WO2011118257A1 - 車両用制御装置及び車両駆動システム - Google Patents

車両用制御装置及び車両駆動システム Download PDF

Info

Publication number
WO2011118257A1
WO2011118257A1 PCT/JP2011/051887 JP2011051887W WO2011118257A1 WO 2011118257 A1 WO2011118257 A1 WO 2011118257A1 JP 2011051887 W JP2011051887 W JP 2011051887W WO 2011118257 A1 WO2011118257 A1 WO 2011118257A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
speed
transmission
vehicle
engagement
Prior art date
Application number
PCT/JP2011/051887
Other languages
English (en)
French (fr)
Inventor
鈴木武彦
小溝恭輔
関井賢博
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201180006389.5A priority Critical patent/CN102713365B/zh
Priority to DE112011100106T priority patent/DE112011100106T5/de
Publication of WO2011118257A1 publication Critical patent/WO2011118257A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18066Coasting
    • B60Y2300/18083Coasting without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/044Smoothing ratio shift when a freewheel device is disengaged or bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20012Multiple controlled elements
    • Y10T74/20018Transmission control

Definitions

  • the present invention includes an input member that is drivingly connected to an engine, an output member that is drivingly connected to a wheel, and a transmission that shifts the rotational driving force of the input member at a gear ratio of each gear and transmits it to the output member
  • the present invention relates to a control device for controlling a vehicular drive device provided with a vehicle drive system including a vehicular drive device controlled by such a control device.
  • Patent Document 1 As a conventional vehicle drive device, for example, a device described in Patent Document 1 below is already known.
  • this drive device when a predetermined slow deceleration operation state in which the required drive force becomes minute with respect to the running resistance of the vehicle is achieved while the vehicle is running, a start provided between the transmission and the wheels.
  • the clutch to the disengaged state By controlling the clutch to the disengaged state, the engine and the wheels are brought into a non-coupled state in which driving and coupling are not established, and the vehicle is in an idle running state.
  • the so-called engine brake does not work, and a slow deceleration of the vehicle due to the running resistance of the vehicle is realized. Further, in this idling state, the engine is stopped and fuel consumption of the engine is suppressed.
  • the engine When the vehicle enters the predetermined acceleration operation state in which the required driving force exceeds the running resistance while the vehicle is idling, the engine is started and the starting clutch is controlled to the engaged state. As a result, the rotational driving force of the engine is shifted to a state where it is transmitted to the wheels, and the vehicle is reaccelerated.
  • the transmission and the starting clutch are configured to be operated by hydraulic pressure, and the oil pump is driven by the rotation of the engine to generate hydraulic pressure.
  • the vehicle drive device is an electric motor for driving an oil pump so that the transmission device and the starting clutch are operated with good responsiveness by hydraulic pressure when shifting to the acceleration operation state.
  • the hydraulic motor is generated by driving the electric motor even in the idling state. That is, in the technique of Patent Document 1, it is necessary to provide an electric motor for generating hydraulic pressure in order to improve the responsiveness of driving force transmission, and there is a problem that the configuration of the vehicle drive device becomes complicated.
  • the rotational driving force of the input member that is drivingly connected to the engine is not transmitted to the output member that is drivingly connected to the wheels, and the rotational driving force of the input member is transmitted to the output member. It is desired to realize a vehicle control device that can improve the responsiveness of driving force transmission at the time of transition and can suppress the configuration of the vehicle drive device from becoming complicated.
  • the present invention has an input member drivingly connected to an engine according to the present invention, an output member drivingly connected to a wheel, and a plurality of engagement elements, and the engagement of the plurality of engagement elements.
  • a shift device that switches a plurality of shift speeds by controlling release and shifts the rotational driving force of the input member at a gear ratio of each shift speed and transmits it to the output member.
  • a characteristic configuration of the vehicle control device for controlling the device is that the transmission device transmits the rotational driving force from the input member to the output member as one of the plurality of shift speeds, and from the output member.
  • the engine includes a one-way transmission stage that is a gear stage that does not transmit the rotational driving force to the input member, and the engine is in a state where the vehicle is running and the rotational driving force of the input member is not transmitted to the output member.
  • the rotation speed of the In the running in idling state is a state of being controlled in Le rpm, lies in the transmission is provided with a control means for controlling so as to realize the one-way transmission speed.
  • the term “drive connection” refers to a state where two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or the two This is used as a concept including a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members.
  • a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like.
  • the term “drive connection” for each rotating element of each planetary gear device refers to a state in which the plurality of rotating elements included in the planetary gear device are connected to each other without intervening other rotating elements. To do.
  • a one-way transmission stage is realized in the idling state during traveling.
  • the rotational driving force from the output member to the input member is not transmitted, so that the transmission of the driving force between the transmission and the engine is interrupted, and the engine is dragged in the idling state (engine brake). , Engine rotation) is avoided.
  • the energy loss accompanying the drag of the engine can be suppressed, and for example, the rotational driving force from the output member can be effectively used for other purposes.
  • the one-way transmission stage transmits the rotational driving force from the input member to the output member
  • the engine rotational driving is promptly performed. Force can be transmitted to the output member via the input member.
  • the engine is controlled to the idling speed without being stopped, so that the rotational driving force of the engine can be transmitted to the output member immediately after leaving the idling state during traveling. Therefore, according to the above characteristic configuration, the responsiveness of the driving force transmission when the vehicle is driven by the rotational driving force of the engine while leaving the idling state while traveling while avoiding the dragging of the engine in the idling state while traveling.
  • the transmission includes a first engagement element that transmits a rotational driving force of the input member to one of a plurality of rotation elements included in the transmission, and the first engagement.
  • a one-way clutch in which a rotational driving force is transmitted from the input member to the output member and a rotational driving force is not transmitted from the output member to the input member, with the elements engaged;
  • the one-way transmission stage is configured such that the engagement of the first engagement element and the one-way clutch are realized in cooperation.
  • the one-way transmission stage can be realized easily and appropriately with a simple configuration by combining the first engagement element, which is one of the engagement elements, and one one-way clutch.
  • the control means when the shift stage in the transmission before shifting to the running idling state is a shift stage realized by at least engagement of the first engagement element, the control means The first engagement element is engaged in the idling state to realize the one-way transmission stage, and the shift stage in the transmission before the transition to the idling state during traveling is at least the engagement of the first engagement element. In the case of a speed other than the speed realized by the combination, it is preferable that the control means is configured to release all the engaging elements of the transmission in the idling state during traveling.
  • the state of the shift stage in the transmission in the traveling idling state can be appropriately set according to the shift stage in the transmission before the shift to the traveling idling state. That is, when the shift stage in the transmission before shifting to the idling state during traveling is realized by engaging at least the first engagement element, the engagement elements other than the first engagement element are released. Only one-way transmission stage can be realized easily and quickly. Further, in the case where the shift stage in the transmission before shifting to the idling state during traveling is realized by releasing the first engagement element and engaging the other two engagement elements, By releasing the engagement element, it is possible to increase the degree of freedom in setting the gear position of the transmission when leaving the idling state during traveling, and it is possible to appropriately cope with the situation.
  • the control means engages the first engagement element in the traveling idling state.
  • the traveling speed of the vehicle before realizing the one-way transmission stage and shifting to the idling state during traveling is greater than a predetermined release threshold, all the engagement elements of the transmission device are disengaged in the idling state during traveling. It is preferable that the structure is released.
  • the state of the shift stage in the transmission in the traveling idling state can be appropriately set according to the traveling speed of the vehicle before shifting to the traveling idling state. That is, when the vehicle travels at a relatively low speed that is less than or equal to the predetermined release threshold before the transition to the idling state during traveling, the driving force for driving the vehicle when leaving the idling state during traveling is relatively quick. Is often required. Therefore, under such conditions, the responsiveness of driving force transmission at the time of separation from the idling state during traveling can be improved by engaging the first engagement element to realize the one-way transmission stage. Can do.
  • the one-way transmission stage is a shift stage in which the reduction ratio between the input member and the output member is the largest among the forward shift stages.
  • a one-way clutch is used to realize a gear stage having the largest reduction ratio.
  • the one-way clutch provided for such a purpose and the one-way clutch for realizing the one-way transmission stage in the present invention can be shared.
  • a direction transmission stage can be realized.
  • the control means determines that the rotational speed of the input member is The engine rotational speed control is performed so that the target rotational speed is determined based on the traveling speed of the vehicle and the target gear position in the transmission, and then a predetermined engagement element in the transmission is engaged. Is preferred.
  • a change pattern of the target shift speed is determined in advance. If the permissible shift pattern is not satisfied, the control means performs the engine rotational speed control to realize the target shift speed before the change, realizes the target shift speed after the change, When the change pattern of the target shift stage corresponds to the allowable shift pattern, the control unit stops the engine rotational speed control and stops realizing the target shift stage before the change, It is preferable that the target shift speed be realized.
  • the target shift stage when a predetermined allowable shift pattern is satisfied, the target shift stage can be realized at an early stage by directly shifting to the changed target shift stage.
  • the permissible shift pattern has the engagement elements that are engaged first and are engaged later. It is preferable that the engagement element has a change pattern corresponding to a change from a gear stage with a small reduction ratio to a gear stage with a large reduction ratio, which is a change between different gear stages.
  • the engagement element to be engaged first is common among the two engagement elements to be engaged, the engagement element to be engaged later is changed between the engagement elements corresponding to the target shift stage before and after the change.
  • the target shift speed before and after the change can be easily switched by simply switching at.
  • the target shift speed is changed (downshift) from a shift speed with a small reduction ratio to a shift speed with a large reduction ratio, a larger driving force is required. It is preferable to realize it early. Therefore, according to the above configuration, the allowable shift pattern can be set appropriately, and the target shift speed can be realized early if necessary.
  • the transmission includes a first engagement element that transmits a rotational driving force of the input member to one of a plurality of rotation elements of the transmission, and the first engagement element.
  • a one-way clutch in which a rotational driving force is transmitted from the input member to the output member and a rotational driving force is not transmitted from the output member to the input member.
  • the one-way transmission stage is realized by cooperation of the engagement of the first engagement element and the one-way clutch, and the transmission includes a plurality of engagement elements including the first engagement element. By selectively engaging any two of them, a plurality of shift stages can be switched, and at least a second engagement element different from the first engagement element is engaged.
  • the engine is When the shift stage in the transmission before shifting to the in-run idling state is a shift stage realized by engagement of the second engagement element, the control means is in the normal state. When returning, it is preferable that the second engagement element of the two engagement elements is engaged first.
  • the engagement element that is engaged first by engaging the second engagement element first can be integrated into one of the first engagement element and the second engagement element. Therefore, the number of allowable shift patterns can be increased, and the target shift speed can be realized early in more situations.
  • a mechanical pump that is driven by the rotational driving force of the engine and discharges oil, and an electric pump that discharges oil while the operation of the mechanical pump is stopped can supply hydraulic pressure to the plurality of engaging elements.
  • the control means is configured to put the electric pump in a non-driven state.
  • the transmission device specifically includes a first planetary gear device having three rotation elements that are a first rotation element, a second rotation element, and a third rotation element in order of rotation speed. And a second planetary gear device having four rotation elements that become the first rotation element, the second rotation element, the third rotation element, and the fourth rotation element in the order of the rotation speed,
  • the rotating element is fixed to the non-rotating member
  • the second rotating element is selectively drivingly connected to the fourth rotating element of the second planetary gear device via the first engaging element
  • the third rotating element is the input member
  • the second rotating element of the second planetary gear device is non-rotated via a one-way clutch that is engaged and is prevented from rotating when it rotates negatively with respect to the non-rotating member.
  • the third rotating element It is preferable that a structure that is drivingly connected to the member.
  • the transmission can be provided with a one-way transmission stage realized by cooperation of at least the engagement of the first engagement element and the one-way clutch. Therefore, in the vehicle drive device provided with such a transmission, when the vehicle drive device is appropriately controlled to avoid dragging of the engine in the running idling state, the vehicle driving device is separated from the running idling state. The response of driving force transmission can be improved.
  • the second rotating element of the first planetary gear device is further selectively connected to the first rotating element of the second planetary gear device, and the second planetary gear device includes: It is preferable that the second rotating element is selectively driven and connected to the input member via a second engaging element.
  • the vehicle drive device including the transmission that can switch at least four shift speeds
  • the vehicle drive device is appropriately controlled to avoid dragging of the engine in the idling state during traveling.
  • the transmission is configured such that the first rotating element of the second planetary gear device is further selectively fixed to a non-rotating member.
  • the vehicle drive device including the transmission device that further includes two gear speeds and that can switch between the six gear speeds
  • the vehicle drive device is appropriately controlled to perform idling during traveling. It is possible to improve the responsiveness of the driving force transmission when leaving the idling state while traveling while avoiding the drag of the engine in the state.
  • the vehicle drive system is characterized in that the output member included in the vehicle drive device controlled by the vehicle control device described above is drivingly connected to one of the front wheel and the rear wheel of the vehicle.
  • the output shaft of the rotating electrical machine that can output the driving force is drivingly connected to either the front wheel or the rear wheel of the vehicle.
  • the “rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and a motor / generator that functions as both a motor and a generator as necessary.
  • the vehicle control device of the present invention since dragging of the engine (engine braking, engine rotation) in the idling state during traveling is avoided, energy loss due to dragging of the engine is avoided. Can be suppressed.
  • regenerative braking is applied to the rotating electrical machine in a state where energy loss is suppressed. Since it can be made to perform, the regeneration efficiency by a rotary electric machine can be improved. Therefore, according to the above-described characteristic configuration, a vehicle drive system having good regenerative efficiency of the rotating electrical machine in the idling state while traveling and excellent response of driving force transmission when leaving the idling state while traveling is provided. Can do.
  • FIG. 1 is a diagram illustrating an overall configuration of a vehicle on which a vehicle drive device according to a first embodiment is mounted. It is a schematic diagram which shows the structure of the vehicle drive device which concerns on 1st embodiment. It is an operation
  • surface which shows the operation state of the some engagement element in each gear stage which concerns on 1st embodiment. It is a speed diagram of the transmission according to the first embodiment. It is a block diagram which shows the structure of the control unit which concerns on 1st embodiment. It is a figure which shows an example of the shift map which concerns on 1st embodiment. It is a flowchart which shows the whole process sequence of the switching control process which concerns on 1st embodiment.
  • FIG. 1 is a diagram showing an overall configuration of a vehicle 5 equipped with a vehicle drive device 1 according to the present embodiment.
  • the vehicle drive device 1 according to the present embodiment is disposed adjacent to the engine E placed horizontally on the vehicle 5 in the width direction of the vehicle 5.
  • the output gear O with which the vehicle drive device 1 is equipped is drive-coupled to the front wheel of the vehicle 5 via the counter gear mechanism, the differential apparatus, etc. which are not shown in figure.
  • the vehicle 5 is equipped with a rotating electrical machine MG capable of outputting a driving force.
  • the output shaft of the rotating electrical machine MG is drivingly connected to the rear wheel of the vehicle 5.
  • the vehicle 5 having such a configuration basically travels by a front wheel drive (FF, Front Engine Front Drive) system using the rotational driving force of the engine E, and if necessary, the engine is driven by the rotational driving force of the rotating electrical machine MG.
  • FF Front Engine Front Drive
  • the vehicle driving system is capable of traveling in a four-wheel drive (4WD, 4-wheel drive) system.
  • the vehicle 5 includes the front wheels and the rear wheels as the wheels 6.
  • FIG. 2 is a schematic diagram showing a configuration of a drive transmission system and a hydraulic control system of the vehicle drive device 1 according to the present embodiment.
  • a part of the axially symmetric configuration is omitted.
  • the solid line shows the driving force transmission path
  • the broken line shows the hydraulic oil supply path.
  • the vehicle drive device 1 is drivingly connected to an engine E as a drive force source for driving the vehicle, and the rotational drive force of the engine E input from the input shaft I via the torque converter 11 is obtained.
  • the speed is changed by the transmission device TM and transmitted to the output gear O.
  • the input shaft I corresponds to the “input member” in the present invention
  • the output gear O corresponds to the “output member” in the present invention.
  • Engine E is an internal combustion engine that is driven by the combustion of fuel.
  • various known engines such as a gasoline engine and a diesel engine can be used.
  • an engine output shaft Eo such as a crankshaft of the engine E is drivingly connected to the input shaft I via the torque converter 11.
  • the torque converter 11 is a device that transmits the rotational driving force of the engine output shaft Eo of the engine E as a driving force source to the transmission device TM via the input shaft I.
  • the torque converter 11 is provided between a pump impeller 11a as an input side rotating member drivingly connected to the engine output shaft Eo, and a turbine runner 11b as an output side rotating member drivingly connected to the input shaft I.
  • a stator 11c having a one-way clutch.
  • the torque converter 11 transmits the driving force between the driving-side pump impeller 11a and the driven-side turbine runner 11b via hydraulic oil filled therein. Thereby, the rotational driving force of the engine E is transmitted to the input shaft I.
  • An engine output shaft Eo of the engine E is preferably connected to the input shaft I in a driving manner, or is connected to the input shaft I through another member such as a damper or a clutch.
  • a starter 13 is provided adjacent to the engine E.
  • the starter 13 is composed of a DC motor or the like, and is electrically connected to a battery (not shown).
  • the starter 13 is configured to be able to start the engine E by being driven by the electric power supplied from the battery while the engine E is stopped to rotate the engine output shaft Eo.
  • the torque converter 11 includes a lockup clutch 12 as a friction engagement element for lockup.
  • the lock-up clutch 12 is a clutch that connects the pump impeller 11a and the turbine runner 11b so as to rotate integrally to eliminate a rotational difference (slip) between the pump impeller 11a and the turbine runner 11b and increase transmission efficiency. It is. Therefore, the torque converter 11 transmits the driving force of the engine E directly to the input shaft I without passing through the hydraulic oil when the lockup clutch 12 is engaged.
  • the torque converter 11 including the lock-up clutch 12 is supplied with hydraulic oil regulated by the hydraulic control device 25.
  • a transmission device TM is drivably coupled to an input shaft I that is drivably coupled to a turbine runner 11b as an output side rotating member of the torque converter 11.
  • the transmission TM is a device that has a plurality of engagement elements and transmits the rotational driving force of the engine E transmitted from the input shaft I to the output gear O after changing the speed at the gear ratio of each gear.
  • the transmission TM is a stepped automatic transmission (stepped transmission) having a plurality of shift stages.
  • the transmission TM advances six shift stages (first stage, second stage, third stage, fourth stage, fifth stage, and sixth stage) having different speed ratios (reduction ratios). It is provided as a stage.
  • the transmission apparatus TM includes a gear mechanism including a first planetary gear apparatus P1 and a second planetary gear apparatus P2, and a plurality of engagement elements.
  • a gear mechanism including a first planetary gear apparatus P1 and a second planetary gear apparatus P2, and a plurality of engagement elements.
  • the rotation state of each rotation element of the first planetary gear device P1 and the second planetary gear device P2 is switched, and any two of the plurality of engagement elements are switched.
  • the transmission apparatus TM includes a reverse gear in addition to the above six gears.
  • the first planetary gear device P1 is a single-pinion type planetary gear mechanism arranged coaxially with the input shaft I. That is, the first planetary gear device P1 is configured to include three rotating elements, that is, a carrier CA1 that supports a plurality of pinion gears, and a sun gear S1 and a ring gear R1 that respectively mesh with the pinion gears.
  • the second planetary gear unit P2 is a Ravigneaux type planetary gear mechanism arranged coaxially with the input shaft I.
  • the second planetary gear set P2 includes the first sun gear S2 and the second sun gear S3, the ring gear R2, the long pinion gear that meshes with both the first sun gear S2 and the ring gear R2, and the long pinion gear and the second sun gear. It has four rotating elements, a common carrier CA2 that supports a short pinion gear that meshes with S3.
  • the sun gear S1 of the first planetary gear device P1 is fixed to the case 2 as a non-rotating member.
  • the carrier CA1 is drivingly connected so as to selectively rotate integrally with the second sun gear S3 of the second planetary gear device P2 via the first intermediate shaft M1, and the second planetary gear via the second intermediate shaft M2. It is drive-coupled so as to selectively rotate integrally with the first sun gear S2 of the device P2.
  • the ring gear R1 is drivingly connected so as to rotate integrally with the input shaft I.
  • the sun gear S1, the carrier CA1, and the ring gear R1 are the “first rotating element”, “second rotating element”, and “third rotating element” in the present invention, respectively. Is equivalent to.
  • These three rotating elements are a sun gear S1 (first rotating element), a carrier CA1 (second rotating element), and a ring gear R1 (third rotating element) in the order of rotation speed.
  • the first sun gear S2 of the second planetary gear device P2 is drivingly connected to the carrier CA1 of the first planetary gear device P1 through the second intermediate shaft M2 so as to selectively rotate integrally.
  • the carrier CA2 is drivingly connected so as to selectively rotate integrally with the input shaft I, and is selectively fixed to the case 2 as a non-rotating member.
  • the ring gear R2 is drivingly connected so as to rotate integrally with the output gear O.
  • the second sun gear S3 is drivingly connected to the carrier CA1 of the first planetary gear device P1 through the first intermediate shaft M1 so as to selectively rotate integrally.
  • the first sun gear S2, the carrier CA2, the ring gear R2, and the second sun gear S3 are respectively referred to as “first rotating element” and “second rotating element” in the present invention. , “Third rotation element”, and “fourth rotation element”. These four rotating elements are, in order of rotational speed, the first sun gear S2 (first rotating element), the carrier CA2 (second rotating element), the ring gear R2 (third rotating element), and the second sun gear S3 (fourth rotating element). Rotating element).
  • the carrier CA1 of the first planetary gear set P1 is selectively connected to the first intermediate shaft M1 by the first clutch C1 and is selectively connected to the second intermediate shaft M2 by the third clutch C3.
  • the carrier CA1 of the first planetary gear device P1 is selectively driven and connected to the second sun gear S3 of the second planetary gear device P2 via the first clutch C1 and the first intermediate shaft M1. It is selectively drive-coupled to the first sun gear S2 of the second planetary gear set P2 via the clutch C3 and the second intermediate shaft M2.
  • the second intermediate shaft M2 is selectively fixed to the case 2 by the first brake B1.
  • the first sun gear S2 of the second planetary gear device P2 is selectively connected to the carrier CA1 of the first planetary gear device P1 via the second intermediate shaft M2 and the third clutch C3. It is selectively fixed to the case 2 by the brake B1.
  • the carrier CA2 of the second planetary gear unit P2 is selectively fixed to the case 2 by the one-way clutch F and is selectively driven and connected to the input shaft I by the second clutch C2.
  • the one-way clutch F selectively fixes the carrier CA2 to the case 2 by preventing rotation in only one direction.
  • the carrier CA2 of the second planetary gear device P2 can be selectively fixed to the case 2 also by the second brake B2.
  • the first clutch C1, the second clutch C2, the third clutch C3, the first brake B1, and the second brake B2 are all friction engagement elements. Specifically, these are constituted by a multi-plate clutch or a multi-plate brake operated by hydraulic pressure.
  • the friction engagement elements C1, C2, C3, B1, and B2 are controlled to be engaged and released by the hydraulic pressure supplied from the hydraulic control device 25, respectively.
  • the one-way clutch F includes an inner race and an outer race, and the inner race is allowed to rotate positively relative to the outer race, but the inner race does not rotate negatively relative to the outer race. It is configured to be blocked.
  • the inner race is drivingly connected so as to rotate integrally with the carrier CA2 of the second planetary gear device P2, and the outer race is fixed to the case 2.
  • the one-way clutch F functions as a one-way engagement element that is engaged and prevented from rotating when the carrier CA2 of the second planetary gear unit P2 is negatively rotated, and selectively selects the carrier CA2 as the case 2. Fix and stop.
  • the first clutch C1, the second clutch C2, the third clutch C3, the first brake B1, the second brake B2, and the one-way clutch F constitute “a plurality of engagement elements” in the present invention. Is done.
  • the hydraulic control system as a hydraulic source for sucking hydraulic oil stored in an oil pan (not shown) and supplying hydraulic oil to each part of the vehicle drive device 1
  • a mechanical pump 21 is provided.
  • the mechanical pump 21 is an oil pump that is driven by the rotational driving force of the engine E as a driving force source and discharges hydraulic oil.
  • a gear pump, a vane pump, etc. are used suitably, for example.
  • the mechanical pump 21 is disposed on the opposite side of the engine E with respect to the torque converter 11 in the axial direction of the input shaft I.
  • the mechanical pump 21 is drivingly connected to the engine output shaft Eo via the pump impeller 11a of the torque converter 11 and is driven by the rotational driving force of the engine E.
  • the mechanical pump 21 basically has a discharge capacity that sufficiently exceeds the amount of hydraulic oil required for the vehicle drive device 1. However, the mechanical pump 21 does not discharge hydraulic oil while the engine output shaft Eo is stopped (that is, when the engine E is stopped).
  • the hydraulic control system includes a hydraulic control device 25 for adjusting the hydraulic pressure of the hydraulic oil supplied from the mechanical pump 21 to a predetermined pressure.
  • the hydraulic control device 25 drains from the regulating valve by adjusting the opening of one or more regulating valves based on the signal pressure from the linear solenoid valve for hydraulic regulation.
  • the hydraulic oil pressure is adjusted to one or more predetermined pressures by adjusting the amount of hydraulic oil.
  • the hydraulic oil adjusted to a predetermined pressure is supplied to the lock-up clutch 12, the torque converter 11, and the plurality of engagement elements C1, C2, C3, B1, and B2 of the transmission TM at a required level of hydraulic pressure. Is done.
  • hydraulic oil is each bearing (not shown) which supports each gear of 1st planetary gear apparatus P1 and 2nd planetary gear apparatus P2, and input shaft I, 1st intermediate shaft M1, and 2nd intermediate shaft M2 rotatably. These parts are also supplied for lubrication and cooling.
  • FIG. 3 is an operation table showing the operation states of the plurality of engagement elements at each gear position.
  • “ ⁇ ” indicates that each engaging element is in an engaged state
  • “No mark” indicates that each engaging element is in a released (disengaged) state.
  • “ ⁇ ” indicates a released state when rotating in one direction (the carrier CA2 rotates in the positive direction), and an engaged state when rotating in the other direction (the carrier CA2 rotates in the negative direction). It shows that it becomes.
  • FIG. 4 is a speed diagram of the transmission TM.
  • the vertical axis corresponds to the rotational speed of each rotating element. That is, “0” described corresponding to the vertical axis indicates that the rotation speed is zero, the upper side is positive rotation (rotation speed is positive), and the lower side is negative rotation (rotation speed is negative). is there.
  • Each of the plurality of vertical lines arranged in parallel corresponds to each rotation element of the first planetary gear device P1 and each rotation element of the second planetary gear device P2. That is, “S1”, “CA1”, and “R1” described on the upper side of each vertical line correspond to the sun gear S1, the carrier CA1, and the ring gear R1 of the first planetary gear device P1, respectively.
  • each vertical line are the first sun gear S2, the carrier CA2, the ring gear R2, and the second sun gear of the second planetary gear unit P2, respectively. This corresponds to S3.
  • “ ⁇ ” indicates a state in which the rotating element is coupled to the input shaft I that is drivingly coupled to the engine E.
  • X indicates a state in which each rotating element is fixed to the case 2 by the first brake B 1, the second brake B 2, or the one-way clutch F.
  • “ ⁇ ” indicates a state in which the rotating element is connected to an output gear O that is drivingly connected to the wheel 6. Note that “1st”, “2nd”, “3rd”, “4th”, “5th”, “6th”, and “Rev” described adjacent to each “ ⁇ ” are realized in the transmission apparatus TM, respectively. Corresponding to the first, second, third, fourth, fifth, sixth and reverse stages.
  • the first stage is realized by the engagement of the first clutch C1 and the one-way clutch F in cooperation. That is, in the state where the first clutch C1 is engaged, the rotational driving force of the input shaft I (engine E) input to the ring gear R1 of the first planetary gear device P1 is decelerated based on the gear ratio ⁇ 1, and the second planetary gear device P1 is engaged. It is transmitted to the second sun gear S3 of the gear device P2.
  • the first clutch C1 corresponds to the “first engagement element” in the present invention.
  • the clutch F is engaged and fixed to the case 2, and the rotational driving force of the second sun gear S3 is decelerated based on the gear ratio ⁇ 3 and transmitted to the output gear O.
  • the one-way clutch F corresponds to the “one-way clutch” in the present invention.
  • the first stage thus realized, the rotational driving force from the input shaft I (engine E) to the output gear O is transmitted, and the rotational driving force from the output gear O to the input shaft I (engine E) is transmitted.
  • the first stage corresponds to the “one-way transmission stage” in the present invention.
  • the second stage is realized by cooperation between the engagement of the first clutch C1 and the engagement of the first brake B1. That is, with the first clutch C1 engaged, the rotational driving force of the input shaft I (engine E) is decelerated based on the gear ratio ⁇ 1 and transmitted to the second sun gear S3 of the second planetary gear unit P2. Further, the first sun gear S2 of the second planetary gear device P2 is fixed to the case 2 with the first brake B1 engaged. Then, the rotational driving force of the second sun gear S3 is further decelerated based on the gear ratios ⁇ 2 and ⁇ 3 and transmitted to the output gear O.
  • the third stage is realized by cooperation of the engagement of the first clutch C1 and the engagement of the third clutch C3. That is, with the first clutch C1 engaged, the rotational driving force of the input shaft I (engine E) is decelerated based on the gear ratio ⁇ 1 and transmitted to the second sun gear S3 of the second planetary gear unit P2. Further, with the third clutch C3 engaged, the rotational driving force of the input shaft I (engine E) is decelerated based on the gear ratio ⁇ 1 and transmitted to the first sun gear S2 of the second planetary gear unit P2. Then, when the first sun gear S2 and the second sun gear S3 rotate at the same speed, the rotational driving force of the input shaft I (engine E) decelerated based on the gear ratio ⁇ 1 is transmitted to the output gear O as it is. .
  • the fourth stage is realized by the cooperation of the first clutch C1 and the engagement of the second clutch C2. That is, with the first clutch C1 engaged, the rotational driving force of the input shaft I (engine E) is decelerated based on the gear ratio ⁇ 1 and transmitted to the second sun gear S3 of the second planetary gear unit P2. Further, with the second clutch C2 engaged, the rotational driving force of the input shaft I (engine E) is transmitted as it is to the carrier CA2 of the second planetary gear device P2. Then, the rotational driving force of the input shaft I (engine E) determined based on the rotational speed of the carrier CA2 and the second sun gear S3 and the gear ratio ⁇ 3 is transmitted to the output gear O.
  • the fifth stage is realized by the cooperation of the second clutch C2 and the engagement of the third clutch C3. That is, with the second clutch C2 engaged, the rotational driving force of the input shaft I (engine E) is transmitted as it is to the carrier CA2 of the second planetary gear device P2. Further, with the third clutch C3 engaged, the rotational driving force of the input shaft I (engine E) is decelerated based on the gear ratio ⁇ 1 and transmitted to the first sun gear S2 of the second planetary gear unit P2. Then, the rotational driving force of the input shaft I (engine E) determined based on the rotational speed of the first sun gear S2 and the carrier CA2 and the gear ratio ⁇ 2 is transmitted to the output gear O.
  • the sixth stage is realized by cooperation of the engagement of the second clutch C2 and the engagement of the first brake B1. That is, with the second clutch C2 engaged, the rotational driving force of the input shaft I (engine E) is transmitted as it is to the carrier CA2 of the second planetary gear device P2. Further, the first sun gear S2 of the second planetary gear device P2 is fixed to the case 2 with the first brake B1 engaged. Then, the rotational driving force of the carrier CA2 is increased based on the gear ratio ⁇ 2 and transmitted to the output gear O.
  • the reverse speed is realized by cooperation of the engagement of the third clutch C3 and the engagement of the second brake B2. That is, with the third clutch C3 engaged, the rotational driving force of the input shaft I (engine E) is decelerated based on the gear ratio ⁇ 1 and transmitted to the first sun gear S2 of the second planetary gear unit P2. Further, the carrier CA2 of the second planetary gear device P2 is fixed to the case 2 with the second brake B2 engaged. Then, the rotational driving force of the first sun gear S2 is decelerated based on the gear ratio ⁇ 2, and the rotational direction is reversed and transmitted to the output gear O.
  • the speed change device TM includes at least the first speed, the second speed, the third speed, and the speed changes realized by the engagement of the first clutch C1 as the first engagement element. And a fourth stage. Further, the transmission apparatus TM has fourth, fifth, and sixth stages as shift stages that are realized by engagement of the second clutch C2, which is at least one of the engagement elements different from the first clutch C1. It has.
  • the second clutch C2 corresponds to the “second engagement element” in the present invention.
  • the first speed, the second speed, the third speed, the fourth speed, and the fifth speed are set in descending order of the speed ratio (reduction ratio) between the input shaft I (engine E) and the output gear O. It has a stage and a sixth stage. Therefore, the first gear as the one-way transmission gear is the gear having the largest gear ratio (reduction ratio) among the forward gears.
  • control unit 31 included in the vehicle drive device 1 functions as a core member that controls the operation of each part of the vehicle drive device 1.
  • the control unit 31 includes an arithmetic processing unit such as a CPU as a core member, and is configured to be able to read and write data from the arithmetic processing unit, or a data from the arithmetic processing unit. Is configured to have a storage device such as a ROM (Read Only Memory) configured to be able to read (not shown).
  • ROM Read Only Memory
  • the functional units 32 to 37 of the control unit 31 are configured by software (program) stored in a ROM or the like, hardware such as a separately provided arithmetic circuit, or both. Each of these functional units 32 to 37 is configured to be able to exchange information with each other.
  • the memory 41 includes a recording medium capable of storing and rewriting information as a hardware configuration, such as a flash memory, and is configured to exchange information with the control unit 31. ing. Note that the memory 41 may be provided in a storage device included in the control unit 31.
  • the vehicle drive device 1 includes a plurality of sensors provided in each part of the vehicle 5, specifically, an input shaft rotation speed sensor Se1, a vehicle speed sensor Se2, and an accelerator opening degree detection sensor Se3.
  • the input shaft rotational speed sensor Se1 is a sensor that detects the rotational speed of the input shaft I.
  • the vehicle speed sensor Se2 is a sensor that detects the rotational speed of the wheels 6, that is, the vehicle speed.
  • the accelerator opening detection sensor Se3 is a sensor that detects an accelerator opening by detecting an operation amount of an accelerator pedal (not shown). Information indicating detection results by these sensors Se1 to Se3 is output to the control unit 31.
  • the control unit 31 includes an engine control unit 32, a rotating electrical machine control unit 33, a target gear position determination unit 34, a switching control unit 35, a target rotation speed determination unit 36, and an electric motor drive control unit 37.
  • a shift map 42 and an allowable shift table 43 are stored in the memory 41 referred to by the functional units 32 to 37 of the control unit 31.
  • the functional units 32 to 37 of the control unit 31 will be described in detail.
  • the control unit 31 corresponds to the “vehicle control device” in the present invention. Further, the functional units 32 to 37 included in the control unit 31 cooperate to constitute the “control means” in the present invention.
  • the engine control unit 32 is a functional unit that controls the operation of the engine E.
  • the engine control unit 32 performs a process of determining an engine operating point and controlling the engine E to operate at the engine operating point.
  • the engine operating point is a control command value representing a control target point of the engine E, and is determined by the rotational speed and torque. More specifically, the engine operating point is a command value representing a control target point of the engine E determined in consideration of the vehicle required output (determined based on the vehicle required torque and the engine speed) and the optimum fuel consumption. It is determined by the rotational speed command value and the torque command value. Then, the engine control unit 32 controls the engine E so as to operate at a torque and a rotational speed indicated by the engine operating point.
  • the engine control unit 32 determines that the rotational speed of the engine E decreases and approaches the predetermined idle rotational speed and the accelerator opening is zero, the engine rotational speed is set to the predetermined idle rotational speed. It is configured to perform idling control. In the present embodiment, the rotational speed of the engine E decreases even when the idling condition during traveling described later is satisfied, that is, when the vehicle is traveling and the accelerator opening is within a predetermined range set near zero. When the engine speed approaches a predetermined idle rotation speed, idling control is performed.
  • the rotating electrical machine control unit 33 is a functional unit that controls the operation of the rotating electrical machine MG.
  • the rotating electrical machine control unit 33 performs a process of determining a rotating electrical machine operating point and controlling the rotating electrical machine MG to operate at the rotating electrical machine operating point.
  • the rotating electrical machine operating point is a control command value representing a control target point of the rotating electrical machine MG, and is determined by the rotational speed and torque. More specifically, the rotating electrical machine operating point is a command value representing a control target point of the rotating electrical machine MG determined in consideration of the vehicle required output and the engine operating point, and is based on the rotational speed command value and the torque command value. Determined.
  • the rotating electrical machine control unit 33 controls the rotating electrical machine MG to operate at the torque and the rotational speed indicated by the rotating electrical machine operating point.
  • the rotating electrical machine control unit 33 controls to switch between a state in which the rotating electrical machine MG generates a driving force with electric power supplied from a battery (not shown) and a state in which the rotating electrical machine MG generates power with the rotational driving force of the engine E. Also do. Further, the rotating electrical machine control unit 33 also performs regenerative control while the vehicle 5 is traveling.
  • the target gear stage determination unit 34 is a functional unit that determines a target gear stage in the transmission apparatus TM based on the accelerator opening and the vehicle speed of the vehicle 5. In order to determine such a target shift speed, the target shift speed determination unit 34 refers to the shift map 42 stored in the memory 41.
  • FIG. 6 is a diagram illustrating an example of the shift map 42 according to the present embodiment.
  • the shift map 42 is a map in which a shift stage shift schedule in the transmission apparatus TM is set based on the accelerator opening and the vehicle speed. As shown in this figure, the shift map 42 is set with a plurality of upshift lines and a plurality of downshift lines that are represented by a straight line that rises substantially to the right (the accelerator opening increases as the vehicle speed increases). Has been.
  • the upshift line is a line that defines a transition schedule from a gear stage having a large gear ratio (reduction ratio) to a gear stage having a small gear ratio (reduction ratio).
  • the downshift line is a line that defines a transition schedule from a gear position having a small gear ratio (reduction ratio) to a gear stage having a large gear ratio (reduction ratio).
  • the target shift speed determination unit 34 determines the target shift speed based on the vehicle speed information acquired by the vehicle speed sensor Se2, the accelerator opening information acquired by the accelerator opening detection sensor Se3, and the shift map 42. . Information on the determined target shift speed is output to the switching control unit 35.
  • the switching control unit 35 controls the operation of each engagement element C1, C2, C3, B1, B2 based on the target shift stage determined by the target shift stage determination unit 34, thereby changing the shift stage of the transmission apparatus TM. It is a functional unit that performs switching control. That is, as the normal switching control, the switching control unit 35 supplies hydraulic oil to the two engaging elements corresponding to the determined target shift speed via the hydraulic control device 25 to bring the engaging elements into the engaged state. Then, control for realizing the target shift speed is performed. Note that when the vehicle speed and the accelerator opening change and the upshift line or the downshift line is crossed on the shift map 42 in FIG. 6, the target shift stage determination unit 34 is based on the changed accelerator opening and vehicle speed of the vehicle.
  • a new target gear position in the transmission apparatus TM is determined. Then, the switching control unit 35 supplies hydraulic oil to the two engagement elements corresponding to the newly determined target shift speed to bring the engagement elements into an engaged state, thereby realizing a new target shift speed.
  • the switching control unit 35 performs clutch release control when shifting to the idling state during traveling, and clutch reengagement control when leaving the idling state during traveling. And shift transition control.
  • clutch release control when shifting to the idling state during traveling
  • clutch reengagement control when leaving the idling state during traveling.
  • shift transition control
  • the idling state during traveling is a state where the vehicle 5 is traveling and the rotational driving force of the input shaft I is not transmitted to the output gear O, and the rotational speed of the engine E is controlled to a predetermined idle rotational speed. It is.
  • the traveling idling state is shifted when a predetermined traveling idling condition is satisfied, and is disengaged when the condition is not satisfied. After leaving the idling state during traveling, the normal state in which the rotational driving force of the input shaft I is transmitted to the output gear O is restored.
  • the predetermined idling condition during traveling is a condition determined based on at least the vehicle speed and the accelerator opening.
  • a condition that a predetermined idling condition during traveling is established is that the vehicle speed is equal to or higher than a predetermined vehicle speed and the accelerator opening is within a predetermined range set according to the vehicle speed.
  • the predetermined range of the accelerator opening is set to a predetermined range close to zero, and is set to correspond to the range of the accelerator opening when the driver requests deceleration.
  • the predetermined vehicle speed is set to a vehicle speed at which the rotational driving force of the input shaft I by the engine E is not transmitted to the output gear O in a state where the first stage is realized in the transmission device TM after shifting to the idling state during traveling. Has been.
  • the predetermined vehicle speed is determined by determining the rotation speed obtained by dividing the predetermined idle rotation speed in the idling state during traveling by the first gear ratio as the rotation speed of the output gear O, and determining the determined output gear.
  • the rotation speed of O is set to a value converted into the vehicle speed.
  • the engine control unit 32 is also in the case where the idling condition during traveling is satisfied, that is, when the vehicle is traveling and the accelerator opening is within a predetermined range set near zero. It is configured to perform idling control.
  • the switching control unit 35 performs control so that the transmission device TM realizes the first stage in the idling state during traveling under a predetermined condition. That is, the switching control unit 35 controls the hydraulic clutch 25 to supply the hydraulic oil to the first clutch C1 through the hydraulic control device 25 so that the first clutch C1 is engaged. In addition, the switching control unit 35 stops the supply of hydraulic oil to the engagement elements other than the first clutch C1 and puts the engagement elements other than the first clutch C1 into a released state. Thereby, the engagement of the first clutch C1 and the one-way clutch F cooperate to realize the first stage.
  • both of the following first condition and second condition are set as conditions for controlling the transmission device TM to realize the first stage in the idling state during traveling. It is set to meet.
  • the first condition it is set that the gear position in the transmission apparatus TM before shifting to the idling state during traveling is a gear stage realized by at least engagement of the first clutch C1.
  • the first condition is satisfied when the shift speed before the shift to the idling state during traveling is one of the first speed to the fourth speed.
  • the second condition it is set that the vehicle speed acquired by the vehicle speed sensor Se2 before shifting to the idling state during traveling is equal to or less than a predetermined release threshold value Vt. In this example, as shown in FIG.
  • the predetermined release threshold value Vt is set to a value equal to the vehicle speed Vd that is downshifted from the fourth stage to the third stage with the accelerator opening being close to zero.
  • the mechanical pump 21 In the idling state during traveling, since the engine E is rotating, the mechanical pump 21 is driven to rotate and discharges hydraulic oil having a predetermined hydraulic pressure.
  • the hydraulic oil having a predetermined hydraulic pressure discharged by driving the mechanical pump 21 is supplied to the first clutch C1 of the transmission TM via the hydraulic control device 25, the first clutch C1 is engaged, and the first stage is Realized. Therefore, in the idling state during traveling, it is not necessary to provide the vehicle drive device 1 with a power source (for example, an electric pump) other than the engine E in order to bring the first clutch C1 into the engaged state and realize the first stage. Thus, the configuration of the vehicle drive device 1 is suppressed from becoming complicated.
  • a power source for example, an electric pump
  • the first stage transmits the rotational driving force from the input shaft I (engine E) to the output gear O, and the rotational driving force from the output gear O to the input shaft I (engine E).
  • the rotating electrical machine MG can perform regenerative braking using the rotational driving force transmitted from the wheels 6 in a state where energy loss due to dragging of the engine E is suppressed.
  • the regeneration efficiency by the rotating electrical machine MG can be improved.
  • the one-way transmission stage transmits the rotational driving force from the input shaft I to the output gear O. Therefore, when the vehicle 5 is driven by the rotational driving force of the engine E after leaving the idling state while traveling, The rotational driving force of the engine E can be transmitted to the output gear O (wheel 6) via the input shaft I.
  • the rotational driving force of the engine E can be quickly transmitted to the output gear O after leaving the idling state during traveling. Therefore, according to the vehicle drive system including the vehicle control device according to the present embodiment, the rotational drive of the engine E is separated from the idling state during traveling while improving the regeneration efficiency of the rotating electrical machine MG in the traveling state. Responsiveness of driving force transmission when driving the vehicle by force can be improved.
  • the vehicle 5 is decelerating as a state of transition to the idling state during traveling. In such a situation, when driving away from the idling state while driving and driving the vehicle 5, it is necessary to drive from a state where the vehicle speed is low (particularly close to zero), and thus a large driving force is required. There are many.
  • the first speed which is the speed stage with the largest speed ratio (reduction ratio)
  • the vehicle 5 is driven from a state where the vehicle speed is low (particularly close to zero).
  • a one-way clutch may be used to realize the gear.
  • the one-way clutch provided for such a purpose and the one-way clutch F for realizing the one-way transmission stage in the present invention can be shared, one-way without adding any special parts.
  • a transmission stage can be made feasible.
  • the switching control unit 35 releases all the engagement elements of the transmission apparatus TM in the idling state during traveling. Control. That is, when the shift stage in the transmission apparatus TM before the transition to the running idling state is at least a shift stage other than the shift stage realized by the engagement of the first engagement element, or the running idle state When the vehicle speed acquired by the vehicle speed sensor Se2 before shifting to is greater than the predetermined release threshold Vt, the switching control unit 35 releases all the engagement elements including the first clutch C1 of the transmission apparatus TM. Control to achieve a neutral stage.
  • the switching control unit 35 causes the transmission apparatus TM to realize the neutral stage. Control.
  • the transmission stage of the transmission apparatus TM when leaving the idling state during traveling is achieved. It is possible to increase the degree of freedom of setting and to respond appropriately according to the situation.
  • the clutch reengagement control is a control process that is executed when the clutch is disengaged from the idling state during traveling.
  • the switching control unit 35 sequentially applies two engagement elements corresponding to the respective target shift speeds in order to realize the target shift speeds in the transmission apparatus TM when leaving the idling state during traveling.
  • Engage In the present embodiment, in the idling state during traveling, the gear stage in the transmission device TM is realized as either the first stage as the one-way transmission stage or the neutral stage in which all the engagement elements are released as described above. Has been.
  • the switching control unit 35 controls to engage the engagement elements other than the first clutch C1 corresponding to the target shift speed.
  • the target shift speed is realized.
  • the switching control unit 35 when the neutral stage is realized in the transmission apparatus TM, that is, when the shift stage before the shift to the idling state during traveling is any of the fourth to sixth stages, the switching control unit 35, the first clutch C2 as the second engagement element is first engaged, and then the engagement element other than the second clutch C2 corresponding to the target shift stage is controlled to be engaged, A shift stage is realized.
  • the second clutch C2 to be engaged first has a predetermined engagement start rotation in which the rotation speed of the input shaft I is preset. Engage when more than a few.
  • the engaging elements other than the first clutch C1 or the second clutch C2 that are to be engaged later are the engine rotational speeds.
  • Engaged after control is a control process for controlling the engine E so that the rotation speed of the input shaft I becomes a predetermined target rotation speed.
  • the target rotational speed is determined based on the traveling speed of the vehicle 5 and the target shift speed in the transmission apparatus TM when the vehicle 5 leaves the idling state during traveling. That is, based on the traveling speed of the vehicle 5 and the gear ratio of the target gear, two members (for example, the third clutch C3) that are engaged and connected to each other in an engagement element that is engaged later.
  • the target rotational speed of the input shaft I is determined so as to be a value very close to zero.
  • a target rotational speed is determined by the target rotational speed determination unit 36 performing a calculation based on the vehicle speed acquired by the vehicle speed sensor Se2 and the gear ratio of the target shift stage. Specifically, the target rotational speed determination unit 36 obtains the rotational speed of the output gear O by converting from the vehicle speed, and the rotational speed obtained by multiplying the rotational speed of the output gear O by the speed ratio of the target gear stage is set as the target.
  • the engine control unit 32 outputs a rotational speed command value corresponding to the determined target rotational speed, whereby the engine E is controlled so that the rotational speed of the input shaft I becomes the target rotational speed, and then the first clutch Engagement elements other than C1 or the second clutch C2 are engaged.
  • the target gear stage is realized by controlling the two engaging elements to synchronize with each other (after the rotating speeds are substantially equal) after the engine rotating speed control is engaged. It is possible to suppress the occurrence of a shift shock during running.
  • the switching control unit is selected when the target shift stage for releasing from the idling state during traveling is any of the fourth to sixth stages. 35 engages the third clutch C3 in a state where the first clutch C1 is already engaged, and first realizes the third stage. Thereafter, the target shift speed is realized through the third speed by controlling the two engagement elements corresponding to the target shift speed to be in the engaged state. Further, in the case where the neutral stage is realized in the traveling idling state, the switching control unit 35 is selected when the target shift stage to be removed from the traveling idling state is one of the first to third stages. After engaging the second clutch C2, the first clutch C1 is engaged to first realize the fourth stage. After that, by controlling the engagement elements other than the first clutch C1 among the two engagement elements corresponding to the target shift speed, the target shift speed is realized through the fourth speed. .
  • the switching control unit 35 After performing the rotational speed control, each engagement element to be engaged later is engaged to realize the target shift speed before the change, and then the new target shift speed after the change is realized. The engagement state of the engagement element is switched.
  • the target shift speed is changed to a new shift speed after the first clutch C1 or the second clutch C2 is engaged first, and the target shift speed change pattern corresponds to a predetermined allowable shift pattern.
  • the switching control unit 35 exceptionally performs the shift transition control described below in order to realize the new target shift speed after the change at an early stage.
  • the engine control unit 32 stops outputting the rotation speed command value corresponding to the target rotation speed, so that the engine rotation speed control is stopped, and the switching control unit 35 is configured to change the target shift speed after the change.
  • the engagement element corresponding to the changed target shift speed in the transmission apparatus TM is engaged to realize the shift speed.
  • the permissible shift pattern is a change between gears having common engagement elements that are engaged first and different engagement elements that are engaged later, and from a gear having a small reduction ratio.
  • the change pattern corresponds to a change to a gear stage with a large reduction ratio (downshift).
  • the engagement element to be engaged first is the first clutch C1 as the first engagement element or the second clutch C2 as the second engagement element.
  • the first speed stage, the second speed stage, and the third speed stage are provided as shift speeds realized by the engagement of the first clutch C1.
  • the fourth speed, the fifth speed, and the sixth speed are provided as the shift speeds realized by the engagement of the second clutch C2. Therefore, in this example, a change pattern is permitted in which a downshift from the first stage to the third stage and a downshift from the fourth stage to the sixth stage are allowed. 2nd to 1st, 3rd to 2nd, 3rd to 1st, 5th to 4th, 6th to 5th, 6th to 4th Are included in the allowable shift pattern.
  • the shift to the target shift stage is performed through the fourth stage as described above.
  • the shift to the target shift stage is performed through the fourth stage as described above.
  • 6 patterns are further included in the allowable shift pattern. Therefore, in this example, a total of 12 change patterns are set as the allowable shift patterns.
  • These allowable shift patterns are stored in the memory 41 as an allowable shift table 43.
  • the target shift speed is changed to a new shift speed before the engagement element is completely engaged, whether or not to perform shift transition control with reference to the permissible shift table 43 is determined. It is configured so that it can be determined.
  • the switching control unit 35 maintains the first clutch C1 or the second clutch C2 previously engaged in the engaged state, and the engagement element to be engaged later corresponds to the target gear stage before the change.
  • the changed target shift speed is realized by switching from the engaging element to the engagement element corresponding to the changed target shift speed.
  • the engine rotational speed control described above is not executed.
  • hydraulic oil is supplied in accordance with a predetermined command signal via the hydraulic control device 25, and a predetermined engagement element corresponding to the changed target gear stage is engaged.
  • FIG. 7 is a flowchart showing an overall processing procedure of the switching control processing of the vehicle drive device 1 according to the present embodiment.
  • FIG. 8 is a flowchart showing a procedure of clutch release control according to step # 06 of FIG.
  • FIG. 9 is a flowchart showing a procedure of clutch reengagement control according to step # 08 of FIG.
  • the procedure of the control process of the vehicle drive device 1 described below is executed by the functional units 32 to 37 of the control unit 31.
  • the arithmetic processing device provided in the control unit 31 operates as a computer that executes the program configuring the function units 32 to 37 described above.
  • the traveling speed (vehicle speed) of the vehicle 5 is acquired by receiving an output signal from the vehicle speed sensor Se2 (step # 01), and the accelerator The accelerator opening is acquired in response to the output signal from the opening detection sensor Se3 (step # 02).
  • the target shift speed determination unit 34 determines the target shift speed based on the acquired information on the vehicle speed and accelerator opening and the shift map 42 stored in the memory 41 (step # 03).
  • the switching control unit 35 controls the operation of each engagement element to switch the shift speed of the transmission apparatus TM and performs normal shift control (step # 04).
  • step # 05 it is determined whether or not a predetermined idling condition during traveling is satisfied and the traveling idling request is turned on (step # 05). If it is determined that the idling request during traveling is not on, that is, it is off (step # 05: No), the process returns to step # 01 again and repeats from step # 01 to step # 05.
  • step # 06 clutch release control is executed (step # 06).
  • the engine control unit 32 starts idling control in the traveling idle state.
  • step # 07 it is determined whether or not the idling condition during traveling is not satisfied and the idling request during traveling is turned off in a state where the traveling idling state is changed by the traveling idling request. If it is determined that the traveling idling request is turned off (step # 07: Yes), clutch re-engagement control is executed (step # 08).
  • the engine control unit 32 ends the idling control in the traveling idle state and starts control for operating the engine E at the operating point of the torque and the rotational speed. To do. Thereafter, the process returns to step # 01 again, and the processes from step # 01 to step # 08 are sequentially repeated while the vehicle 5 is traveling.
  • whether or not the traveling idle ring request is turned on is determined based on at least the vehicle speed and the accelerator opening as in the predetermined traveling idling condition described above. For example, a condition for turning on the traveling idle ring request is determined that the vehicle speed is equal to or higher than a predetermined vehicle speed and the accelerator opening is within the predetermined range set according to the vehicle speed. On the other hand, whether or not the traveling idle ring request is turned off is determined based on at least the vehicle speed and the accelerator opening as in the above-described predetermined traveling idling condition. In this example, the fact that the accelerator opening is out of a predetermined range set in accordance with the vehicle speed is defined as a condition for turning off the idle ring request during traveling. Note that, as described above, when the accelerator opening is within a predetermined range and the rotational speed of the engine E approaches a predetermined idle rotational speed, the engine control unit 32 performs idling control even during traveling.
  • step # 06 Processing procedure of clutch release control
  • the clutch release control first, it is determined whether or not both the first condition and the second condition are satisfied. In the present embodiment, specifically, it is determined whether or not the gear position when the engine E is shifted to the idling state during traveling is one of the first speed to the third speed (step # 21). ). When it is determined that the position is one of the first stage to the third stage (step # 21: Yes), the switching control unit 35 determines the engagement elements other than the first clutch C1 (for example, the second stage). In this case, the first brake B1 and the third clutch C3 in the third stage are released (step # 22).
  • the first clutch C1 is maintained in the engaged state by the hydraulic pressure of the hydraulic oil discharged from the mechanical pump 21 driven by the rotation of the engine E. Then, the engagement of the first clutch C1 and the one-way clutch F cooperate to realize a first stage as a one-way transmission stage.
  • step # 21: No when it is determined that the current position is not any of the first to third stages, that is, any of the fourth to sixth stages (step # 21: No), the switching control unit 35 is Then, all the engagement elements including the first clutch C1 are released (step # 23). In this state, a neutral stage is realized. As described above, in the idling state during traveling, the gear stage of the transmission apparatus TM is maintained in a state in which the first stage or the neutral stage is realized in accordance with the gear stage when the state is shifted to the traveling idling state (step). # 24). This completes the clutch release control.
  • Step # 41 it is determined whether or not the gear position of the transmission apparatus TM in the idling state during traveling is the first speed (step # 41).
  • step # 41: Yes it is determined whether or not the target gear position is the first speed when it is determined that the traveling idling request is turned off.
  • step # 42 it is determined that the target shift speed is the first speed (step # 42: Yes)
  • step # 42: No the first speed is already realized, and the clutch reengagement control is terminated.
  • step # 46 which will be described later, in order to engage the engagement elements other than the first clutch C1.
  • step # 41 when it is determined that the gear position of the transmission apparatus TM in the idling state during traveling is not the first stage, that is, the neutral stage (step # 41: No), the input shaft rotational speed sensor Se1 The rotational speed of the input shaft I is acquired (step # 43). Further, it is determined whether or not the acquired rotational speed of the input shaft I is equal to or higher than a predetermined engagement start rotational speed (step # 44). And when it becomes more than an engagement start rotation speed (step # 44: Yes), the 2nd clutch C2 as a 2nd engagement element is first engaged first (step # 45). Thereafter, in order to engage the engaging elements other than the second clutch C2, the process proceeds to step # 46 described below.
  • the target rotation speed of the input shaft I is determined by the target rotation speed determination unit 36 (step #). 46). Since the method for determining the target rotational speed of the input shaft I by the target rotational speed determining unit 36 has already been described, detailed description thereof is omitted here. Further, the rotational speed of the input shaft I is acquired by the input shaft rotational speed sensor Se1 (step # 47). Then, it is determined whether or not the acquired rotation speed of the input shaft I has become substantially equal to the target rotation speed determined by the target rotation speed determination unit 36, that is, whether or not it has been synchronized (step # 48). When it is determined that they are synchronized (step # 48: Yes), the switching control unit 35 engages a predetermined engagement element corresponding to the target shift speed (step # 49) and performs clutch reengagement control. finish.
  • step # 48 determines whether or not the target shift speed determined based on the vehicle speed and the accelerator opening by the target shift speed determination unit 34 has been changed. Determination is made (step # 50). When it is determined that the target gear position has not been changed (step # 50: No), the process returns to step # 48 again, and the processing from step # 48 to step # 50 is repeatedly executed. On the other hand, when it is determined that the target shift speed has been changed (step # 50: Yes), it is determined whether or not the target shift speed change pattern corresponds to a predetermined allowable shift pattern (step # 51). ).
  • step # 51 it is determined with reference to the allowable shift table 43 stored in the memory 41 whether the allowable shift pattern is applicable.
  • the switching control unit 35 engages a predetermined engagement element corresponding to the target shift speed before the change.
  • step # 49 the clutch reengagement control is terminated.
  • a predetermined engagement element corresponding to the changed target shift speed is engaged to realize the changed target shift speed.
  • step # 50 if it is determined that the target shift speed has been changed (step # 50: Yes), and if it is further determined that the target shift speed change pattern corresponds to the allowable shift pattern (step # 51: Yes), shift transition control is executed (step # 52). Since the processing content of this shift transition control has already been described, detailed description thereof is omitted here. The clutch reengagement control is thus completed.
  • FIG. 10 shows an example in which the gear position before the shift to the idling state during traveling is the third speed and the target gear position when the gear is disengaged from the idling state during traveling is the first speed.
  • FIG. 11 shows an example in which the shift stage when shifting to the running idling state and the target shift stage when leaving the running idling state are both the third stage.
  • FIG. 12 shows an example in which the shift speed when shifting to the running idling state and the target shift speed when leaving the running idling state are both the fifth speed.
  • FIG. 13 shows the state after the second clutch C2 is engaged in the case where both the shift stage when shifting to the running idling state and the target shift stage when leaving the running idling state are the fifth stage.
  • the target shift speed is changed from the fifth speed to the fourth speed before the rotation speed of the input shaft I reaches the target rotation speed.
  • the shift stage before shifting to the running idling state is the third speed
  • the target shift stage when leaving the running idling state is the first stage.
  • the switching control unit 35 maintains the first clutch C1 in the engaged state.
  • the hydraulic pressure supplied to the third clutch C3 is controlled so as to gradually decrease.
  • the third clutch C3 is completely released at t02, whereby the first stage as the one-way transmission stage is realized in the transmission TM in the idling state during traveling.
  • the 1st stage is implement
  • transmission of the rotational drive force from the output gear O to the input shaft I is interrupted
  • the mechanical pump 21 is rotationally driven and discharges hydraulic oil having a predetermined hydraulic pressure.
  • the hydraulic oil having a predetermined hydraulic pressure discharged by driving the mechanical pump 21 is supplied to the first clutch C ⁇ b> 1 of the transmission TM via the hydraulic control device 25. Therefore, even in the idling state during traveling, the first clutch C1 is maintained in the engaged state, and is maintained in the state where the first stage is realized.
  • the vehicle 5 is stopped after that, but the first stage as the one-way transmission stage is maintained even when the vehicle is stopped. Then, it is assumed that the target shift speed becomes the first speed while the vehicle is stopped, and the idling request during traveling is turned off at time t03 due to an increase in the accelerator opening.
  • the rotational driving force of the input shaft I engine E
  • the state transmitted to the side is realized early. That is, the response of driving force transmission when leaving the idling state during traveling is greatly improved.
  • the first stage as the one-way transmission stage is realized in the idling state during traveling until the vehicle speed becomes zero and the vehicle stops after the traveling idling request is turned on. It is.
  • the flow of the switching process up to t12 is the same as the flow of the switching process up to t02 in FIG.
  • this example is different from the example of FIG. 10 described above in that the vehicle 5 continues to travel at a certain vehicle speed or higher in the idling state while traveling and the target shift speed is maintained at the third speed.
  • the idling request during traveling is turned off at t13 due to an increase in the accelerator opening degree or the like while the target shift speed is maintained at the third speed.
  • the first stage as the one-way transmission stage is realized in the transmission device TM, and the first clutch C1 is maintained in the engaged state. Is controlled so as to engage the third clutch C3, the state in which the rotational driving force of the input shaft I (engine E) is transmitted to the wheel 6 side when the vehicle is disengaged from the idling state during traveling is realized.
  • the target shift speed is realized only by engaging only the third clutch C3, the response of driving force transmission when the vehicle is disengaged from the idling state during traveling is improved in this case as well.
  • the third clutch C3 is engaged, the engine speed control described above is executed from t13 to t14.
  • the rotational speed of the input shaft I becomes substantially equal to the target rotational speed at t14, the third clutch C3 is completely engaged and the engine rotational speed control ends.
  • the switching control unit 35 supplies the second clutch C2 and the third clutch C3.
  • the hydraulic pressure is controlled to gradually decrease.
  • the second clutch C2 and the third clutch C3 are completely disengaged, whereby the neutral stage is realized in the transmission apparatus TM.
  • the neutral stage is implement
  • the engine E is not rotated by the rotation of the output gear O (wheel 6), the rotational speed of the engine E is reduced, and the engine E shifts to a state where idling control is performed.
  • the mechanical pump 21 is rotationally driven and discharges hydraulic oil having a predetermined hydraulic pressure. Therefore, even in the idling state during traveling, each gear stage is realized by supplying hydraulic oil of a predetermined hydraulic pressure to each clutch of the transmission device TM via the hydraulic control device 25 immediately after leaving the idling state during traveling. Is maintained in a possible state.
  • the traveling control unit 35 includes the second clutch C2 and the third clutch. Control is performed so that the clutch C3 is sequentially engaged. At that time, the second clutch C2 is engaged first, and the third clutch C3 is engaged later. The second clutch C2 is engaged when the rotation speed of the input shaft I becomes equal to or higher than a predetermined engagement start rotation speed at t24.
  • the engine speed control described above is executed from t23 to t25.
  • the third clutch C3 is completely engaged and the engine rotational speed control ends.
  • the target shift speed is changed from the fifth speed to the fourth speed at t35. Since the change pattern from the fifth stage to the fourth stage corresponds to the above-described allowable shift pattern, the engine speed control is stopped and the above-described shift transition control is executed after t35. That is, from t35 to t36, the third clutch C3 is released while the second clutch C2 is maintained in the engaged state so that the fourth stage is realized before the fifth stage is realized, and the first clutch is released. Control to engage C1. At this time, the hydraulic pressure of the hydraulic oil supplied to the third clutch C3 is changed from a constant maintenance pressure to t36 so that a shift shock does not occur when the third clutch C3 and the first clutch C1 are replaced.
  • FIG. 14 is a schematic diagram illustrating a configuration of a drive transmission system of the vehicle drive device 1 according to the present embodiment. Note that, in FIG. 14, as in FIG. 2, an axisymmetric configuration is partially omitted. Further, since the configuration of the hydraulic control system is the same as that in the first embodiment, the hydraulic control system is omitted here.
  • the configuration of the vehicle drive device 1 is equal to the configuration in which the first brake B1 is removed from the vehicle drive device 1 in the first embodiment. And since this vehicle drive device 1 is not provided with 1st brake B1, the number of the gear stages with which transmission TM is provided is fewer than said 1st embodiment.
  • the contents of the control process executed by each of the functional units 32 to 37 of the control unit 31 when shifting to the idling state during traveling are partly different from those of the first embodiment.
  • Other configurations are basically the same as those in the first embodiment.
  • the vehicle drive device 1 according to the present embodiment and the control unit 31 for controlling the vehicle drive device 1 will be described focusing on differences from the first embodiment.
  • FIG. 15 is an operation table showing operation states of a plurality of engagement elements at each gear position according to the present embodiment.
  • FIG. 16 is a speed diagram of the transmission apparatus TM.
  • the transmission apparatus TM switches the operating states of the plurality of engagement elements to change the forward stage as the first stage, the second stage, the third stage, and the first stage. It has four shift stages.
  • the second stage and the sixth stage in the first embodiment are not provided in correspondence with the configuration equivalent to the configuration in which the first brake B1 is removed from the vehicle drive device 1 in the first embodiment.
  • the first stage, the second stage, the third stage, and the fourth stage in the present embodiment correspond to the first stage, the third stage, the fourth stage, and the fifth stage in the first embodiment, respectively. It has become.
  • the shift map 42 stored in the memory 41 is also different from that shown in FIG. 6 (not shown).
  • the transmission TM includes at least a first speed, a second speed, and a third speed as shift speeds realized by engagement of the first clutch C1 as the first engagement element.
  • the transmission apparatus TM includes a third stage and a fourth stage as shift stages realized by engagement of at least the second clutch C2 as the second engagement element.
  • the first stage is a one-way transmission stage that is realized by cooperation of the engagement of the first clutch C1 and the one-way clutch F.
  • the switching control unit 35 satisfies both the following first condition and second condition as conditions for controlling the transmission apparatus TM to realize the first stage in the idling state during traveling.
  • the first condition it is set that the gear position in the transmission apparatus TM before shifting to the idling state during traveling is a gear stage realized by at least engagement of the first clutch C1.
  • the first condition is satisfied when the shift speed before the shift to the idling state during traveling is one of the first speed to the third speed.
  • the second condition is set such that the vehicle speed acquired by the vehicle speed sensor Se2 before shifting to the idling state during traveling is equal to or less than a predetermined release threshold value Vt.
  • the predetermined release threshold value Vt is set to a value equal to the vehicle speed Vd ′ (not shown) that is downshifted from the third stage to the second stage with the accelerator opening being close to zero.
  • the switching control unit 35 when the shift stage before the shift to the idling state during traveling is the first stage or the second stage, the switching control unit 35 is configured so that the transmission device TM is the first one as the one-way transmission stage. Control to realize the stage.
  • this one-way transmission stage does not transmit the rotational driving force from the output gear O to the input shaft I. Therefore, the drag of the engine E in the idling state during traveling (the rotation of the engine E accompanying the input shaft I) ) Is avoided.
  • the rotating electrical machine MG can perform regenerative braking using the rotational driving force transmitted from the wheels 6 in a state where energy loss due to dragging of the engine E is suppressed. The regeneration efficiency by the rotating electrical machine MG can be improved.
  • the one-way transmission stage transmits the rotational driving force from the input shaft I to the output gear O
  • the rotational driving force of the engine E is promptly increased.
  • the switching control unit 35 releases all the engagement elements of the transmission apparatus TM in the idling state during traveling. Specifically, when the shift stage before shifting to the idling state during traveling is the third stage or the fourth stage, the switching control unit 35 performs all the engagements including the first clutch C1 of the transmission apparatus TM. Control to release the element to achieve a neutral stage. As described above, when one or both of the first condition and the second condition are not satisfied, by realizing the neutral stage in the transmission apparatus TM, the transmission stage of the transmission apparatus TM when leaving the idling state during traveling is achieved. It is possible to increase the degree of freedom of setting and to respond appropriately according to the situation.
  • the first clutch C1 as the first engagement element or the second clutch C2 as the second engagement element is engaged first.
  • the first speed, the second speed, and the third speed are provided as the shift speeds realized by the engagement of the first clutch C1.
  • a third speed stage and a fourth speed stage are provided as shift speeds realized by the engagement of the second clutch C2. Therefore, in this example, a change pattern is permitted in which a downshift between the first stage and the second stage and a downshift between the third stage and the fourth stage are allowed. That is, two patterns of the second stage to the first stage and the fourth stage to the third stage are included in the allowable shift pattern.
  • the allowable shift pattern when downshifting from the fourth stage to the first stage or the second stage, control is performed so that the third stage is first realized and then the target shift stage is shifted. Therefore, the allowable shift pattern further includes two patterns from the fourth stage to the first stage and from the fourth stage to the second stage. Therefore, in this example, a total of four change patterns are set as the allowable shift patterns.
  • the first condition and the second condition are set, and when both conditions are satisfied, the switching control unit 35 is in the idling state while traveling, and the transmission device TM is set as the one-way shift stage.
  • the case of controlling to realize the first stage has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, for example, without setting such conditions, the switching control unit 35 performs control so that the transmission apparatus TM unconditionally realizes the first speed as the one-way speed in the traveling idling state. This is also one of the preferred embodiments of the present invention.
  • the switching control unit 35 realizes the first stage as the one-way shift stage in the idling state during traveling. It is one of the preferred embodiments of the present invention to be configured to control.
  • the switching control unit 35 when the shift stage in the transmission apparatus TM before shifting to the idling state during traveling is one of the first to fourth stages, the switching control unit 35 is Control is performed so as to realize the first stage as the direction shift stage.
  • the switching control unit 35 is unidirectional when the gear position in the transmission apparatus TM before shifting to the idling state during traveling is any one of the first speed to the third speed. Control is performed so as to realize the first gear as the gear.
  • the predetermined release threshold value Vt can be set as appropriate.
  • the predetermined release threshold Vt is equal to or higher than the vehicle speed Vu upshifted from the second stage to the third stage with the accelerator opening being close to zero, and the accelerator opening is close to zero. It is also a preferred embodiment of the present invention to set an arbitrary value below the vehicle speed Vd that is downshifted from the fourth stage to the third stage. The same applies to the second embodiment.
  • the engine E is idling controlled when all the engaging elements of the transmission apparatus TM are released and the neutral stage is realized in the idling state during traveling.
  • the embodiment of the present invention is not limited to this. That is, in a state in which all the engagement elements of the transmission apparatus TM are released, instead of the idling state during traveling, the vehicle 5 is traveling and the engine E is stopped and the traveling idle stop state is stopped. Such a configuration is also one of the preferred embodiments of the present invention. In a state in which all the engagement elements of the transmission apparatus TM are released, it is not necessary to supply hydraulic oil of a predetermined hydraulic pressure for engaging the engagement elements of the transmission apparatus TM.
  • the engine E can be stopped. Therefore, even if it comprises as mentioned above, combustion consumption of an engine is suppressed by stopping the engine E in the state which can stop this engine E.
  • the control unit 31 drives the starter 13 to start the engine E when the travel idle request is turned off and the vehicle is disengaged from the travel idle stop state. Then, after the engine E is started, the control unit 31 performs clutch re-engagement control or the like that is performed when the engine is disengaged from the idling state during traveling.
  • the vehicle drive device 1 includes an electric pump that discharges oil while the mechanical pump 21 is stopped so that hydraulic pressure can be supplied to a plurality of engagement elements of the transmission TM. Even if it does, it is suitable.
  • the control unit 31 is also suitable for setting the electric pump in a non-driven state when all the engaging elements of the transmission apparatus TM are released in the idling stop state during traveling.
  • the vehicle drive device 1 provided with the electric pump that discharges oil while the operation of the mechanical pump 21 is stopped, all the engagement elements of the transmission device TM are released in the idling stop state during traveling.
  • the driving time of the electric pump can be shortened, the life of the electric pump can be extended, and battery power for driving the electric pump can be saved.
  • the case where the first gear, which is the gear having the largest gear ratio (reduction ratio), is set as the one-way transmission gear has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, for example, it is also a preferred embodiment of the present invention to set the second speed, which is the speed stage having the second largest speed ratio (reduction ratio), as the one-way transmission speed.
  • the one-way clutch F as a one-way clutch is engaged only when the second intermediate shaft M2 rotates negatively, and the second intermediate shaft M2 and the second planetary planet are engaged.
  • the first sun gear S2 of the gear device P2 can be selectively fixed to the case 2 and stopped.
  • the first stage is realized by the cooperation of the engagement of the first clutch C1 and the engagement of the second brake B2 and the second stage is realized by the cooperation of the engagement of the first clutch C1 and the one-way clutch F. It can be set as the structure implement
  • the case where the engaging elements other than the second clutch C2 are engaged after performing the engine speed control has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, it is also a preferred embodiment of the present invention that the engaging element to be engaged later is engaged without executing such engine rotation speed control.
  • hydraulic oil in accordance with a predetermined command signal is supplied to the engagement element to be engaged later through the hydraulic control device 25, and the target shift stage is realized through the preliminary filling phase, the torque phase, and the inertia phase. It can be set as the structure made to do.
  • the target shift speed is changed to a new shift speed before the initial target shift speed when the vehicle is disengaged from the idling state during travel.
  • the switching control unit 35 performs the shift transition control has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, it is one of the preferred embodiments of the present invention that such an allowable shift pattern is not set and the shift transition control is not executed.
  • the switching control unit 35 engages an engagement element to be engaged later to realize the target shift speed before the change, and after passing through the target shift speed before the change, The engagement state of each engagement element can be switched so as to realize the target shift speed.
  • the switching control unit 35 when the neutral stage is realized in the transmission apparatus TM in the idling state during traveling, the switching control unit 35 is configured so as to be separated from the idling state during traveling.
  • the case has been described as an example in which the second clutch C2 as the combination element is first engaged, and then the engagement elements other than the second clutch C2 corresponding to the target shift speed are engaged.
  • the embodiment of the present invention is not limited to this. That is, it is also possible to control so that the engagement element other than the second clutch C2 corresponding to the target shift stage is engaged first, and then the second clutch C2 as the second engagement element is engaged. This is one of the preferred embodiments of the present invention.
  • the first clutch C1 and the second clutch C2 are engaged in this order
  • the third clutch C3 and the second clutch C2 may be engaged in this order
  • the first brake B1 and the second clutch C2 may be engaged in this order.
  • the second intermediate shaft M2 is in an idle state in a state where all the engagement elements are in the released state and the neutral stage is realized. Therefore, if any one of the first clutch C1, the third clutch C3, and the first brake B1 is engaged first, the number of allowable shift patterns is reduced, but the engagement is performed when these are engaged. There is an advantage that the occurrence of shock can be prevented.
  • the transmission TM is a single pinion type first planetary gear device P1 configured with three rotating elements, and a Ravigneaux configured with four rotating elements.
  • mold 2nd planetary gear apparatus P2 was demonstrated as an example.
  • the embodiment of the present invention is not limited to this. That is, the specific configuration inside the transmission apparatus TM can be changed as appropriate.
  • the transmission TM may be configured by including only the second planetary gear unit P2, or the transmission TM may be configured by combining a double pinion type planetary gear unit and a Ravigneaux type planetary gear unit P2, or
  • One of the preferred embodiments of the present invention is to configure the transmission TM by combining three or more single-pinion type or double-pinion type planetary gear units.
  • the vehicle is configured to control a four-wheel drive (4WD, 4-wheel drive) type vehicle drive system configured to be connected to the rear wheels of the vehicle 5
  • the embodiment of the present invention is not limited to this. That is, in the control unit 31, the output gear O included in the vehicle drive device 1 is drivingly connected to the rear wheel of the vehicle 5, and the output shaft of the rotating electrical machine MG capable of outputting driving force is drivingly connected to the front wheel of the vehicle 5.
  • the output shaft of the rotating electrical machine MG may be drivingly connected to the output gear O included in the vehicle drive device 1. Even in these cases, as in the case of the above-described embodiments, the responsiveness of the driving force transmission when the rotating electrical machine MG in the running idling state is improved while the driving power transmission is released from the running idling state is improved. Can be improved.
  • control unit 31 is configured to control the vehicle 5 that includes only the vehicle drive device 1 and does not include the rotating electrical machine MG.
  • the control unit 31 is configured to control the vehicle 5 that includes only the vehicle drive device 1 and does not include the rotating electrical machine MG.
  • the present invention includes an input member that is drivingly connected to an engine, an output member that is drivingly connected to a wheel, and a transmission that shifts the rotational driving force of the input member at a gear ratio of each gear and transmits it to the output member
  • a control device for controlling a vehicle drive device including the above, and a vehicle drive system including a vehicle drive device controlled by such a control device.

Abstract

 車両の走行中に、エンジンの回転駆動力が車輪に伝達される状態に移行する際に、駆動力伝達の応答性を向上させる。エンジンに駆動連結される入力部材と、車輪に駆動連結される出力部材と、入力部材の回転駆動力を各変速段の変速比で変速して出力部材に伝達する変速装置と、を備えた車両用駆動装置を制御するための制御装置であって、変速装置は、複数の変速段の一つとして、入力部材から出力部材への回転駆動力は伝達し、出力部材から入力部材への回転駆動力は伝達しない変速段である一方向伝達段を備え、車両の走行中であってかつ前記入力部材の回転駆動力が前記出力部材に伝達されず前記エンジンの回転速度が所定のアイドル回転数に制御されている状態である走行中アイドリング状態で、前記変速装置が前記一方向伝達段を実現するように制御する制御手段を備える。

Description

車両用制御装置及び車両駆動システム
 本発明は、エンジンに駆動連結される入力部材と、車輪に駆動連結される出力部材と、入力部材の回転駆動力を各変速段の変速比で変速して前記出力部材に伝達する変速装置と、を備えた車両用駆動装置を制御するための制御装置、及びそのような制御装置により制御される車両用駆動装置を備えた車両駆動システムに関する。
 従来の車両用駆動装置として、例えば下記の特許文献1に記載された装置が既に知られている。この駆動装置では、車両の走行中に、車両の走行抵抗に対して要求駆動力が微小となる所定の緩やかな減速運転状態となった場合は、変速装置と車輪との間に備えられた発進クラッチが解放状態に制御されることにより、エンジンと車輪との間が駆動連結されていない非連結状態にされ、車両は空走状態にされている。これにより、いわゆるエンジンブレーキが働かない状態となり、車両の走行抵抗による緩やかな車両の減速が実現されている。また、この空走状態では、エンジンは停止され、エンジンの燃料消費が抑制されている。
 そして、車両が空走状態にされている間に走行抵抗に対して要求駆動力が上回る所定の加速運転状態となった場合は、エンジンが始動されるとともに、発進クラッチが係合状態に制御されることにより、エンジンの回転駆動力が車輪に伝達される状態に移行されて、車両が再加速される。
特開平07-266932号公報
 しかしながら、特許文献1に記載された技術では、空走状態でエンジンが停止されているので、加速運転状態に移行する際に、エンジンを始動させる必要がある。よって、このようなエンジン始動に要する期間分、駆動力伝達の応答性が悪化するという問題があった。また、特許文献1に記載された技術では、加速運転状態に移行する際に、発進クラッチが係合されてエンジンと車輪との間が連結状態にされるまでは、エンジンの回転駆動力を車輪に伝達することができず、車両を加速させることができない。このため、発進クラッチの係合が完了するまでの期間分、駆動力伝達の応答性が悪化するという問題があった。
 また、特許文献1に記載された技術では、変速装置及び発進クラッチは油圧により作動されるように構成されており、オイルポンプをエンジンの回転により駆動させて油圧を発生させている。しかし、特許文献1の技術は、空走状態でエンジンを停止させるので、エンジンの回転により油圧を発生させることができない。そこで、特許文献1の技術では、加速運転状態に移行する際に、変速装置及び発進クラッチが油圧により応答性良く作動されるようにするため、車両用駆動装置が、オイルポンプ駆動用の電動モータを備えており、空走状態においても電動モータを駆動させて油圧を発生させている。すなわち、特許文献1の技術では、駆動力伝達の応答性を向上させるために、油圧発生用の電動モータを備える必要があり、車両用駆動装置の構成が複雑化してしまうという問題があった。
 そこで、車両の走行中に、エンジンに駆動連結される入力部材の回転駆動力が車輪に駆動連結される出力部材に伝達されない状態から、入力部材の回転駆動力が出力部材に伝達される状態に移行する際における駆動力伝達の応答性を向上させることができるとともに、車両用駆動装置の構成が複雑化することを抑制できる車両用制御装置の実現が望まれる。
 この目的を達成するための、本発明に係るエンジンに駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の係合要素を有し、前記複数の係合要素の係合及び解放が制御されることにより複数の変速段が切り替えられ、前記入力部材の回転駆動力を各変速段の変速比で変速して前記出力部材に伝達する変速装置と、を備えた車両用駆動装置を制御するための車両用制御装置の特徴構成は、前記変速装置は、前記複数の変速段の一つとして、前記入力部材から前記出力部材への回転駆動力は伝達し、前記出力部材から前記入力部材への回転駆動力は伝達しない変速段である一方向伝達段を備え、車両が走行している状態であってかつ前記入力部材の回転駆動力が前記出力部材に伝達されず前記エンジンの回転速度が所定のアイドル回転数に制御されている状態である走行中アイドリング状態で、前記変速装置が前記一方向伝達段を実現するように制御する制御手段を備えた点にある。
 なお、本願において「駆動連結」とは、二つの回転要素が駆動力を伝達可能に連結された状態を指し、当該二つの回転要素が一体的に回転するように連結された状態、或いは当該二つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。但し、各遊星歯車装置の各回転要素について「駆動連結」という場合には、当該遊星歯車装置が備える複数の回転要素に関して互いに他の回転要素を介することなく駆動連結されている状態を指すものとする。
 本発明によれば、走行中アイドリング状態では一方向伝達段が実現される。この一方向伝達段は、出力部材から入力部材への回転駆動力は伝達しないため、変速装置とエンジンとの間での駆動力の伝達が遮断され、走行中アイドリング状態におけるエンジンの引きずり(エンジンブレーキ、エンジンの連れ回り)が回避される。これにより、エンジンの引きずりに伴うエネルギ損失を抑制して、例えば、出力部材からの回転駆動力を他の用途に有効利用させることができる。
 一方、一方向伝達段は、入力部材から出力部材への回転駆動力は伝達するため、走行中アイドリング状態から離脱してエンジンの回転駆動力により車両を駆動させる際に、速やかにエンジンの回転駆動力を、入力部材を介して出力部材に伝達することができる。また、走行中アイドリング状態において、エンジンは停止されずアイドル回転数に制御されているため、走行中アイドリング状態からの離脱後、速やかにエンジンの回転駆動力を出力部材に伝達させることができる。
 したがって、上記の特徴構成によれば、走行中アイドリング状態におけるエンジンの引きずりを回避しつつ、走行中アイドリング状態から離脱してエンジンの回転駆動力により車両を駆動させる時における駆動力伝達の応答性を向上させることができる。
 また、走行中アイドリング状態において、エンジンは回転しているため、当該エンジンの回転により、一方向伝達段を実現するための動力(例えば、油圧)を発生させることができる。よって、走行中アイドリング状態で一方向伝達段を実現するために、エンジン以外の動力源(例えば、電動ポンプ)を備える必要がなく、車両用駆動装置の構成が複雑化することが抑制される。
 ここで、前記変速装置は、係合した状態で前記入力部材の回転駆動力を当該変速装置が有する複数の回転要素のうちの一つに伝達する第一係合要素と、前記第一係合要素が係合した状態で、前記入力部材から前記出力部材への回転駆動力が伝達される状態となり、前記出力部材から前記入力部材への回転駆動力が伝達されない状態となる一方向クラッチと、を備え、前記一方向伝達段は、前記第一係合要素の係合と前記一方向クラッチとが協働して実現される構成とすると好適である。
 この構成によれば、係合要素の一つである第一係合要素と、一つの一方向クラッチとの組み合わせにより、簡単な構成で容易かつ適切に一方向伝達段を実現することができる。
 また、前記走行中アイドリング状態に移行する前の前記変速装置における変速段が、少なくとも前記第一係合要素の係合により実現される変速段である場合には、前記制御手段は、前記走行中アイドリング状態で前記第一係合要素を係合させて前記一方向伝達段を実現させ、前記走行中アイドリング状態に移行する前の前記変速装置における変速段が、少なくとも前記第一係合要素の係合により実現される変速段以外の変速段である場合には、前記制御手段は、前記走行中アイドリング状態で前記変速装置の全ての係合要素を解放させる構成とすると好適である。
 この構成によれば、走行中アイドリング状態に移行する前の変速装置における変速段に応じて、走行中アイドリング状態における変速装置における変速段の状態を適切に設定することができる。
 すなわち、走行中アイドリング状態に移行する前の変速装置における変速段が、少なくとも第一係合要素が係合されて実現されている場合には、第一係合要素以外の係合要素を解放させるだけで、容易かつ速やかに一方向伝達段を実現させることができる。
 また、走行中アイドリング状態に移行する前の変速装置における変速段が、第一係合要素が解放されるとともに他の二つの係合要素が係合されて実現されている場合には、全ての係合要素を解放させることで、走行中アイドリング状態から離脱する時における変速装置の変速段の設定の自由度を高め、状況に応じた適切な対応を可能とすることができる。
 また、前記走行中アイドリング状態に移行する前の車両の走行速度が所定の解放閾値以下である場合には、前記制御手段は、前記走行中アイドリング状態で前記第一係合要素を係合させて前記一方向伝達段を実現させ、前記走行中アイドリング状態に移行する前の車両の走行速度が所定の解放閾値より大きい場合には、前記走行中アイドリング状態で前記変速装置の全ての係合要素を解放させる構成とすると好適である。
 この構成によれば、走行中アイドリング状態に移行する前の車両の走行速度に応じて、走行中アイドリング状態における変速装置における変速段の状態を適切に設定することができる。
 すなわち、走行中アイドリング状態に移行する前の車両の走行速度が所定の解放閾値以下の比較的低速での走行時には、走行中アイドリング状態からの離脱時に車両を駆動するための駆動力が比較的速やかに必要となる場合が多い。よって、そのような条件の下では第一係合要素を係合させて一方向伝達段を実現させておくことで、走行中アイドリング状態からの離脱時における駆動力伝達の応答性を向上させることができる。
 また、走行中アイドリング状態に移行する前の車両の走行速度が所定の解放閾値より大きい比較的高速での走行時には、走行中アイドリング状態からの離脱時に車両を駆動するための駆動力はあまり必要でない場合が多い。よって、そのような条件の下では全ての係合要素を解放させることで、走行中アイドリング状態からの離脱時における変速装置の変速段の設定の自由度を高め、状況に応じた適切な対応を可能とすることができる。
 また、前記一方向伝達段は、前進用変速段の中で前記入力部材と前記出力部材との間の減速比が最も大きい変速段である構成とすると好適である。
 走行中アイドリング状態に移行する状況としては、車両が減速している状況が多い。このような状況では、走行中アイドリング状態から離脱して車両を駆動させる際には、車速が小さい(特に、ゼロに近い)状態から駆動させる必要があるため、大きな駆動力が必要となる場合が多い。上記の構成によれば、前進用変速段の中で減速比が最も大きい変速段が一方向伝達段として設定されるので、車速が小さい(特に、ゼロに近い)状態から車両を駆動させる場合にも、入力部材の回転駆動力を減速して、大きな駆動力を応答性良く出力部材に伝達することができる。
 また、前進用変速段の中で減速比が最も大きい変速段では、一般にアクセルオフした際にエンジンブレーキが効き過ぎてしまうことが多いことから、そのようなエンジンブレーキによるショックを低減するために当該減速比が最も大きい変速段を実現するのに一方向クラッチを利用する場合がある。上記の構成では、そのような目的で設けられる一方向クラッチと、本発明における一方向伝達段を実現するための一方向クラッチとを共用させることができるので、特別な部品を追加することなく一方向伝達段を実現可能とすることができる。
 また、車両の走行中に、前記走行中アイドリング状態から、前記入力部材の回転駆動力を前記出力部材に伝達する通常状態に復帰するとき、前記制御手段は、前記入力部材の回転速度が、車両の走行速度と前記変速装置における目標変速段とに基づいて定まる目標回転速度となるように制御するエンジン回転速度制御を行なってから、前記変速装置における所定の係合要素を係合させる構成とすると好適である。
 この構成によれば、エンジン回転速度制御により、二つの回転要素が同期してから(回転速度が略等しくなってから)係合させられるので、目標変速段が実現される際の変速ショックの発生を抑制することができる。
 また、前記エンジン回転速度制御中に、前記入力部材の回転速度が前記目標回転速度となる前に、前記変速装置における目標変速段が変更された場合において、前記目標変速段の変更パターンが予め定められた許容シフトパターンに該当しない場合には、前記制御手段は、前記エンジン回転速度制御を行なって変更前の前記目標変速段を実現させた後に、変更後の前記目標変速段を実現させ、前記目標変速段の変更パターンが前記許容シフトパターンに該当する場合には、前記制御手段は、前記エンジン回転速度制御を中止するとともに変更前の前記目標変速段の実現を中止して、変更後の前記目標変速段を実現させる構成とすると好適である。
 この構成によれば、所定の許容シフトパターンに該当する場合には、変更後の目標変速段に直接移行させることで、目標変速段を早期に実現させることができる。
 また、前記変速装置における各変速段が二つの前記係合要素の係合により実現される場合において、前記許容シフトパターンは、先に係合される前記係合要素が共通でかつ後に係合される前記係合要素が異なる変速段間での変更であって、かつ、減速比の小さい変速段から減速比の大きい変速段への変更に該当する変更パターンである構成とすると好適である。
 係合される二つの係合要素のうち先に係合される係合要素が共通である場合には、後に係合される係合要素を変更前後の目標変速段に対応する係合要素間で切り替えるだけで、容易に変更前後の目標変速段を切り替えることができる。
 また、目標変速段が減速比の小さい変速段から減速比の大きい変速段へ変更(ダウンシフト)される場合には、より大きな駆動力が必要とされることから、変更後の目標変速段を早期に実現させることが好ましい。
 したがって、上記の構成によれば、許容シフトパターンを適切に設定することができ、必要な場合には目標変速段を早期に実現させることができる。
 また、前記変速装置は、係合した状態で前記入力部材の回転駆動力を当該変速装置が有する複数の回転要素のうちの一つに伝達する第一係合要素と、前記第一係合要素が係合した状態で、前記入力部材から前記出力部材への回転駆動力が伝達される状態となり、前記出力部材から前記入力部材への回転駆動力が伝達されない状態となる一方向クラッチと、を備え、前記一方向伝達段は、前記第一係合要素の係合と前記一方向クラッチとが協働して実現され、前記変速装置は、前記第一係合要素を含む複数の係合要素の中のいずれか二つを選択的に係合することにより複数の変速段を切り替え可能に備えるとともに、少なくとも前記第一係合要素とは異なる第二係合要素が係合されることにより実現される変速段を有し、前記エンジンが前記走行中アイドリング状態に移行する前の前記変速装置における変速段が、前記第二係合要素が係合されることにより実現される変速段である場合には、前記制御手段は、前記通常状態に復帰する際に、二つの係合要素のうち前記第二係合要素を先に係合させる構成とすると好適である。
 この構成によれば、少なくとも第二係合要素が係合されることにより実現される変速段では、当該第二係合要素を先に係合させることで、先に係合される係合要素を第一係合要素及び第二係合要素のいずれか一方に集約することができる。したがって、許容シフトパターンの数を増加させて、より多くの状況で目標変速段を早期に実現可能とすることができる。
 また、前記変速装置の全ての係合要素を解放させた状態で、前記走行中アイドリング状態に代えて、車両が走行している状態であってかつ前記エンジンが停止される走行中アイドル停止状態とする構成とすると好適である。
 変速装置の全ての係合要素を解放させた状態では、変速装置の係合要素を係合させるための動力(例えば、油圧)を発生させる必要がないため、例えば電動ポンプ等のエンジン以外の動力源を備えない場合であっても、車両の走行中にエンジンを停止させることが可能となる。よって、上記の構成によれば、このエンジンを停止可能な状態で、エンジンを停止させることにより、エンジンの燃焼消費が抑制される。
 また、前記エンジンの回転駆動力により駆動されて油を吐出する機械式ポンプと、前記機械式ポンプの動作停止中に油を吐出する電動ポンプとを、複数の前記係合要素に油圧を供給可能に備え、前記走行中アイドル停止状態で前記変速装置の全ての係合要素が解放される場合には、前記制御手段は前記電動ポンプを非駆動状態とする構成とすると好適である。
 変速装置の全ての係合要素が解放される場合には、変速装置の係合要素を係合させるための油圧を発生させる必要がない。上記の構成によれば、機械式ポンプの動作停止中に油を吐出する電動ポンプが備えられている車両用駆動装置においても、走行中アイドル停止状態で前記変速装置の全ての係合要素が解放される場合には、電動ポンプを非駆動状態とすることで、電動ポンプの駆動時間を短縮して、電動ポンプの寿命を延ばすことができるとともに、電動ポンプ駆動用のバッテリ電力を節約することができる。
 これまで説明してきた構成において、前記変速装置は、具体的には、回転速度の順に第一回転要素、第二回転要素、及び第三回転要素となる三つの回転要素を有する第一遊星歯車装置と、回転速度の順に第一回転要素、第二回転要素、第三回転要素及び第四回転要素となる四つの回転要素を有する第二遊星歯車装置を備え、前記第一遊星歯車装置の第一回転要素は非回転部材に固定され、第二回転要素は第一係合要素を介して前記第二遊星歯車装置の第四回転要素に選択的に駆動連結され、第三回転要素は前記入力部材に駆動連結され、前記第二遊星歯車装置の第二回転要素は、非回転部材に対して負回転となるときに係合状態となって回転が阻止される一方向クラッチを介して当該非回転部材に選択的に固定され、第三回転要素は前記出力部材に駆動連結されている構成とすると好適である。
 この構成によれば、変速装置に、少なくとも第一係合要素の係合と一方向クラッチとが協働することにより実現される一方向伝達段を備えさせることができる。よって、そのような変速装置を備えた車両用駆動装置において、当該車両用駆動装置を適切に制御して、走行中アイドリング状態でエンジンの引きずりを回避しつつ、走行中アイドリング状態から離脱する時における駆動力伝達の応答性を向上させることができる。
 ここで、前記変速装置は、前記第一遊星歯車装置の第二回転要素が、更に前記第二遊星歯車装置の第一回転要素に選択的に駆動連結されるとともに、前記第二遊星歯車装置の第二回転要素が、更に第二係合要素を介して前記入力部材に選択的に駆動連結される構成とすると好適である。
 この構成によれば、少なくとも四つの変速段を切替可能に有する変速装置を備えた車両用駆動装置において、当該車両用駆動装置を適切に制御して、走行中アイドリング状態でエンジンの引きずりを回避しつつ、走行中アイドリング状態から離脱する時における駆動力伝達の応答性を向上させることができる。
 また、前記変速装置は、前記第二遊星歯車装置の第一回転要素が、更に非回転部材に選択的に固定される構成とすると好適である。
 この構成によれば、更に二つの変速段を加えた、六つの変速段を切替可能に有する変速装置を備えた車両用駆動装置において、当該車両用駆動装置を適切に制御して、走行中アイドリング状態でエンジンの引きずりを回避しつつ、走行中アイドリング状態から離脱する時における駆動力伝達の応答性を向上させることができる。
 本発明に係る車両駆動システムの特徴構成は、これまで説明してきた車両用制御装置により制御される車両用駆動装置が備える前記出力部材が、車両の前輪及び後輪のいずれか一方に駆動連結されるとともに、駆動力を出力可能な回転電機の出力軸が、車両の前輪及び後輪のいずれか他方に駆動連結された点にある。
 なお、本願では、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 これまで説明してきたように、本発明に係る車両用制御装置によれば、走行中アイドリング状態におけるエンジンの引きずり(エンジンブレーキ、エンジンの連れ回り)が回避されるので、エンジンの引きずりに伴うエネルギ損失を抑制することができる。その際、上記の特徴構成のように回転電機の出力軸が車両の前輪及び後輪のいずれかに駆動連結されている車両駆動システムでは、エネルギ損失が抑制された状態で回転電機に回生制動を行わせることができるので、回転電機による回生効率を向上させることができる。
 したがって、上記の特徴構成によれば、走行中アイドリング状態における回転電機の回生効率が良好であるとともに、走行中アイドリング状態からの離脱時における駆動力伝達の応答性が良好な車両駆動システムとすることができる。
第一の実施形態に係る車両用駆動装置を搭載した車両の全体構成を示す図である。 第一の実施形態に係る車両用駆動装置の構成を示す模式図である。 第一の実施形態に係る各変速段での複数の係合要素の作動状態を示す作動表である。 第一の実施形態に係る変速装置の速度線図である。 第一の実施形態に係る制御ユニットの構成を示すブロック図である。 第一の実施形態に係る変速マップの一例を示す図である。 第一の実施形態に係る切替制御処理の全体の処理手順を示すフローチャートである。 第一の実施形態に係るクラッチ解放制御の処理手順を示すフローチャートである。 第一の実施形態に係るクラッチ再係合制御の処理手順を示すフローチャートである。 第一の実施形態に係る切替制御処理の一例を説明するためのタイミングチャートである。 第一の実施形態に係る切替制御処理の一例を説明するためのタイミングチャートである。 第一の実施形態に係る切替制御処理の一例を説明するためのタイミングチャートである。 第一の実施形態に係る切替制御処理の一例を説明するためのタイミングチャートである。 第二の実施形態に係る車両用駆動装置の構成を示す模式図である。 第二の実施形態に係る各変速段での複数の係合要素の作動状態を示す作動表である。 第二の実施形態に係る変速装置の速度線図である。
〔第一の実施形態〕
 本発明に係る車両用制御装置の第一の実施形態について、図面を参照して説明する。本実施形態においては、本発明に係る車両用制御装置を、ハイブリッド車両用の駆動装置に適用した場合を例として説明する。図1は、本実施形態に係る車両用駆動装置1を搭載した車両5の全体構成を示す図である。この図に示すように、本実施形態に係る車両用駆動装置1は、車両5に横置きされるエンジンEに対して車両5の幅方向に隣接して配置されている。そして、車両用駆動装置1が備える出力ギヤOが、図示しないカウンタギヤ機構及びディファレンシャル装置等を介して車両5の前輪に駆動連結されている。また、本実施形態においては、車両5には駆動力を出力可能な回転電機MGが搭載されている。回転電機MGの出力軸は、車両5の後輪に駆動連結されている。このような構成を備えた車両5は、基本的にはエンジンEの回転駆動力により前輪駆動(FF、Front Engine Front Drive)方式で走行し、必要に応じて回転電機MGの回転駆動力でエンジンEの回転駆動力をアシストすることにより四輪駆動(4WD、4-wheel drive)方式で走行することが可能な車両駆動システムとなっている。このように、車両5は、前輪及び後輪を車輪6として備えている。
1.車両用駆動装置の構成
 まず、本実施形態に係る車両用駆動装置1の構成について説明する。図2は、本実施形態に係る車両用駆動装置1の駆動伝達系及び油圧制御系の構成を示す模式図である。なお、この図2は、軸対称の構成を一部省略して示している。この図において、実線は駆動力の伝達経路を示し、破線は作動油の供給経路を示している。この図に示すように、車両用駆動装置1は、車両駆動用の駆動力源としてのエンジンEに駆動連結され、トルクコンバータ11を介して入力軸Iから入力されるエンジンEの回転駆動力を、変速装置TMで変速して出力ギヤOに伝達する構成となっている。本実施形態においては、入力軸Iが本発明における「入力部材」に相当し、出力ギヤOが本発明における「出力部材」に相当する。
 エンジンEは、燃料の燃焼により駆動される内燃機関であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種エンジンを用いることができる。本例では、エンジンEのクランクシャフト等のエンジン出力軸Eoが、トルクコンバータ11を介して入力軸Iに駆動連結されている。トルクコンバータ11は、駆動力源としてのエンジンEのエンジン出力軸Eoの回転駆動力を、入力軸Iを介して変速装置TMに伝達する装置である。このトルクコンバータ11は、エンジン出力軸Eoに駆動連結された入力側回転部材としてのポンプインペラ11aと、入力軸Iに駆動連結された出力側回転部材としてのタービンランナ11bと、これらの間に設けられ、ワンウェイクラッチを備えたステータ11cと、を備えている。そして、トルクコンバータ11は、内部に充填された作動油を介して、駆動側のポンプインペラ11aと従動側のタービンランナ11bとの間で駆動力の伝達を行う。これにより、エンジンEの回転駆動力が入力軸Iに伝達される。なお、エンジンEのエンジン出力軸Eoが、入力軸Iと一体的に駆動連結され、或いはダンパやクラッチ等の他の部材を介して入力軸Iに駆動連結された構成としても好適である。
 また、本実施形態においては、エンジンEに隣接してスタータ13が設けられている。スタータ13は、直流モータ等で構成され、バッテリ(不図示)に電気的に接続されている。スタータ13は、エンジンEが停止された状態でバッテリから供給される電力により駆動されてエンジン出力軸Eoを回転させ、エンジンEを始動させることができるように構成されている。
 トルクコンバータ11は、ロックアップ用の摩擦係合要素として、ロックアップクラッチ12を備えている。このロックアップクラッチ12は、ポンプインペラ11aとタービンランナ11bとの間の回転差(滑り)をなくして伝達効率を高めるために、ポンプインペラ11aとタービンランナ11bとを一体回転させるように連結するクラッチである。したがって、トルクコンバータ11は、ロックアップクラッチ12の係合状態では、作動油を介さずに、エンジンEの駆動力を直接入力軸Iに伝達する。ロックアップクラッチ12を含むトルクコンバータ11には、油圧制御装置25により調圧された作動油が供給される。
 トルクコンバータ11の出力側回転部材としてのタービンランナ11bに駆動連結された入力軸Iには、変速装置TMが駆動連結されている。変速装置TMは、複数の係合要素を有し、入力軸Iから伝達されるエンジンEの回転駆動力を、各変速段の変速比で変速して出力ギヤOへ伝達する装置である。ここで、変速装置TMは、複数の変速段を有する有段の自動変速装置(有段変速装置)となっている。本実施形態においては、変速装置TMは変速比(減速比)の異なる六つの変速段(第一段、第二段、第三段、第四段、第五段、及び第六段)を前進段として備えている。これらの変速段を構成するため、変速装置TMは、第一遊星歯車装置P1及び第二遊星歯車装置P2を備えてなる歯車機構と、複数の係合要素と、を備えて構成されている。これら複数の係合要素の係合及び解放を制御して、第一遊星歯車装置P1及び第二遊星歯車装置P2の各回転要素の回転状態を切り替え、複数の係合要素の中のいずれか二つを選択的に係合することにより、六つの変速段が切り替えられる。なお、変速装置TMは、上記六つの変速段のほかに、一段の後進段も備えている。
 本実施形態においては、図2に示すように、第一遊星歯車装置P1は、入力軸Iと同軸上に配置されたシングルピニオン型の遊星歯車機構とされている。すなわち、第一遊星歯車装置P1は、複数のピニオンギヤを支持するキャリアCA1と、前記ピニオンギヤにそれぞれ噛み合うサンギヤS1及びリングギヤR1と、の三つの回転要素を有して構成されている。また、第二遊星歯車装置P2は、入力軸Iと同軸上に配置されたラビニヨ型の遊星歯車機構とされている。すなわち、第二遊星歯車装置P2は、第一サンギヤS2及び第二サンギヤS3の二つのサンギヤと、リングギヤR2と、第一サンギヤS2及びリングギヤR2の双方に噛み合うロングピニオンギヤ並びにこのロングピニオンギヤ及び第二サンギヤS3に噛み合うショートピニオンギヤを支持する共通のキャリアCA2と、の四つの回転要素を有して構成されている。
 第一遊星歯車装置P1のサンギヤS1は、非回転部材としてのケース2に固定されている。キャリアCA1は、第一中間軸M1を介して第二遊星歯車装置P2の第二サンギヤS3と選択的に一体回転するように駆動連結されるとともに、第二中間軸M2を介して第二遊星歯車装置P2の第一サンギヤS2と選択的に一体回転するように駆動連結されている。リングギヤR1は、入力軸Iと一体回転するように駆動連結されている。本実施形態においては、この第一遊星歯車装置P1では、サンギヤS1、キャリアCA1、及びリングギヤR1が、それぞれ本発明における「第一回転要素」、「第二回転要素」、及び「第三回転要素」に相当する。なお、これら三つの回転要素は、回転速度の順にサンギヤS1(第一回転要素)、キャリアCA1(第二回転要素)、及びリングギヤR1(第三回転要素)となっている。
 第二遊星歯車装置P2の第一サンギヤS2は、第二中間軸M2を介して第一遊星歯車装置P1のキャリアCA1と選択的に一体回転するように駆動連結されている。キャリアCA2は、入力軸Iと選択的に一体回転するように駆動連結されるとともに、非回転部材としてのケース2に選択的に固定される。リングギヤR2は、出力ギヤOと一体回転するように駆動連結されている。第二サンギヤS3は、第一中間軸M1を介して第一遊星歯車装置P1のキャリアCA1と選択的に一体回転するように駆動連結されている。本実施形態においては、この第二遊星歯車装置P2では、第一サンギヤS2、キャリアCA2、リングギヤR2、及び第二サンギヤS3が、それぞれ本発明における「第一回転要素」、「第二回転要素」、「第三回転要素」、及び「第四回転要素」に相当する。なお、これら四つの回転要素は、回転速度の順に第一サンギヤS2(第一回転要素)、キャリアCA2(第二回転要素)、リングギヤR2(第三回転要素)、及び第二サンギヤS3(第四回転要素)となっている。
 第一遊星歯車装置P1のキャリアCA1は、第一クラッチC1により第一中間軸M1に選択的に駆動連結されるとともに、第三クラッチC3により第二中間軸M2に選択的に駆動連結される。これにより、第一遊星歯車装置P1のキャリアCA1は、第一クラッチC1及び第一中間軸M1を介して第二遊星歯車装置P2の第二サンギヤS3に選択的に駆動連結されるとともに、第三クラッチC3及び第二中間軸M2を介して第二遊星歯車装置P2の第一サンギヤS2に選択的に駆動連結される。また、本実施形態においては、第二中間軸M2は、第一ブレーキB1によりケース2に選択的に固定される。これにより、第二遊星歯車装置P2の第一サンギヤS2は、第二中間軸M2及び第三クラッチC3を介して第一遊星歯車装置P1のキャリアCA1に選択的に駆動連結されるとともに、第一ブレーキB1によりケース2に選択的に固定される。
 第二遊星歯車装置P2のキャリアCA2は、ワンウェイクラッチFによりケース2に選択的に固定されるとともに、第二クラッチC2により入力軸Iに選択的に駆動連結される。ここで、ワンウェイクラッチFは、一方向の回転のみを阻止することによりキャリアCA2を選択的にケース2に固定する。なお、第二遊星歯車装置P2のキャリアCA2は、第二ブレーキB2によっても、ケース2に選択的に固定可能とされている。
 本実施形態においては、第一クラッチC1、第二クラッチC2、第三クラッチC3、第一ブレーキB1、及び第二ブレーキB2は、いずれも摩擦係合要素とされている。具体的には、これらは油圧により動作する多板式クラッチや多板式ブレーキにより構成されている。これらの摩擦係合要素C1、C2、C3、B1、B2は、油圧制御装置25から供給される油圧により、それぞれ係合及び解放が制御される。また、ワンウェイクラッチFは、インナレースとアウタレースとを備え、インナレースがアウタレースに対して相対的に正回転することは許容されるが、インナレースがアウタレースに対して相対的に負回転することは阻止されるように構成されている。本例では、インナレースが第二遊星歯車装置P2のキャリアCA2と一体回転するように駆動連結され、アウタレースがケース2に固定されている。ワンウェイクラッチFは、第二遊星歯車装置P2のキャリアCA2が負回転となるときに係合状態となって回転が阻止される一方向係合要素として機能し、キャリアCA2を選択的にケース2に固定して停止させる。本実施形態においては、これら第一クラッチC1、第二クラッチC2、第三クラッチC3、第一ブレーキB1、第二ブレーキB2、及びワンウェイクラッチFにより、本発明における「複数の係合要素」が構成される。
2.油圧制御系の構成
 次に、上述した車両用駆動装置1の油圧制御系について説明する。油圧制御系は、図示しないオイルパンに蓄えられた作動油を吸引し、車両用駆動装置1の各部に作動油を供給するための油圧源として、本実施形態では、図2に示すように、機械式ポンプ21を備えている。ここで、機械式ポンプ21は、駆動力源としてのエンジンEの回転駆動力により駆動されて作動油を吐出するオイルポンプである。このような機械式ポンプ21としては、例えば、歯車ポンプやベーンポンプ等が好適に用いられる。本例では、機械式ポンプ21は、入力軸Iの軸方向でトルクコンバータ11に対してエンジンEとは反対側に配置されている。機械式ポンプ21は、トルクコンバータ11のポンプインペラ11aを介してエンジン出力軸Eoに駆動連結され、エンジンEの回転駆動力により駆動される。そして、この機械式ポンプ21は、基本的には車両用駆動装置1に必要な作動油の油量を十分に上回る吐出能力を備えている。しかし、機械式ポンプ21は、エンジン出力軸Eoの停止中(すなわちエンジンEの停止中)には作動油を吐出しない。
 また、油圧制御系は、機械式ポンプ21から供給される作動油の油圧を所定圧に調整するための油圧制御装置25を備えている。ここでは詳しい説明を省略するが、油圧制御装置25は、油圧調整用のリニアソレノイド弁からの信号圧に基づき一又は二以上の調整弁の開度を調整することにより、当該調整弁からドレインする作動油の量を調整して作動油の油圧を一又は二以上の所定圧に調整する。所定圧に調整された作動油は、それぞれ必要とされるレベルの油圧で、ロックアップクラッチ12、トルクコンバータ11、及び変速装置TMの複数の係合要素C1、C2、C3、B1、B2に供給される。なお、作動油は第一遊星歯車装置P1及び第二遊星歯車装置P2の各ギヤ、並びに入力軸I、第一中間軸M1及び第二中間軸M2を回転可能に支持する各軸受(不図示)の潤滑や冷却のためにも、これらの部位に供給される。
3.車両用駆動装置の動作
 次に、本実施形態に係る車両用駆動装置1の動作について説明する。ここでは、変速装置TMにより実現される六つの変速段について詳細に説明する。図3は、各変速段での複数の係合要素の作動状態を示す作動表である。この図において、「○」は各係合要素が係合状態にあることを示しており、「無印」は、各係合要素が解放(係合解除)状態にあることを示している。また、「△」は、一方向に回転する(キャリアCA2が正方向に回転する)場合には解放状態となり、他方向に回転する(キャリアCA2が負方向に回転する)場合には係合状態となることを示している。
 図4は、変速装置TMの速度線図である。この速度線図において、縦軸は、各回転要素の回転速度に対応している。すなわち、縦軸に対応して記載している「0」は回転速度がゼロであることを示しており、上側が正回転(回転速度が正)、下側が負回転(回転速度が負)である。そして、並列配置された複数本の縦線のそれぞれが、第一遊星歯車装置P1の各回転要素及び第二遊星歯車装置P2の各回転要素に対応している。すなわち、各縦線の上側に記載されている「S1」、「CA1」、「R1」はそれぞれ第一遊星歯車装置P1のサンギヤS1、キャリアCA1、リングギヤR1に対応している。また、各縦線の上側に記載されている「S2」、「CA2」、「R2」、「S3」はそれぞれ第二遊星歯車装置P2の第一サンギヤS2、キャリアCA2、リングギヤR2、第二サンギヤS3に対応している。また、並列配置された複数本の縦線間の間隔は、各遊星歯車装置P1、P2のギヤ比λ(サンギヤとリングギヤとの歯数比=〔サンギヤの歯数〕/〔リングギヤの歯数〕)に基づいて定まっている。
 また、「△」は、当該回転要素がエンジンEに駆動連結された入力軸Iに連結された状態を示している。「×」は、第一ブレーキB1、第二ブレーキB2又はワンウェイクラッチFにより各回転要素がケース2に固定された状態を示している。「☆」は、当該回転要素が車輪6に駆動連結された出力ギヤOに連結された状態を示している。なお、それぞれの「☆」に隣接して記載された「1st」、「2nd」、「3rd」、「4th」、「5th」、「6th」、及び「Rev」は、それぞれ変速装置TMにおいて実現される第一段、第二段、第三段、第四段、第五段、第六段、及び後進段に対応している。
 図3及び図4に示すように、第一段は、第一クラッチC1の係合とワンウェイクラッチFとが協働して実現される。すなわち、第一クラッチC1が係合した状態では、第一遊星歯車装置P1のリングギヤR1に入力される入力軸I(エンジンE)の回転駆動力がギヤ比λ1に基づいて減速されて第二遊星歯車装置P2の第二サンギヤS3に伝達される。本実施形態においては、第一クラッチC1が本発明における「第一係合要素」に相当する。そして、第一クラッチC1が係合した状態で、入力軸I(エンジンE)から出力ギヤOへの回転駆動力が伝達されて第二遊星歯車装置P2のキャリアCA2が負回転する際に、ワンウェイクラッチFが係合状態となってケース2に固定され、第二サンギヤS3の回転駆動力がギヤ比λ3に基づいて減速されて出力ギヤOに伝達される。なお、出力ギヤOから入力軸I(エンジンE)への回転駆動力が伝達されて第二遊星歯車装置P2のキャリアCA2が正回転する際には、ワンウェイクラッチFは解放状態となる。本実施形態においては、ワンウェイクラッチFが本発明における「一方向クラッチ」に相当する。このようにして実現される第一段は、入力軸I(エンジンE)から出力ギヤOへの回転駆動力は伝達し、出力ギヤOから入力軸I(エンジンE)への回転駆動力は伝達しない変速段となる。本実施形態においては、第一段が本発明における「一方向伝達段」に相当する。
 第二段は、第一クラッチC1の係合と第一ブレーキB1の係合とが協働して実現される。すなわち、第一クラッチC1が係合した状態で、入力軸I(エンジンE)の回転駆動力がギヤ比λ1に基づいて減速されて第二遊星歯車装置P2の第二サンギヤS3に伝達される。また、第一ブレーキB1が係合した状態で、第二遊星歯車装置P2の第一サンギヤS2がケース2に固定される。そして、第二サンギヤS3の回転駆動力がギヤ比λ2及びλ3に基づいてさらに減速されて出力ギヤOに伝達される。
 第三段は、第一クラッチC1の係合と第三クラッチC3の係合とが協働して実現される。すなわち、第一クラッチC1が係合した状態で、入力軸I(エンジンE)の回転駆動力がギヤ比λ1に基づいて減速されて第二遊星歯車装置P2の第二サンギヤS3に伝達される。また、第三クラッチC3が係合した状態で、入力軸I(エンジンE)の回転駆動力がギヤ比λ1に基づいて減速されて第二遊星歯車装置P2の第一サンギヤS2に伝達される。そして、第一サンギヤS2と第二サンギヤS3とが同速度で回転することで、ギヤ比λ1に基づいて減速された入力軸I(エンジンE)の回転駆動力がそのまま出力ギヤOに伝達される。
 第四段は、第一クラッチC1の係合と第二クラッチC2の係合とが協働して実現される。すなわち、第一クラッチC1が係合した状態で、入力軸I(エンジンE)の回転駆動力がギヤ比λ1に基づいて減速されて第二遊星歯車装置P2の第二サンギヤS3に伝達される。また、第二クラッチC2が係合した状態で、入力軸I(エンジンE)の回転駆動力がそのまま第二遊星歯車装置P2のキャリアCA2に伝達される。そして、キャリアCA2及び第二サンギヤS3の回転速度とギヤ比λ3とに基づいて決まる入力軸I(エンジンE)の回転駆動力が出力ギヤOに伝達される。
 第五段は、第二クラッチC2の係合と第三クラッチC3の係合とが協働して実現される。すなわち、第二クラッチC2が係合した状態で、入力軸I(エンジンE)の回転駆動力がそのまま第二遊星歯車装置P2のキャリアCA2に伝達される。また、第三クラッチC3が係合した状態で、入力軸I(エンジンE)の回転駆動力がギヤ比λ1に基づいて減速されて第二遊星歯車装置P2の第一サンギヤS2に伝達される。そして、第一サンギヤS2及びキャリアCA2の回転速度とギヤ比λ2とに基づいて決まる入力軸I(エンジンE)の回転駆動力が出力ギヤOに伝達される。
 第六段は、第二クラッチC2の係合と第一ブレーキB1の係合とが協働して実現される。すなわち、第二クラッチC2が係合した状態で、入力軸I(エンジンE)の回転駆動力がそのまま第二遊星歯車装置P2のキャリアCA2に伝達される。また、第一ブレーキB1が係合した状態で、第二遊星歯車装置P2の第一サンギヤS2がケース2に固定される。そして、キャリアCA2の回転駆動力がギヤ比λ2に基づいて増速されて出力ギヤOに伝達される。
 後進段は、第三クラッチC3の係合と第二ブレーキB2の係合とが協働して実現される。すなわち、第三クラッチC3が係合した状態で、入力軸I(エンジンE)の回転駆動力がギヤ比λ1に基づいて減速されて第二遊星歯車装置P2の第一サンギヤS2に伝達される。また、第二ブレーキB2が係合した状態で、第二遊星歯車装置P2のキャリアCA2がケース2に固定される。そして、第一サンギヤS2の回転駆動力がギヤ比λ2に基づいて減速されるとともに回転方向が逆転されて出力ギヤOに伝達される。
 以上のように、本実施形態に係る変速装置TMは、少なくとも第一係合要素としての第一クラッチC1の係合により実現される変速段として、第一段、第二段、第三段、及び第四段を備えている。また、変速装置TMは、少なくとも第一クラッチC1とは異なる係合要素の一つである第二クラッチC2の係合により実現される変速段として、第四段、第五段、及び第六段を備えている。本実施形態においては、第二クラッチC2が本発明における「第二係合要素」に相当する。これらの各変速段は、入力軸I(エンジンE)と出力ギヤOとの間の変速比(減速比)が大きい順に、第一段、第二段、第三段、第四段、第五段、及び第六段となっている。したがって、一方向伝達段としての第一段は、前進用の変速段の中で変速比(減速比)が最も大きい変速段となっている。
4.制御ユニットの構成
 次に、本実施形態に係る制御ユニット31の構成について説明する。車両用駆動装置1が備える制御ユニット31は、図5に示すように、車両用駆動装置1の各部の動作制御を行う中核部材としての機能を果たしている。この制御ユニット31は、CPU等の演算処理装置を中核部材として備えるとともに、当該演算処理装置からデータを読み出し及び書き込みが可能に構成されたRAM(ランダム・アクセス・メモリ)や、演算処理装置からデータを読み出し可能に構成されたROM(リード・オンリ・メモリ)等の記憶装置等を有して構成されている(不図示)。そして、ROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御ユニット31の各機能部32~37が構成される。これらの各機能部32~37は、互いに情報の受け渡しを行うことができるように構成されている。また、メモリ41は、例えばフラッシュメモリ等のように、情報を記憶及び書き換え可能な記録媒体をハードウェア構成として備え、制御ユニット31との間で互いに情報の受け渡しを行うことができるように構成されている。なお、メモリ41は、制御ユニット31が有する記憶装置内に設けられても良い。
 また、この車両用駆動装置1は、車両5の各部に設けられた複数のセンサ、具体的には、入力軸回転速度センサSe1、車速センサSe2、及びアクセル開度検出センサSe3を備えている。ここで、入力軸回転速度センサSe1は、入力軸Iの回転速度を検出するセンサである。車速センサSe2は、車輪6の回転速度すなわち車速を検出するセンサである。アクセル開度検出センサSe3は、図示しないアクセルペダルの操作量を検出することによりアクセル開度を検出するセンサである。これらの各センサSe1~Se3による検出結果を示す情報は、制御ユニット31へ出力される。
 図5に示すように、制御ユニット31は、エンジン制御部32、回転電機制御部33、目標変速段決定部34、切替制御部35、目標回転速度決定部36、及び電動モータ駆動制御部37を備えている。また、制御ユニット31の各機能部32~37が参照するメモリ41には、変速マップ42及び許容シフトテーブル43が格納されている。以下では、制御ユニット31の各機能部32~37について詳細に説明する。なお、本実施形態においては、制御ユニット31が本発明における「車両用制御装置」に相当する。また、制御ユニット31が備える各機能部32~37が協働して、本発明における「制御手段」を構成している。
 エンジン制御部32は、エンジンEの動作制御を行なう機能部である。エンジン制御部32は、エンジン動作点を決定し、当該エンジン動作点でエンジンEを動作させるように制御する処理を行う。ここで、エンジン動作点は、エンジンEの制御目標点を表す制御指令値であって、回転速度及びトルクにより定まる。より詳細には、エンジン動作点は、車両要求出力(車両要求トルク及びエンジン回転速度に基づいて定まる)と最適燃費とを考慮して決定されるエンジンEの制御目標点を表す指令値であって、回転速度指令値とトルク指令値により定まる。そして、エンジン制御部32は、エンジン動作点に示されるトルク及び回転速度で動作するようにエンジンEを制御する。
 また、エンジン制御部32は、エンジンEの回転速度が低下して所定のアイドル回転数に近づくとともに、アクセル開度がゼロであると判定した場合に、エンジンの回転速度を所定のアイドル回転数に制御するアイドリング制御を行なう構成となっている。本実施形態では、後述する走行中アイドリング条件が成立した場合、すなわち車両の走行中であり、アクセル開度がゼロ付近に設定された所定範囲内にある場合にも、エンジンEの回転速度が低下して所定のアイドル回転速度に近づくと、アイドリング制御が行なわれるように構成されている。
 回転電機制御部33は、回転電機MGの動作制御を行なう機能部である。回転電機制御部33は、回転電機動作点を決定し、当該回転電機動作点で回転電機MGを動作させるように制御する処理を行う。ここで、回転電機動作点は、回転電機MGの制御目標点を表す制御指令値であって、回転速度及びトルクにより定まる。より詳細には、回転電機動作点は、車両要求出力とエンジン動作点とを考慮して決定される回転電機MGの制御目標点を表す指令値であって、回転速度指令値とトルク指令値により定まる。そして、回転電機制御部33は、回転電機動作点に示されるトルク及び回転速度で動作するように回転電機MGを制御する。また、回転電機制御部33は、バッテリ(不図示)から供給される電力により回転電機MGに駆動力を発生させる状態と、エンジンEの回転駆動力により回転電機MGに発電させる状態とを切り替える制御も行なう。更に、回転電機制御部33は、車両5の走行中の回生制御も行なう。
 目標変速段決定部34は、車両5のアクセル開度及び車速に基づいて、変速装置TMにおける目標変速段を決定する機能部である。このような目標変速段を決定するため、目標変速段決定部34は、メモリ41に格納された変速マップ42を参照する。図6は、本実施形態に係る変速マップ42の一例を示す図である。変速マップ42は、アクセル開度及び車速に基づいて変速装置TMにおける変速段のシフトスケジュールを設定したマップである。この図に示すように、変速マップ42には、概略右上がりの(車速が大きくなるに従い、アクセル開度も大きくなる)直線で表される複数のアップシフト線と複数のダウンシフト線とが設定されている。ここで、アップシフト線は、変速比(減速比)の大きい変速段から変速比(減速比)の小さい変速段への移行スケジュールを規定した線である。また、ダウンシフト線は、変速比(減速比)の小さい変速段から変速比(減速比)の大きい変速段への移行スケジュールを規定した線である。目標変速段決定部34は、車速センサSe2により取得される車速の情報及びアクセル開度検出センサSe3により取得されるアクセル開度の情報と、変速マップ42と、に基づいて目標変速段を決定する。決定された目標変速段の情報は、切替制御部35に出力される。
 切替制御部35は、目標変速段決定部34により決定された目標変速段に基づき、各係合要素C1、C2、C3、B1、B2の動作を制御することにより、変速装置TMの変速段を切り替える制御を行う機能部である。つまり、切替制御部35は、通常切替制御として、決定された目標変速段に応じた二つの係合要素に油圧制御装置25を介して作動油を供給して当該係合要素を係合状態とし、目標変速段を実現させる制御を行なう。なお、車速及びアクセル開度が変化して、図6の変速マップ42上でアップシフト線又はダウンシフト線を跨ぐと、目標変速段決定部34は変化後の車両のアクセル開度及び車速に基づいて変速装置TMにおける新たな目標変速段を決定する。そして切替制御部35は、新たに決定された目標変速段に応じた二つの係合要素に作動油を供給して当該係合要素を係合状態とし、新たな目標変速段を実現する。
 本実施形態においては、切替制御部35は、上記の通常切替制御に加えて、走行中アイドリング状態に移行する際にクラッチ解放制御を行ない、走行中アイドリング状態から離脱する際にクラッチ再係合制御及び変速遷移制御を行なうように構成されている。以下で、走行中アイドリング状態、クラッチ解放制御、クラッチ再係合制御、変速遷移制御などの各制御について説明する。
 走行中アイドリング状態は、車両5が走行している状態であってかつ入力軸Iの回転駆動力が出力ギヤOに伝達されずエンジンEの回転速度が所定のアイドル回転数に制御されている状態である。
 本実施形態では、走行中アイドリング状態は、所定の走行中アイドリング条件が成立した場合に移行され、当該条件が成立しなくなった場合に離脱されるように構成されている。走行中アイドリング状態から離脱した後は、入力軸Iの回転駆動力が出力ギヤOに伝達される通常状態に復帰する。
 所定の走行中アイドリング条件は、少なくとも車速及びアクセル開度に基づいて判定される条件である。例えば、車速が所定車速以上であって、アクセル開度が車速に応じて設定される所定範囲内であること等が、所定の走行中アイドリング条件が成立する条件として定められている。ここで、アクセル開度の所定範囲は、アクセル開度がゼロに近い所定範囲に定められており、運転者から減速要求があった場合のアクセル開度の範囲に相当するように設定されている。また、所定車速は、走行中アイドリング状態に移行後、変速装置TMに第一段が実現される状態で、エンジンEによる入力軸Iの回転駆動力が出力ギヤOに伝達されないような車速に設定されている。具体的には、所定車速は、走行中アイドリング状態における所定のアイドル回転数を第一段の変速比で除算して求めた回転速度を出力ギヤOの回転速度として決定し、この決定した出力ギヤOの回転速度を車速に換算した値に設定される。
 なお、エンジン制御部32は、上記したように、走行中アイドリング条件が成立した場合、すなわち、車両の走行中であり、アクセル開度がゼロ付近に設定された所定範囲内にある場合にも、アイドリング制御を行なうように構成されている。エンジン制御部32は、走行中アイドリング状態に移行する際に、後述するクラッチ解放制御により変速装置TMのクラッチが解放されて、エンジンEの回転速度が低下してくると、エンジンEの回転速度を所定のアイドル回転速度に制御する。
 クラッチ解放制御では、切替制御部35は、所定の条件下において、走行中アイドリング状態で、変速装置TMが第一段を実現するように制御する。すなわち、切替制御部35は、油圧制御装置25を介して第一クラッチC1に作動油を供給して第一クラッチC1を係合状態とするように制御する。また、切替制御部35は、第一クラッチC1以外の係合要素への作動油の供給を停止して第一クラッチC1以外の係合要素を解放状態とする。これにより、第一クラッチC1の係合とワンウェイクラッチFとが協働して第一段が実現される。
 ここで、切替制御部35が走行中アイドリング状態で変速装置TMが第一段を実現するように制御するための条件として、本実施形態においては、以下の第一条件及び第二条件の双方を満たすことが設定されている。第一条件としては、走行中アイドリング状態に移行する前の変速装置TMにおける変速段が、少なくとも第一クラッチC1の係合により実現される変速段であることが設定されている。本例では、走行中アイドリング状態に移行する前の変速段が、第一段から第四段までのいずれかである場合に第一条件を満たすことになる。また、第二条件としては、走行中アイドリング状態に移行する前に車速センサSe2により取得される車速が、所定の解放閾値Vt以下であることが設定されている。本例では、図6に示すように、所定の解放閾値Vtは、アクセル開度がゼロに近い状態で第四段から第三段へダウンシフトされる車速Vdに等しい値に設定されている。なお、この解放閾値Vt(=Vd)は、アクセル開度がゼロに近い状態で第二段から第三段へアップシフトされる車速Vuよりも大きい値となっている。よって、本例では、走行中アイドリング状態に移行する前の変速段が、アクセル開度がゼロに近い状態で、第一段から第三段までのいずれかである場合に第二条件を満たすことになる。したがって、本実施形態においては、走行中アイドリング状態に移行する前の変速段が第一段から第三段までのいずれかである場合に、切替制御部35は変速装置TMが第一段を実現するように制御する。
 なお、走行中アイドリング状態では、エンジンEは回転されているため、機械式ポンプ21は回転駆動されており、所定油圧の作動油を吐出している。機械式ポンプ21の駆動により吐出された所定油圧の作動油は、油圧制御装置25を介して変速装置TMの第一クラッチC1に供給され、第一クラッチC1を係合状態とし、第一段が実現される。よって、走行中アイドリング状態において、第一クラッチC1を係合状態とし、第一段を実現するために、エンジンE以外の動力源(例えば、電動ポンプ)を車両用駆動装置1に備える必要がなく、車両用駆動装置1の構成が複雑化することが抑制される。
 上記のとおり、本実施形態においては、第一段は入力軸I(エンジンE)から出力ギヤOへの回転駆動力は伝達し、出力ギヤOから入力軸I(エンジンE)への回転駆動力は伝達しない変速段である一方向伝達段となっている。この一方向伝達段は、出力ギヤOから入力軸Iへの回転駆動力は伝達しないため、車輪6の回転駆動力が出力ギヤOを介して変速装置TMに伝達されても、当該車輪6の回転駆動力は変速装置TMにより遮断され、入力軸Iを介してエンジンEまで伝達されることはない。よって、走行中アイドリング状態におけるエンジンEの引きずり(エンジンブレーキ、入力軸Iに伴うエンジンEの連れ回り)が回避される。これにより、走行中アイドリング状態において、エンジンEの引きずりによるエネルギ損失が抑制された状態で、車輪6から伝達される回転駆動力を利用して回転電機MGに回生制動を行わせることができるので、回転電機MGによる回生効率を向上させることができる。
 一方、一方向伝達段は、入力軸Iから出力ギヤOへの回転駆動力は伝達するため、走行中アイドリング状態から離脱してエンジンEの回転駆動力により車両5を駆動させる際に、速やかにエンジンEの回転駆動力を、入力軸Iを介して出力ギヤO(車輪6)に伝達することができる。また、走行中アイドリング状態において、エンジンEは停止されていないため、走行中アイドリング状態からの離脱後、速やかにエンジンEの回転駆動力を出力ギヤOに伝達させることができる。
 したがって、本実施形態に係る車両用制御装置を備えた車両駆動システムによれば、走行中アイドリング状態の回転電機MGの回生効率を向上させつつ、走行中アイドリング状態から離脱してエンジンEの回転駆動力により車両を駆動させる時における駆動力伝達の応答性を向上させることができる。
 なお、走行中アイドリング状態に移行する状況としては、車両5が減速している状況が多い。このような状況では、走行中アイドリング状態から離脱して車両5を駆動させる際には、車速が小さい(特に、ゼロに近い)状態から駆動させる必要があるため、大きな駆動力が必要となる場合が多い。本実施形態においては、変速比(減速比)が最も大きい変速段である第一段が一方向伝達段として設定されているので、車速が小さい(特に、ゼロに近い)状態から車両5を駆動させる場合にも、入力軸I(エンジンE)の回転駆動力を減速して、大きな駆動力を応答性良く出力ギヤO(車輪6)に伝達することができる。
 また、第一段は変速比(減速比)が大きいので、一般にアクセルオフした際にエンジンブレーキが効き過ぎてしまうことが多いことから、そのようなエンジンブレーキによるショックを低減するために当該第一段を実現するのにワンウェイクラッチを利用する場合がある。本実施形態では、そのような目的で設けられるワンウェイクラッチと、本発明における一方向伝達段を実現するためのワンウェイクラッチFとを共用させることができるので、特別な部品を追加することなく一方向伝達段を実現可能とすることができる。
 一方、上記の第一条件及び第二条件の一方又は双方が満たされていない場合には、切替制御部35は、走行中アイドリング状態で、変速装置TMの全ての係合要素を解放させるように制御する。すなわち、走行中アイドリング状態に移行される前の変速装置TMにおける変速段が、少なくとも前記第一係合要素の係合により実現される変速段以外の変速段である場合、又は、走行中アイドリング状態に移行させる前の車速センサSe2により取得される車速が、所定の解放閾値Vtより大きい場合には、切替制御部35は、変速装置TMの第一クラッチC1を含む全ての係合要素を解放して中立段を実現するように制御する。実施形態においては、走行中アイドリング状態に移行される前の変速段が第四段から第六段までのいずれかである場合に、切替制御部35は変速装置TMが中立段を実現するように制御する。このように、第一条件及び第二条件の一方又は双方が満たされていない場合には変速装置TMにおいて中立段を実現させることで、走行中アイドリング状態から離脱する時における変速装置TMの変速段の設定の自由度を高め、状況に応じた適切な対応を可能とすることができる。
 クラッチ再係合制御は、走行中アイドリング状態から離脱させる際に実行される制御処理である。このクラッチ再係合制御では、切替制御部35は、走行中アイドリング状態から離脱する際に変速装置TMにおける目標変速段を実現するべく、それぞれの目標変速段に対応する二つの係合要素を順次係合させる。本実施形態においては、走行中アイドリング状態では、変速装置TMにおける変速段は、上記のとおり一方向伝達段としての第一段、又は全ての係合要素を解放された中立段のいずれかが実現されている。
ここで、変速装置TMにおいて第一段が実現されていた場合、すなわち走行中アイドリング状態に移行される前の変速段が第一段から第三段までのいずれかであった場合には、既に第一係合要素としての第一クラッチC1が係合状態となっているので、切替制御部35は、目標変速段に対応する第一クラッチC1以外の係合要素を係合させるように制御することで、目標変速段を実現させる。
 一方、変速装置TMにおいて中立段が実現されていた場合、すなわち走行中アイドリング状態に移行される前の変速段が第四段から第六段までのいずれかであった場合には、切替制御部35は、第二係合要素としての第二クラッチC2を先に係合させた後、目標変速段に対応する第二クラッチC2以外の係合要素を係合させるように制御することで、目標変速段を実現させる。
 本実施形態においては、走行中アイドリング状態で中立段が実現されていた場合において、先に係合される第二クラッチC2は、入力軸Iの回転速度が予め設定された所定の係合開始回転数以上となったときに係合される。
 また、本実施形態においては、係合状態とされる二つの係合要素のうち、後に係合されることになる、第一クラッチC1又は第二クラッチC2以外の係合要素は、エンジン回転速度制御を行なった後に係合される。ここで、エンジン回転速度制御は、入力軸Iの回転速度が所定の目標回転速度となるようにエンジンEを制御する制御処理である。目標回転速度は、車両5の走行速度と走行中アイドリング状態から離脱する際の変速装置TMにおける目標変速段とに基づいて定まる。すなわち、車両5の走行速度と目標変速段のギヤ比とに基づいて、後に係合状態とされる係合要素において、互いに係合して連結される二つの部材(例えば、第三クラッチC3が係合される場合には遊星歯車装置P1のキャリアCA1と第一中間軸M1、第一ブレーキB1が係合される場合にはケース2と第二中間軸M2)間の相対回転速度がゼロ、又はゼロに極めて近い値となるように、入力軸Iの目標回転速度が定められる。本例では、このような目標回転速度は、車速センサSe2により取得される車速と目標変速段のギヤ比とに基づいて、目標回転速度決定部36が演算を行うことにより決定される。具体的には、目標回転速度決定部36は、車速から換算して出力ギヤOの回転速度を求め、出力ギヤOの回転速度に目標変速段の変速比を乗算して求めた回転速度を目標回転速度として決定する。そして、決定された目標回転速度に応じた回転速度指令値をエンジン制御部32が出力することにより、入力軸Iの回転速度が目標回転速度となるようにエンジンEが制御され、その後第一クラッチC1又は第二クラッチC2以外の係合要素が係合される。このように、エンジン回転速度制御により二つの回転要素が同期してから(回転速度が略等しくなってから)所定の係合要素を係合させるように制御することで、目標変速段が実現される際の変速ショックの発生を抑制することができる。
 なお、走行中アイドリング状態で第一段が実現されていた場合において、走行中アイドリング状態から離脱させる際の目標変速段が第四段から第六段のいずれかである場合には、切替制御部35は、第一クラッチC1が既に係合している状態で第三クラッチC3を係合させ、まず第三段を実現させる。その後、当該目標変速段に対応する二つの係合要素が係合状態となるように制御することで、第三段を経て目標変速段を実現させる。
 また、走行中アイドリング状態で中立段が実現されていた場合において、走行中アイドリング状態から離脱させる際の目標変速段が第一段から第三段のいずれかである場合には、切替制御部35は、第二クラッチC2を係合させた後第一クラッチC1を係合させて、まず第四段を実現させる。その後、当該目標変速段に対応する二つの係合要素のうち、第一クラッチC1以外の係合要素が係合状態となるように制御することで、第四段を経て目標変速段を実現させる。
 また、走行中アイドリング状態から離脱させる際の当初の目標変速段が実現する前に、目標変速段が新たな変速段に変更された場合には、基本的には、切替制御部35は、エンジン回転速度制御を行なった後、後に係合されることになる係合要素を係合させて変更前の目標変速段を実現してから変更後の新たな目標変速段を実現させるように、各係合要素の係合状態の切り替えを行う。ただし、第一クラッチC1又は第二クラッチC2が先に係合された後に目標変速段が新たな変速段に変更された場合であって、目標変速段の変更パターンが所定の許容シフトパターンに該当する場合には、変更後の新たな目標変速段を早期に実現させるべく、切替制御部35は、例外的に、次に説明する変速遷移制御を行なう。
 変速遷移制御では、エンジン制御部32が目標回転速度に応じた回転速度指令値を出力するのを中止することによりエンジン回転速度制御が中止されるとともに、切替制御部35は、変更後の目標変速段を実現するべく変速装置TMにおける変更後の目標変速段に対応する係合要素を係合させる。ここで、許容シフトパターンは、先に係合される係合要素が共通でかつ後に係合される係合要素が異なる変速段間での変更であって、かつ、減速比の小さい変速段から減速比の大きい変速段への変更(ダウンシフト)に該当する変更パターンとされている。
 本実施形態においては、上記のとおり、先に係合される係合要素は第一係合要素としての第一クラッチC1又は第二係合要素としての第二クラッチC2である。そして、第一クラッチC1の係合により実現される変速段として、第一段、第二段、及び第三段を備えている。また、第二クラッチC2の係合により実現される変速段として、第四段、第五段、及び第六段を備えている。したがって、本例では、第一段から第三段までの間でのダウンシフト、及び第四段から第六段までの間でのダウンシフトが許容される変更パターンとなる。すなわち、第二段から第一段、第三段から第二段、第三段から第一段、第五段から第四段、第六段から第五段、及び第六段から第四段、の6パターンが許容シフトパターンに含まれる。
 また、本実施形態においては、第五段又は第六段から、第一段から第三段までのいずれかにダウンシフトする際には、上記のとおり第四段を経て目標変速段に移行する。よって、第五段から第一段、第五段から第二段、第五段から第三段、第六段から第一段、第六段から第二段、及び第六段から第三段、の6パターンが更に許容シフトパターンに含まれる。したがって、本例では合計12パターンの変更パターンが許容シフトパターンとして設定されていることになる。これらの許容シフトパターンは、許容シフトテーブル43としてメモリ41に格納されている。そして、走行中アイドリング状態から離脱させる際の当初の目標変速段が実現する前(具体的には、第一クラッチC1又は第二クラッチC2の係合後であって、かつ、後に係合される係合要素が完全に係合状態となる前)に、目標変速段が新たな変速段に変更された場合には、当該許容シフトテーブル43を参照して変速遷移制御を実行するか否かを判定することができるように構成されている。
 その際、切替制御部35は、先に係合された第一クラッチC1又は第二クラッチC2を係合状態に維持させたまま、後に係合させる係合要素を変更前の目標変速段に対応する係合要素から変更後の目標変速段に対応する係合要素に切り替えることにより、変更後の目標変速段を実現させる。本実施形態では、変更後の目標変速段に対応する所定の係合要素を係合させる際には、上述したエンジン回転速度制御は実行されない構成となっている。ここでは、油圧制御装置25を介して所定の指令信号に従った作動油が供給され、当該変更後の目標変速段に対応する所定の係合要素を係合させる。
5.制御処理の手順
 次に、本実施形態に係る車両用駆動装置1の制御の内容について説明する。図7は、本実施形態に係る車両用駆動装置1の切替制御処理の全体の処理手順を示すフローチャートである。また、図8は、図7のステップ#06に係るクラッチ解放制御の処理手順を示すフローチャートである。図9は、図7のステップ#08に係るクラッチ再係合制御の処理手順を示すフローチャートである。以下に説明する車両用駆動装置1の制御処理の手順は、制御ユニット31の各機能部32~37により実行される。制御ユニット31の各機能部32~37がプログラムにより構成される場合には、制御ユニット31が備える演算処理装置は、上記の各機能部32~37を構成するプログラムを実行するコンピュータとして動作する。
5-1.切替制御処理の全体の手順
 本実施形態に係る変速制御処理においては、まず、車速センサSe2からの出力信号を受けて車両5の走行速度(車速)が取得されるとともに(ステップ#01)、アクセル開度検出センサSe3からの出力信号を受けてアクセル開度が取得される(ステップ#02)。なお、これらの情報を取得する順序は問わない。次に、目標変速段決定部34は、取得された車速及びアクセル開度の情報と、メモリ41に格納された変速マップ42とに基づいて目標変速段を決定する(ステップ#03)。切替制御部35は、決定された目標変速段に基づき、各係合要素の動作を制御することにより変速装置TMの変速段を切り替え、通常変速制御を行う(ステップ#04)。また、所定の走行中アイドリング条件が成立して走行中アイドリング要求がオンとなったか否かが判定される(ステップ#05)。走行中アイドリング要求がオンではない、すなわちオフであると判定された場合には(ステップ#05:No)、再度ステップ#01に戻ってステップ#01からステップ#05までを繰り返す。
 一方、走行中アイドリング要求がオンであると判定された場合には(ステップ#05:Yes)、クラッチ解放制御が実行される(ステップ#06)。このクラッチ解放制御の詳細な処理手順については、図8のフローチャートに基づいて説明する。なお、走行中アイドリング要求がオンであると判定された後に、エンジン制御部32は、走行中アイドル状態におけるアイドリング制御を開始する。走行中アイドリング要求により走行中アイドリング状態に移行された状態で、次に前記走行中アイドリング条件が成立しなくなって走行中アイドリング要求がオフとなったか否かが判定される(ステップ#07)。そして、走行中アイドリング要求がオフとなったと判定されると(ステップ#07:Yes)、クラッチ再係合制御が実行される(ステップ#08)。なお、走行中アイドリング要求がオフとなったと判定された後に、エンジン制御部32は、走行中アイドル状態におけるアイドリング制御を終了して、エンジンEをトルク及び回転速度の動作点で動作させる制御を開始する。その後、再度ステップ#01に戻って、車両5の走行中はステップ#01からステップ#08までの処理が逐次繰り返し実行される。
 ここで、走行中アイドルリング要求がオンにされるか否かは、上記した所定の走行中アイドリング条件のように、少なくとも車速及びアクセル開度に基づいて判定される。例えば、車速が所定車速以上であって、アクセル開度が車速に応じて設定される上記した所定範囲内であること等が、走行中アイドルリング要求がオンにされる条件として定められている。
 一方、走行中アイドルリング要求がオフにされるか否かは、上記した所定の走行中アイドリング条件のように、少なくとも車速及びアクセル開度に基づいて判定される。本例では、アクセル開度が車速に応じて設定される所定範囲外になったこと等が、走行中アイドルリング要求がオフにされる条件として定められている。
 なお、上記したように、アクセル開度が所定範囲内になり、エンジンEの回転速度が所定のアイドル回転速度に近づいた時に、エンジン制御部32は、走行中であってもアイドリング制御を行う。
5-2.クラッチ解放制御の処理手順
 次に、ステップ#06に係るクラッチ解放制御の詳細な処理手順について説明する。クラッチ解放制御では、まず、第一条件及び第二条件の双方を満たすか否かが判定される。本実施形態においては、具体的には、エンジンEが走行中アイドリング状態に移行される際の変速段が第一段から第三段までのいずれかであったか否かが判定される(ステップ#21)。第一段から第三段までのいずれかであったと判定された場合には(ステップ#21:Yes)、切替制御部35は、第一クラッチC1以外の係合要素(例えば、第二段にあっては第一ブレーキB1、第三段にあっては第三クラッチC3)を解放させる(ステップ#22)。この状態で、エンジンEの回転により駆動される機械式ポンプ21が吐出する作動油の油圧により第一クラッチC1が係合状態に維持される。そして、第一クラッチC1の係合とワンウェイクラッチFとが協働して、一方向伝達段としての第一段が実現される。
一方、第一段から第三段までのいずれでもなかった、すなわち第四段から第六段までのいずれかであったと判定された場合には(ステップ#21:No)、切替制御部35は、第一クラッチC1を含む全ての係合要素を解放させる(ステップ#23)。この状態で、中立段が実現される。このように、走行中アイドリング状態では、変速装置TMの変速段は、走行中アイドリング状態に移行された際の変速段に応じて第一段又は中立段が実現された状態に維持される(ステップ#24)。以上で、クラッチ解放制御を終了する。
5-3.クラッチ再係合制御の処理手順
 次に、ステップ#08に係るクラッチ再係合制御の詳細な処理手順について説明する。クラッチ再係合制御では、まず、走行中アイドリング状態における変速装置TMの変速段が第一段であるか否かが判定される(ステップ#41)。第一段であると判定された場合には(ステップ#41:Yes)、走行中アイドリング要求がオフとなったと判定された時の目標変速段が第一段であるか否かが判定される(ステップ#42)。目標変速段が第一段であると判定された場合には(ステップ#42:Yes)、既に第一段が実現されているので、クラッチ再係合制御は終了する。一方、目標変速段が第一段ではないと判定された場合には(ステップ#42:No)、第一クラッチC1以外の係合要素を係合させるため、後述するステップ#46の処理に進む。
 ステップ#41において、走行中アイドリング状態における変速装置TMの変速段が第一段ではない、すなわち中立段であると判定された場合には(ステップ#41:No)、入力軸回転速度センサSe1により入力軸Iの回転速度が取得される(ステップ#43)。また、取得された入力軸Iの回転速度が予め設定された所定の係合開始回転数以上であるか否かが判定される(ステップ#44)。そして、係合開始回転数以上となったときに(ステップ#44:Yes)、第二係合要素としての第二クラッチC2が、まず先に係合される(ステップ#45)。その後、第二クラッチC2以外の係合要素を係合させるため、次に述べるステップ#46の処理に進む。
 後に係合される、第一クラッチC1又は第二クラッチC2以外の係合要素を係合させるに際しては、まず、目標回転速度決定部36により入力軸Iの目標回転速度が決定される(ステップ#46)。目標回転速度決定部36による入力軸Iの目標回転速度の決定方法については既に説明したので、ここでは詳細な説明は省略する。また、入力軸回転速度センサSe1により入力軸Iの回転速度が取得される(ステップ#47)。そして、取得された入力軸Iの回転速度が、目標回転速度決定部36により決定された目標回転速度に略等しくなったか否か、すなわち同期したか否かが判定される(ステップ#48)。同期したと判定された場合には(ステップ#48:Yes)、切替制御部35は、目標変速段に対応する所定の係合要素を係合させて(ステップ#49)クラッチ再係合制御を終了する。
 一方、未だ同期していないと判定された場合には(ステップ#48:No)、目標変速段決定部34により車速及びアクセル開度に基づいて決定された目標変速段が変更されたか否かが判定される(ステップ#50)。目標変速段が変更されなかったと判定された場合には(ステップ#50:No)、再度ステップ#48に戻って、ステップ#48からステップ#50までの処理が逐次繰り返し実行される。一方、目標変速段が変更されたと判定された場合には(ステップ#50:Yes)、その目標変速段の変更パターンが所定の許容シフトパターンに該当するか否かが判定される(ステップ#51)。本例では、許容シフトパターンに該当するか否かは、メモリ41に格納された許容シフトテーブル43を参照して判定される。目標変速段の変更パターンが許容シフトパターンに該当しないと判定された場合には(ステップ#51:No)、切替制御部35は、変更前の目標変速段に対応する所定の係合要素を係合させて(ステップ#49)クラッチ再係合制御を終了する。なお、図示はしていないが、その後、変更後の目標変速段に対応する所定の係合要素を係合させて、変更後の目標変速段を実現させる。
 一方、目標変速段が変更されたと判定された場合であって(ステップ#50:Yes)、更にその目標変速段の変更パターンが許容シフトパターンに該当すると判定された場合には(ステップ#51:Yes)、変速遷移制御が実行される(ステップ#52)。この変速遷移制御の処理内容については既に説明したので、ここでは詳細な説明は省略する。以上で、クラッチ再係合制御を終了する。
6.切替制御処理の具体例
 次に、本実施形態に係る車両用駆動装置1による切替制御処理の具体例について説明する。図10~図13は、本実施形態に係る切替制御処理の一例を説明するためのタイミングチャートである。図10は、走行中アイドリング状態に移行される前の変速段が第三速であって、走行中アイドリング状態から離脱される際の目標変速段が第一段である場合の例を示している。図11は、走行中アイドリング状態に移行される際の変速段、及び走行中アイドリング状態から離脱される際の目標変速段が、ともに第三段である場合の例を示している。図12は、走行中アイドリング状態に移行される際の変速段、及び走行中アイドリング状態から離脱される際の目標変速段が、ともに第五段である場合の例を示している。図13は、走行中アイドリング状態に移行される際の変速段、及び走行中アイドリング状態から離脱される際の目標変速段がともに第五段である場合において、第二クラッチC2が係合した後、入力軸Iの回転速度が目標回転速度に達する前に目標変速段が第五段から第四段に変更された場合の例を示している。なお、以下では、重複する記載を一部省略して説明している。
 まず、走行中アイドリング状態に移行される前の変速段が第三速であって、走行中アイドリング状態から離脱される際の目標変速段が第一段である場合を例に挙げて説明する。図10に示すように、t01において走行中アイドリング要求がオンとなった際の変速段が第三速であった場合には、切替制御部35は、第一クラッチC1を係合状態に維持したままで第三クラッチC3に供給される油圧を徐々に減少させるように制御する。そして、t02において第三クラッチC3が完全に解放されることにより、走行中アイドリング状態で、変速装置TMで一方向伝達段としての第一段が実現される。そして、変速装置TMに一方向伝達段として第一段が実現されるため、出力ギヤOから入力軸Iへの回転駆動力の伝達が遮断される。よって、出力ギヤO(車輪6)の回転によるエンジンEの連れ回りがなくなり、エンジンEの回転速度は低下し、エンジンEは、アイドリング制御される状態に移行する。この走行中アイドリング状態では、エンジンEは回転しているため、機械式ポンプ21は回転駆動されており、所定油圧の作動油を吐出している。機械式ポンプ21の駆動により吐出された所定油圧の作動油は、油圧制御装置25を介して変速装置TMの第一クラッチC1に供給される。よって、走行中アイドリング状態においても、第一クラッチC1は係合状態に維持され、第一段が実現された状態に維持される。
 本例では、その後車両5が停止しているが、停車中においても一方向伝達段としての第一段が維持されている。そして、停車している間に目標変速段が第一段となり、その状態でt03においてアクセル開度の増加等により走行中アイドリング要求がオフとなったとする。この場合、上記のとおり走行中アイドリング状態では、既に変速装置TMにおいて第一段が実現されているので、走行中アイドリング状態から離脱した際に入力軸I(エンジンE)の回転駆動力が車輪6側に伝達される状態が早期に実現される。すなわち、走行中アイドリング状態から離脱する際の駆動力伝達の応答性が大幅に向上されている。なお、車両5が停止していない走行中の状態で、走行中アイドリング要求がオフとなる場合においても、同様に、駆動力伝達の応答性が大幅に向上される。また、走行中アイドリング要求がONになった後、車速がゼロになり停車するまでの走行中アイドリング状態において一方向伝達段としての第一段が実現されることが、本発明の特徴の一つである。
 次に、走行中アイドリング状態に移行される前の変速段、及び走行中アイドリング状態から離脱される際の目標変速段が、ともに第三段である場合を例に挙げて説明する。図11に示すように、t12までの切替処理の流れについては、図10におけるt02までの切替処理の流れと同様である。ただし、本例では走行中アイドリング状態において車両5は一定の車速以上で走行を続け、目標変速段が第三段に維持されている点で、上記の図10の例とは異なっている。
 そして、目標変速段が第三段に維持された状態で、t13においてアクセル開度の増加等により走行中アイドリング要求がオフとなったとする。この場合、上記のとおり走行中アイドリング状態では、変速装置TMにおいて一方向伝達段としての第一段が実現されており、第一クラッチC1が係合状態に維持されているので、切替制御部35が第三クラッチC3を係合させるように制御するだけで、走行中アイドリング状態から離脱した際に入力軸I(エンジンE)の回転駆動力が車輪6側に伝達される状態が実現される。すなわち、第三クラッチC3のみを係合させるだけで目標変速段が実現されるので、この場合にも走行中アイドリング状態から離脱する際の駆動力伝達の応答性が向上されている。
 第三クラッチC3を係合させる際には、t13からt14までの間、上述したエンジン回転速度制御が実行される。そして、t14において入力軸Iの回転速度が目標回転速度に略等しくなると、第三クラッチC3が完全に係合状態とされるとともに、エンジン回転速度制御は終了する。
 次に、走行中アイドリング状態に移行される前の変速段、及び走行中アイドリング状態から離脱される際の目標変速段が、ともに第五段である場合を例に挙げて説明する。図12に示すように、t21において走行中アイドリング要求がオンとなった際の変速段が第五速であった場合には、切替制御部35は、第二クラッチC2及び第三クラッチC3に供給される油圧を徐々に減少させるように制御する。そして、t22において第二クラッチC2及び第三クラッチC3が完全に解放されることにより、変速装置TMで中立段が実現される。そして、変速装置TMに中立段が実現されるため、出力ギヤOから入力軸Iへの回転駆動力の伝達が遮断される。よって、出力ギヤO(車輪6)の回転によるエンジンEの連れ回りがなくなり、エンジンEの回転速度は低下し、エンジンEは、アイドリング制御されている状態に移行する。この走行中アイドリング状態では、エンジンEは回転しているため、機械式ポンプ21は回転駆動されており、所定油圧の作動油を吐出している。よって、走行中アイドリング状態においても、走行中アイドリング状態から離脱した後、直ちに油圧制御装置25を介して変速装置TMの各クラッチに所定油圧の作動油を供給して各変速段が実現されることが可能な状態に維持される。
 その後、目標変速段が第五段に維持された状態で、t23において走行中アイドリング要求がオフとなったとする。この場合、上記のとおり走行中アイドリング状態で、変速装置TMにおいて中立段が実現されており、全ての係合要素が解放状態となっているので、切替制御部35は第二クラッチC2及び第三クラッチC3を順次係合させるように制御する。その際、第二クラッチC2が先に、第三クラッチC3が後に係合される。
 第二クラッチC2は、t24において入力軸Iの回転速度が予め設定された所定の係合開始回転数以上となったときに係合される。また、第三クラッチC3を係合させるために、t23からt25までの間、上述したエンジン回転速度制御が実行される。そして、t25において入力軸Iの回転速度が目標回転速度に略等しくなると、第三クラッチC3が完全に係合状態とされるとともに、エンジン回転速度制御は終了する。
 次に、走行中アイドリング状態に移行される前の変速段、及び走行中アイドリング状態から離脱される際の目標変速段がともに第五段である場合において、第二クラッチC2が係合した後、入力軸Iの回転速度が目標回転速度に達して第三クラッチC3が係合される前に目標変速段が第五段から第四段に変更された場合を例に挙げて説明する。図13に示すように、t34までの切替処理の流れについては、図12におけるt24までの切替処理の流れと同様である。ただし、本例では後に係合される第三クラッチC3が完全に係合状態となる前に目標変速段が第四段に変更されている点で、上記の図12の例とは異なっている。
 本例では、t35において目標変速段が第五段から第四段に変更されている。この第五段から第四段への変更パターンは、上述した許容シフトパターンに該当するので、t35以降はエンジン回転速度制御を中止して上述した変速遷移制御が実行される。すなわち、t35からt36にかけて、第五段が実現する前に第四段の実現へと移行させるべく、第二クラッチC2を係合状態に維持したまま、第三クラッチC3を解放するとともに第一クラッチC1を係合するように制御する。その際、第三クラッチC3に供給される作動油の油圧は、第三クラッチC3と第一クラッチC1との架け替えが行われた際に変速ショックが生じないように、一定の維持圧からt36に向かって徐々に上昇されてからゼロにされる。そして、t36において第一クラッチC1及び第二クラッチC2が完全に係合されるとともに、t37において第三クラッチC3が完全に解放されることにより、変更後の目標変速段である第四段が実現する。
〔第二の実施形態〕
 本発明の第二の実施形態について、図面を参照して説明する。図14は、本実施形態に係る車両用駆動装置1の駆動伝達系の構成を示す模式図である。なお、この図14は、図2と同様に、軸対称の構成を一部省略して示している。また、油圧制御系の構成は第一の実施形態におけるものと同様であるので、ここでは油圧制御系は省略して示されている。この車両用駆動装置1の構成は、上記第一の実施形態における車両用駆動装置1から第一ブレーキB1を取り除いた構成に等しい。そして、この車両用駆動装置1は、第一ブレーキB1を備えていないことに起因して、変速装置TMが備える変速段の数が、上記第一の実施形態よりも少なくなっている。また、それに伴い、走行中アイドリング状態に移行される際に制御ユニット31の各機能部32~37により実行される制御処理の内容が、上記第一の実施形態とは一部相違している。それ以外の構成に関しては、基本的には上記第一の実施形態と同様である。以下では、本実施形態に係る車両用駆動装置1及びこれを制御するための制御ユニット31について、上記第一の実施形態との相違点を中心に説明する。
 図15は、本実施形態に係る各変速段での複数の係合要素の作動状態を示す作動表である。また、図16は、変速装置TMの速度線図である。これらの図において表された各種の記号及び記載は、図3及び図4におけるものと同様である。これらの図に示すように、本実施形態においては、変速装置TMは、複数の係合要素の作動状態を切り替えることにより、前進段として、第一段、第二段、第三段、及び第四段の四つの変速段を備えている。そして、第一の実施形態における車両用駆動装置1から第一ブレーキB1を取り除いた構成に等しいことに対応して、第一の実施形態における第二段及び第六段を備えていない。そして、本実施形態における第一段、第二段、第三段、及び第四段は、それぞれ第一の実施形態における第一段、三段、第四段、及び第五段に対応したものとなっている。なお、これに対応して、メモリ41に格納される変速マップ42も、図6に示すものとは異なるものとなっている(不図示)。
 これにより、本実施形態に係る変速装置TMは、少なくとも第一係合要素としての第一クラッチC1の係合により実現される変速段として、第一段、第二段及び第三段を備えている。また、変速装置TMは、少なくとも第二係合要素としての第二クラッチC2の係合により実現される変速段として、第三段及び第四段を備えている。なお、本実施形態においても、第一段が、第一クラッチC1の係合とワンウェイクラッチFとが協働して実現される一方向伝達段となっている。
 本実施形態においては、切替制御部35が、走行中アイドリング状態で変速装置TMが第一段を実現するように制御するための条件として、以下の第一条件及び第二条件の双方を満たすことが設定されている。第一条件としては、走行中アイドリング状態に移行される前の変速装置TMにおける変速段が、少なくとも第一クラッチC1の係合により実現される変速段であることが設定されている。本例では、走行中アイドリング状態に移行される前の変速段が、第一段から第三段までのいずれかである場合に第一条件を満たすことになる。また、第二条件としては、走行中アイドリング状態に移行される前に車速センサSe2により取得される車速が、所定の解放閾値Vt以下であることが設定されている。本例では、所定の解放閾値Vtは、アクセル開度がゼロに近い状態で第三段から第二段へダウンシフトされる車速Vd’ (不図示)に等しい値に設定されている。なお、この解放閾値Vt(=Vd’)は、アクセル開度がゼロに近い状態で第一段から第二段へアップシフトされる車速Vu’よりも大きい値となっている。よって、本例では、走行中アイドリング状態に移行される前の変速段が、アクセル開度がゼロに近い状態で、第一段又は第二段である場合に第二条件を満たすことになる。したがって、本実施形態においては、走行中アイドリング状態に移行される前の変速段が第一段又は第二段である場合に、切替制御部35は変速装置TMが一方向伝達段としての第一段を実現するように制御する。
 本実施形態においても、この一方向伝達段は、出力ギヤOから入力軸Iへの回転駆動力は伝達しないため、走行中アイドリング状態におけるエンジンEの引きずり(入力軸Iに伴うエンジンEの連れ回り)が回避される。これにより、走行中アイドリング状態において、エンジンEの引きずりによるエネルギ損失が抑制された状態で、車輪6から伝達される回転駆動力を利用して回転電機MGに回生制動を行わせることができるので、回転電機MGによる回生効率を向上させることができる。
 一方、一方向伝達段は、入力軸Iから出力ギヤOへの回転駆動力は伝達するため、走行中アイドリング状態から離脱して車両5を駆動させる際に、速やかにエンジンEの回転駆動力を、入力軸Iを介して出力ギヤO(車輪6)に伝達することができる。したがって、本実施形態に係る車両用制御装置を備えた車両駆動システムでも、走行中アイドリング状態の回転電機MGの回生効率を向上させつつ、走行中アイドリング状態から離脱する時における駆動力伝達の応答性を向上させることができる。
 一方、上記の第一条件及び第二条件の一方又は双方が満たされていない場合には、切替制御部35は、走行中アイドリング状態で、変速装置TMの全ての係合要素を解放させる。具体的には、走行中アイドリング状態に移行される前の変速段が第三段又は第四段である場合に、切替制御部35は、変速装置TMの第一クラッチC1を含む全ての係合要素を解放して中立段を実現するように制御する。このように、第一条件及び第二条件の一方又は双方が満たされていない場合には変速装置TMにおいて中立段を実現させることで、走行中アイドリング状態から離脱する時における変速装置TMの変速段の設定の自由度を高め、状況に応じた適切な対応を可能とすることができる。
 また、本実施形態においても、走行中アイドリング状態から離脱する時には、第一係合要素としての第一クラッチC1又は第二係合要素としての第二クラッチC2が先に係合される。ただし、本実施形態においては、第一の実施形態とは異なり、第一クラッチC1の係合により実現される変速段として、第一段、第二段及び第三段を備えている。また、第二クラッチC2の係合により実現される変速段として、第三段及び第四段を備えている。したがって、本例では、第一段と第二段との間でのダウンシフト、及び第三段と第四段との間でのダウンシフトが許容される変更パターンとなる。すなわち、第二段から第一段、及び第四段から第三段、の2パターンが許容シフトパターンに含まれる。また、本実施形態においては、第四段から、第一段又は第二段にダウンシフトする際には、まず第三段を実現させてから目標変速段に移行するように制御される。よって、第四段から第一段、及び第四段から第二段、の2パターンが更に許容シフトパターンに含まれる。したがって、本例では合計4パターンの変更パターンが許容シフトパターンとして設定されることになる。
〔その他の実施形態〕
(1)上記の各実施形態においては、第一条件及び第二条件を設定し、これら双方の条件を満たす場合に切替制御部35が走行中アイドリング状態で変速装置TMが一方向変速段としての第一段を実現するように制御する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えばそのような条件を設定することなく、切替制御部35が、走行中アイドリング状態では変速装置TMが無条件に一方向変速段としての第一段を実現するように制御する構成とすることも、本発明の好適な実施形態の一つである。
(2)また、第一条件のみを設定し、当該第一条件を満たす場合に切替制御部35が、走行中アイドリング状態で変速装置TMが一方向変速段としての第一段を実現するように制御する構成とすることも、本発明の好適な実施形態の一つである。この場合、上記第一の実施形態では、走行中アイドリング状態に移行される前の変速装置TMにおける変速段が第一段から第四段までのいずれかである場合に、切替制御部35は一方向変速段としての第一段を実現するように制御する。また、上記第二の実施形態では、走行中アイドリング状態に移行される前の変速装置TMにおける変速段が第一段から第三段までのいずれかである場合に、切替制御部35は一方向変速段としての第一段を実現するように制御する。
(3)或いは、第二条件のみを設定し、当該第二条件を満たす場合に切替制御部35が走行中アイドリング状態で変速装置TMが一方向変速段としての第一段を実現するように制御する構成とすることも、本発明の好適な実施形態の一つである。この場合において、所定の解放閾値Vtの大きさは適宜設定することができる。例えば、上記第一の実施形態において、所定の解放閾値Vtを、アクセル開度がゼロに近い状態で第二段から第三段へアップシフトされる車速Vu以上、アクセル開度がゼロに近い状態で第四段から第三段へダウンシフトされる車速Vd未満、の任意の値に設定することも、本発明の好適な実施形態の一つである。第二の実施形態においても同様である。
(4)上記の各実施形態においては、走行中アイドリング状態で、変速装置TMの全ての係合要素が解放されて中立段が実現される場合には、エンジンEはアイドリング制御される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速装置TMの全ての係合要素を解放させた状態で、走行中アイドリング状態に代えて、車両5が走行している状態であってかつエンジンEが停止される走行中アイドル停止状態にする構成とすることも、本発明の好適な実施形態の一つである。
 変速装置TMの全ての係合要素を解放させた状態では、変速装置TMの係合要素を係合させるための所定油圧の作動油を供給する必要がないため、車両5の走行中であってもエンジンEを停止させることが可能となる。よって、上記のように構成しても、このエンジンEを停止可能な状態で、エンジンEを停止させることにより、エンジンの燃焼消費が抑制される。
 またこの場合、走行中アイドル要求がオフになり、走行中アイドル停止状態から離脱する時に、制御ユニット31は、スタータ13を駆動させてエンジンEを始動させる。そして、エンジンEの始動後、制御ユニット31は、上記した走行中アイドリング状態から離脱する際に行なうクラッチ再係合制御等を行う。
 また、車両用駆動装置1は、機械式ポンプ21に加えて、機械式ポンプ21の動作停止中に油を吐出する電動ポンプを、変速装置TMの複数の係合要素に油圧を供給可能に備えるようにしても好適である。走行中アイドル停止状態では、エンジンEの回転が停止され、機械式ポンプ21の動作が停止している状態となるため、この間の油圧供給を電動ポンプにより行うことができる。なお、制御ユニット31は、この走行中アイドル停止状態で変速装置TMの全ての係合要素が解放される場合には、電動ポンプを非駆動状態としても好適である。
 変速装置TMの全ての係合要素が解放される場合には、変速装置TMの係合要素を係合させるための所定油圧の作動油を供給する必要がない。よって、機械式ポンプ21の動作停止中に油を吐出する電動ポンプが備えられている車両用駆動装置1においても、走行中アイドル停止状態で変速装置TMの全ての係合要素が解放される場合には、電動ポンプを非駆動状態とすることで、電動ポンプの駆動時間を短縮して、電動ポンプの寿命を延ばすことができるとともに、電動ポンプ駆動用のバッテリ電力を節約することができる。
(5)上記の各実施形態においては、変速比(減速比)が最も大きい変速段である第一段が、一方向伝達段として設定されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば変速比(減速比)が二番目に大きい変速段である第二段を一方向伝達段として設定する構成とすることも、本発明の好適な実施形態の一つである。この場合、上記第一の実施形態において、例えば一方向クラッチとしてのワンウェイクラッチFにより、第二中間軸M2が負回転したときにのみ係合状態となって、第二中間軸M2及び第二遊星歯車装置P2の第一サンギヤS2を選択的にケース2に固定して停止させる構成とすることができる。この場合、第一段を第一クラッチC1の係合と第二ブレーキB2の係合との協働により実現するとともに、第二段を第一クラッチC1の係合とワンウェイクラッチFとの協働により実現する構成とすることができる。
(6)上記の各実施形態においては、走行中アイドリング状態から離脱する時に変速装置TMにおいて係合状態とされる二つの係合要素のうち、後に係合されることになる第一クラッチC1又は第二クラッチC2以外の係合要素が、エンジン回転速度制御を行なった後に係合される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、このようなエンジン回転速度制御を実行することなく後に係合される係合要素を係合させる構成とすることも、本発明の好適な実施形態の一つである。この場合、後に係合される係合要素には油圧制御装置25を介して所定の指令信号に従った作動油が供給され、予備充填相、トルク相、及びイナーシャ相を経て目標変速段を実現させる構成とすることができる。
(7)上記の各実施形態においては、走行中アイドリング状態から離脱させる際の当初の目標変速段が実現する前に、目標変速段が新たな変速段に変更された場合であって、目標変速段の変更パターンが所定の許容シフトパターンに該当する場合には、切替制御部35が変速遷移制御を実行する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、そのような許容シフトパターンを設定せず、変速遷移制御を実行しない構成とすることも、本発明の好適な実施形態の一つである。この場合、切替制御部35は、後に係合されることになる係合要素を係合させて変更前の目標変速段を実現させ、当該変更前の目標変速段を経た後に変更後の新たな目標変速段を実現させるように各係合要素の係合状態の切り替えを行うように構成することができる。
(8)上記の各実施形態においては、走行中アイドリング状態で変速装置TMにおいて中立段が実現されていた場合に、走行中アイドリング状態から離脱させる際には、切替制御部35は、第二係合要素としての第二クラッチC2を先に係合させた後、目標変速段に対応する第二クラッチC2以外の係合要素を係合させるように制御する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、目標変速段に対応する第二クラッチC2以外の係合要素を先に係合させた後、第二係合要素としての第二クラッチC2を係合させるように制御する構成とすることも、本発明の好適な実施形態の一つである。
 具体的には、例えば上記第一の実施形態において、走行中アイドリング状態から離脱する時における目標変速段が第四段である場合には第一クラッチC1、第二クラッチC2の順に係合させ、第五段である場合には第三クラッチC3、第二クラッチC2の順に係合させ、第六段である場合には第一ブレーキB1、第二クラッチC2の順に係合させても良い。第一クラッチC1、第三クラッチC3、及び第一ブレーキB1の係合により、ケース2に固定され、或いは互いに一体回転することになる第一遊星歯車装置P1のキャリアCA1、第一中間軸M1、及び第二中間軸M2は、全ての係合要素が解放状態とされて中立段が実現された状態では、いずれも空転した状態となっている。よって、第一クラッチC1、第三クラッチC3、及び第一ブレーキB1のいずれかを先に係合させる構成とすれば、許容シフトパターンの数は減少するものの、これらを係合させる際の係合ショックの発生を防止することができるという利点がある。
(9)上記の各実施形態においては、変速装置TMが三つの回転要素を有して構成されたシングルピニオン型の第一遊星歯車装置P1と、四つの回転要素を有して構成されたラビニヨ型の第二遊星歯車装置P2と、を組み合わせて構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速装置TMの内部の具体的構成は適宜変更することが可能である。例えば、第二遊星歯車装置P2のみを備えて変速装置TMを構成することや、ダブルピニオン型の遊星歯車装置とラビニヨ型の遊星歯車装置P2とを組み合わせて変速装置TMを構成すること、或いは、シングルピニオン型又はダブルピニオン型の遊星歯車装置を三つ以上組み合わせて変速装置TMを構成すること等も、本発明の好適な実施形態の一つである。
(10)上記第一の実施形態においては、変速装置TMが変速比(減速比)の異なる六つの変速段を備えている場合を例として説明した。また、上記第二の実施形態においては、変速装置TMが変速比(減速比)の異なる四つの変速段を備えている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速装置TMが備える変速段の段数は、二段以上であれば任意に設定することができる。
(11)上記の各実施形態においては、制御ユニット31が、車両用駆動装置1が備える出力ギヤOが車両5の前輪に駆動連結されるとともに、駆動力を出力可能な回転電機MGの出力軸が車両5の後輪に駆動連結された構成の四輪駆動(4WD、4-wheel drive)方式の車両駆動システムを制御するように構成された場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、制御ユニット31が、車両用駆動装置1が備える出力ギヤOが車両5の後輪に駆動連結されるとともに、駆動力を出力可能な回転電機MGの出力軸が車両5の前輪に駆動連結された構成の車両駆動システムを制御するように構成することも、本発明の好適な実施形態の一つである。また、回転電機MGの出力軸が、車両用駆動装置1が備える出力ギヤOに駆動連結された構成としても良い。これらの場合であっても、上記の各実施形態における場合と同様に、走行中アイドリング状態の回転電機MGの回生効率を向上させつつ、走行中アイドリング状態から離脱する時における駆動力伝達の応答性を向上させることができる。
(12)また、制御ユニット31が、車両用駆動装置1のみを備え、回転電機MGを備えずに構成された車両5を制御するように構成することも、本発明の好適な実施形態の一つである。この場合であっても、走行中アイドリング状態のエンジンの引きずりを回避しつつ、走行中アイドリング状態から離脱する時における駆動力伝達の応答性を向上させることができる。
 本発明は、エンジンに駆動連結される入力部材と、車輪に駆動連結される出力部材と、入力部材の回転駆動力を各変速段の変速比で変速して前記出力部材に伝達する変速装置と、を備えた車両用駆動装置を制御するための制御装置、及びそのような制御装置により制御される車両用駆動装置を備えた車両駆動システムに好適に利用することができる。
1    車両用駆動装置
6    車輪
21   機械式ポンプ
31   制御ユニット(車両用制御装置)
32   エンジン制御部(制御手段)
33   回転電機制御部(制御手段)
34   目標変速段決定部(制御手段)
35   切替制御部(制御手段)
36   目標回転速度決定部(制御手段)
37   電動モータ駆動制御部(制御手段)
E    エンジン
MG   回転電機
I    入力軸(入力部材)
O    出力ギヤ(出力部材)
TM   変速装置
P1   第一遊星歯車装置
S1   サンギヤ(第一回転要素)
CA1  キャリア(第二回転要素)
R1   リングギヤ(第三回転要素)
P2   第二遊星歯車装置
S2   第一サンギヤ(第一回転要素)
CA2  キャリア(第二回転要素)
R2   リングギヤ(第三回転要素)
S3   第二サンギヤ(第四回転要素)
B1   第一ブレーキ(係合要素)
B2   第二ブレーキ(係合要素)
C1   第一クラッチ(係合要素、第一係合要素)
C2   第二クラッチ(係合要素、第二係合要素)
C3   第三クラッチ(係合要素)
F    ワンウェイクラッチ(係合要素、一方向クラッチ)

Claims (15)

  1.  エンジンに駆動連結される入力部材と、車輪に駆動連結される出力部材と、
     複数の係合要素を有し、前記複数の係合要素の係合及び解放が制御されることにより複数の変速段が切り替えられ、前記入力部材の回転駆動力を各変速段の変速比で変速して前記出力部材に伝達する変速装置と、を備えた車両用駆動装置を制御するための車両用制御装置であって、
     前記変速装置は、前記複数の変速段の一つとして、前記入力部材から前記出力部材への回転駆動力は伝達し、前記出力部材から前記入力部材への回転駆動力は伝達しない変速段である一方向伝達段を備え、
     車両が走行している状態であってかつ前記入力部材の回転駆動力が前記出力部材に伝達されず前記エンジンの回転速度が所定のアイドル回転数に制御されている状態である走行中アイドリング状態で、前記変速装置が前記一方向伝達段を実現するように制御する制御手段を備えた車両用制御装置。
  2.  前記変速装置は、
     係合した状態で前記入力部材の回転駆動力を当該変速装置が有する複数の回転要素のうちの一つに伝達する第一係合要素と、
     前記第一係合要素が係合した状態で、前記入力部材から前記出力部材への回転駆動力が伝達される状態となり、前記出力部材から前記入力部材への回転駆動力が伝達されない状態となる一方向クラッチと、を備え、
     前記一方向伝達段は、前記第一係合要素の係合と前記一方向クラッチとが協働して実現される請求項1に記載の車両用制御装置。
  3.  前記走行中アイドリング状態に移行する前の前記変速装置における変速段が、少なくとも前記第一係合要素の係合により実現される変速段である場合には、前記制御手段は、前記走行中アイドリング状態で前記第一係合要素を係合させて前記一方向伝達段を実現させ、
     前記走行中アイドリング状態に移行する前の前記変速装置における変速段が、少なくとも前記第一係合要素の係合により実現される変速段以外の変速段である場合には、前記制御手段は、前記走行中アイドリング状態で前記変速装置の全ての係合要素を解放させる請求項2に記載の車両用制御装置。
  4.  前記走行中アイドリング状態に移行する前の車両の走行速度が所定の解放閾値以下である場合には、前記制御手段は、前記走行中アイドリング状態で前記第一係合要素を係合させて前記一方向伝達段を実現させ、
     前記走行中アイドリング状態に移行する前の車両の走行速度が所定の解放閾値より大きい場合には、前記走行中アイドリング状態で前記変速装置の全ての係合要素を解放させる請求項2又は3に記載の車両用制御装置。
  5.  前記一方向伝達段は、前進用変速段の中で前記入力部材と前記出力部材との間の減速比が最も大きい変速段である請求項1から4のいずれか一項に記載の車両用制御装置。
  6.  車両の走行中に、前記走行中アイドリング状態から、前記入力部材の回転駆動力を前記出力部材に伝達する通常状態に復帰するとき、
     前記制御手段は、前記入力部材の回転速度が、車両の走行速度と前記変速装置における目標変速段とに基づいて定まる目標回転速度となるように制御するエンジン回転速度制御を行なってから、前記変速装置における所定の係合要素を係合させる請求項1から5のいずれか一項に記載の車両用制御装置。
  7.  前記エンジン回転速度制御中に、前記入力部材の回転速度が前記目標回転速度となる前に、前記変速装置における目標変速段が変更された場合において、
     前記目標変速段の変更パターンが予め定められた許容シフトパターンに該当しない場合には、前記制御手段は、前記エンジン回転速度制御を行なって変更前の前記目標変速段を実現させた後に、変更後の前記目標変速段を実現させ、
     前記目標変速段の変更パターンが前記許容シフトパターンに該当する場合には、前記制御手段は、前記エンジン回転速度制御を中止するとともに変更前の前記目標変速段の実現を中止して、変更後の前記目標変速段を実現させる請求項6に記載の車両用制御装置。
  8.  前記変速装置における各変速段が二つの前記係合要素の係合により実現される場合において、
     前記許容シフトパターンは、先に係合される前記係合要素が共通でかつ後に係合される前記係合要素が異なる変速段間での変更であって、かつ、減速比の小さい変速段から減速比の大きい変速段への変更に該当する変更パターンである請求項7に記載の車両用制御装置。
  9.  前記変速装置は、
     係合した状態で前記入力部材の回転駆動力を当該変速装置が有する複数の回転要素のうちの一つに伝達する第一係合要素と、
     前記第一係合要素が係合した状態で、前記入力部材から前記出力部材への回転駆動力が伝達される状態となり、前記出力部材から前記入力部材への回転駆動力が伝達されない状態となる一方向クラッチと、を備え、
     前記一方向伝達段は、前記第一係合要素の係合と前記一方向クラッチとが協働して実現され、
     前記変速装置は、前記第一係合要素を含む複数の係合要素の中のいずれか二つを選択的に係合することにより複数の変速段を切り替え可能に備えるとともに、少なくとも前記第一係合要素とは異なる第二係合要素が係合されることにより実現される変速段を有し、
     前記エンジンが前記走行中アイドリング状態に移行する前の前記変速装置における変速段が、前記第二係合要素が係合されることにより実現される変速段である場合には、前記制御手段は、前記通常状態に復帰する際に、二つの係合要素のうち前記第二係合要素を先に係合させる請求項6から8のいずれか一項に記載の車両用制御装置。
  10.  前記変速装置の全ての係合要素を解放させた状態で、前記走行中アイドリング状態に代えて、車両が走行している状態であってかつ前記エンジンが停止される走行中アイドル停止状態とする請求項1から9のいずれか一項に記載の車両用制御装置。
  11.  前記エンジンの回転駆動力により駆動されて油を吐出する機械式ポンプと、前記機械式ポンプの動作停止中に油を吐出する電動ポンプとを、複数の前記係合要素に油圧を供給可能に備え、
     前記走行中アイドル停止状態で前記変速装置の全ての係合要素が解放される場合には、前記制御手段は前記電動ポンプを非駆動状態とする請求項10に記載の車両用制御装置。
  12.  前記変速装置は、回転速度の順に第一回転要素、第二回転要素、及び第三回転要素となる三つの回転要素を有する第一遊星歯車装置と、回転速度の順に第一回転要素、第二回転要素、第三回転要素及び第四回転要素となる四つの回転要素を有する第二遊星歯車装置を備え、
     前記第一遊星歯車装置の第一回転要素は非回転部材に固定され、第二回転要素は第一係合要素を介して前記第二遊星歯車装置の第四回転要素に選択的に駆動連結され、第三回転要素は前記入力部材に駆動連結され、
     前記第二遊星歯車装置の第二回転要素は、非回転部材に対して負回転となるときに係合状態となって回転が阻止される一方向クラッチを介して当該非回転部材に選択的に固定され、第三回転要素は前記出力部材に駆動連結されている請求項1から11のいずれか一項に記載の車両用制御装置。
  13.  前記第一遊星歯車装置の第二回転要素が、更に前記第二遊星歯車装置の第一回転要素に選択的に駆動連結されるとともに、
     前記第二遊星歯車装置の第二回転要素が、更に第二係合要素を介して前記入力部材に選択的に駆動連結される請求項12に記載の車両用制御装置。
  14.  前記第二遊星歯車装置の第一回転要素が、更に非回転部材に選択的に固定される請求項13に記載の車両用制御装置。
  15.  請求項1から14のいずれか一項に記載の車両用制御装置により制御される車両用駆動装置が備える前記出力部材が、車両の前輪及び後輪のいずれか一方に駆動連結されるとともに、
     駆動力を出力可能な回転電機の出力軸が、車両の前輪及び後輪のいずれか他方に駆動連結された車両駆動システム。
PCT/JP2011/051887 2010-03-25 2011-01-31 車両用制御装置及び車両駆動システム WO2011118257A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180006389.5A CN102713365B (zh) 2010-03-25 2011-01-31 车辆用控制装置及车辆驱动系统
DE112011100106T DE112011100106T5 (de) 2010-03-25 2011-01-31 Steuervorrichtung für ein fahrzeug und fahrzeugantriebssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010070436A JP5429563B2 (ja) 2010-03-25 2010-03-25 車両用制御装置及び車両駆動システム
JP2010-070436 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118257A1 true WO2011118257A1 (ja) 2011-09-29

Family

ID=44657314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051887 WO2011118257A1 (ja) 2010-03-25 2011-01-31 車両用制御装置及び車両駆動システム

Country Status (5)

Country Link
US (1) US8914174B2 (ja)
JP (1) JP5429563B2 (ja)
CN (1) CN102713365B (ja)
DE (1) DE112011100106T5 (ja)
WO (1) WO2011118257A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650569A4 (en) 2011-03-31 2015-07-01 Aisin Aw Co CONTROL DEVICE FOR A TRANSMISSION AND CONTROL METHOD FOR A GEARBOX
KR101327864B1 (ko) * 2011-12-23 2013-11-11 대동공업주식회사 전기구동식 다목적 운반차량의 변속충격 저감 시스템
CN104039621B (zh) * 2012-03-23 2016-08-17 爱信艾达株式会社 混合动力车辆用自动变速器的控制装置
JP5652420B2 (ja) * 2012-03-28 2015-01-14 アイシン・エィ・ダブリュ株式会社 自動変速機の制御装置および制御方法
JP5958094B2 (ja) 2012-05-31 2016-07-27 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置
JP2014084960A (ja) * 2012-10-24 2014-05-12 Toyota Motor Corp 車両の走行制御装置
JP5790672B2 (ja) * 2013-01-18 2015-10-07 トヨタ自動車株式会社 車両の変速制御装置
CN106030161B (zh) * 2014-02-28 2017-08-25 爱信艾达株式会社 车辆用驱动装置的控制装置
US9592832B2 (en) 2014-03-18 2017-03-14 Ford Global Technologie,S Llc Extending hybrid electric vehicle regenerative braking
JP6252505B2 (ja) * 2015-02-06 2017-12-27 トヨタ自動車株式会社 車両駆動装置
GB201701312D0 (en) * 2017-01-26 2017-03-15 Jaguar Land Rover Ltd A method for reducing vehicle fuel consumption during coasting
JP6521019B2 (ja) * 2017-10-03 2019-05-29 マツダ株式会社 多段自動変速機付車両の制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104171A (en) * 1975-03-12 1976-09-14 Toyota Motor Co Ltd Jidohensokukino seigyosochi
JPS62101953A (ja) * 1985-10-29 1987-05-12 Aisin Warner Ltd 車両惰行時の変速制御方式
JP2004108566A (ja) * 2002-07-23 2004-04-08 Toyota Motor Corp 車両用変速制御装置
JP2005304205A (ja) * 2004-04-13 2005-10-27 Toyota Motor Corp ハイブリッド車の駆動装置
JP2006234122A (ja) * 2005-02-28 2006-09-07 Denso Corp 自動変速機の制御装置
JP2007100762A (ja) * 2005-09-30 2007-04-19 Mazda Motor Corp パワートレインのエンジン始動装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196490B2 (ja) 1994-03-31 2001-08-06 スズキ株式会社 エンジンの自動始動停止装置
US20040027255A1 (en) * 2002-03-01 2004-02-12 Greenbaum Myron H. Wideband avionics data retrieval system
JP2004183759A (ja) * 2002-12-02 2004-07-02 Toyota Motor Corp 車両用自動変速機の変速制御装置
US7524266B2 (en) 2005-09-30 2009-04-28 Mazda Motor Corporation Engine starting system for power train
JP4412346B2 (ja) * 2007-04-20 2010-02-10 トヨタ自動車株式会社 ハイブリッド車両の駆動制御装置
JP5261758B2 (ja) * 2007-08-31 2013-08-14 本田技研工業株式会社 車両の自動変速制御装置
US7867124B2 (en) * 2007-09-10 2011-01-11 Gm Global Technology Operations, Inc. Output split electrically-variable transmission with electric propulsion using one or two motors
JP5229572B2 (ja) * 2009-03-25 2013-07-03 アイシン・エィ・ダブリュ株式会社 車両用制御装置及び車両駆動システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104171A (en) * 1975-03-12 1976-09-14 Toyota Motor Co Ltd Jidohensokukino seigyosochi
JPS62101953A (ja) * 1985-10-29 1987-05-12 Aisin Warner Ltd 車両惰行時の変速制御方式
JP2004108566A (ja) * 2002-07-23 2004-04-08 Toyota Motor Corp 車両用変速制御装置
JP2005304205A (ja) * 2004-04-13 2005-10-27 Toyota Motor Corp ハイブリッド車の駆動装置
JP2006234122A (ja) * 2005-02-28 2006-09-07 Denso Corp 自動変速機の制御装置
JP2007100762A (ja) * 2005-09-30 2007-04-19 Mazda Motor Corp パワートレインのエンジン始動装置

Also Published As

Publication number Publication date
CN102713365A (zh) 2012-10-03
US20110238248A1 (en) 2011-09-29
JP2011202737A (ja) 2011-10-13
CN102713365B (zh) 2015-07-08
DE112011100106T5 (de) 2012-10-31
JP5429563B2 (ja) 2014-02-26
US8914174B2 (en) 2014-12-16

Similar Documents

Publication Publication Date Title
JP5429563B2 (ja) 車両用制御装置及び車両駆動システム
JP5229572B2 (ja) 車両用制御装置及び車両駆動システム
US7771310B2 (en) Drive state shift control apparatus for hybrid vehicle
JP5799873B2 (ja) ハイブリッド車両の制御装置
JP5610193B2 (ja) 車両用変速装置
JP3823960B2 (ja) 車両の変速装置
JP6394792B2 (ja) 制御装置
JP5282758B2 (ja) 充電制御システム
JP6390788B2 (ja) 制御装置
JP6465204B2 (ja) 車両用駆動装置の制御装置
JP5716620B2 (ja) ハイブリッド車両の駆動装置
JP2020045992A (ja) 制御装置
JP6299281B2 (ja) 車両用駆動装置の制御装置
JP6237878B2 (ja) 車両用駆動装置の制御装置
JPH11198671A (ja) 自動車用駆動システム
JP2009264481A (ja) 車両用駆動装置の制御装置
JP6414499B2 (ja) 車両用駆動装置の制御装置
JP5327103B2 (ja) 車両制御装置
JP6459720B2 (ja) 車両用駆動装置
JP2021155034A (ja) 自動変速機
JP2004306707A (ja) 車両の変速制御装置
JP2017218044A (ja) 自動車用駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006389.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759065

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011100106

Country of ref document: DE

Ref document number: 1120111001061

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759065

Country of ref document: EP

Kind code of ref document: A1