JP2009100544A - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP2009100544A
JP2009100544A JP2007269362A JP2007269362A JP2009100544A JP 2009100544 A JP2009100544 A JP 2009100544A JP 2007269362 A JP2007269362 A JP 2007269362A JP 2007269362 A JP2007269362 A JP 2007269362A JP 2009100544 A JP2009100544 A JP 2009100544A
Authority
JP
Japan
Prior art keywords
current
rotor
phase
sampling period
extreme value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007269362A
Other languages
English (en)
Inventor
Kouya Yoshida
航也 吉田
Itsuhito Komatsu
逸人 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2007269362A priority Critical patent/JP2009100544A/ja
Publication of JP2009100544A publication Critical patent/JP2009100544A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】ロータの回転に追従して、より正確なロータ回転位置を求めることができ、これにより、モータ制御の最適化に寄与することができるモータ制御装置を提供する。
【解決手段】位置推定部20は、電流値演算部26と、逆ノッチフィルタ27と、電流ピークタイミング抽出部28と、電流同期抽出部29と、ロータ位置演算部30と、位置補正部31と、サンプリング期間設定部32とを備えている。電流値演算部26は電流の大きさIを求める。電流ピークタイミング抽出部28は、電流の大きさIの極値タイミングを検出する。サンプリング期間設定部32は、電流ピークタイミング抽出部28によってピークホールド処理を行うべきサンプリング期間を可変設定する。電流同期抽出部29は、極値タイミングにおける二相検出電流Iαβを出力する。これに基づいて、ロータ位置演算部30は、ロータの回転位置θを求める。
【選択図】図3

Description

この発明は、ブラシレスモータをセンサレス駆動するためのモータ制御装置に関する。ブラシレスモータは、たとえば、電動パワーステアリング装置における操舵補助力の発生源として利用される。
ブラシレスDCモータを駆動制御するためのモータ制御装置は、一般に、ロータの回転位置を検出するための位置センサの出力に応じてモータ電流の供給を制御するように構成されている。しかし、位置センサの耐環境性が問題となるうえ、高価な位置センサおよびこれに関連する配線がコストの削減を阻害し、かつ、小型化を阻害している。そこで、位置センサを用いることなくブラシレスDCモータを駆動するセンサレス駆動方式が提案されている。センサレス駆動方式は、ロータの回転に伴う誘起電圧を推定することによって、磁極の位相(ロータの電気角)を推定する方式である。
ロータ停止時および極低速回転時には、誘起電圧を推定できないので、別の方式で磁極の位相が推定される。具体的には、図4(a)に示すように、ロータ50の回転中心を原点とする二相固定座標であるαβ座標の原点まわりにロータ50の回転方向に沿って回転する高周波電圧ベクトル(大きさは一定)が形成されるように、高周波探査電圧がU,V,W相のステータ巻線51,52,53に印加される。高周波電圧ベクトルは、ロータ50の回転速度に対して十分に高速に回転する電圧ベクトルである。この高周波電圧ベクトルの印加に伴って、U,V,W相のステータ巻線51,52,53に電流が流れる。この三相の電流の大きさおよび方向をαβ座標上で表した電流ベクトルは、原点まわりに回転することになる。
ロータ50のインダクタンスは、磁束方向に沿う磁極軸であるd軸と、これに直交するq軸(トルク方向に沿う軸)とで異なる値をとる。そのため、電流ベクトルの大きさは、d軸に近い方向の場合に大きく、q軸に近い方向の場合に小さくなる。その結果、図4(b)に示すように、電流ベクトルの終点は、αβ座標上において、ロータ50のd軸方向を長軸とする楕円形の軌跡55を描く。
したがって、電流ベクトルの大きさは、ロータ50のN極方向およびS極方向において極大値を有する。すなわち、図5(a)の曲線L2に示すように、電流ベクトルの1周期において、その大きさは、2つの極大値を有する。この場合、電圧ベクトルの大きさが十分に大きければ、ステータの磁気飽和の影響により、ロータ50のN極側の方がS極側よりもインダクタンスが小さくなり、N極方向の電流ベクトルの大きさが最大値をとることになる(曲線L1参照)。
そこで、十分に大きな高周波電圧ベクトルを印加してN極に対応した電流ベクトルの極大を特定しておき、その後は、大きさを小さくした高周波電圧ベクトルを印加し、電流ベクトルの極大値に基づいて、ロータ50の位相を推定することができる。より具体的には、大きさが極大値をとるときの電流ベクトルのα軸成分Iαおよびβ軸成分Iβにより、ロータ50の位相角(電気角)θは、θ=Tan-1(Iβ/Iα)として求められる。
特開2004−343963号公報
しかし、前述のような構成では、高周波電圧ベクトルが電気角360度を一周する間に一度だけ電流値をホールド(ピークホールド)するに過ぎない。したがって、高周波電圧ベクトルが電気角360度を一周する間に、一度しかロータ50の位相を求めることができるに過ぎない。そのため、ロータ50の回転に正確に追従したロータ回転位置が必ずしも得られないという問題がある。
とくに、低速回転時には、ロータ50の回転位置を高頻度で正確に検出し、それに応じて各相への電流供給を制御する必要がある。しかし、高周波電圧ベクトルの一周期中に1度しかロータ50の位相を求めることができない前述の先行技術では、ロータ50の回転位置が得られる時間間隔が長いので、ロータ50の回転に正確に追従した制御を行うことができない。
そこで、この発明の目的は、ロータの回転に追従して、より正確なロータ回転位置を求めることができ、これにより、モータ制御の最適化に寄与することができるモータ制御装置を提供することである。
上記の目的を達成するための請求項1記載の発明は、界磁としてのロータ(50)ならびにU相、V相およびW相のステータ巻線(51,52,53)を備えた電動モータ(3)を駆動するためのモータ制御装置(5)であって、前記U相、V相およびW相のステータ巻線にそれぞれ印加される電圧により表される電圧ベクトルが、その大きさを一定に保持して所定周期で回転するように、前記ステータ巻線に探査電圧を印加する探査電圧印加手段(21)と、この探査電圧印加手段によって探査電圧を印加している期間中に、前記電動モータに流れる電流を検出する電流検出手段(9)と、前記電圧ベクトルの1周期内に、前記電流検出手段が検出する電流が極値をとる極値タイミングを少なくとも2回検出することができる極値タイミング検出手段(28)と、この極値タイミング検出手段によって検出される極値タイミングに基づいて、前記ロータの回転位置を演算する位置演算手段(29,30,31)とを含むことを特徴とするモータ制御装置である。なお、括弧内の英数字は後述の実施形態における対応構成要素等を表す。以下、この項において同じ。
ロータの磁極軸方向(d軸方向)のインダクタンスと、これに直交する方向(q軸方向)のインダクタンスとの相異のために、大きさが一定の電圧ベクトルの回転に伴って、電動モータに流れる電流(電流ベクトルの大きさ)に変化が生じる。具体的には、電流ベクトルは、ロータの極位置(N極,S極)に沿う方向のときに、その大きさが極大値をとる。また、電流ベクトルがロータの極位置に対して電気角で90度の方向であるとき、その大きさは極小値をとる。そこで、電流が極大値または極小値をとるときの電流ベクトルの位相に基づいて、ロータの回転位置を演算することができる。
この発明では、電圧ベクトルの一周期内に電流検出手段が検出する電流が極値(極大値および/または極小値)をとる極値タイミングを少なくとも2回以上検出することができるようになっている。これにより、電圧ベクトルの一周期に1回の電流値ホールドが行われるに過ぎない場合に比較して、短い時間間隔でロータの回転位置を演算できるようになる。その結果、ロータの回転に正確に追従して、より正確なロータ回転位置を求めることが可能になる。とくに、ロータの回転速度が低速である場合に、ロータの回転位置の演算頻度を高めることができ、正確なモータ制御に寄与することができる。
請求項2記載の発明は、ロータの角速度を演算する角速度演算手段(25)と、この角速度演算手段によって演算される角速度に応じて、前記極値タイミング検出手段が極値を検出するサンプリング期間を可変設定するサンプリング期間設定手段(32)とをさらに含むことを特徴とする請求項1記載のモータ制御装置である。
ロータが停止中か極低速回転中は、電圧ベクトルが電気角で360度回転する一周期中に、電流の大きさは2度の極大値と2度の極小値をとる。そこで、たとえば、サンプリング期間を電圧ベクトルの一周期の2分の1に定めると、各サンプリング期間中に極大値が表れる。これらの極大値のタイミングを検出することによって、電圧ベクトルの1周期間に2回の極値タイミングを検出でき、それに応じて、ロータの回転位置を2回演算することができる。また、サンプリング期間を電圧ベクトルの一周期の4分の1に定めると、各サンプリング期間中に極値(極大値または極小値)が表れる。これらの極値タイミングを検出することによって、電圧ベクトルの1周期間に4回の極値タイミングを検出でき、それに応じて、ロータの回転位置を4回演算することができる。
ロータが比較的速く回転していて、電圧ベクトルの1周期間に電流の大きさが2度の極大値と1度の極小値をとる状況では、たとえば、サンプリング期間を電圧ベクトルの1周期の3分の1に定めればよい。これにより、各サンプリング期間中に極値タイミングを検出できるので、電圧ベクトルの1周期間にロータの回転位置を3回演算できる。
さらに、ロータがより速く回転していて、電圧ベクトルの1周期間に電流の大きさが1度の極大値と1度の極小値をとる状況では、サンプリング期間を電圧ベクトルの1周期の2分の1に定めればよい。これにより、各サンプリング期間中に極値タイミングを検出できるので、電圧ベクトルの1周期間にロータの回転位置を2回演算できる。
ロータがさらに高速に回転していて、電圧ベクトルの1周期間に電流の大きさが1度の極値(極大値または極小値)をとるに過ぎない状況では、サンプリング期間を電圧ベクトルの1周期に等しく定めればよい。これにより、電圧ベクトルの1周期間に1回の極値タイミングを検出でき、それに応じて、ロータの回転位置を1回演算できる。ロータの角速度が高速になれば、ロータの回転位置の検出頻度が低くても電動モータの制御に支障が生じることはない。
このように、ロータの角速度に応じてサンプリング期間を可変設定することで、極値タイミングを確実に検出することができるから、確実にロータの回転位置を演算できる。そして、低速回転域では、高頻度でロータの回転位置を演算することができる。
サンプリング期間設定手段は、より具体的には、たとえば、電圧ベクトルの1周期の2分の1の期間をサンプリング期間とする第1状態と、電圧ベクトルの1周期に等しい期間をサンプリング期間とする第2状態とで切り換わるものであってもよい。この場合、たとえば、極値タイミング検出手段は、たとえば、極大値タイミングまたは極小値タイミングのいずれかのみを検出するものであってもよい。たとえば、サンプリング期間設定手段は、ロータの角速度が低速であって、電圧ベクトルの1周期中に電流ベクトルの極大が2回現れる状況では、前記第1状態となる。これにより、電圧ベクトルの1周期中に、ロータの回転位置を2回演算できる。ロータの角速度が高速であって、電圧ベクトルの1周期中に電流ベクトルの極大が1度しか現れない状況では、サンプリング期間設定手段は、前記第2状態となる。このとき、電圧ベクトルの1周期中にロータの回転位置が1回演算されることになる。
前記ロータの角速度演算手段は、ロータの位置演算手段によって演算されるロータの回転位置に基づいてロータの角速度を演算するものであってもよい。
請求項3記載の発明は、前記位置演算手段は、電圧ベクトルの1周期内における前記サンプリング期間の時間軸上の相対位置と、前記サンプリング期間中における前記極値タイミングとに基づいて、ロータの位置を演算するものであることを特徴とする請求項2記載のモータ制御装置である。
たとえば、電圧ベクトルの1周期を2分の1ずつに分割してサンプリング期間を設定する場合、周期前半のサンプリング期間における極値タイミングはロータの位相に対応しているが、周期後半のサンプリング期間における極値タイミングはロータの位相に対して半周期分のずれがある。そこで、極値タイミングに対して、さらに、電圧ベクトルの1周期内におけるサンプリング期間の時間軸上の位置を加味することで、ロータの回転位置を正確に演算できる。たとえば、ロータの位相が30度のとき(N極が30度の位置のとき)、周期前半のサンプリング期間に検出される極値タイミング(N極に対応)は30度の位相に対応し、周期後半のサンプリング期間に検出される極値タイミング(S極に対応)は210度の位相に対応する。そこで、周期後半のサンプリング期間に検出される極値タイミングを用いるときには、補正値として180度を加算または減算することで、ロータの正確な回転角(30度)を演算できる。
請求項4記載の発明は、前記ステータは、その磁気特性がB−H曲線の非線型領域で駆動可能であることを特徴とする請求項1ないし3のいずれか一項に記載のモータ制御装置である。
この構成によれば、B−H曲線の非線型領域でステータを駆動することで、一般に突極性がないと言われているSPM(Surface Permanent Magnet)モータであっても、d軸インダクタンスとq軸インダクタンスとに差のある状況、すなわち、突極性を示す状況とすることができる。これにより、電流の大きさは、電圧ベクトルが電気角で360度一周する間に、確実に極値をとる。したがって、極値タイミングに基づくロータの回転位置演算を確実に行うことができる。
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、この発明の一実施形態に係るモータ制御装置を適用した電動パワーステアリング装置の電気的構成を説明するためのブロック図である。この電動パワーステアリング装置は、車両のステアリングホイールに加えられる操舵トルクを検出するトルクセンサ1と、車両の舵取り機構2に操舵補助力を与える電動モータ3と、この電動モータ3を駆動制御するモータ制御装置5とを備えている。モータ制御装置5は、トルクセンサ1が検出する操舵トルクに応じて電動モータ3を駆動することによって、操舵状況に応じた適切な操舵補助を実現する。
電動モータ3は、この実施形態では、三相ブラシレスDCモータであり、図2に図解的に示すように、界磁としてのロータ50と、U相、V相およびW相のステータ巻線51,52,53とを備えている。電動モータ3は、ロータの外部にステータを配置したインナーロータ型のものであってもよいし、筒状のロータの内部にステータを配置したアウターロータ型のものであってもよい。
モータ制御装置5は、マイクロコンピュータ7と、このマイクロコンピュータ7によって制御され、電動モータ3に電力を供給する駆動回路(インバータ回路)8と、電動モータ3の各相のステータ巻線に流れる電流を検出する電流センサ9とを備えている。
マイクロコンピュータ7は、CPUおよびメモリ(ROMおよびRAMなど)を備えており、所定のプログラムを実行することによって、複数の機能処理部として機能するようになっている。この複数の機能処理部には、電流指令値生成部11と、PI(比例積分)制御部12と、指示電圧生成部13と、γδ/αβ座標変換部14と、αβ/UVW座標変換部15と、PWM制御部16と、UVW/αβ座標変換部17と、αβ/γδ座標変換部18と、偏差演算部19と、位置推定部20と、センシング信号生成部21と、加算部22と、角速度演算部25とを備えている。
電流指令値生成部11は、電動モータ3のロータ磁極方向に沿うd軸電流成分の指令値Id *と、d軸に直交するq軸電流成分の指令値Iq *とを生成する。以下、これらをまとめて言うときには、「電流指令値Idq」という。ただし、dq座標平面はロータ50の回転方向に沿う平面であり、d軸およびq軸は、ロータ50とともに回転する二相回転座標系(d−q)を規定する(図2参照)。
電動モータ3のU相、V相およびW相に与えるべき電流(正弦波電流)の振幅を表す電流指令値I*を用いると、d軸電流指令値Id *およびq軸電流指令値Iq *は、次式(1)(2)のように表される。
d *=0 ……(1)
q *=−(3/2)1/2・I* ……(2)
したがって、電流指令値生成部11は、d軸電流指令値Id *=0を生成する一方で、トルクセンサ1によって検出される操舵トルクに応じたq軸電流指令値Iq *を生成する。より具体的には、操舵トルクに対応したq軸電流指令値Iq *を記憶したマップ(テーブル)を用いてq軸電流指令値Iq *が生成されるようになっていてもよい。電動モータ3が発生するトルクは、モータ電流に対応するから、電流指令値Idqは、電動モータ3から発生させるべきトルクを指令するための「トルク指令値」と言い換えることもできる。
電流センサ9は、電動モータ3のU相電流IU、V相電流IVおよびW相電流Iwを検出する(以下、これらをまとめていうときには「三相検出電流IUVW」という)。その検出値は、UVW/αβ座標変換部17に与えられる。
UVW/αβ座標変換部17は、三相検出電流IUVWを、二相固定座標系(α−β)上での電流IαおよびIβ(以下、これらをまとめていうときには「二相検出電流Iαβ」という。)に座標変換する。二相固定座標系(α−β)とは、ロータ50の回転中心を原点として、ロータ50の回転平面内にα軸およびこれに直交するβ軸を定めた固定座標系である(図2参照)。座標変換された二相検出電流Iαβは、αβ/γδ座標変換部18に与えられる。
αβ/γδ座標変換部18は、二相検出電流Iαβを、位置推定部20によって推定されるロータ回転位置θ^(以下、「推定回転位置θ^」という。)に従う二相回転座標系(γ−δ)上での電流IγおよびIδ(以下、これらをまとめていうときには「二相検出電流Iγδ」という。)に座標変換する。二相回転座標系(γ−δ)は、推定回転位置θ^にロータ50がある場合に、ロータ磁極方向に沿うγ軸と、このγ軸に直交するδ軸とによって規定される回転座標系である(図2参照)。推定回転位置θ^に誤差がなく、実際のロータ回転位置と一致しているとき、二相回転座標系(d−q)と二相回転座標系(γ−δ)とは一致する。
二相検出電流Iγδは、偏差演算部19に与えられるようになっている。この偏差演算部19は、d軸電流指令値Id *に対するγ軸電流Iγの偏差、およびq軸電流指令値Iq *に対するδ軸電流Iδの偏差を演算する。これらの偏差がPI制御部12に与えられてそれぞれPI演算処理を受ける。そして、これらの演算結果に応じて、指示電圧生成部13によって、γ軸指示電圧Vγ *およびδ軸指示電圧Vδ *(以下、これらをまとめていうときには「二相指示電圧Vγδ」という。)が生成されて、γδ/αβ座標変換部14に与えられる。
γδ/αβ座標変換部14は、γ軸指示電圧Vγ *およびδ軸指示電圧Vδ *を、二相固定座標系(α−β)の指示電圧であるα軸指示電圧Vα *およびβ軸指示電圧Vβ *(以下、これらをまとめていうときには「二相指示電圧Vαβ」という。)に座標変換する。この二相指示電圧Vαβは、αβ/UVW座標変換部15に与えられる。
αβ/UVW座標変換部15は、α軸指示電圧Vα *およびβ軸指示電圧Vβ *を三相固定座標系の指示電圧、すなわち、U相、V相およびW相の指示電圧VU *,VV *,VW *(以下、これらをまとめていうときには「三相指示電圧VUVW」という。)に変換する。
PWM制御部16は、三相の指示電圧VU *,VV *,VW *に応じて制御されたデューティ比の駆動信号を生成して駆動回路8に与える。これにより、電動モータ3の各相には、該当する相の指示電圧VU *,VV *,VW *に応じたデューティ比で電圧が印加されることになる。
このような構成によって、舵取り機構2に結合された操作部材としてのステアリングホイール(図示せず)に操舵トルクが加えられると、これがトルクセンサ1によって検出される。そして、その検出された操舵トルクに応じた電流指令値Idqが電流指令値生成部11によって生成される。この電流指令値Idqと二相検出電流Iγδとの偏差が偏差演算部19によって求められ、この偏差を零に導くようにPI制御部12によるPI演算が行われる。この演算結果に対応した二相指示電圧Vγδが指示電圧生成部13によって生成され、これが、座標変換部14,15を経て三相指示電圧VUVWに変換される。そして、PWM制御部16の働きによって、その三相指示電圧VUVWに応じたデューティ比で駆動回路8が動作することによって、電動モータ3が駆動され、電流指令値Idqに対応したアシストトルクが舵取り機構2に与えられることになる。こうして、操舵トルクに応じて操舵補助を行うことができる。電流センサ9によって検出される三相検出電流IUVWは、座標変換部17,18を経て、電流指令値Idqに対応するように二相回転座標系(γ−δ)で表された二相検出電流Iγδに変換された後に、偏差演算部19に与えられる。
回転座標系と固定座標系との間での座標変換のためには、ロータ50の回転位置を表す位相角(電気角)θが必要である。この位相角を表す推定回転位置θ^が位置推定部20によって生成され、γδ/αβ座標変換部14およびαβ/γδ座標変換部18に与えられるようになっている。
センシング信号生成部21は、ロータ50の位相角θを推定するために、電動モータ3に探査電圧を印加する探査電圧印加手段として機能する。このセンシング信号生成部21は、電動モータ3の定格周波数に比較して十分に高い周波数(たとえば、400Hz)の高周波正弦電圧(図5(b)参照)を、探査電圧として、電動モータ3のU相、V相およびW相のステータ巻線51,52,53に印加するためのセンシング信号を生成する。より具体的には、ロータ50の回転を引き起こすことのない程度のデューティ比の高周波電圧の印加によって、V−W相通電、W−U相通電およびU−V相通電を順次繰り返させることにより、ロータ50の回転中心まわりで空間的に回転する高周波電圧ベクトルを印加することができるセンシング信号を生成する。この高周波電圧ベクトルは、ロータ50の回転中心を原点とする固定座標であるαβ座標の原点まわりに定速回転する一定の大きさの電圧ベクトルである(図4(a)参照)。
センシング信号生成部21は、この実施形態では、二相指示電圧Vαβに重畳すべきセンシング信号を生成する。このセンシング信号は、加算部22によって、二相指示電圧Vαβに重畳されるようになっている。
位置推定部20は、二相検出電流Iαβに基づいて、ロータ50の回転位置を推定し、推定回転位置θ^を生成する。
そして、角速度演算部25は、位置推定部20が生成する推定回転位置θ^に基づいて、ロータ50の角速度ωを演算する。すなわち、制御周期毎に推定回転位置θ^が生成されると、前制御周期と今制御周期とにおける推定回転位置θ^の差に基づいて、角速度ωが演算される。この角速度ωは、位置推定部20における位置推定演算のために用いられる。
図3は、位置推定部20の構成を説明するためのブロック図である。位置推定部20は、電流値演算部26と、逆ノッチフィルタ27と、電流ピークタイミング抽出部28と、電流同期抽出部29と、ロータ位置演算部30と、位置補正部31と、サンプリング期間設定部32とを備えている。
電流値演算部26は、電流ベクトルの大きさ、すなわち、電流の大きさIを求める。より具体的には、電流値演算部26は、UVW/αβ座標変換部17から与えられる二相検出電流Iαβに基づいて、電流の大きさIを演算する。たとえば、次式(3)に従って、電流の大きさiが演算される。
I={Iα 2+Iβ 21/2 …… (3)
逆ノッチフィルタ27は、電流値演算部26の出力からノイズ成分を除去する。電流の大きさIには、高周波電圧ベクトルの1周期中に2回の極大値が生じる。したがって、電流値演算部26の出力のうち、有意な信号成分の周波数は、センシング信号生成部21が生成するセンシング信号の周波数の2倍程度の周波数を有する。そこで、逆ノッチフィルタ27は、センシング信号の周波数の2倍の周波数を中心周波数fcとし、角速度演算部25によって演算される角速度ωに対応する周波数α(=ω/2π)の2倍の範囲fc±αの信号を通過させ、この範囲外の信号を除去する特性(逆ノッチフィルタ特性)を有している。
電流ピークタイミング抽出部28は、逆ノッチフィルタ27の出力に基づき、電流値演算部26によって求められた電流の大きさIが極大値(ピーク値)をとるタイミング(極大値タイミング)を検出する。より具体的には、電流ピークタイミング抽出部28は、サンプリング期間設定部32によって設定されるサンプリング期間毎にピークホールド処理を行い、そのサンプリング期間中に電流の大きさIが極大値をとる極大値タイミングを抽出する。この極大値タイミングは、ロータ50の回転位置(位相)に対応する。この電流ピークタイミング抽出部28による処理の詳細は、後述する。
サンプリング期間設定部32は、電流ピークタイミング抽出部28によってピークホールド処理を行うべきサンプリング期間を可変設定する。具体的には、サンプリング期間設定部32は、角速度演算部25によって求められる角速度ωに基づいて、サンプリング期間を可変設定する。
この実施形態では、サンプリング期間設定部32は、高周波電圧ベクトルの1周期(電気角で360度)をTとして、この1周期Tの2分の1をサンプリング期間として設定する第1状態と、1周期Tに等しいサンプリング期間を設定する第2状態とに切り換わるようになっている。ただし、1周期Tの3分の1をサンプリング期間とする状態や、1周期Tの4分の1をサンプリング期間とする状態など、サンプリング期間を1周期Tのk分の1(kは自然数)に定める別の状態を設けてもよい。
電流同期抽出部29は、電流ピークタイミング抽出部28が極値タイミングtを生成すると、これに応答して、そのタイミングtにおける二相検出電流Iαβ(t)をUVW/αβ座標変換部17から取り込んで出力する。
ロータ位置演算部30は、電流同期抽出部29から与えられる極値タイミング二相検出電流Iαβ(t)を用いて、次式(4)に従って、ロータの回転位置(回転角)θを求める。
θ=Tan-1(Iβ/Iα) ……(4)
位置補正部31は、ロータ位置演算部30によって求められるロータ回転位置θを、サンプリング期間設定部32によるサンプリング周期の設定状態に応じて補正する。たとえば、サンプリング周期が高周波電圧ベクトルの1周期の2分の1に設定されている場合に、前半のサンプリング周期の極値タイミングに基づいて求められたロータ回転位置θは、ロータ50の回転角に対応しているので、そのまま推定回転位置θ^として出力される。これに対して、後半のサンプリング周期の極値タイミングに基づいて求められたロータ回転位置θに対しては、180度の補正(加算または減算)が施される。この補正によって、ロータ50の回転角に対応した推定回転位置θ^が得られる。
図4(a)は、センシング信号生成部21によって生成されてステータ巻線51,52,53に印加される回転探査電圧に対応する高周波電圧ベクトルを示し、図4(b)は、高周波電圧ベクトルに対する電流ベクトルの応答を示す。回転探査電圧の印加により形成される高周波電圧ベクトルは、一定の大きさを有し、αβ座標の原点まわりに定速で回転する。このとき、ロータ50の極位置に応じて電流ベクトルの大きさが変化する。より具体的には、ロータ50のN極およびS極に対応する位置で電流ベクトルの大きさ、すなわち電流の大きさIが極大値をとり、それらに対して電気角で90度だけ異なる2つの位置で電流の大きさIが極小値をとる。その結果、電流ベクトルの終点は、αβ座標の原点のまわりに楕円形の軌跡55を形成することになる。その楕円形は、ロータ50のN極およびS極に対応する長軸方向を有する。
図5(a)は、電流波形の一例を示す波形図である。すなわち、電流の大きさIの時間変化の一例が示されている。電流波形には、電流ベクトルの終点が形成する楕円形の軌跡55(図4(b)参照)の2つの長軸方向に対応した極大点P1,P2が現れる。また、これらの極大値P1,P2の間に極小点Q1,Q2が現れる。
ロータ50の角速度ωが高周波電圧ベクトルの回転速度に対して十分に小さいときには、高周波電圧ベクトルの1周期中に、電流の大きさIは、2度の極大点P1,P2および2度の極小点Q1,Q2をとる。この状態が図5(a)の曲線L2に示されている。
ロータ50の角速度ωが速いときには、高周波電圧ベクトルの1周期中に、電流の大きさIは、1度の極大値P11をとる。この状態が図5(a)の曲線L3に示されている。
サンプリング期間設定部32は、ロータ50の角速度ωが所定の閾値ωth未満であり、電流波形が図5(a)の曲線L2のような状態となるときには、サンプリング期間を高周波電圧ベクトルの1周期Tの2分の1に設定する。これにより、高周波電圧ベクトルの1周期中に、ロータ50のN極に対応した極大点P1の極大値タイミングと、ロータ50のS極に対応した極大点P2の極大値タイミングとが抽出されることになる。
前記閾値ωthは、たとえば、ロータ50が一回転する時間の2分の1が、高周波電圧ベクトルが一回転する時間よりも長くなるように定めればよい。電圧の周波数をfvとすれば、電圧ベクトルが一回転する時間は、1/fvである。また、ロータ50が一回転する時間は、2π/ωである。したがって、次の不等式が成り立てばよい。
Figure 2009100544
これをωについて解くと、次のとおりである。
ω<πfv
したがって、ωth=πfvとすればよい。
一方、ロータ50の角速度ωが前記閾値を超えていて、図5(a)の曲線L3のような状態となるときには、サンプリング期間設定部32は、サンプリング期間を高周波電圧ベクトルの1周期Tに等しく設定する。これにより、高周波電圧ベクトルの1周期中に、ロータ50のN極に対応した極大点P11の極大値タイミングが抽出されることになる。
図6は、ロータ50の推定回転位置θ^を求めるために所定の制御周期毎に繰り返し実行される処理の流れを説明するためのフローチャートである。
まず、高周波電圧ベクトルの1周期中に2回現れる電流信号の極大のうちロータ50のN極に対応する極大を特定するための処理(N極判定処理)が行われる(ステップS1)。N極判定処理には、公知の方法を適用することができる。たとえば、充分に大きな高周波電圧ベクトルを印加すると、ステータの磁気飽和の影響により、ロータ50のN極側の方がS極側よりもインダクタンスが小さくなり、N極方向の電流ベクトルの大きさが最大値をとることになる(図5(a)の曲線L1参照)。これを利用して、電流波形の2つの極大点のうちの一方をN極に対応する極大点として特定できる。
次に、センシング信号生成部21からセンシング信号が印加される(ステップS2)。これにより、電流センサ9の出力から、図4(b)および図5(a)に示すような電流応答が得られる。
サンプリング期間設定部32は、前制御周期に求められた角速度ωに基づいて、電流ピークタイミング抽出部28がピークホールド動作が行うためのサンプリング期間を設定する(ステップS3)。
電流ピークタイミング抽出部28は、設定されたサンプリング期間中の極大値に対応する極値タイミングtを出力する(ステップS4)。この極値タイミングtにおける二相検出電流Iαβに基づいて、電流同期抽出部29およびロータ位置演算部30などの働きにより、ロータ回転位置θが求められる(ステップS5)。この求められたロータ回転位置θに対して、位置補正部31による補正処理が加えられることにより(ステップS6)、推定回転位置θ^が求められる。
角速度演算部25は、求められた推定回転位置θ^に基づいて、角速度ωを求める(ステップS7)。この角速度ωは、次制御周期におけるサンプリング期間の設定(ステップS3)のために用いられる。
以上のように、この実施形態によれば、ロータ50の角速度ωが小さいときには、高周波電圧ベクトルの1周期中に、極値タイミング(極大値タイミング)が2回検出され、それに応じて推定回転位置θ^が2回求められる。これにより、推定回転位置θ^の演算頻度が従来技術の2倍になる。その結果、低速域において、詳細な位置情報を得ることができるので、より詳細かつ正確に電動モータ3を制御することができるようになる。これにより、電動パワーステアリング装置の操舵フィーリングを向上することができる。
また、ロータ50の角速度ωが大きくなると、高周波電圧ベクトルの1周期中に1回の極値タイミング(極大値)が抽出される動作となるので、サンプリング期間中に確実に1回の極大値を検出することができる。
なお、電動モータ3は、一般に突極性がないと言われているSPM(Surface Permanent Magnet)モータであってもよい。この場合でも、充分に大きな回転探査電圧をステータ巻線51,52,53に印加して、ステータをその磁気特性がB−H曲線の非線型領域で駆動することにより、d軸インダクタンスとq軸インダクタンスとに差のある状況、すなわち、突極性を示す状況とすることができる。これにより、電流の大きさIは、電圧ベクトルが電気角で360度一周する間に、確実に極値をとる。したがって、極値タイミングに基づくロータ50の回転位置演算を行うことができる。
以上、この発明の一実施形態について説明したが、この発明は、さらに他の形態で実施することもできる。
たとえば、前述の実施形態では、各サンプリング期間中の極大値のタイミングを抽出するようにしているが、極小値のタイミングをも抽出するようにすれば、推定回転位置θ^をより短時間の間隔で求めることができる。すなわち、図5に示すように、高周波電圧ベクトルの1周期Tの4分の1のサンプリング周期を設定し、各サンプリング周期中で極大点P1,P2または極小点Q1,Q2のタイミングを極値タイミングとして抽出する。この場合、位置補正部31は、第1サンプリング期間Δ1に対応するロータ位置演算部30の出力に対しては補正値「0」を加え(補正なし)、第2サンプリング期間Δ2に対応するロータ位置演算部30の出力に対しては補正値「90度」を加え、第3サンプリング期間Δ3に対応するロータ位置演算部30の出力に対しては補正値「180度」を加え、第4サンプリング期間Δ4に対応するロータ位置演算部30の出力に対しては補正値「270度」を加えるように動作する。これにより、各サンプリング期間Δ1〜Δ4において、妥当な推定回転位置θ^を得ることができる。このようにすれば、従来技術の4倍の頻度で推定回転位置θ^を求めることができるから、電動モータ3をより一層適切に制御することができる。
また、前述の実施形態では、電流の大きさIが極値をとるときの二相検出電流Iαβを用いてロータ50の回転位置θを求めているが、電流の大きさIが極値をとるときの二相指示電圧Vα,Vβを用いて(図1のライン23参照)、次式(5)に従って、推定回転位置θ^を求めるようにしてもよい。
θ^=Tan-1(Vβ/Vα) …(5)
電圧ベクトルは大きさが一定であるので、歪みの生じている電流ベクトルに比較して、その位相の計算が容易である。したがって、式(5)の適用により、演算処理を簡素化できる。
電流の大きさIが極値をとるときの電圧ベクトルの位相を求めるには、前記の式(5)に従う演算を行う代わりに、回転探査電圧の印加と同期して計数動作を行うカウンタを用いるようにしてもよい。具体的には、高周波電圧ベクトルがα軸(U相方向に一致)に沿うとき(すなわち、高周波電圧ベクトルの位相が零のとき)に初期化されて計数動作を開始するように繰り返し動作するカウンタを設ける。このカウンタは、たとえば、高周波電圧ベクトルの周期Tをn等分(nは1周期当たりのサンプリング数。たとえばn=360)した周期T/n毎にカウントアップするもので、その出力は、高周波電圧ベクトルの位相を表す。そこで、図5(c)に示すように、電流の大きさIの極値が検出された時点でカウンタの計数値を参照すれば、この計数値はロータ50の磁極位置(電流ベクトルの大きさが最大のときの高周波電圧ベクトルの位相角)を表す。
また、前述の実施形態では、電動パワーステアリング装置の駆動源としての電動モータ3に本発明が適用された例について説明したが、この発明は、電動パワーステアリング装置以外の用途の電動モータの制御に対しても適用が可能である。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
この発明の一実施形態に係るモータ制御装置を適用した電動パワーステアリング装置の電気的構成を説明するためのブロック図である。 電動モータの構成を説明するための図解図である。 位置推定部の構成を説明するためのブロック図である。 図4(a)は回転探査電圧に対応する高周波電圧ベクトルを示し、図4(b)は高周波電圧ベクトルに対する電流ベクトルの応答を示す。 図5(a)は電流波形の例を示し、図5(b)は電圧波形の例を示し、図5(c)は電圧ベクトルの位相を検出するためのカウンタの計数値の変化を表す。 ロータ回転位置推定演算の流れを説明するためのフローチャートである。
符号の説明
5…モータ制御装置、7…マイクロコンピュータ、9…電流センサ、50…ロータ、51,52,53…ステータ巻線

Claims (4)

  1. 界磁としてのロータならびにU相、V相およびW相のステータ巻線を備えた電動モータを駆動するためのモータ制御装置であって、
    前記U相、V相およびW相のステータ巻線にそれぞれ印加される電圧により表される電圧ベクトルが、その大きさを一定に保持して所定周期で回転するように、前記ステータ巻線に探査電圧を印加する探査電圧印加手段と、
    この探査電圧印加手段によって探査電圧を印加している期間中に、前記電動モータに流れる電流を検出する電流検出手段と、
    前記電圧ベクトルの1周期内に、前記電流検出手段が検出する電流が極値をとる極値タイミングを少なくとも2回検出することができる極値タイミング検出手段と、
    この極値タイミング検出手段によって検出される極値タイミングに基づいて、前記ロータの回転位置を演算する位置演算手段とを含むことを特徴とするモータ制御装置。
  2. ロータの角速度を演算する角速度演算手段と、
    この角速度演算手段によって演算される角速度に応じて、前記極値タイミング検出手段が極値を検出するサンプリング期間を可変設定するサンプリング期間設定手段とをさらに含むことを特徴とする請求項1記載のモータ制御装置。
  3. 前記位置演算手段は、電圧ベクトルの1周期内における前記サンプリング期間の時間軸上の相対位置と、前記サンプリング期間中における前記極値タイミングとに基づいて、ロータの位置を演算するものであることを特徴とする請求項2記載のモータ制御装置。
  4. 前記ステータは、その磁気特性がB−H曲線の非線型領域で駆動可能であることを特徴とする請求項1ないし3のいずれか一項に記載のモータ制御装置。
JP2007269362A 2007-10-16 2007-10-16 モータ制御装置 Pending JP2009100544A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007269362A JP2009100544A (ja) 2007-10-16 2007-10-16 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007269362A JP2009100544A (ja) 2007-10-16 2007-10-16 モータ制御装置

Publications (1)

Publication Number Publication Date
JP2009100544A true JP2009100544A (ja) 2009-05-07

Family

ID=40703048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007269362A Pending JP2009100544A (ja) 2007-10-16 2007-10-16 モータ制御装置

Country Status (1)

Country Link
JP (1) JP2009100544A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117702A (zh) * 2012-12-17 2013-05-22 中国东方电气集团有限公司 一种高精度永磁同步电机的无速度传感器估计方法
KR20150013970A (ko) * 2013-07-24 2015-02-06 현대중공업 주식회사 권선형 동기 전동기의 회전자 위치 추정 장치 및 방법
CN112640290A (zh) * 2018-09-06 2021-04-09 株式会社爱德克斯 马达控制装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117702A (zh) * 2012-12-17 2013-05-22 中国东方电气集团有限公司 一种高精度永磁同步电机的无速度传感器估计方法
CN103117702B (zh) * 2012-12-17 2015-08-26 中国东方电气集团有限公司 一种高精度永磁同步电机的无速度传感器估计方法
KR20150013970A (ko) * 2013-07-24 2015-02-06 현대중공업 주식회사 권선형 동기 전동기의 회전자 위치 추정 장치 및 방법
KR101972873B1 (ko) * 2013-07-24 2019-04-30 현대일렉트릭앤에너지시스템(주) 권선형 동기 전동기의 회전자 위치 추정 장치 및 방법
CN112640290A (zh) * 2018-09-06 2021-04-09 株式会社爱德克斯 马达控制装置
CN112640290B (zh) * 2018-09-06 2024-02-20 株式会社爱德克斯 马达控制装置

Similar Documents

Publication Publication Date Title
JP4716118B2 (ja) モータ制御装置
JP4674525B2 (ja) 磁極位置推定方法及びモータ制御装置
JP5435252B2 (ja) 車両用操舵装置
JP5324159B2 (ja) モータ制御装置
JP5273451B2 (ja) モータ制御装置
JP4631672B2 (ja) 磁極位置推定方法、モータ速度推定方法及びモータ制御装置
JP5168536B2 (ja) モータ制御装置
JP2007097263A (ja) 同期モータの磁極位置推定方法
JP5267848B2 (ja) モータ制御装置
JP3914108B2 (ja) Dcブラシレスモータの制御装置
JP5003929B2 (ja) 電動パワーステアリング装置
JP2010029030A (ja) モータ制御装置
JP2010029028A (ja) モータ制御装置
JP5170505B2 (ja) モータ制御装置
JP2010011542A (ja) モータ制御装置
JP5392530B2 (ja) モータ制御装置
JP2014110708A5 (ja)
JP2008236990A (ja) モータ制御装置
JP2010178609A (ja) モータ制御装置
WO2020045568A1 (ja) モータ制御装置
JP2009100544A (ja) モータ制御装置
JP2007267547A (ja) モータ制御装置
JP5199316B2 (ja) 電動機駆動装置
JP5798513B2 (ja) 永久磁石同期電動機の初期磁極位置の検出方法および装置、並びに永久磁石同期電動機の制御装置
JP6116449B2 (ja) 電動機駆動制御装置