エルジー エナジー ソリューション リミテッド 貫通ホールが形成された金属プレートと貫通ホールを充填する多孔性補強材を含む電池用集電体及びそれを含む二次電池
JP7351918B2 (ja) 2019-10-15 2023-09-27 エルジー エナジー ソリューション リミテッド 貫通ホールが形成された金属プレートと貫通ホールを充填する多孔性補強材を含む電池用集電体及びそれを含む二次電池
CN113066956A (zh) * 2021-03-17 2021-07-02 宁德新能源科技有限公司 电化学装置及电子装置
CN113066956B (zh) * 2021-03-17 2022-06-10 宁德新能源科技有限公司 电化学装置及电子装置
WO2022230240A1 (ja) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 集電体および電池

Also Published As

Publication number Publication date
JP4920803B2 (ja) 2012-04-18
CN102473901A (zh) 2012-05-23
JPWO2011121950A1 (ja) 2013-07-04
US20120135306A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP4920803B2 (ja) 非水電解質二次電池用負極、およびその製造方法、ならびに非水電解質二次電池
JP6644692B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP5313761B2 (ja) リチウムイオン電池
JP4831075B2 (ja) 非水電解質二次電池
KR101984727B1 (ko) 전극 및 이를 포함하는 리튬 이차 전지
WO2012117557A1 (ja) 非水電解液二次電池
JP6573250B2 (ja) 非水電解質二次電池の製造方法
JP2007317639A (ja) 正極活物質及びこれを含むリチウム二次電池
JP6995738B2 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2013080379A1 (ja) リチウム二次電池とその製造方法
CN110323485A (zh) 二次电池
EP2833463A1 (en) Lithium-ion secondary cell
US20210043979A1 (en) Non-aqueous electrolyte secondary battery
JP2019140039A (ja) 非水電解質二次電池
KR101572405B1 (ko) 리튬 2차 전지
JP5843107B2 (ja) 非水電解液二次電池の製造方法
JP2013246900A (ja) 二次電池
JP6008188B2 (ja) 非水電解液二次電池
JP2014130729A (ja) 非水電解液二次電池の製造方法
JP7064709B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
EP3358652B1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP5692605B2 (ja) 非水電解液二次電池
JP2016197559A (ja) 非水電解質二次電池
JP6607388B2 (ja) リチウムイオン二次電池用正極及びその製造方法
JP2019169346A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003002.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011540639

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13388642

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762202

Country of ref document: EP

Kind code of ref document: A1