WO2011118302A1 - 電池用活物質および電池 - Google Patents

電池用活物質および電池 Download PDF

Info

Publication number
WO2011118302A1
WO2011118302A1 PCT/JP2011/053502 JP2011053502W WO2011118302A1 WO 2011118302 A1 WO2011118302 A1 WO 2011118302A1 JP 2011053502 W JP2011053502 W JP 2011053502W WO 2011118302 A1 WO2011118302 A1 WO 2011118302A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
battery
electrode active
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2011/053502
Other languages
English (en)
French (fr)
Inventor
健志 當寺ヶ盛
栄幹 大木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP11759110.7A priority Critical patent/EP2557620B1/en
Priority to US13/636,211 priority patent/US9160000B2/en
Priority to CN201180015190.9A priority patent/CN102812584B/zh
Priority to JP2012506889A priority patent/JP5354091B2/ja
Priority to AU2011230912A priority patent/AU2011230912B2/en
Priority to KR1020127024908A priority patent/KR101382502B1/ko
Publication of WO2011118302A1 publication Critical patent/WO2011118302A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery active material useful as a negative electrode active material of, for example, a lithium battery, and a battery using the same.
  • a lithium battery generally includes a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, and an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer.
  • Patent Document 1 discloses a nonaqueous electrolyte battery using lithium titanate (LTO) as a negative electrode active material. Since LTO is an oxide, it has high thermal stability and is advantageous in terms of safety.
  • LTO lithium titanate
  • LTO has a Li insertion / extraction potential (redox potential) of about 1.5 V with respect to metal Li, which is higher than that of a conventional carbon material (about 0.3 V)
  • the battery voltage of the obtained battery is small.
  • the battery voltage can be defined by, for example, the difference between the Li insertion / extraction potential of the positive electrode active material and the Li insertion / extraction potential of the negative electrode active material. Under the condition using a substance, there is a problem that the battery voltage becomes small.
  • Non-Patent Document 1 discloses physical property evaluation of Li x Y 2 Ti 2 O 5 S 2 . However, this document merely evaluates the physical properties of Li x Y 2 Ti 2 O 5 S 2 and does not evaluate the battery characteristics at all. Further, in the non-patent document 1, a method for synthesizing Li x Y 2 Ti 2 O 5 S 2, although forcibly introduce Li against Y 2 Ti 2 O 5 S 2 , Li desorption There is no description that it can be done, and of course there is no description that suggests that it can function as an active material.
  • Non-Patent Document 2 discloses physical property evaluation of Nd 2 Ti 2 O 5 S 2 . However, this document merely evaluates the physical properties of Nd 2 Ti 2 O 5 S 2 and does not evaluate the battery characteristics at all.
  • the present invention has been made in view of the above circumstances, and has as its main object to provide a battery active material having high thermal stability and low potential.
  • the present invention contains a Group III element, M element, Ti element, O element and S element, and contains an M 2 Ti 2 O 5 S 2 crystal phase.
  • An active material for a battery is provided.
  • the battery active material of the present invention since it has a M 2 Ti 2 O 5 S 2 crystal phase, it can be the active material for a low voltage battery. Therefore, the battery active material of the present invention is useful, for example, as a negative electrode active material. In addition, since the battery active material of the present invention has an O element and exhibits a behavior as an oxide, it has an advantage that it has better thermal stability than a conventional carbon material.
  • the M element is preferably at least one of Y and Nd.
  • the Li insertion / release potential with respect to the metal Li is preferably 1.4 V or less.
  • the battery active material of the present invention is used as the negative electrode active material of a lithium battery, the battery voltage is increased as compared with the case where conventional LTO (Li insertion / release potential 1.5 V) is used as the negative electrode active material. Because it can.
  • the present invention contains a Group III element M element, Ti element, O element and S element, is crystalline, and Li insertion / extraction potential with respect to metal Li is 1.4 V or less.
  • An active material for batteries is provided.
  • the battery active material with a low potential can be obtained.
  • the battery active material of the present invention since the battery active material of the present invention has an O element and exhibits a behavior as an oxide, it has an advantage that it has better thermal stability than a conventional carbon material.
  • the M element is preferably at least one of Y and Nd.
  • the battery active material is preferably a negative electrode active material.
  • the battery active material of the present invention when used as the negative electrode active material of a lithium battery, the battery voltage can be increased as compared with the case where conventional LTO is used as the negative electrode active material.
  • a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, and an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer The positive electrode active material or the negative electrode active material is a battery active material as described above.
  • a battery having excellent safety can be obtained by using a battery active material having excellent thermal stability.
  • the negative electrode active material layer contains a battery active material, a battery having a high battery voltage can be obtained.
  • the negative electrode active material is preferably the battery active material.
  • the battery voltage can be increased as compared with a battery using conventional LTO as a negative electrode active material.
  • the M element is Y (yttrium)
  • the positive electrode active material is an active material having a Li insertion / extraction potential with respect to metal Li in the range of 4.6 V to 4.8 V. preferable.
  • the difference between the Li insertion / extraction potential of the positive electrode active material relative to the metal Li and the Li insertion / extraction potential of the negative electrode active material relative to the metal Li is within the range of 3.4V to 3.7V. It is preferable. This is because the battery of the present invention can be applied to devices that are currently widely used (devices that include a battery having a battery voltage of 3.6 V) without changing the design.
  • the battery is preferably a lithium battery. It is because it can be set as a battery with a large battery voltage.
  • FIG. 3 is a result of X-ray diffraction measurement for the active material obtained in Example 1.
  • FIG. It is an evaluation result of the charge / discharge characteristic of the battery for 1st evaluation. It is an evaluation result of the charging / discharging characteristic of the 2nd battery for evaluation.
  • 3 is a result of X-ray diffraction measurement for an active material obtained in Example 2.
  • FIG. It is an evaluation result of the charging / discharging characteristic of the battery for evaluation using the active material obtained in Example 2.
  • the battery active material of the present invention will be described.
  • the battery active material of the present invention can be roughly divided into two embodiments. Hereinafter, the battery active material of the present invention will be described by dividing it into a first embodiment and a second embodiment.
  • the active material for a battery according to the first embodiment includes an M element, a Ti element, an O element, and an S element that are Group III elements, and an M 2 Ti 2 O 5 S 2 crystal phase. Is.
  • the battery active material of this embodiment since it has an M 2 Ti 2 O 5 S 2 crystal phase, it can be a battery active material with a low potential. Therefore, the battery active material of this embodiment is useful, for example, as a negative electrode active material. Moreover, since the active material for a battery of this embodiment has an O element and exhibits a behavior as an oxide, it has an advantage that thermal stability is superior to a conventional carbon material.
  • the battery active material of this embodiment contains an M 2 Ti 2 O 5 S 2 crystal phase.
  • the presence of the M 2 Ti 2 O 5 S 2 crystal phase can be confirmed by X-ray diffraction (XRD) or the like.
  • the M 2 Ti 2 O 5 S 2 crystal phase is considered to correspond to a crystal phase having a defective Ruddlesden-Popper structure.
  • the Ruddlesden-Popper structure has a composition represented by a general formula A n + 1 B n C 3n + 1 (n is an integer), and has a layered structure in which a perovskite structure and a rock salt structure are alternately stacked.
  • n 2
  • the above general formula can be expressed as A 3 B 2 C 7 .
  • M is located at the A site, Ti is located at the B site, and O and C are located at the C site. S will be located. Further, if M is located at 3 atoms in the A site, it corresponds to a complete Ruddlesden-Popper structure, but in this embodiment, M is located at only 2 atoms. Therefore, it is considered that a defect is generated at the A site, and a metal ion (for example, Li ion) is inserted and desorbed at the defect site, so that the function as an active material is remarkably exhibited.
  • a metal ion for example, Li ion
  • M 2 Ti 2 O 5 S 2 crystal phase is a so-called insertion desorption. It is thought to function as a release active material.
  • the M element in this embodiment is usually a trivalent group III element, and corresponds to Sc, Y, lanthanoid and actinoid.
  • the M element is preferably at least one selected from the group consisting of Y, Nd, Sc, Pr, Sm, Gd, Tb, Dy, and Er, and is selected from the group consisting of Y, Nd, and Sc. More preferably, it is at least one.
  • the battery active material of this embodiment preferably has a high proportion of the M 2 Ti 2 O 5 S 2 crystal phase, and specifically contains mainly the M 2 Ti 2 O 5 S 2 crystal phase. Is preferred. This is because a battery active material having a lower potential can be obtained.
  • “mainly composed of the M 2 Ti 2 O 5 S 2 crystal phase” means that the ratio of the M 2 Ti 2 O 5 S 2 crystal phase is the largest among the crystal phases contained in the battery active material. That means.
  • the proportion of the M 2 Ti 2 O 5 S 2 crystal phase contained in the battery active material is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 70 mol% or more.
  • the battery active material of the present embodiment may be composed of only the M 2 Ti 2 O 5 S 2 crystal phase (single-phase active material).
  • the ratio of the M 2 Ti 2 O 5 S 2 crystal phase contained in the battery active material can be determined, for example, by preparing a battery using metal Li as a counter electrode and measuring its capacity. For example, when the M element is Y (yttrium), the capacity of 0.8 V to 1.5 V with respect to the metal Li corresponds to the reaction in which Li is inserted into and desorbed from Y 2 Ti 2 O 5 S 2 .
  • the Li insertion / extraction potential with respect to the metal Li is preferably 1.5 V or less, more preferably 1.4 V or less, and further preferably 1.3 V or less. 1.2V or less is particularly preferable.
  • the battery active material of the present embodiment is used as the negative electrode active material of a lithium battery, the battery voltage is equivalent as compared with the case where conventional LTO (Li insertion / release potential 1.5 V) is used as the negative electrode active material. Or more than that.
  • the battery active material of this embodiment preferably has a Li insertion / release potential of 0.5 V or more with respect to metal Li.
  • the Li insertion / release potential of the battery active material can be defined as the average value of the Li insertion potential and the Li elimination potential. Further, the Li insertion potential and the Li desorption potential can be determined by a cyclic voltammetry (CV) method.
  • the battery active material of this embodiment may be used as a positive electrode active material or a negative electrode active material, but the latter is preferred.
  • the battery active material of this embodiment is used as the negative electrode active material of a lithium battery, the battery voltage can be increased as compared with the case where conventional LTO is used as the negative electrode active material.
  • the battery active material of this embodiment tends to improve the electron conductivity as the proportion of the M 2 Ti 2 O 5 S 2 crystal phase increases. If the electronic conductivity of the active material itself is high, the amount of conductive material used can be reduced, and the amount of active material used can be increased accordingly. As a result, there is an advantage that the capacity of the battery can be increased.
  • the electronic conductivity (room temperature) of the battery active material of the present embodiment is, for example, preferably 10 ⁇ 7 S / cm or more, and more preferably 10 ⁇ 5 S / cm or more.
  • the shape of the battery active material of this embodiment is preferably particulate.
  • the average particle diameter of the battery active material is preferably in the range of, for example, 1 nm to 100 ⁇ m, and more preferably in the range of 10 nm to 30 ⁇ m.
  • the battery active material of this embodiment can be used as an active material for various batteries because metal (metal ions) can be inserted and removed.
  • Examples of the type of battery include a lithium battery, a sodium battery, a magnesium battery, and a calcium battery. Among these, a lithium battery and a sodium battery are preferable, and a lithium battery is particularly preferable.
  • the battery active material of this embodiment may be an active material used for a primary battery or an active material used for a secondary battery, but the latter is preferable. This is because it can be repeatedly charged and discharged and is useful as an active material used in, for example, an in-vehicle battery.
  • the manufacturing method of the battery active material of this embodiment will not be specifically limited if it is a method which can obtain the battery active material mentioned above.
  • the method for producing the battery active material of this embodiment include a solid phase method.
  • M 2 O 3 for example, Y 2 O 3 , Nd 2 O 3
  • TiO 2 and TiS 2 are mixed at a ratio to obtain an M 2 Ti 2 O 5 S 2 crystal phase.
  • the method of heating can be mentioned. At this time, in order to suppress unnecessary side reactions, it is preferable to perform heating in a vacuum state.
  • the composition of M 2 Ti 2 O 5 S 2 can be obtained stoichiometrically.
  • the battery active material of this embodiment contains an S element, it is considered that the battery active material deteriorates by reacting with moisture in the atmosphere. Therefore, storage of the battery active material and production of a battery using the battery active material are preferably performed in an inert gas atmosphere.
  • the battery active material of the second embodiment contains a Group III element, M element, Ti element, O element and S element, is crystalline, and has a Li insertion / extraction potential of 1. It is characterized by being 4 V or less.
  • the battery active material of this embodiment is useful as a negative electrode active material of a battery, for example. Furthermore, when the battery active material of this embodiment is used as the negative electrode active material of a lithium battery, the Li insertion / desorption potential can be made lower than that of the conventional LTO, so that a lithium battery having a higher battery voltage than the conventional LTO can be obtained. Obtainable. Moreover, since the active material for a battery of this embodiment has an O element and exhibits a behavior as an oxide, it has an advantage that thermal stability is superior to a conventional carbon material.
  • the battery active material of the present embodiment is generally characterized in that the Li insertion / release potential with respect to metal Li is 1.4 V or less, but for the preferred range and measurement method of the Li insertion / release potential, The contents are the same as described in “1. First embodiment” above.
  • the battery active material of the present embodiment has a crystal phase having a structure in which a part of the M element located at the A site of the Ruddlesden-Popper structure A 3 B 2 C 7 is missing. This is because it is considered that a metal ion (for example, Li ion) is inserted into and desorbed from the defect site and the function as an active material is remarkably exhibited.
  • the battery active material of this embodiment preferably contains the above crystalline phase as a main component.
  • the battery of the present invention includes a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer,
  • the positive electrode active material or the negative electrode active material is the battery active material described above.
  • FIG. 1 is a schematic cross-sectional view showing an example of the battery of the present invention.
  • a battery 10 shown in FIG. 1 includes a positive electrode active material layer 1, a negative electrode active material layer 2, an electrolyte layer 3 formed between the positive electrode active material layer 1 and the negative electrode active material layer 2, and a positive electrode active material layer 1.
  • a positive electrode current collector 4 that collects current
  • a negative electrode current collector 5 that collects current of the negative electrode active material layer 2
  • a battery case 6 that houses these members.
  • the battery of the present invention is greatly characterized in that the positive electrode active material layer 1 or the negative electrode active material layer 2 contains the battery active material described in the above “A. Battery active material”.
  • a battery having excellent safety can be obtained by using a battery active material having excellent thermal stability.
  • a battery active material having excellent thermal stability when the negative electrode active material layer contains a battery active material, a battery having a high battery voltage can be obtained.
  • the battery of this invention is demonstrated for every structure.
  • the negative electrode active material layer in the present invention is a layer containing at least a negative electrode active material.
  • the negative electrode active material layer may contain at least one of a conductive material, a binder, and a solid electrolyte material in addition to the negative electrode active material.
  • the negative electrode active material layer preferably contains a solid electrolyte material. This is because the solid electrolyte layer is less likely to penetrate into the negative electrode active material layer than the liquid electrolyte layer (electrolytic solution), and the ionic conductivity inside the negative electrode active material layer may be lowered. By adding the solid electrolyte material, the ion conductivity of the negative electrode active material layer can be easily improved.
  • the negative electrode active material is preferably the battery active material described in the above “A. Battery active material”.
  • Battery active material when the battery of the present invention is a lithium battery, the battery voltage can be increased as compared with a battery using conventional LTO as a negative electrode active material.
  • the battery active material described above may be used as the positive electrode active material, and a conventional active material may be used as the negative electrode active material. In this case, it is necessary to use an active material having a lower potential than the above-described battery active material as the negative electrode active material.
  • the negative electrode active material since the battery active material described above does not contain a metal element (for example, Li element) that can be a conductive ion, the negative electrode active material preferably contains the metal element.
  • the battery of the present invention is a lithium battery and contains the above-described battery active material as a positive electrode active material
  • a Li-containing active material such as metal Li and Li alloy is used as the negative electrode active material to be used. It is preferable to use it.
  • the material for the conductive material is not particularly limited as long as it has a desired electronic conductivity, and examples thereof include a carbon material.
  • specific examples of the carbon material include acetylene black, ketjen black, carbon black, coke, carbon fiber, and graphite.
  • the material of the binder is not particularly limited as long as it is chemically and electrically stable.
  • fluorine-based materials such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) are used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • examples thereof include a binder and a rubber-based binder such as styrene butadiene rubber.
  • the solid electrolyte material is not particularly limited as long as it has desired ionic conductivity, and examples thereof include oxide solid electrolyte materials and sulfide solid electrolyte materials.
  • the solid electrolyte material will be described in detail in “3. Electrolyte layer” described later.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably higher from the viewpoint of capacity, for example, in the range of 60 wt% to 99 wt%, particularly in the range of 70 wt% to 95 wt%. Is preferred.
  • the content of the conductive material is preferably smaller as long as the desired electronic conductivity can be ensured, and is preferably in the range of 1 wt% to 30 wt%, for example.
  • the content of the binder is preferably smaller as long as the negative electrode active material and the like can be stably fixed, and is preferably in the range of 1% by weight to 30% by weight, for example.
  • the content of the solid electrolyte material is preferably smaller as long as the desired ionic conductivity can be ensured, and is preferably in the range of 1 wt% to 40 wt%, for example.
  • the thickness of the negative electrode active material layer varies greatly depending on the battery configuration, but is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the positive electrode active material layer in the present invention is a layer containing at least a positive electrode active material.
  • the positive electrode active material layer may contain at least one of a conductive material, a binder, and a solid electrolyte material in addition to the positive electrode active material.
  • the positive electrode active material layer preferably contains a solid electrolyte material. This is because the solid electrolyte layer is less likely to penetrate into the positive electrode active material layer than the liquid electrolyte layer (electrolytic solution), and the ion conductivity inside the positive electrode active material layer may be lowered. By adding the solid electrolyte material, the ion conductivity of the positive electrode active material layer can be easily improved.
  • the positive electrode active material is preferably an active material having a higher potential than the above-described battery active material. That is, it is preferable to use the above-described battery active material not as a positive electrode active material but as a negative electrode active material.
  • the battery of the present invention is a lithium battery
  • the battery voltage can be increased as compared with a battery using conventional LTO as a negative electrode active material.
  • a general active material can be used as the positive electrode active material.
  • a positive electrode active material for example, when the battery of the present invention is a lithium battery, a layered structure such as LiCoO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiVO 2 , LiCrO 2 or the like.
  • Positive electrode active material, spinel type positive electrode active material such as LiMn 2 O 4 , Li (Ni 0.25 Mn 0.75 ) 2 O 4 , LiCoMnO 4 , Li 2 NiMn 3 O 8 , LiCoPO 4 , LiMnPO 4 , LiFePO 4, etc.
  • an olivine-type positive electrode active material for example, when the battery of the present invention is a lithium battery, a layered structure such as LiCoO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiVO 2 , LiCrO 2 or the like.
  • Positive electrode active material, spinel type positive electrode active material such as
  • the positive electrode active material in the present invention is preferably an active material having a Li insertion / release potential of 4.5 V or more with respect to metal Li, and is an active material in the range of 4.6 V to 4.8 V. Is more preferable.
  • a positive electrode active material in combination with a battery active material (negative electrode active material) in which the M element is Y (yttrium)
  • a battery having a battery voltage of 3.4 V to 3.7 V can be easily obtained. Because it can. The reason why this battery voltage is preferable will be described later.
  • the Li insertion / release potential of the positive electrode active material relative to the metal Li can be calculated by the same method as that described in “A. Battery active material”.
  • the positive electrode active material in the present invention is preferably an active material (Mn-containing active material) containing at least a Li element, a Mn element, and an O element.
  • an active material Mn-containing active material
  • the positive electrode active material is preferably a spinel active material. This is because a positive electrode active material having a high Li insertion / release potential with respect to metal Li can be obtained.
  • LiMn 2 O 4 (4.0 V), Li (Ni 0.25 Mn 0.75 ) 2 O 4 (4.7 V), LiCoMnO 4 (5.0 V), Li 2 FeMn 3 O 8 (4.9V), Li 2 CuMn 3 O 8 (4.9V), may be mentioned Li 2 CrMn 3 O 8 (4.8V ) and the like.
  • said electric potential shows Li insertion / detachment electric potential with respect to metal Li.
  • the difference between the Li insertion / extraction potential of the positive electrode active material relative to the metal Li and the Li insertion / extraction potential of the negative electrode active material relative to the metal Li is in the range of 3.4V to 3.7V. It is preferable that it is in the range of 3.5V to 3.7V. This is because the battery of the present invention can be applied to devices that are currently widely used (devices that include a battery having a battery voltage of 3.6 V) without changing the design.
  • the battery voltage can be defined by the difference in Li insertion / extraction potential between the positive electrode active material and the negative electrode active material.
  • the Li insertion / extraction potential of the conventional LiCoO 2 (positive electrode active material) is about 3.9 V
  • the Li insertion / extraction potential of the conventional carbon material (negative electrode active material) is about 0.3 V.
  • the difference between the two is about 3.6 V, which is the battery voltage of the conventional lithium battery.
  • LiCoO 2 is widely used for general lithium batteries, portable devices such as mobile phones, games, and notebook computers are designed on the assumption that the battery is used near 3.6V. There are many.
  • Co contained in LiCoO 2 is a rare metal, it is necessary to consider replacement with an Mn-containing active material based on Mn in order to reduce the amount of Co used.
  • the shape of the positive electrode active material is preferably particulate.
  • the average particle diameter of the positive electrode active material is preferably in the range of, for example, 1 nm to 100 ⁇ m, and more preferably in the range of 10 nm to 30 ⁇ m.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably larger from the viewpoint of capacity, for example, in the range of 60% by weight to 99% by weight, particularly in the range of 70% by weight to 95% by weight. Is preferred.
  • the type and content of the conductive material, binder, and solid electrolyte material used for the positive electrode active material layer are the same as those described for the negative electrode active material layer described above. Omitted.
  • the thickness of the positive electrode active material layer varies greatly depending on the configuration of the battery, but is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the electrolyte layer in the present invention is a layer formed between the positive electrode active material layer and the negative electrode active material layer. Ion conduction between the positive electrode active material and the negative electrode active material is performed via the electrolyte contained in the electrolyte layer.
  • the form of the electrolyte layer is not particularly limited, and examples thereof include a liquid electrolyte layer, a gel electrolyte layer, and a solid electrolyte layer.
  • the liquid electrolyte layer is usually a layer using a non-aqueous electrolyte.
  • the type of the non-aqueous electrolyte varies depending on the type of the battery.
  • the non-aqueous electrolyte of a lithium battery usually contains a lithium salt and a non-aqueous solvent.
  • the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4, and LiAsF 6 ; and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC An organic lithium salt such as (CF 3 SO 2 ) 3 can be used.
  • non-aqueous solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate (BC), ⁇ -butyrolactone, sulfolane, Acetonitrile, 1,2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran and mixtures thereof can be exemplified.
  • concentration of the lithium salt in the non-aqueous electrolyte is, for example, in the range of 0.5 mol / L to 3 mol / L.
  • a low volatile liquid such as an ionic liquid may be used as the nonaqueous electrolytic solution.
  • the gel electrolyte layer can be obtained, for example, by adding a polymer to a non-aqueous electrolyte and gelling. Specifically, gelation can be performed by adding a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), or polymethyl methacrylate (PMMA) to the nonaqueous electrolytic solution.
  • a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), or polymethyl methacrylate (PMMA)
  • the solid electrolyte layer is a layer made of a solid electrolyte material.
  • the solid electrolyte material include an oxide solid electrolyte material and a sulfide solid electrolyte material.
  • the solid electrolyte material is preferably a sulfide solid electrolyte material. This is because a high output battery with high Li ion conductivity can be obtained.
  • the sulfide solid electrolyte material having Li ion conductivity include those having Li, S, and the third component A.
  • the third component A include at least one selected from the group consisting of P, Ge, B, Si, I, Al, Ga, and As.
  • the sulfide solid electrolyte material is preferably a compound using Li 2 S and sulfide MS other than Li 2 S.
  • Specific examples include a Li 2 S—P 2 S 5 compound, a Li 2 S—SiS 2 compound, a Li 2 S—GeS 2 compound, etc.
  • a Li 2 S—P 2 S 5 compound is preferable. This is because the Li ion conductivity is high.
  • x when the molar ratio between Li 2 S and sulfide MS is xLi 2 S- (100-x) MS, x preferably satisfies the relationship of 50 ⁇ x ⁇ 95, and 60 ⁇ x ⁇ 85 It is more preferable to satisfy the relationship.
  • the Li 2 S—P 2 S 5 compound means a sulfide solid electrolyte material using Li 2 S and P 2 S 5 .
  • an amorphous Li 2 S—P 2 S 5 compound can be obtained by performing a mechanical milling method or a melt quenching method using Li 2 S and P 2 S 5 .
  • the solid electrolyte material in the present invention may be amorphous or crystalline.
  • the crystalline sulfide solid electrolyte material can be obtained, for example, by firing an amorphous sulfide solid electrolyte material.
  • crystalline Li 7 P 3 S 11 having high Li ion conductivity can be obtained.
  • the shape of the solid electrolyte material is preferably particulate.
  • the average particle size of the solid electrolyte material is preferably in the range of, for example, 1 nm to 100 ⁇ m, and more preferably in the range of 10 nm to 30 ⁇ m.
  • the thickness of the electrolyte layer varies greatly depending on the type of electrolyte and the configuration of the battery.
  • the thickness is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the battery of the present invention has at least the negative electrode active material layer, the positive electrode active material layer, and the electrolyte layer described above. Furthermore, it usually has a positive electrode current collector for collecting current of the positive electrode active material layer and a negative electrode current collector for collecting current of the negative electrode active material layer.
  • the material for the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, and carbon. Among them, SUS is preferable.
  • examples of the material for the negative electrode current collector include SUS, copper, nickel, and carbon. Of these, SUS is preferable.
  • the thickness and shape of the positive electrode current collector and the negative electrode current collector are preferably appropriately selected according to the use of the battery.
  • the battery of the present invention may have a separator between the positive electrode active material layer and the negative electrode active material layer. This is because a battery with higher safety can be obtained.
  • the material for the separator include porous films such as polyethylene, polypropylene, cellulose, and polyvinylidene fluoride; and nonwoven fabrics such as a resin nonwoven fabric and a glass fiber nonwoven fabric.
  • the battery case of a general battery can be used for the battery case used for this invention. Examples of the battery case include a SUS battery case.
  • Battery The battery of the present invention is not particularly limited as long as it has the above-described positive electrode active material layer, negative electrode active material layer, and electrolyte layer.
  • Examples of the type of battery of the present invention include a lithium battery, a sodium battery, a magnesium battery, and a calcium battery. Among these, a lithium battery and a sodium battery are preferable, and a lithium battery is particularly preferable.
  • the battery of the present invention may be a battery in which the electrolyte layer is a solid electrolyte layer, or a battery in which the electrolyte layer is a liquid electrolyte layer. Furthermore, the battery of the present invention may be a primary battery or a secondary battery, but among them, a secondary battery is preferable.
  • examples of the shape of the battery of the present invention include a coin type, a laminate type, a cylindrical type, and a square type.
  • the manufacturing method of a battery is not specifically limited, It is the same as the manufacturing method in a general battery.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.
  • Example 1 First, Y 2 O 3 , TiO 2 and TiS 2 (all manufactured by Aldrich) were prepared as raw materials. Next, Y 2 O 3 , TiO 2 and TiS 2 were weighed in equimolar amounts and mixed in a mortar to obtain a raw material composition. Next, the raw material composition was put in a quartz tube and vacuum sealed. Thereafter, the quartz tube was heated at 1100 ° C. for 5 days using a firing furnace. After cooling, the resulting material was pulverized in a mortar to adjust the particle size. This obtained the battery active material of this invention.
  • Example 2 Charging / discharging characteristics (first evaluation battery)
  • a battery for evaluation was produced using the active material obtained in Example 1 as a positive electrode active material, and the charge / discharge characteristics of the active material were evaluated.
  • the obtained evaluation battery was charged / discharged under the conditions of constant current charge / discharge (0.2 mA), charge / discharge range of 0.5 V to 3.5 V, and discharge start.
  • the result is shown in FIG.
  • a reversible battery reaction was observed in the vicinity of 0.9 V to 1.1 V, and it was confirmed that the Li insertion / release potential of the active material with respect to metal Li was 1.4 V or less.
  • the behavior below 0.7V in the charge / discharge curve is due to the influence of KB used as a conductive material. Therefore, when the influence of KB is taken into consideration, the capacity of the active material is estimated to be about 70 mAh / g.
  • An evaluation battery was prepared using Li (Ni 0.25 Mn 0.75 ) 2 O 4 as a positive electrode active material, and charge / discharge characteristics of the active material were evaluated.
  • a coin-type evaluation battery was obtained in the same manner as described above except that Li (Ni 0.25 Mn 0.75 ) 2 O 4 was used instead of the active material obtained in Example 1. .
  • the obtained evaluation battery was charged and discharged under the conditions of constant current charge / discharge (0.2 mA), charge / discharge range of 2.5 V to 5.0 V, and charge start.
  • the result is shown in FIG.
  • a reversible battery reaction is shown around 4.6V to 4.8V. Therefore, it was confirmed that the Li insertion / extraction potential of the active material with respect to the metal Li is in the range of 4.6V to 4.8V.
  • a reversible battery reaction was also observed at 2.6 V to 2.9 V.
  • a higher potential is defined as the Li insertion / release potential of the active material with respect to the metal Li.
  • Example 2 An evaluation battery using the active material obtained in Example 1 as a negative electrode active material and Li (Ni 0.25 Mn 0.75 ) 2 O 4 as a positive electrode active material was produced.
  • Example 2 First, Nd 2 O 3 , TiO 2 and TiS 2 (all made by Aldrich) were prepared as raw materials. Next, Nd 2 O 3 , TiO 2 and TiS 2 were weighed in equimolar amounts and mixed in a mortar to obtain a raw material composition. Next, the raw material composition was put in a quartz tube and vacuum sealed. Thereafter, the quartz tube was heated at 1100 ° C. for 4 days using a firing furnace. After cooling, the resulting material was pulverized in a mortar to adjust the particle size. This obtained the battery active material of this invention.
  • Example 2 Charge / Discharge Characteristics
  • the obtained evaluation battery was charged / discharged under the conditions of constant current charge / discharge (0.2 mA), charge / discharge range of 0.75 V to 2.0 V, and discharge start.
  • the result is shown in FIG.
  • a reversible battery reaction was observed in the vicinity of 1.1 V to 1.4 V, and it was confirmed that the Li insertion / release potential of the active material with respect to metal Li was 1.4 V or less. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

 本発明は、熱安定性が高く、電位の低い電池用活物質を提供することを課題とする。 本発明においては、第III族元素であるM元素、Ti元素、O元素およびS元素を含有し、MTi結晶相を含有することを特徴とする電池用活物質を提供することにより、上記課題を解決する。

Description

電池用活物質および電池
 本発明は、例えばリチウム電池の負極活物質として有用な電池用活物質、およびそれを用いた電池に関する。
 リチウム電池は、高い起電力および高エネルギー密度を有するため、情報関連機器、通信機器の分野で広く実用化されている。一方、自動車の分野においても、環境問題、資源問題から電気自動車やハイブリッド自動車の開発が急がれており、これらの電源としても、リチウム電池が検討されている。リチウム電池は、一般的に、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、正極活物質層および負極活物質層の間に形成された電解質層とを有する。
 従来、リチウム電池の負極活物質としてカーボン材料(例えばグラファイト)が用いられている。一方で、より安全性を向上させるために、熱安定性の高い活物質が求められている。ここで、特許文献1においては、チタン酸リチウム(LTO)を負極活物質として用いた非水電解質電池が開示されている。LTOは酸化物であるため、熱安定性が高く、安全性の面で有利である。
 しかしながら、LTOは、金属Liに対するLi挿入脱離電位(酸化還元電位)が約1.5Vであり、従来のカーボン材料(約0.3V)に比べて高いため、得られる電池の電池電圧が小さくなる。電池電圧は、例えば、正極活物質のLi挿入脱離電位と、負極活物質のLi挿入脱離電位との差で定義できるため、負極活物質のLi挿入脱離電位が高くなると、同じ正極活物質を用いた条件では、電池電圧が小さくなるという問題がある。
 また、非特許文献1においては、LiTiの物性評価が開示されている。しかしながら、この文献では、単にLiTiの物性を評価しているのみで、電池特性の評価は一切していない。また、この非特許文献1では、LiTiの合成方法として、YTiに対して強制的にLiを導入しているが、Liが脱離できる旨の記載はなく、当然、活物質として機能することを示唆する記載も一切ない。また、非特許文献2においては、NdTiの物性評価が開示されている。しかしながら、この文献では、単にNdTiの物性を評価しているのみで、電池特性の評価は一切していない。
特開2008-123787号公報
 本発明は、上記実情に鑑みてなされたものであり、熱安定性が高く、電位の低い電池用活物質を提供することを主目的とする。
 上記目的を達成するために、本発明においては、第III族元素であるM元素、Ti元素、O元素およびS元素を含有し、MTi結晶相を含有することを特徴とする電池用活物質を提供する。
 本発明によれば、MTi結晶相を有することから、電位の低い電池用活物質とすることができる。そのため、本発明の電池用活物質は、例えば負極活物質として有用である。また、本発明の電池用活物質は、O元素を有し、酸化物としての挙動を示すため、従来のカーボン材料よりも熱安定性が優れているという利点を有する。
 上記発明においては、上記MTi結晶相を主体として含有することが好ましい。より電位の低い電池用活物質とすることができるからである。
 上記発明においては、上記M元素が、YおよびNdの少なくとも一方であることが好ましい。
 上記発明においては、金属Liに対するLi挿入脱離電位が1.4V以下であることが好ましい。本発明の電池用活物質をリチウム電池の負極活物質として用いた場合に、従来のLTO(Li挿入脱離電位1.5V)を負極活物質として用いた場合と比べて、電池電圧を大きくすることができるからである。
 また、本発明においては、第III族元素であるM元素、Ti元素、O元素およびS元素を含有し、結晶質であり、かつ、金属Liに対するLi挿入脱離電位が1.4V以下であることを特徴とする電池用活物質を提供する。
 本発明によれば、金属Liに対するLi挿入脱離電位が所定の値以下であることから、電位の低い電池用活物質とすることができる。また、本発明の電池用活物質は、O元素を有し、酸化物としての挙動を示すため、従来のカーボン材料よりも熱安定性が優れているという利点を有する。
 上記発明においては、Ruddlesden-Popper構造AのAサイトに位置する上記M元素の一部が欠損した構造の結晶相を有することが好ましい。より電位の低い電池用活物質とすることができるからである。
 上記発明においては、上記M元素が、YおよびNdの少なくとも一方であることが好ましい。
 上記発明においては、上記電池用活物質が、負極活物質であることが好ましい。例えば、本発明の電池用活物質をリチウム電池の負極活物質として用いた場合に、従来のLTOを負極活物質として用いた場合と比べて、電池電圧を大きくすることができるからである。
 また、本発明においては、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有する電池であって、上記正極活物質または上記負極活物質が、上述した電池用活物質であることを特徴とする電池を提供する。
 本発明によれば、熱安定性に優れた電池用活物質を用いることにより、安全性に優れた電池とすることができる。また、特に負極活物質層が電池用活物質を含有する場合には、電池電圧の大きい電池を得ることができる。
 上記発明においては、上記負極活物質が、上記電池用活物質であることが好ましい。例えば、本発明の電池がリチウム電池である場合に、従来のLTOを負極活物質として用いた電池に比べて、電池電圧を大きくすることができるからである。
 上記発明においては、上記M元素が、Y(イットリウム)であり、上記正極活物質が、金属Liに対するLi挿入脱離電位が4.6V~4.8Vの範囲内にある活物質であることが好ましい。このような正極活物質と、M元素がY(イットリウム)である電池用活物質(負極活物質)とを組み合わせて用いることにより、電池電圧3.4V~3.7Vの電池を容易に得ることができるからである。
 上記発明においては、金属Liに対する上記正極活物質のLi挿入脱離電位と、金属Liに対する上記負極活物質のLi挿入脱離電位との差が、3.4V~3.7Vの範囲内であることが好ましい。現在広く普及している機器(電池電圧3.6Vの電池を搭載する機器)に、設計変更することなく、本発明の電池を適用することができるからである。
 上記発明においては、上記電池が、リチウム電池であることが好ましい。電池電圧の大きい電池とすることができるからである。
 本発明においては、熱安定性が高く、電位の低い電池用活物質を提供することができるという効果を奏する。
本発明の電池の一例を示す概略断面図である。 実施例1で得られた活物質に対するX線回折測定の結果である。 第一の評価用電池の充放電特性の評価結果である。 第二の評価用電池の充放電特性の評価結果である。 実施例2で得られた活物質に対するX線回折測定の結果である。 実施例2で得られた活物質を用いた評価用電池の充放電特性の評価結果である。 実施例2で得られた活物質を用いた評価用電池のCV測定の結果である。
 以下、本発明の電池用活物質および電池について、詳細に説明する。
A.電池用活物質
 まず、本発明の電池用活物質について説明する。本発明の電池用活物質は、2つの実施態様に大別することができる。以下、本発明の電池用活物質について、第一実施態様と、第二実施態様とに分けて説明する。
1.第一実施態様
 本発明の電池用活物質の第一実施態様について説明する。第一実施態様の電池用活物質は、第III族元素であるM元素、Ti元素、O元素およびS元素を含有し、MTi結晶相を含有することを特徴とするものである。
 本実施態様によれば、MTi結晶相を有することから、電位の低い電池用活物質とすることができる。そのため、本実施態様の電池用活物質は、例えば負極活物質として有用である。また、本実施態様の電池用活物質は、O元素を有し、酸化物としての挙動を示すため、従来のカーボン材料よりも熱安定性が優れているという利点を有する。
 本実施態様の電池用活物質は、MTi結晶相を含有するものである。MTi結晶相の存在は、X線回折(XRD)等により確認することができる。また、MTi結晶相は、欠陥型Ruddlesden-Popper構造の結晶相に該当するものと考えられる。一般的に、Ruddlesden-Popper構造は、一般式An+13n+1(nは整数)で表される組成を有し、ペロブスカイト構造と、岩塩構造とが交互に重なった層状構造を有する。ここで、n=2とした場合、上記の一般式はAで表すことができる。このAと、本実施態様におけるMTiとを比較すると、AサイトにはMが位置し、BサイトにはTiが位置し、CサイトにはOおよびSが位置することになる。さらに、Aサイトにおいて、Mが3原子位置すると、完全なRuddlesden-Popper構造に該当するが、本実施態様においては、Mが2原子しか位置していない。そのため、このAサイトに欠陥が生じ、この欠陥部位に金属イオン(例えばLiイオン)が挿入脱離し、活物質としての機能が顕著に発現すると考えられる。また、MTi結晶相と、金属イオン(例えばLiイオン)との反応は、以下の通りであると考えられ、MTi結晶相は、いわゆる挿入脱離型の活物質として機能すると考えられる。
 MTi+xLi+xe⇔LiTi
 本実施態様におけるM元素は、通常、三価の第III族元素であり、Sc、Y、ランタノイドおよびアクチノイドが該当する。中でも、M元素は、Y、Nd、Sc、Pr、Sm、Gd、Tb、Dy、Erからなる群から選択される少なくとも一種であることが好ましく、Y、Nd、Scからなる群から選択される少なくとも一種であることがより好ましい。
 また、本実施態様の電池用活物質は、MTi結晶相の割合が多いことが好ましく、具体的にはMTi結晶相を主体として含有することが好ましい。より電位の低い電池用活物質とすることができるからである。ここで、「MTi結晶相を主体とする」とは、電池用活物質に含まれる結晶相の中で、MTi結晶相の割合が最も大きいことをいう。電池用活物質に含まれるMTi結晶相の割合は、50mol%以上であることが好ましく、60mol%以上であることがより好ましく、70mol%以上であることがさらに好ましい。また、本実施態様の電池用活物質は、MTi結晶相のみから構成されるもの(単相の活物質)であっても良い。なお、電池用活物質に含まれるMTi結晶相の割合は、例えば、金属Liを対極とした電池を作製し、その容量を測定することにより決定することができる。例えばM元素がY(イットリウム)である場合、金属Liに対する0.8V~1.5Vでの容量が、YTiにLiが挿入脱離する反応に該当する。
 本実施態様の電池用活物質は、金属Liに対するLi挿入脱離電位が1.5V以下であることが好ましく、1.4V以下であることがより好ましく、1.3V以下であることがさらに好ましく、1.2V以下であることが特に好ましい。本実施態様の電池用活物質をリチウム電池の負極活物質として用いた場合に、従来のLTO(Li挿入脱離電位1.5V)を負極活物質として用いた場合と比べて、電池電圧を同等またはそれ以上にできるからである。一方、本実施態様の電池用活物質は、金属Liに対するLi挿入脱離電位が0.5V以上であることが好ましい。本実施態様においては、電池用活物質のLi挿入脱離電位を、Li挿入電位およびLi脱離電位の平均値と定義することができる。また、Li挿入電位およびLi脱離電位は、サイクリックボルタンメトリ(CV)法により決定することができる。
 本実施態様の電池用活物質は、正極活物質として用いても良く、負極活物質として用いても良いが、後者であることが好ましい。例えば、本実施態様の電池用活物質をリチウム電池の負極活物質として用いた場合に、従来のLTOを負極活物質として用いた場合と比べて、電池電圧を大きくすることができるからである。
 また、本実施態様の電池用活物質は、MTi結晶相の割合が多くなる程、電子伝導性が向上する傾向にある。活物質自身の電子伝導性が高ければ、導電化材の使用量を低減することができ、それに伴い、活物質の使用量を増加させることができる。その結果、電池の高容量化を図ることができるという利点がある。本実施態様の電池用活物質の電子伝導度(室温)は、例えば10-7S/cm以上であることが好ましく、10-5S/cm以上であることがより好ましい。
 本実施態様の電池用活物質の形状は、粒子状であることが好ましい。また、電池用活物質の平均粒径は、例えば1nm~100μmの範囲内、中でも10nm~30μmの範囲内であることが好ましい。
 本実施態様の電池用活物質は、金属(金属イオン)が挿入脱離可能であるため、種々の電池の活物質として利用可能である。上記電池の種類としては、例えばリチウム電池、ナトリウム電池、マグネシウム電池およびカルシウム電池等を挙げることができ、中でも、リチウム電池およびナトリウム電池が好ましく、特にリチウム電池が好ましい。さらに、本実施態様の電池用活物質は、一次電池に用いられる活物質であっても良く、二次電池に用いられる活物質であっても良いが、後者であることが好ましい。繰り返し充放電でき、例えば車載用電池に用いられる活物質として有用だからである。
 また、本実施態様の電池用活物質の製造方法は、上述した電池用活物質を得ることができる方法であれば特に限定されるものではない。本実施態様の電池用活物質の製造方法としては、例えば固相法を挙げることができる。固相法の具体例としては、M(例えばY、Nd)、TiOおよびTiSを、MTi結晶相が得られる割合で混合し、加熱する方法を挙げることができる。この時、不要な副反応を抑制するために、真空状態で加熱を行うことが好ましい。また、例えばM、TiOおよびTiSを等モルで混合すれば、化学量論的にはMTiの組成を得ることができる。さらに、本実施態様の電池用活物質は、S元素を含有するため、大気中の水分と反応することにより、劣化することが考えられる。従って、電池用活物質の保管、および、電池用活物質を用いた電池の作製は、不活性ガス雰囲気下で行うことが好ましい。
2.第二実施態様
 次に、本発明の電池用活物質の第二実施態様について説明する。第二実施態様の電池用活物質は、第III族元素であるM元素、Ti元素、O元素およびS元素を含有し、結晶質であり、かつ、金属Liに対するLi挿入脱離電位が1.4V以下であることを特徴とするものである。
 本実施態様によれば、金属Liに対するLi挿入脱離電位が所定の値以下であることから、電位の低い電池用活物質とすることができる。そのため、本実施態様の電池用活物質は、例えば電池の負極活物質として有用である。さらに、本実施態様の電池用活物質をリチウム電池の負極活物質として用いた場合、従来のLTOよりもLi挿入脱離電位を低くすることができるので、従来よりも電池電圧の大きいリチウム電池を得ることができる。また、本実施態様の電池用活物質は、O元素を有し、酸化物としての挙動を示すため、従来のカーボン材料よりも熱安定性が優れているという利点を有する。
 本実施態様の電池用活物質は、通常、金属Liに対するLi挿入脱離電位が1.4V以下であることを大きな特徴とするが、Li挿入脱離電位の好ましい範囲や測定方法等については、上記「1.第一実施態様」に記載した内容と同様である。
 また、本実施態様の電池用活物質は、Ruddlesden-Popper構造AのAサイトに位置する上記M元素の一部が欠損した構造の結晶相を有することが好ましい。欠陥部位に金属イオン(例えばLiイオン)が挿入脱離し、活物質としての機能が顕著に発現すると考えられるからである。特に、本実施態様の電池用活物質は、上記結晶相を主体として含有することが好ましい。
 また、本実施態様の電池用活物質の物性、製造方法およびその他の事項については、上記「1.第一実施態様」に記載した内容と同様であるので、ここでの記載は省略する。
B.電池
 次に、本発明の電池について説明する。本発明の電池は、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを有する電池であって、上記正極活物質または上記負極活物質が、上述した電池用活物質であることを特徴とするものである。
 図1は、本発明の電池の一例を示す概略断面図である。図1に示される電池10は、正極活物質層1と、負極活物質層2と、正極活物質層1および負極活物質層2の間に形成された電解質層3と、正極活物質層1の集電を行う正極集電体4と、負極活物質層2の集電を行う負極集電体5と、これらの部材を収納する電池ケース6とを有するものである。本発明の電池は、正極活物質層1または負極活物質層2が、上記「A.電池用活物質」に記載した電池用活物質を含有することを大きな特徴とする。
 本発明によれば、熱安定性に優れた電池用活物質を用いることにより、安全性に優れた電池とすることができる。また、特に負極活物質層が電池用活物質を含有する場合には、電池電圧の大きい電池を得ることができる。
 以下、本発明の電池について、構成ごとに説明する。
1.負極活物質層
 まず、本発明における負極活物質層について説明する。本発明における負極活物質層は、少なくとも負極活物質を含有する層である。また、負極活物質層は、負極活物質の他に、導電化材、結着材および固体電解質材料の少なくとも一つを含有していても良い。特に、本発明の電池が固体電解質層を有する固体電池である場合は、負極活物質層が固体電解質材料を含有することが好ましい。固体電解質層は液体電解質層(電解液)に比べて、負極活物質層の内部に浸透しにくく、負極活物質層の内部のイオン伝導性が低くなる可能性があるからである。固体電解質材料を添加することで、負極活物質層のイオン伝導性を容易に向上させることができる。
 本発明においては、負極活物質が、上記「A.電池用活物質」に記載した電池用活物質であることが好ましい。例えば、本発明の電池がリチウム電池である場合に、従来のLTOを負極活物質として用いた電池に比べて、電池電圧を大きくすることができるからである。一方、本発明においては、正極活物質に上述した電池用活物質を用いて、負極活物質に従来の活物質を用いても良い。この場合、負極活物質として、上述した電池用活物質よりも電位が低い活物質を用いる必要がある。さらに、上述した電池用活物質は、伝導イオンとなり得る金属元素(例えばLi元素)を含有していないため、負極活物質が、その金属元素を含有していることが好ましい。特に、本発明の電池が、リチウム電池であり、かつ、上述した電池用活物質を正極活物質として含有する場合は、用いられる負極活物質として、金属LiおよびLi合金等のLi含有活物質を用いることが好ましい。
 導電化材の材料としては、所望の電子伝導性を有するものであれば特に限定されるものではないが、例えば炭素材料を挙げることができる。さらに、炭素材料としては、具体的には、アセチレンブラック、ケッチェンブラック、カーボンブラック、コークス、炭素繊維、黒鉛を挙げることができる。また、結着材の材料としては、化学的、電気的に安定なものであれば特に限定されるものではないが、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系結着材、および、スチレンブタジエンゴム等のゴム系結着材等を挙げることができる。また、固体電解質材料としては、所望のイオン伝導性を有するものであれば特に限定されるものではないが、例えば、酸化物固体電解質材料、硫化物固体電解質材料を挙げることができる。なお、固体電解質材料については、後述する「3.電解質層」で詳細に説明する。
 負極活物質層における負極活物質の含有量は、容量の観点からはより多いことが好ましく、例えば60重量%~99重量%の範囲内、中でも70重量%~95重量%の範囲内であることが好ましい。また、導電化材の含有量は、所望の電子伝導性を確保できれば、より少ないことが好ましく、例えば1重量%~30重量%の範囲内であることが好ましい。また、結着材の含有量は、負極活物質等を安定に固定化できれば、より少ないことが好ましく、例えば1重量%~30重量%の範囲内であることが好ましい。また、固体電解質材料の含有量は、所望のイオン伝導性を確保できれば、より少ないことが好ましく、例えば1重量%~40重量%の範囲内であることが好ましい。
 また、負極活物質層の厚さは、電池の構成によって大きく異なるものであるが、例えば0.1μm~1000μmの範囲内であることが好ましい。
2.正極活物質層
 次に、本発明における正極活物質層について説明する。本発明における正極活物質層は、少なくとも正極活物質を含有する層である。また、正極活物質層は、正極活物質の他に、導電化材、結着材および固体電解質材料の少なくとも一つを含有していても良い。特に、本発明の電池が固体電解質層を有する固体電池である場合は、正極活物質層が固体電解質材料を含有することが好ましい。固体電解質層は液体電解質層(電解液)に比べて、正極活物質層の内部に浸透しにくく、正極活物質層の内部のイオン伝導性が低くなる可能性があるからである。固体電解質材料を添加することで、正極活物質層のイオン伝導性を容易に向上させることができる。
 本発明においては、正極活物質が、上述した電池用活物質よりも電位が高い活物質であることが好ましい。すなわち、上述した電池用活物質を、正極活物質としてではなく、負極活物質として用いることが好ましい。例えば、本発明の電池がリチウム電池である場合に、従来のLTOを負極活物質として用いた電池に比べて、電池電圧を大きくすることができるからである。
 負極活物質に上述した電池用活物質を用いる場合、正極活物質として一般的な活物質を用いることができる。このような正極活物質としては、例えば本発明の電池がリチウム電池である場合、LiCoO、LiNiO、LiCo1/3Ni1/3Mn1/3、LiVO、LiCrO等の層状正極活物質、LiMn、Li(Ni0.25Mn0.75、LiCoMnO、LiNiMn等のスピネル型正極活物質、LiCoPO、LiMnPO、LiFePO等のオリビン型正極活物質等を挙げることができる。
 また、本発明における正極活物質は、金属Liに対するLi挿入脱離電位が4.5V以上である活物質であることが好ましく、4.6V~4.8Vの範囲内にある活物質であることがより好ましい。このような正極活物質と、上記M元素がY(イットリウム)である電池用活物質(負極活物質)とを組み合わせて用いることにより、電池電圧3.4V~3.7Vの電池を容易に得ることができるからである。なお、この電池電圧が好ましい理由については後述する。また、金属Liに対する正極活物質のLi挿入脱離電位は、上記「A.電池用活物質」に記載した方法と同様の方法で算出することができる。
 また、本発明における正極活物質は、Li元素、Mn元素およびO元素を少なくとも含有する活物質(Mn含有活物質)であることが好ましい。この場合、Ni元素、Cr元素、Fe元素、Cu元素およびCo元素からなる群から選択される少なくとも一つの元素をさらに含有することが好ましく、Ni元素、Cr元素、Fe元素およびCu元素からなる群から選択される少なくとも一つの元素をさらに含有することがより好ましく、Ni元素をさらに含有することが特に好ましい。また、上記正極活物質は、スピネル型活物質であることが好ましい。金属Liに対するLi挿入脱離電位が高い正極活物質とすることができるからである。このような正極活物質としては、例えばLiMn(4.0V)、Li(Ni0.25Mn0.75(4.7V)、LiCoMnO(5.0V)、LiFeMn(4.9V)、LiCuMn(4.9V)、LiCrMn(4.8V)等を挙げることができる。なお、上記の電位は、金属Liに対するLi挿入脱離電位を示す。
 また、本発明においては、金属Liに対する正極活物質のLi挿入脱離電位と、金属Liに対する負極活物質のLi挿入脱離電位との差が、3.4V~3.7Vの範囲内にあることが好ましく、3.5V~3.7Vの範囲内にあることがより好ましい。現在広く普及している機器(電池電圧3.6Vの電池を搭載する機器)に、設計変更することなく、本発明の電池を適用することができるからである。
 ここで、正極活物質および負極活物質のLi挿入脱離電位の差によって、電池電圧を定義することができる。金属Liを基準とすると、従来のLiCoO(正極活物質)のLi挿入脱離電位は約3.9Vであり、従来のカーボン材料(負極活物質)のLi挿入脱離電位は約0.3Vであり、両者の差である約3.6Vが、従来のリチウム電池の電池電圧になる。LiCoOは、一般的なリチウム電池に広く使用されていることから、携帯電話、ゲーム、ノート型パソコン等のポータブル機器は、電池を3.6V近辺で使用することを前提として設計されていることが多い。一方で、LiCoOに含まれるCoは希少金属であることから、Coの使用量を削減するために、MnをベースにしたMn含有活物質への置換を検討する必要がある。
 しかしながら、現在広く使用されているLiCoOの代わりに、Mn含有活物質を用いると、従来のカーボン材料やLTOを負極活物質として用いても、電池電圧が3.6V付近にはならず、その電池を使用する機器の設計を変えなければならないという問題がある。これに対して、上記M元素がY(イットリウム)である電池用活物質(例えばLi挿入脱離電位=1.1V~1.2Vの活物質)を負極活物質として用い、さらに、上述したMn含有活物質(例えばLi挿入脱離電位=4.6V~4.8Vの活物質)を正極活物質として用いることにより、容易に、3.4V~3.7Vの電池電圧を有する電池を得ることができる。そのため、従来の機器の設計を変更する必要がないという利点を有する。また、正極活物質としてMn含有活物質を用いれば、希少金属であるCoの使用量を削減することができる。
 正極活物質の形状は、粒子状であることが好ましい。また、正極活物質の平均粒径は、例えば1nm~100μmの範囲内、中でも10nm~30μmの範囲内であることが好ましい。正極活物質層における正極活物質の含有量は、容量の観点からはより多いことが好ましく、例えば60重量%~99重量%の範囲内、中でも70重量%~95重量%の範囲内であることが好ましい。なお、正極活物質層に用いられる、導電化材、結着材および固体電解質材料の種類ならびに含有量については、上述した負極活物質層に記載した内容と同様であるので、ここでの記載は省略する。また、正極活物質層の厚さは、電池の構成によって大きく異なるものであるが、例えば0.1μm~1000μmの範囲内であることが好ましい。
3.電解質層
 次に、本発明における電解質層について説明する。本発明における電解質層は、上記正極活物質層および上記負極活物質層の間に形成される層である。電解質層に含まれる電解質を介して、正極活物質と負極活物質との間のイオン伝導を行う。電解質層の形態は、特に限定されるものではなく、液体電解質層、ゲル電解質層、固体電解質層等を挙げることができる。
 液体電解質層は、通常、非水電解液を用いてなる層である。非水電解液の種類は、電池の種類に応じて異なるものであるが、例えばリチウム電池の非水電解液は、通常、リチウム塩および非水溶媒を含有する。リチウム塩としては、例えばLiPF、LiBF、LiClOおよびLiAsF等の無機リチウム塩;およびLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート(BC)、γ-ブチロラクトン、スルホラン、アセトニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランおよびこれらの混合物等を挙げることができる。非水電解液におけるリチウム塩の濃度は、例えば0.5mol/L~3mol/Lの範囲内である。なお、本発明においては、非水電解液として、例えばイオン性液体等の低揮発性液体を用いても良い。
 ゲル電解質層は、例えば、非水電解液にポリマーを添加してゲル化することで得ることができる。具体的には、非水電解液に、ポリエチレンオキシド(PEO)、ポリアクリルニトリル(PAN)またはポリメチルメタクリレート(PMMA)等のポリマーを添加することにより、ゲル化を行うことができる。
 固体電解質層は、固体電解質材料を用いてなる層である。固体電解質材料としては、例えば、酸化物固体電解質材料および硫化物固体電解質材料を挙げることができる。例えば本発明の電池がリチウム電池である場合、固体電解質材料が、硫化物固体電解質材料であることが好ましい。Liイオン伝導性が高く、高出力な電池を得ることができるからである。Liイオン伝導性を有する硫化物固体電解質材料としては、例えば、Li、Sおよび第三成分Aを有するもの等を挙げることができる。第三成分Aとしては、例えばP、Ge、B、Si、I、Al、GaおよびAsからなる群より選択される少なくとも一種を挙げることができる。中でも、本発明においては、硫化物固体電解質材料が、LiSと、LiS以外の硫化物MSとを用いた化合物であることが好ましい。具体的には、LiS-P化合物、LiS-SiS化合物、LiS-GeS化合物等を挙げることができ、中でもLiS-P化合物が好ましい。Liイオン伝導性が高いからである。さらに、LiSおよび硫化物MSとのモル比を、xLiS-(100-x)MSとした場合、xは、50≦x≦95の関係を満たすことが好ましく、60≦x≦85の関係を満たすことがより好ましい。なお、LiS-P化合物は、LiSおよびPを用いた硫化物固体電解質材料を意味する。その他の化合物についても同様である。例えば、LiSおよびPを用いて、メカニカルミリング法または溶融急冷法を行うことで、非晶質のLiS-P化合物を得ることができる。
 本発明における固体電解質材料は、非晶質であっても良く、結晶質であっても良い。ここで、結晶質の硫化物固体電解質材料は、例えば、非晶質の硫化物固体電解質材料を焼成することで得ることができる。例えば、70LiS-30Pの組成を有する非晶質の硫化物固体電解質材料を焼成することで、Liイオン伝導性の高い結晶質のLi11を得ることができる。また、固体電解質材料の形状は、粒子状であることが好ましい。また、固体電解質材料の平均粒径は、例えば1nm~100μmの範囲内、中でも10nm~30μmの範囲内であることが好ましい。
 電解質層の厚さは、電解質の種類および電池の構成によって大きく異なるものであるが、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。
4.その他の構成
 本発明の電池は、上述した負極活物質層、正極活物質層および電解質層を少なくとも有するものである。さらに通常は、正極活物質層の集電を行う正極集電体、および負極活物質層の集電を行う負極集電体を有する。正極集電体の材料としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができ、中でもSUSが好ましい。一方、負極集電体の材料としては、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができ、中でもSUSが好ましい。また、正極集電体および負極集電体の厚さや形状等については、電池の用途等に応じて適宜選択することが好ましい。
 本発明の電池は、正極活物質層および負極活物質層の間に、セパレータを有していても良い。より安全性の高い電池を得ることができるからである。セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン、セルロース、ポリフッ化ビニリデン等の多孔膜;および樹脂不織布、ガラス繊維不織布等の不織布等を挙げることができる。また、本発明に用いられる電池ケースには、一般的な電池の電池ケースを用いることができる。電池ケースとしては、例えばSUS製電池ケース等を挙げることができる。
5.電池
 本発明の電池は、上述した正極活物質層、負極活物質層および電解質層を有するものであれば特に限定されるものではない。本発明の電池の種類としては、例えばリチウム電池、ナトリウム電池、マグネシウム電池およびカルシウム電池等を挙げることができ、中でも、リチウム電池およびナトリウム電池が好ましく、特にリチウム電池が好ましい。また、本発明の電池は、電解質層が固体電解質層である電池であっても良く、電解質層が液体電解質層である電池であって良い。さらに、本発明の電池は、一次電池であっても良く、二次電池であっても良いが、中でも、二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。また、本発明の電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。また、電池の製造方法は、特に限定されるものではなく、一般的な電池における製造方法と同様である。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
[実施例1]
 まず、原料として、Y、TiOおよびTiS(全てアルドリッチ社製)を用意した。次に、Y、TiOおよびTiSを等モルで秤量し、乳鉢で混合し、原料組成物を得た。次に、原料組成物を石英管に入れ真空封入した。その後、石英管を、焼成炉を用いて1100℃、5日間の条件で加熱した。冷却後、得られた材料を乳鉢で粉砕することで粒径を調整した。これにより、本発明の電池用活物質を得た。
[評価1]
(1)X線回折測定
 実施例1で得られた活物質を用いて、X線回折(XRD)測定を行った。その結果を図2に示す。図2に示されるチャートから、得られた活物質はYTi結晶相を含有するものであることが確認された。YTi結晶相を示すピークは、2θ=15.6°、26.2°、31.3°、33.6°、36.4°、41.3°、43.0°、48.2°に現れた。
(2)充放電特性
(第一の評価用電池)
 実施例1で得られた活物質を正極活物質として用いて評価用電池を作製し、活物質の充放電特性を評価した。まず、正極活物質と、結着材であるPTFE(ポリテトラフルオロエチレン)と、導電化材であるKB(ケッチェンブラック)とを用意した。その後、正極活物質、PTFEおよびKBを、正極活物質:PTFE:KB=70:5:25の重量比で混合し、正極合材(10mg)を得た。次に、電解液として、EC(エチレンカーボネート)およびDEC(ジエチルカーボネート)を同体積で混合した溶媒にLiPFを濃度1mol/Lで溶解させたものを用意し、負極活物質として金属Liを用意した。これらの部材を用いて、コイン型の評価用電池を作製した。
 その後、得られた評価用電池に対して、定電流充放電(0.2mA)、充放電範囲0.5V~3.5V、放電スタートの条件で、充放電を行った。その結果を図3に示す。図3に示されるように、0.9V~1.1V付近で可逆な電池反応を示しており、金属Liに対する活物質のLi挿入脱離電位は、1.4V以下であることが確認された。また、充放電カーブにおける0.7V以下での挙動は、導電化材として用いたKBの影響によるものであると考えられる。そのため、KBの影響を考慮すると、活物質の容量は70mAh/g程度であると推測される。
(第二の評価用電池)
 Li(Ni0.25Mn0.75を正極活物質として用いて評価用電池を作製し、活物質の充放電特性を評価した。ここでは、実施例1で得られた活物質の代わりに、Li(Ni0.25Mn0.75を用いたこと以外は上記と同様にしてコイン型の評価用電池を得た。
 その後、得られた評価用電池に対して、定電流充放電(0.2mA)、充放電範囲2.5V~5.0V、充電スタートの条件で、充放電を行った。その結果を図4に示す。図4に示されるように、4.6V~4.8V付近で可逆な電池反応を示している。そのため、金属Liに対する活物質のLi挿入脱離電位は、4.6V~4.8Vの範囲内にあることが確認された。なお、図4においては、2.6V~2.9Vにも可逆な電池反応が見られたが、ここでは、より高い電位を金属Liに対する活物質のLi挿入脱離電位とする。
(第三の評価用電池)
 実施例1で得られた活物質を負極活物質として用い、Li(Ni0.25Mn0.75を正極活物質として用いた評価用電池を作製した。まず、正極活物質、PTFEおよびKBを、正極活物質:PTFE:KB=70:5:25の重量比で混合し、正極合材(10mg)を得た。次に、負極活物質、PTFEおよびKBを、負極活物質:PTFE:KB=70:5:25の重量比で混合し、負極合材(10mg)を得た。次に、電解液として、EC(エチレンカーボネート)およびDEC(ジエチルカーボネート)を同体積で混合した溶媒にLiPFを濃度1mol/lで溶解させたものを用意した。これらの部材を用いて、コイン型の評価用電池を作製した。
 その後、得られた評価用電池に対して、定電流充放電(0.2mA)、充電スタートの条件で、充放電を行った。その結果、この評価用電池は、3.5V~3.7V付近でメインの充電反応を示し、3.4V~3.7V付近でメインの放電反応を示すことが確認された。その後、上記と同様の条件で10サイクルの充放電を行った。1サイクル目と、10サイクル目のサイクル効率の結果を表1に示す。表1に示されるように、本発明の電池は、良好なサイクル効率を有することが確認された。
Figure JPOXMLDOC01-appb-T000001
(3)サイクリックボルタンメトリ測定
 実施例1で得られた活物質を用いた第一の評価用電池に対して、サイクリックボルタンメトリ(CV)測定を行うことにより、金属Liに対する活物質のLi挿入脱離電位を算出した。測定条件は、電気化学測定装置システム(ソーラトロン社製、147055BEC型)を用い、電位範囲0.5V~4.0V(vs Li/Li)、掃引速度0.1mV/secとした。その結果、挿入電位は0.96V(vs Li/Li)となり、脱離電位は1.23V(vs Li/Li)となり、Li挿入脱離電位は1.095V(vs Li/Li)となった。
[実施例2]
 まず、原料として、Nd、TiOおよびTiS(全てアルドリッチ社製)を用意した。次に、Nd、TiOおよびTiSを等モルで秤量し、乳鉢で混合し、原料組成物を得た。次に、原料組成物を石英管に入れ真空封入した。その後、石英管を、焼成炉を用いて1100℃、4日間の条件で加熱した。冷却後、得られた材料を乳鉢で粉砕することで粒径を調整した。これにより、本発明の電池用活物質を得た。
[評価2]
(1)X線回折測定
 実施例2で得られた活物質を用いて、X線回折(XRD)測定を行った。その結果を図5に示す。図5に示されるチャートから、得られた活物質はNdTi結晶相を含有するものであることが確認された。NdTi結晶相を示すピークは、2θ=15.4°、25.8°、30.3°、32.8°、35.9°、40.6°、42.4°、47.0°に現れた。
(2)充放電特性
 実施例2で得られた活物質を正極活物質として用いて評価用電池を作製し、活物質の充放電特性を評価した。まず、正極活物質と、結着材であるPTFE(ポリテトラフルオロエチレン)と、導電化材であるKB(ケッチェンブラック)とを用意した。その後、正極活物質、PTFEおよびKBを、正極活物質:PTFE:KB=70:5:25の重量比で混合し、正極合材(10mg)を得た。次に、電解液として、EC(エチレンカーボネート)およびDEC(ジエチルカーボネート)を同体積で混合した溶媒にLiPFを濃度1mol/Lで溶解させたものを用意し、負極活物質として金属Liを用意した。これらの部材を用いて、コイン型の評価用電池を作製した。
 その後、得られた評価用電池に対して、定電流充放電(0.2mA)、充放電範囲0.75V~2.0V、放電スタートの条件で、充放電を行った。その結果を図6に示す。図6に示されるように、1.1V~1.4V付近で可逆な電池反応を示しており、金属Liに対する活物質のLi挿入脱離電位は、1.4V以下であることが確認された。
(3)サイクリックボルタンメトリ測定
 実施例2で得られた活物質を用いたこと以外は、上述した第一の評価用電池と同様にして評価用電池を得た。この評価用電池に対して、サイクリックボルタンメトリ(CV)測定を行うことにより、金属Liに対する活物質のLi挿入脱離電位を算出した。測定条件は、電気化学測定装置システム(ソーラトロン社製、147055BEC型)を用い、電位範囲0.5V~3.0V(vs Li/Li)、掃引速度0.1mV/secとした。その結果を図7に示す。図7に示されるように、1.1V~1.4V付近に活物質による容量が確認された。また、0.9V付近にも活物質による容量が確認された。さらに、酸化ピーク、還元ピークがともに出現していることから、可逆的にLiの挿入脱離反応が行われていることが示唆された。
 1 … 正極活物質層
 2 … 負極活物質層
 3 … 電解質層
 4 … 正極集電体
 5 … 負極集電体
 6 … 電池ケース
 10 … 電池

Claims (13)

  1.  第III族元素であるM元素、Ti元素、O元素およびS元素を含有し、MTi結晶相を含有することを特徴とする電池用活物質。
  2.  前記MTi結晶相を主体として含有することを特徴とする請求の範囲第1項に記載の電池用活物質。
  3.  前記M元素が、YおよびNdの少なくとも一方であることを特徴とする請求の範囲第1項または第2項に記載の電池用活物質。
  4.  金属Liに対するLi挿入脱離電位が1.4V以下であることを特徴とする請求の範囲第1項から第3項までのいずれかに記載の電池用活物質。
  5.  第III族元素であるM元素、Ti元素、O元素およびS元素を含有し、結晶質であり、かつ、金属Liに対するLi挿入脱離電位が1.4V以下であることを特徴とする電池用活物質。
  6.  Ruddlesden-Popper構造AのAサイトに位置する前記M元素の一部が欠損した構造の結晶相を有することを特徴とする請求の範囲第5項に記載の電池用活物質。
  7.  前記M元素が、YおよびNdの少なくとも一方であることを特徴とする請求の範囲第5項または第6項に記載の電池用活物質。
  8.  負極活物質であることを特徴とする請求の範囲第1項から第7項までのいずれかに記載の電池用活物質。
  9.  正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された電解質層とを有する電池であって、
     前記正極活物質または前記負極活物質が、請求の範囲第1項から第8項までのいずれかに記載の電池用活物質であることを特徴とする電池。
  10.  前記負極活物質が、前記電池用活物質であることを特徴とする請求の範囲第9項に記載の電池。
  11.  前記M元素が、Y(イットリウム)であり、
     前記正極活物質が、金属Liに対するLi挿入脱離電位が4.6V~4.8Vの範囲内にある活物質であることを特徴とする請求の範囲第10項に記載の電池。
  12.  金属Liに対する前記正極活物質のLi挿入脱離電位と、金属Liに対する前記負極活物質のLi挿入脱離電位との差が、3.4V~3.7Vの範囲内であることを特徴とする請求の範囲第10項または第11項に記載の電池。
  13.  リチウム電池であることを特徴とする請求の範囲第9項から第12項までのいずれかに記載の電池。
PCT/JP2011/053502 2010-03-25 2011-02-18 電池用活物質および電池 WO2011118302A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11759110.7A EP2557620B1 (en) 2010-03-25 2011-02-18 Active material for battery, and battery
US13/636,211 US9160000B2 (en) 2010-03-25 2011-02-18 Active material for battery, and battery
CN201180015190.9A CN102812584B (zh) 2010-03-25 2011-02-18 电池用活性物质和电池
JP2012506889A JP5354091B2 (ja) 2010-03-25 2011-02-18 電池用活物質および電池
AU2011230912A AU2011230912B2 (en) 2010-03-25 2011-02-18 Active material for battery, and battery
KR1020127024908A KR101382502B1 (ko) 2010-03-25 2011-02-18 전지용 활물질 및 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2010/055197 2010-03-25
PCT/JP2010/055197 WO2011117992A1 (ja) 2010-03-25 2010-03-25 電池用活物質および電池

Publications (1)

Publication Number Publication Date
WO2011118302A1 true WO2011118302A1 (ja) 2011-09-29

Family

ID=44672583

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/055197 WO2011117992A1 (ja) 2010-03-25 2010-03-25 電池用活物質および電池
PCT/JP2011/053502 WO2011118302A1 (ja) 2010-03-25 2011-02-18 電池用活物質および電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055197 WO2011117992A1 (ja) 2010-03-25 2010-03-25 電池用活物質および電池

Country Status (7)

Country Link
US (1) US9160000B2 (ja)
EP (1) EP2557620B1 (ja)
JP (1) JPWO2011117992A1 (ja)
KR (1) KR101382502B1 (ja)
CN (1) CN102812584B (ja)
AU (1) AU2011230912B2 (ja)
WO (2) WO2011117992A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045642A (ja) * 2011-08-24 2013-03-04 Toyota Motor Corp 電池用活物質、電池用活物質の製造方法、および電池
JP2014120362A (ja) * 2012-12-18 2014-06-30 Toyota Motor Corp 電池用活物質および電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943308B2 (ja) * 2012-12-03 2016-07-05 トヨタ自動車株式会社 電池用活物質M2Ti2O5S2の製造方法
JP6003798B2 (ja) * 2013-05-10 2016-10-05 トヨタ自動車株式会社 活物質の製造方法、及び、電池
US9716289B1 (en) * 2016-01-12 2017-07-25 Toyota Motor Engineering & Manufacturing North America, Inc. Solid-phase magnesium boranyl electrolytes for a magnesium battery
US10910672B2 (en) 2016-11-28 2021-02-02 Toyota Motor Engineering & Manufacturing North America, Inc. High concentration electrolyte for magnesium battery having carboranyl magnesium salt in mixed ether solvent
US20200381733A1 (en) * 2017-04-27 2020-12-03 Toyota Motor Europe Titanium-based positive electrode materials for rechargeable calcium batteries and cell comprising the same
US10680280B2 (en) 2017-09-26 2020-06-09 Toyota Jidosha Kabushiki Kaisha 3D magnesium battery and method of making the same
JP7195184B2 (ja) * 2019-03-07 2022-12-23 三菱ケミカル株式会社 金属酸硫化物の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283845A (ja) * 2000-03-29 2001-10-12 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP2004079463A (ja) * 2002-08-22 2004-03-11 Santoku Corp リチウムイオン二次電池用負極活物質、その製造法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2006127911A (ja) * 2004-10-28 2006-05-18 Canon Inc リチウム二次電池
JP2008123787A (ja) 2006-11-10 2008-05-29 Toshiba Corp 非水電解質電池、リチウムチタン複合酸化物および電池パック
JP2008130560A (ja) * 2006-11-20 2008-06-05 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法およびリチウム2次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060199078A1 (en) * 2005-03-02 2006-09-07 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283845A (ja) * 2000-03-29 2001-10-12 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP2004079463A (ja) * 2002-08-22 2004-03-11 Santoku Corp リチウムイオン二次電池用負極活物質、その製造法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2006127911A (ja) * 2004-10-28 2006-05-18 Canon Inc リチウム二次電池
JP2008123787A (ja) 2006-11-10 2008-05-29 Toshiba Corp 非水電解質電池、リチウムチタン複合酸化物および電池パック
JP2008130560A (ja) * 2006-11-20 2008-06-05 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法およびリチウム2次電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GEOFFREY HYETT ET AL.: "Electronically Driven Structural Distortions in Lithium Intercalates of the n = 2 Ruddlesden-Popper Type Host Y2Ti205S2: Synthesis, Structure, and Properties of LixY2Ti20sS2 (0 < x < 2", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, 2004, pages 1980 - 1991, XP055115700, DOI: doi:10.1021/ja037763h
GEOFFREY HYETT ET AL.: "Electronically Driven Structural Distortions in Lithium Intercalates of the n=2 Ruddlesden-Popper-Type Host Y2Ti205S2: Synthesis", STRUCTURE, AND PROPERTIES OF LIXY2TI2O5S2(0<X<2), JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, 31 January 2004 (2004-01-31), pages 1980 - 1991, XP055115700 *
M. GOGA ET AL.: "Ln2Ti2S205 (Ln = Nd, Pr, Sm): a novel series of defective Ruddlesden-Popper phases", CHEMICAL COMMUNICATIONS, 1999, pages 979 - 980, XP002731653, DOI: doi:10.1039/A809737B
See also references of EP2557620A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045642A (ja) * 2011-08-24 2013-03-04 Toyota Motor Corp 電池用活物質、電池用活物質の製造方法、および電池
US8980476B2 (en) 2011-08-24 2015-03-17 Toyota Jidosha Kabushiki Kaisha Active material for battery, battery, and method for production of active material for battery
JP2014120362A (ja) * 2012-12-18 2014-06-30 Toyota Motor Corp 電池用活物質および電池
US9397336B2 (en) 2012-12-18 2016-07-19 Toyta Jidosha Kabushiki Kaisha Battery active material comprising a crystal phase having a Ruddlesden-Popper structure and battery including the same

Also Published As

Publication number Publication date
KR20120136369A (ko) 2012-12-18
EP2557620A4 (en) 2014-12-10
JPWO2011117992A1 (ja) 2013-07-04
CN102812584B (zh) 2016-02-03
WO2011117992A1 (ja) 2011-09-29
EP2557620A1 (en) 2013-02-13
CN102812584A (zh) 2012-12-05
KR101382502B1 (ko) 2014-04-07
AU2011230912B2 (en) 2013-11-07
AU2011230912A1 (en) 2012-10-11
US9160000B2 (en) 2015-10-13
EP2557620B1 (en) 2017-04-26
US20130022875A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5843766B2 (ja) 正極活物質、正極及び非水系二次電池
JP5472237B2 (ja) 電池用活物質、電池用活物質の製造方法、および電池
WO2011118302A1 (ja) 電池用活物質および電池
JP5699876B2 (ja) ナトリウムイオン電池用活物質およびナトリウムイオン電池
KR20150022647A (ko) 리튬 이차전지용 전해액 및 리튬 이차전지
JP5451671B2 (ja) 正極活物質、正極及び非水系二次電池
JP2012174535A (ja) 電極活物質、及び当該電極活物質を負極に含有する金属二次電池
US9325009B2 (en) Cathodic active material for nonaqueous electrolyte secondary battery, cathode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5548523B2 (ja) 正極活物質、正極及び非水電解質二次電池
US9350021B2 (en) Cathode active material, cathode, and nonaqueous secondary battery
JP5725000B2 (ja) 電池用活物質および電池
JP5333658B2 (ja) 電池用活物質および電池
KR101520634B1 (ko) 고용량 리튬 망간계 산화물 및 이를 포함하는 리튬 이차전지
WO2014021395A1 (ja) 非水電解質二次電池用正極活物質
JP5354091B2 (ja) 電池用活物質および電池
JP2012182015A (ja) 電池用活物質および電池
US20140154574A1 (en) Negative electrode active substance and lithium battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015190.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759110

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506889

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011230912

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2011759110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011759110

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127024908

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13636211

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011230912

Country of ref document: AU

Date of ref document: 20110218

Kind code of ref document: A