WO2011115155A1 - 基板洗浄装置及び基板洗浄方法 - Google Patents

基板洗浄装置及び基板洗浄方法 Download PDF

Info

Publication number
WO2011115155A1
WO2011115155A1 PCT/JP2011/056167 JP2011056167W WO2011115155A1 WO 2011115155 A1 WO2011115155 A1 WO 2011115155A1 JP 2011056167 W JP2011056167 W JP 2011056167W WO 2011115155 A1 WO2011115155 A1 WO 2011115155A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cleaning
cluster
cleaning agent
cleaned
Prior art date
Application number
PCT/JP2011/056167
Other languages
English (en)
French (fr)
Inventor
土橋 和也
布瀬 暁志
Original Assignee
東京エレクトロン株式会社
岩谷産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, 岩谷産業株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN201180010024.XA priority Critical patent/CN102770942B/zh
Priority to KR1020127027213A priority patent/KR101497199B1/ko
Publication of WO2011115155A1 publication Critical patent/WO2011115155A1/ja
Priority to US13/617,530 priority patent/US9099298B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles

Definitions

  • the present invention relates to a substrate cleaning apparatus and a substrate cleaning method for cleaning a substrate to which an object to be cleaned is attached.
  • Patent Document 1 discloses a substrate cleaning apparatus including a rotation mechanism that rotates a wafer, a line-shaped discharge nozzle that discharges a cleaning liquid onto the wafer in a line, and a moving mechanism that moves the line-shaped discharge nozzle along the wafer. It is disclosed. According to the substrate cleaning apparatus according to Patent Document 1, even a large wafer can be cleaned with cleaning water with extremely high throughput and cleaning capability.
  • a wet cleaning solution that uses diluted cleaning agent and compensates for the reduction in cleaning power due to the dilution of cleaning agent by physical auxiliary means Cleaning methods are being considered.
  • the physical auxiliary means include ultrasonic cleaning and two-fluid jet cleaning. In the two-fluid jet cleaning, pure water and high-pressure nitrogen gas are mixed, fine droplets are ejected from a nozzle, and dirt is removed using a shock wave generated when the microdroplets collide with the wafer surface. It is.
  • the conventional wet cleaning method has the following technical problems as the device structure formed on the wafer is miniaturized and complicated.
  • First problem When physical auxiliary means such as ultrasonic waves and two-fluid spray are used, the miniaturized device structure may be physically damaged.
  • Second problem The miniaturized device structure may collapse due to the surface tension of water.
  • Third problem When the substrate is dried after wet cleaning, a watermark is generated on the surface of the substrate, resulting in deterioration and failure of device performance.
  • Fourth problem A water-soluble material, such as La, formed on a substrate may be damaged in the cleaning process.
  • Fifth problem Substrate materials other than the object to be cleaned formed on the substrate may be lost by cleaning.
  • Sixth problem The device structure may be destroyed by discharge generated between the water charged in the cleaning process and the substrate.
  • the present invention has been made in view of such circumstances, and the object thereof is removed by injecting a cluster formed by a plurality of different cleaning agent molecules separately onto the substrate and injecting the cluster.
  • a cluster formed by a plurality of different cleaning agent molecules separately onto the substrate and injecting the cluster.
  • a substrate cleaning apparatus is a substrate cleaning apparatus for cleaning a substrate to which an object to be cleaned is attached.
  • Cluster injection means for injecting a cluster formed by a plurality of cleaning agent molecules onto the substrate; and
  • a suction means for sucking an object to be cleaned removed by spraying a cluster, and a means for relatively moving the substrate and the cluster spray means along the surface of the substrate to which the object to be cleaned is attached.
  • the substrate cleaning apparatus includes a container that accommodates the substrate, a vacuum pump that depressurizes the interior of the container, and a cleaning agent container that stores a cleaning agent.
  • the substrate cleaning apparatus is characterized in that the suction means includes a plurality of suction portions, and the plurality of suction portions are arranged in parallel to the nozzles.
  • a substrate cleaning apparatus is a substrate cleaning apparatus for cleaning a substrate to which an object to be cleaned is attached.
  • Cluster injection means for injecting a plurality of clusters of cleaning agent molecules onto the substrate, and the cleaning agent molecules
  • means for moving means for moving.
  • the substrate cleaning apparatus includes a container that accommodates the substrate, a vacuum pump that depressurizes the interior of the container, and a cleaning agent container that stores a cleaning agent.
  • the substrate cleaning apparatus according to the present invention is characterized in that a cross section of the nozzle nozzle is linear.
  • the substrate cleaning apparatus includes a support member that supports the plurality of nozzles such that a spraying direction of the cleaning agent is a non-normal direction of the substrate.
  • the plurality of cleaning molecules are substances selected from the group consisting of an organic solvent, hydrogen fluoride, hydrochloric acid, ozone, ammonia hydrogen peroxide, water, isopropyl alcohol, nitrogen, and argon. It is a molecule.
  • the substrate cleaning method according to the present invention is a substrate cleaning method for cleaning a substrate to which an object to be cleaned is attached.
  • the substrate cleaning method according to the present invention is a substrate cleaning method for cleaning a substrate to which an object to be cleaned is attached.
  • the substrate is scanned while the cluster formed by a plurality of cleaning agent molecules is sprayed onto the substrate by the cluster spraying means.
  • the cluster of cleaning agents reaches the surface of the substrate, it is thought that the cleaning agent molecules spread on the surface of the substrate in a high density state close to that of the liquid, and the liquid phase cleaning agent is applied as if it acts on the object to be cleaned. It is speculated that it is possible to remove the washed product. Since the object to be cleaned removed by the cluster injection is sucked by the suction means, it is possible to suppress the object to be cleaned from reattaching to the substrate.
  • the cluster of cleaning agent molecules sprayed onto the substrate are removed by the cluster of cleaning agent molecules sprayed onto the substrate as compared with the cryogenic aerosol irradiation method. Furthermore, since it is not cleaning using water, it is possible to avoid the technical problems of wet cleaning such as microroughness, watermark, loss of substrate material, and destruction of device structure. Furthermore, when an ion beam is irradiated, the substrate may be damaged by ions and electrons. However, when a cluster of cleaning agents is sprayed onto the substrate, the organic solvent molecules only spread along the substrate surface, There is no damage.
  • the inside of the container is depressurized by a vacuum pump.
  • the plurality of nozzles constituting the cluster injection means are arranged in parallel, and each nozzle injects the cleaning agent supplied from the cleaning agent storage portion through the supply path into the storage body.
  • the temperature of each cleaning agent sprayed from the nozzle is lowered and clustered by adiabatic expansion.
  • the substrate is scanned while ejecting a cluster formed by a plurality of cleaning agent molecules onto the substrate by the cluster ejecting means.
  • the operation related to the cluster injection of the cleaning agent is as described above. Since the object to be cleaned that has been removed by the cluster injection is transported to the outside by the transport gas sent to the substrate, the object to be cleaned can be prevented from reattaching to the substrate.
  • the inside of the container is depressurized by a vacuum pump.
  • the plurality of nozzles constituting the cluster injection means are arranged in parallel, and each nozzle injects the cleaning agent supplied from the cleaning agent storage portion through the supply path into the storage body.
  • the temperature of each cleaning agent sprayed from the nozzle is lowered and clustered by adiabatic expansion.
  • the substrate can be efficiently cleaned.
  • the nozzle is supported by the support member so that the spraying direction of the cleaning agent is a non-normal direction of the substrate. Therefore, by moving the nozzle to the outside of the substrate while spraying the cluster, the object to be cleaned removed from the substrate can be blown away by spraying the cluster.
  • various types of contaminants are removed from the substrate as compared with the cryogenic aerosol irradiation method while avoiding the technical problems of wet cleaning such as microroughness, watermark, substrate material loss, and device structure destruction. can do.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a side cross-sectional view schematically illustrating a configuration example of a cluster ejection head. It is the chart which showed an example of the 1st thru / or the 3rd cleaning agent. It is explanatory drawing which showed the difference with the cluster injection with respect to a board
  • FIG. 10 is a side cross-sectional view schematically showing a configuration example of a substrate cleaning apparatus according to Modification 1.
  • FIG. 9 is a side cross-sectional view schematically illustrating a configuration example of a cluster ejection head according to Modification Example 1.
  • FIG. 10 is a side sectional view schematically showing one configuration example of a substrate cleaning apparatus in Modification 2.
  • a substrate cleaning apparatus is an apparatus that cleans a substrate to which an object to be cleaned is attached.
  • the substrate cleaning apparatus avoids the technical problems of wet cleaning and is more diverse than a cryogenic aerosol irradiation method. This makes it possible to remove various contaminants from the substrate.
  • FIG. 1 is a side sectional view schematically showing a configuration example of a substrate cleaning apparatus according to an embodiment of the present invention
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1
  • FIG. 3 is a side cross-sectional view schematically showing one configuration example of FIG.
  • the substrate cleaning apparatus according to the present embodiment includes a processing chamber (container) 1 having a hollow and substantially rectangular parallelepiped shape that accommodates a wafer W.
  • the processing chamber 1 is provided with a loading / unloading port 11 for loading and unloading the wafer W into the processing space in the processing chamber 1. By closing the loading / unloading port 11 with the door body 12, the processing space can be sealed.
  • a wafer support 2 that holds the wafer W substantially horizontally is provided.
  • the wafer support 2 includes a table unit 21 on which the wafer W is placed. As shown in FIG. 2, the table portion 21 is provided with three holding members 22 at the top, and holds the wafer W substantially horizontally by bringing the holding members 22 into contact with the three peripheral portions of the wafer W, respectively. It is configured.
  • the table portion 21 includes a shaft portion 23 that protrudes downward from its substantially central portion, and the lower end of the shaft portion 23 is fixed to the processing chamber 1.
  • a cluster ejection head 3 that ejects a cluster formed by a plurality of different cleaning agent molecules separately onto the wafer W and sucks an object to be cleaned that has been removed by cluster ejection is disposed above the processing chamber 1.
  • the cluster ejection head 3 has a rod shape whose longitudinal direction is wider than the diameter of the wafer W, and is supplied through first to third cleaning agent supply pipes 31a, 32a, and 33a, which will be described later, as shown in FIG.
  • the first to third nozzles 31c, 32c, and 33c for injecting the first to third cleaning agents are provided.
  • the first to third nozzles 31 c, 32 c, and 33 c are arranged in parallel in the transfer direction of the cluster ejection head 3.
  • the first to third cleaning agents are collectively referred to as “cleaning agents” as appropriate.
  • the cross sections of the injection port portions 31e, 32e, and 33e of the first to third nozzles 31c, 32c, and 33c are linear as shown in FIG. 2, and the width of the injection port in the longitudinal direction is equal to or larger than the diameter of the wafer W. .
  • the cleaning agent sprayed from the first to third nozzles 31c, 32c, 33c is clustered by adiabatic expansion.
  • the cluster ejection head 3 has three first to third suction sections for sucking the objects to be cleaned, which are removed by ejecting the clusters of the cleaning agent molecules from the first to third nozzles 31c, 32c, and 33c.
  • 31d, 32d, and 33d are juxtaposed with the first to third nozzles 31c, 32c, and 33c.
  • a suction pump 35 is connected to the first to third suction parts 31d, 32d, and 33d via a suction pipe.
  • the first to third nozzles 31c, 32c, and 33c constitute cluster ejecting means, and the first to third suction parts 31d, 32d, and 33d are removed by ejecting clusters of cleaning agent molecules.
  • a suction means for sucking the cleaning object is configured.
  • the first to third nozzles 31c, 32c, 33c are supported by a nozzle arm (support member) 42.
  • the nozzle arm 42 is provided above the wafer W supported by the wafer support 2, and supports the nozzle so that the spraying direction of the first to third cleaning agents is a non-normal direction of the wafer W.
  • the base end portion of the nozzle arm 42 is supported so as to be movable along a guide rail 41 arranged substantially horizontally.
  • a drive mechanism 43 that moves the nozzle arm 42 along the guide rail 41 is also provided.
  • the guide rail 41 and the drive mechanism 43 constitute a transfer mechanism that transfers the cluster ejection head 3 supported by the nozzle arm 42 along the surface of the wafer W.
  • the nozzle arm 42 By driving the drive mechanism 43, the nozzle arm 42 can move between above the wafer W held on the wafer support 2 and outside the periphery of the wafer W.
  • the operation of the drive mechanism 43 is controlled by the control unit 7.
  • the guide rail 41 and the drive mechanism 43 correspond to means for relatively moving the substrate and the cluster ejecting means along the surface of the substrate on which the object to be cleaned is attached.
  • the first to third cleaning agents connected to the first to third cleaning agent supply units 51, 52, and 53, respectively, which store the first to third cleaning agents, are respectively connected to the first to third nozzles 31c, 32c, and 33c.
  • Supply pipes (supply paths) 31a, 32a, 33a are connected.
  • the first to third cleaning agent supply pipes 31a, 32a, and 33a supply the first to third cleaning agents in a gas phase state from the first to third cleaning agent supply units 51, 52, and 53 to the processing chamber 1.
  • 1st to 3rd opening-and-closing valve 31b, 32b, and 33b are provided in the 1st thru / or 3rd detergent supply pipe 31a, 32a, and 33a, respectively.
  • the opening / closing operation of the first to third opening / closing valves 31b, 32b, 33b is controlled by the control unit 7.
  • FIG. 4 is a chart showing an example of the first to third cleaning agents.
  • the first to third cleaning agents can be appropriately selected according to the type of the object to be cleaned.
  • an organic solvent may be used as the first cleaning agent and nitrogen N 2 soot gas may be used as the second cleaning agent.
  • an organic solvent may be used as the first and second cleaning agents, and nitrogen N 2 soot gas may be used as the third cleaning agent.
  • silicon monoxide SiO water may be used as the first cleaning agent, hydrogen fluoride as the second cleaning agent, and isopropyl alcohol IPA and nitrogen N2 soot gas as the third cleaning agent.
  • hydrochloric acid HCl is used as the first cleaning agent
  • ozone O3 soot is used as the second cleaning agent
  • nitrogen N2 soot gas is used as the third cleaning agent.
  • ozone O3 soot may be employed as the first cleaning agent
  • nitrogen N2 soot gas may be employed as the second cleaning agent.
  • ammonia hydro APM may be used as the first cleaning agent, nitrogen N2 soot gas as the second cleaning agent, or nitrogen N2 soot gas or argon Ar as the first cleaning agent.
  • water H2 O is used as the first cleaning agent
  • isopropyl alcohol IPA is used as the second cleaning agent
  • nitrogen N2 gas is used as the third cleaning agent. good.
  • the cleaning agents necessary to remove each object to be cleaned are sequentially clustered, and the cleaning agents common to each object to be cleaned can be selected appropriately. good.
  • an organic solvent may be used as the first cleaning agent, ozone O3 as the second cleaning agent, and nitrogen N2 gas as the third cleaning agent.
  • an exhaust unit 10 is provided at an appropriate location in the processing chamber 1, and a vacuum pump 6 that depressurizes the inside of the processing chamber 1 to about 10 Pa, for example, is connected to each exhaust unit 10 via a pipe 63. Since clustering of the cleaning agent is realized by adiabatic expansion of the cleaning agent, it is preferable that the vicinity of the cluster jet head 3 is in a reduced pressure state.
  • the first exhaust unit 10 may be provided in the vicinity of the cluster ejection head 3, and the second and third exhaust units 10, 10 may be provided below the side wall of the processing chamber 1.
  • the vacuum pump 6 includes, for example, a turbo molecular pump 61 (TMP: Turbo : Molecular Pump) and a roughing dry vacuum pump 662 (DP: Dry Pump) provided in the preceding stage. These operations are controlled by the control unit 7.
  • FIG. 5 is an explanatory diagram showing the difference between cluster injection to the substrate and ion beam irradiation.
  • a simulation showing the behavior of the argon atom and the state of the substrate when the substrate is irradiated or jetted with an ion beam and cluster of argon atoms will be described.
  • the ion beam and cluster of a cleaning agent molecule show the same behavior as an argon atom.
  • 5A and 5B show the substrate before and after the irradiation and ejection of the ion beam and cluster, and the argon ions and the argon cluster irradiated on the substrate.
  • each argon atom constituting the ion beam in which 2000 argon atoms are gathered has an energy of 10 eV.
  • FIG. 5B As described above, when high-energy argon atoms collide with the substrate, it can be seen that the substrate is physically damaged as shown in FIG. 5B. Needless to say, damage to the substrate leads to device failure and performance degradation.
  • the right diagram in FIG. 5B shows a cluster in which, for example, 20000 argon atoms are gathered.
  • the cluster also has an energy of 20 keV, like the ion beam.
  • each argon atom constituting an ion beam in which 20000 argon atoms are gathered has an energy of 1 eV.
  • FIG. 6 are explanatory views conceptually showing an example of the substrate cleaning method according to the embodiment of the present invention.
  • the control unit 7 drives the vacuum pump 6 to depressurize the interior of the processing chamber 1 to about 10 Pa, and controls the operation of the drive mechanism 43, thereby moving the cluster ejection head 3 to one end side of the wafer W (for example, To the left end side in FIG.
  • control part 7 supplies the 1st thru
  • the control unit 7 drives the suction pump 35 to start suction of the object to be cleaned that has been removed by the cluster injection of the first to third cleaning agents.
  • the control unit 7 controls the operation of the drive mechanism 43 to move the cluster ejection head 3 from one end of the wafer W to the other end side (for example, the right end side in FIG. 1) at a predetermined speed.
  • the first to third cleaning agents supplied to the first to third nozzles 31c, 32c, and 33c are sprayed toward the wafer W in the processing chamber 1, but the inside of the processing chamber 1 is depressurized by the vacuum pump 6. Therefore, the sprayed first to third cleaning agents are adiabatically expanded, and clusters formed by aggregation of the first to third cleaning agent molecules are generated separately. The generated clusters of the first to third cleaning agents collide with the surface of the wafer W.
  • the first object to be cleaned is decomposed by the first cleaning agent as shown in FIG.
  • the removed object to be cleaned is blown away toward the first suction part 31d by the first cleaning agent cluster sprayed onto the wafer W, and is sucked into the first suction part 31d.
  • the cluster ejection head 3 moves and the cluster of the second cleaning agent is ejected to the portion where the first cleaning agent is ejected as shown in FIG. 8, the second object to be cleaned is decomposed, and the second It is sucked by the suction part 32d.
  • the cluster of the third cleaning agent is jetted onto the portion where the cluster jet head 3 moves and the third cleaning agent is cluster-sprayed as shown in FIG. 9, the third object to be cleaned is decomposed, It is sucked by the third suction part 33d.
  • various objects to be cleaned can be removed by spraying the first to third cleaning agent clusters.
  • the substrate cleaning apparatus and the substrate cleaning method according to the embodiment it is possible to remove more various contaminants from the substrate as compared with the cryogenic aerosol irradiation method while avoiding the technical problem of wet cleaning.
  • the substrate cleaning apparatus and the substrate cleaning method according to the present embodiment are useful. It can also be applied to mask cleaning of a multilayer device manufacturing apparatus such as an organic EL.
  • One of organic EL organic vapor deposition methods is a linear source method. In this vapor deposition method, a mask is placed on a glass substrate, and a plurality of organic materials are continuously vapor deposited. Since the mask is used repeatedly, a plurality of organic materials are deposited on the mask surface.
  • the substrate cleaning apparatus In order to prevent this deposit from peeling off during film formation and contaminating the substrate, periodic mask cleaning or replacement is necessary. Therefore, the substrate cleaning apparatus according to the present embodiment is provided in the multilayer device manufacturing apparatus, and the mask cleaning is possible by continuously spraying a cluster of cleaning agents corresponding to the removal of a plurality of organic materials. Thus, an organic EL device can be efficiently manufactured.
  • the disassembled objects to be cleaned can be blown off and sucked to the first to third suction parts 31d, 32d, 33d side by the transfer of the first to third nozzles 31c, 32c, 33c and the injection of the clusters.
  • the processing chamber 1 can be downsized as compared with the case where the wafer W is transferred.
  • a cluster irradiation head provided with three nozzles and a suction unit has been described.
  • two or more nozzles and suction units may be provided in the cluster irradiation head.
  • FIG. 10 is an explanatory view conceptually showing an example of a substrate cleaning method performed using four cleaning agents.
  • FIG. 10A shows the wafer W before the etching process. On the wafer W, an insulating layer, a gate, and a resist are sequentially laminated to form a multilayer structure.
  • FIG. 10B shows the wafer W after etching the wafer shown in FIG. 10A. After the multilayer structure is etched, organic residues, metal residues and other particles adhere to the wafer W.
  • the first nozzle is an organic solvent
  • the second nozzle is ozone
  • the third nozzle is hydrochloric acid
  • the fourth nozzle is nitrogen N2 gas.
  • the organic object to be cleaned is decomposed by the cluster injection of the organic solvent, and then organic substances other than the resist are decomposed by the cluster injection of ozone. Following the cluster injection of ozone, the metal is also decomposed by the cluster injection of hydrochloric acid. Finally, by injecting nitrogen N 2 soot gas, the decomposed object to be cleaned is removed from the wafer. According to the substrate processing apparatus configured as described above, the resist, the organic residue, the metal residue, and the particles can be removed from the wafer W.
  • the substrate cleaning apparatus may be provided with an electron beam irradiation unit that irradiates the wafer W with an electron beam.
  • the substrate cleaning apparatus may be provided with ionization means for ionizing the cleaning agent cluster.
  • the substrate cleaning apparatus may be provided with heating means for heating the wafer W.
  • the heating means includes, for example, a heater provided on the substrate support, an infrared lamp that irradiates the wafer W with infrared rays, and the like.
  • the processing chamber 1 may be provided with a reaction promoting gas supply unit that supplies the processing chamber 1 with a gas that promotes the reaction between the cleaning agent and the cleaning target.
  • a configuration in which a plurality of nozzles are provided in one nozzle arm has been described, but a configuration in which a plurality of nozzle arms are provided, and a plurality of nozzles may be provided in each nozzle arm, It is also possible to provide a nozzle for injecting one type of cleaning agent in each nozzle arm.
  • the substrate cleaning apparatus according to the modified example 1 is configured to transport the object to be cleaned, which has been decomposed by the cluster injection of the cleaning agent, to the first to third suction units by the transport gas. Since the substrate cleaning apparatus according to the first modification differs from the above-described embodiment only in the configuration relating to the first to third nozzles and the carrier gas, the difference will be mainly described below.
  • FIG. 11 is a side sectional view schematically showing one configuration example of the substrate cleaning apparatus according to the first modification
  • FIG. 12 is a side schematically showing one configuration example of the cluster ejection head 203 according to the first modification. It is sectional drawing.
  • the first to third nozzles 231c, 232c, and 233c of the cluster ejection head 203 constituting the substrate cleaning apparatus according to the first modification are arranged by the nozzle arm 42 so that the ejection direction of the cleaning agent is substantially normal to the wafer W. It is supported.
  • the cleaning agent is cluster-injected substantially perpendicularly to the wafer W on which the pattern shown in FIG. 10 is formed, the cleaning effect can be further improved as compared with the case of injecting in an oblique direction.
  • the first to third nozzles 31c, 32c, and 33c are arranged so as to spray in the non-normal direction of the wafer W.
  • the first to third nozzles 231c, 232c, and 233c are arranged so that the spray direction is the normal direction of the wafer W, thereby preventing the cleaning gas from being blocked locally.
  • a carrier gas for delivering the decomposed object to be cleaned to the first to third suction parts 31 d, 32 d, 33 d side to the surface of the wafer W is provided.
  • the carrier gas delivery port 13 may be provided at a portion facing the exhaust unit 10 provided above the table unit 21.
  • a carrier gas supply pipe 81 connected to a carrier gas supply unit 83 that supplies carrier gas such as argon gas and nitrogen gas is connected to the exhaust unit 10.
  • the carrier gas supply unit 83 is provided with an on-off valve 82.
  • the opening / closing operation of the opening / closing valve 82 is controlled by the control unit 7.
  • the opening / closing timing of the opening / closing valve 82 is not particularly limited.
  • the control unit 7 may be configured to alternately open and close the first to third cleaning agent opening / closing valves and the opening / closing valve 82.
  • the cleaning agent cluster irradiation and the carrier gas delivery may be performed in parallel by optimizing the flow rate of the carrier gas.
  • the cleaning target can be more effectively removed by spraying the cleaning agent substantially perpendicularly to the wafer W, and the carrier gas Is delivered to the wafer W, so that the object to be cleaned can be effectively sucked.
  • the configuration including both the carrier gas delivery port and the first to third suction units has been described, but the first to third suction units are eliminated and the feed is sent from the carrier gas delivery port. You may comprise so that a to-be-cleaned object may be conveyed outside with gas.
  • the substrate cleaning apparatus according to the modified example 2 is configured to fix the cluster ejection head to the processing chamber and transfer the wafer side. Since only the structure of the substrate cleaning apparatus according to the modification 2 is different from that of the above-described embodiment, the difference will be mainly described below.
  • FIG. 13 is a side sectional view schematically showing a configuration example of the substrate cleaning apparatus in the second modification.
  • the substrate cleaning apparatus according to Modification 2 includes a processing chamber 301 in which the cluster ejection head 3 is fixed at a substantially central portion of the top plate.
  • a driving mechanism 343 that moves the table unit 21 in the horizontal direction is provided at the bottom of the processing chamber 301.
  • the drive mechanism 343 can move the table unit 21 in such a range that at least the entire surface of the wafer W can be scanned by the cluster ejection head 3.
  • the processing chamber 301 has a lateral width necessary for moving the table unit 21 within a range in which the entire surface of the wafer W can be scanned by the cluster ejection head 3.
  • the driving mechanism 343 corresponds to a unit that relatively moves the substrate and the cluster injection unit along the surface of the substrate to which the object to be cleaned is attached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

 マイクロラフネス、ウォーターマーク、基板材料損失、デバイス構造の破壊といったウェット洗浄が有する技術的課題を回避しつつ、極低温エアロゾル照射手法に比べてより多様な汚染物を基板から除去することができる基板洗浄装置を提供する。 被洗浄物が付着したウェハWを洗浄する基板洗浄装置に、洗浄剤分子が複数集合してなるクラスターをウェハWに噴射するクラスター噴射手段と、前記洗浄剤分子のクラスターを噴射することによって除去された被洗浄物を吸引する吸引手段と、ウェハW及び前記クラスター噴射手段を、被洗浄物が付着したウェハWの面に沿って相対移動させる手段を備える。

Description

基板洗浄装置及び基板洗浄方法
 本発明は、被洗浄物が付着した基板を洗浄する基板洗浄装置及び基板洗浄方法に関する。
 各種基板処理工程後のウェハ洗浄には、水をベースとしたウェット洗浄が採用されている。特許文献1には、ウェハを回転させる回転機構と、ウェハに洗浄液をライン状に吐出するライン状吐出ノズルと、ライン状吐出ノズルをウェハに沿って移動させる移動機構とを備えた基板洗浄装置が開示されている。特許文献1に係る基板洗浄装置によれば、大型のウェハであっても、洗浄水によりスループットおよび洗浄能力を極めて高くして洗浄することができる。
 一方、ウェハ表面のマイクロラフネス、基板材料の損失等によるデバイス性能の劣化を防止すべく、希釈化した洗浄剤を利用し、洗浄剤の希釈化による洗浄力の低下を物理的補助手段によって補うウェット洗浄手法が検討されている。物理的補助手段としては、超音波洗浄、2流体ジェット洗浄などが挙げられる。2流体ジェット洗浄は、純水と高圧窒素ガスとを混合して微小液滴をノズルから噴射し、該微小液滴がウェハ表面に衝突する際に発生する衝撃波を利用して汚れを除去する手法である。
特開2000-325894号公報
 しかしながら、従来のウェット洗浄手法は、ウェハ上に形成されるデバイス構造の微細化及び複雑化に伴い、以下のような技術的課題を有している。
 第1の課題:超音波、2流体スプレー等の物理的補助手段を利用した場合、微細化されたデバイス構造が物理的に損傷することがある。
 第2の課題:微細化されたデバイス構造が水の表面張力によって崩壊することがある。
 第3の課題:ウェット洗浄後に基板を乾燥させた場合、基板表面にウォーターマークが発生し、デバイス性能の劣化及び不良を招く。
 第4の課題:基板に形成された水溶性材料、例えばLaが洗浄工程で損傷することがある。
 第5の課題:基板に形成された被洗浄物以外の基板材料が洗浄によって損失することがある。
 第6の課題:洗浄工程において帯電した水と、基板との間で発生した放電によって、デバイス構造が破壊されることがある。
 なお、上述のウェット洗浄の技術的課題を回避する手法として、窒素N2 、アルゴンArガスを用いた極低温エアロゾル(Aerosol)照射手法が提案されている。しかし、洗浄が可能な汚染物は限られており、多様な汚染物を除去することは困難である。
 本発明は斯かる事情に鑑みてなされたものであり、その目的は、異なる複数の洗浄剤分子が各別に複数集合してなるクラスターを基板に夫々噴射し、該クラスターを噴射することによって除去された被洗浄物を吸引することによって、マイクロラフネス、ウォーターマーク、基板材料損失、デバイス構造の破壊といったウェット洗浄が有する技術的課題を回避しつつ、極低温エアロゾル照射手法に比べてより多様な汚染物を基板から除去することができる基板洗浄装置及び基板洗浄方法を提供することにある。
 本発明に係る基板洗浄装置は、被洗浄物が付着した基板を洗浄する基板洗浄装置において、洗浄剤分子が複数集合してなるクラスターを前記基板に噴射するクラスター噴射手段と、前記洗浄剤分子のクラスターを噴射することによって除去された被洗浄物を吸引する吸引手段と、前記基板及び前記クラスター噴射手段を、被洗浄物が付着した基板の面に沿って相対移動させる手段とを備えることを特徴とする。
 本発明に係る基板洗浄装置は、前記基板を収容する収容体と、該収容体の内部を減圧する真空ポンプと、洗浄剤を収容する洗浄剤収容部とを備え、前記クラスター噴射手段は、前記洗浄剤収容部から前記収容体へ前記洗浄剤を供給する供給路と、該供給路を通じて供給された洗浄剤を噴射する複数のノズルとを備え、前記複数のノズルは並設されていることを特徴とする。
 本発明に係る基板洗浄装置は、前記吸引手段は複数の吸引部を備え、複数の前記吸引部は各ノズルに並設されていることを特徴とする。
 本発明に係る基板洗浄装置は、被洗浄物が付着した基板を洗浄する基板洗浄装置において、洗浄剤分子が複数集合してなるクラスターを前記基板に夫々噴射するクラスター噴射手段と、前記洗浄剤分子のクラスターを噴射することによって除去された被洗浄物を外部へ搬送する搬送ガスを基板に送出する手段と、前記基板及び前記クラスター噴射手段を、被洗浄物が付着した基板の面に沿って相対移動させる手段とを備えることを特徴とする。
 本発明に係る基板洗浄装置は、前記基板を収容する収容体と、該収容体の内部を減圧する真空ポンプと、洗浄剤を収容する洗浄剤収容部とを備え、前記クラスター噴射手段は、前記洗浄剤収容部から前記収容体へ前記洗浄剤を供給する供給路と、該供給路を通じて供給された洗浄剤を噴射する複数のノズルとを備え、前記複数のノズルは並設されていることを特徴とする。
 本発明に係る基板洗浄装置は、前記ノズルの噴射口断面は線状であることを特徴とする。
 本発明に係る基板洗浄装置は、前記洗浄剤の噴射方向が前記基板の非法線方向になるように複数の前記ノズルを支持する支持部材を備えることを特徴とする。
 本発明に係る基板洗浄装置は、前記複数の洗浄剤分子は、有機溶媒、フッ化水素、塩酸、オゾン、アンモニア過酸化水素、水、イソプロピルアルコール、窒素及びアルゴンからなる群より選択される物質の分子であることを特徴とする。
 本発明に係る基板洗浄方法は、被洗浄物が付着した基板を洗浄する基板洗浄方法において、洗浄剤分子が複数集合してなるクラスターを前記基板に噴射する工程と、前記洗浄剤分子のクラスターを噴射することによって除去された被洗浄物を吸引する工程と、クラスターの噴射箇所を変更する工程とを有することを特徴とする。
 本発明に係る基板洗浄方法は、被洗浄物が付着した基板を洗浄する基板洗浄方法において、洗浄剤分子が複数集合してなるクラスターを前記基板に噴射する工程と、前記洗浄剤分子のクラスターを噴射することによって除去された被洗浄物を外部へ搬送する搬送ガスを基板に送出する工程と、クラスターの噴射箇所を変更する工程とを有することを特徴とする。
 本発明にあっては、クラスター噴射手段によって、洗浄剤分子が複数集合してなるクラスターを基板に噴射しながら、基板を走査する。洗浄剤のクラスターが基板表面に到達すると、洗浄剤分子が液体に近い高密度状態で基板表面に広がると考えられており、液相の洗浄剤が被洗浄物に作用するかのようにして被洗浄物を除去することが可能であると推測されている。クラスターの噴射によって除去された被洗浄物は、吸引手段によって吸引されるため、被洗浄物が基板に再付着することを抑制することができる。また、基板に噴射される洗浄剤分子のクラスターによって、極低温エアロゾル照射手法に比べてより多様な被洗浄物が除去される。
 更に、水を用いた洗浄では無いため、マイクロラフネス、ウォーターマーク、基板材料損失、デバイス構造の破壊といったウェット洗浄が有していた技術的課題を回避することが可能である。
 更にまた、イオンビームを照射した場合、イオン及び電子によって基板が損傷する虞があるが、洗浄剤のクラスターを基板に噴射した場合、有機溶剤分子は基板表面に沿って広がるのみであり、基板が損傷することは無い。
 本発明にあっては、収容体の内部は真空ポンプによって減圧されている。クラスター噴射手段を構成する複数のノズルは並設されており、各ノズルは、洗浄剤収容部から供給路を通じて供給された洗浄剤を収容体内へ噴射する。ノズルから噴射された各洗浄剤は断熱膨張によって温度が低下し、クラスター化される。
 本発明にあっては、複数の吸引部が複数の各ノズルに並設されているため、複数の洗浄剤のクラスター噴射によって除去された被洗浄物を効率的に除去することが可能である。
 本発明にあっては、クラスター噴射手段によって、洗浄剤分子が複数集合してなるクラスターを基板に噴射しながら、基板を走査する。洗浄剤のクラスター噴射に係る作用は上述の通りである。クラスターの噴射によって除去された被洗浄物は、基板に送出された搬送ガスによって外部へ搬送されるため、被洗浄物が基板に再付着することを抑制することができる。
 本発明にあっては、収容体の内部は真空ポンプによって減圧されている。クラスター噴射手段を構成する複数のノズルは並設されており、各ノズルは、洗浄剤収容部から供給路を通じて供給された洗浄剤を収容体内へ噴射する。ノズルから噴射された各洗浄剤は断熱膨張によって温度が低下し、クラスター化される。
 本発明にあっては、ノズルの噴射口の断面は線状であるため、基板を効率的に洗浄することが可能である。
 本発明にあっては、洗浄剤の噴射方向が基板の非法線方向になるようにノズルが支持部材によって支持されている。従って、クラスターを噴射させながらノズルを基板の外側へ移送させることによって、基板から除去された被洗浄物をクラスターの噴射によって吹き飛ばすことが可能である。
 本発明にあっては、レジスト、ケイ素酸化物SiOx、金属系、有機物系、各種パーティクル又はイオンを除去することが可能である。
 本発明によれば、マイクロラフネス、ウォーターマーク、基板材料損失、デバイス構造の破壊といったウェット洗浄が有する技術的課題を回避しつつ、極低温エアロゾル照射手法に比べてより多様な汚染物を基板から除去することができる。
本発明の実施の形態に係る基板洗浄装置の一構成例を模式的に示した側断面図である。 図1のII-II線断面図である。 クラスター噴射ヘッドの一構成例を模式的に示した側断面図である。 第1乃至第3洗浄剤の一例を示した図表である。 基板に対するクラスター噴射と、イオンビーム照射との相異を示した説明図である。 本発明の実施の形態に係る基板洗浄方法の一例を概念的に示した説明図である。 本発明の実施の形態に係る基板洗浄方法の一例を概念的に示した説明図である。 本発明の実施の形態に係る基板洗浄方法の一例を概念的に示した説明図である。 本発明の実施の形態に係る基板洗浄方法の一例を概念的に示した説明図である。 4つの洗浄剤を用いて行った基板洗浄方法の一例を概念的に示した説明図である。 変形例1に係る基板洗浄装置の一構成例を模式的に示した側断面図である。 変形例1に係るクラスター噴射ヘッドの一構成例を模式的に示した側断面図である。 変形例2における、基板洗浄装置の一構成例を模式的に示した側断面図である。
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。本発明の実施の形態に係る基板洗浄装置は、被洗浄物が付着した基板を洗浄する装置であり、特にウェット洗浄が有する技術的課題を回避し、かつ極低温エアロゾル照射手法に比べてより多様な汚染物を基板から除去することを可能にしたものである。
<基板洗浄装置>
 図1は、本発明の実施の形態に係る基板洗浄装置の一構成例を模式的に示した側断面図、図2は、図1のII-II線断面図、図3は、クラスター噴射ヘッド3の一構成例を模式的に示した側断面図である。本実施の形態に係る基板洗浄装置は、ウェハWを収容する中空略直方体の処理室(収容体)1を備える。処理室1には、図2に示すように、処理室1内の処理空間にウェハWを搬入及び搬出させるための搬入出口11が設けられている。この搬入出口11を扉体12で閉じることにより、処理空間を密閉状態にすることができる。
 処理室1の内部には、ウェハWを略水平に保持するウェハ支持台2が設けられている。ウェハ支持台2は、ウェハWが載せられるテーブル部21を備える。テーブル部21には、図2に示すように、上部に3個の保持部材22が設けられ、保持部材22をウェハWの周縁3箇所にそれぞれ当接させてウェハWを略水平に保持するように構成されている。テーブル部21は、その略中央部から下方へ突出した軸部23を備え、軸部23の下端は処理室1に固定されている。
 また、処理室1の上部には、異なる複数の洗浄剤分子が各別に複数集合してなるクラスターをウェハWに夫々噴射し、クラスター噴射によって除去された被洗浄物を吸引するクラスター噴射ヘッド3が設けられている。クラスター噴射ヘッド3は、長手方向がウェハWの直径よりも幅広に形成された棒状であり、図3に示すように、後述する第1乃至第3洗浄剤供給管31a,32a,33aを通じて供給された第1乃至第3洗浄剤をそれぞれ噴射する第1乃至第3ノズル31c,32c,33cを備える。第1乃至第3ノズル31c,32c,33cは、クラスター噴射ヘッド3の移送方向に並設されている。以下、第1乃至第3洗浄剤に共通の構成を説明する際、第1乃至第3洗浄剤を適宜「洗浄剤」と総称する。第1乃至第3ノズル31c,32c,33cの噴射口部分31e,32e,33eの断面は、図2に示すように線状であり、長手方向における噴射口の幅はウェハWの直径以上である。処理室1が減圧されている状態で、第1乃至第3ノズル31c,32c,33cから噴射された洗浄剤は断熱膨張によってクラスター化される。また、クラスター噴射ヘッド3には、第1乃至第3ノズル31c,32c,33cから洗浄剤分子のクラスターを噴射することによって除去された被洗浄物をそれぞれ吸引する3つの第1乃至第3吸引部31d,32d,33dが第1乃至第3ノズル31c,32c,33cに並設されている。第1乃至第3吸引部31d,32d,33dには、吸引管34を介して吸引ポンプ35が接続されている。なお、第1乃至第3ノズル31c,32c,33cは、クラスター噴射手段を構成し、第1乃至第3吸引部31d,32d,33dは、洗浄剤分子のクラスターを噴射することによって除去された被洗浄物を吸引する吸引手段を構成している。
 第1乃至第3ノズル31c,32c,33cは、ノズルアーム(支持部材)42によって支持されている。ノズルアーム42は、ウェハ支持台2に支持されたウェハWの上方に備えられており、第1乃至第3洗浄剤の噴射方向がウェハWの非法線方向になるようにノズルを支持する。ノズルアーム42の基端部は、略水平に配置されたガイドレール41に沿って移動自在に支持されている。また、ガイドレール41に沿ってノズルアーム42を移動させる駆動機構43が備えられている。ガイドレール41及び駆動機構43によって、ノズルアーム42に支持されたクラスター噴射ヘッド3をウェハWの表面に沿って移送する移送機構を構成している。駆動機構43の駆動により、ノズルアーム42は、ウェハ支持台2に保持されたウェハWの上方とウェハWの周縁より外側との間で移動することができる。駆動機構43の動作は制御部7によって制御される。なお、ガイドレール41及び駆動機構43は、基板及びクラスター噴射手段を、被洗浄物が付着した基板の面に沿って相対移動させる手段に対応する。
 第1乃至第3ノズル31c,32c,33cには、第1乃至第3洗浄剤を収容する第1乃至第3洗浄剤供給部51,52,53にそれぞれ接続された第1乃至第3洗浄剤供給管(供給路)31a,32a,33aが接続されている。第1乃至第3洗浄剤供給管31a,32a,33aは、第1乃至第3洗浄剤供給部51,52,53から処理室1へ気相状態の第1乃至第3洗浄剤を供給する供給路であり、第1乃至第3洗浄剤供給管31a,32a,33aには、それぞれ第1乃至第3開閉弁31b、32b、33bが設けられている。第1乃至第3開閉弁31b、32b、33bの開閉動作は、制御部7によって制御される。
 図4は、第1乃至第3洗浄剤の一例を示した図表である。図4に示すように、被洗浄物の種類に応じて、第1乃至第3洗浄剤を適宜選択することができる。例えば、レジストを除去するためには、第1洗浄剤に有機溶剤、第2洗浄剤に窒素N2 ガスを採用すれば良い。また、高ドーズによってクラスト層が形成されたレジストを除去するためには、第1及び第2洗浄剤に有機溶剤、第3洗浄剤に窒素N2 ガスを採用すれば良い。更に、一酸化ケイ素SiOを除去するためには、第1洗浄剤に水、第2洗浄剤にフッ化水素、第3洗浄剤にイソプロピルアルコールIPA及び窒素N2 ガスを採用すれば良い。更にまた、メタルを除去するためには、第1洗浄剤に塩酸HCl、第2洗浄剤にオゾンO3 、第3洗浄剤に窒素N2 ガスを採用すれば良い。更にまた、レジスト以外の有機物を除去するためには、第1洗浄剤にオゾンO3 、第2洗浄剤に窒素N2 ガスを採用すれば良い。更にまた、その他のパーティクルを除去するためには、第1洗浄剤にアンモニア加水APM、第2洗浄剤に窒素N2 ガス、又は第1洗浄剤に窒素N2 ガス若しくはアルゴンArを採用すれば良い。更にまた、フッ素F、塩素Cl、アンモニアNH4 のイオンを除去するためには、第1洗浄剤に水H2 O、第2洗浄剤にイソプロピルアルコールIPA、第3洗浄剤に窒素N2 ガスを採用すれば良い。
 複数種類の被洗浄物を除去したい場合、各被洗浄物を除去するために必要な洗浄剤が順次クラスター噴射され、また各被洗浄物に共通の洗浄剤を共通化できるように適宜選択すれば良い。例えば、レジストと、レジスト以外の有機物と、パーティクルとを除去したい場合、第1洗浄剤に有機溶剤、第2洗浄剤にオゾンO3 、第3洗浄剤に窒素N2 ガスを採用すれば良い。
 更に、処理室1の適宜箇所に排気部10が設けられ、各排気部10には、処理室1内部を例えば約10Paに減圧する真空ポンプ6が配管63を介して接続されている。洗浄剤のクラスター化は、洗浄剤の断熱膨張によって実現されるため、クラスター噴射ヘッド3の近傍が減圧状態にある方が好ましい。例えば、図1に示すように、クラスター噴射ヘッド3の近傍に第1の排気部10を設け、第2及び第3の排気部10,10を処理室1の側壁の下部に設けると良い。真空ポンプ6は、例えば、ターボ分子ポンプ61(TMP:Turbo Molecular Pump)と、その前段に設けられた粗引き用のドライ真空ポンプ662(DP:Dry Pump)とで構成されており、真空ポンプ6の動作は制御部7によって制御されている。
 図5は、基板に対するクラスター噴射と、イオンビーム照射との相異を示した説明図である。ここでは、アルゴン原子のイオンビーム及びクラスターを基板に照射又は噴射させた場合のアルゴン原子の挙動及び基板の状態を示したシミュレーションについて説明する。なお、洗浄剤分子のイオンビーム及びクラスターについてもアルゴン原子と同様の挙動を示すと考えられる。図5A、Bは、イオンビーム及びクラスターの照射及び噴射の前後における基板と、基板に照射されるアルゴンイオン及びアルゴンのクラスターを示している。図5Aでは、例えば、2000個のアルゴン原子が集まったイオンビームが図示されている。イオンビームは、20keVのエネルギーを有している。従って、2000個のアルゴン原子が集まったイオンビームを構成する個々のアルゴン原子は、10eVのエネルギーを有する。このように、高エネルギーのアルゴン原子が基板に衝突すると、図5Bに示すように、基板が物理的に損傷してしまうことが分かる。基板の損傷は、言うまでも無く、デバイスの不良及び性能の低下を招く。
 一方、図5Bの右図には、例えば、20000個のアルゴン原子が集まったクラスターが図示されている。クラスターも、イオンビームと同様、20keVのエネルギーを有している。従って、20000個のアルゴン原子が集まったイオンビームを構成する個々のアルゴン原子は、1eVのエネルギーを有する。このように、低エネルギーのアルゴン原子が基板に衝突すると、図5Bに示すように、基板を損傷すること無く、液体に近い高密度状態で基板表面に広がることが分かる。
 以上のシミュレーション結果より、洗浄剤のクラスターをウェハWに噴射した場合、洗浄剤分子は、ウェハWを損傷させること無く、ウェハW表面に液体のような高密度状態で広がっていると考えられる。洗浄剤分子は、液体に近い状態でウェハW表面に広がるため、洗浄剤と、被洗浄物との反応は、液相反応に近い状態であると考えられており、洗浄剤による被洗浄物の効果的な除去を可能にしていると予想されている。
<基板洗浄方法>
 次に、ウェハWから、上述の基板洗浄装置を用いて被洗浄物を除去する方法を説明する。
 図6乃至図9は、本発明の実施の形態に係る基板洗浄方法の一例を概念的に示した説明図である。図6に示すように、ウェハWには、第1乃至第3洗浄剤によってそれぞれ洗浄が可能な3種類の被洗浄物が付着している場合を説明する。まず、制御部7は、真空ポンプ6を駆動させて、処理室1の内部を約10Paに減圧させ、駆動機構43の動作を制御することによって、クラスター噴射ヘッド3をウェハWの一端側(例えば、図1中左端側)へ移送する。そして、制御部7は、第1乃至第3開閉弁31b、32b、33bを開状態にさせることによって、第1乃至第3洗浄剤を第1乃至第3ノズル31c,32c,33cへ供給させる。次いで、制御部7は、吸引ポンプ35を駆動させることによって、第1乃至第3洗浄剤のクラスター噴射によって除去された被洗浄物の吸引を開始する。また、制御部7は、駆動機構43の動作を制御することによって、クラスター噴射ヘッド3をウェハWの一端から他端側(例えば、図1中右端側)へ所定速度で移送させる。第1乃至第3ノズル31c,32c,33cへ供給された第1乃至第3洗浄剤は、処理室1内のウェハWに向けて噴射されるが、処理室1の内部が真空ポンプ6によって減圧されているため、噴射された第1乃至第3洗浄剤は、断熱膨張し、第1乃至第3洗浄剤分子が集合してなるクラスターが各別に生成される。生成された第1乃至第3洗浄剤のクラスターは、ウェハW表面に衝突する。
 クラスター噴射ヘッド3が移動し、第1洗浄剤のクラスターがウェハWに噴射された場合、図7に示すように、第1洗浄剤によって第1の被洗浄物が分解される。そして、除去された被洗浄物は、ウェハW上に噴射された第1洗浄剤のクラスターによって、第1吸引部31d側へ吹き飛ばされ、第1吸引部31dに吸引される。クラスター噴射ヘッド3が移動し、第1洗浄剤がクラスター噴射された部位に、図8に示すように第2洗浄剤のクラスターが噴射されると、第2の被洗浄物が分解され、第2吸引部32dに吸引される。更に、クラスター噴射ヘッド3が移動し、第3洗浄剤がクラスター噴射された部位に、図9に示すように第3洗浄剤のクラスターが噴射されると、第3の被洗浄物が分解され、第3吸引部33dに吸引される。以上のように、第1乃至第3洗浄剤のクラスターを噴射することによって、多様な被洗浄物を除去することができる。
 実施の形態に係る基板洗浄装置及び基板洗浄方法によれば、ウェット洗浄が有する技術的課題を回避しつつ、極低温エアロゾル照射手法に比べてより多様な汚染物を基板から除去することができる。
 特に多層構造のエッチング後には、多様な洗浄対象物がウェハWに付着しているため、本実施の形態に係る基板洗浄装置及び基板洗浄方法は有用である。
 また、有機ELのような多層デバイス製造装置のマスク洗浄にも適用することができる。有機ELの有機蒸着方法の一つに、リニアソース方式がある。この蒸着方法は、ガラス基板にマスクを設置し、複数の有機材料を連続的に蒸着させる。マスクは繰り返し使用するため、マスク表面には複数の有機材料が堆積する。この堆積物が成膜時に剥離し、基板を汚染する事を防ぐためには、定期的なマスク洗浄もしくは交換が必要である。そこで、本実施の形態に係る基板洗浄装置を前記多層デバイス製造装置に設け、複数の有機材料の除去に対応する洗浄剤のクラスターを連続的に噴射するように構成することによって、マスク洗浄が可能となり、効率的に有機ELデバイスを製造することが可能になる。
 また、第1乃至第3ノズル31c,32c,33cの移送及びクラスターの噴射によって、分解した被洗浄物を第1乃至第3吸引部31d,32d,33d側へ吹き飛ばし、吸引することができる。
 更に、クラスター噴射ヘッド3を移送させるように構成してあるため、ウェハWを移送させる場合に比べて、処理室1を小型化することができる。
 なお、実施の形態では、3つのノズル及び吸引部が設けられたクラスター照射ヘッドを説明したが、2つ又は4つ以上のノズル及び吸引部をクラスター照射ヘッドに備えても良い。
 図10は、4つの洗浄剤を用いて行った基板洗浄方法の一例を概念的に示した説明図である。図10Aは、エッチング工程前のウェハWを示している。ウェハWには、絶縁層、ゲート及びレジストが順に積層され、多層構造を形成している。図10Bは、図10Aに示したウェハをエッチングした後のウェハWを示している。多層構造のエッチング後においては、有機系残渣、メタル系残渣、その他のパーティクルがウェハWに付着する。そして、4つのノズル及び吸引部をクラスター照射ヘッドに備えた基板洗浄装置において、第1のノズルに有機溶剤、第2のノズルにオゾン、第3のノズルに塩酸、第4のノズルに窒素N2 ガスを供給するように構成する。まず、有機溶剤のクラスター噴射によって、有機系の被洗浄物が分解され、次にオゾンのクラスター噴射によってレジスト以外の有機物が分解される。オゾンのクラスター噴射に続いて、塩酸のクラスター噴射によってメタルも分解される。最後に窒素N2 ガスを噴射することによって、分解された被洗浄物がウェハ上から除去される。このように構成された基板処理装置によれば、レジスト、有機系残渣、メタル系残渣及びパーティクルをウェハWから除去することができる。
 一方、洗浄剤と、被洗浄剤との反応を促進させるべく、下記の構成部を追加しても良い。例えば、ウェハWに電子線を照射する電子線照射部を基板洗浄装置に備えると良い。また、洗浄剤のクラスターをイオン化するイオン化手段を基板洗浄装置に備えると良い。更に、ウェハWを加熱する加熱手段を基板洗浄装置に備えると良い。加熱手段は、例えば基板支持台に設けられたヒータ、ウェハWに赤外線を照射する赤外線ランプ等で構成される。更にまた、洗浄剤と、被洗浄剤との反応を促進させるガスを処理室1に供給する反応促進ガス供給部を処理室1に備えると良い。
 また、実施の形態では、1本のノズルアームに複数のノズルを設けた構成を説明したが、複数のノズルアームを備え、各ノズルアームに複数のノズルを設けるように構成しても良いし、各ノズルアームに1種類の洗浄剤を噴射するノズルを設けるように構成することもできる。
(変形例1)
 変形例1に係る基板洗浄装置は、洗浄剤のクラスター噴射によって分解した被洗浄物を搬送する搬送ガスによって第1乃至第3吸引部へ搬送するように構成されている。変形例1に係る基板洗浄装置は、第1乃至第3ノズル及び搬送ガスに係る構成のみが上述の実施の形態と異なるため、以下では主に上記相異点について説明する。
 図11は、変形例1に係る基板洗浄装置の一構成例を模式的に示した側断面図、図12は、変形例1に係るクラスター噴射ヘッド203の一構成例を模式的に示した側断面図である。変形例1に係る基板洗浄装置を構成するクラスター噴射ヘッド203の第1乃至第3ノズル231c,232c,233cは、洗浄剤の噴射方向がウェハWの略法線方向になるようにノズルアーム42によって支持されている。図10に示すパターンが形成されたウェハWに対して略垂直に洗浄剤をクラスター噴射した場合、斜め方向に噴射する場合に比べてより洗浄効果を上昇させることができる。
 つまり、図3に示す実施形態では、ウェハWの非法線方向に噴射するように第1乃至第3ノズル31c,32c,33cが配置されているが、ウェハW上に形成されたパターンなどによって、局所的に洗浄剤が遮られてクラスターが衝突しない箇所が発生する虞がある。そこで、図12に示すように、噴射方向がウェハWの法線方向になるように第1乃至第3ノズル231c,232c,233cを配置することによって、局所的に洗浄ガスが遮られるのを防止して、クラスターが衝突しない箇所が発生するのを防止することができる。
 また、処理室1の側壁の適宜箇所には、分解された被洗浄物を第1乃至第3吸引部31d,32d,33d側へ搬送するための搬送ガスをウェハW表面に送出するための搬送ガス送出口13が設けられている。例えば、テーブル部21よりも上方に設けられた排気部10に対向する部位に搬送ガス送出口13を設けると良い。このように構成した場合、搬送ガスがウェハWの表面を流れ、処理室1外に排気され、分解された被洗浄物がウェハW表面に再付着するのを抑制することができる。排気部10には、アルゴンガス、窒素ガス等の搬送ガスを供給する搬送ガス供給部83に接続された搬送ガス供給管81が接続されている。
 搬送ガス供給部83には、開閉弁82が設けられている。開閉弁82の開閉動作は、制御部7によって制御される。開閉弁82の開閉タイミングは特に限定されないが、例えば、制御部7が第1乃至第3洗浄剤開閉弁及び開閉弁82を交互に開閉させるように構成すると良い。第1乃至第3洗浄剤のクラスター噴射と、クラスター噴射によって分解した被洗浄物の搬送除去とを交互に行うことによって、ウェハWに対するクラスターの噴射が搬送ガスの流れによって阻害されることを避けることができ、効果的に被洗浄物を除去することができる。もちろん、搬送ガスの流量を最適化することによって、洗浄剤のクラスター照射と、搬送ガスの送出を並行させても良い。
 変形例1に係る基板洗浄装置及び基板洗浄方法によれば、洗浄剤をウェハWに対して略垂直に噴射させることによって、より効果的に被洗浄物を除去することができ、また、搬送ガスをウェハWに送出することによって、分解した被洗浄物を効果的に吸引することができる。
 なお、変形例1では、搬送ガス送出口と、第1乃至第3吸引部との両方を備える構成を説明したが、第1乃至第3吸引部を廃し、搬送ガス送出口から送出される搬送ガスによって、被洗浄物を外部へ搬送するように構成しても良い。
(変形例2)
 変形例2に係る基板洗浄装置は、クラスター噴射ヘッドを処理室に固定し、ウェハ側を移送させるように構成されている。変形例2に係る基板洗浄装置は、斯かる構成のみが上述の実施の形態と異なるため、以下では主に上記相異点について説明する。
 図13は、変形例2における、基板洗浄装置の一構成例を模式的に示した側断面図である。変形例2に係る基板洗浄装置は、クラスター噴射ヘッド3が天板の略中央部に固定された処理室301を備える。処理室301の底部には、テーブル部21を水平方向へ移送させる駆動機構343が設けられている。駆動機構343は、少なくともウェハWの全面をクラスター噴射ヘッド3で走査できるような範囲でテーブル部21を移送させることができる。また、処理室301は、ウェハWの全面をクラスター噴射ヘッド3で走査できるような範囲でテーブル部21を移送させるために必要な横幅を有している。なお、駆動機構343は、基板及びクラスター噴射手段を、被洗浄物が付着した基板の面に沿って相対移動させる手段に対応する。
 変形例2にあっては、クラスター噴射ヘッド3は処理室301の天板に固定されているため、実施の形態1に比べて、駆動機構343からのパーティクルでウェハWが汚染される虞を低減することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味では無く、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 処理室(収容体)
 2 ウェハ支持台
 3 クラスター噴射ヘッド
 6 真空ポンプ
 7 制御部
 83 搬送ガス供給部
 13 搬送ガス送出口
 31a 第1洗浄剤供給管
 32a 第2洗浄剤供給管
 33a 第3洗浄剤供給管
 31b 第1開閉弁
 32b 第2開閉弁
 33b 第3開閉弁
 31c 第1ノズル(クラスター噴射手段)
 32c 第2ノズル(クラスター噴射手段)
 33c 第3ノズル(クラスター噴射手段)
 31d 第1吸引部(吸引手段)
 32d 第2吸引部(吸引手段)
 33d 第3吸引部(吸引手段)
 34 吸引管
 35 吸引ポンプ
 41 ガイドレール
 42 ノズルアーム(支持部材)
 43 駆動機構
 51 第1洗浄剤供給部(洗浄剤収容部)
 52 第2洗浄剤供給部(洗浄剤収容部)
 53 第3洗浄剤供給部(洗浄剤収容部)
 81 搬送ガス供給管
 82 開閉弁
 W ウェハ

Claims (10)

  1.  被洗浄物が付着した基板を洗浄する基板洗浄装置において、
     洗浄剤分子が複数集合してなるクラスターを前記基板に噴射するクラスター噴射手段と、
     前記洗浄剤分子のクラスターを噴射することによって除去された被洗浄物を吸引する吸引手段と、
     前記基板及び前記クラスター噴射手段を、被洗浄物が付着した基板の面に沿って相対移動させる手段と
     を備えることを特徴とする基板洗浄装置。
  2.  前記基板を収容する収容体と、
     該収容体の内部を減圧する真空ポンプと、
     洗浄剤を収容する洗浄剤収容部と
     を備え、
     前記クラスター噴射手段は、
     前記洗浄剤収容部から前記収容体へ前記洗浄剤を供給する供給路と、
     該供給路を通じて供給された洗浄剤を噴射する複数のノズルと
     を備え、
     前記複数のノズルは並設されている
     ことを特徴とする請求項1に記載の基板洗浄装置。
  3.  前記吸引手段は複数の吸引部を備え、
     複数の前記吸引部は各ノズルに並設されている
     ことを特徴とする請求項2に記載の基板洗浄装置。
  4.  被洗浄物が付着した基板を洗浄する基板洗浄装置において、
     洗浄剤分子が複数集合してなるクラスターを前記基板に夫々噴射するクラスター噴射手段と、
     前記洗浄剤分子のクラスターを噴射することによって除去された被洗浄物を外部へ搬送する搬送ガスを基板に送出する手段と、
     前記基板及び前記クラスター噴射手段を、被洗浄物が付着した基板の面に沿って相対移動させる手段と
     を備えることを特徴とする基板洗浄装置。
  5.  前記基板を収容する収容体と、
     該収容体の内部を減圧する真空ポンプと、
     洗浄剤を収容する洗浄剤収容部と
     を備え、
     前記クラスター噴射手段は、
     前記洗浄剤収容部から前記収容体へ前記洗浄剤を供給する供給路と、
     該供給路を通じて供給された洗浄剤を噴射する複数のノズルと
     を備え、
     前記複数のノズルは並設されている
     ことを特徴とする請求項4に記載の基板洗浄装置。
  6.  前記ノズルの噴射口断面は線状であることを特徴とする請求項2、3又は5に記載の基板洗浄装置。
  7.  前記洗浄剤の噴射方向が前記基板の非法線方向になるように複数の前記ノズルを支持する支持部材を備える
     ことを特徴とする請求項2、3、5又は6のいずれか一つに記載の基板洗浄装置。
  8.  前記複数の洗浄剤分子は、
     有機溶媒、フッ化水素、塩酸、オゾン、アンモニア過酸化水素、水、イソプロピルアルコール、窒素及びアルゴンからなる群より選択される物質の分子である
     ことを特徴とする請求項1乃至請求項7のいずれか一つに記載の基板洗浄装置。
  9.  被洗浄物が付着した基板を洗浄する基板洗浄方法において、
     洗浄剤分子が複数集合してなるクラスターを前記基板に噴射する工程と、
     前記洗浄剤分子のクラスターを噴射することによって除去された被洗浄物を吸引する工程と、
     クラスターの噴射箇所を変更する工程と
     を有することを特徴とする基板洗浄方法。
  10.  被洗浄物が付着した基板を洗浄する基板洗浄方法において、
     洗浄剤分子が複数集合してなるクラスターを前記基板に噴射する工程と、
     前記洗浄剤分子のクラスターを噴射することによって除去された被洗浄物を外部へ搬送する搬送ガスを基板に送出する工程と、
     クラスターの噴射箇所を変更する工程と
     を有することを特徴とする基板洗浄方法。
PCT/JP2011/056167 2010-03-18 2011-03-16 基板洗浄装置及び基板洗浄方法 WO2011115155A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180010024.XA CN102770942B (zh) 2010-03-18 2011-03-16 基板清洗装置和基板清洗方法
KR1020127027213A KR101497199B1 (ko) 2010-03-18 2011-03-16 기판 세정 장치 및 기판 세정 방법
US13/617,530 US9099298B2 (en) 2010-03-18 2012-09-14 Substrate cleaning apparatus and substrate cleaning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010062770A JP5623104B2 (ja) 2010-03-18 2010-03-18 基板洗浄装置及び基板洗浄方法
JP2010-062770 2010-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/617,530 Continuation US9099298B2 (en) 2010-03-18 2012-09-14 Substrate cleaning apparatus and substrate cleaning method

Publications (1)

Publication Number Publication Date
WO2011115155A1 true WO2011115155A1 (ja) 2011-09-22

Family

ID=44649239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056167 WO2011115155A1 (ja) 2010-03-18 2011-03-16 基板洗浄装置及び基板洗浄方法

Country Status (5)

Country Link
US (1) US9099298B2 (ja)
JP (1) JP5623104B2 (ja)
KR (1) KR101497199B1 (ja)
CN (1) CN102770942B (ja)
WO (1) WO2011115155A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022389A (ja) * 2012-07-12 2014-02-03 Toho Kasei Kk リフトオフ装置およびリフトオフ方法
WO2014049959A1 (ja) * 2012-09-28 2014-04-03 東京エレクトロン株式会社 基板洗浄方法、基板洗浄装置及び真空処理システム
JP2018182277A (ja) * 2017-04-11 2018-11-15 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited アライメントマークからフォトレジスト層を除去する装置および方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776397B2 (ja) * 2011-07-19 2015-09-09 東京エレクトロン株式会社 洗浄方法、処理装置及び記憶媒体
CA2856196C (en) 2011-12-06 2020-09-01 Masco Corporation Of Indiana Ozone distribution in a faucet
KR101426840B1 (ko) * 2012-06-25 2014-08-06 주식회사 엠엠테크 기판 처리 장치
JP5945178B2 (ja) * 2012-07-04 2016-07-05 東京エレクトロン株式会社 ガスクラスター照射機構およびそれを用いた基板処理装置、ならびにガスクラスター照射方法
JP6311236B2 (ja) 2013-08-20 2018-04-18 東京エレクトロン株式会社 基板洗浄装置
CN103474380B (zh) * 2013-09-18 2015-12-30 镇江艾科半导体有限公司 晶圆电性测试墨点清除器
JP6230930B2 (ja) * 2014-02-17 2017-11-15 東京エレクトロン株式会社 半導体装置の製造方法
KR102272661B1 (ko) * 2014-10-02 2021-07-06 삼성디스플레이 주식회사 기판 세정 장치
KR20160065226A (ko) * 2014-11-07 2016-06-09 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
CN104826831B (zh) * 2015-05-15 2016-10-19 北京七星华创电子股份有限公司 一种低温药液清洗装置
WO2017112795A1 (en) 2015-12-21 2017-06-29 Delta Faucet Company Fluid delivery system including a disinfectant device
CN106119972A (zh) * 2016-06-29 2016-11-16 北京华进创威电子有限公司 一种控制GaSb单晶衬底表面颗粒度的方法
JP7065076B2 (ja) * 2016-08-12 2022-05-11 インプリア・コーポレイション 金属含有レジストからのエッジビード領域における金属残留物を低減する方法
KR102001738B1 (ko) * 2017-12-11 2019-07-17 서한나 3차원 이동구조를 갖는 이온 발생장치
WO2019246245A1 (en) * 2018-06-20 2019-12-26 Veeco Precision Surface Processing Llc System and method for self-cleaning wet treatment process
CN111451190A (zh) * 2019-01-21 2020-07-28 宁波江丰电子材料股份有限公司 靶材的清洗方法
JP2021048336A (ja) * 2019-09-20 2021-03-25 三菱電機株式会社 処理液生成方法、処理液生成機構、半導体製造装置及び半導体製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137797A (ja) * 1999-11-17 2001-05-22 Dasan C & I Co Ltd クラスタを利用した乾式洗浄装置及びその方法
JP2007301442A (ja) * 2006-05-09 2007-11-22 Matsushita Electric Ind Co Ltd 粉塵除去装置
JP2008135681A (ja) * 2006-10-25 2008-06-12 Sekisui Chem Co Ltd 表面処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325894A (ja) 1999-05-17 2000-11-28 Tokyo Electron Ltd 基板洗浄装置
JP4570008B2 (ja) * 2002-04-16 2010-10-27 東京エレクトロン株式会社 液処理装置および液処理方法
JP4343031B2 (ja) * 2004-05-31 2009-10-14 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP4397299B2 (ja) * 2004-07-30 2010-01-13 大日本スクリーン製造株式会社 基板処理装置
JP4486472B2 (ja) * 2004-10-26 2010-06-23 東京エレクトロン株式会社 レーザー処理装置及びその方法
US20070051389A1 (en) * 2005-09-02 2007-03-08 Jalal Ashjaee Method and apparatus for substrate rinsing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137797A (ja) * 1999-11-17 2001-05-22 Dasan C & I Co Ltd クラスタを利用した乾式洗浄装置及びその方法
JP2007301442A (ja) * 2006-05-09 2007-11-22 Matsushita Electric Ind Co Ltd 粉塵除去装置
JP2008135681A (ja) * 2006-10-25 2008-06-12 Sekisui Chem Co Ltd 表面処理装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022389A (ja) * 2012-07-12 2014-02-03 Toho Kasei Kk リフトオフ装置およびリフトオフ方法
WO2014049959A1 (ja) * 2012-09-28 2014-04-03 東京エレクトロン株式会社 基板洗浄方法、基板洗浄装置及び真空処理システム
US9960056B2 (en) 2012-09-28 2018-05-01 Tokyo Electron Limited Substrate cleaning method, substrate cleaning apparatus and vacuum processing system
JP2018182277A (ja) * 2017-04-11 2018-11-15 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited アライメントマークからフォトレジスト層を除去する装置および方法
US11747742B2 (en) 2017-04-11 2023-09-05 Visera Technologies Company Limited Apparatus and method for removing photoresist layer from alignment mark

Also Published As

Publication number Publication date
KR101497199B1 (ko) 2015-02-27
JP5623104B2 (ja) 2014-11-12
US9099298B2 (en) 2015-08-04
KR20120135423A (ko) 2012-12-13
US20130008470A1 (en) 2013-01-10
JP2011198934A (ja) 2011-10-06
CN102770942B (zh) 2016-03-23
CN102770942A (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5623104B2 (ja) 基板洗浄装置及び基板洗浄方法
JP5815967B2 (ja) 基板洗浄装置及び真空処理システム
KR101735972B1 (ko) 기판 세정 방법, 기판 세정 장치 및 진공 처리 시스템
JP5490563B2 (ja) 基板洗浄方法及び基板洗浄装置
JP2013026327A (ja) 洗浄方法、処理装置及び記憶媒体
US20040144401A1 (en) Method of and apparatus for removing contaminants from surface of a substrate
JP2003273078A (ja) プラズマ処理装置の洗浄方法、洗浄方法及びプラズマ処理装置
JP2008186864A (ja) ゲートバルブの洗浄方法及び基板処理システム
JP2001137797A (ja) クラスタを利用した乾式洗浄装置及びその方法
KR102541747B1 (ko) 기판 처리 장치의 챔버 클리닝 방법
JP2021514113A (ja) 制御可能なビームサイズの処理噴霧を有する小型電子機器処理システム
WO2011115157A1 (ja) レジスト除去装置及びレジスト除去方法
JP2010177543A (ja) 基板処理方法及び基板処理装置
KR100743275B1 (ko) 플라즈마 처리 방법 및 후처리방법
KR20010060180A (ko) 실리콘 웨이퍼의 표면처리방법
JP2012235130A (ja) アッシング方法およびアッシング装置
JP4405236B2 (ja) 基板処理方法および基板処理装置
KR100443905B1 (ko) 화학 기상 증착장치
WO2023090290A1 (ja) 半導体ウエハ用ドライアイス洗浄装置及び半導体ウエハの洗浄方法
JP2005217106A (ja) プラズマcvd装置及びクリーニング方法及び成膜方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010024.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127027213

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11756339

Country of ref document: EP

Kind code of ref document: A1