WO2011118258A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2011118258A1
WO2011118258A1 PCT/JP2011/052013 JP2011052013W WO2011118258A1 WO 2011118258 A1 WO2011118258 A1 WO 2011118258A1 JP 2011052013 W JP2011052013 W JP 2011052013W WO 2011118258 A1 WO2011118258 A1 WO 2011118258A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
motor
axis
current
observation
Prior art date
Application number
PCT/JP2011/052013
Other languages
English (en)
French (fr)
Inventor
加藤浩一
西村圭亮
志謙 陳
スブラタ サハ
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112011100395T priority Critical patent/DE112011100395T5/de
Priority to CN201180007795.3A priority patent/CN102742148B/zh
Publication of WO2011118258A1 publication Critical patent/WO2011118258A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control

Definitions

  • the present invention relates to a motor control device having a function of detecting a magnetic pole position of a permanent magnet synchronous motor without a sensor.
  • a control method called vector control is known as a control method for a permanent magnet synchronous motor, for example, a three-phase synchronous motor.
  • the motor current flowing in the three-phase stator coil of the motor is coordinated with the vector component of the d axis that is the direction of the magnetic field generated by the permanent magnet disposed on the rotor and the q axis that is orthogonal to the d axis. Convert and perform feedback control. For this coordinate conversion, it is necessary to accurately detect the position of the rotor (magnetic pole position).
  • a rotation sensor such as a resolver is also used for magnetic pole position detection, but there is also a sensorless magnetic pole detection technique that electrically detects the magnetic pole position using a counter electromotive force generated by rotation of the rotor. However, since no back electromotive force is generated when the motor is stopped, a high frequency current or a high frequency voltage is applied to the motor, and the magnetic pole position is estimated from the response.
  • Patent Document 1 discloses a motor control device having such a sensorless magnetic pole detection function. According to this, the magnetic pole position is obtained by correcting the error between the magnetic pole position obtained based on the q-axis current detected by applying an AC alternating voltage to the motor and the estimated magnetic pole position. Further, a d-axis voltage command is obtained based on a d-axis current command on which a d-axis bias current having a constant waveform that is alternately switched between positive and negative is superimposed, and the d-axis voltage command is applied to the motor. Then, the direction of the magnetic pole of the permanent magnet is determined from the magnitude relationship of the d-axis voltage command when the d-axis bias current is increased and decreased at the d-axis bias current positive / negative switching timing.
  • the motor control device described in Patent Document 1 has an excellent sensorless magnetic pole detection function capable of determining the position of the magnetic pole including the polarity of the magnetic pole.
  • the d-axis current is in a transient state, and the d-axis voltage may not be stable.
  • the stability of the polarity determination of the magnetic pole is impaired, and erroneous detection may occur.
  • the characteristic configuration of the motor control device is as follows: A motor control device that controls the AC motor in a vector space of a d-axis that is a direction of a magnetic field generated by a permanent magnet disposed in a rotor of the AC motor and a q-axis that is orthogonal to the d-axis, A current for calculating a voltage command in the vector space based on the current command in the vector space and a feedback current obtained by performing coordinate conversion of the detected value of the current flowing in each stator coil of the AC motor to the vector space.
  • a control unit A predetermined high frequency component is applied as an observation command to the d-axis current command or the d-axis voltage command, and the motor has a constant value for a predetermined period with respect to the d-axis current command.
  • An observation command applying unit that applies a DC bias component having a magnitude that is magnetically saturated as the observation command in a positive and negative symmetry; Among the amplitudes of the high-frequency components included in the d-axis response voltage calculated based on the feedback current in response to the observation command, the first amplitude during a period in which the DC bias component is a positive constant value, and the DC A polarity determination unit that determines the polarity of the magnetic pole of the permanent magnet based on the magnitude relationship with the second amplitude during a period in which the bias component is a negative constant value.
  • a DC bias component large enough to cause magnetic saturation of the motor for a predetermined period is applied to the d-axis current command, so that the magnetic flux reaches the saturation region when the DC bias component is positive or negative. . Since the permanent magnet has a magnetic flux, the magnetic flux is not zero even when the d-axis current is zero, and the characteristics of the magnetic flux with respect to the d-axis current are offset in the d-axis direction. Therefore, when the magnetic flux reaches the saturation region when the DC bias component is positive or negative, the magnetic flux does not reach the saturation region on the other side. Since the observation command includes not only a DC bias component but also a high frequency component, the magnetic flux fluctuates in response to this high frequency component.
  • the magnetic flux fluctuates greatly in the active region, but does not fluctuate significantly in the saturation region compared to the active region.
  • Whether the magnetic flux reaches the saturation region when the DC bias component is positive or negative is determined by the polarity of the magnetic pole of the permanent magnet. That is, it is determined depending on which of the N pole and S pole of the permanent magnet is oriented in the positive direction of the d-axis.
  • variation of magnetic flux is observable in the response voltage calculated based on the feedback current from the motor which responded to observation instruction
  • the determination is made based on a response during a period in which the DC bias component is stable in the positive and negative directions, so that stable determination is possible. That is, when the permanent magnet synchronous motor is stopped, the polarity of the magnetic pole of the motor can be stably determined without using a rotation sensor.
  • the observation command application unit of the motor control device applies a predetermined high-frequency component as the observation command to the d-axis current command and has a constant value over a predetermined period.
  • a DC bias component having a magnitude at which the motor magnetically saturates is applied as the observation command in positive and negative symmetry, and the response voltage is calculated based on the feedback current in response to the observation command.
  • a voltage command is preferable.
  • PI proportional integral
  • PID proportional calculus
  • a high frequency component and a DC bias component are applied in the vector space as observation commands in order to determine the polarity of the magnetic pole.
  • the observation command can be easily controlled.
  • the voltage command is calculated using the feedback current that is the result of responding to the observation command, it is not necessary to install a separate function for calculating the response voltage when the voltage command is used as the response voltage. That is, the polarity can be determined by calculating the response voltage using the normal vector control function.
  • the motor control device further determines the position of the magnetic pole of the permanent magnet based on the high frequency component of the voltage command calculated based on the feedback current in response to the high frequency component of the observation command.
  • a position determination unit that determines regardless of polarity, the observation command application unit applies the high-frequency component as the observation command before the position determination unit determines the position of the permanent magnet, It is preferable to apply the high-frequency component and the bias component as the observation command after the position of the permanent magnet is determined. If the phase between the vector space when the current command is set and the actual vector space are different, the DC bias component for the d-axis is vector-decomposed and also has a q-axis component.
  • the DC bias component applied to the d-axis current command has such a magnitude that the motor is magnetically saturated, the DC component that becomes the q-axis current command by vector decomposition is not so large that it can be ignored.
  • motor torque is generated and the rotor rotates.
  • the figure which shows the structural example of the drive device of a motor typically
  • the block diagram which shows an example of the embodiment of a motor control apparatus typically Diagram showing deviation of vector space due to magnetic pole position error Graph showing magnetic characteristics of d-axis without considering permanent magnet
  • the motor control device 10 of the present invention has a function of detecting a magnetic pole position of an AC motor MG (hereinafter simply referred to as “motor” as appropriate) without using a rotation sensor such as a resolver, so-called sensorless. It is.
  • the motor MG is an interior permanent magnet synchronous motor (IPMSM), which is electrically perpendicular to the magnetic characteristics in the N-pole direction of the permanent magnet of the rotor. It has saliency (including reverse saliency) that is different from the magnetic characteristics of the angle (direction shifted by 90 °).
  • the motor control device uses this saliency to determine the magnetic pole position and the magnetic pole direction without a sensor even when the motor MG is stopped.
  • the motor MG is a rotating electrical machine that also functions as a generator.
  • the drive device 20 includes a control unit 11, a driver circuit 12, a current detection device 13, a DC power supply 14, a smoothing capacitor 15, and an inverter 16.
  • the DC power source 14 is a rechargeable secondary battery such as a battery.
  • the driving device 20 converts the DC power of the DC power supply 14 into a three-phase AC having a predetermined frequency and supplies it to the motor MG.
  • the motor MG functions as a generator, the driving device 20 converts the generated AC power into DC and supplies it to the DC power source 14.
  • a smoothing capacitor 15 is connected in parallel between the positive terminal and the negative terminal of the DC power supply 14 to smooth DC power.
  • the inverter 16 includes a plurality of switching elements.
  • An IGBT insulated gate bipolar transistor
  • MOSFET metal oxide field semiconductor effect transistor
  • IGBT is used as a switching element.
  • the inverter 16 includes a U-phase leg 17U, a V-phase leg 17V, and a W-phase leg 17W corresponding to each phase of the motor MG (three phases of U phase, V phase, and W phase).
  • Each leg 17U, 17V, 17W includes a set of two switching elements each composed of an IGBT 18A of the upper arm and an IGBT 18B of the lower arm connected in series.
  • a free wheel diode 19 is connected in parallel to each of the IGBTs 18A and 18B.
  • the U-phase leg 17U, the V-phase leg 17V, and the W-phase leg 17W are connected to the U-phase coil, V-phase coil, and W-phase coil of the motor MG.
  • the connection between the emitter of the IGBT 18A in the upper arm of each phase leg 17U, 17V, 17W and the collector of the IGBT 18B in the lower arm and the phase coil of the motor MG is electrically connected.
  • the collector of the IGBT 18A in the upper arm of each leg 17U, 17V, 17W is connected to a high voltage power line connected to the positive terminal of the DC power supply 14, and the emitter of the IGBT 18B in the lower arm of each leg 17U, 17V, 17W is , Connected to the ground line connected to the negative terminal of the DC power supply 14.
  • the inverter 16 is connected to the control unit 11 via the driver circuit 12 and performs a switching operation according to a control signal generated by the control unit 11.
  • the control unit 11 is configured as an ECU (electronic control unit) having a logic circuit such as a microcomputer (not shown) as a core.
  • the ECU includes a microcomputer, an interface circuit (not shown), and other peripheral circuits.
  • the interface circuit includes EMI (electro-magnetic interference) countermeasure parts, a buffer circuit, and the like.
  • the microcomputer includes a CPU core, a program memory, a work memory, an A / D converter, a communication control unit (not shown), a timer, a port, and the like.
  • the CPU core is the core of the microcomputer, and includes an instruction register, an instruction decoder, an ALU (arithmetic logic unit) that performs various operations, a flag register, a general-purpose register, an interrupt controller, and the like.
  • the program memory is a non-volatile memory that stores a motor control program, a magnetic pole determination program, and various parameters that are referred to when these programs are executed.
  • the program memory is preferably constituted by a flash memory, for example.
  • the work memory is a memory that temporarily stores temporary data during program execution.
  • the work memory is preferably composed of DRAM (dynamic RAM) or SRAM (static RAM) that is volatile and can read and write data at high speed.
  • DRAM dynamic RAM
  • SRAM static RAM
  • the CPU core, A / D converter, and various memories may be integrated on a single chip, or a computer system may be constructed by a plurality of chips.
  • the DC power supply 14 is at a high voltage, and the IGBTs 18A and 18B of the inverter 16 switch the high voltage.
  • the potential difference between the high level and the low level of the pulsed gate drive signal (control signal) input to the gate of the IGBT that switches high voltage is based on the operating voltage of a general electronic circuit such as a microcomputer. Is a much higher voltage. Therefore, the gate drive signal is input to the IGBTs 18 ⁇ / b> A and 18 ⁇ / b> B of the inverter 16 after voltage conversion and insulation via the driver circuit 12.
  • the motor MG is driven at a predetermined output torque and rotation speed under the control of the control unit 11.
  • the value of the current flowing through the stator coil (U-phase coil, V-phase coil, W-phase coil) of the motor MG is fed back to the control unit 11.
  • the control unit 11 drives and controls the motor MG by executing PI control (proportional integral control) and PID control (proportional calculus control) in accordance with the deviation from the target current. Therefore, the current detection device 13 detects the value of current flowing through a conductor (such as a bus bar) provided between each phase leg 17U, 17V, 17W of the inverter 16 and each phase coil of the motor MG.
  • the current detection device 13 is arranged for all three phases. In addition, since the current of each phase of the three phases is balanced and the instantaneous value is zero, the current value of only two phases may be detected.
  • the motor control device 10 is configured as a control unit 11.
  • the motor control device 10 controls the motor MG by vector control. That is, the motor control device 10 controls the motor MG in a vector space of a d axis that is a direction of a magnetic field generated by a permanent magnet disposed on the rotor of the motor MG and a q axis that is orthogonal to the d axis.
  • the motor MG since the actual magnetic pole position cannot be detected, the motor MG cannot be controlled in the vector space converted based on the actual magnetic pole position. Therefore, the motor MG is controlled in the vector space obtained based on the estimated magnetic pole position.
  • FIG. 2 illustrates a functional unit deeply related to the rotation detection unit 8 that determines the magnetic pole position and magnetic pole direction of the rotor in the motor control device 10.
  • FIG. 2 illustrates a functional unit deeply related to the rotation detection unit 8 that determines the magnetic pole position and magnetic pole direction of the rotor in the motor control device 10.
  • a torque command (requested torque) is given to motor control device 10 from a travel control ECU (not shown) or the like.
  • a torque control unit (not shown) of the motor control device 10 sets current commands (target currents) id * and iq * for current feedback control according to the torque commands.
  • the current commands id * and iq * are set corresponding to the vector space based on the d-axis and the q-axis described above. For this reason, the torque control unit determines the d-axis current command id * and the q-axis current based on the torque command value and the angular velocity ⁇ calculated based on the magnetic pole position (electrical angle) ⁇ obtained by the rotation detection unit 8.
  • a current command value calculation unit for determining the command iq * is included.
  • the current controller 2 feeds back feedback signals id * , iq * in the dq vector space and the detected values of the currents Iu, Iv, Iw flowing in the stator coils of the motor MG after being coordinate-converted into the vector space.
  • Iq the voltage command (target voltage) vd * , vq * in the vector space is calculated.
  • the current control unit 2 performs, for example, proportional integral control (PI control) or proportional calculus control (PID control) based on the deviation between the current commands id * and iq * and the feedback currents id and iq. To set voltage commands vd * and vq * .
  • the coordinate conversion unit 5 converts the coordinates into two-phase feedback currents id and iq based on the electrical angle ⁇ .
  • the current control unit 2 performs PI control and PID control based on the deviation between the current commands id * and iq * and the feedback currents id and iq, and sets the voltage commands vd * and vq * .
  • illustration of the functional unit for detecting the angular velocity ⁇ and the angular velocity is omitted.
  • the voltage commands vd * and vq * calculated in the current control unit 2 are coordinate-converted into three-phase voltage commands vu, vv and vw based on the electrical angle ⁇ in the coordinate conversion unit 3.
  • the modulation unit 4 Based on the three-phase voltage commands vu, vv, vw, the modulation unit 4 generates a gate drive signal for driving the three-phase IGBT of the inverter 16 by, for example, PWM (pulse width modulation).
  • the motor control device 10 in the present embodiment employs sensorless control that acquires the rotation angle ⁇ of the rotor without providing a rotation detection device such as a resolver.
  • a rotation detection device such as a resolver
  • the electrical stimulation is given by the observation command application unit 1.
  • the observation command application unit 1 applies a predetermined high-frequency component as an observation command to the d-axis current command id * or the d-axis voltage command vd * .
  • q-axis current command iq * is exemplified. is doing.
  • the high-frequency component applied to the d-axis current command id * and the high-frequency component applied to the q-axis current command iq * have the same amplitude Ih and angular velocity ⁇ h as shown in FIG. Have different waveforms. These high-frequency components are used for both magnetic pole position determination and polarity determination, as will be described later.
  • the observation command applying unit 1 observes a DC bias component Ib having a constant value over a predetermined period and a magnitude at which the motor MG is magnetically saturated with respect to the d-axis current command id * . It is applied symmetrically as a command. That is, the positive DC bias component (+ Ib) and the negative DC bias component ( ⁇ Ib) are applied as constant values over a predetermined period. As will be described later, this value Ib corresponds to the magnitude at which the motor MG is magnetically saturated. More specifically, this corresponds to a magnitude at which a stator core, which is an armature core around which coils of each phase of the motor MG are wound, is magnetically saturated.
  • the high-frequency component and the DC bias component Ib described above are used for determining the polarity of the magnetic pole. Details will be described later.
  • the rotation detection unit 8 includes a position determination unit 6 that determines the magnetic pole position regardless of the polarity, and a polarity determination unit 77 that determines the polarity of the magnetic pole, that is, NS determination. .
  • the position determination unit 6 determines the magnetic pole position of the permanent magnet based on the high frequency component of the voltage command calculated based on the deviation between the feedback current id, iq and the current command id * , iq * in response to the high frequency component of the observation command. Is determined regardless of polarity. That is, the magnetic pole position of the permanent magnet is determined excluding NS magnetism.
  • the polarity determination unit 77 is permanently based on the amplitude (wave height) of the high-frequency component included in the d-axis response voltage calculated based on the d-axis feedback current id in response to the high-frequency component of the observation command and the DC bias component Ib.
  • the magnetism of the magnetic pole of the magnet is determined. Specifically, among the amplitudes of the high-frequency components included in the response voltage, the first amplitude (a1) in a period in which the DC bias component Ib is a positive constant value and the period in which the DC bias component Ib is a negative constant value.
  • the magnetism is determined based on the magnitude relationship with the second amplitude (a2) (see FIGS. 5 and 6). In this embodiment, the case where voltage command vd * is used as a response voltage is illustrated.
  • the voltage equation of the synchronous motor is as follows: d-axis voltage: Vd, q-axis voltage: Vq, d-axis current: Id, q-axis current Iq, stator coil resistance: R, d-axis inductance: Ld, q-axis inductance : Lq, ⁇ : motor rotation frequency (angular velocity), ⁇ a: field main magnetic flux, p: differential operator, expressed by the following equation (1).
  • Equation (1) Equation (2).
  • the observation command as a stimulus in the position determination by the position determination unit 6 is a high-frequency component, and the imaginary number component is dominant in the complex impedance.
  • R which is a real component of the equation (2), can be ignored. That is, regarding the observation command of the high frequency component, the expression (2) can be simplified as the expression (3), and the influence of the d-axis inductance Ld and the q-axis inductance Lq becomes dominant.
  • the estimated value ⁇ ′ of the magnetic pole position is given as a temporary value.
  • a vector space based on this ⁇ ′ is defined as a d′ q ′ vector space.
  • the voltage commands vd * and vq * calculated based on the feedback currents id ′ and iq ′ in the d′ q ′ vector space.
  • the high-frequency components vdh * and vqh * are extracted by a band pass filter (BPF) 9.
  • BPF band pass filter
  • the high-frequency components vdh * and vqh * extracted by the bandpass filter 9 are sent to the position determination unit 6 of the rotation detection unit 8 and are 2 as an error signal ⁇ between the estimated value ⁇ ′ of the magnetic pole position and the true magnetic pole position ⁇ .
  • a double sine wave signal sin2 ⁇ is obtained.
  • the magnetic pole position ⁇ is calculated by dynamically correcting the estimated value ⁇ ′ so that the error ⁇ converges to zero.
  • the sine wave signal sin2 ⁇ includes a value twice as large as the error ⁇ . It will include a phase difference of ° or 180 °.
  • the magnetic pole position ⁇ is one of two point-symmetric points in 360 °. That is, the magnetic pole position ⁇ is determined without considering the NS polarity.
  • the magnetic pole position ⁇ is a high frequency component vdh * obtained via the bandpass filter 9 from the voltage commands vd * and vq * calculated based on the feedback currents id and iq in response to the high frequency component observation command . , Vqh * .
  • the high frequency component is not applied to the current commands id * and iq * , but the high frequency component observation command is applied to the voltage commands vd * and vq * and responds to the observation command.
  • the magnetic pole position may be determined based on the feedback current.
  • a DC bias component ⁇ Ib is further applied to id * in the d-axis current command based on the determined ⁇ .
  • the motor MG is a permanent magnet type motor, the magnetic flux ⁇ of the permanent magnet exists even if the d-axis current Id is zero. For this reason, as shown in FIGS. 5 and 6, even if the d-axis current Id is zero, the magnetic flux ⁇ does not become zero.
  • FIG. 5 and 6 even if the d-axis current Id is zero, the magnetic flux ⁇ does not become zero.
  • FIG. 5 shows the case where the magnetism is on the N pole side, that is, the case where the N poles are aligned in the positive direction of the d axis, and a positive magnetic flux ⁇ exists even if the d axis current Id is zero.
  • FIG. 6 shows the case where the magnetism is on the S pole side, that is, the case where the N poles are aligned in the negative direction of the d axis, and a negative magnetic flux ⁇ exists even if the d axis current Id is zero.
  • the DC bias component ⁇ Ib is the value of the d-axis current Id corresponding to the magnitude that causes magnetic saturation in the motor MG.
  • the motor MG already has a positive magnetic flux ⁇ even if the d-axis current Id is zero.
  • the bias component Ib is applied to the d-axis current Id, the motor MG reaches the magnetic saturation region. Even if a high frequency component is applied to the d-axis current Id in this region, the magnetic flux ⁇ that changes in response to the high frequency component is small.
  • the polarity determination unit 7 can determine the polarity of the permanent magnet based on the magnitude relationship between the first amplitude a1 and the second amplitude a2.
  • the motor MG when the magnetism is on the S pole side, the motor MG already has a negative magnetic flux ⁇ even if the d-axis current Id is zero.
  • Ib is applied to the d-axis current Id
  • the motor MG reaches the magnetic saturation region. Even if a high frequency component is applied to the d-axis current Id in this region, the magnetic flux ⁇ that changes in response to the high frequency component is small.
  • the DC bias component Ib in the positive direction is applied to the d-axis current Id, the motor MG does not reach the magnetic saturation region.
  • the magnetic flux ⁇ changes sufficiently in response to the high frequency component.
  • the polarity determination unit 7 can determine the polarity of the magnetic pole of the permanent magnet based on the magnitude relationship between the first amplitude and the second amplitude.
  • the motor control device 10 executes a determination process for the magnetic pole position and polarity of the rotor of the motor MG prior to driving the motor MG.
  • the magnetic pole position ⁇ is determined (step # 10).
  • the observation command application unit 1 applies only a predetermined high-frequency component as an observation command to the d-axis current command id * or the voltage command vd * .
  • the DC bias component Ib is not applied in this step.
  • the observation command application unit 1 and the position determination unit 6 perform the convergence calculation as described above to determine the magnetic pole position ⁇ .
  • NS polarity is determined in steps # 21 to # 26. If the phase between the vector space (d′ q ′ vector space) when the current commands id * and iq * are set and the actual vector space (dq vector space) are different as illustrated in FIG. ,
  • the DC bias component Ib for the d ′ axis is vector-decomposed and has an actual q-axis component. As described above, the DC bias component Ib applied to the d-axis current command id * has such a magnitude that the motor MG is magnetically saturated. Accordingly, the DC component applied to the q-axis current command iq * by vector decomposition is not so large as to be negligible.
  • step # 10 it is preferable to execute step # 10 prior to the polarity determination to accurately determine the magnetic pole position ⁇ regardless of the polarity.
  • the observation command application unit 1 applies the DC bias component Ib to the d-axis current command id * in addition to the high-frequency component already applied in step # 10. Specifically, the DC bias component Ib in the positive direction is applied to the d-axis current command id * (step # 21). Then, the polarity determination unit 7 acquires the wave height A1 (or amplitude a1) during a period in which the DC bias component is a positive constant value. Subsequently, the observation command application unit 1 applies the DC bias component Ib in the negative direction to the d-axis current command id * (step # 22). And the polarity determination part 7 acquires the wave height A2 (or amplitude a2) in the period when the direct-current bias component Ib is a negative constant value.
  • the polarity determination unit 7 determines the polarity of the permanent magnet based on the magnitude relationship between the wave height A1 (or amplitude a1) and the wave height A2 (or amplitude a2) as described above (# 23). Specifically, as shown in FIG. 7, when the wave height A2 is larger than the wave height A1 (when the second amplitude a2 is larger than the first amplitude a1), the positive direction of the d-axis is the N pole (the polarity is N pole) (# 24).
  • the wave height A1 is greater than or equal to the wave height A2 (when the first amplitude a1 is greater than or equal to the second amplitude a2)
  • the value of ⁇ is updated by adding 180 ° to the value of ⁇ determined in step # 10 of the magnetic pole position determination (# 26).
  • steps # 10 to # 26 the position of the magnetic pole of the permanent magnet and the magnetism are determined, and the position of the magnetic pole of the permanent magnet is specified as one point in 360 °.
  • the voltage command vd * calculated by the current control unit 2 using the feedback current id has been described as the response voltage. That is, the case where the normal voltage calculation in the vector control (calculations as shown in the equations (1) to (3)) is used as an example has been described. That is, the case where the polarity is determined by calculating the response voltage using the normal vector control function has been described as an example. Since this polarity determination is a process executed immediately before the start of the motor MG, normal vector control has not been started in earnest, and there is no problem even if the normal vector control function is used. By combining the functions, the expansion of the scale of the motor control device 10 can be suppressed.
  • the present invention can be applied to a motor control device having a function of detecting the magnetic pole position of a permanent magnet synchronous motor without a sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 永久磁石式同期モータの停止時に、回転センサを用いることなく、当該モータの磁極の極性を安定して判別する。高周波成分及びモータが磁気飽和する大きさで所定の期間に亘り一定値Ibで正負対象の直流バイアス成分を観測指令としてd軸の電流指令に印加し、観測指令に応答したフィードバック電流に基づいて演算されるd軸の応答電圧Vdに含まれる高周波成分の振幅の内、直流バイアス成分が正の一定値+Ibの期間における第1振幅a1と、負の一定値-Ibの期間における第2振幅a2との大小関係に基づいて永久磁石の磁極の極性を判定する。

Description

モータ制御装置
 本発明は、永久磁石同期モータの磁極位置をセンサレスで検出する機能を備えたモータ制御装置に関する。
 永久磁石式同期モータ、例えば3相同期モータの制御方法として、ベクトル制御と呼ばれる制御方法が知られている。ベクトル制御では、モータの3相のステータコイルに流れるモータ電流を、ロータに配置された永久磁石が発生する磁界の方向であるd軸と、このd軸に直交するq軸とのベクトル成分に座標変換してフィードバック制御を行う。この座標変換のためには、ロータの位置(磁極位置)を精度良く検出する必要がある。磁極位置検出にはレゾルバなどの回転センサも用いられるが、ロータの回転によって生じる逆起電力を利用して電気的に磁極位置を検出するセンサレス磁極検出技術もある。但し、モータの停止時には逆起電力が生じないため、高周波電流や高周波電圧をモータに与えてその応答により磁極位置が推定される。
 特開2008-79489号広報(特許文献1)には、そのようなセンサレス磁極検出機能を備えたモータ制御装置が開示されている。これによれば、モータに交流交番電圧を与えて検出されたq軸電流に基づいて得られた磁極位置と、推定磁極位置との誤差を補正して磁極位置が求められる。さらに、正負対称に交互に切り替わる一定波形のd軸バイアス電流が重畳されたd軸電流指令に基づいてd軸電圧指令が求められ、モータにd軸電圧指令が印可される。そして、d軸バイアス電流の正負切り替えタイミングにおいてd軸バイアス電流を増加させているときと、減少させているときのd軸電圧指令の大小関係から永久磁石の磁極の方向が判別される。
特開2008-79489号公報(請求項1、第17-22段落等)
 特許文献1に記載のモータ制御装置は、磁極の極性を含めて磁極の位置を判別することが可能な優れたセンサレス磁極検出機能を備えたものである。しかし、d軸バイアス電流の正負の切り替えタイミングでは、d軸電流が過渡状態であり、d軸電圧も安定しない可能性がある。その結果、磁極の極性判別の安定性が損なわれ、誤検出を招く可能性もある。
 従って、永久磁石式同期モータの停止時に、回転センサを用いることなく、当該モータの磁極の極性を安定して判別することが望まれる。
 上記課題に鑑みた本発明に係るモータ制御装置の特徴構成は、
 交流モータのロータに配置された永久磁石が発生する磁界の方向であるd軸と当該d軸に直交するq軸とのベクトル空間において前記交流モータを制御するモータ制御装置であって、
 前記ベクトル空間における電流指令と、前記交流モータの各ステータコイルに流れる電流の検出値が前記ベクトル空間に座標変換されてフィードバックされたフィードバック電流とに基づいて、前記ベクトル空間における電圧指令を演算する電流制御部と、
 d軸の前記電流指令又はd軸の前記電圧指令に対して、所定の高周波成分を観測指令として印加すると共に、d軸の前記電流指令に対して、所定の期間に亘り一定値であり前記モータが磁気飽和する大きさの直流バイアス成分を前記観測指令として正負対称に印加する観測指令印加部と、
 前記観測指令に応答した前記フィードバック電流に基づいて演算されるd軸の応答電圧に含まれる前記高周波成分の振幅の内、前記直流バイアス成分が正の一定値の期間における第1振幅と、前記直流バイアス成分が負の一定値の期間における第2振幅との大小関係に基づいて前記永久磁石の磁極の極性を判定する極性判定部と、を備える点にある。
 所定の期間に亘りモータが磁気飽和する大きさの直流バイアス成分がd軸の電流指令に印加されることにより、直流バイアス成分が正又は負の時の何れか一方において、磁束が飽和領域に達する。永久磁石が磁束を有しているから、d軸電流が零の時でも磁束は零ではなく、d軸電流に対する磁束の特性はd軸方向にオフセットされている。従って、直流バイアス成分が正又は負の時の何れか一方において磁束が飽和領域に達するとき、他方において磁束は飽和領域に達しない活性領域である。観測指令には、直流バイアス成分だけではなく、高周波成分が含まれているから、この高周波成分に応答して磁束は変動する。この時、活性領域では磁束は大きく変動するが、飽和領域では活性領域に比べて大きく変動しない。直流バイアス成分が正又は負の時の何れにおいて磁束が飽和領域に達するかは、永久磁石の磁極の極性によって定まる。つまり、永久磁石のN極及びS極の何れが、d軸の正方向を向いているかによって定まる。また、磁束の変動は、観測指令に応答したモータからのフィードバック電流に基づいて演算される応答電圧において観測可能である。従って、直流バイアス成分が正の期間における応答電圧の第1振幅と、負の期間における応答電圧の第2振幅との大小関係により、永久磁石の極性を判定することができる。直流バイアス成分の正負切り替えタイミングなどの過渡期に判定するのではなく、直流バイアス成分が正及び負において安定している期間の応答により判定を行うので安定した判定が可能である。即ち、永久磁石式同期モータの停止時に、回転センサを用いることなく、当該モータの磁極の極性を安定して判別することが可能である。
 ここで、本発明に係るモータ制御装置の前記観測指令印加部が、d軸の前記電流指令に対して、所定の高周波成分を前記観測指令として印加すると共に、所定の期間に亘り一定値であり前記モータが磁気飽和する大きさの直流バイアス成分を前記観測指令として正負対称に印加するものであり、前記応答電圧が、前記観測指令に応答した前記フィードバック電流に基づいて演算されるd軸の前記電圧指令であると好適である。一般的に、ベクトル制御においては、ベクトル空間における電流指令と、ベクトル空間におけるフィードバック電流との差分を取り、比例積分(PI)制御や比例微積分(PID)制御を行ってベクトル空間における電圧指令を演算する。上述したように、磁極の極性を判定するために観測指令として高周波成分及び直流バイアス成分がベクトル空間において印加される。これらが共にd軸の電流指令に印加されると、観測指令の制御が容易である。また、観測指令に応答した結果であるフィードバック電流を用いて電圧指令が演算されるので、応答電圧として電圧指令を利用すると別途、応答電圧を演算する機能を設置する必要がない。即ち、通常のベクトル制御の機能を利用して、応答電圧を演算して極性の判別を行うことができる。
 また、本発明に係るモータ制御装置は、さらに、前記観測指令の前記高周波成分に応答した前記フィードバック電流に基づいて演算される前記電圧指令の高周波成分に基づいて、前記永久磁石の磁極の位置を極性を問わずに判定する位置判定部を備え、前記観測指令印加部は、前記位置判定部により前記永久磁石の位置が判定される前には、前記観測指令として前記高周波成分を印加し、前記永久磁石の位置が判定された後に、前記観測指令として前記高周波成分及び前記バイアス成分を印加すると好適である。電流指令を設定した際のベクトル空間と、実際のベクトル空間との間の位相が異なっていると、d軸に対する直流バイアス成分は、ベクトル分解されてq軸の成分も有することになる。d軸の電流指令に印加される直流バイアス成分は、モータが磁気飽和する大きさであるから、ベクトル分解によりq軸の電流指令となる直流成分も無視できるような大きさではない。q軸に大きな電流指令が加わることにより、モータトルクが発生してロータが回転してしまうことになる。極性を問わずに永久磁石の磁極の方向を判定する位置判定部を備えることで、電流指令を設定した際のベクトル空間と実際のベクトル空間との位相差は、0°又は180°にほぼ限定される。従って、q軸の電流指令に直流バイアス成分が印加されることもなく、安定して磁極の極性を判定することができる。
モータの駆動装置の構成例を模式的に示す図 モータ制御装置の実施態様の一例を模式的に示すブロック図 磁極位置の誤差によるベクトル空間のずれを示す図 永久磁石を考慮しないd軸の磁束特性を示すグラフ d軸の正方向と永久磁石のN極が一致する場合の磁束特性と観測指令と応答電圧との関係を示す図 d軸の正方向と永久磁石のS極が一致する場合の磁束特性と観測指令と応答電圧との関係を示す図 磁極位置及び極性の判定処理を模式的に示すフローチャート
 以下、本発明の実施形態を図面に基づいて説明する。本発明のモータ制御装置10は、交流モータMG(以下、適宜単に「モータ」と称す。)の磁極位置をレゾルバ等の回転センサを用いることなく、いわゆるセンサレスで検出する機能を備えたモータ制御装置である。本実施形態において、モータMGは、埋込型永久磁石同期モータ(interior permanent magnet synchronous motor : IPMSM)であり、ロータの永久磁石のN極方向の磁気特
性と電気的にこれと垂直な方向(電気角で90°ずれた方向)との磁気特性とが異なる突極性(逆突極性を含む)を有する。詳細は後述するが、本実施形態においてモータ制御装置は、この突極性を利用して、モータMGの停止時においてもセンサレスで磁極位置や磁極の方向を判定する。また、当然ながらモータMGは、ジェネレータとしても機能する回転電機である。
 初めに、モータMGの駆動制御を行う駆動装置20の構成について説明する。図1に示すように、駆動装置20は、制御ユニット11、ドライバ回路12、電流検出装置13、直流電源14、平滑コンデンサ15、インバータ16を備えている。ここで、直流電源14は、バッテリ等の充電可能な二次電池である。そして、駆動装置20は、直流電源14の直流電力を所定周波数の3相交流に変換してモータMGに供給する。また、駆動装置20は、モータMGがジェネレータとして機能する際には発電された交流電力を直流に変換して直流電源14に供給する。直流電源14の正極端子と負極端子との間には、平滑コンデンサ15が並列に接続され、直流電力を平滑する。
 インバータ16は、複数のスイッチング素子を有して構成される。スイッチング素子には、IGBT(insulated gate bipolar transistor)やMOSFET(metal oxide semiconductor field effect transistor)を適用すると好適である。図1に示すように、本実施形態では、スイッチング素子としてIGBTが用いられる。インバータ16は、モータMGの各相(U相、V相、W相の三相)のそれぞれに対応するU相レッグ17U、V相レッグ17V、及びW相レッグ17Wを備えている。各レッグ17U、17V、17Wは、それぞれ直列に接続された上段側アームのIGBT18Aと下段側アームのIGBT18Bとにより構成される1組2個のスイッチング素子を備えている。各IGBT18A、18Bには、それぞれフリーホイールダイオード19が並列接続されている。
 U相レッグ17U、V相レッグ17V、W相レッグ17Wは、モータMGのU相コイル、V相コイル、W相コイルに接続される。この際、各相レッグ17U、17V、17Wの上段側アームのIGBT18Aのエミッタと下段側アームのIGBT18Bのコレクタとの間とモータMGの各相コイルとの間が電気的に接続される。また、各レッグ17U、17V、17Wの上段側アームのIGBT18Aのコレクタは、直流電源14の正極端子につながる高圧電源ラインに接続され、各レッグ17U、17V、17Wの下段側アームのIGBT18Bのエミッタは、直流電源14の負極端子につながるグランドラインに接続されている。
 インバータ16は、ドライバ回路12を介して制御ユニット11に接続されており、制御ユニット11が生成する制御信号に応じてスイッチング動作する。制御ユニット11は、不図示のマイクロコンピュータなどの論理回路を中核とするECU(electronic control unit)として構成される。ECUは、マイクロコンピュータの他、不図示のインターフェース回路やその他の周辺回路などを有して構成される。インターフェース回路は、EMI(electro-magnetic interference)対策部品やバッファ回路などにより構成される。
 マイクロコンピュータは、CPUコア、プログラムメモリ、ワークメモリ、A/Dコンバータや、その他不図示の通信制御部、タイマ、ポートなどを有して構成される。CPUコアは、マイクロコンピュータの中核であり、命令レジスタや命令デコーダ、種々の演算の実行主体となるALU(arithmetic logic unit)、フラグレジスタ、汎用レジスタ、割り込みコントローラなどを有して構成される。プログラムメモリは、モータ制御プログラムや磁極判定プログラム、これらのプログラムの実行の際に参照される各種パラメータなどが格納された不揮発性のメモリである。プログラムメモリは、例えばフラッシュメモリなどによって構成されると好適である。ワークメモリは、プログラム実行中の一時データを一時記憶するメモリである。ワークメモリは、揮発性で問題なく、高速にデータの読み書きが可能なDRAM(dynamic RAM)やSRAM(static RAM)により構成されると好適である。CPUコア、A/Dコンバータ、各種メモリは1つのチップに集積された形態でもよいし、複数のチップによってコンピュータシステムが構築されていてもよい。
 ところで、特にモータMGが車両の駆動装置である場合などでは、直流電源14は高電圧であり、インバータ16の各IGBT18A,18Bは、高電圧をスイッチングする。このように、高電圧をスイッチングするIGBTのゲートに入力されるパルス状のゲート駆動信号(制御信号)のハイレベルとローレベルとの電位差は、マイクロコンピュータなどの一般的な電子回路の動作電圧よりも遥かに高い電圧である。従って、ゲート駆動信号は、ドライバ回路12を介して電圧変換や絶縁された後、インバータ16の各IGBT18A,18Bに入力される。
 このように、モータMGは、制御ユニット11の制御により、所定の出力トルク及び回転速度で駆動される。この際、モータMGのステータコイル(U相コイル、V相コイル、W相コイル)に流れる電流の値が制御ユニット11にフィードバックされる。そして、制御ユニット11は、目標電流との偏差に応じてPI制御(比例積分制御)やPID制御(比例微積分制御)を実行してモータMGを駆動制御する。このため、インバータ16の各相レッグ17U、17V、17WとモータMGの各相コイルとの間に設けられた導体(バスバーなど)を流れる電流値が、電流検出装置13により検出される。本実施形態においては、電流検出装置13は、3相全てに対して配置される。尚、3相各相の電流は平衡しており瞬時値はゼロであるから、2相のみの電流値を検出する構成であっても構わない。
 本実施形態において、モータ制御装置10は制御ユニット11として構成されている。モータ制御装置10は、ベクトル制御により、モータMGを制御する。即ち、モータ制御装置10は、モータMGのロータに配置された永久磁石が発生する磁界の方向であるd軸と当該d軸に直交するq軸とのベクトル空間においてモータMGを制御する。尚、センサレス制御では、実際の磁極位置を検出できないため、実際の磁極位置に基づいて変換したベクトル空間でモータMG制御することはできない。そのため、推定された磁極位置に基づいて得られるベクトル空間でモータMGを制御する。図2には、モータ制御装置10においてロータの磁極位置や磁極の方向を判定する回転検出部8と関わりの深い機能部を図示している。以下、図2を参照して、本実施形態のモータ制御装置10におけるベクトル制御について説明する。
 モータMGが車両の駆動装置の場合、不図示の走行制御ECUなどからトルク指令(要求トルク)がモータ制御装置10に与えられる。モータ制御装置10の不図示のトルク制御部は、トルク指令に応じて電流フィードバック制御のための電流指令(目標電流)id,iqを設定する。電流指令id,iqは、上述したd軸及びq軸を基準とするベクトル空間に対応して設定される。このため、トルク制御部は、トルク指令値と回転検出部8により求められた磁極位置(電気角)θに基づいて算出した角速度ωとに基づいてd軸の電流指令id及びq軸の電流指令iqを決定する電流指令値算出部を有して構成される。
 電流制御部2は、dqベクトル空間における電流指令id,iqと、モータMGの各ステータコイルに流れる電流Iu,Iv,Iwの検出値がベクトル空間に座標変換されてフィードバックされたフィードバック電流id,iqとに基づいて、ベクトル空間における電圧指令(目標電圧)vd,vqを演算する。具体的には、電流制御部2は、電流指令id,iqと、フィードバック電流id,iqとの偏差に基づいて、例えば比例積分制御(PI制御)や、比例微積分制御(PID制御)を行い、電圧指令vd,vqを設定する。
 電流検出装置13により検出された電流値は3相電流Iu,Iv,Iwであるから、座標変換部5により電気角θに基づいて2相のフィードバック電流id,iqに座標変換される。電流制御部2は、電流指令id,iqと、フィードバック電流id,iqとの偏差に基づいて、PI制御やPID制御を行い、電圧指令vd,vqを設定する。角速度ω及び角速度を検出する機能部については簡略化のため図示を省略する。電流制御部2において演算された電圧指令vd,vqは、座標変換部3において電気角θに基づいて3相の電圧指令vu,vv,vwに座標変換される。変調部4は、3相の電圧指令vu,vv,vwに基づいて、インバータ16の3相のIGBTを駆動するゲート駆動信号を、例えばPWM(pulse width modulation)により生成する。
 このように、モータMGをベクトル制御するためには、uvw相に対応する現実の3相空間と2相のdqベクトル空間との間での相互の座標変換が必要である。このため、ロータの回転角θ、即ち電気的な磁極位置(電気角)を精度良く検出する必要がある。本実施形態におけるモータ制御装置10は、レゾルバなどの回転検出装置を備えることなく、ロータの回転角θを取得するセンサレス制御を採用している。上述したように、モータMGが中高速回転している場合には、ロータの回転によって生じる逆起電力を利用することによって回転速度(角速度ω)に留まらず、電気的に磁極位置(回転角θ)を検出することが可能である。これは、公知であるのでここでは図示並びに詳細な説明は省略する。一方、モータMGが停止している際には、当然ながら逆起電力も生じないため、モータMGに電気的な刺激(stimulus)を与えてその応答により、磁極位置並びに磁極の極性が判定される。
 電気的な刺激は、観測指令印加部1により与えられる。観測指令印加部1は、d軸の電流指令id又はd軸の電圧指令vdに対して、所定の高周波成分を観測指令として印加する。図2に示すように本実施形態においては、d軸の電流指令idに対して、振幅がIhの所定の高周波成分(= Ih・sinωh・t)が印加される場合を例示している。尚、本実施形態では、より精度よく磁極位置を判定するために、q軸の電流指令iqに対しても、所定の高周波成分(= -Ih・cosωh・t)が印加される場合を例示している。d軸の電流指令idに対して印加される高周波成分と、q軸の電流指令iqに対して印加される高周波成分とは、図2に示すように振幅Ih並びに角速度ωhが共通で位相が異なる波形を有するものである。これら高周波成分は、後述するように磁極位置の判定及び極性の判定の双方に利用される。
 また、観測指令印加部1は、図2に示すようにd軸の電流指令idに対して、所定の期間に亘り一定値でありモータMGが磁気飽和する大きさの直流バイアス成分Ibを観測指令として正負対称に印加する。即ち、正の直流バイアス成分(+Ib)と、負の直流バイアス成分(-Ib)とが、それぞれ所定の期間に亘り一定値として印可される。後述するように、この値Ibは、モータMGが磁気飽和する大きさに相当する。より詳しくは、モータMGの各相のコイルが巻き回された電機子コアであるステータコアが磁気飽和する大きさに相当する。上述した高周波成分、並びに直流バイアス成分Ibは、磁極の極性の判定に利用される。詳細については後述する。
 図2に示すように、回転検出部8は、極性を問わずに磁極位置の判定を行う位置判定部6と、磁極の極性の判定、即ちNS判定を行う極性判定部77とを備えている。位置判定部6は、観測指令の高周波成分に応答したフィードバック電流id,iqと電流指令id,iqとの偏差に基づいて演算される電圧指令の高周波成分に基づいて、永久磁石の磁極位置を極性を問わずに判定する。つまり、NSの磁性を除き、永久磁石の磁極位置を判定する。極性判定部77は、観測指令の高周波成分及び直流バイアス成分Ibに応答したd軸のフィードバック電流idに基づいて演算されるd軸の応答電圧に含まれる高周波成分の振幅(波高)に基づいて永久磁石の磁極の磁性を判定する。具体的には、応答電圧に含まれる前記高周波成分の振幅の内、直流バイアス成分Ibが正の一定値の期間における第1振幅(a1)と、直流バイアス成分Ibが負の一定値の期間における第2振幅(a2)との大小関係に基づいて磁性を判定する(図5、図6参照)。本実施形態では、応答電圧として、電圧指令vdを用いる場合を例示する。
 以下、磁極位置並びに磁極方向の判定について説明する。まず、位置判定部6による位置判定について説明する。一般式として、同期モータの電圧方程式は、d軸電圧:Vd、q軸電圧:Vq、d軸電流:Id、q軸電流Iq、ステータコイルの抵抗:R、d軸インダクタンス:Ld、q軸インダクタンス:Lq、ω:モータ回転周波数(角速度)、φa:界磁の主磁束、p:微分演算子、として以下に示す式(1)で示される。
Figure JPOXMLDOC01-appb-M000001
 回転検出部8による磁極の検出は、モータMGが停止中に実施される。モータMGが停止中には、ω=0であるから、式(1)は、式(2)となる。
Figure JPOXMLDOC01-appb-M000002
 上述したように、位置判定部6による位置判定における刺激としての観測指令は、高周波成分であり、複素インピーダンスは、虚数成分が支配的となる。式(2)の実数成分であ
るRは無視してよくなる。つまり、高周波成分の観測指令に関して、式(2)は式(3)のように簡略化することができ、d軸インダクタンスLd及びq軸インダクタンスLqの影響が支配的となる。
Figure JPOXMLDOC01-appb-M000003
 位置判定部6による位置判定に際しては、仮の値として磁極位置の推定値θ’が与えられる。ここで、このθ’に基づくベクトル空間をd’q’ベクトル空間とする。推定値θ’が真の磁極位置θと一致していない場合には、真の磁極位置θに基づく真のdqベクトル空間とd’q’ベクトル空間との間に図3に示すようにΔθの誤差が存在することになる。推定値θ’に基づくd’q’ベクトル空間において、上述した高周波成分を印加すると、d’q’ベクトル空間におけるフィードバック電流id’,iq’に基づいて演算される電圧指令vd、vqから高周波成分vdh*、vqh*をバンドパスフィルタ(BPF)9が抽出する。バンドパスフィルタ9が抽出した高周波成分vdh*、vqh*は回転検出部8の位置判定部6に送られ、誤差信号として磁極位置の推定値θ’と真の磁極位置θとの誤差Δθの2倍の正弦波信号sin2Δθが得られる。誤差Δθがゼロに収束するように推定値θ’を動的に修正することによって磁極位置θが算出される。ここでは、誤差Δθがゼロに収束するように推定値θ’を修正しても正弦波信号sin2Δθは誤差Δθの2倍の値が含まれているので、算出された磁極位置θには、0°又は180°の位相差を含むことになる。換言すれば、磁極位置θが360°中の点対称な2点の何れかであることが特定される。つまり、NSの極性を考慮せずに磁極位置θが判定される。
 このように、磁極位置θは、高周波数成分の観測指令に応答したフィードバック電流id,iqに基づいて演算される電圧指令vd、vqからバンドパスフィルタ9を介して得られる高周波成分vdh*、vqh*に基づいて判定することができる。図3に例示したように、電流指令id、iqに高周波数成分が印可されるのではなく、電圧指令vd、vqに高周波数成分の観測指令が印可され、その観測指令に応答したフィードバック電流に基づいて磁極位置が判定される構成であってもよい。
 位置判定部6による位置判定が完了すると、判定されたθに基づいて、さらにd軸の電流指令にidに直流バイアス成分±Ibが印加される。電気的に発生する界磁の磁束φは、図4に示すようにd軸電流Idが零の時に零となる。しかし、モータMGは永久磁石型のモータであるから、d軸電流Idが零であっても永久磁石の磁束φが存在する。このため、図5及び図6に示すように、d軸電流Idが零であっても磁束φは零とはならない。図5は、磁性がN極側であるとき、即ちd軸の正方向にN極が揃っている場合を示しており、d軸電流Idが零であっても正の磁束φが存在する。図6は、磁性がS極側であるとき、即ちd軸の負方向にN極が揃っている場合を示しており、d軸電流Idが零であっても負の磁束φが存在する。
 上述したように、直流バイアス成分±Ibは、モータMGに磁気飽和を生じさせる大きさに相当するd軸電流Idの値である。図5に示すように、磁性がN極側であるとき、モータMGは、d軸電流Idが零であっても既に正の磁束φを有しているから、正方向のオフセット成分となる直流バイアス成分Ibをd軸電流Idに印加すると、モータMGは磁気飽和領域に達する。この領域でd軸電流Idに高周波成分が印加されても、高周波成分に応答して変化する磁束φは僅かである。一方、負方向のオフセット成分となる直流バイアス成分Ibをd軸電流Idに印加しても、モータMGは磁気飽和領域には達しない。従って、ここでd軸電流Idに高周波成分が印加されると、高周波成分に応答して磁束φは充分に変化する。この磁束φの変化は、応答電圧としてd軸電圧Vdにより観測することができる。図5に示すように、正方向の直流バイアス成分Ibが印加されている間のd軸電圧Vdの高周波成分の波高A1(第1振幅:a1=A1/2)は、負方向の直流バイアス成分Ibが印加されている間のd軸電圧Vdの高周波成分の波高A2(第2振幅:a2=A2/2)よりも小さい。従って、極性判定部7は、第1振幅a1と第2振幅a2との大小関係に基づいて永久磁石の極性を判定することが可能である。
 一方、図6に示すように、磁性がS極側であるとき、モータMGは、d軸電流Idが零であっても既に負の磁束φを有しているから、負方向の直流バイアス成分Ibをd軸電流Idに印加すると、モータMGは磁気飽和領域に達する。この領域でd軸電流Idに高周波成分が印加されても、高周波成分に応答して変化する磁束φは僅かである。一方、正方向の直流バイアス成分Ibをd軸電流Idに印加しても、モータMGは磁気飽和領域には達しない。従って、ここでd軸電流Idに高周波成分が印加されると、高周波成分に応答して磁束φは充分に変化する。図6に示すように、負方向のオフセット成分Ibが印加されている間のd軸電圧Vdの高周波成分の波高A2(第2振幅:a2=A2/2)は、正方向のオフセット成分Ibが印加されている間のd軸電圧Vdの高周波成分の波高A1(第1振幅:a1=A1/2)よりも小さい。従って、極性判定部7は、第1振幅と第2振幅との大小関係に基づいて永久磁石の磁極の極性を判定することが可能である。
 以上、回転検出部8による永久磁石の磁極位置及び極性判定の原理を説明したが、以下、図7のフローチャートを用いて観測指令印加部1及び回転検出部8による処理の流れについて説明する。
 不図示の走行制御ECUなどからモータMGの駆動指令が発せられると、モータ制御装置10は、モータMGの駆動に先立ってモータMGのロータの磁極位置並びに極性の判定処理を実行する。初めに、上述したように、磁極位置θが判定される(ステップ#10)。磁極位置θの判定に際して、観測指令印加部1は、d軸の電流指令id又は電圧指令vdに対して、所定の高周波成分のみを観測指令として印加する。上述したように、このステップでは、直流バイアス成分Ibは印加されない。観測指令印加部1及び位置判定部6は、上述したような収斂演算を実行して、磁極位置θを判定する。
 磁極位置θが判定されると、次にステップ#21~#26においてNSの極性が判定される。電流指令id、iqを設定した際のベクトル空間(d’q’ベクトル空間)と、実際のベクトル空間(dqベクトル空間)との間の位相が図3に例示したように異なっていると、d’軸に対する直流バイアス成分Ibは、ベクトル分解されて実際のq軸の成分も有することになる。上述したように、d軸の電流指令idに印加される直流バイアス成分Ibは、モータMGが磁気飽和する大きさである。従って、ベクトル分解によりq軸の電流指令iqに印可される直流成分も無視できるような大きさではない。このため、q軸に大きな電流指令が与えられることになり、モータトルクが発生してモータMGのロータが回転してしまうことになる。従って、極性の判定に先立ってステップ#10を実行して、極性を問わずとも正確に磁極位置θを判定しておくと好ましい。
 観測指令印加部1は、既にステップ#10で印可されている高周波成分に加えて直流バイアス成分Ibをd軸の電流指令idに印加する。具体的には、正方向の直流バイアス成分Ibをd軸の電流指令idに印加する(ステップ#21)。そして、極性判定部7は、直流バイアス成分が正の一定値の期間における波高A1(又は振幅a1)を取得する。続いて、観測指令印加部1は、負方向の直流バイアス成分Ibをd軸の電流指令idに印加する(ステップ#22)。そして、極性判定部7は、直流バイアス成分Ibが負の一定値の期間における波高A2(又は振幅a2)を取得する。
 そして、極性判定部7は、上述したように波高A1(又は振幅a1)と波高A2(又は振幅a2)との大小関係に基づいて永久磁石の極性を判定する(#23)。具体的には、図7に示すように、波高A2が波高A1よりも大きいとき(第2振幅a2が第1振幅a1よりも大きいとき)、d軸の正方向がN極である(極性がN極である)と判定する(#24)。一方、波高A1が波高A2以上のとき(第1振幅a1が第2振幅a2以上のとき)、d軸の正方向がS極である(極性がS極である)と判定する(#25)。尚、極性がS極であると判定された際には、磁極位置判定のステップ#10において判定されたθの値に180°を加算してθの値が更新される(#26)。以上、ステップ#10~#26により、永久磁石の磁極の位置並びに磁性が判定され、永久磁石の磁極の位置が360°中の一点に特定される。
 尚、上記実施形態においては、フィードバック電流idを用いて電流制御部2で演算される電圧指令vdを応答電圧として説明した。つまり、ベクトル制御における通常の電圧演算(式(1)~(3)に示すような演算)を兼用する場合を例として説明した。即ち、通常のベクトル制御の機能を利用して、応答電圧を演算して極性の判別を行う場合を例として説明した。この極性判定は、モータMGの起動直前に実行される処理であるから、通常のベクトル制御は本格的に実行を開始しておらず、通常のベクトル制御の機能を利用しても問題はない。機能を兼用することでモータ制御装置10の規模の拡大を抑制することができる。
 本発明は、永久磁石同期モータの磁極位置をセンサレスで検出する機能を備えたモータ制御装置に適用することができる。
1:観測指令印加部
2:電流制御部
10:モータ制御装置
id,iq:電流指令
id,iq:フィードバック電流
vd,vq:電圧指令
Ib:直流バイアス成分
Iu,Iv,Iw:ステータコイルに流れる電流の検出値
MG:モータ(交流モータ)
a1:第1振幅
a2:第2振幅

Claims (3)

  1.  交流モータのロータに配置された永久磁石が発生する磁界の方向であるd軸と当該d軸に直交するq軸とのベクトル空間において前記交流モータを制御するモータ制御装置であって、
     前記ベクトル空間における電流指令と、前記交流モータの各ステータコイルに流れる電流の検出値が前記ベクトル空間に座標変換されてフィードバックされたフィードバック電流とに基づいて、前記ベクトル空間における電圧指令を演算する電流制御部と、
     d軸の前記電流指令又はd軸の前記電圧指令に対して、所定の高周波成分を観測指令として印加すると共に、d軸の前記電流指令に対して、所定の期間に亘り一定値であり前記モータが磁気飽和する大きさの直流バイアス成分を前記観測指令として正負対称に印加する観測指令印加部と、
     前記観測指令に応答した前記フィードバック電流に基づいて演算されるd軸の応答電圧に含まれる前記高周波成分の振幅の内、前記直流バイアス成分が正の一定値の期間における第1振幅と、前記直流バイアス成分が負の一定値の期間における第2振幅との大小関係に基づいて前記永久磁石の磁極の極性を判定する極性判定部と、を備えるモータ制御装置。
  2.  前記観測指令印加部は、d軸の前記電流指令に対して、所定の高周波成分を前記観測指令として印加すると共に、所定の期間に亘り一定値であり前記モータが磁気飽和する大きさの直流バイアス成分を前記観測指令として正負対称に印加するものであり、
     前記応答電圧は、前記観測指令に応答した前記フィードバック電流に基づいて演算されるd軸の前記電圧指令である請求項1に記載のモータ制御装置。
  3.  前記観測指令の前記高周波成分に応答した前記フィードバック電流に基づいて演算される前記電圧指令の高周波成分に基づいて、前記永久磁石の磁極の位置を極性を問わずに判定する位置判定部を備え、
     前記観測指令印加部は、前記位置判定部により前記永久磁石の位置が判定される前には、前記観測指令として前記高周波成分を印加し、前記永久磁石の位置が判定された後に、前記観測指令として前記高周波成分及び前記バイアス成分を印加する請求項1又は2に記載のモータ制御装置。
PCT/JP2011/052013 2010-03-26 2011-02-01 モータ制御装置 WO2011118258A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011100395T DE112011100395T5 (de) 2010-03-26 2011-02-01 Motorsteuerungsvorrichtung
CN201180007795.3A CN102742148B (zh) 2010-03-26 2011-02-01 电机控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-072336 2010-03-26
JP2010072336A JP5435282B2 (ja) 2010-03-26 2010-03-26 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2011118258A1 true WO2011118258A1 (ja) 2011-09-29

Family

ID=44655609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052013 WO2011118258A1 (ja) 2010-03-26 2011-02-01 モータ制御装置

Country Status (5)

Country Link
US (1) US8395339B2 (ja)
JP (1) JP5435282B2 (ja)
CN (1) CN102742148B (ja)
DE (1) DE112011100395T5 (ja)
WO (1) WO2011118258A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427733A (zh) * 2012-05-21 2013-12-04 发那科株式会社 磁极位置检测装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158093A (ja) * 2012-01-27 2013-08-15 Fuji Electric Co Ltd 3レベル電力変換装置
JP5976421B2 (ja) * 2012-06-27 2016-08-23 株式会社東芝 磁極極性判定装置、永久磁石同期電動機制御装置及び磁極極性判定方法
EP2924874B1 (en) * 2012-11-22 2020-09-02 Mitsubishi Electric Corporation Control device for ac rotating machine
KR101972873B1 (ko) * 2013-07-24 2019-04-30 현대일렉트릭앤에너지시스템(주) 권선형 동기 전동기의 회전자 위치 추정 장치 및 방법
EP3032735A1 (en) * 2013-08-09 2016-06-15 Kabushiki Kaisha Yaskawa Denki Motor drive system and motor control device
FR3016256B1 (fr) * 2014-01-07 2016-01-22 Leroy Somer Moteurs Procede pour determiner la polarite d'un pole de rotor de machine electrique tournante
US10348230B2 (en) * 2014-09-12 2019-07-09 Mitsubishi Electric Corporation Control device for AC rotary machine and magnetic-pole-position correction amount calculation method
EP3358741B1 (en) * 2015-10-01 2024-03-06 Shindengen Electric Manufacturing Co., Ltd. Starter-generator device and starter-generator method
TWI668953B (zh) 2016-08-22 2019-08-11 日商東芝股份有限公司 Inverter control device and drive system
US11130518B2 (en) * 2016-11-14 2021-09-28 Mitsubishi Electric Corporation Motor control apparatus and electric power steering control apparatus equipped with the motor control apparatus
KR20180102261A (ko) 2017-03-07 2018-09-17 엘에스산전 주식회사 전동기 회전자의 초기위치 추정장치
CN111277195A (zh) * 2018-12-04 2020-06-12 爱信精机株式会社 电动机控制装置
JP7323447B2 (ja) * 2019-12-27 2023-08-08 株式会社日立製作所 永久磁石同期機制御装置及びその方法
DE102022203212A1 (de) 2022-01-14 2023-07-20 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Verfahren zum Betrieb einer elektrischen Maschine
DE102022133896A1 (de) * 2022-12-19 2024-06-20 Schaeffler Technologies AG & Co. KG Verfahren zur Erfassung einer Ausgangsdrehlage eines Rotors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229699A (ja) * 1997-02-14 1998-08-25 Hitachi Ltd 同期電動機の磁極位置推定方法および電動機制御装置および電気車
JP2001339999A (ja) * 2000-05-30 2001-12-07 Toshiba Corp モータ制御装置
JP2005333761A (ja) * 2004-05-21 2005-12-02 Nissan Motor Co Ltd 電動機の制御装置
JP2007159334A (ja) * 2005-12-08 2007-06-21 Sanyo Electric Co Ltd モータの駆動制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144564A (en) * 1991-01-08 1992-09-01 University Of Tennessee Research Corp. Rotor position estimation of a permanent magnet synchronous-machine for high performance drive
US6320349B1 (en) 1997-02-14 2001-11-20 Satoru Kaneko Method of estimating field pole position of synchronous motor, motor controller, and electric vehicle
JP3979561B2 (ja) 2000-08-30 2007-09-19 株式会社日立製作所 交流電動機の駆動システム
JP4665360B2 (ja) * 2001-08-06 2011-04-06 株式会社安川電機 電動機制御装置
US6894454B2 (en) 2002-10-10 2005-05-17 General Motors Corporation Position sensorless control algorithm for AC machine
JP4263582B2 (ja) 2003-11-17 2009-05-13 本田技研工業株式会社 ブラシレスモータ制御装置
GB2428144B (en) 2004-01-07 2007-09-19 Mitsubishi Electric Corp Motor Controller
JP2008079489A (ja) 2006-09-25 2008-04-03 Toshiba Corp モータ制御装置
US8106622B2 (en) * 2007-04-05 2012-01-31 Denso Corporation Control system for multiphase rotary machines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229699A (ja) * 1997-02-14 1998-08-25 Hitachi Ltd 同期電動機の磁極位置推定方法および電動機制御装置および電気車
JP2001339999A (ja) * 2000-05-30 2001-12-07 Toshiba Corp モータ制御装置
JP2005333761A (ja) * 2004-05-21 2005-12-02 Nissan Motor Co Ltd 電動機の制御装置
JP2007159334A (ja) * 2005-12-08 2007-06-21 Sanyo Electric Co Ltd モータの駆動制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427733A (zh) * 2012-05-21 2013-12-04 发那科株式会社 磁极位置检测装置
US8766586B2 (en) 2012-05-21 2014-07-01 Fanuc Corporation Magnetic pole position detecting device for detecting magnetic pole position of rotor in permanent-magnet synchronous motor

Also Published As

Publication number Publication date
CN102742148B (zh) 2014-10-22
US8395339B2 (en) 2013-03-12
JP5435282B2 (ja) 2014-03-05
JP2011205832A (ja) 2011-10-13
DE112011100395T5 (de) 2012-12-06
CN102742148A (zh) 2012-10-17
US20110234135A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5435282B2 (ja) モータ制御装置
JP6056959B2 (ja) 回転電機制御装置
US7932692B2 (en) Control system for rotary electric machine with salient structure
JP5155344B2 (ja) 電動機の磁極位置推定装置
JP4928855B2 (ja) 同期機のセンサレス制御装置
WO2016174702A1 (ja) 交流回転機の制御装置および電動パワーステアリング装置
JP2010011543A (ja) モータ制御装置
JP5561550B2 (ja) 回転電機制御装置
JP5120621B2 (ja) 永久磁石形同期電動機の制御装置
US11146203B2 (en) Motor control apparatus
CN109391186B (zh) 控制装置以及控制方法
JP2008206330A (ja) 同期電動機の磁極位置推定装置および磁極位置推定方法
US11309817B2 (en) Control device of rotating machine, and control device of electric vehicle
WO2020045568A1 (ja) モータ制御装置
JP7196469B2 (ja) 同期リラクタンスモータの制御装置
JP2013146155A (ja) 巻線温度推定装置及び巻線温度推定方法
JP2010268599A (ja) 永久磁石モータの制御装置
JP2018125955A (ja) モータ制御装置
JP2009100544A (ja) モータ制御装置
JP5376218B2 (ja) モータ制御装置
JP2016213951A (ja) 回転電機の制御装置
JP6422796B2 (ja) 同期機制御装置及び駆動システム
JP2018148722A (ja) モータ駆動装置
JP7447835B2 (ja) モータ制御装置
JP2018198479A (ja) 同期電動機の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007795.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120111003951

Country of ref document: DE

Ref document number: 112011100395

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759066

Country of ref document: EP

Kind code of ref document: A1