WO2011118561A1 - 内燃機関の廃熱利用システム及び該システムに使用するモータジェネレータ装置 - Google Patents
内燃機関の廃熱利用システム及び該システムに使用するモータジェネレータ装置 Download PDFInfo
- Publication number
- WO2011118561A1 WO2011118561A1 PCT/JP2011/056756 JP2011056756W WO2011118561A1 WO 2011118561 A1 WO2011118561 A1 WO 2011118561A1 JP 2011056756 W JP2011056756 W JP 2011056756W WO 2011118561 A1 WO2011118561 A1 WO 2011118561A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor generator
- expander
- internal combustion
- combustion engine
- rotor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/08—Adaptations for driving, or combinations with, pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/12—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
- F01K23/14—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
- F02G5/04—Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2260/00—Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a waste heat utilization system for an internal combustion engine and a motor generator device used in the system, and more particularly, a waste heat utilization system suitable for recovering and utilizing waste heat from an internal combustion engine of a vehicle and the system.
- the present invention relates to a motor generator device used for the above.
- This type of waste heat utilization system expands an evaporator that heats and evaporates the working fluid by the waste heat of the internal combustion engine in the refrigerant circulation path as the working fluid, and expands the high-pressure working fluid that passes through the evaporator.
- An expander that generates a rotational driving force, a power transmission device to which the rotational driving force generated by the expander is transmitted, a condenser that condenses the working fluid that passes through the expander, and a working fluid that passes through the condenser Is provided with a Rankine cycle in which pumps for delivering the gas to the evaporator are sequentially disposed.
- a pump, an expander, and a motor generator as a driven transmission device are arranged on the same axis, and at the start of the Rankine cycle, the motor generator functions as a motor to rotate the pump, while the refrigerant is circulated to expand the expander.
- the motor generator is configured to drive a pump as a motor and to function as a generator when the expander is driven.
- the expansion ratio is small, and there is a problem that the electric power required by the vehicle cannot be sufficiently generated only by the power generation of the motor generator as a generator by the rotational force of only the expander.
- the driven power transmission device is an internal combustion engine, and the rotational driving force of the expander is transmitted directly to the internal combustion engine via an endless belt or the like, and the rotational driving force of the expander or the internal combustion engine is coaxial with the expander or A waste heat utilization system configured to transmit to a separate alternator can be considered.
- the rotational drive force of the expander can be transmitted to the internal combustion engine, and power is generated by the rotational drive force of the expander and the rotational drive force of the internal combustion engine with only one alternator.
- the rotational driving force of the expander is directly transmitted to the internal combustion engine via an endless belt or the like, the internal combustion engine and the expander rotate at the same rotation.
- the internal combustion engine forcibly increases the discharge amount of the working fluid from the expander, the working fluid cannot be maintained at a high pressure upstream of the expander, and the output of the expander decreases.
- the present invention has been made in view of such a problem, and includes a Rankine cycle capable of generating a rotational driving force by an expander by circulating a working fluid, and wastes the driving force of the internal combustion engine by the rotational energy of the expander. It is an object of the present invention to provide a waste heat utilization system for an internal combustion engine that can efficiently assist and efficiently generate electric power by the rotational driving force of the expander and the internal combustion engine, and a motor generator device used in the system. To do.
- the waste heat utilization system for an internal combustion engine passes through an evaporator that heats and evaporates the working fluid by the waste heat of the internal combustion engine in the circulation path of the working fluid.
- An expander that expands the working fluid to generate a rotational driving force, a condenser that condenses the working fluid via the expander, and a pump that sends the working fluid via the condenser to the evaporator are sequentially provided.
- One of the rotors is connected to the rotating shaft of the expander, and the other rotor is connected to the rotating shaft of the internal combustion engine. 1).
- the other rotor is connected to a rotating shaft of the internal combustion engine by interposing auxiliary machines in series or in parallel (Claim 2).
- the refrigerant circulation path is provided with a refrigeration cycle in which a compressor for compressing the refrigerant by at least the rotational driving force of the internal combustion engine is provided, and the auxiliary machine is the compressor.
- the compressor is a variable capacity compressor, and further includes a compression capacity control means for variably controlling the compression capacity of the variable capacity compressor in accordance with the operating state of the refrigeration cycle.
- a connecting / disconnecting clutch for connecting / disconnecting the rotational driving force of the motor generator transmitted to the internal combustion engine via the compressor according to an operating state of the internal combustion engine is provided between the internal combustion engine and the compressor. It is good to have (Claim 5).
- the expander and the pump are coaxially and integrally configured, and the expander and pump integrally formed with the motor generator are the rotating shaft of the expander and pump integrally formed by the one rotor. And the other rotor is preferably connected to the rotating shaft of the internal combustion engine.
- a power recovery unit including a battery for storing generated power generated by the motor generator by rotation of the expander or rotation of the internal combustion engine, and a storage amount of the battery
- a system control means for controlling the degree of power recovery based on (Claim 7).
- the power recovery means includes a Rankine output detection means for detecting a Rankine output generated by the Rankine cycle, a battery charge amount detection means for detecting a charge amount of the battery, the one rotor of the motor generator, Motor generator output variable means for switching the other rotor to a motor and a generator, respectively, and the system control means includes battery demand power calculation means for calculating battery demand power required by the power recovery means; Motor generator control means for controlling the motor generator output variable means according to the battery demand power calculated by the power calculation means, and the battery demand power calculated by the battery demand power calculation means is detected by the Rankine output detection means. Detected rank When the power corresponding to the output is larger, the motor generator control means switches the other rotor to the generator. On the other hand, when the battery required power is lower than the power corresponding to the Rankine output, the other rotor is switched to the motor.
- the motor generator output varying means may be controlled.
- the motor generator control means controls the motor generator based on a generator output target value when switching the other rotor to the generator, and based on the motor output target value when switching the other rotor to the motor.
- the motor generator output variable means is controlled, and the generator output target value and the motor output target value are set based on the absolute value of the difference between the battery required power and the power corresponding to the Rankine output, respectively. (Claim 9).
- the system includes a Rankine cycle electric auxiliary machine
- the system control means includes Rankine cycle electric auxiliary machine input control means for controlling input power of the Rankine cycle electric auxiliary machine.
- the Rankine cycle electric auxiliary machine input control means drives the Rankine cycle electric auxiliary machine.
- the Rankine cycle electric auxiliary machine input control means may drive the Rankine cycle electric auxiliary machine. Item 10).
- the expander and the pump are coaxially and integrally configured, and the expander and pump integrally formed with the motor generator are the rotating shaft of the expander and pump integrally formed by the one rotor. And the other rotor is preferably connected to the rotating shaft of the internal combustion engine.
- the motor generator control means controls the motor generator output variable means to switch the one rotor to a motor or a generator.
- the system control means has a Rankine output constant by the Rankine output detection means. In this case, the motor generator control means switches the one rotor to the generator, and when the Rankine output is less than a certain value, the motor generator control means switches the one rotor to the motor.
- the variable means may be controlled (claim 12).
- the motor generator device of the present invention has an evaporator that heats and evaporates the working fluid by the waste heat of the internal combustion engine in the working fluid circulation path, and expands the working fluid that passes through the evaporator to generate a rotational driving force.
- a motor generator apparatus for use in a heat utilization system having an inner rotor on the inside of a stator and an outer rotor on the outside, an input / output shaft connected to the expander and a rotating shaft of an internal combustion engine And either one of the inner rotor and the outer rotor of the motor generator mechanism is connected to a rotating shaft of the expander, and the other rotor Wherein the chromatography data is linked to the output shaft (claim 13).
- the pump of the Rankine cycle is disposed between the motor generator mechanism and the expander, and one end of a drive shaft of the pump is connected to the expander, The end may be connected to the one rotor (claim 14).
- a one-way clutch that does not transmit the rotational driving force from the pump to the expander but transmits the rotational driving force from the expander to the pump. It is good to be equipped (Claim 15).
- the motor generator having an inner rotor inside and an outer rotor outside the stator
- the motor generator and the Rankine cycle expander are: One of the inner rotor and the outer rotor of the motor generator is connected to the rotating shaft of the expander, and the other rotor is connected to the rotating shaft of the internal combustion engine. .
- the waste heat utilization system can be compactly configured to save space, and the rotation shaft and the expander of the internal combustion engine are connected to the rotors of the motor generator.
- the rotational force of the expander can be converted into electric power, and the electric power required by the vehicle can be sufficiently generated by the motor generator even under conditions where the outside air temperature is high such as in summer.
- the rotating shaft of the internal combustion engine and the expander are connected via a motor generator, even if the rotational speed by the driving force of the internal combustion engine is larger than the rotational speed of the expander, the expander is not affected,
- the working fluid can be maintained at a high pressure upstream of the expander, and the driving force of the internal combustion engine can be assisted by the rotational energy of the expander via the motor generator.
- the motor generator can sufficiently generate power while saving space, and the rotation of the expander
- the driving force of the internal combustion engine can be assisted by energy via the motor generator.
- the waste heat utilization system for an internal combustion engine of the present invention even in a system having a Rankine cycle and a refrigeration cycle, even when the compressor of the refrigeration cycle is connected to the motor generator, space saving is achieved. As shown, the motor generator can generate sufficient electric power, and the rotational energy of the expander can assist the driving force of the internal combustion engine via the motor generator.
- the compressor is a variable capacity compressor
- the compression capacity control means determines the compression capacity of the variable capacity compressor according to the operating state of the refrigeration cycle. Therefore, if the refrigeration cycle operation requirement is small or not, the compressor can be prevented from becoming an unnecessary load by reducing or reducing the compression capacity.
- the driving force of the internal combustion engine can be assisted through the motor generator.
- the compressor is operated by driving the motor generator by the stored power of the battery, The refrigeration cycle and thus the air conditioner can be operated (Claim 5).
- the pump can be driven by the rotational energy of the expander, and the pump can be driven at the start of the Rankine cycle by the motor function of the motor generator. This makes it possible to supply the working fluid to the expander well (claim 6).
- the generated power generated by the motor generator by the rotation of the expander or the rotation of the internal combustion engine is recovered by the power recovery means and stored in the battery, and the system control means Since the degree of power recovery is controlled in accordance with the amount of power stored in the battery and thus the required battery power, the generated power generated by the motor generator can be efficiently recovered and used (claim 7).
- the power recovery means includes Rankine output detection means for detecting Rankine output generated by the Rankine cycle, and battery charge amount detection means for detecting the charge amount of the battery.
- a motor generator output variable means for switching one rotor and the other rotor of the motor generator to a motor and a generator, respectively, and the system control means calculates battery required power calculation means for calculating battery required power required by the power recovery means
- motor generator control means for controlling the motor generator output variable means in accordance with the battery required power calculated by the battery required power calculation means, and the battery required power calculated by the battery required power calculation means is detected as Rankine output.
- the motor generator control means allows the other rotor to be switched to the generator by the motor generator control means.
- the motor generator output can be varied to switch the other rotor to the motor. Since the means is controlled, the motor generator can be efficiently switched between the generator and the motor based on the battery required power and the generated power generated by the motor generator corresponding to the Rankine output, for example.
- the generator output target value and the motor output target value are set based on the absolute value of the difference between the battery required power and the power corresponding to the Rankine output, respectively,
- the motor generator is controlled based on the generator output target value, and when the other rotor is switched to the motor, the motor generator is controlled based on the motor output target value. It can be operated as a generator or a motor (claim 9).
- the drive of the Rankine cycle electric auxiliary machine is performed.
- the power corresponding to the Rankine cycle output is at least larger than the input power of the Rankine cycle electric accessory, the Rankine cycle electric accessory is driven, so that energy loss in the Rankine cycle can be prevented. 10).
- the pump can be driven by the rotational energy of the expander while efficiently collecting and using the generated power generated by the motor generator by the system control means.
- the motor function of the motor generator makes it possible to drive the pump at the start of the Rankine cycle, so that the working fluid can be satisfactorily supplied to the expander.
- the waste heat utilization system for an internal combustion engine of the present invention when the Rankine output is above a certain level, one rotor is switched to the generator, and when the Rankine output is less than a certain level, one rotor is switched to the motor, so a pump is required.
- the self-sustained driving can be performed with the minimum input, and the Rankine cycle can be started by properly supplying the working fluid to the expander.
- the motor generator apparatus of the present invention a motor generator apparatus used in a waste heat utilization system of an internal combustion engine having a Rankine cycle, the motor generator mechanism having an inner rotor inside the stator and an outer rotor outside.
- an expander Part, an expander, and an input / output shaft connected to the rotating shaft of the internal combustion engine, and either one of the inner rotor and the outer rotor of the motor generator mechanism is connected to the rotating shaft of the expander, The other rotor is connected to the input / output shaft.
- the motor generator device can be compactly configured to save space, and the input / output shaft and the expander are connected to each rotor of the motor generator mechanism, so that the driving force or expansion of the internal combustion engine can be reduced.
- the rotating force of the machine can be converted into electric power, and the electric power required by the vehicle can be sufficiently generated by the motor generator mechanism even under conditions of high outdoor temperature such as summer.
- the input / output shaft and the expander are connected via the motor generator mechanism, even if the rotational speed due to the driving force of the internal combustion engine is larger than the rotational speed of the expander, the expander is not affected,
- the working fluid can be maintained at a high pressure upstream of the expander, and the driving force of the internal combustion engine can be assisted by the rotational energy of the expander via the motor generator mechanism.
- the pump can be driven by the rotational energy of the expander, and the pump can be driven at the start of the Rankine cycle by the motor function of the motor generator mechanism.
- the working fluid can be satisfactorily supplied to the expander (claim 14).
- the expander when the pump is driven by the motor function of the motor generator mechanism, the expander can be prevented from becoming an unnecessary load on the motor generator mechanism (claim 15).
- FIG. 1 is a schematic diagram showing a waste heat utilization system for an internal combustion engine according to a first embodiment of the present invention. It is a flowchart which shows the system control routine of the waste heat utilization system which concerns on 1st Example of this invention. It is a schematic diagram which shows the waste heat utilization system of the internal combustion engine which concerns on 2nd Example of this invention. It is a longitudinal cross-sectional view of the fluid machine which integrated the pump and the expander. It is a flowchart which shows the system control routine of the waste-heat utilization system which concerns on 2nd Example of this invention. It is a schematic diagram which shows the waste heat utilization system of the internal combustion engine which concerns on 3rd Example of this invention. It is a longitudinal cross-sectional view of a compressor. It is a schematic diagram which shows the waste heat utilization system of the internal combustion engine which concerns on 4th Example of this invention.
- FIG. 1 is a diagram schematically showing a waste heat utilization system for an internal combustion engine according to a first embodiment of the present invention.
- the waste heat utilization system 1 is mounted on a vehicle, for example, and includes an engine (internal combustion engine) 2, a power recovery circuit 10, a coolant circuit 30, and a Rankine circuit (Rankine cycle) 40.
- the power recovery circuit (power recovery means) 10 recovers the electric power generated by the generator function of the motor generator 12 to the battery (storage battery) 11, and the expander side rotor of the expander side rotor and the output side rotor of the motor generator 12. It is an electric circuit which detects generated electric power and the amount of electric storage (SOC) of a battery (Rankine output detection means, battery electric storage amount (SOC) detection means).
- the power recovery circuit 10 can also switch the rotor of the motor generator 12 between a motor and a generator, and can change each motor output and each generator load (motor generator output variable means).
- the power recovered by the power recovery circuit 10 is used as drive power for various electric devices of the vehicle, for example.
- the power recovery circuit 10 is connected to an electronic control unit (system control means) (ECU) 150.
- the ECU 150 calculates a battery required power amount based on, for example, a change in the amount of stored electricity (SOC) (battery required power calculation). Means), appropriately controlling the degree of power recovery to the battery 11 while switching the rotors of the motor generator 12 between the motor and the generator through the power recovery circuit 10 (motor generator control means).
- the ECU 150 also appropriately controls an electric pump 49 and an electric fan 43a, which are electric auxiliary machines of the Rankine circuit 40 described later (Rankine cycle electric auxiliary machine input control means). As a result, the power recovery circuit 10 can efficiently recover and use the generated power generated by the motor generator 12.
- the motor generator (motor generator mechanism) 12 has an inner rotor (one rotor) 16 inside the stator 14 and an outer rotor (the other rotor) 18 on the outer side. 15 and the rotating shaft 17 extend in opposite directions, the rotating shaft 15 is connected to the inner rotor 16, and the rotating shaft 17 is connected to the outer rotor 18.
- the motor generator 12 configured as described above has not only the above-mentioned generator function but also a motor function according to the composite current flowing through the stator 14, the rotation of the inner rotor 16 by the rotating shaft 15, and the rotation of the outer rotor 18 by the rotating shaft 17. It is possible to freely exert on the inner rotor 16 and the outer rotor 18.
- the details of the structure of the motor generator 12 are known in Japanese Patent Application Laid-Open No. 11-275826 and the like, and thus the description thereof is omitted here.
- a cooling water circuit 30 includes a cooling water heat exchanger (evaporator) 34 and a radiator (not shown) in order in the cooling water circulation path 32 communicated with the cooling water passage of the engine 2 as viewed in the flow direction of the cooling water.
- a thermostat, a water pump and the like are interposed to form a closed circuit, and the engine 2 is cooled.
- the Rankine circuit 40 is connected to the cooling fluid heat exchanger 34, the exhaust gas heat exchanger 41, the cooling water heat exchanger 34, and the exhaust gas heat exchanger 41 in order in the working fluid circulation path 42 as viewed in the flow direction of the working fluid.
- An expander 48 that generates a rotational driving force by expansion of the working fluid that is heated and overheated, a Rankine condenser (condenser) 43, an electric pump (electric Rankine cycle electric auxiliary machine) 49, and the like are interposed to provide a closed circuit. And heat exchange with the cooling water circulating in the cooling water circuit 30 by the cooling water heat exchanger 34 and heat exchange with the exhaust gas flowing through the exhaust pipe 3 of the engine 2 by the exhaust gas heat exchanger 41. By doing so, the waste heat of the engine 2 is recovered.
- the electric pump 49 is connected to the ECU 150.
- the expander 48 is a scroll type expander, and is configured by accommodating a scroll unit in a housing.
- the rotating shaft 15 of the motor generator 12 is connected to the rotating shaft 45 of the expander 48 so as to be coaxially rotatable, as shown in FIG.
- an endless belt 9 is wound around the pulley 26 of the rotating shaft 25 and the pulley 8 of the crankshaft 7 of the engine 2
- the rotating shaft 17 of the motor generator 12 is a rotating shaft (input / output shaft) 25 and It is connected to the crankshaft 7 of the engine 2 via a pulley 26 so as to be able to rotate synchronously.
- the motor generator device is constituted by the motor generator 12, the expander 48 and the rotating shaft 25.
- a connection / disconnection clutch 6 is interposed between the crankshaft 7 and the pulley 8 of the engine 2, and the connection / disconnection clutch 6 is connected to the ECU 150.
- the Rankine condenser 43 is provided with an electric fan (Rankine cycle electric auxiliary machine) 43a for air-cooling the Rankine condenser 43, and the electric fan 43a is also connected to the ECU 150.
- the motor generator 12 responds to the composite current flowing through the stator 14, the rotation of the inner rotor 16 by the rotating shaft 15, and the rotation of the outer rotor 18 by the rotating shaft 17.
- the generator function and the motor function can be exhibited freely.
- whether the outer rotor 18 performs the generator function or the motor function depends on the amount of power generated by the rotation of the motor generator 12, that is, the inner rotor 16, mainly by the rotational driving force generated by the expander 48 (rankin output). And the required battery power calculated by the ECU 15.
- step S ⁇ b> 10 it is determined whether or not the Rankine output is larger than the inputs of the electric fan 43 a and the electric pump 49 that are electric auxiliary machines of the Rankine circuit 40.
- the generated power corresponding to the Rankine output detected from the motor generator 12 via the power recovery circuit 10, for example, the generated power amount of the inner rotor 16 by the expander 48 is based on information such as the vehicle speed and the outside temperature. It is determined whether or not the input power of the electric fan 43a to be determined and the input power of the electric pump 49 are larger. If the determination result is true (Yes), the process proceeds to step S12, the electric fan 43a and the electric pump 49 are driven, and the process proceeds to step S18. On the other hand, if the determination result is false (No), the process proceeds to step S14, the electric fan 43a and the electric pump 49 are stopped, and the process proceeds to step S18.
- step S18 the characteristics of the composite current passed through the stator 14 are changed to operate the inner rotor 16 as the expander side rotor as a generator, and an expander side rotor generator command is issued to the power recovery circuit 10. That is, the power recovery circuit 10 switches the electric circuit to the generator circuit when the inner rotor 16 is a motor circuit. At this time, the load of the motor generator 12 is controlled so that the rotational driving force of the expander 48 is optimized. Specifically, the amount of flowing current is adjusted.
- Step S20 it is determined whether or not the battery required power calculated by the ECU 15 is larger than the power corresponding to the Rankine output, for example, the amount of power generated by the inner rotor 16 by the expander 48. If the determination result is true (Yes), the process proceeds to step S22, and an output-side rotor generator command is issued to operate the outer rotor 18 that is the output-side rotor as a generator.
- the engine 2 has not yet been warmed up, and the rotational drive force cannot be generated by the expander 48. Electric power cannot be generated without the inner rotor 16 rotating.
- the battery required power calculated by the ECU 15 is larger than the amount of power generated by the expander 48 in the inner rotor 16 Therefore, the required battery power cannot be satisfied only by the amount of power generated by the inner rotor 16.
- step S24 the generator output target value is set as the absolute value of the difference between the battery required power and the power corresponding to the Rankine output so that the output from the outer rotor 18 as the generator becomes the generator output target value.
- the characteristics of the composite current passed through the stator 14 are changed to operate the outer rotor 18 as a generator. Thereby, the outer rotor 18 can be appropriately operated as a generator.
- step S20 determines whether the determination result in step S20 is false (No) or not (No).
- the process proceeds to step S26, and an output-side rotor motor command is issued to operate the outer rotor 18 as the output-side rotor as a motor.
- the battery required power calculated by the ECU 15 is smaller than the amount of power generated by the inner rotor 16 by the expander 48, the battery required power can be satisfied only by the amount of power generated by the inner rotor 16. At this time, surplus power is generated in the amount of power generated by the inner rotor 16 with respect to the battery required power, and the outer rotor 18 can be rotated using this surplus power.
- the rotational energy of the expander 48 drives the rotation of the engine 2.
- the motor output target value is set as the absolute value of the difference between the battery required power and the power corresponding to the Rankine output, so that the motor output by the outer rotor 18 becomes the motor output target value.
- the characteristic of the composite current flowing through the stator 14 is changed to operate the outer rotor 18 as a motor. Thereby, the outer rotor 18 can be appropriately operated as a motor.
- the motor generator 12 including the expander 48 of the Rankine circuit 40, the inner rotor 16, and the outer rotor 18 is connected to the pulley 8 of the engine 2. And the expander 48 so as to be positioned in series, the endless belt 9 is wound around the pulley 8 and the pulley 26 of the engine 2, and the motor generator 12 is operated according to the Rankine output of the Rankine circuit 40. Is made to function as a generator or a motor.
- the motor generator 12, the expander 48 and the rotary shaft 25 are configured compactly without providing a separate alternator, and the shortage of the rotational drive force of the expander 48 is reduced by the rotational drive force of the engine 2.
- the motor generator 12 is used as an alternator while supplementing, or the rotational driving force of the engine 2 is assisted with the rotational energy of the expander 48 easily and efficiently according to the amount of power generated by the rotation of the inner rotor 16 without waste. be able to.
- the motor generator 12 can sufficiently generate electric power required by the vehicle, and even when the rotational speed of the driving force of the engine 2 is higher than the rotational speed of the expander 48, The working fluid can be maintained at a high pressure upstream of the expander 48 without affecting the expander 48, and the driving force of the engine 2 can be assisted by the rotational energy of the expander 48 via the motor generator 12.
- FIG. 3 is a diagram schematically showing a waste heat utilization system for an internal combustion engine according to a second embodiment of the present invention.
- the second embodiment is different from the first embodiment in that the pump that circulates the working fluid in the Rankine circuit 40 and the expander are coaxially rotatable, and hereinafter, the different portions from the first embodiment will be described.
- the pump 46 of the Rankine circuit 40 is interposed between the cooling water heat exchanger 34 and the Rankine condenser 43.
- the pump 46 and the expander 48 can be coaxially rotated to be a fluid machine 44. As a single unit.
- the pump 46 is, for example, a variable displacement pump that is rotationally driven by a rotary shaft 45 so as to circulate the working fluid through the circulation path 42, and is disposed rotatably by the rotary shaft 45.
- the expander 48 is a scroll type expander similar to that of the first embodiment, and is configured by housing a scroll unit in a housing 47.
- the scroll unit includes a fixed scroll 90 and a movable scroll 92 that revolves around the fixed scroll 90.
- a boss portion 94 is formed on the back surface of the movable scroll 92 opposite to the fixed scroll 90, and an eccentric bush 96 is inserted into the boss portion 94 via a radial bearing 95.
- a crankpin 98 is inserted into the eccentric bush 96, and the crankpin 98 is connected to the end of the rotary shaft 45 on the scroll unit side at a position eccentric from the axis, so that the movable scroll 92 does not rotate. Revolves and turns.
- the end of the rotary shaft 45 on the scroll unit side and the crank pin 98 are connected via a one-way clutch 100 in which the rotation of the movable scroll 92 of the expander 48 is transmitted to the rotary shaft 45 but not the reverse. ing. Therefore, when the rotation speed of the rotary shaft 45 is faster than the turning speed of the movable scroll 92, the rotation of the rotary shaft 45 is not transmitted to the movable scroll 92, that is, the expander 48, and the turning speed of the movable scroll 92 is the rotation axis. Only when the rotation speed is higher than 45, the rotation is transmitted from the movable scroll 92, that is, the expander 48 side to the rotary shaft 45.
- the working fluid circulates in the circulation path 42 such that the working fluid returns from the pump 46 to the pump 46 through the cooling water heat exchanger 34, the exhaust gas heat exchanger 41, the expander 48, and the Rankine condenser 43, A rotational driving force is generated in the expander 48 by the expansion of the working fluid.
- the pump 46 and the expander 48 for circulating the working fluid in the Rankine circuit 40 are integrally provided as the fluid machine 44.
- the motor generator device is constituted by the motor generator 12, the pump 46, the expander 48, and the rotating shaft 25.
- FIG. 5 a system control routine of the waste heat utilization system according to the second embodiment of the present invention executed by the ECU 150 is shown in a flowchart.
- the waste heat utilization system according to the second embodiment based on the flowchart.
- the system control of the motor generator 12 and, in turn, the generator function of the motor generator 12 and the switching control of the motor function will be described in detail.
- step S10 ' it is determined whether or not the Rankine output is larger than the input of the electric fan 43a.
- the power corresponding to the Rankine output detected from the motor generator 12 via the power recovery circuit 10 for example, the amount of power generated by the inner rotor 16 by the expander 48 when the pump 46 is driven, It is determined whether or not the input power of the electric fan 43a determined based on information such as the outside air temperature is larger. If the determination result is true (Yes), the process proceeds to step S12 ', the electric fan 43a is driven, and the process proceeds to step S16. On the other hand, if the determination result is false (No), the process proceeds to step S14 ', the electric fan 43a is stopped, and the process proceeds to step S18.
- the Rankine circuit 40 it is determined whether or not the Rankine circuit 40 can operate independently, that is, whether or not the pump-side rotor can operate without external input. That is, it is determined whether or not a rotational driving force is generated in the expander 48 and the inner rotor 16 that is the pump-side rotor rotates to generate power.
- the inner rotor 16 when the inner rotor 16 functions as a generator, it is based on whether or not the output current generated by the power generation of the inner rotor 16 is greater than a certain value, or when the inner rotor 16 functions as a motor.
- the Rankine circuit 40 can operate independently based on whether or not the motor current for assisting the expander 48 to operate the inner rotor 16 is equal to or less than a predetermined value (synonymous with the output current generated by the power generation of the inner rotor 16 being equal to or greater than a certain value). It is determined whether or not.
- step S18 in which the characteristics of the composite current that flows through the stator 14 are changed so that the inner rotor 16 that is the pump-side rotor operates as a generator.
- the pump side rotor generator command is given to That is, the power recovery circuit 10 switches the electric circuit to the generator circuit when the inner rotor 16 is a motor circuit.
- the load of the motor generator 12 is controlled so that the rotational driving force of the expander 48 is optimized. Specifically, the amount of flowing current is adjusted.
- step S16 determines whether the determination result in step S16 is false (No) or whether the determination result in step S16 is false (No).
- the process proceeds to step S19, and the characteristics of the composite current that flows through the stator 14 are changed so that the inner rotor 16 that is the pump-side rotor operates as a motor.
- a rotor motor command is issued. That is, in the second embodiment, the pump 46 is configured integrally with the expander 48. Therefore, when the Rankine circuit 40 is not operating independently, the inner rotor 16 of the motor generator 12 is caused to function as a motor. 46 is operated by the motor generator 12.
- step S20 it is determined whether the required battery power calculated by the ECU 15 is greater than the power corresponding to the Rankine output, for example, the amount of power generated by the inner rotor 16 by the expander 48. .
- step S20 determines whether the determination result in step S20 is true (Yes) or not (Yes). If the determination result in step S20 is true (Yes), the process proceeds to step S22, in which the characteristics of the composite current that flows to the stator 14 are changed so that the outer rotor 18 that is the output side rotor operates as a generator, and the output side rotor generator On the other hand, if the determination result is false (No), the process proceeds to step S26, in which the characteristics of the composite current passed through the stator 14 are changed so that the outer rotor 18 as the output side rotor operates as a motor. A rotor motor command is issued.
- the space saving is achieved as in the first embodiment.
- both the power generation by the motor generator 12 and the assist of the driving force of the engine 2 by the rotational energy of the expander 48 can be efficiently achieved.
- the motor generator 12 can cause the inner rotor 16 to exert its motor function via the stator 14 by a part of the electric power generated by the outer rotor 18, the motor generator 12 is generated in the inner rotor 16 particularly in the second embodiment.
- the pump 46 of the fluid machine 44 can be forcibly operated by the rotational driving force.
- the working fluid is circulated in the circulation path 42, and the working fluid is satisfactorily supplied to the expander 48 to start the Rankine circuit 40.
- the pump 46 can be driven by operating the inner rotor 16 as a motor, and the Rankine circuit 40 can be started by supplying the working fluid to the expander 48 satisfactorily.
- FIG. 6 is a diagram schematically showing a waste heat utilization system for an internal combustion engine according to a third embodiment of the present invention.
- the third embodiment is different from the second embodiment in that an air conditioner circuit (refrigeration cycle) 20 is further provided, and a compressor (compressor) 24 of the air conditioner circuit 20 is connected to the motor generator 12.
- a compressor compressor
- a different part from an Example is demonstrated.
- the rotating shaft 15 of the motor generator 12 is fluid.
- the rotary shaft 17 of the motor generator 12 is connected to the rotary shaft 45 of the compressor 44 so as to be coaxially rotatable.
- An endless belt 9 is wound around the pulley 26 of the rotating shaft 25 and the pulley 8 of the crankshaft 7 of the engine 2.
- the air conditioner circuit 20 includes a compressor (compressor) 24, an air conditioner condenser (not shown), a gas-liquid separator, an expansion valve, an evaporator, and the like, which are arranged in the refrigerant circulation path 22 as viewed in the refrigerant flow direction.
- a closed circuit is configured, and air in the passenger compartment of the vehicle is air-conditioned, for example, by passing air in the passenger compartment through the evaporator and exchanging heat with the refrigerant.
- the compressor 24 is driven by the rotational driving force of the engine 2 transmitted to the rotary shaft 25 mainly through the endless belt 9 and the pulley 26, and compresses the refrigerant evaporated by the evaporator to superheated steam. To the state.
- the refrigerant discharged from the compressor 24 is condensed and liquefied by the air-conditioner condenser, and the liquefied liquid refrigerant is expanded by the expansion valve via the gas-liquid separator and then sent to the evaporator.
- a longitudinal sectional view of the compressor 24 is shown, and the configuration of the compressor 24 will be described in more detail below.
- a rotary shaft 25 passes through the compressor 24, and a pulley 26 is attached to one end of the rotary shaft 25.
- the compressor 24 is a variable displacement swash plate compressor, and is configured such that a cylinder block 52, a valve plate 54, and a cylinder head 56 are airtightly arranged in this order at one end of a housing 50.
- a crank chamber 58 is formed between the housing 50 and the cylinder block 52.
- a suction port and a discharge port are formed in the cylinder head 56, and a suction chamber 60 and a discharge chamber 62 communicating with the suction port or the discharge port are formed inside the cylinder head 56.
- the suction chamber 60 communicates with each cylinder bore 64 of the cylinder block 52 via a suction reed valve (not shown), and the discharge chamber 62 communicates with each cylinder bore 64 via a discharge reed valve 63.
- the discharge chamber 62 communicates with the crank chamber 58 through a communication passage, and an electromagnetic valve is disposed in the communication passage. This solenoid valve is electrically connected to the ECU 150, and is opened and closed under the control of the ECU 150, so that the discharge chamber 62 and the crank chamber 58 can be communicated intermittently.
- a piston 66 is inserted into each cylinder bore 64 of the cylinder block 52 from the crank chamber 58 side so as to reciprocate, and a tail portion of the piston 66 projects into the crank chamber 58.
- the rotating shaft 25 passes through the crank chamber 58, the cylinder block 52, the valve plate 54, and the cylinder head 56, and is rotatably supported by the housing 50 and the cylinder block 52 via two radial bearings 27 and 28.
- a lip seal 29 is attached to the rotary shaft 25 so as to be positioned on the pulley 26 side of the radial bearing 27.
- a conversion mechanism for converting the rotational motion of the rotary shaft 25 into the reciprocating motion of the piston 66 is provided.
- a disk-shaped rotor 70 is first fixed to the rotary shaft 25, and a thrust bearing 72 is disposed between the rotor 70 and the housing 50.
- a cylindrical swash plate boss 74 is fitted on a portion of the rotary shaft 25 between the rotor 70 and the cylinder block 52, and the swash plate boss 74 is connected to the rotor 70 via a hinge 76.
- the inner peripheral surface of the swash plate boss 74 has a spherical concave surface, and the swash plate boss 74 is in sliding contact with the spherical outer peripheral surface of a sleeve 78 that is slidably fitted to the rotary shaft 25. . That is, the swash plate boss 74 can be tilted with respect to the rotation shaft 25 and can rotate integrally with the rotation shaft 25.
- a compression coil spring 79 is disposed between the sleeve 78 and the rotor 70 so as to be fitted on the rotary shaft 25.
- An annular swash plate 80 is fitted and fixed to the swash plate boss 74 so as to be integrally rotatable, and the outer peripheral portion of the swash plate 80 is positioned in a recess formed in the tail portion of the piston 66.
- a pair of spherical seats spaced apart in the axial direction of the piston 66 are formed in the recesses of the tail portions, and a pair of hemispherical shoes 82 arranged on the spherical seat sandwich the swash plate 80 from both sides in the thickness direction.
- the swash plate 80 is in sliding contact with the outer peripheral portion.
- each piston 66 causes the refrigerant in the suction chamber 60 to be sucked into the cylinder bore 64 via the suction reed valve and compressed in the cylinder bore 64, and the compressed refrigerant passes through the discharge reed valve 63 and the discharge chamber 62. Then, it is discharged to the circulation path 22.
- the discharge amount of the refrigerant discharged from the compressor 24 changes as the pressure (back pressure) in the crank chamber 58 rises and falls by opening and closing of the electromagnetic valve by the ECU 150.
- the swash plate 80 tilts according to the change in the balance of the compression reaction force acting on the piston 66, the back pressure, and the biasing force of the compression coil spring 79 acting on the swash plate 80, and the stroke length of each piston 66 increases or decreases.
- the discharge capacity (compression capacity) of the refrigerant increases and decreases (compression capacity control means).
- the opening degree of the electromagnetic valve is used.
- the operation of the compressor 24 can be limited by increasing the back pressure to reduce the inclination of the swash plate 80 and reducing the refrigerant discharge capacity.
- the compressor 24 of the air conditioner circuit 20 the motor generator 12 having the inner rotor 16 and the outer rotor 18, and the pump 46 of the Rankine circuit 40.
- the rotating shaft 15 of the motor generator 12 is connected to the rotating shaft 45 of the fluid machine 44 so as to be coaxially rotatable, while the rotating shaft 17 of the motor generator 12 is connected to the compressor 24.
- the rotary shaft 25 is connected to the rotary shaft 25 so as to be coaxially rotatable.
- the flowchart of the said FIG. 5 is applied as it is also in 3rd Example. Therefore, according to the waste heat utilization system for an internal combustion engine according to the third embodiment of the present invention, even when the compressor 24 of the air conditioner circuit 20 is provided, the space saving is achieved without providing a separate alternator as described above.
- the compressor 24, the motor generator 12 and the fluid machine 44 are compactly configured, and the motor generator 12 is used as an alternator while compensating for the shortage of the rotational driving force of the expander 48 with the rotational driving force of the engine 2.
- the rotational driving force of the compressor 24 and the engine 2 can be assisted with the rotational energy of the expander 48 easily and efficiently without waste according to the amount of power generated by the rotation of the inner rotor 16. 12 efficiently and assisting the driving force of the engine 2 by the rotational energy of the expander 48. Can.
- the compressor 24 is a variable capacity swash plate compressor, when the operation requirement of the air conditioner circuit 20 is small or absent, the compressor 24 can be prevented from being unnecessarily loaded, and the expander The rotational driving force of the engine 2 can be favorably assisted with the rotational energy of 48.
- the compressor 24 is a variable capacity swash plate compressor, and the discharge capacity of the compressor 24 is variably controlled in accordance with the operating condition of the air conditioner circuit 20, so that the operation request of the air conditioner circuit 20 is small or absent.
- the discharge capacity of the compressor 24 can be reduced or reduced to zero so that the operation of the compressor 24 can be restricted so as not to become a load, and the rotational driving force of the engine 2 can be favorably assisted by the rotational energy of the expander 48. Can do.
- the compressor 24 of the air-conditioner circuit 20 is added to the structure of 2nd Example provided with the fluid machine 44 which integrated the pump 46 and the expander 48 here, the expander which does not have the pump 46
- the compressor 24 may be added to the configuration of the first embodiment including only 48. For example, when the engine 2 is idling stopped, the connection / disconnection clutch 6 is disconnected, and the rotational driving force of the motor generator 12 transmitted to the engine 2 via the compressor 24 is interrupted.
- the motor generator 12 By disconnecting the connecting / disengaging clutch 6 at the time of idling stop, the motor generator 12 is driven by the stored power of the battery 11 even when the engine 2 is temporarily stopped at the time of idling stop.
- the compressor 24 can be operated, and the air conditioner circuit 20 can be operated satisfactorily.
- the compressor 24 is connected to the motor generator 12 in series.
- the compressor 24 is connected in parallel to the pulley 26 or in contact with the belt 9 in the configuration shown in FIGS.
- the motor generator 12 can be driven by the stored power of the battery 11 and the compressor 24 can be operated by disconnecting the connecting / disconnecting clutch 6 at the time of idle stop, for example.
- the air conditioner circuit 20 can be operated satisfactorily.
- FIG. 8 is a diagram schematically showing a waste heat utilization system for an internal combustion engine according to a fourth embodiment of the present invention.
- the fourth embodiment differs from the third embodiment in that an auxiliary device 24 ′ driven by the engine 2 is connected to the motor generator 12 instead of the compressor 24 of the air conditioner circuit 20.
- the flowchart of FIG. 5 is applied as it is as in the third embodiment.
- the auxiliary machine 24 'driven by the engine 2 corresponds to, for example, an oil pump used for power steering, but is not limited thereto.
- the motor generator 12 can be saved while saving space as described above. Therefore, it is possible to efficiently achieve both the power generation by the above and the assist of the driving force of the engine 2 by the rotational energy of the expander 48.
- the inner rotor 16 of the motor generator 12 is connected to the expander 48 or the fluid machine 44 via the rotating shaft 15, and the outer rotor 18 is connected to the pulley 26, the compressor 24 or the auxiliary device via the rotating shaft 17.
- the inner rotor 16 is connected to the pulley 26, the compressor 24, or the accessory 24 ', and the outer rotor 18 is connected to the expander 48 or the fluid machine 44. May be.
- the compressor 24 is a variable displacement swash plate compressor.
- the compressor 24 is not limited to a swash plate compressor as long as it is a variable displacement compressor.
- the endless belt 9 is wound around the pulley 8 of the engine 2 and the pulley 26 of the rotary shaft 25 so as to be connected to each other.
- a fan, a supercharger, a water pump, or the like there is no restriction on the pulleys of these other auxiliary machines being wound around the belt 9.
- the pulley 8 of the engine 2 the pulley 26 of the rotating shaft 25, and other auxiliary machines may be connected by a gear or the like.
- the Rankine circuit 40 exchanges heat with the cooling water circulating through the cooling water circuit 30 via the cooling water heat exchanger 34 and exhaust pipe of the engine 2 via the exhaust gas heat exchanger 41.
- the waste heat of the engine 2 is recovered by exchanging heat with the exhaust gas flowing through the engine 3, but the waste heat of the engine 2 may be recovered by either one.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
しかしながら、一の車両にモータジェネレータと従来同様のオルタネータの二つの発電機を設けることは、余分に設置スペースを占有することになり、また重量やコストの増大に繋がり、好ましいことではない。
そこで、例えば、被動力伝達装置を内燃機関とし、膨張機の回転駆動力を無端状のベルト等を介して直接内燃機関に伝達するとともに膨張機や内燃機関の回転駆動力を膨張機と同軸または別体に設けたオルタネータにも伝達する構成の廃熱利用システムが考えられる。
ところが、膨張機の回転駆動力を無端状のベルト等を介して直接内燃機関に伝達するようにすると、内燃機関と膨張機とが同一回転となるため、膨張機の回転駆動に対し内燃機関の回転速度が大きい場合には内燃機関が強制的に膨張機からの作動流体の吐出量を増大させてしまい、膨張機の上流側において作動流体を高圧に維持できず、膨張機の出力が低下するという問題が生じる。即ち、膨張機の回転駆動に対し内燃機関の回転速度が大きい場合には、膨張機の回転駆動力を内燃機関やオルタネータに良好に伝達できず、効率が悪いという問題がある。
さらに、冷媒の循環路に少なくとも内燃機関の回転駆動力により冷媒を圧縮する圧縮機が介装された冷凍サイクルを備え、前記補機は、前記圧縮機であるのがよい(請求項3)。
好ましくは、内燃機関と前記圧縮機との間には、内燃機関の運転状態に応じて該圧縮機を介し内燃機関に伝達される前記モータジェネレータの回転駆動力の断接を行う断接クラッチを有するのがよい(請求項5)。
好ましくは、前記電力回収手段は、前記ランキンサイクルの発生するランキン出力を検出するランキン出力検知手段と、前記バッテリの蓄電量を検出するバッテリ蓄電量検出手段と、前記モータジェネレータの前記一方のロータ及び前記他方のロータをそれぞれモータとジェネレータとに切り換えるモータジェネレータ出力可変手段とを備え、前記システム制御手段は、前記電力回収手段が要求するバッテリ要求電力を算出するバッテリ要求電力算出手段と、該バッテリ要求電力算出手段により算出されたバッテリ要求電力に応じて前記モータジェネレータ出力可変手段を制御するモータジェネレータ制御手段とを含み、前記バッテリ要求電力算出手段により算出されたバッテリ要求電力が前記ランキン出力検知手段により検出されたランキン出力に相当する電力より大きいとき、前記モータジェネレータ制御手段により、前記他方のロータをジェネレータに切り換えるべく、一方バッテリ要求電力がランキン出力に相当する電力未満のとき、前記他方のロータをモータに切り換えるべく、前記モータジェネレータ出力可変手段を制御するのがよい(請求項8)。
この場合において、前記ポンプと前記膨張機との間には、前記ポンプからの回転駆動力は前記膨張機に伝達せず、前記膨張機からの回転駆動力を前記ポンプに伝達するワンウェイクラッチが介装されているのがよい(請求項15)。
また、本発明の内燃機関の廃熱利用システムによれば、ランキンサイクルと冷凍サイクルとを有したシステムにおいて、モータジェネレータに冷凍サイクルの圧縮機が連結された場合であっても、省スペース化を図りながら、モータジェネレータで十分に発電でき、膨張機の回転エネルギによりモータジェネレータを介して内燃機関の駆動力をアシストできる(請求項3)。
また、本発明の内燃機関の廃熱利用システムによれば、膨張機の回転エネルギでポンプを駆動させることができるとともに、モータジェネレータのモータ機能により、ランキンサイクルの起動時に、ポンプを駆動させることが可能となり、作動流体を膨張機に良好に供給することができる(請求項6)。
本発明のモータジェネレータ装置によれば、ランキンサイクルを備えた内燃機関の廃熱利用システムに用いられるモータジェネレータ装置であって、ステータの内側に内ロータを有するとともに外側に外ロータを有するモータジェネレータ機構部と、膨張機と、内燃機関の回転軸と連結する入出力軸とを備え、モータジェネレータ機構部の内ロータ及び外ロータのいずれか一方のロータが膨張機の回転軸に連結し、いずれか他方のロータが入出力軸に連結している(請求項13)。
また、本発明のモータジェネレータ装置によれば、モータジェネレータ機構部のモータ機能によってポンプが駆動するとき、膨張機が不必要にモータジェネレータ機構部の負荷とならないようにできる(請求項15)。
先ず、第1実施例を説明する。
図1は、本発明の第1実施例に係る内燃機関の廃熱利用システムを模式的に示した図である。
廃熱利用システム1は、例えば車両に搭載され、エンジン(内燃機関)2、電力回収回路10、冷却水回路30、ランキン回路(ランキンサイクル)40から構成されている。
このように構成されたモータジェネレータ12は、ステータ14に流す複合電流と回転軸15による内ロータ16の回転と回転軸17による外ロータ18の回転に応じて上記ジェネレータ機能のみならずモータ機能をそれぞれ内ロータ16及び外ロータ18に自在に発揮することが可能である。なお、モータジェネレータ12の構造の詳細については特開平11-275826号公報等で公知であるため、ここでは説明を省略する。
ランキン回路40は、作動流体の循環路42に、作動流体の流れ方向で視て順に、上記冷却水熱交換器34、排ガス熱交換器41、冷却水熱交換器34や排ガス熱交換器41にて加熱され過熱状態となる作動流体の膨張によって回転駆動力を発生する膨張機48、ランキンコンデンサ(凝縮器)43、電動ポンプ(ランキンサイクルの電動補機)49などが介装されて閉回路を構成し、冷却水熱交換器34で冷却水回路30を循環する冷却水との間で熱交換を行うとともに排ガス熱交換器41でエンジン2の排気管3を流れる排ガスとの間で熱交換を行うことでエンジン2の廃熱を回収している。なお、電動ポンプ49はECU150に接続されている。
そして、これらモータジェネレータ12及びランキン回路40の膨張機48は、図1に示すように、モータジェネレータ12の回転軸15が膨張機48の回転軸45に同軸回転可能に連結されている。一方、回転軸25のプーリ26とエンジン2のクランクシャフト7のプーリ8とには無端状のベルト9が掛け回されており、モータジェネレータ12の回転軸17は回転軸(入出力軸)25及びプーリ26を介してエンジン2のクランクシャフト7に同期回転可能に連結されている。
また、図1に示すように、エンジン2のクランクシャフト7とプーリ8との間には断接クラッチ6が介装されており、断接クラッチ6はECU150に接続されている。
また、ランキンコンデンサ43には、ランキンコンデンサ43を空冷する電動ファン(ランキンサイクルの電動補機)43aが設けられており、電動ファン43aもECU150に接続されている。
上述したように、本発明に係る内燃機関の廃熱利用システムでは、モータジェネレータ12はステータ14に流す複合電流と回転軸15による内ロータ16の回転と回転軸17による外ロータ18の回転に応じてジェネレータ機能とモータ機能を自在に発揮することが可能である。ここで、外ロータ18がジェネレータ機能及びモータ機能のいずれを発揮するかは、主として膨張機48にて発生する回転駆動力によるモータジェネレータ12、即ち内ロータ16の回転による発電電力量(ランキン出力)とECU15にて算出されるバッテリ要求電力とに依存している。
ステップS10では、ランキン出力がランキン回路40の電動補機である電動ファン43a及び電動ポンプ49の入力よりも大きいか否かを判別する。実際には、モータジェネレータ12から電力回収回路10を介して検出されるランキン出力に相当する発電電力、例えば膨張機48による内ロータ16の発電電力量が、車速や外気温等の情報に基づいて決定される電動ファン43aの入力電力及び電動ポンプ49の入力電力よりも大きいか否かを判別する。判別結果が真(Yes)の場合には、ステップS12に進み、電動ファン43a及び電動ポンプ49を駆動してステップS18に進む。一方、判別結果が偽(No)の場合には、ステップS14に進み、電動ファン43a及び電動ポンプ49を停止してステップS18に進む。
ECU15にて算出されるバッテリ要求電力が膨張機48による内ロータ16の発電電力量よりも小さい場合には、内ロータ16の発電電力量だけでバッテリ要求電力を満たすことが可能である。そして、この際、バッテリ要求電力に対し内ロータ16の発電電力量に余剰電力が発生することになるが、この余剰電力を用いて外ロータ18を回転させることができる。
具体的には、ステップS28において、バッテリ要求電力とランキン出力に相当する電力との差の絶対値としてモータ出力目標値を設定し、外ロータ18によるモータとしての出力がモータ出力目標値となるようステータ14に流す複合電流の特性を変更して外ロータ18をモータとして作動させる。これにより、外ロータ18を適正にモータとして作動させることができる。
次に、第2実施例を説明する。
図3は、本発明の第2実施例に係る内燃機関の廃熱利用システムを模式的に示した図である。
図3に示すように、ランキン回路40のポンプ46は、冷却水熱交換器34とランキンコンデンサ43との間に介装されており、ポンプ46と膨張機48とは同軸回転可能に流体機械44として一体に構成されている。
ポンプ46は、作動流体を循環路42に循環させるべく回転軸45により回転駆動される例えば可変容量式ポンプであり、回転軸45により回転可能に配設されている。
膨張機48は、上記第1実施例と同様のスクロール型膨張機であり、ハウジング47内にスクロールユニットを収容して構成されている。
可動スクロール92の固定スクロール90と反対側の背面にはボス部94が形成され、ボス部94内にはラジアルベアリング95を介して偏心ブッシュ96が挿入されている。
偏心ブッシュ96には、クランクピン98が挿入され、クランクピン98は回転軸45のスクロールユニット側の端部に軸心から偏心した位置で連結されており、これにより可動スクロール92は自転することなく公転旋回運動する。
このように、第2実施例に係る内燃機関の廃熱利用システムでは、ランキン回路40に作動流体を循環させるポンプ46と膨張機48とを流体機械44として一体に設けている。
図5を参照すると、ECU150の実行する本発明の第2実施例に係る廃熱利用システムのシステム制御ルーチンがフローチャートで示されており、以下同フローチャートに基づき第2実施例に係る廃熱利用システムのシステム制御、ひいてはモータジェネレータ12のジェネレータ機能及びモータ機能の切換制御について詳しく説明する。
次のステップS16では、ランキン回路40が自立作動できるか否か、つまりポンプ側ロータが外部入力なしで作動できるか否かを判別する。即ち、膨張機48にて回転駆動力が発生しており、ポンプ側ロータである内ロータ16が回転して発電を行っているか否かを判別する。具体的には、内ロータ16がジェネレータとして機能しているときには内ロータ16の発電による出力電流が一定以上あるか否かに基づいて、または内ロータ16がモータとして機能しているときには内ロータ16を膨張機48がアシストして内ロータ16を作動させるモータ電流が所定値以下(内ロータ16の発電による出力電流が一定以上と同義)になったか否かに基づいてランキン回路40が自立作動できるか否かを判別する。
ステップS20では、上記第1実施例と同様、ECU15にて算出されるバッテリ要求電力が上記ランキン出力に相当する電力、例えば膨張機48による内ロータ16の発電電力量より大きいか否かを判別する。ステップS20の判別結果が真(Yes)の場合には、ステップS22に進み、出力側ロータである外ロータ18をジェネレータとして作動させるべくステータ14に流す複合電流の特性を変更して出力側ロータジェネレータ指令を行う一方、判別結果が偽(No)の場合には、ステップS26に進み、出力側ロータである外ロータ18をモータとして作動させるべくステータ14に流す複合電流の特性を変更して出力側ロータモータ指令を行う。
また、モータジェネレータ12は外ロータ18による発電電力の一部によってステータ14を介し内ロータ16にモータ機能を発揮させることが可能であることから、特に第2実施例では、内ロータ16に生じた回転駆動力で流体機械44のポンプ46を強制作動させることが可能である。これにより作動流体を循環路42内で循環させ、作動流体を膨張機48に良好に供給してランキン回路40を起動することができる。例えば、ランキン回路40の起動時に、内ロータ16をモータとして作動させてポンプ46を駆動させることが可能となり、作動流体を膨張機48に良好に供給してランキン回路40を起動することができる。
次に、第3実施例を説明する。
図6は、本発明の第3実施例に係る内燃機関の廃熱利用システムを模式的に示した図である。
同図に示すように、これらエアコン回路20の圧縮機24、モータジェネレータ12、及びランキン回路40のポンプ46と膨張機48とを一体化した流体機械44は、モータジェネレータ12の回転軸15が流体機械44の回転軸45に同軸回転可能に連結される一方、モータジェネレータ12の回転軸17が圧縮機24の回転軸25に同軸回転可能に連結されて構成されている。そして、回転軸25のプーリ26とエンジン2のクランクシャフト7のプーリ8とに無端状のベルト9が掛け回されている。
ここに、圧縮機24は、主として無端状のベルト9及びプーリ26を介して回転軸25に伝達されたエンジン2の回転駆動力により駆動され、上記エバポレータにて蒸発した冷媒を圧縮して過熱蒸気の状態にする。そして、圧縮機24から吐出される冷媒は、上記エアコンコンデンサにて凝縮液化され、当該液化した液冷媒は上記気液分離器を経て上記膨張弁にて膨張された後に上記エバポレータに向けて送出される。
同図に示すように、圧縮機24には回転軸25が貫通しており、回転軸25の一端にプーリ26が取り付けられている。
圧縮機24は、可変容量型斜板圧縮機であり、ハウジング50の一端にシリンダブロック52、バルブプレート54及びシリンダヘッド56がこの順序で気密に配設されて構成されている。そして、ハウジング50とシリンダブロック52との間にはクランク室58が形成されている。
吸入室60は、吸入リード弁(図示せず)を介してシリンダブロック52の各シリンダボア64に連通しており、吐出室62は、吐出リード弁63を介して各シリンダボア64に連通している。なお、吐出室62は、図示しないものの、連通路を通じてクランク室58と連通し、この連通路には電磁弁が配置されている。この電磁弁は、ECU150に電気的に接続され、ECU150の制御により開閉作動し、吐出室62とクランク室58とを断続的に連通可能である。
一方、回転軸25は、クランク室58、シリンダブロック52、バルブプレート54及びシリンダヘッド56を貫通し、2つのラジアルベアリング27、28を介してハウジング50及びシリンダブロック52に回転自在に支持されている。なお、回転軸25には、ラジアルベアリング27よりもプーリ26側に位置してリップシール29が取り付けられている。
変換機構として、先ず回転軸25には円盤状のロータ70が固定され、ロータ70とハウジング50との間にはスラストベアリング72が配置されている。
そして、回転軸25のロータ70とシリンダブロック52との間の部分には、円筒状の斜板ボス74が外嵌され、斜板ボス74はヒンジ76を介してロータ70に連結されている。詳しくは、斜板ボス74の内周面は球状の凹面をなしており、斜板ボス74は、回転軸25に摺動自在に外嵌されたスリーブ78の球状の外周面に摺接している。即ち、斜板ボス74は、回転軸25に対して傾動可能であるとともに、回転軸25と一体に回転可能である。また、スリーブ78とロータ70との間には回転軸25に外嵌されて圧縮コイルばね79が配設されている。
このように、本発明の第3実施例に係る内燃機関の廃熱利用システムでは、エアコン回路20の圧縮機24、内ロータ16と外ロータ18とを有するモータジェネレータ12及びランキン回路40のポンプ46と膨張機48とを一体化した流体機械44を、モータジェネレータ12の回転軸15が流体機械44の回転軸45に同軸回転可能に連結される一方、モータジェネレータ12の回転軸17が圧縮機24の回転軸25に同軸回転可能に連結されるように構成している。
従って、本発明の第3実施例に係る内燃機関の廃熱利用システムによれば、エアコン回路20の圧縮機24を設ける場合であっても、上記同様、別途オルタネータを設けることなく、省スペース化を図りながら、これら圧縮機24、モータジェネレータ12及び流体機械44をコンパクトに構成し、膨張機48の回転駆動力の不足分をエンジン2の回転駆動力で補いつつモータジェネレータ12をオルタネータとして使用したり、或いは内ロータ16の回転による発電電力量に応じて容易にして無駄なく効率よく膨張機48の回転エネルギで圧縮機24やエンジン2の回転駆動力をアシストしたりすることができ、モータジェネレータ12による発電と膨張機48の回転エネルギによるエンジン2の駆動力のアシストとを効率よく両立することができる。
この際、圧縮機24は可変容量型斜板圧縮機であり、圧縮機24の吐出容量をエアコン回路20の作動状況に応じて可変制御するので、エアコン回路20の作動要求が小さい或いは無いような場合には、圧縮機24の吐出容量を低減或いはゼロとして圧縮機24の作動を制限して負荷とならないようにでき、膨張機48の回転エネルギでエンジン2の回転駆動力を良好にアシストすることができる。
また、例えばエンジン2のアイドリングストップ時においては、断接クラッチ6を切断するようにし、圧縮機24を介してエンジン2に伝達されるモータジェネレータ12の回転駆動力を遮断するようにする。
なお、本実施例では、圧縮機24がモータジェネレータ12に直列に連結されているが、例えば、図1、図3の構成であって圧縮機24がプーリ26と並列に連結またはベルト9に接して駆動されていてもよく、これにより、例えばアイドルストップ時において、断接クラッチ6を切断することにより、バッテリ11の蓄電電力によってモータジェネレータ12を駆動させ、圧縮機24を作動させることができ、エアコン回路20を良好に作動させることができる。
図8は、本発明の第4実施例に係る内燃機関の廃熱利用システムを模式的に示した図である。
第4実施例では、エアコン回路20の圧縮機24に代えてエンジン2により駆動される補機24’をモータジェネレータ12に連結した点が第3実施例と異なっている。但し、廃熱利用システムのシステム制御ルーチンについては、第3実施例と同様に上記図5のフローチャートがそのまま適用される。
このように、エアコン回路20の圧縮機24に代えてエンジン2により駆動される補機24’をモータジェネレータ12に連結した場合であっても、上記同様、省スペース化を図りながら、モータジェネレータ12による発電と膨張機48の回転エネルギによるエンジン2の駆動力のアシストとを効率よく両立することができる。
例えば、上記実施形態では、モータジェネレータ12の内ロータ16を回転軸15を介して膨張機48或いは流体機械44に連結し、外ロータ18を回転軸17を介してプーリ26や圧縮機24或いは補機24’に連結するようにしているが、逆に、内ロータ16をプーリ26や圧縮機24或いは補機24’に連結し、外ロータ18を膨張機48或いは流体機械44に連結するようにしてもよい。
また、上記実施形態では、エンジン2のプーリ8と回転軸25のプーリ26とに無端状のベルト9を掛け回して互いに連結するようにしているが、さらにエンジン2の他の補機として例えば冷却ファン、スーパーチャージャ、ウォータポンプ等を配設している場合には、これら他の補機のプーリをベルト9に掛け回すことを制限するものではない。さらには、ベルト9に代えて、エンジン2のプーリ8、回転軸25のプーリ26及び他の補機をギヤ等により連結してもよい。
2 エンジン
8、26 プーリ
9 ベルト
10 電力回収回路
12 モータジェネレータ
14 ステータ
15、17 回転軸
16 内ロータ(一方のロータ)
18 外ロータ(他方のロータ)
20 エアコン回路(冷凍サイクル)
24 圧縮機
24’補機
25 回転軸
30 冷却水回路
40 ランキン回路(ランキンサイクル)
43 ランキンコンデンサ(凝縮器)
43a 電動ファン
44 流体機械
46 ポンプ
45 回転軸
48 膨張機
49 電動ポンプ
150 ECU
Claims (15)
- 内燃機関の廃熱利用システムであって、
作動流体の循環路に、内燃機関の廃熱により作動流体を加熱して蒸発させる蒸発器、該蒸発器を経由した作動流体を膨張させて回転駆動力を発生する膨張機、該膨張機を経由した作動流体を凝縮させる凝縮器、該凝縮器を経由した作動流体を前記蒸発器に送出するポンプが順次介装されたランキンサイクルと、
ステータの内側に内ロータを有するとともに外側に外ロータを有するモータジェネレータとを備え、
少なくとも前記モータジェネレータと前記膨張機とは、前記モータジェネレータの前記内ロータ及び前記外ロータのいずれか一方のロータが前記膨張機の回転軸に連結され、いずれか他方のロータが内燃機関の回転軸に連結されていることを特徴とする。 - 請求項1記載の内燃機関の廃熱利用システムであって、
前記他方のロータは、補機を直列または並列に介装して内燃機関の回転軸に連結されていることを特徴とする。 - 請求項2記載の内燃機関の廃熱利用システムであって、
さらに、冷媒の循環路に少なくとも内燃機関の回転駆動力により冷媒を圧縮する圧縮機が介装された冷凍サイクルを備え、
前記補機は、前記圧縮機であることを特徴とする。 - 請求項3記載の内燃機関の廃熱利用システムであって、
前記圧縮機は、可変容量式圧縮機であり、
該可変容量式圧縮機の圧縮容量を前記冷凍サイクルの作動状況に応じて可変制御する圧縮容量制御手段をさらに備えることを特徴とする。 - 請求項3または4記載の内燃機関の廃熱利用システムであって、
内燃機関と前記圧縮機との間には、内燃機関の運転状態に応じて該圧縮機を介し内燃機関に伝達される前記モータジェネレータの回転駆動力の断接を行う断接クラッチを有することを特徴とする。 - 請求項1乃至5のいずれか記載の内燃機関の廃熱利用システムであって、
前記膨張機及び前記ポンプは同軸にして一体に構成され、
前記モータジェネレータと前記一体をなす膨張機及びポンプとは、前記一方のロータが前記一体をなす膨張機及びポンプの回転軸に連結され、前記他方のロータが内燃機関の回転軸に連結されていることを特徴とする。 - 請求項1乃至5のいずれか記載の内燃機関の廃熱利用システムであって、
さらに、前記膨張機の回転または内燃機関の回転により前記モータジェネレータが発電する発電電力を蓄電するバッテリを含む電力回収手段と、該バッテリの蓄電量に基づき電力回収度合いを制御するシステム制御手段とを備えたことを特徴とする。 - 請求項7記載の内燃機関の廃熱利用システムであって、
前記電力回収手段は、前記ランキンサイクルの発生するランキン出力を検出するランキン出力検知手段と、前記バッテリの蓄電量を検出するバッテリ蓄電量検出手段と、前記モータジェネレータの前記一方のロータ及び前記他方のロータをそれぞれモータとジェネレータとに切り換えるモータジェネレータ出力可変手段とを備え、
前記システム制御手段は、
前記電力回収手段が要求するバッテリ要求電力を算出するバッテリ要求電力算出手段と、該バッテリ要求電力算出手段により算出されたバッテリ要求電力に応じて前記モータジェネレータ出力可変手段を制御するモータジェネレータ制御手段とを含み、
前記バッテリ要求電力算出手段により算出されたバッテリ要求電力が前記ランキン出力検知手段により検出されたランキン出力に相当する電力より大きいとき、前記モータジェネレータ制御手段により、前記他方のロータをジェネレータに切り換えるべく、一方バッテリ要求電力がランキン出力に相当する電力未満のとき、前記他方のロータをモータに切り換えるべく、前記モータジェネレータ出力可変手段を制御することを特徴とする。 - 請求項8記載の内燃機関の廃熱利用システムであって、
前記モータジェネレータ制御手段は、前記他方のロータをジェネレータに切り換えるときにはジェネレータ出力目標値に基づいて前記モータジェネレータを制御し、前記他方のロータをモータに切り換えるときにはモータ出力目標値に基づいて前記モータジェネレータ出力可変手段を制御するものであって、
前記ジェネレータ出力目標値及び前記モータ出力目標値は、それぞれ前記バッテリ要求電力と前記ランキン出力に相当する電力との差の絶対値に基づいて設定されることを特徴とする。 - 請求項8または9記載の内燃機関の廃熱利用システムであって、
さらに、前記ランキンサイクルの電動補機を備えるとともに、前記システム制御手段は、該ランキンサイクルの電動補機の入力電力を制御するランキンサイクル電動補機入力制御手段を含み、
前記システム制御手段は、前記ランキン出力検知手段により検出されたランキン出力に相当する電力が少なくとも前記ランキンサイクルの電動補機の入力電力未満のとき、前記ランキンサイクル電動補機入力制御手段により前記ランキンサイクルの電動補機の駆動を停止し、ランキン出力に相当する電力が少なくとも前記ランキンサイクルの電動補機の入力電力より大きいとき、前記ランキンサイクル電動補機入力制御手段により前記ランキンサイクルの電動補機を駆動させることを特徴とする。 - 請求項8乃至10のいずれか記載の内燃機関の廃熱利用システムであって、
前記膨張機及び前記ポンプは同軸にして一体に構成され、
前記モータジェネレータと前記一体をなす膨張機及びポンプとは、前記一方のロータが前記一体をなす膨張機及びポンプの回転軸に連結され、前記他方のロータが内燃機関の回転軸に連結されていることを特徴とする。 - 請求項11記載の内燃機関の廃熱利用システムであって、
前記モータジェネレータ制御手段は、前記一方のロータをモータまたはジェネレータに切り換えるべく前記モータジェネレータ出力可変手段を制御するものであって、
前記システム制御手段は、前記ランキン出力検知手段によりランキン出力が一定以上のときには、前記モータジェネレータ制御手段により、前記一方のロータをジェネレータに切り換えるべく、ランキン出力が一定未満のときには、前記モータジェネレータ制御手段により前記一方のロータをモータに切り換えるべく、前記モータジェネレータ出力可変手段を制御することを特徴とする。 - モータジェネレータ装置であって、
作動流体の循環路に、内燃機関の廃熱により作動流体を加熱して蒸発させる蒸発器、該蒸発器を経由した作動流体を膨張させて回転駆動力を発生する膨張機、該膨張機を経由した作動流体を凝縮させる凝縮器、該凝縮器を経由した作動流体を前記蒸発器に送出するポンプが順次介装されたランキンサイクルを備えた内燃機関の廃熱利用システムに用いられるモータジェネレータ装置であって、
ステータの内側に内ロータを有するとともに外側に外ロータを有するモータジェネレータ機構部と、前記膨張機と、内燃機関の回転軸と連結する入出力軸とを備え、
前記モータジェネレータ機構部の前記内ロータ及び前記外ロータのいずれか一方のロータが前記膨張機の回転軸に連結し、いずれか他方のロータが前記入出力軸に連結していることを特徴とする。 - 請求項13記載のモータジェネレータ装置であって、
前記ランキンサイクルの前記ポンプが前記モータジェネレータ機構部と前記膨張機との間に配設されており、
前記ポンプの駆動軸の一端が前記膨張機に連結し、他端が前記一方のロータに連結していることを特徴とする。 - 請求項14記載のモータジェネレータ装置であって、
前記ポンプと前記膨張機との間には、前記ポンプからの回転駆動力は前記膨張機に伝達せず、前記膨張機からの回転駆動力を前記ポンプに伝達するワンウェイクラッチが介装されていることを特徴とする。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127027052A KR20130004339A (ko) | 2010-03-24 | 2011-03-22 | 내연 기관의 폐열 이용 시스템 및 상기 시스템에 사용하는 모터 제너레이터 장치 |
CN201180015493.0A CN102844528B (zh) | 2010-03-24 | 2011-03-22 | 内燃机的废热利用系统及在该系统中使用的电动发电机装置 |
CA2792543A CA2792543C (en) | 2010-03-24 | 2011-03-22 | Waste heat utilization system for internal combustion engine, and motor-generator device for use in the system |
US13/637,012 US20130056992A1 (en) | 2010-03-24 | 2011-03-22 | Waste heat utilization system for internal combustion engine, and motor-generator device for use in the system |
EP11759366.5A EP2551478B1 (en) | 2010-03-24 | 2011-03-22 | System for utilizing waste heat of internal combustion engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-067989 | 2010-03-24 | ||
JP2010067989A JP5389710B2 (ja) | 2010-03-24 | 2010-03-24 | 内燃機関の廃熱利用システム及び該システムに使用するモータジェネレータ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011118561A1 true WO2011118561A1 (ja) | 2011-09-29 |
Family
ID=44673113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056756 WO2011118561A1 (ja) | 2010-03-24 | 2011-03-22 | 内燃機関の廃熱利用システム及び該システムに使用するモータジェネレータ装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130056992A1 (ja) |
EP (1) | EP2551478B1 (ja) |
JP (1) | JP5389710B2 (ja) |
KR (1) | KR20130004339A (ja) |
CN (1) | CN102844528B (ja) |
CA (1) | CA2792543C (ja) |
WO (1) | WO2011118561A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140075941A1 (en) * | 2012-09-14 | 2014-03-20 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Power generating apparatus and operation method thereof |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5347899B2 (ja) * | 2009-10-19 | 2013-11-20 | いすゞ自動車株式会社 | 車両用蒸気エンジン |
DE102011013115A1 (de) * | 2011-03-04 | 2012-09-06 | Voith Patent Gmbh | Förderanlage für Öl und Gas |
JP5804879B2 (ja) * | 2011-09-30 | 2015-11-04 | 日産自動車株式会社 | 廃熱利用装置 |
JP5708446B2 (ja) * | 2011-11-02 | 2015-04-30 | 株式会社豊田自動織機 | 廃熱回生システム |
GB2497943A (en) * | 2011-12-22 | 2013-07-03 | Cummins Ltd | Internal combustion engine and waste heat recovery system |
CN102748895B (zh) * | 2012-06-28 | 2014-10-22 | 烟台大学 | 基于第三工作介质发电的燃气热泵供能系统 |
US9322300B2 (en) * | 2012-07-24 | 2016-04-26 | Access Energy Llc | Thermal cycle energy and pumping recovery system |
US10266276B2 (en) * | 2013-03-14 | 2019-04-23 | Textron Innovations, Inc. | Integrated auxiliary power unit, starter-generator-motor, and vapor cycle cooling system for an aircraft |
ES2635548T3 (es) * | 2013-04-08 | 2017-10-04 | Fpt Motorenforschung Ag | Sistema para la recuperación de calor de un motor de combustión |
US9587546B2 (en) * | 2013-10-02 | 2017-03-07 | Ford Global Technologies, Llc | Methods and systems for hybrid vehicle waste heat recovery |
EP3134690A1 (en) * | 2014-03-03 | 2017-03-01 | Eaton Corporation | Coolant energy and exhaust energy recovery system |
DE102014212067A1 (de) * | 2014-06-24 | 2015-12-24 | Mahle International Gmbh | Fahrzeug |
JP6591412B2 (ja) * | 2014-06-25 | 2019-10-16 | 株式会社大島造船所 | 熱供給システム |
DE102015204374A1 (de) * | 2015-03-11 | 2016-09-15 | Mahle International Gmbh | Axialkolbenmaschine |
EP3303780A4 (en) * | 2015-05-06 | 2019-01-02 | Trienco Ltd. | System and method for dynamic mechanical power management |
DE102015208859A1 (de) * | 2015-05-13 | 2016-11-17 | Mahle International Gmbh | Fahrzeug |
KR101766028B1 (ko) * | 2015-08-24 | 2017-08-07 | 현대자동차주식회사 | 폐열회수시스템의 회수에너지 전달장치 |
DE102015219116A1 (de) * | 2015-10-02 | 2017-04-06 | Voith Patent Gmbh | Pumpenantriebsstrang und Kraftwerksanlage mit einem Pumpenantriebsstrang |
JP6314999B2 (ja) * | 2016-01-25 | 2018-04-25 | トヨタ自動車株式会社 | 廃熱回収装置の制御装置 |
KR20190021577A (ko) | 2017-08-23 | 2019-03-06 | 한화파워시스템 주식회사 | 고효율 발전 시스템 |
DE102017223414A1 (de) * | 2017-12-20 | 2019-06-27 | Mahle International Gmbh | Wärmerückgewinnungssystem |
CN108457729A (zh) * | 2018-01-31 | 2018-08-28 | 中国第汽车股份有限公司 | 一种发动机废气能量回收利用装置及废气能量回收方法 |
JP2019143533A (ja) * | 2018-02-20 | 2019-08-29 | いすゞ自動車株式会社 | 廃熱利用装置 |
US11001250B2 (en) | 2018-03-01 | 2021-05-11 | Cummins Inc. | Waste heat recovery hybrid power drive |
US11407283B2 (en) | 2018-04-30 | 2022-08-09 | Tiger Tool International Incorporated | Cab heating systems and methods for vehicles |
US11993130B2 (en) | 2018-11-05 | 2024-05-28 | Tiger Tool International Incorporated | Cooling systems and methods for vehicle cabs |
DE102019217031A1 (de) * | 2019-11-05 | 2021-05-06 | Mahle International Gmbh | Verfahren zur Nutzung von Abwärme einer Wärmekraftmaschine |
WO2022006235A1 (en) | 2020-07-02 | 2022-01-06 | Tiger Tool International Incorporated | Compressor system for a vehicle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11275826A (ja) | 1998-03-25 | 1999-10-08 | Nissan Motor Co Ltd | 回転電機 |
JP2005030386A (ja) | 2003-06-20 | 2005-02-03 | Denso Corp | 流体機械 |
JP2006170185A (ja) * | 2004-11-19 | 2006-06-29 | Denso Corp | 内燃機関の廃熱利用装置およびその制御方法 |
JP2010185417A (ja) * | 2009-02-13 | 2010-08-26 | Nissan Motor Co Ltd | 廃熱回収装置搭載車両 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5793136A (en) * | 1996-06-05 | 1998-08-11 | Redzic; Sabid | Differential motor/generator apparatus |
DE60027840T2 (de) * | 1999-11-18 | 2006-12-28 | Denso Corp., Kariya | Rotierende elektrische Maschine für Fahrzeuge |
JP3719136B2 (ja) * | 2000-01-17 | 2005-11-24 | 日産自動車株式会社 | 回転電機および駆動システム |
JP3641243B2 (ja) * | 2002-02-26 | 2005-04-20 | 日産自動車株式会社 | ハイブリッド変速機 |
JP3641265B2 (ja) * | 2002-12-04 | 2005-04-20 | 日産自動車株式会社 | ハイブリッド変速機 |
US7399167B2 (en) * | 2003-01-28 | 2008-07-15 | Denso Corporation | Fluid machine operable in both pump mode and motor mode and waste heat recovering system having the same |
US7030528B2 (en) * | 2003-02-06 | 2006-04-18 | General Motors Corporation | Dual concentric AC motor |
US7748226B2 (en) * | 2003-03-25 | 2010-07-06 | Denso Corporation | Waste heat utilizing system |
JP4039320B2 (ja) * | 2003-06-17 | 2008-01-30 | 株式会社デンソー | 流体機械 |
US7249459B2 (en) * | 2003-06-20 | 2007-07-31 | Denso Corporation | Fluid machine for converting heat energy into mechanical rotational force |
EP1766754A2 (en) * | 2004-03-14 | 2007-03-28 | Revolution Electric Motor Co., Inc. | Commercial low cost, high efficiency motor-generator |
DE102005051428B4 (de) * | 2004-10-29 | 2015-05-28 | Denso Corporation | Abwärmenutzungsvorrichtung |
US20060254309A1 (en) * | 2005-05-11 | 2006-11-16 | Denso Corporation | Fluid machine |
US7690213B2 (en) * | 2006-02-24 | 2010-04-06 | Denso Corporation | Waste heat utilization device and control method thereof |
WO2008082388A1 (en) * | 2006-12-28 | 2008-07-10 | Utc Power Corporation | A power split device for a combined heat and power (chp) system |
JP5299679B2 (ja) * | 2009-02-06 | 2013-09-25 | 株式会社デンソー | モータジェネレータ |
US8231504B2 (en) * | 2009-02-16 | 2012-07-31 | GM Global Technology Operations LLC | Powertrain with dual rotor motor/generator |
US8330285B2 (en) * | 2009-07-08 | 2012-12-11 | Toyota Motor Engineering & Manufacturing North America, Inc. | Method and system for a more efficient and dynamic waste heat recovery system |
US8742641B2 (en) * | 2010-11-23 | 2014-06-03 | Remy Technologies, L.L.C. | Concentric motor power generation and drive system |
-
2010
- 2010-03-24 JP JP2010067989A patent/JP5389710B2/ja not_active Expired - Fee Related
-
2011
- 2011-03-22 KR KR1020127027052A patent/KR20130004339A/ko not_active Application Discontinuation
- 2011-03-22 US US13/637,012 patent/US20130056992A1/en not_active Abandoned
- 2011-03-22 CN CN201180015493.0A patent/CN102844528B/zh not_active Expired - Fee Related
- 2011-03-22 WO PCT/JP2011/056756 patent/WO2011118561A1/ja active Application Filing
- 2011-03-22 EP EP11759366.5A patent/EP2551478B1/en not_active Not-in-force
- 2011-03-22 CA CA2792543A patent/CA2792543C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11275826A (ja) | 1998-03-25 | 1999-10-08 | Nissan Motor Co Ltd | 回転電機 |
JP2005030386A (ja) | 2003-06-20 | 2005-02-03 | Denso Corp | 流体機械 |
JP2006170185A (ja) * | 2004-11-19 | 2006-06-29 | Denso Corp | 内燃機関の廃熱利用装置およびその制御方法 |
JP2010185417A (ja) * | 2009-02-13 | 2010-08-26 | Nissan Motor Co Ltd | 廃熱回収装置搭載車両 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2551478A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140075941A1 (en) * | 2012-09-14 | 2014-03-20 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Power generating apparatus and operation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CA2792543A1 (en) | 2011-09-29 |
CN102844528A (zh) | 2012-12-26 |
EP2551478B1 (en) | 2016-09-21 |
CA2792543C (en) | 2014-05-06 |
EP2551478A4 (en) | 2014-06-11 |
EP2551478A1 (en) | 2013-01-30 |
CN102844528B (zh) | 2015-08-26 |
KR20130004339A (ko) | 2013-01-09 |
US20130056992A1 (en) | 2013-03-07 |
JP5389710B2 (ja) | 2014-01-15 |
JP2011202518A (ja) | 2011-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5389710B2 (ja) | 内燃機関の廃熱利用システム及び該システムに使用するモータジェネレータ装置 | |
US7249459B2 (en) | Fluid machine for converting heat energy into mechanical rotational force | |
US7260952B2 (en) | Fluid machine | |
US20060254309A1 (en) | Fluid machine | |
US7399167B2 (en) | Fluid machine operable in both pump mode and motor mode and waste heat recovering system having the same | |
US7181919B2 (en) | System utilizing waste heat of internal combustion engine | |
US7418824B2 (en) | Refrigerating apparatus and fluid machine therefor | |
US20070227472A1 (en) | Waste heat collecting system having expansion device | |
US7536869B2 (en) | Vapor compression refrigerating apparatus | |
US6928820B2 (en) | Waste heat collecting system having rankine cycle and heating cycle | |
US7650761B2 (en) | Refrigerating device comprising waste heat utilization equipment | |
US20060213218A1 (en) | Fluid pump having expansion device and rankine cycle using the same | |
JP4682677B2 (ja) | 熱サイクル装置 | |
JP5389608B2 (ja) | 流体機械及び流体機械を用いた自動車用廃熱利用システム | |
JP4606840B2 (ja) | 複合流体機械およびそれを用いた冷凍装置 | |
JP4078994B2 (ja) | 流体機械および廃熱回収システム | |
JP2006342793A (ja) | 流体機械 | |
JP4079114B2 (ja) | 流体機械 | |
JP4034219B2 (ja) | 廃熱回収サイクル | |
JP2005313878A (ja) | ランキンサイクル装置およびその制御方法 | |
JP4711884B2 (ja) | 回転出力発生装置 | |
JP2008157152A (ja) | ランキンサイクル | |
JP4463660B2 (ja) | 冷凍装置 | |
JP4463659B2 (ja) | 廃熱利用装置を備える冷凍装置 | |
JP2008180148A (ja) | 流体機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180015493.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11759366 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2792543 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2011759366 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011759366 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13637012 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20127027052 Country of ref document: KR Kind code of ref document: A |