WO2011121777A1 - 磁気抵抗素子及び磁気メモリ - Google Patents

磁気抵抗素子及び磁気メモリ Download PDF

Info

Publication number
WO2011121777A1
WO2011121777A1 PCT/JP2010/055938 JP2010055938W WO2011121777A1 WO 2011121777 A1 WO2011121777 A1 WO 2011121777A1 JP 2010055938 W JP2010055938 W JP 2010055938W WO 2011121777 A1 WO2011121777 A1 WO 2011121777A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
magnetic layer
ferromagnetic material
magnetization
Prior art date
Application number
PCT/JP2010/055938
Other languages
English (en)
French (fr)
Inventor
永瀬 俊彦
甲斐 正
勝哉 西山
英二 北川
忠臣 大坊
中山 昌彦
長嶺 真
茂人 深津
吉川 将寿
與田 博明
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2011539815A priority Critical patent/JP5479487B2/ja
Priority to PCT/JP2010/055938 priority patent/WO2011121777A1/ja
Publication of WO2011121777A1 publication Critical patent/WO2011121777A1/ja
Priority to US13/407,039 priority patent/US8665639B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films
    • H01F10/3231Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer
    • H01F10/3236Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer made of a noble metal, e.g.(Co/Pt) n multilayers having perpendicular anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/123Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] thin films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets

Definitions

  • the present invention relates to a magnetoresistive element and a magnetic memory.
  • MRAM Magnetic Random Access Memory
  • the ferromagnetic tunnel junction basically has a three-layer stacked structure of a storage layer having a variable magnetization direction, an insulator layer, and a fixed layer facing the storage layer and maintaining a predetermined magnetization direction.
  • a storage layer having a variable magnetization direction
  • an insulator layer having a variable magnetization direction
  • a fixed layer facing the storage layer and maintaining a predetermined magnetization direction.
  • This resistance change is called a tunneling magneto-resistance effect (hereinafter referred to as the TMR effect), and in the case where a magnetoresistive element having a ferromagnetic tunnel junction is actually used as one memory cell, the memory layer
  • the information is stored by correlating the parallel and antiparallel states (that is, the local minimum and local maximum of resistance) of the magnetizations of L and the fixed layer with "0" or "1" of binary information.
  • a magnetic field writing method for writing data stored in the magnetoresistive element, a magnetic field writing method is known in which a write wiring is disposed in the vicinity of a memory cell and only the magnetization direction of the memory layer is reversed by a current magnetic field generated when current flows.
  • the coercive force (Hc) of the magnetic material constituting the storage layer will in principle increase, so the current necessary for writing becomes smaller as the element is miniaturized. It tends to grow.
  • the current magnetic field from the write wiring is in principle smaller with respect to the reduction in cell size, it is difficult to simultaneously achieve the reduction in cell size and the reduction in write current required for large capacity design is there.
  • the energy barrier for maintaining the magnetization direction of the storage layer in one direction that is, the magnetic anisotropy energy becomes smaller than the thermal energy, and as a result, the magnetization of the magnetic material
  • the problem is that the direction fluctuates (thermal disturbance) and the memory information can no longer be maintained.
  • the energy barrier required to reverse the magnetization direction is represented by the product of the magnetic anisotropy constant (magnetic anisotropy energy per unit volume) and the magnetization reversal unit volume, so a fine element size region.
  • magnetic anisotropy constant magnetic anisotropy energy per unit volume
  • magnetization reversal unit volume magnetization reversal unit volume
  • the reversal current becomes sensitive to the variation in the shape.
  • the variation in inversion current increases.
  • the switching current for switching the magnetization by the spin injection method depends on the saturation magnetization Ms of the storage layer and the magnetic relaxation constant ⁇ . Therefore, in order to reverse the magnetization of the storage layer by low current spin injection, it is important to reduce the saturation magnetization Ms and the magnetic relaxation constant ⁇ .
  • the saturation magnetization Ms can be reduced by adjusting the composition of the magnetic material, adding a nonmagnetic element, or the like.
  • the reduction of the saturation magnetization Ms should not adversely affect other characteristics.
  • the magnetic relaxation constant ⁇ can be made smaller by a laminated film of a magnetic layer having a small magnetic relaxation constant and a perpendicular magnetization film having a large magnetic relaxation constant (for example, the above-described material system) (see Patent Document 2) ).
  • this measure alone is insufficient to reduce the reverse current.
  • the present invention proposes a magnetoresistive element for a spin injection writing system which enables low current magnetization reversal while being thermally stable and a magnetic memory using the same.
  • the first magnetic layer having a magnetization easy axis in the direction perpendicular to the film surface is variable in the magnetization direction, and the magnetization direction is invariant in the direction perpendicular to the film surface.
  • the magnetization direction of the first magnetic layer is changed by the current passing through the first magnetic layer, the first nonmagnetic layer, and the second magnetic layer, and the magnetization direction of the second ferromagnetic material is changed.
  • the perpendicular magnetic anisotropy is smaller than the perpendicular magnetic anisotropy of the first ferromagnetic material, and the film thickness of the first ferromagnetic material is smaller than the film thickness of the second ferromagnetic material.
  • the first magnetic layer having a magnetization easy axis in the direction perpendicular to the film surface is variable in the magnetization direction, and the magnetization direction is invariant in the direction perpendicular to the film surface.
  • the magnetization direction of the first magnetic layer is changed by the current passing through the first magnetic layer, the first nonmagnetic layer, and the second magnetic layer, and the magnetization direction of the second ferromagnetic material is changed.
  • the perpendicular magnetic anisotropy is smaller than the perpendicular magnetic anisotropy of the first ferromagnetic material, and the magnetic moment per unit area of the first ferromagnetic material is the magnetic moment per unit area of the second ferromagnetic material Less than.
  • a magnetic memory includes a memory cell including the magnetoresistive element, and first and second electrodes sandwiching the magnetoresistive element and conducting the current to the magnetoresistive element.
  • a magnetoresistive element for a spin injection writing system which enables low current magnetization reversal while being thermally stable and a magnetic memory using the same.
  • FIG. 2 is a view showing the main part of the MR element of the first embodiment.
  • the figure which shows the modification of FIG. The figure which shows the modification of FIG.
  • the figure which shows the relationship between residual magnetization ratio and film thickness The figure which shows the relationship between a residual magnetization ratio and the magnetic moment ratio per unit area.
  • Sectional drawing which shows the laminated structure containing the base layer and memory
  • FIG. 2 is a cross-sectional view showing one memory cell MC.
  • FIG. 2 is a block diagram illustrating a DSL data path unit of a DSL modem.
  • the block diagram which shows a mobile telephone terminal.
  • the top view which shows a MRAM card.
  • FIG. 2 is a plan view showing a transfer device. Sectional drawing which shows a transfer apparatus. Sectional drawing which shows a transfer-type transfer apparatus. Sectional drawing which shows a slide type transfer apparatus.
  • each embodiment shown below is an example of an apparatus and method for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, structure, and the like of the component. The arrangement etc. are not specified to the following. Various changes can be added to the technical idea of the present invention within the scope of the claims.
  • the first embodiment relates to a magnetoresistive element.
  • FIG. 1 shows the main part of the magnetoresistive element of the first embodiment of the present invention.
  • the magnetoresistive element in the present specification and claims refers to a TMR (tunneling magnetoresistive effect) element in which a semiconductor or an insulator is used as a spacer layer.
  • TMR tunnel magnetoresistive effect
  • additional layers may be included as long as the illustrated configuration is included.
  • the magnetoresistive element 1 performs writing by a spin injection magnetization reversal method. That is, the relative angles of the magnetizations of the storage layer and the fixed layer are changed in parallel and antiparallel (that is, local minimum and maximum resistance) according to the direction of the spin polarization current flowing in the film surface perpendicular direction to each layer. Information is stored by associating it with binary information "0" or "1".
  • the magnetoresistive element 1 has at least two magnetic layers 2 and 3 and a nonmagnetic layer 4 provided between the magnetic layers 2 and 3.
  • the magnetic layer 3 has an easy magnetization axis in a direction perpendicular to the film surface, and rotates along a plane intersecting the film surface.
  • the magnetic layer 3 is referred to as a storage layer (a free layer, a magnetization free layer, a magnetization variable layer, a recording layer).
  • the storage layer (magnetic layer 3) has a structure in which at least a first ferromagnetic material and a second ferromagnetic material are stacked. Detailed properties of the storage layer (magnetic layer 3) will be described later.
  • the magnetization in the direction perpendicular to the film surface is hereinafter referred to as perpendicular magnetization.
  • the magnetic layer 2 has an easy magnetization axis in the direction perpendicular to the film surface, and the magnetization direction is fixed with respect to the storage layer.
  • the magnetic layer 2 is referred to as a fixed layer (magnetization fixed layer, reference layer, magnetization reference layer, pinned layer, reference layer, magnetization reference layer). Detailed properties of the fixed layer will be described later.
  • the magnetization direction of the fixed layer is directed to the opposite direction (up) to the substrate as a typical example, but may be directed to the substrate direction (down).
  • the nonmagnetic layer (tunnel barrier layer) 4 is formed of an insulating film such as an oxide. The more detailed properties of the nonmagnetic layer 4 will be described later.
  • the magnetoresistive element 1 is a magnetoresistive element used for the spin injection writing system. That is, at the time of writing, current flows in the direction perpendicular to the film surface from the pinned layer (magnetic layer 2) to the storage layer (magnetic layer 3) or from the storage layer (magnetic layer 3) to the pinned layer (magnetic layer 2) As a result, electrons whose spin information is stored are injected from the pinned layer (magnetic layer 2) to the storage layer (magnetic layer 3).
  • the spin angular momentum of the injected electrons is transferred to the electrons of the storage layer (magnetic layer 3) according to the conservation law of the spin angular momentum, whereby the magnetization of the storage layer (magnetic layer 3) is reversed. That is, the magnetization direction of the storage layer (magnetic layer 3) is changed by a bidirectional current passing through the storage layer (magnetic layer 3), the nonmagnetic layer 4 and the fixed layer (magnetic layer 2).
  • FIG. 1 shows a so-called top pin structure in which a storage layer (magnetic layer 3) is formed on the underlayer 5 and a fixed layer (magnetic layer 2) is formed on the nonmagnetic layer 4.
  • Underlayer 5 may be further formed under the storage layer (magnetic layer 3).
  • the underlayer 5 is used to control crystallinity such as crystal orientation and crystal grain size of a layer above the storage layer (magnetic layer 3), but the detailed properties will be described later.
  • a cap layer 6 may be further formed on the fixed layer (magnetic layer 2).
  • the cap layer 6 mainly functions as a protective layer, such as preventing oxidation of the magnetic layer.
  • the perpendicular magnetic anisotropy of the second ferromagnetic material constituting the storage layer (magnetic layer 3) is smaller than the perpendicular magnetic anisotropy of the first ferromagnetic material.
  • the magnetic moment per unit area of the first ferromagnetic material is smaller than the magnetic moment per unit area of the second ferromagnetic material.
  • the film thickness of the first ferromagnetic material is thinner than the film thickness of the second ferromagnetic material.
  • the first ferromagnetic material is, for example, Co and Pd, or an alloy containing Co and Pt, and is preferentially oriented with respect to the atom dense surface of the alloy.
  • the second ferromagnetic material for example, Co, an alloy containing Fe and B (Co 100-x -Fe x ) 100-y B y, x ⁇ 20at%, is 0 ⁇ y ⁇ 30at%.
  • the second ferromagnetic material may be, for example, an alloy containing Co and Fe, and further containing at least one of Ta, Si, Nb, V, W, Cr, Mo, and B.
  • CoFeB / CoFeTa and CoFeB / CoFeBTa they may be laminated.
  • the second ferromagnetic material may have a cubic crystal structure or a tetragonal crystal structure, and may include crystal grains oriented in the (100) plane.
  • FIG. 2 shows a modification of the magnetoresistive element of FIG.
  • the structure of FIG. 2 is different from that of FIG. 1 in that the interface layer 11 is inserted between the fixed layer (magnetic layer 2) and the nonmagnetic layer 4.
  • the interface layer 11 is made of a ferromagnetic material and has an effect of alleviating lattice mismatch at the interface between the fixed layer (magnetic layer 2) and the nonmagnetic layer 4, and by using a high polarizability material, high TMR and high spin injection It also has the effect of achieving efficiency.
  • the interface layer 11 is made of a ferromagnetic material. The detailed properties of the interface layer 11 will be described later.
  • FIG. 3 shows a modification of the magnetoresistive element of FIG.
  • FIG. 3 is different from the structure of FIG. 1 in that the nonmagnetic layer 21 and the bias layer (shift adjustment layer) 22 are inserted between the fixed layer (magnetic layer 2) and the cap layer 6. is there.
  • the bias layer 22 is a perpendicular magnetization film made of a ferromagnetic material and having an axis of easy magnetization in the direction perpendicular to the film surface, and is fixed in the direction opposite to the magnetization direction of the fixed layer (magnetic layer 2).
  • the bias layer 22 has an effect of adjusting the offset of the storage layer inversion characteristic due to the stray magnetic field from the fixed layer (magnetic layer 2), which becomes a problem during element processing, in the reverse direction.
  • an interface layer may be inserted between the nonmagnetic layer 4 and the pinned layer (magnetic layer 2).
  • the nonmagnetic layer 21 and the bias layer 22 will be described later.
  • the thermal stability factor ⁇ takes the ratio of the effective anisotropy energy K u eff ⁇ V and thermal energy k B T against, expressed as follows .
  • K u Perpendicular magnetic anisotropy constant
  • M S saturation magnetization
  • Va magnetization reversal unit volume
  • T Absolute temperature It is.
  • the storage layer, the vertical magnetic anisotropy constant K u is large, and / or, it is desirable to select a material saturation magnetization M S is small.
  • critical current I C required for magnetization reversal by spin injection writing in the perpendicular magnetization method is generally expressed as follows. Ic ⁇ // ⁇ ⁇ (Equation 2) here, ⁇ : Magnetic relaxation constant ⁇ : spin injection efficiency coefficient It is.
  • the magnetic relaxation constant ⁇ is small while maintaining the thermal disturbance index ( ⁇ ) in order to achieve both the perpendicular magnetization film and sufficient thermal disturbance resistance and magnetization reversal at a low current. It is desirable to increase the spin injection efficiency coefficient ⁇ .
  • the reduction of the magnetic relaxation constant ⁇ can be achieved by a laminated film of a magnetic layer having a small magnetic relaxation constant ⁇ -small and a perpendicular magnetization film having a large magnetic relaxation constant ⁇ -large, as described in Patent Document 2 .
  • a magnetic layer having a small magnetic relaxation constant ⁇ -small is made of a material whose perpendicular magnetic anisotropy is smaller than that of the perpendicular magnetization film.
  • the film thickness of the magnetic layer having a small magnetic relaxation constant ⁇ -small is thinner than the film thickness of the perpendicular magnetization film, and the reduction of the switching current is not sufficient. For this reason, considering the future increase in capacity, it is necessary to further reduce the current.
  • the storage layer (magnetic layer 3) is composed of the first and second ferromagnetic materials, and the perpendicular magnetization film as the first ferromagnetic material is sufficiently thin even in a very thin region of 2 nm or less. It has a high perpendicular magnetic anisotropy constant Ku. Therefore, the second ferromagnetic material has a perpendicular magnetic anisotropy smaller than that of the first ferromagnetic material, and the film thickness thereof is larger than the film thickness of the first ferromagnetic material.
  • a perpendicular magnetization film is formed by magnetic exchange coupling of the first and second ferromagnetic materials.
  • the characteristics of the second ferromagnetic material can be reflected on the storage layer (magnetic layer 3).
  • the second ferromagnetic material has a small magnetic relaxation constant ⁇ , is compatible with the material (such as an oxide of NaCl structure) constituting the nonmagnetic layer 4, has a high polarizability, and has a high spin injection efficiency coefficient It can be composed of a material that expresses ⁇ . Specific examples of the second ferromagnetic material will be described in detail later.
  • Example 1 of the first ferromagnetic material constituting the storage layer The first ferromagnetic material forming the storage layer (magnetic layer 3) of the magnetoresistive element 1 according to the first embodiment is made of an alloy of cobalt (Co) and palladium (Pd).
  • the film plane may be densely arranged, that is, grown in the fcc (111) orientation or in the hcp (0001) direction.
  • crystal orientation growth can be controlled by appropriately selecting the underlayer 5 shown in FIGS. 1 to 3. Details and a specific manufacturing method of the underlayer 5 will be described later.
  • FIG. 4 shows the Pd concentration dependence of the effective perpendicular magnetic anisotropy energy of the CoPd film.
  • the horizontal axis indicates the Pd composition ratio
  • the vertical axis indicates the magnetic anisotropy constant K u eff . From the figure, it was found that high perpendicular magnetic anisotropy of 1 ⁇ 10 7 (erg / cc) or more is possible while changing the Pd composition ratio and changing the saturation magnetization M s .
  • This high perpendicular magnetic anisotropy makes it possible to provide a magnetoresistive element that can exhibit high thermal stability even when miniaturized.
  • the second ferromagnetic material constituting the storage layer (magnetic layer 3) of the magnetoresistive element 1 according to the first embodiment is made of an alloy containing one of Co, Fe and Ni or at least one or more elements.
  • the magnetic relaxation constant ⁇ of the ternary alloy of Co--Fe--Ni is particularly small in Co--Fe and Ni--Fe. For this reason, they are suitable for the second ferromagnetic material.
  • the second ferromagnetic material desirably has the same function as the interface layer described later.
  • these oxides of the NaCl structure include (i) one or more of Fe, Co and Ni, for example, on an amorphous CoFeNiB alloy or (ii) When crystal is grown on an alloy having a body-centered cubic (BCC) structure and a (100) preferred orientation plane and containing one or more of Fe, Co and Ni, (100) plane Tends to grow as a preferred orientation plane.
  • BCC body-centered cubic
  • CoFe-X (X is at least one of B, C, and N) amorphous alloy to which B, C, N, etc. are added, it is possible to preferentially orient the (100) plane very easily.
  • CoFe-B has a small magnetic relaxation constant and is suitable for the second ferromagnetic material.
  • the storage layer (magnetic layer 3) of the magnetoresistive element 1 uses Co 57 Pd 43 as the first ferromagnetic material and Co 40 Fe 40 B 20 as the second ferromagnetic material. That is, the laminated structure is Co 40 Fe 40 B 20 / Co 57 Pd 43 .
  • FIG. 5 shows the relationship between the residual magnetization ratio and the film thickness.
  • the film thickness is the film thickness of CoFeB (CFB) as the second ferromagnetic material
  • the residual magnetization ratio is the saturation magnetization Ms and residual magnetization Mr of the magnetization curve measured by applying a magnetic field in the direction perpendicular to the film surface.
  • the ratio (Mr / Ms) to (magnetization at magnetic field 0) is used.
  • Each plot takes as parameters the film thickness (2.4 nm, 1.2 nm, 0.8 nm) of the CoPd alloy and the heat treatment temperature (300 ° C.) after film formation.
  • the perpendicular magnetic anisotropy of the 2.4 nm thick CoPd alloy is large.
  • (Mr / Ms) becomes almost 1 even if CoFeB with a film thickness larger than that is laminated, and the film perpendicular direction is the easy magnetization axis.
  • the film thickness of the first ferromagnetic material is of course greater than the film thickness of the second ferromagnetic material, as well as in the region where the film thickness of the first ferromagnetic material is thicker than the film thickness of the second ferromagnetic material. Even in a thin region, it is possible to realize a configuration in which (Mr / Ms) is approximately 1 secured.
  • FIG. 6 shows the relationship between the residual magnetization ratio and the magnetic moment ratio per unit area.
  • the residual magnetization ratio (Mr / Ms) is the same as in FIG.
  • the magnetic moment ratio is the ratio of the magnetic moment M2 per unit area of the second ferromagnetic material CoFeB to the magnetic moment M1 (the product of saturation magnetization and film thickness) per unit area of the first ferromagnetic material CoPd alloy.
  • M2 / M1 is desirably 2.8 or less, and more desirably 2.2 or less.
  • the magnetic moment ratio is a measure of which of the first ferromagnetic material and the second ferromagnetic material greatly contributes as a storage layer.
  • the unit area of the first ferromagnetic material as well as the region where the magnetic moment M1 per unit area of the first ferromagnetic material is larger than the magnetic moment M2 per unit area of the second ferromagnetic material It is possible to realize a configuration in which approximately 1 is secured even in a region where the magnetic moment M1 of the hit is smaller than the magnetic moment M2 per unit area of the second ferromagnetic material.
  • the magnetic moment M1 per unit area of the first ferromagnetic material is the second ferromagnetic material Perpendicular magnetic anisotropy can be ensured for the entire storage layer made of the first and second ferromagnetic materials even if the magnetic moment M2 per unit area is smaller (perpendicular to the film surface is the easy magnetization axis), However, it became clear from this figure.
  • Mr / Ms is approximately 1 means that the magnetization direction is substantially aligned in the direction perpendicular to the film surface when no magnetic field is applied. That is, as Mr / Ms becomes smaller than 1, there is a component in which the magnetization is inclined from the film surface perpendicular direction. Since the magnetoresistance ratio also depends on the relative angle between the two magnetizations of the fixed layer and the storage layer, the Mr / Ms is preferably 0.9 or more, and more preferably 0.95 or more. Also, in FIG. 5 and FIG. 6, there are also measurement points where Mr / Ms exceeds 1, but this is an error that occurs during VSM measurement.
  • FIG. 7 shows the relationship between the residual magnetization ratio and the film thickness.
  • the film thickness is the film thickness of CoFeB (CFB) -Ta as the second ferromagnetic material
  • the residual magnetization ratio is the saturation magnetization Ms of the magnetization curve measured by applying a magnetic field in the direction perpendicular to the film surface.
  • the ratio (Mr / Ms) to the magnetization Mr (the magnetization at the magnetic field 0) is used.
  • CoFeB-Ta is a material in which Ta is added to Co 40 Fe 40 B 20 .
  • a material in which CoFeB and Ta are laminated may be used.
  • CoFeB / Ta / CoFeB Co 40 Fe 40 B 20 / Ta / Co 40 Fe 40 B 20 , etc.
  • CoFeB / Ta Co 40 Fe 40 B 20 / Ta , etc.
  • the first ferromagnetic layer material is Co 57 Pd 43 .
  • Each plot uses the film thickness (0.5 nm, 0.6 nm, 0.7 nm) of the CoPd alloy as a parameter. Even in the region where the film thickness of CoFeB-Ta is thicker than the film thickness of the CoPd alloy, (Mr / Ms) is approximately 1, and it can be seen that the film is a perpendicular magnetization film.
  • Mr / Ms about 5 to 30 vol%, for example, about 20 vol%, of Ta is added to CoFeB, and Ms is about 700 emu / cc. Ms can be adjusted by changing the amount of Ta added.
  • the additive element is not limited to Ta. For example, Ti, V, Cr, Zr, Nb, Mo, Hf, W, etc. are listed as elements to replace Ta for adjusting Ms.
  • the thickness of the first ferromagnetic material is smaller than that of the first ferromagnetic material. 2 Even if the thickness is smaller than the film thickness of the ferromagnetic material, perpendicular magnetic anisotropy can be secured as the entire storage layer made of the first and second ferromagnetic materials (the film surface perpendicular direction is the easy magnetization axis) I understand.
  • the Mr / Ms can be set to 0.9. That is, the film thickness of CoFeB-Ta is desirably 1.8 nm or less.
  • J.Appl.Phys.105 (2009) 07B726 to Co 50 Pt 50 as disclosed in, if the Co-Ni-Pt alloy, from 940emu / cc of CoPt of Co-Ni-Pt 500 ⁇ It can be reduced to about 600 emu / cc.
  • the saturation magnetization of CoFeB is about 1000 to 1400 emu / cc depending on the composition.
  • FIG. 8 is a cross-sectional view showing a laminated structure including an underlayer and a storage layer (magnetic layer).
  • This laminated structure is a structure in which the base layer 5 is provided on the thermal oxide film-attached Si substrate 7. Further, CoPd having a film thickness of about 2 nm, for example, is provided on the underlayer 5 as a storage layer (magnetic layer 3). The configuration above CoPd is as shown in FIGS. 1 to 3.
  • the underlayer 33 is preferably a metal material having lattice matching with CoPd and CoPt alloy.
  • the underlayer 31 is preferably made of such a material and structure as to improve the adhesion to the Si substrate 7 and to improve the smoothness and the crystal orientation of the underlayers 32 and 33.
  • the underlayers 32 and 33 are preferably composed of a Ru layer with a film thickness of about 3 nm, a Pt layer with a film thickness of about 3 nm, or the like.
  • metals having lattice-matching with CoPd alloy and CoPt alloy and having a close-packed structure include Pt, Pd, Ir, Ru and the like.
  • an alloy may be used in which the metal is not one element, and such as Pt—Pd or Pt—Ir, the above-described metal is composed of two elements or three or more elements.
  • Pt-Cu, Pd-Cu, Ir-Cu, Pt-Au, Ru-Au, Pt-Al, Ir-Al or the like which is an alloy of the above-mentioned metal and an fcc metal such as Cu, Au, Al or the like
  • Pt—Re, Pt—Ti, Ru—Re, Ru—Ti, Ru—Zr, Ru—Hf, etc. which are alloys with hcp metals such as Re, Ti, Zr, Hf, etc. If the film thickness is too thick, the smoothness is deteriorated, so the film thickness range is preferably 30 nm or less.
  • the laminated structure of the underlayers 32 and 33 is to adjust the lattice constant before forming the CoPd alloy and the CoPt alloy by laminating materials having different lattice constants.
  • the Pt of the underlayer 33 is affected by the Ru of the underlayer 32 and has a lattice constant different from the bulk lattice constant.
  • the lattice constant can be adjusted even by using an alloy, either of the underlayers 32 and 33 can be omitted.
  • the underlayer 31 is used for the purpose of improving the smoothness and the crystal orientation of the metal having the dense structure of the underlayers 32 and 33. Specifically, Ta etc. may be mentioned. Furthermore, if the film thickness of the underlayer 31 is too thick, it takes a long time to form a film, which causes a decrease in productivity, and if it is too thin, it loses the above-mentioned orientation control effect, so Is preferred.
  • Nonmagnetic layer As a material of the nonmagnetic layer 4 of the magnetoresistive element according to the first embodiment, an oxide having a NaCl structure is preferable. Specifically, MgO, CaO, SrO, TiO, VO, NbO and the like can be mentioned. When the magnetization of the storage layer 3 and the magnetization direction of the fixed layer 2 are antiparallel, the spin-polarized ⁇ 1 band becomes the carrier of the tunnel conduction, and thus only majority spin electrons contribute to the conduction. As a result, the conductivity of the magnetoresistive element 1 is reduced, and the resistance value is increased.
  • the conductivity of the magnetoresistive element 1 is increased because the non-spin polarized ⁇ 5 band controls the conduction, and the resistance is increased. The value decreases. Therefore, the formation of the ⁇ 1 band is a point for expressing high TMR.
  • the interface between the (100) plane of the nonmagnetic layer 4 made of an oxide of NaCl structure and the storage layer 3 and the pinned layer 2 must be well matched.
  • the interface layer 11 may be inserted to further improve the lattice matching on the (100) plane of the nonmagnetic layer 4 composed of the oxide layer of the NaCl structure. From the viewpoint of forming the ⁇ 1 band, it is more preferable to select a material as the interface layer 11 such that the lattice mismatch in the (100) plane of the nonmagnetic layer 4 is 5% or less.
  • Fixed layer For the fixed layer (magnetic layer 2) of the magnetoresistive element 1 shown in FIGS. 1 to 3, it is preferable to select a material whose magnetization direction does not easily change with respect to the storage layer (magnetic layer 3). That is, it is preferable to select a material having a large effective magnetic anisotropy K u eff and a large saturation magnetization M s and a large magnetic relaxation constant ⁇ . Specific materials will be described later.
  • An impurity element such as Cu (copper), Cr (chromium), Ag (silver) or an alloy thereof or an insulator may be added to these ordered alloys to adjust effective magnetic anisotropic energy and saturation magnetization. it can.
  • an impurity element such as Cu (copper), Cr (chromium), Ag (silver) or an alloy thereof or an insulator may be added to these ordered alloys to adjust effective magnetic anisotropic energy and saturation magnetization. it can.
  • these alloys are used as the pinned layer (magnetic layer 2), and in particular when a material having a large lattice mismatch with the nonmagnetic layer 4 is selected, as shown in FIG.
  • the interface layer 11 is preferably inserted between (magnetic layer 2).
  • (5-2) Artificial lattice system An alloy containing one or more elements of Fe, Co, and Ni, or an alloy containing one or more elements, and any one element from Cr, Pt, Pd, Ir, Rh, Ru, Os, Re, Au, Cu Alternatively, a structure in which an alloy containing one or more elements is alternately stacked.
  • Co / Pt artificial lattice, Co / Pd artificial lattice, CoCr / Pt artificial lattice, Co / Ru artificial lattice, Co / Os, Co / Au, Ni / Cu artificial lattice and the like can be mentioned.
  • These artificial lattices can adjust effective magnetic anisotropic energy and saturation magnetization by adjusting the addition of elements to the magnetic layer, the thickness ratio of the magnetic layer to the nonmagnetic layer, and the lamination period. .
  • the lattice mismatch with the nonmagnetic layer 4 is large, which is not preferable from the viewpoint of high TMR.
  • the interface layer 11 be inserted between the nonmagnetic layer 4 and the fixed layer (magnetic layer 2).
  • Irregular alloy system Main component is cobalt (Co), chromium (Cr), tantalum (Ta), niobium (Nb), vanadium (V), tungsten (W), hafnium (Hf), titanium (Ti), zirconium (Zr), platinum Examples include metals containing one or more elements of (Pt), palladium (Pd), iron (Fe), and nickel (Ni).
  • CoCr alloy CoPt alloy, CoCrPt alloy, CoCrPtTa alloy, CoCrNb alloy and the like can be mentioned.
  • These alloys can adjust the effective magnetic anisotropy energy and saturation magnetization by increasing the proportion of nonmagnetic elements.
  • the fixed layer magnetic layer 2
  • the lattice mismatch with the nonmagnetic layer 4 is large in many cases, which is not preferable from the viewpoint of high TMR.
  • the interface layer 11 be inserted between the nonmagnetic layer 4 and the fixed layer (magnetic layer 2).
  • Interface layer The interface of the magnetic layer (the fixed layer (magnetic layer 2)) in contact with the nonmagnetic layer 4 of the magnetoresistance element 1 according to the first embodiment is shown in FIG. 2 for the purpose of increasing the magnetoresistance ratio (TMR ratio).
  • the interface layer 11 may be disposed.
  • Interfacial layer 11 is a high polarizability material, specifically, Co, Fe, and an alloy (Co 100-x -Fe x) 100-y B y containing B, 100 ⁇ x ⁇ 20at% , 0 ⁇ It is preferable that y ⁇ 30 at%.
  • the lattice mismatch between the fixed layer (magnetic layer 2) and the nonmagnetic layer 4 is alleviated, and furthermore, since it is a high polarizability material, high TMR and high spin injection The effect of realizing efficiency is expected.
  • Bias layer As shown in FIG. 3, the nonmagnetic layer 21 and the bias layer (shift adjustment layer) 22 may be disposed between the fixed layer 2 and the cap layer 6 of the magnetoresistive element 1 according to the first embodiment. This makes it possible to adjust the shift of the reversal current of the storage layer 3 due to the stray magnetic field from the fixed layer 2 to approach zero.
  • the nonmagnetic layer 21 have a heat resistance such that the fixed layer 2 and the bias layer 22 do not mix in a thermal process, and a function to control crystal orientation when forming the bias layer 22.
  • the thickness of the nonmagnetic layer 21 is preferably 5 nm or less.
  • the bias layer 22 is made of a ferromagnetic material having an easy axis of magnetization in the direction perpendicular to the film surface. Specifically, the materials listed for the fixed layer (magnetic layer 2) can be used. However, since the bias layer 22 is separated from the storage layer (magnetic layer 3) compared to the fixed layer (magnetic layer 2), the leakage magnetic field applied to the storage layer (magnetic layer 3) is adjusted by the bias layer 22. For this purpose, it is necessary to set the thickness of the bias layer 22 or the magnitude of the saturation magnetization Ms larger than that of the fixed layer (magnetic layer 2).
  • the nonmagnetic layer 21 is required to have a film thickness of 3 nm, and the bias layer 22 is required to have bias layer characteristics of a saturation magnetization Ms of 1000 emu / cc and a film thickness of about 15 nm.
  • the magnetization directions of the fixed layer (magnetic layer 2) and the bias layer 22 need to be set antiparallel.
  • the magnetization directions of the pinned layer (magnetic layer 2) and the bias layer 22 can be set antiparallel to each other by reversing the magnetization direction of the layer having a small coercive force in advance by Minor Loop magnetization.
  • the pinned layer (magnetic layer 2) and the bias layer 22 may be antiferromagnetically coupled (SAF (Synthetic Anti-Ferromagnet) coupling) via the nonmagnetic layer 21 in the same manner as the pinned layer (magnetic layer 2).
  • SAF Synthetic Anti-Ferromagnet
  • the magnetization direction with the bias layer 22 can be set antiparallel.
  • ruthenium for example, can be used as the material of the nonmagnetic layer 21, and the magnetization directions of the fixed layer (magnetic layer 2) and the bias layer 22 can be coupled antiparallel. Thereby, the leakage magnetic field emitted from the fixed layer (magnetic layer 2) can be reduced by the bias layer 22, and as a result, the shift of the reversal current of the storage layer (magnetic layer 3) can be reduced.
  • the magnetoresistive element according to the first embodiment it is possible to obtain the magnetoresistive element for the spin injection writing system, which is thermally stable and capable of performing magnetization reversal at a low current. Can.
  • the second embodiment relates to an example of the configuration of a magnetic random access memory (MRAM) using the magnetoresistive element of the first embodiment.
  • MRAM magnetic random access memory
  • FIG. 9 is a circuit diagram showing the configuration of the MRAM according to the second embodiment.
  • the MRAM includes a memory cell array 40 having a plurality of memory cells MC arranged in a matrix.
  • a plurality of bit line pairs BL, / BL are disposed so as to extend in the column direction.
  • a plurality of word lines WL are provided in the memory cell array 40 so as to extend in the row direction.
  • Memory cells MC are arranged at intersections between the bit lines BL and the word lines WL.
  • Each memory cell MC includes a magnetoresistance element 1 and a selection transistor 41 formed of an N channel MOS transistor. One end of the magnetoresistive element 1 is connected to the bit line BL. The other end of the magnetoresistive element 1 is connected to the drain terminal of the selection transistor 41. The gate terminal of the selection transistor 41 is connected to the word line WL. The source terminal of the selection transistor 41 is connected to the bit line / BL.
  • the row decoder 42 is connected to the word line WL.
  • the write circuit 44 and the read circuit 45 are connected to the bit line pair BL, / BL.
  • a column decoder 43 is connected to the write circuit 44 and the read circuit 45.
  • Each memory cell MC is selected by the row decoder 42 and the column decoder 43.
  • Writing of data to the memory cell MC is performed as follows. First, in order to select a memory cell MC to which data is to be written, the word line WL connected to the memory cell MC is activated. Thereby, the selection transistor 41 is turned on.
  • bi-directional write current Iw is supplied to the magnetoresistive element 1 according to the write data. Specifically, when the write current Iw is supplied to the magnetoresistive element 1 from left to right, the write circuit 44 applies a positive voltage to the bit line BL and applies a ground voltage to the bit line / BL. When the write current Iw is supplied to the magnetoresistive element 1 from right to left, the write circuit 44 applies a positive voltage to the bit line / BL and applies a ground voltage to the bit line BL. In this manner, data "0" or data "1" can be written to memory cell MC.
  • data is read from memory cell MC as follows. First, the select transistor 41 of the selected memory cell MC is turned on.
  • the read circuit 45 supplies the magnetoresistive element 1 with, for example, a read current Ir flowing from the right to the left. Then, the read circuit 45 detects the resistance value of the magnetoresistive element 10 based on the read current Ir. Thus, the data stored in the magnetoresistive element 1 can be read out.
  • FIG. 10 is a cross-sectional view showing one memory cell MC.
  • An element isolation insulating layer is provided in the surface area of the P-type semiconductor substrate 51, and the surface area of the semiconductor substrate 51 in which the element isolation insulating layer is not provided becomes an element area (active area) for forming elements.
  • the element isolation insulating layer is formed of, for example, STI (Shallow Trench Isolation).
  • silicon oxide is used as the STI.
  • the element region of the semiconductor substrate 51 is provided with a source region S and a drain region D which are separated from each other.
  • Each of source region S and drain region D is formed of an N + -type diffusion region formed by introducing a high concentration N + -type impurity into semiconductor substrate 51.
  • a gate electrode 41B is provided on the semiconductor substrate 51 between the source region S and the drain region D via the gate insulating film 41A.
  • the gate electrode 41B functions as a word line WL.
  • the selection transistor 41 is provided on the semiconductor substrate 51.
  • the wiring layer 53 is provided on the source region S via the contact 52.
  • the wiring layer 53 functions as a bit line / BL.
  • a lead 55 is provided on the drain region D via a contact 54.
  • the magnetoresistive element 1 sandwiched between the lower electrode 7 and the upper electrode 9 is provided.
  • a wiring layer 56 is provided on the upper electrode 9.
  • the wiring layer 56 functions as a bit line BL.
  • the space between the semiconductor substrate 51 and the wiring layer 56 is filled with, for example, an interlayer insulating layer 57 made of silicon oxide.
  • the magnetoresistive element 1 can be used to configure the MRAM.
  • the magnetoresistive element 1 can also be used as a magnetic wall displacement magnetic memory other than a spin injection magnetic memory.
  • the MRAM shown in the second embodiment can be applied to various devices. Hereinafter, some applications of the MRAM will be described.
  • FIG. 11 shows an extracted DSL data path portion of a digital subscriber line (DSL) modem.
  • DSL digital subscriber line
  • This modem includes a programmable digital signal processor (DSP) 100, an analog-to-digital (A / D) converter 110, a digital-to-analog (D / A) converter 120, a transmission driver 130, a receiver amplifier 140 and the like.
  • DSP programmable digital signal processor
  • a / D analog-to-digital
  • D / A digital-to-analog
  • D / A digital-to-analog
  • the band pass filter is omitted, and instead, the line code program (subscriber line information to be coded, which is executed by the DSP, transmission conditions etc. (line code: QAM, CAP, RSK, FM,
  • the MRAM 170 and the EEPROM 180 of this embodiment are shown as various types of optional memories for holding a program for selecting and operating the modem according to AM, PAM, DWMT, etc.).
  • the MRAM 170 and the EEPROM 180 are used as memories for holding the line code program
  • the EEPROM 180 may be replaced with the MRAM. That is, instead of using two types of memories, only the MRAM may be used.
  • FIG. 12 shows a mobile phone 300 as another application example.
  • the communication unit 200 for realizing the communication function includes a transmitting / receiving antenna 201, an antenna duplexer 202, a receiving unit 203, a baseband processing unit 204, a DSP 205 used as an audio codec, a speaker (receiver) 206, a microphone (transmitter) 207, A transmission unit 208, a frequency synthesizer 209, and the like are provided.
  • control unit 220 that controls each part of the mobile phone terminal 300 is provided.
  • the control unit 220 is a microcomputer formed by connecting the CPU 221, the ROM 222, the MRAM 223 of this embodiment, and the flash memory 224 via the bus 225.
  • the ROM 222 previously stores necessary data such as a program to be executed by the CPU 221 and a font for display.
  • the MRAM 223 is mainly used as a work area, and the CPU 221 stores data in the middle of calculation as needed during program execution, and temporarily stores data to be exchanged between the control unit 220 and each unit. It is used when storing in In addition, even if the flash memory 224 powers off the mobile phone terminal 300, for example, the setting conditions immediately before are stored, and the same setting is used at the next power on. These setting parameters are stored.
  • the portable telephone terminal 300 is provided with an audio reproduction processing unit 211, an external output terminal 212, an LCD controller 213, an LCD (liquid crystal display) 214 for display, a ringer 215 for generating a ringing tone, and the like.
  • the audio reproduction processing unit 211 reproduces audio information (or audio information stored in an external memory 240 described later) input to the mobile phone terminal 300.
  • the audio information to be reproduced can be taken out by transmitting it to a headphone, a portable speaker or the like through the external output terminal 212.
  • the LCD controller 213 receives, for example, display information from the CPU 221 via the bus 225, converts it into LCD control information for controlling the LCD 214, and drives the LCD 214 to display.
  • the mobile phone terminal 300 is provided with interface circuits (I / F) 231, 233, and 235, an external memory 240, an external memory slot 232, a key operation unit 234, an external input / output terminal 236, and the like.
  • An external memory 240 such as a memory card is inserted into the external memory slot 232.
  • the external memory slot 232 is connected to the bus 225 via an interface circuit (I / F) 231.
  • the information inside the mobile phone terminal 300 can be written to the external memory 240, or the information (for example, audio information) stored in the external memory 240 can be used as the mobile phone terminal. It becomes possible to input to 300.
  • the key operation unit 234 is connected to the bus 225 via an interface circuit (I / F) 233.
  • the key input information input from the key operation unit 234 is transmitted to the CPU 221, for example.
  • the external input / output terminal 236 is connected to the bus 225 via an interface circuit (I / F) 233, and inputs various information from the outside to the mobile phone 300 or outputs the information from the mobile phone 300 to the outside. It functions as a terminal when you
  • the flash memory 224 may be replaced with the MRAM, and furthermore, the ROM 222 may be replaced with the MRAM.
  • FIGS. 13 to 17 each show an example in which the MRAM is applied to a card (MRAM card) storing media content such as smart media.
  • the MRAM card body 400 incorporates an MRAM chip 401.
  • an opening 402 is formed at a position corresponding to the MRAM chip 401, and the MRAM chip 401 is exposed.
  • a shutter 403 is provided in the opening 402, and the MRAM chip 401 is protected by the shutter 403 when the MRAM card is carried.
  • the shutter 403 is made of a material having an effect of shielding an external magnetic field, such as ceramic.
  • the shutter 403 When transferring data, the shutter 403 is opened to expose the MRAM chip 401.
  • the external terminal 404 is for extracting content data stored in the MRAM card to the outside.
  • the data transfer device 500 has a storage unit 500a.
  • the first MRAM card 550 is housed in the housing portion 500a.
  • the storage unit 500 a is provided with an external terminal 530 electrically connected to the first MRAM card 550, and the data of the first MRAM card 550 can be rewritten using the external terminal 530.
  • the second MRAM card 450 used by the end user is inserted from the insertion portion 510 of the transfer device 500 as indicated by the arrow, and pushed down by the stopper 520 until it stops.
  • the stopper 520 also serves as a member for aligning the first MRAM 550 and the second MRAM card 450.
  • FIG. 16 is a cross-sectional view showing the inset transfer device.
  • the transfer apparatus 500 is of a type in which the second MRAM card 450 is placed on the first MRAM 550 so as to be fitted on the first MRAM 550, as indicated by an arrow.
  • the transfer method is the same as that of the card insertion type, so the description will be omitted.
  • FIG. 17 is a cross-sectional view showing a slide type transfer device.
  • the transfer device 500 As in the case of a CD-ROM drive or a DVD drive, the transfer device 500 is provided with a receptacle slide 560, and the receptacle slide 560 moves as indicated by an arrow.
  • the tray slide 560 moves to the position of the broken line, the second MRAM card 450 is placed on the tray slide 560, and the second MRAM card 450 is transported to the inside of the transfer device 500.
  • a magnetic resistance element excellent in heat resistance can be manufactured without deterioration of magnetic characteristics and output characteristics even after high temperature heat treatment processes of 300 ° C. or higher. Magnetic memory with higher heat resistance can be provided.
  • the present invention provides a high speed random writable file memory, a high speed downloadable portable terminal, a high speed downloadable portable player, a semiconductor memory for broadcasting equipment, a drive recorder, a home video, a large capacity buffer memory for communication, a semiconductor memory for security camera
  • the industrial merit is great.
  • SYMBOLS 1 magnetoresistive element, 2 ... fixed layer (ferromagnetic layer), 3 ... memory layer (ferrimagnetic layer), 4 ... nonmagnetic layer (tunnel barrier layer), 5 ... base layer, 6 ... cap layer, 7 ... substrate 8: adhesion layer (lower electrode) 9: upper electrode 21 to 22 interface layer 31 to 34 base layer 40: memory cell array 41: selection transistor 41A: gate insulating film 41B: gate electrode 42 row decoder 43 column decoder 44 write circuit 45 read circuit 51 semiconductor substrate 52, 54 contact 53, 56 wiring layer 55 lead wire 57 interlayer insulating layer MC ... memory cell, BL ... bit line, WL ... word line, S ... source area, D ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 本発明の磁気抵抗素子は、膜面垂直方向に磁化容易軸を有する磁化方向が可変の第1磁性層(3)と、膜面垂直方向に磁化容易軸を有する磁化方向が不変の第2磁性層(2)と、第1磁性層(3)と第2磁性層(2)との間に設けられる第1非磁性層(4)とを備える。第1磁性層(3)は、少なくとも第1強磁性材料と第2強磁性材料とが積層された構造を有する。第1磁性層(3)の磁化方向は、第1磁性層(3)、第1非磁性層(4)及び第2磁性層(2)を貫く電流により変化する。第2強磁性材料の垂直磁気異方性は、第1強磁性材料の垂直磁気異方性より小さい。第1強磁性材料の膜厚は、第2強磁性材料の膜厚より薄い。

Description

磁気抵抗素子及び磁気メモリ
 本発明は、磁気抵抗素子及び磁気メモリに関する。
 近年、高速読み書き、大容量、低消費電力動作も可能な次世代の固体不揮発メモリとして、強磁性体の磁気抵抗効果を利用した磁気ランダムアクセスメモリ(Magnetic Random Access Memory:以下、MRAMと記す)への関心が高まっている。特に、強磁性トンネル接合を有する磁気抵抗素子は、大きな磁気抵抗変化率を示すことが見いだされて以来、注目されている。
 強磁性トンネル接合は、磁化方向が可変な記憶層と、絶縁体層と、記憶層と対向し、所定の磁化方向を維持する固定層との三層積層構造が基本となる。この強磁性トンネル接合に電流を流すと、絶縁体層をトンネルして電流が流れる。このとき、接合部の抵抗は、記憶層と固定層の磁化方向の相対角により変化し、磁化方向が平行のとき極小値を、反平行のとき極大値をとる。
 この抵抗変化はトンネル磁気抵抗効果(Tunneling Magneto-Resistance effect:以下、TMR効果と記す)と呼ばれ、実際に一つの記憶セルとして強磁性トンネル接合を有する磁気抵抗素子を用いる場合には、記憶層と固定層との磁化の平行、反平行状態(即ち抵抗の極小、極大)を二進情報の“0”又は“1”に対応づけることにより、情報を記憶する。
 磁気抵抗素子の記憶の書き込みには、記憶セル近傍に書き込み配線を配置し、電流を流した際に発生する電流磁場によって、記憶層の磁化方向のみを反転させる磁場書き込み方式が知られている。
 しかし、大容量メモリを実現するために、素子サイズを小さくすると、記憶層を構成する磁性体の保磁力(Hc)が原理的に大きくなるため、書き込みに必要な電流が素子を微細化するほど大きくなる傾向がある。また、書き込み配線からの電流磁場はセルサイズの縮小に対し原理的に小さくなるため、磁場書き込み方式では、大容量設計で要求されるセルサイズの縮小と書き込み電流の低減を両立することは困難である。
 一方、近年この課題を克服する書き込み方式としてスピン角運動量移動(SMT:spin-momentum-transfer)を用いた書込み(スピン注入書き込み)方式が提案されている(特許文献1を参照)。この方式は、磁気抵抗素子にスピン偏極電流を流して記憶層の磁化方向を反転させるもので、さらに記憶層を形成する磁性層の体積が小さいほど注入するスピン偏極電子も少なくてよいため、素子の微細化と低電流化を両立できる書き込み方式として期待されている。
 しかし、大容量化を達成するために素子を微細化すると、記憶層の磁化方向を一方向に維持するためのエネルギー障壁即ち磁気異方性エネルギーが熱エネルギーより小さくなり、結果として磁性体の磁化方向が揺らぎ(熱擾乱)、記憶情報をもはや維持できなくなるという問題が顕在化する。
 一般的に、磁化方向が反転するために必要なエネルギー障壁は、磁気異方性定数(単位体積当りの磁気異方性エネルギー)と磁化反転単位体積の積で表わされるため、微細な素子サイズ領域で熱擾乱に対する耐性を確保するためには、磁気異方性定数が大きな材料を選択する必要がある。
 これまで主に検討されている面内磁化型の構成では、形状磁気異方性を利用するのが一般的である。この場合、磁気異方性エネルギーを増加させるには、磁気抵抗素子のアスペクト比を大きくする、記憶層の膜厚を厚くする、記憶層の飽和磁化を大きくするなどの対策が必要となるが、これらの方策は、スピン注入方式の特徴を考えたとき、いずれも反転電流の増大を招くため、微細化に適さない。
 一方、形状磁気異方性ではなく、大きな結晶磁気異方性を有する材料を利用することも考えられるが、その場合、面内方向の磁化容易軸は、膜面内で大きく分散してしまうため、MR比(Magnetoresistance ratio)が低下、或いはインコヒーレントな歳差運動が誘発され、結果として反転電流が増加してしまうこととなる。そのためこの方策もまた好ましくない。
 また、面内磁化型の構成では、形状により発現する磁気異方性を利用しているため、反転電流は形状のばらつきに敏感となる。その結果、微細化に伴い形状のばらつきが増加すると、反転電流のばらつきも増加する。
 これに対し、磁気抵抗素子を構成する強磁性材料に、膜面垂直方向に磁化容易軸を有する、いわゆる垂直磁化膜を用いることが考えられる。垂直磁化型の構成で結晶磁気異方性を利用する場合、形状異方性を利用しないため、素子形状を面内磁化型に比べて小さくすることができる。また、磁化容易方向の分散も小さくできるため、大きな結晶磁気異方性を有する材料を採用することにより、熱擾乱耐性を維持しつつ、微細化と低電流の両立が実現できると期待される。
 垂直磁化膜に用いる材料系としては、L1規則合金系(FePt、CoPtなど)や、多層膜(Co/Pt,Pd)系、hcp系(CoCrPtなど)、RE-TM系(Tb-CoFeなど)が挙げられる。
 一般的に、非特許文献1に記載されているように、スピン注入方式によって磁化を反転させるための反転電流は、記憶層の飽和磁化Ms及び磁気緩和定数αに依存する。このため、低電流のスピン注入によって記憶層の磁化を反転させるには、飽和磁化Ms及び磁気緩和定数αを小さくすることが重要である。
 ここで、飽和磁化Msは、磁性材料の組成の調整や、非磁性元素の添加などにより小さくすることができる。しかし、飽和磁化Msの低減は、その他の特性に悪影響を与えるものであってはならない。
 また、磁気緩和定数αは、小さな磁気緩和定数を持つ磁性層と大きな磁気緩和定数を持つ垂直磁化膜(例えば、上述の材料系)との積層膜により小さくすることができる(特許文献2を参照)。しかし、今後の更なる大容量化を考慮すると、この対策のみでは、反転電流の低電流化は不十分である。
米国特許第6,256,223号明細書 特開2007-142364号公報
C. Slonczewski,"Current-driven ecitation of magnetic multilayers",「JORNAL OF MAGNETISM AND MAGNETIC MATERIALS」,1996, VOLUME 159, p.L1-L7 Jpn. J. Appl. Phys., 45, 3889
 本発明は、熱的に安定であると同時に低電流の磁化反転を可能とするスピン注入書き込み方式のための磁気抵抗素子及びそれを用いた磁気メモリを提案する。
 本発明の例に係わる磁気抵抗素子は、膜面垂直方向に磁化容易軸を有する磁化方向が可変の第1磁性層と、膜面垂直方向に磁化容易軸を有する磁化方向が不変の第2磁性層と、前記第1磁性層と前記第2磁性層との間に設けられる第1非磁性層とを備え、前記第1磁性層は、少なくとも第1強磁性材料と第2強磁性材料とが積層された構造を有し、前記第1磁性層の磁化方向は、前記第1磁性層、前記第1非磁性層及び前記第2磁性層を貫く電流により変化し、前記第2強磁性材料の垂直磁気異方性は、前記第1強磁性材料の垂直磁気異方性より小さく、前記第1強磁性材料の膜厚は、前記第2強磁性材料の膜厚より薄い。
 本発明の例に係わる磁気抵抗素子は、膜面垂直方向に磁化容易軸を有する磁化方向が可変の第1磁性層と、膜面垂直方向に磁化容易軸を有する磁化方向が不変の第2磁性層と、前記第1磁性層と前記第2磁性層との間に設けられる第1非磁性層とを備え、前記第1磁性層は、少なくとも第1強磁性材料と第2強磁性材料とが積層された構造を有し、前記第1磁性層の磁化方向は、前記第1磁性層、前記第1非磁性層及び前記第2磁性層を貫く電流により変化し、前記第2強磁性材料の垂直磁気異方性は、前記第1強磁性材料の垂直磁気異方性より小さく、前記第1強磁性材料の単位面積当たりの磁気モーメントは、前記第2強磁性材料の単位面積当たりの磁気モーメントより小さい。
 本発明の例に係わる磁気メモリは、前記磁気抵抗素子と、前記磁気抵抗素子を挟み込み、前記磁気抵抗素子に対して通電を行う第1及び第2電極とを含むメモリセルを備える。
 本発明によれば、熱的に安定であると同時に低電流の磁化反転を可能とするスピン注入書き込み方式のための磁気抵抗素子及びそれを用いた磁気メモリを提供できる。
第1実施形態のMR素子の主要部を示す図。 図1の変形例を示す図。 図1の変形例を示す図。 垂直磁気異方性エネルギーのPd濃度依存性を示す図。 残留磁化比と膜厚との関係を示す図。 残留磁化比と単位面積当たりの磁気モーメント比との関係を示す図。 残留磁化比と膜厚との関係を示す図。 第1実施形態の下地層及び記憶層を含む積層構造を示す断面図。 第2実施形態のMRAMを示す回路図。 1個のメモリセルMCを示す断面図。 DSLモデムのDSLデータパス部を示すブロック図。 携帯電話端末を示すブロック図。 MRAMカードを示す上面図。 転写装置を示す平面図。 転写装置を示す断面図。 はめ込み型の転写装置を示す断面図。 スライド型の転写装置を示す断面図。
 本発明の実施形態に係わる磁気抵抗素子の基本概念を説明する。
 以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。従って、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 また、以下に示す各実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。
 (第1実施形態) 
 第1実施形態は、磁気抵抗素子に関する。
 (1)磁気抵抗素子の構造 
 図1は、本発明の第1実施形態の磁気抵抗素子の主要部を示している。
 図1において、矢印は磁化方向を示している。本明細書及び特許請求の範囲でいう磁気抵抗素子とは、半導体或いは絶縁体をスペーサ層に用いるTMR(トンネル磁気抵抗効果)素子を指す。また、以下の図では、磁気抵抗素子の主要部を示しているが、図示の構成を含んでいれば、さらなる層を含んでいても構わない。
 磁気抵抗素子1は、スピン注入磁化反転方式によって書き込みを行う。即ち、各層に対し膜面垂直方向に流すスピン偏極電流の方向に応じて、記憶層と固定層の磁化の相対角を平行、反平行状態(即ち抵抗の極小、極大)とを変化させ、二進情報の“0”又は“1”に対応づけることにより、情報を記憶する。
 図1に示すように、磁気抵抗素子1は、少なくとも、2つの磁性層2、3と、磁性層2、3の間に設けられる非磁性層4とを有する。磁性層3は、膜面に垂直な方向に磁化容易軸を有し、膜面と交わる面に沿って回転する。以下、磁性層3を記憶層(自由層、磁化自由層、磁化可変層、記録層)と称する。記憶層(磁性層3)は、少なくとも第1強磁性材料と第2強磁性材料とが積層された構造を有する。記憶層(磁性層3)の詳細な性質については、後述する。以下、膜面垂直方向の磁化を垂直磁化と称する。
 磁性層2は、膜面に垂直な方向に磁化容易軸を有し、記憶層に対し磁化方向が固定されている。以下、磁性層2を固定層(磁化固定層、参照層、磁化参照層、ピン層、基準層、磁化基準層)と称する。固定層の詳細な性質については後述する。尚、図1では、固定層(磁性層2)の磁化方向は、典型例として基板に対し反対方向(上)を向いているが、基板方向(下)を向いていても構わない。
 非磁性層(トンネルバリア層)4は、酸化物などの絶縁膜から構成される。非磁性層4のより詳細な性質については、後述する。
 磁気抵抗素子1は、スピン注入書込み方式に用いる磁気抵抗素子である。即ち、書き込みの際は、固定層(磁性層2)から記憶層(磁性層3)へ、又は記憶層(磁性層3)から固定層(磁性層2)へ、膜面垂直方向に電流を流すことによって、スピン情報を蓄積される電子が固定層(磁性層2)から記憶層(磁性層3)へ注入される。
 この注入される電子のスピン角運動量が、スピン角運動量の保存則に従って記憶層(磁性層3)の電子に移動されることによって、記憶層(磁性層3)の磁化が反転することになる。即ち、記憶層(磁性層3)の磁化方向は、記憶層(磁性層3)、非磁性層4及び固定層(磁性層2)を貫く双方向電流により変化する。
 図1は、下地層5の上に記憶層(磁性層3)が形成され、非磁性層4の上に固定層(磁性層2)が形成される、いわゆるトップピン構造を示している。
 記憶層(磁性層3)の下には下地層5がさらに形成されてもよい。下地層5は、記憶層(磁性層3)より上の層の結晶配向性及び結晶粒径などの結晶性を制御するために用いられるが、詳細な性質については後述する。
 固定層(磁性層2)上にはキャップ層6がさらに形成されていてもよい。キャップ層6は、磁性層の酸化防止等、主として保護層として機能する。
 ここで、記憶層(磁性層3)を構成する第2強磁性材料の垂直磁気異方性は、第1強磁性材料の垂直磁気異方性よりも小さい。また、第1強磁性材料の単位面積当たりの磁気モーメントは、第2強磁性材料の単位面積当たりの磁気モーメントよりも小さい。第1強磁性材料の膜厚は、第2強磁性材料の膜厚よりも薄い。
 第1強磁性材料は、例えば、CoとPd、又は、CoとPtを含む合金であり、その合金の原子稠密面に対して優先配向される。
 第2強磁性材料は、例えば、Co、Fe及びBを含む合金(Co100-x-Fe100-y、x≧20at%、0<y≦30at%である。また、第2強磁性材料は、例えば、Co及びFeを含み、さらに、Ta、Si、Nb、V、W、Cr、Mo、Bの少なくとも1つを含む合金であってもよい。また、例えば、CoFeB/CoFeTa、CoFeB/CoFeBTaのように、それらが積層された形態でもよい。
 第2強磁性材料は、立方晶構造又は正方晶構造からなり、(100)面に配向した結晶粒を含んでいても構わない。
 図2は、図1の磁気抵抗素子の変形例を示している。
 図2の構造が図1の構造と異なる点は、固定層(磁性層2)と非磁性層4との間に界面層11が挿入されていることにある。界面層11は強磁性体からなり、固定層(磁性層2)と非磁性層4の界面での格子ミスマッチを緩和する効果を有するとともに、高分極率材料を用いることにより高TMRと高いスピン注入効率を実現する効果も有する。界面層11は、強磁性体からなる。界面層11の詳細な性質については、後述する。
 図3は、図1の磁気抵抗素子の変形例を示している。
 図3の構造が図1の構造と異なる点は、固定層(磁性層2)とキャップ層6の間に、非磁性層21とバイアス層(シフト調整層)22とが挿入されていることにある。
 バイアス層22は、強磁性体からなり、膜面垂直方向に磁化容易軸を有する垂直磁化膜であり、かつ固定層(磁性層2)の磁化方向と反対方向に固定されている。バイアス層22は、素子加工時に問題となる、固定層(磁性層2)からの漏れ磁場による記憶層反転特性のオフセットを、逆方向へ調整する効果を有する。
 また、図3の構造においても、図2と同様に、非磁性層4と固定層(磁性層2)との間に界面層が挿入されていても構わない。非磁性層21及びバイアス層22の詳細な性質については、後述する。
 (2)記憶層 
 磁気抵抗素子1の記憶層(磁性層3)として垂直磁化膜を用いる場合、前述の通り形状異方性を利用しないため、素子形状を面内磁化型に比し小さくでき、大きな垂直磁気異方性を示す材料を採用することにより、熱擾乱耐性を維持しつつ、微細化と低電流の両立が可能となる。以下に記憶層として具備すべき性質、及び材料選択の具体例について詳細に説明する。
 (2-1)記憶層が具備すべき性質 
 記憶層として垂直磁化材料を用いる場合、対するその熱擾乱指数Δは、実効的な異方性エネルギーK eff・Vと熱エネルギーkTとの比をとって、下記のように表される。
 Δ=K eff・V/kT 
  =(K-2πNM )・Va/kT ・・・(式1)
 ここで、 
 K:垂直磁気異方性定数 
 M:飽和磁化 
 N:反磁場係数 
 Va:磁化反転単位体積 
 T:絶対温度 
 である。
 熱エネルギーにより磁化が揺らぐ問題(熱擾乱)を回避するには、Δ>~60が必要条件となるが、大容量化を念頭に素子サイズが小さくなる、若しくは膜厚が薄くなると、Vaが小さくなり、記憶が維持できなくなり(=熱擾乱)、不安定となることが懸念される。
 そのため、記憶層としては、垂直磁気異方性定数Kが大きい、かつ/或いは、飽和磁化Mが小さい材料を選択することが望ましい。
 一方、垂直磁化方式のスピン注入書き込みによる磁化反転に必要な臨界電流Iは、一般的に、下記のように表される。 
 Ic∝α/η・Δ ・・・(式2)
 ここで、 
 α:磁気緩和定数 
 η:スピン注入効率係数 
 である。
 (2-2)記憶層材料 
 上記のように、垂直磁化膜であり、かつ十分な熱擾乱耐性と低電流での磁化反転とを両立するためには、熱擾乱指数(Δ)を維持しながら、磁気緩和定数αを小さく、スピン注入効率係数ηを大きくすることが望ましい。
 スピン注入効率係数ηは、分極率に対して単調に増加するため、高い分極率を示す材料が望ましい。磁気緩和定数αの低減は、特許文献2に記載されているように、小さな磁気緩和定数α-smallを有する磁性層と大きな磁気緩和定数α-largeを有する垂直磁化膜との積層膜により達成できる。
 小さな磁気緩和定数α-smallを有する磁性層は、その垂直磁気異方性が、垂直磁化膜の垂直磁気異方性よりも小さい材料から構成される。しかし、この場合、小さな磁気緩和定数α-smallを有する磁性層の膜厚が垂直磁化膜の膜厚よりも薄く、反転電流の低減が十分ではない。このため、今後の大容量化を考慮すると、低電流化をさらに推し進める必要がある。
 本発明では、記憶層(磁性層3)を第1及び第2強磁性材料から構成し、第1強磁性材料としての垂直磁化膜は、その膜厚が2nm以下の非常に薄い領域でも十分に高い垂直磁気異方性定数Kuを有している。このため、第2強磁性材料は、その垂直磁気異方性が第1強磁性材料の垂直磁気異方性よりも小さく、その膜厚が第1強磁性材料の膜厚よりも厚くても、第1及び第2強磁性材料の磁気交換結合により垂直磁化膜となる。
 これにより、第2強磁性材料の特徴を記憶層(磁性層3)に反映させることができる。例えば、第2強磁性材料は、磁気緩和定数αが小さく、非磁性層4を構成する材料(NaCl構造の酸化物など)との相性がよく、高い分極率を有し、高いスピン注入効率係数ηを発現する材料から構成することができる。第2強磁性材料の具体例については、後に詳しく説明する。
 以下に具体的に説明する。
 (2-2-1)記憶層を構成する第1強磁性材料の実施例1 
 第1実施形態に係わる磁気抵抗素子1の記憶層(磁性層3)を構成する第1強磁性材料は、コバルト(Co)、パラジウム(Pd)からなる合金から構成される。垂直磁化膜とするためには、膜面面内を稠密に配し、即ちfcc(111)配向、或いは、hcp(0001)方向に成長させればよい。
 具体的には、図1乃至図3に示す下地層5を適切に選択することにより、結晶配向成長を制御することが可能である。下地層5の詳細及び具体的な作製方法については後述する。
 図4は、CoPd膜の実効的な垂直磁気異方性エネルギーのPd濃度依存性を示している。
 横軸は、Pd組成比を示し、縦軸は、磁気異方性定数K effを示している。同図により、Pd組成比を変化させ、飽和磁化Mを変化させながら1×10(erg/cc)以上の高い垂直磁気異方性が可能となることが判った。
 この高い垂直磁気異方性により、微細化しても、高い熱安定性を示すことができる磁気抵抗素子を提供することが可能となる。
 (2-2-2)記憶層を構成する第2強磁性材料の実施例1 
 第1実施形態に係わる磁気抵抗素子1の記憶層(磁性層3)を構成する第2強磁性材料は、Co,Fe,Niのいずれかの元素あるいは少なくとも1元素以上含む合金からなる。例えば、Co-Fe-Niの3元合金の磁気緩和定数αは、非特許文献2に示されているように、特に、Co-Fe、Ni―Feで小さい。このため、これらは、第2強磁性材料に適している。
 また、第2強磁性材料は、後述する界面層と同様の機能を有しているのが望ましい。
 即ち、非磁性層4にNaCl構造の酸化物を用いた場合、これらのNaCl構造の酸化物は、(i) Fe、Co、Niの1つ以上を含む、例えば、アモルファスCoFeNiB合金上、或いは、(ii) 体心立方(BCC : body-centered cubic)構造で(100)優先配向面を有し、Fe、Co、Niの1つ以上を含む合金上で、結晶成長させると、(100)面を優先配向面として成長し易い。
 特に、B、C、Nなどを添加したCoFe―X(Xは、B、C、Nの少なくとも1つ)アモルファス合金上では、非常に容易に(100)面を優先配向させることが可能である。CoFe-Bについては、非特許文献2によれば、磁気緩和定数が小さく、第2強磁性材料に適している。
 (2-2-3)第1及び第2強磁性材料の積層構造に係わる実施例 
 この実施例では、磁気抵抗素子1の記憶層(磁性層3)は、第1強磁性材料をCo57Pd43とし、第2強磁性材料をCo40Fe4020とする。即ち、積層構造は、Co40Fe4020/Co57Pd43である。
 図5は、残留磁化比と膜厚との関係を示している。
 ここでは、膜厚は、第2強磁性材料としてのCoFeB(CFB)の膜厚とし、残留磁化比は、膜面垂直方向に磁場を印加して測定した磁化曲線の飽和磁化Msと残留磁化Mr(磁場0における磁化)との比(Mr/Ms)とする。
 各プロットは、CoPd合金の膜厚(2.4nm、1.2nm、0.8nm)と膜形成後の熱処理温度(300℃)とをパラメータとする。膜厚2.4nmのCoPd合金の垂直磁気異方性が大きいことは上述の通りである。しかし、膜厚0.8nmのCoPd合金は、それよりも膜厚が厚いCoFeBを積層しても、(Mr/Ms)がほぼ1となり、膜面垂直方向が磁化容易軸となる。
 本図から分かることは、第1強磁性材料の膜厚が第2強磁性材料の膜厚より厚い領域はもちろんのこと、第1強磁性材料の膜厚が第2強磁性材料の膜厚より薄い領域においても、(Mr/Ms)がほぼ1を確保している構成を実現できることにある。
 即ち、第2強磁性材料の垂直磁気異方性が第1強磁性材料の垂直磁気異方性よりも小さいときに、第1強磁性材料の膜厚が第2強磁性材料の膜厚より薄くても、第1及び第2強磁性材料からなる記憶層全体として垂直磁気異方性を確保できる(膜面垂直方向が磁化容易軸となる)、ということが、本図から明らかになった。
 図6は、残留磁化比と単位面積当たりの磁気モーメント比との関係を示している。
 残留磁化比(Mr/Ms)は、図5と同じである。磁気モーメント比は、第2強磁性材料であるCoFeBの単位面積当たりの磁気モーメントM2と第1強磁性材料であるCoPd合金の単位面積当たりの磁気モーメントM1(飽和磁化と膜厚の積)との比(M2/M1)とする。残留磁化比を大きく(例えば、0.9近傍以上)とするため、M2/M1は、望ましくは2.8以下、さらに望ましくは2.2以下にする。
 磁気モーメント比は、第1強磁性材料と第2強磁性材料のいずれが記憶層として大きく寄与するかの尺度となる。
 本図から分かることは、第1強磁性材料の単位面積当たりの磁気モーメントM1が第2強磁性材料の単位面積当たりの磁気モーメントM2より大きい領域はもちろんのこと、第1強磁性材料の単位面積当たりの磁気モーメントM1が第2強磁性材料の単位面積当たりの磁気モーメントM2より小さい領域においても、ほぼ1を確保している構成を実現できることにある。
 即ち、第2強磁性材料の垂直磁気異方性が第1強磁性材料の垂直磁気異方性よりも小さいときに、第1強磁性材料の単位面積当たりの磁気モーメントM1が第2強磁性材料の単位面積当たりの磁気モーメントM2より小さくても、第1及び第2強磁性材料からなる記憶層全体として垂直磁気異方性を確保できる(膜面垂直方向が磁化容易軸となる)、ということが、本図から明らかになった。
 Mr/Msがほぼ1であるということは、磁場が印加されていない状態で磁化方向が膜面に垂直な方向にほぼ揃っていることになる。つまり、Mr/Msが1よりも小さくなるにつれて、磁化が膜面垂直方向から傾いている成分が存在することになる。磁気抵抗比は固定層と記憶層の2つの磁化の相対角度にも依存するため、Mr/Msは0.9以上が好ましく、0.95以上がより好ましいと言える。また、図5および図6において、Mr/Msが1を超える測定点もあるが、VSM測定時に生ずる誤差である。
 図7は、残留磁化比と膜厚との関係を示している。
 ここでは、膜厚は、第2強磁性材料としてのCoFeB(CFB)-Taの膜厚とし、残留磁化比は、膜面垂直方向に磁場を印加して測定した磁化曲線の飽和磁化Msと残留磁化Mr(磁場0における磁化)との比(Mr/Ms)とする。
 CoFeB-Taとは、Co40Fe4020にTaを添加した材料である。これに代えて、CoFeBとTaとを積層した材料を用いてもよい。例えば、CoFeB/Ta/CoFeB(Co40Fe4020/Ta/Co40Fe4020等)や、CoFeB/Ta(Co40Fe4020/Ta等)などである。また、第1の強磁性層材料は、Co57Pd43とする。
 各プロットは、CoPd合金の膜厚(0.5nm、0.6nm、0.7nm)をパラメータとする。CoFeB-Taの膜厚がCoPd合金の膜厚よりも厚い領域でも、(Mr/Ms)がほぼ1となり、垂直磁化膜となっていることがわかる。このとき、Taは、CoFeBに対し、5~30vol%、例えば、20vol%程度添加し、Msは、700emu/cc程度である。Ta添加量を変えることでMsを調整することができる。また、添加元素は、Taに限られない。Msを調整するためのTaに代わる元素として、例えば、Ti,V,Cr,Zr,Nb,Mo,Hf,Wなどがある。
 本図からは、図5と同様に、第2強磁性材料の垂直磁気異方性が第1強磁性材料の垂直磁気異方性よりも小さいときに、第1強磁性材料の膜厚が第2強磁性材料の膜厚より薄くても、第1及び第2強磁性材料からなる記憶層全体として垂直磁気異方性を確保できる(膜面垂直方向が磁化容易軸となる)、ということが分かる。
 また、CoPd合金の3通りの膜厚の全てにおいて、CoFeB-Taの膜厚が1.8nm以下のときに、Mr/Msを0.9にすることができる。即ち、CoFeB-Taの膜厚は、1.8nm以下であるのが望ましい。
 さらに、CoFeB-Taの膜厚とCoPd合金の膜厚との比Rtで考えると、Rtは、3.8未満が望ましい。さらに、Rtは、3.6(=1.8nm/0.5nm)以下、望ましくは3.0(=1.8nm/0.6nm)以下、さらに望ましくは2.57(=1.8nm/0.7nm)以下である。
 第1強磁性材料の単位面積当たりの磁気モーメントM1が第2強磁性材料の磁気モーメントM2より小さい場合でも、第2強磁性材料の膜厚t2が第1強磁性材料の膜厚t1よりも薄い場合も存在する。このケースは、第1強磁性材料の飽和磁化に比較して第2強磁性材料の飽和磁化が大きいときに相当する。例えば、J.Appl.Phys.105 (2009) 07B726に開示されているようにCo50Pt50に対し、Co-Ni-Pt合金とすると、CoPtの940emu/ccからCo-Ni-Ptの500~600emu/cc程度に小さくすることができる。CoFeBの飽和磁化は組成にもよるが1000~1400emu/cc程度である。
 (3)下地層 
 上述の記憶層の詳細な説明に示す通り、膜面に対して垂直方向を磁化容易軸とする垂直磁化膜を形成するには、原子稠密面が配向しやすい構造を取る必要がある。即ち、結晶配向性をfcc(111)面、hcp(001)面が配向するように制御する必要があり、そのため下地層材料及び積層構成の選択が重要となる。
 (3-1)下地層の積層構成 
 図8は、下地層及び記憶層(磁性層)を含む積層構造を示す断面図である。
 この積層構造は、熱酸化膜付きSi基板7上に下地層5を設けた構造である。また、下地層5上には、記憶層(磁性層3)として、例えば、膜厚2nm程度のCoPdを設ける。CoPdよりも上の構成は、図1乃至図3に示す通りである。
 第1実施形態に係わる磁気抵抗素子の下地層5のうち、下地層33はCoPdおよびCoPt合金と格子整合性する金属材料が好ましい。下地層31は、Si基板7との密着性を向上させると共に、下地層32、33の平滑性及び結晶配向性を向上させるような材料および構成が好ましい。下地層32,33は、膜厚3nm程度のRu層、膜厚3nm程度のPt層などから構成するのが好ましい。
 下地層31~33の具体的な材料については後述する。
 (3-2)下地層の材料 
 下地層33としては、稠密構造を有する金属が用いられる。
 CoPd合金、CoPt合金と格子整合し、稠密構造を有する金属としては、Pt、Pd、Ir、Ru等が挙げられる。また、例えば、金属が1元素ではなく、Pt-Pd、Pt-Irのように、上述の金属が2元素、或いは3元素以上で構成される合金を用いてもよい。また、上述の金属と、Cu、Au、Al等のfcc金属との合金であるPt-Cu、Pd-Cu、Ir-Cu、Pt-Au、Ru-Au、Pt-Al、Ir-Al等や、Re、Ti、Zr、Hf等のhcp金属との合金であるPt-Re、Pt-Ti、Ru-Re、Ru-Ti、Ru-Zr、Ru-Hf等であってもよい。膜厚が厚すぎると平滑性が悪くなるため、膜厚範囲としては、30nm以下の範囲にあることが好ましい。下地層32、33の積層構成とするのは、格子定数の異なる材料を積層することにより、CoPd合金、CoPt合金の形成前に格子定数を調整するためである。例えば、下地層32にRu、下地層33にPtを形成した場合、下地層33のPtは下地層32のRuの影響を受けて、バルクの格子定数とは異なる格子定数となる。但し、上述したように、合金を用いても格子定数を調整できるため、下地層32,33はいずれかを省くこともできる。
 下地層5のうち、下地層31は、平滑性、及び下地層32,33の稠密構造を有する金属の結晶配向性を向上させる目的で用いられる。具体的には、Ta等が挙げられる。さらに、下地層31の膜厚は、厚すぎると成膜に時間がかかり、生産性が低下する要因となり、また、薄すぎると上述の配向制御の効果を失うため、1乃至10nmの範囲にあることが好ましい。
 (4)非磁性層 
 第1実施形態に係わる磁気抵抗素子の非磁性層4の材料としては、NaCl構造を有する酸化物が好ましい。具体的にはMgO、CaO、SrO、TiO、VO、NbOなどが挙げられる。記憶層3の磁化と固定層2の磁化方向とが反平行の場合、スピン分極したΔ1バンドがトンネル伝導の担い手となるため、マジョリティースピン電子のみが伝導に寄与することとなる。この結果、磁気抵抗素子1の伝導率が低下し、抵抗値が大きくなる。
 反対に、記憶層3の磁化と固定層3の磁化方向とが平行であると、スピン偏極していないΔ5バンドが伝導を支配するために、磁気抵抗素子1の伝導率が上昇し、抵抗値が小さくなる。従って、Δ1バンドの形成が高TMRを発現させるためのポイントとなる。
 Δ1バンドを形成するためには、NaCl構造の酸化物からなる非磁性層4の(100)面と記憶層3及び固定層2との界面の整合性がよくなければならない。
 NaCl構造の酸化物層のからなる非磁性層4の(100)面での格子整合性をさらに良くするために、界面層11を挿入してもよい。Δ1バンドを形成するという観点からは、界面層11として、非磁性層4の(100)面での格子ミスマッチが5%以下となるような材料を選択することが、より好ましい。
 (5)固定層 
 図1乃至図3に示す磁気抵抗素子1の固定層(磁性層2)としては、記憶層(磁性層3)に対し、容易に磁化方向が変化しない材料を選択することが好ましい。即ち、実効的な磁気異方性K eff及び飽和磁化Mが大きく、また磁気緩和定数αが大きい材料を選択することが好ましい。具体的な材料については後述する。
 (5-1)規則合金系 
 Fe、Co、Niのうち1つ以上の元素とPt、Pdのうち1つ以上の元素とからなる合金であり、この合金の結晶構造がL1型の規則合金。例えば、Fe50Pt50、Fe50Pd50、Co50Pt50、Fe30Ni20Pt50、Co30Fe20Pt50、Co30Ni20Pt50等があげられる。これらの規則合金は上記組成比に限定されない。
 これらの規則合金に、Cu(銅)、Cr(クロム)、Ag(銀)等の不純物元素、或いはその合金、絶縁物を加えて実効的な磁気異方性エネルギー及び飽和磁化を調整することができる。また、これらの合金を固定層(磁性層2)として用いる場合、特に非磁性層4との格子ミスマッチが大きい材料を選択する場合においては、図2に示すように、非磁性層4と固定層(磁性層2)の間に、界面層11が挿入されることが好ましい。
 (5-2)人工格子系 
 Fe、Co、Niのうちいずれか1つの元素、或いは1つ以上の元素を含む合金と、Cr、Pt、Pd、Ir、Rh、Ru、Os、Re、Au、Cuのうちいずれか1つの元素或いは1つ以上の元素を含む合金とが交互に積層される構造。例えば、Co/Pt人工格子、Co/Pd人工格子、CoCr/Pt人工格子、Co/Ru人工格子、Co/Os、Co/Au、Ni/Cu人工格子等があげられる。
 これらの人工格子は、磁性層への元素の添加、磁性層と非磁性層の膜厚比及び積層周期を調整することで、実効的な磁気異方性エネルギー及び飽和磁化を調整することができる。また、これらの積層膜を固定層(磁性層2)として用いる場合は、多くの場合、非磁性層4との格子ミスマッチが大きく、高TMRの観点からは好ましくない。
 このような場合は、図2に示すように、非磁性層4と固定層(磁性層2)の間に、界面層11が挿入されることが好ましい。
 (5-3)不規則合金系 
 コバルト(Co)を主成分とし、クロム(Cr)、タンタル(Ta)、ニオブ(Nb)、バナジウム(V)、タングステン(W)、ハフニウム(Hf)、チタン(Ti)、ジルコニウム(Zr)、白金(Pt)、パラジウム(Pd)、鉄(Fe)、及びニッケル(Ni)のうち1つ以上の元素を含む金属が挙げられる。
 例えば、CoCr合金、CoPt合金、CoCrPt合金、CoCrPtTa合金、CoCrNb合金等が挙げられる。
 これらの合金は、非磁性元素の割合を増加させて実効的な磁気異方性エネルギー及び飽和磁化を調整することができる。また、これらの合金を固定層(磁性層2)として用いる場合は、多くの場合、非磁性層4との格子ミスマッチが大きく、高TMRの観点からは好ましくない。
 このような場合は、図2に示すように、非磁性層4と固定層(磁性層2)の間に、界面層11が挿入されることが好ましい。
 (6)界面層 
 第1実施形態に係わる磁気抵抗素子1の非磁性層4に接する磁性層(固定層(磁性層2))の界面には、磁気抵抗比(TMR比)を上昇させる目的で、図2に示す界面層11を配置しても良い。
 界面層11は、高分極率材料、具体的には、Co、Fe、及びBを含む合金(Co100-x-Fe100-yからなり、100≧x≧20at%、0<y≦30at%であることが好ましい。
 これらの磁性材料を界面層11として用いることにより、固定層(磁性層2)と非磁性層4との間の格子ミスマッチが緩和され、さらに高分極率材料であるため、高TMRと高いスピン注入効率を実現する効果が期待される。
 (7)バイアス層 
 図3に示すように、第1実施形態に係わる磁気抵抗素子1の固定層2とキャップ層6の間に、非磁性層21と、バイアス層(シフト調整層)22を配置してもよい。これにより、固定層2からの漏れ磁場による記憶層3の反転電流のシフトを0に近付けるように調整することが可能となる。
 非磁性層21は、固定層2とバイアス層22とが熱工程によって混ざらない耐熱性、及びバイアス層22を形成する際の結晶配向を制御する機能を具備することが望ましい。
 さらに、非磁性層21の膜厚が厚くなるとバイアス層22と記憶層3との距離が離れるため、バイアス層22から記憶層(磁性層3)に印加されるシフト調整磁界が小さくなってしまう。このため、非磁性層21の膜厚は、5nm以下であることが望ましい。
 バイアス層22は、膜面垂直方向に磁化容易軸を有する、強磁性材料から構成される。具体的には、固定層(磁性層2)で挙げた材料を用いることができる。但し、バイアス層22は、固定層(磁性層2)に比べて記憶層(磁性層3)から離れているため、記憶層(磁性層3)に印加される漏れ磁場をバイアス層22によって調整するためには、バイアス層22の膜厚、或いは飽和磁化Msの大きさを固定層(磁性層2)より大きくする設定する必要がある。
 即ち、固定層(磁性層2)の膜厚及び飽和磁化をt、MS2、バイアス層22の膜厚及び飽和磁化をt22、MS22とすると、以下の関係式を満たす必要がある。 
 MS2×t<MS22×t22 ・・・(式3)
 例えば、素子サイズ50nmの加工を想定した場合、反転電流のシフトを相殺するためには、固定層(磁性層2)に飽和磁化Msが1000emu/cc、膜厚が5nmの磁性材料を用いたとすると、非磁性層21の膜厚は3nm、バイアス層22には飽和磁化Msが1000emu/cc、膜厚が15nm程度のバイアス層特性が要求される。
 また、上述のシフトキャンセル効果を得るには、固定層(磁性層2)とバイアス層22との磁化方向は反平行に設定される必要がある。
 この関係を満たすためには、固定層(磁性層2)の保磁力Hc2とバイアス層22の保磁力Hc22との間には、Hc2>Hc22、或いはHc2<Hc22の関係を満たす材料を選択すればよい。この場合、予めMinor Loop着磁により保磁力の小さい層の磁化方向を反転させることにより、固定層(磁性層2)とバイアス層22との磁化方向は反平行に設定することが可能となる。
 また、非磁性層21を介して固定層(磁性層2)及びバイアス層22を反強磁性結合(SAF(Synthetic Anti-Ferromagnet)結合)させることによっても、同様に固定層(磁性層2)とバイアス層22との磁化方向は反平行に設定することが可能となる。
 具体的には、非磁性層21の材料として、例えば、ルテニウム(Ru)を用い、固定層(磁性層2)とバイアス層22との磁化方向を反平行に結合させることができる。これにより、バイアス層22によって固定層(磁性層2)から出る漏れ磁界を低減することができ、結果的に、記憶層(磁性層3)の反転電流のシフトを低減することができる。
 この結果、素子間での記憶層(磁性層3)の反転電流のばらつきを低減することも可能となる。
 以上、述べたように、第1実施形態に係わる磁気抵抗素子によれば、熱的に安定であると同時に低電流での磁化反転が可能なスピン注入書き込み方式のための磁気抵抗素子を得ることができる。
 (第2実施形態) 
 第2実施形態は、第1実施形態の磁気抵抗素子を用いた磁気ランダムアクセスメモリ(MRAM)に関し、その構成例について示すものである。
 図9は、第2実施形態のMRAMの構成を示す回路図である。
 MRAMは、マトリクス状に配列される複数のメモリセルMCを有するメモリセルアレイ40を備えている。メモリセルアレイ40には、それぞれが列(カラム)方向に延在するように、複数のビット線対BL,/BLが配設されている。また、メモリセルアレイ40には、それぞれが行(ロウ)方向に延在するように、複数のワード線WLが配設されている。
 ビット線BLとワード線WLとの交差部分には、メモリセルMCが配置されている。各メモリセルMCは、磁気抵抗素子1、及びNチャネルMOSトランジスタからなる選択トランジスタ41を備えている。磁気抵抗素子1の一端は、ビット線BLに接続されている。磁気抵抗素子1の他端は、選択トランジスタ41のドレイン端子に接続されている。選択トランジスタ41のゲート端子は、ワード線WLに接続されている。選択トランジスタ41のソース端子は、ビット線/BLに接続されている。
 ワード線WLには、ロウデコーダ42が接続されている。ビット線対BL,/BLには、書き込み回路44及び読み出し回路45が接続されている。書き込み回路44及び読み出し回路45には、カラムデコーダ43が接続されている。各メモリセルMCは、ロウデコーダ42及びカラムデコーダ43により選択される。
 メモリセルMCへのデータの書き込みは、以下のように行われる。先ず、データ書き込みを行うメモリセルMCを選択するために、このメモリセルMCに接続されるワード線WLが活性化される。これにより、選択トランジスタ41がターンオンする。
 ここで、磁気抵抗素子1には、書き込みデータに応じて、双方向の書き込み電流Iwが供給される。具体的には、磁気抵抗素子1に左から右へ書き込み電流Iwを供給する場合、書き込み回路44は、ビット線BLに正の電圧を印加し、ビット線/BLに接地電圧を印加する。また、磁気抵抗素子1に右から左へ書き込み電流Iwを供給する場合、書き込み回路44は、ビット線/BLに正の電圧を印加し、ビット線BLに接地電圧を印加する。このようにして、メモリセルMCにデータ“0”、或いはデータ“1”を書き込むことができる。
 次に、メモリセルMCからのデータ読み出しは、以下のように行われる。まず、選択されるメモリセルMCの選択トランジスタ41がターンオンする。読み出し回路45は、磁気抵抗素子1に、例えば右から左へ流れる読み出し電流Irを供給する。そして、読み出し回路45は、この読み出し電流Irに基づいて、磁気抵抗素子10の抵抗値を検出する。このようにして、磁気抵抗素子1に記憶されるデータを読み出すことができる。
 次に、MRAMの構造について説明する。 
 図10は、1個のメモリセルMCを示す断面図である。
 P型半導体基板51の表面領域には、素子分離絶縁層が設けられ、この素子分離絶縁層が設けられていない半導体基板51の表面領域が素子を形成する素子領域(active area)となる。素子分離絶縁層は、例えばSTI(Shallow Trench Isolation)により構成される。STIとしては、例えば、酸化シリコンが用いられる。
 半導体基板51の素子領域には、互いに離間したソース領域S及びドレイン領域Dが設けられている。このソース領域S及びドレイン領域Dはそれぞれ、半導体基板51内に高濃度のN型不純物を導入して形成されるN型拡散領域から構成される。ソース領域S及びドレイン領域D間で半導体基板51上には、ゲート絶縁膜41Aを介して、ゲート電極41Bが設けられている。ゲート電極41Bは、ワード線WLとして機能する。このようにして、半導体基板51には、選択トランジスタ41が設けられている。
 ソース領域S上には、コンタクト52を介して配線層53が設けられている。配線層53は、ビット線/BLとして機能する。ドレイン領域D上には、コンタクト54を介して引き出し線55が設けられている。引き出し線55上には、下部電極7及び上部電極9に挟まれた磁気抵抗素子1が設けられている。上部電極9上には、配線層56が設けられている。配線層56は、ビット線BLとして機能する。また、半導体基板51と配線層56との間は、例えば、酸化シリコンからなる層間絶縁層57で満たされている。
 以上、詳述したように、第2実施形態によれば、磁気抵抗素子1を用いてMRAMを構成することができる。尚、磁気抵抗素子1は、スピン注入型の磁気メモリの他、磁壁移動型の磁気メモリとして使用することも可能である。
 第2実施形態で示したMRAMは、様々な装置に適用することが可能である。以下に、MRAMのいくつかの適用例について説明する。
 (適用例1) 
 図11は、デジタル加入者線(DSL)用モデムのDSLデータパス部を抽出して示している。
 このモデムは、プログラマブルデジタルシグナルプロセッサ(DSP:Digital Signal Processor)100、アナログ-デジタル(A/D)コンバータ110、デジタル-アナログ(D/A)コンバータ120、送信ドライバ130、及び受信機増幅器140等を備えている。
 図11では、バンドパスフィルタを省略しており、その代わりに回線コードプログラム(DSPで実行される、コード化される加入者回線情報、伝送条件等(回線コード:QAM、CAP、RSK、FM、AM、PAM、DWMT等)に応じてモデムを選択、動作させるためのプログラム)を保持するための種々のタイプのオプションのメモリとして、本実施形態のMRAM170とEEPROM180とを示している。
 尚、本適用例では、回線コードプログラムを保持するためのメモリとしてMRAM170とEEPROM180との2種類のメモリを用いているが、EEPROM180をMRAMに置き換えてもよい。即ち、2種類のメモリを用いず、MRAMのみを用いるように構成してもよい。
 (適用例2) 
 図12は、別の適用例として、携帯電話端末300を示している。
 通信機能を実現する通信部200は、送受信アンテナ201、アンテナ共用器202、受信部203、ベースバンド処理部204、音声コーデックとして用いられるDSP205、スピーカ(受話器)206、マイクロホン(送話器)207、送信部208、及び周波数シンセサイザ209等を備えている。
 また、この携帯電話端末300には、当該携帯電話端末300の各部を制御する制御部220が設けられている。制御部220は、CPU221、ROM222、本実施形態のMRAM223、及びフラッシュメモリ224がバス225を介して接続されて形成されるマイクロコンピュータである。上記ROM222には、CPU221において実行されるプログラムや表示用のフォント等の必要となるデータが予め記憶されている。
 MRAM223は、主に作業領域として用いられるものであり、CPU221がプログラムの実行中において計算途中のデータ等を必要に応じて記憶したり、制御部220と各部との間でやり取りするデータを一時的に記憶したりする場合等に用いられる。また、フラッシュメモリ224は、携帯電話端末300の電源がオフされても、例えば、直前の設定条件等を記憶しておき、次の電源オン時に同じ設定にするような使用方法をする場合に、それらの設定パラメータを記憶しておくものである。
 これによって、携帯電話端末300の電源がオフにされても、記憶されている設定パラメータを消失してしまうことがない。
 また、この携帯電話端末300には、オーディオ再生処理部211、外部出力端子212、LCDコントローラ213、表示用のLCD(液晶ディスプレイ)214、及び呼び出し音を発生するリンガ215等が設けられている。オーディオ再生処理部211は、携帯電話端末300に入力されるオーディオ情報(或いは、後述する外部メモリ240に記憶されるオーディオ情報)を再生する。再生されるオーディオ情報は、外部出力端子212を介してヘッドフォンや携帯型スピーカ等に伝えることにより、外部に取り出すことが可能である。
 このように、オーディオ再生処理部211を設けることにより、オーディオ情報の再生が可能となる。LCDコントローラ213は、例えばCPU221からの表示情報を、バス225を介して受け取り、LCD214を制御するためのLCD制御情報に変換し、LCD214を駆動して表示を行わせる。
 さらに、携帯電話端末300には、インターフェース回路(I/F)231,233,235、外部メモリ240、外部メモリスロット232、キー操作部234、及び外部入出力端子236等が設けられている。上記外部メモリスロット232にはメモリカード等の外部メモリ240が挿入される。この外部メモリスロット232は、インターフェース回路(I/F)231を介してバス225に接続される。
 このように、携帯電話端末300にスロット232を設けることにより、携帯電話端末300の内部の情報を外部メモリ240に書き込んだり、或いは外部メモリ240に記憶される情報(例えばオーディオ情報)を携帯電話端末300に入力したりすることが可能となる。
 キー操作部234は、インターフェース回路(I/F)233を介してバス225に接続される。キー操作部234から入力されるキー入力情報は、例えば、CPU221に伝えられる。外部入出力端子236は、インターフェース回路(I/F)233を介してバス225に接続され、携帯電話端末300に外部から種々の情報を入力したり、或いは携帯電話端末300から外部へ情報を出力したりする際の端子として機能する。
 尚、本適用例では、ROM222、MRAM223、及びフラッシュメモリ224を用いているが、フラッシュメモリ224をMRAMに置き換えてもよいし、さらにROM222もMRAMに置き換えることも可能である。
 (適用例3) 
 図13乃至図17は、MRAMをスマートメディア等のメディアコンテンツを収納するカード(MRAMカード)に適用した例をそれぞれ示している。
 図13に示すように、MRAMカード本体400には、MRAMチップ401が内蔵されている。このカード本体400には、MRAMチップ401に対応する位置に開口部402が形成され、MRAMチップ401が露出されている。この開口部402にはシャッター403が設けられており、当該MRAMカードの携帯時にMRAMチップ401がシャッター403で保護されるようになっている。このシャッター403は、外部磁場を遮蔽する効果のある材料、例えばセラミックからなっている。
 データを転写する場合には、シャッター403を開放してMRAMチップ401を露出させて行なう。外部端子404は、MRAMカードに記憶されるコンテンツデータを外部に取り出すためのものである。
 図14及び図15は、MRAMカードにデータを転写するための、カード挿入型の転写装置を示している。
 データ転写装置500は、収納部500aを有している。この収納部500aには、第1MRAMカード550が収納されている。収納部500aには、第1MRAMカード550に電気的に接続される外部端子530が設けられており、この外部端子530を用いて第1MRAMカード550のデータが書き換えられる。
 エンドユーザの使用する第2MRAMカード450を、矢印で示すように転写装置500の挿入部510より挿入し、ストッパ520で止まるまで押し込む。このストッパ520は、第1MRAM550と第2MRAMカード450を位置合わせするための部材としても働く。第2MRAMカード450が所定位置に配置されると、第1MRAMデータ書き換え制御部から外部端子530に制御信号が供給され、第1MRAM550に記憶されるデータが第2MRAMカード450に転写される。
 図16は、はめ込み型の転写装置を示す断面図である。
 この転写装置500は、矢印で示すように、ストッパ520を目標に、第1MRAM550上に第2MRAMカード450をはめ込むように載置するタイプである。転写方法についてはカード挿入型と同一であるので、説明を省略する。
 図17は、スライド型の転写装置を示す断面図である。
 この転写装置500は、CD-ROMドライブやDVDドライブと同様に、転写装置500に受け皿スライド560が設けられており、この受け皿スライド560が矢印で示すように移動する。受け皿スライド560が破線の位置に移動したときに第2MRAMカード450を受け皿スライド560に載置し、第2MRAMカード450を転写装置500の内部へ搬送する。
 ストッパ520に第2MRAMカード450の先端部が当接するように搬送される点、及び転写方法についてはカード挿入型と同一であるので、説明を省略する。
 (むすび) 
 以上詳述したように本発明によれば、300℃以上の高温熱処理過程を経ても磁気特性及び出力特性が劣化しない、耐熱性に優れた磁気抵抗素子を作製でき、これを用いることにより、従来よりも高耐熱の磁気メモリを提供ですることができる。
 本発明の例は、上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、各構成要素を変形して具体化できる。また、上述の実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を構成できる。例えば、上述の実施形態に開示される全構成要素から幾つかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。
 本発明は、高速ランダム書き込み可能なファイルメモリ、高速ダウンロード可能な携帯端末、高速ダウンロード可能な携帯プレーヤー、放送機器用半導体メモリ、ドライブレコーダ、ホームビデオ、通信用大容量バッファメモリ、防犯カメラ用半導体メモリなどに対して産業上のメリットは多大である。
 1…磁気抵抗素子、2…固定層(強磁性層)、3…記憶層(フェリ磁性層)、4…非磁性層(トンネルバリア層)、5…下地層、6…キャップ層、7…基板、8…密着層(下部電極)、9…上部電極、21~22…界面層、31~34…下地層、40…メモリセルアレイ、41…選択トランジスタ、41A…ゲート絶縁膜、41B…ゲート電極、42…ロウデコーダ、43…カラムデコーダ、44…書き込み回路、45…読み出し回路、51…半導体基板、52,54…コンタクト、53,56…配線層、55…引き出し線、57…層間絶縁層、MC…メモリセル、BL…ビット線、WL…ワード線、S…ソース領域、D…ドレイン領域、100…DSP、110…A/Dコンバータ、120…D/Aコンバータ、130…送信ドライバ、140…受信機増幅器、170…MRAM、180…EEPROM、200…通信部、201…送受信アンテナ、202…アンテナ共用器、203…受信部、204…ベースバンド処理部、205…DSP、206…スピーカ、207…マイクロホン、208…送信部、209…周波数シンセサイザ、211…オーディオ再生処理部、212…外部出力端子、213…LCDコントローラ、214…LCD、215…リンガ、220…制御部、221…CPU、222…ROM、223…MRAM、224…フラッシュメモリ、225…バス、231,233,235…インターフェース回路、232…外部メモリスロット、232…スロット、234…キー操作部、236…外部入出力端子、240…外部メモリ、300…携帯電話端末、400…MRAMカード本体、401…MRAMチップ、402…開口部、403…シャッター、404…外部端子、450…MRAMカード、500…転写装置、510…挿入部、520…ストッパ、530…外部端子、550…MRAM、560…受け皿スライド。

Claims (15)

  1.  膜面垂直方向に磁化容易軸を有する磁化方向が可変の第1磁性層と、
     膜面垂直方向に磁化容易軸を有する磁化方向が不変の第2磁性層と、
     前記第1磁性層と前記第2磁性層との間に設けられる第1非磁性層とを具備し、
     前記第1磁性層は、少なくとも第1強磁性材料と第2強磁性材料とが積層された構造を有し、前記第1磁性層の磁化方向は、前記第1磁性層、前記第1非磁性層及び前記第2磁性層を貫く電流により変化し、前記第2強磁性材料の垂直磁気異方性は、前記第1強磁性材料の垂直磁気異方性より小さく、前記第1強磁性材料の膜厚は、前記第2強磁性材料の膜厚より薄い
     ことを特徴とする磁気抵抗素子。
  2.  膜面垂直方向に磁化容易軸を有し、前記第2磁性層からの漏れ磁場を調整する第3磁性層と、前記第2磁性層と前記第3磁性層との間に設けられる第2非磁性層とをさらに具備することを特徴とする請求項1に記載の磁気抵抗素子。
  3.  前記第2磁性層の飽和磁化MS2及び膜厚tと前記第3磁性層の飽和磁化MS3及び膜厚tは、MS2×t<MS3×tの関係を満たし、
     前記第2磁性層と前記第3磁性層の磁化方向は、互いに反平行を保つことを特徴とする請求項2に記載の磁気抵抗素子。
  4.  前記第1強磁性材料は、CoとPd、又は、CoとPtを含む合金を備え、前記合金の原子稠密面に対して優先配向されることを特徴とする請求項1に記載の磁気抵抗素子。
  5.  前記第2強磁性材料は、Co、Fe及びBを含む合金を備え、前記合金は(Co100-x-Fe100-y、100≧x≧20at%、0<y≦30at%であることを特徴とする請求項1に記載の磁気抵抗素子。
  6.  前記第2強磁性材料は、Co及びFeを含み、さらに、Ta、Si、Nb、V、W、Cr、Mo、Bの少なくとも1つを含む合金を備えることを特徴とする請求項1に記載の磁気抵抗素子。
  7.  前記第2強磁性材料は、立方晶構造又は正方晶構造からなり(100)面に配向した結晶粒を含むことを特徴とする請求項1に記載の磁気抵抗素子。
  8.  前記第2磁性層と前記第1非磁性層との間に設けられる界面層をさらに具備し、
     前記界面層は、Co、Fe及びBを含む合金を備え、前記合金は(Co100-x-Fe100-y、100≧x≧20at%、0<y≦30at%であることを特徴とする請求項1に記載の磁気抵抗素子。
  9.  前記界面層は、立方晶構造又は正方晶構造からなり(100)面に配向した結晶粒を含むことを特徴とする請求項8に記載の磁気抵抗素子。
  10.  前記第1非磁性層は、酸化マグネシウムを含むことを特徴とする請求項1に記載の磁気抵抗素子。
  11.  前記第1強磁性材料は、CoPdであり、前記第2強磁性材料は、Taを含んだCoFeBを備え、前記第2強磁性材料の膜厚t2と前記第1強磁性材料の膜厚t1との比(t2/t1)は、3.8未満であることを特徴とする請求項1に記載の磁気抵抗素子。
  12.  請求項1に記載の磁気抵抗素子と、前記磁気抵抗素子を挟み込み、前記磁気抵抗素子に対して通電を行う第1及び第2電極とを含むメモリセルを具備することを特徴とする磁気メモリ。
  13.  前記第1電極に電気的に接続される第1配線と、
     前記第2電極に電気的に接続される第2配線と、
     前記第1配線及び前記第2配線に電気的に接続され、前記磁気抵抗素子に前記電流を供給する書き込み回路とをさらに具備することを特徴とする請求項12に記載の磁気メモリ。
  14.  前記メモリセルは、前記第2電極及び前記第2配線間に電気的に接続される選択トランジスタを含むことを特徴とする請求項13に記載の磁気メモリ。
  15.  膜面垂直方向に磁化容易軸を有する磁化方向が可変の第1磁性層と、
     膜面垂直方向に磁化容易軸を有する磁化方向が不変の第2磁性層と、
     前記第1磁性層と前記第2磁性層との間に設けられる第1非磁性層とを具備し、
     前記第1磁性層は、少なくとも第1強磁性材料と第2強磁性材料とが積層された構造を有し、前記第1磁性層の磁化方向は、前記第1磁性層、前記第1非磁性層及び前記第2磁性層を貫く電流により変化し、前記第2強磁性材料の垂直磁気異方性は、前記第1強磁性材料の垂直磁気異方性より小さく、前記第1強磁性材料の単位面積当たりの磁気モーメントは、前記第2強磁性材料の単位面積当たりの磁気モーメントより小さい
     ことを特徴とする磁気抵抗素子。
PCT/JP2010/055938 2010-03-31 2010-03-31 磁気抵抗素子及び磁気メモリ WO2011121777A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011539815A JP5479487B2 (ja) 2010-03-31 2010-03-31 磁気抵抗素子及び磁気メモリ
PCT/JP2010/055938 WO2011121777A1 (ja) 2010-03-31 2010-03-31 磁気抵抗素子及び磁気メモリ
US13/407,039 US8665639B2 (en) 2010-03-31 2012-02-28 Magnetoresistive element and magnetic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055938 WO2011121777A1 (ja) 2010-03-31 2010-03-31 磁気抵抗素子及び磁気メモリ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/407,039 Continuation US8665639B2 (en) 2010-03-31 2012-02-28 Magnetoresistive element and magnetic memory

Publications (1)

Publication Number Publication Date
WO2011121777A1 true WO2011121777A1 (ja) 2011-10-06

Family

ID=44711563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055938 WO2011121777A1 (ja) 2010-03-31 2010-03-31 磁気抵抗素子及び磁気メモリ

Country Status (3)

Country Link
US (1) US8665639B2 (ja)
JP (1) JP5479487B2 (ja)
WO (1) WO2011121777A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205007A (ja) * 2010-03-26 2011-10-13 Nec Corp 磁気メモリ及びその製造方法
JP2013089967A (ja) * 2011-10-17 2013-05-13 Hgst Netherlands B V 固定層構造および自由層構造にCoFeBTaを有する磁気センサ
JP2013187409A (ja) * 2012-03-08 2013-09-19 Renesas Electronics Corp 磁気メモリセル、磁気メモリセルの製造方法
WO2015040926A1 (ja) * 2013-09-19 2015-03-26 株式会社 東芝 磁気抵抗素子および磁気メモリ
CN106062901A (zh) * 2014-02-27 2016-10-26 国立大学法人东京工业大学 层叠结构体、开关元件、磁装置、及层叠结构体的制造方法
JP2020523779A (ja) * 2017-06-07 2020-08-06 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 磁気トンネル接合記憶素子
CN111512456A (zh) * 2018-02-27 2020-08-07 Tdk株式会社 铁磁性层叠膜、自旋流磁化旋转元件、磁阻效应元件和磁存储器
US20230131445A1 (en) * 2021-10-26 2023-04-27 International Business Machines Corporation Magneto-electric low power analogue magnetic tunnel junction memory

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786341B2 (ja) 2010-09-06 2015-09-30 ソニー株式会社 記憶素子、メモリ装置
US8598576B2 (en) * 2011-02-16 2013-12-03 Avalanche Technology, Inc. Magnetic random access memory with field compensating layer and multi-level cell
JP2014143315A (ja) * 2013-01-24 2014-08-07 Toshiba Corp 磁気メモリおよびその製造方法
US20140284733A1 (en) 2013-03-22 2014-09-25 Daisuke Watanabe Magnetoresistive element
US9184374B2 (en) * 2013-03-22 2015-11-10 Kazuya Sawada Magnetoresistive element
JP6119051B2 (ja) * 2013-08-02 2017-04-26 株式会社東芝 磁気抵抗素子および磁気メモリ
KR102133178B1 (ko) * 2014-06-09 2020-07-15 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US10043852B2 (en) * 2015-08-11 2018-08-07 Toshiba Memory Corporation Magnetoresistive memory device and manufacturing method of the same
WO2017052635A1 (en) 2015-09-25 2017-03-30 Intel Corporation Psttm device with bottom electrode interface material
CN108028313B (zh) 2015-09-25 2022-04-15 英特尔公司 具有多层过滤器堆叠体的psttm器件
WO2017052606A1 (en) 2015-09-25 2017-03-30 Intel Corporation Psttm device with free magnetic layers coupled through a metal layer having high temperature stability
US11502188B2 (en) 2018-06-14 2022-11-15 Intel Corporation Apparatus and method for boosting signal in magnetoelectric spin orbit logic
US11476412B2 (en) 2018-06-19 2022-10-18 Intel Corporation Perpendicular exchange bias with antiferromagnet for spin orbit coupling based memory
US11616192B2 (en) 2018-06-29 2023-03-28 Intel Corporation Magnetic memory devices with a transition metal dopant at an interface of free magnetic layers and methods of fabrication
US11770979B2 (en) 2018-06-29 2023-09-26 Intel Corporation Conductive alloy layer in magnetic memory devices and methods of fabrication
US11444237B2 (en) 2018-06-29 2022-09-13 Intel Corporation Spin orbit torque (SOT) memory devices and methods of fabrication
US11557629B2 (en) 2019-03-27 2023-01-17 Intel Corporation Spin orbit memory devices with reduced magnetic moment and methods of fabrication
US11594673B2 (en) 2019-03-27 2023-02-28 Intel Corporation Two terminal spin orbit memory devices and methods of fabrication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165265A (ja) * 2004-12-07 2006-06-22 Sony Corp 記憶素子及びメモリ
JP2007048790A (ja) * 2005-08-05 2007-02-22 Sony Corp 記憶素子及びメモリ
JP2007150265A (ja) * 2005-10-28 2007-06-14 Toshiba Corp 磁気抵抗効果素子および磁気記憶装置
JP2009027177A (ja) * 2007-07-23 2009-02-05 Magic Technologies Inc Stt−mtj−mramセルおよびその製造方法
JP2010021580A (ja) * 2005-10-19 2010-01-28 Toshiba Corp 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード、電子装置、磁気抵抗効果素子の製造方法、及び、磁気ランダムアクセスメモリの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095597B2 (ja) * 2004-09-09 2008-06-04 株式会社東芝 磁気ランダムアクセスメモリ
JP4444241B2 (ja) 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
US20070096229A1 (en) 2005-10-28 2007-05-03 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory device
JP2007266498A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 磁気記録素子及び磁気メモリ
JP2008098523A (ja) * 2006-10-13 2008-04-24 Toshiba Corp 磁気抵抗効果素子および磁気メモリ
JP4649457B2 (ja) * 2007-09-26 2011-03-09 株式会社東芝 磁気抵抗素子及び磁気メモリ
JP2009081315A (ja) 2007-09-26 2009-04-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP5455313B2 (ja) * 2008-02-21 2014-03-26 株式会社東芝 磁気記憶素子及び磁気記憶装置
JP4599425B2 (ja) * 2008-03-27 2010-12-15 株式会社東芝 磁気抵抗素子及び磁気メモリ
US7940600B2 (en) * 2008-12-02 2011-05-10 Seagate Technology Llc Non-volatile memory with stray magnetic field compensation
US7936598B2 (en) * 2009-04-28 2011-05-03 Seagate Technology Magnetic stack having assist layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165265A (ja) * 2004-12-07 2006-06-22 Sony Corp 記憶素子及びメモリ
JP2007048790A (ja) * 2005-08-05 2007-02-22 Sony Corp 記憶素子及びメモリ
JP2010021580A (ja) * 2005-10-19 2010-01-28 Toshiba Corp 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード、電子装置、磁気抵抗効果素子の製造方法、及び、磁気ランダムアクセスメモリの製造方法
JP2007150265A (ja) * 2005-10-28 2007-06-14 Toshiba Corp 磁気抵抗効果素子および磁気記憶装置
JP2009027177A (ja) * 2007-07-23 2009-02-05 Magic Technologies Inc Stt−mtj−mramセルおよびその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205007A (ja) * 2010-03-26 2011-10-13 Nec Corp 磁気メモリ及びその製造方法
JP2013089967A (ja) * 2011-10-17 2013-05-13 Hgst Netherlands B V 固定層構造および自由層構造にCoFeBTaを有する磁気センサ
JP2013187409A (ja) * 2012-03-08 2013-09-19 Renesas Electronics Corp 磁気メモリセル、磁気メモリセルの製造方法
WO2015040926A1 (ja) * 2013-09-19 2015-03-26 株式会社 東芝 磁気抵抗素子および磁気メモリ
US9831420B2 (en) 2013-09-19 2017-11-28 Toshiba Memory Corporation Magnetoresistive element and magnetic memory
CN106062901A (zh) * 2014-02-27 2016-10-26 国立大学法人东京工业大学 层叠结构体、开关元件、磁装置、及层叠结构体的制造方法
JP2020523779A (ja) * 2017-06-07 2020-08-06 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 磁気トンネル接合記憶素子
JP7335167B2 (ja) 2017-06-07 2023-08-29 インターナショナル・ビジネス・マシーンズ・コーポレーション 磁気トンネル接合記憶素子
CN111512456A (zh) * 2018-02-27 2020-08-07 Tdk株式会社 铁磁性层叠膜、自旋流磁化旋转元件、磁阻效应元件和磁存储器
CN111512456B (zh) * 2018-02-27 2023-09-22 Tdk株式会社 铁磁性层叠膜、自旋流磁化旋转元件、磁阻效应元件和磁存储器
US20230131445A1 (en) * 2021-10-26 2023-04-27 International Business Machines Corporation Magneto-electric low power analogue magnetic tunnel junction memory
US11823724B2 (en) * 2021-10-26 2023-11-21 International Business Machines Corporation Magneto-electric low power analogue magnetic tunnel junction memory

Also Published As

Publication number Publication date
JPWO2011121777A1 (ja) 2013-07-04
JP5479487B2 (ja) 2014-04-23
US8665639B2 (en) 2014-03-04
US20120163070A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5479487B2 (ja) 磁気抵抗素子及び磁気メモリ
JP5072120B2 (ja) 磁気抵抗素子及び磁気メモリ
JP5491757B2 (ja) 磁気抵抗素子および磁気メモリ
JP5722140B2 (ja) 磁気抵抗素子及び磁気メモリ
JP5093910B2 (ja) 磁気抵抗素子及び磁気メモリ
JP4599425B2 (ja) 磁気抵抗素子及び磁気メモリ
JP4649457B2 (ja) 磁気抵抗素子及び磁気メモリ
JP5728311B2 (ja) 磁気抵抗素子及び磁気メモリ
JP5722137B2 (ja) 磁気抵抗素子及び磁気メモリ
JP5558425B2 (ja) 磁気抵抗素子、磁気メモリ及び磁気抵抗素子の製造方法
US8946837B2 (en) Semiconductor storage device with magnetoresistive element
JP2009081315A (ja) 磁気抵抗素子及び磁気メモリ
JP2013235914A (ja) 磁気抵抗素子および磁気メモリ
JP2008098523A (ja) 磁気抵抗効果素子および磁気メモリ
JP2010016408A (ja) 磁気抵抗素子及び磁気メモリ
JP4940176B2 (ja) 磁気抵抗素子および磁気メモリ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011539815

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848954

Country of ref document: EP

Kind code of ref document: A1