WO2011115154A1 - 成形材料及びその製造方法 - Google Patents

成形材料及びその製造方法 Download PDF

Info

Publication number
WO2011115154A1
WO2011115154A1 PCT/JP2011/056166 JP2011056166W WO2011115154A1 WO 2011115154 A1 WO2011115154 A1 WO 2011115154A1 JP 2011056166 W JP2011056166 W JP 2011056166W WO 2011115154 A1 WO2011115154 A1 WO 2011115154A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion
plant fiber
modified
molding material
microfibrillated plant
Prior art date
Application number
PCT/JP2011/056166
Other languages
English (en)
French (fr)
Inventor
矢野 浩之
唯史 橋本
佐藤 明弘
アントニオ ノリオ ナカガイト
Original Assignee
国立大学法人京都大学
日本製紙株式会社
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 日本製紙株式会社, Dic株式会社 filed Critical 国立大学法人京都大学
Priority to CA2793818A priority Critical patent/CA2793818C/en
Priority to CN201180013979.0A priority patent/CN102892825B/zh
Priority to US13/635,785 priority patent/US9327426B2/en
Priority to EP11756338.7A priority patent/EP2548917B1/en
Publication of WO2011115154A1 publication Critical patent/WO2011115154A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L99/00Compositions of natural macromolecular compounds or of derivatives thereof not provided for in groups C08L89/00 - C08L97/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2311/00Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
    • B29K2311/10Natural fibres, e.g. wool or cotton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/12Pulp from non-woody plants or crops, e.g. cotton, flax, straw, bagasse
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres

Definitions

  • the present invention relates to a molding material containing an anion-modified microfibrillated plant fiber and a thermosetting resin, and a method for producing the same.
  • Patent Document 1 pulp and / or cellulosic fibers subjected to a simple pretreatment of damaging the primary wall and the secondary wall outer layer are melt kneaded with a resin component in the presence of a cellulose amorphous region swelling agent.
  • a fiber component is defibrated to form microfibrils, and a method of uniformly finely dispersing in a resin component is disclosed.
  • Patent Document 2 discloses a high-strength material composed of cellulose microfibrils having a solid content concentration of 65 to 100% by weight and additives of 0 to 35% by weight. Further, as methods for obtaining microfibrils by making pulp fine fibers, methods such as medium stirring mill treatment, vibration mill treatment, treatment with a high-pressure homogenizer, and stone mill type grinding treatment from pulp are disclosed. Further, examples of the additive include thermosetting resins such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, diallyl phthalate resin, polyurethane resin, silicon resin, and polyimide resin.
  • thermosetting resins such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, diallyl phthalate resin, polyurethane resin, silicon resin, and polyimide resin.
  • Patent Document 3 exemplifies a conventional fiber reinforced plastic using a lignocellulose fiber in which a cell wall is deformed and a cell lumen as a hollow portion disappears as a reinforcing material.
  • Patent Document 4 discloses a microfibrous cellulose having a specific fiber length that is microfibrillated using a homogenizer (such as a high-pressure homogenizer) so that even if the fiber diameter is small, the fiber length is long and water retention is excellent. Is disclosed. However, Patent Document 4 relates to microfiber cellulose useful for special paper requiring strength, filter material, and the like, and a method for producing the same, and a non-woven sheet composed of microfiber cellulose. Is not described.
  • a homogenizer such as a high-pressure homogenizer
  • Patent Documents 1 to 4 since microfibrillated plant fibers are obtained by mechanical processing such as a twin-screw kneader, a stone mill type grinding process, a PFI milling process, and a high-pressure homogenizer process, all the plant fibers are microfibrillated. For this purpose, not only a large amount of energy is required, but also fiber cutting occurs in the process. Therefore, the performance inherent to the microfibrillated plant fiber has not been sufficiently extracted.
  • Patent Document 5 an oxyl compound such as 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (TEMPO) is reacted with a natural cellulose raw material together with a co-oxidant to obtain a primary C6-position of cellulose. It is disclosed that fine cellulose fibers having a number average fiber diameter of 150 nm or less can be obtained by a relatively mild mechanical treatment by electrostatic repulsion by oxidizing a part of hydroxyl groups to carboxyl groups via aldehydes. Has been. In Patent Document 5, there is a description that it can be applied as a nanofiller for a composite material, but there is no specific description of creating a composite material with a resin, and the obtained nanofiber dispersion is 0.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxyl
  • Example 1 It is described in Example 1 that it is transparent and slightly viscous at 1% by weight, and it has a great deal of energy for dehydration and the like in combination with the resin, and is modified in the mixing step with the resin. There is a problem that the group or carboxyl group tends to induce thermal degradation of the microfibrillated plant fiber at the time of thermosetting resin molding.
  • Patent Document 6 discloses a method of partially esterifying a part of a hydroxyl group with a polybasic acid anhydride.
  • Cellulose in which a part of the hydroxyl group is half-esterified with a polybasic acid anhydride has a problem that the modified part has a side reaction such as hydrolysis because the modified part has an ester bond. Therefore, when these modified cellulose fibers are used as a resin molding material, there is still room for improvement from the viewpoint of further improving the strength.
  • a cellulose derivative in which water retention and redispersibility in water are improved by converting the cellulose fiber to carboxymethyl ether and further microfibrillating.
  • the mechanical pulverization and grinding which are methods used for microfibrillation, are carried out by dry method or wet method using non-swelling solvent as a medium, and nano-defibration of plant fibers is insufficient Therefore, although a good material can be obtained in terms of water retention and water dispersibility, there is still room for improvement as a reinforcing agent for resin molding materials.
  • JP 2005-042283 A Japanese Patent Laid-Open No. 2003-201695 Japanese Patent Laying-Open No. 2005-067064 JP 2007-231438 A JP 2008-1728 A JP 2009-293167 A JP-A-10-251301
  • the present invention relates to an anion-modified microfibrillated plant fiber used for obtaining a thermosetting resin molding material having excellent mechanical strength, a method for producing the same, and the anion-modified microfibrillated plant fiber and a thermosetting resin. It aims at providing the molding material to contain and its manufacturing method.
  • microfibrillated plant fibers when producing microfibrillated plant fibers from plant fibers such as wood pulp, the starting materials and fibrillation methods are devised to promote nanofibrosis, or the raw fibers are chemically treated to provide water retention. It is known to increase.
  • the dispersibility of the fibers and the degree of surface damage differ depending on the method of fibrillation and chemical treatment, and microfibrils are used as reinforcing agents in resin molding materials.
  • chemical plant fibers When chemical plant fibers are used, the physical properties such as strength are greatly different. The present inventor has found that microfibrillated plant fibers can be easily obtained from a material containing plant fibers, and that the resin molding material containing the obtained microfibrillated plant fibers is excellent in terms of strength.
  • the present invention is an invention that has been completed based on these findings and further earnest studies. That is, the present invention relates to the microfibrillated plant fiber for thermosetting resin molding material described in the following items 1 to 15, the method for producing the microfibrillated plant fiber, the molding material containing the plant fiber and the thermosetting resin, and the A method for producing a molding material is provided.
  • Item 1 In the presence of a base, formula (I): X— (CH 2 ) n —COOH (I) (In formula (I), X represents a halogen atom, and n represents 1 or 2)
  • Item 2 In the presence of a base, a portion of the hydroxyl group in the anhydroglucose unit is represented by formula (I): X— (CH 2 ) n —COOH (I) (Wherein X and n are the same as above) Reacts with —O— (CH 2 ) n —COOR (II) (In formula (II), R represents an alkali metal) Item 2.
  • the molding material according to Item 1 which is an anion-modified microfibrillated plant fiber modified into a glycerin.
  • Item 3 The molding material according to Item 1 or 2, wherein the anion-modified microfibrillated plant fiber is a microfibrillated plant fiber having a carboxyalkyl group.
  • Item 4. The molding material according to Item 3, wherein the carboxyalkyl group is a carboxymethyl group.
  • Item 5 The molding material according to any one of Items 1 to 4, obtained by impregnating a sheet of anion-modified microfibrillated plant fiber with a thermosetting resin.
  • Item 6. The molding material according to any one of Items 1 to 5, wherein the thermosetting resin is an unsaturated polyester resin.
  • Item 7 Formula (1) per anhydroglucose unit in anion-modified microfibrillated plant fiber: X— (CH 2 ) n —COOH (I) (Wherein X and n are the same as above) Item 7.
  • Item 8. Plant fiber and formula (I): X— (CH 2 ) n —COOH (I) (Wherein X and n are the same as above) A step of reacting the carboxylic acid represented by: (2) a step of defibrating the anion-modified plant fiber obtained in step (1) in the presence of water, and (3) anion-modified microfibrillated plant fiber and thermosetting property obtained in step (2).
  • Item 9 The molding material according to Item 8, wherein the step (3) is a step of forming the anion-modified microfibrillated plant fiber obtained in the step (2) into a sheet shape and impregnating the formed sheet into a thermosetting resin. Manufacturing method.
  • Item 10 The method for producing a molding material according to Item 8 or 9, wherein the defibrating process in the step (2) is a mechanical defibrating process.
  • Item 12 Formula (I) per anhydroglucose unit in anion-modified microfibrillated plant fibers: X— (CH 2 ) n —COOH (I) (Wherein X and n are the same as above) Item 12.
  • Item 13 The anion-modified microfibrillated plant fiber for a thermosetting resin molding material according to Item 11 or 12, which is a sheet.
  • Item 14 (1) Plant fiber and formula (I): X— (CH 2 ) n —COOH (I) (Wherein X and n are the same as above) A step of reacting the carboxylic acid represented by formula (1) and / or a salt thereof in the presence of a base to anion-modify the plant fiber, and (2) anion-modified plant fiber obtained by the step (1) Item 14.
  • Item 15 A molded product obtained by curing the molding material according to any one of Items 1 to 7.
  • the molding material containing the anion-modified microfibrillated plant fiber and the thermosetting resin of the present invention has the formula (I): X— (CH 2 ) n —COOH (I) (In formula (I), X represents a halogen atom, and n represents 1 or 2) It is anion-modified by the carboxylic acid and / or its salt represented by these.
  • cellulose microfibrils single cellulose nanofibers
  • This is the basic skeletal material (basic element) of plants.
  • the cellulose microfibrils gather to form a plant skeleton.
  • “microfibrillated plant fiber” is obtained by unraveling a material (for example, wood pulp) containing plant fiber to a nanosize level.
  • the fiber diameter of the anion-modified microfibrillated plant fiber of the present invention is usually about 4 to 200 nm, preferably about 4 to 150 nm, and particularly preferably about 4 to 100 nm.
  • the average value of the fiber diameter of the anion modified microfibrillated plant fiber of the present invention is an average value when measuring at least 50 or more of the anion modified microfibrillated plant fiber in the field of view of the electron microscope.
  • Anion-modified microfibrillated plant fibers can be produced, for example, by a method comprising the following steps (1) and (2).
  • Step (1) In the presence of cellulose fiber and a base, the formula (I): X— (CH 2 ) n —COOH (I) A step of reacting the carboxylic acid and / or salt thereof represented by Step (2): A step of defibrating the anion-modified cellulose fiber obtained in step (1) in the presence of water.
  • the material containing cellulose fibers as the raw material includes natural cellulose raw materials such as wood, bamboo, hemp, jute, kenaf, cotton, beet, agricultural waste, and cloth. Examples thereof include pulp obtained, cellulose fibers subjected to mercerization, and regenerated cellulose fibers such as rayon and cellophane. In particular, pulp is a preferable raw material.
  • Examples of the pulp include chemical pulp (kraft pulp (KP) and sulfite pulp (SP)), semi-chemical pulp (SCP) obtained by pulping plant raw materials chemically or mechanically, or a combination of both. ), Semi-ground pulp (CGP), chemimechanical pulp (CMP), groundwood pulp (GP), refiner mechanical pulp (RMP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), and these plant fibers
  • CGP Semi-ground pulp
  • CMP chemimechanical pulp
  • GP groundwood pulp
  • RMP refiner mechanical pulp
  • TMP thermomechanical pulp
  • CMP chemithermomechanical pulp
  • CMP chemithermomechanical pulp
  • these plant fibers Preferred examples include deinked waste paper pulp, corrugated waste paper pulp, and magazine waste paper pulp as the main component.
  • These raw materials can be delignified or bleached as necessary to adjust the amount of lignin in the plant fiber.
  • NUKP coniferous unbleached kraft pulps
  • NOKPs softwood oxygen-bleached unbleached kraft pulps
  • NBKP Softwood bleached kraft pulp
  • the lignin content in the cellulose fiber-containing material as a raw material is usually about 0 to 40% by weight, preferably about 0 to 10% by weight.
  • Anion modification reaction in step (1) (in the presence of a hydroxyl group and a base in a material containing cellulose fiber, formula (I): X— (CH 2 ) n —COOH (I)
  • a material containing cellulose fibers is formed by bonding a large number of anhydroglucose units, and each anhydroglucose unit has a plurality of hydroxyl groups.
  • carboxylic acid represented by the formula (I) and / or a salt thereof that act (react) on the cellulose fiber-containing material include monochloroacetic acid, 3-chloropropionic acid, sodium monochloroacetate, and 3- Sodium chloropropionate is used, and sodium hydroxide is generally used as the base.
  • monochloroacetic acid or sodium monochloroacetate is used, a cellulose fiber having a carboxymethyl group is obtained.
  • reaction solvent in the reaction between the cellulose fiber and the carboxylic acid represented by the above formula (I) and / or a salt thereof it is preferable to carry out in the presence of water and / or an alcohol having 1 to 4 carbon atoms.
  • water tap water, purified water, ion exchange water, pure water, industrial water, or the like may be used.
  • specific examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, and n-butanol.
  • Water and alcohol having 1 to 4 carbon atoms can be used alone or in combination. In the case of using a mixture of water and an alcohol having 1 to 4 carbon atoms, the composition ratio is appropriately adjusted.
  • the above formula (I) per anhydroglucose unit is used. It is desirable to adjust the degree of substitution with the carboxylic acid and / or its salt to be 0.01 or more and less than 0.4.
  • the temperature at which the material containing cellulose fiber, the base and the carboxylic acid represented by the formula (I) and / or the salt thereof is allowed to act (react) is preferably about 50 to 80 ° C.
  • the temperature is preferably about 60 to 80 ° C, more preferably about 70 to 80 ° C.
  • the time for allowing the material containing cellulose fibers to react with the carboxylic acid represented by the formula (I) and / or its salt is preferably about 10 minutes to 2 hours, preferably about 30 minutes to 2 hours. Is more preferable, and about 1 to 2 hours is more preferable.
  • the amount of the cellulose fiber-containing material and the carboxylic acid represented by the formula (I) and / or a salt thereof is 10 to 1000 weights with respect to 100 parts by weight of the cellulose fiber-containing material.
  • the amount of the base used is preferably about 1 to 7 parts by weight, more preferably about 1 to 5 parts by weight, and further preferably about 1 to 3 parts by weight with respect to 100 parts by weight of water used for the reaction.
  • the amount of the reaction solvent used is preferably about 100 to 50000 parts by weight, more preferably about 100 to 10000 parts by weight, and further preferably about 100 to 500 parts by weight with respect to 100 parts by weight of the cellulose fiber-containing material. .
  • the anion-modified cellulose fiber thus obtained penetrates the base and the carboxylic acid represented by the formula (I) and / or a salt thereof to the inside of the cellulose, and is sufficiently anionized to the inside of the material containing the cellulose fiber. It is considered that defibration is likely to proceed because the electrical repulsion effect between anions increases.
  • the anion-modified cellulose fiber-containing material obtained in step (1) may be used as it is in step (2), but remains in the reaction system after anion-modified in step (1). It is preferable to neutralize components such as a base and then subject to the step (2). In addition to the neutralization step, washing and purification may be performed by a conventional method. Moreover, you may increase / decrease the quantity of water so that it may become a fiber density
  • a step of drying an anion-modified cellulose fiber-containing material should not be provided between step (1) and step (2).
  • the anion-modified cellulose fiber-containing material is dried in the step (1), even if the dried product is defibrated in the subsequent step (2), the high strength that has been defibrated to the nano level as in the present invention. It is difficult to obtain microfibrillated plant fibers having.
  • the cellulose fiber-containing material once subjected to the drying step is strongly agglomerated because adjacent fibers are connected by strong hydrogen bonds (for example, in paper and pulp, The agglomeration of fibers during drying is referred to as Hornification.) It is very difficult to defibrate once aggregated fibers with mechanical force. Therefore, no matter how mechanically this is pulverized, only micron-order particles are formed.
  • the anion-modified cellulose fiber-containing material in step (1) is defibrated in the presence of water in step (2).
  • a known method can be used as a method for defibrating the cellulose fiber-containing material.
  • an aqueous suspension or slurry of the cellulose fiber-containing material is machined by a refiner, a high-pressure homogenizer, a grinder, a uniaxial or multiaxial kneader, or the like.
  • a method of defibration by grinding or beating can be used.
  • it is preferable to perform a combination of the above-described defibrating methods such as performing a uniaxial or multiaxial kneader treatment after the refiner treatment.
  • step (2) it is preferable to fibrillate the cellulose fiber-containing material that has been anion-modified in step (1) with a uniaxial or multiaxial kneader (hereinafter sometimes simply referred to as “kneader”).
  • the kneading machine includes a uniaxial kneader and a biaxial or more multi-axial kneader, and any of them may be used in the present invention.
  • the use of a multiaxial kneader is preferable because the dispersibility of the microfibrillated plant fiber can be further improved.
  • a biaxial kneader is preferable from the viewpoint of availability.
  • the lower limit of the peripheral speed of the screw of the uniaxial or multiaxial kneader is usually about 45 m / min.
  • the lower limit of the peripheral speed of the screw is preferably about 60 m / min, and particularly preferably about 90 m / min.
  • the upper limit value of the peripheral speed of the screw is usually about 200 m / min.
  • the upper limit of the peripheral speed of the screw is preferably about 150 m / min, particularly preferably about 100 m / min.
  • L / D (ratio of screw diameter D to kneading part length L) of the kneader used in the present invention is usually about 15 to 60, preferably about 30 to 60.
  • the defibration time in a uniaxial or multiaxial kneader varies depending on the type of cellulose fiber-containing material, the L / D of the kneader, etc., but is usually about 30 to 60 minutes within the L / D range. It is preferably about 30 to 45 minutes.
  • the number of passes (passes) to be defibrated by the kneading machine varies depending on the fiber diameter and fiber length of the target microfibrillated plant fiber, and the L / D of the kneading machine, but is usually about 1 to 8 times. Preferably, it is about 1 to 4 times. If the pulp is subjected to defibration by the kneader too much (pass), the defibration progresses more, but at the same time, heat is generated, so that the cellulose is colored, resulting in heat damage (decrease in sheet strength). Connected.
  • the kneader there may be one kneading part where the screw is present, or two or more kneading parts.
  • the peripheral speed of the screw is 45 m / min or more, which is considerably higher than the peripheral speed of the conventional screw. Therefore, in order to reduce the load on the kneader, it is more preferable not to have a damming structure. .
  • Rotation direction of the two screws constituting the biaxial kneader may be different or the same direction.
  • the meshing of the two screws constituting the twin-screw kneader includes a complete meshing type, an incomplete meshing type, and a non-meshing type, but as the one used for defibration of the present invention, the complete meshing type is preferable.
  • the ratio of screw length to screw diameter may be about 20 to 150.
  • twin-screw kneaders “KZW” manufactured by Technobel, “TEX” manufactured by Nippon Steel Works, “TEM” manufactured by Toshiba Machine Co., Ltd., “ZSK” manufactured by Coperion, and the like can be used.
  • the ratio of the raw pulp in the mixture of raw pulp and water used for defibration is usually about 10 to 70% by weight, preferably about 20 to 50% by weight.
  • the temperature at the time of defibration is not particularly limited, but it can usually be performed at 10 to 100 ° C, and a particularly preferable temperature is 20 to 80 ° C.
  • the anion-modified plant fiber-containing material may be subjected to preliminary defibration using a refiner or the like before being subjected to defibration in the step (2).
  • a conventionally known method can be adopted as a preliminary defibrating method using a refiner or the like.
  • the load applied to the kneader can be reduced, which is preferable from the viewpoint of production efficiency.
  • the anion-modified microfibrillated plant fiber of the present invention is obtained by the production method as described above, and the lower limit of the degree of substitution with the carboxylic acid and / or salt thereof represented by the formula (I) per anhydroglucose unit is , About 0.01 is preferable, about 0.03 is more preferable, and about 0.08 is more preferable. Further, the upper limit of the degree of substitution is preferably less than about 0.4, preferably about 0.3, and more preferably about 0.2.
  • the degree of substitution with the carboxylic acid represented by the formula (I) and / or a salt thereof is a value measured by the method described in Examples.
  • the lignin content in the anion-modified microfibrillated plant fiber of the present invention is usually about 0 to 40% by weight, preferably about 0 to 10% by weight, like the lignin content of the raw material cellulose fiber-containing material.
  • cellulose constituting the microfibrillated plant fiber is cellulose type I that has the highest strength and high elastic modulus. It preferably has a crystal structure. Note that the crystallinity of cellulose type I is usually 60% or more.
  • the molding material of the present invention further includes, for example, (3) a step of mixing the anion-modified microfibrillated plant fiber obtained by the method as in the above steps (1) and (2) with a thermosetting resin. Can be obtained.
  • thermosetting resin is not particularly limited as long as it can be mixed with the anion-modified microfibrillated plant fiber of the present invention.
  • phenol resin urea resin, melamine resin, unsaturated polyester resin, epoxy resin, diallyl phthalate resin , Polyurethane resin, silicon resin, polyimide resin, and the like.
  • thermosetting resins can be used singly or in combination of two or more.
  • the content of the anion-modified microfibrillated plant fiber in the molding material is about 10 to 900 parts by weight, preferably about 10 to 100 parts by weight, and preferably about 10 to 50 parts by weight with respect to 100 parts by weight of the thermosetting resin. Is more preferable.
  • the molding material may further contain an additive to the extent that the effects of the present invention are not impaired.
  • an additive to the extent that the effects of the present invention are not impaired.
  • surfactants starches, polysaccharides such as alginic acid; natural proteins such as gelatin, glue, casein; inorganic compounds such as tannin, zeolite, ceramics, metal powder; colorants; plasticizers; fragrances; pigments
  • the molding material of the present invention can be obtained by mixing a thermosetting resin, the anion-modified fibrillated plant fiber, and other components added as necessary.
  • the mixing method is not particularly limited, and examples thereof include a method of impregnating a sheet of anionic microfibrillated plant fiber with a liquid resin.
  • the impregnation method may be appropriately selected depending on the shape of the fiber assembly of the fibrillated plant fiber, and examples thereof include a method of immersing a liquid resin in the anion-modified microfibrillated plant fiber sheet. Immersion may be performed under normal pressure, but can also be performed under reduced pressure.
  • the method for forming the sheet in the case where the anion-modified microfibrillated plant fiber is used as a thermosetting resin molding material is not particularly limited.
  • the microfibrillation obtained by the steps (1) and (2) is performed. Forming the microfibrillated plant fiber into a sheet by suction-filtering the mixed solution (slurry) of the plant fiber and water, and drying and heat-compressing the microfibrillated plant fiber formed into a sheet on the filter Can do.
  • the tensile strength of the sheet obtained from the anion-modified microfibrillated plant fiber of the present invention is usually about 60 to 200 MPa, preferably about 80 to 200 MPa.
  • the tensile strength of the sheet obtained from the anion-modified microfibrillated plant fiber of the present invention may vary depending on the basis weight or density of the sheet. In the present invention, a sheet having a basis weight of 100 g / m 2 was prepared, and the tensile strength of the sheet obtained from an anion-modified microfibrillated plant fiber having a density of 0.8 to 1.0 g / cm 3 was measured.
  • the tensile strength is a value measured by the following method.
  • a basis weight of 100 g / m 2 is prepared, and the dried anion-modified microfibrillated plant fiber is cut to produce a 10 mm ⁇ 50 mm rectangular sheet to obtain a test piece.
  • the test piece is attached to a tensile tester, and the stress and strain applied to the test piece are measured while applying a load.
  • the load applied per unit area of the test piece when the test piece breaks is defined as the tensile strength.
  • the tensile modulus of the sheet obtained from the anion-modified microfibrillated plant fiber is usually about 6.0 to 8.0 GPa, preferably about 7.0 to 8.0 GPa.
  • the tensile elastic modulus of a sheet obtained from an anion-modified microfibrillated plant fiber may vary depending on the basis weight, density, etc. of the sheet. In the present invention, a sheet having a basis weight of 100 g / m 2 was prepared, and the tensile modulus of the sheet obtained from an anion-modified microfibrillated plant fiber having a density of 0.8 to 1.0 g / cm 3 was measured.
  • the tensile strength is a value measured by the following method.
  • the molded body of the present invention is obtained by curing the molding material, and the molded body of the present invention is obtained by curing the molding material.
  • a method for curing the molding material any of the same methods as those for molding a normal thermoplastic resin composition can be applied.
  • mold molding, injection molding, extrusion molding, hollow molding, foam molding, etc. can be adopted.
  • the molded body of the present invention is preferably obtained by curing the molding material by heat compression.
  • the molding conditions may be applied by appropriately adjusting the molding conditions of the resin as necessary.
  • the molding material is in the form of a sheet
  • a method in which the sheet-like molding material is placed in a mold and heated and compressed to be cured can be employed. Two or more sheet-shaped molding materials can be stacked and heated and compressed to obtain a single molded body.
  • the density of the molded product of the present invention varies depending on the type of microfibrillated plant fiber and unsaturated polyester resin used, the ratio of use, etc., but is usually about 1.1 to 1.4 g / m 3 .
  • the molding material of the present invention has high mechanical strength, for example, it is higher in addition to the fields used in conventional microfibrillated plant fiber molded products and microfibrillated plant fiber-containing resin molded products. It can also be used in fields where mechanical strength (such as tensile strength) is required.
  • mechanical strength such as tensile strength
  • interior materials, exterior materials, structural materials, etc. for transportation equipment such as automobiles, trains, ships, airplanes, etc .
  • housings, structural materials, internal parts, etc. for electrical appliances such as personal computers, televisions, telephones, watches, etc .
  • mobile phones, etc. Housing, structural materials, internal parts, etc. for mobile communication equipment; portable music playback equipment, video playback equipment, printing equipment, copying equipment, housing for sports equipment, etc .; construction materials, office equipment such as stationery It can be used effectively as such.
  • the plant fiber is reacted with the carboxylic acid represented by the above formula (I) and / or a salt thereof in the presence of a base to anion-modify the plant fiber, and the anion-modified plant fiber is allowed to exist in the presence of water.
  • the raw material can be easily defibrated, and the resulting anion-modified microfibrillated plant fiber is extremely thin. Therefore, the sheet obtained from the anion-modified microfibrillated plant fiber is useful as a reinforcing agent for a thermosetting resin molding material because it has an effect of being particularly excellent in terms of tensile strength.
  • the molding material in which the anion-modified microfibrillated plant fiber and the thermosetting resin are mixed has an effect of being excellent in bending elastic modulus and bending strength.
  • FIG. 2 is an electron micrograph (magnified 30,000) of an anion-modified microfibrillated plant fiber obtained in Example 1.
  • FIG. 3 is an electron micrograph (10,000 times) of the microfibrillated plant fiber obtained in Comparative Example 1.
  • FIG. It is a graph which shows the result of the tensile strength of the bulky sheet
  • Example 1 Preparation of anion-modified pulp>
  • a slurry of softwood bleached kraft pulp (NBKP) water suspension with a pulp slurry concentration of 2% by weight
  • NNKP softwood bleached kraft pulp
  • CSF Canadian Standard Freeness
  • the refiner process was repeated until it became.
  • the obtained slurry was drained using a centrifugal dehydrator (manufactured by Kokusan Co., Ltd.) at 2000 rpm for 15 minutes, and the pulp concentration was concentrated to 25% by weight.
  • the carboxymethylation degree was measured by a nitric acid methanol method.
  • ⁇ Nitric acid methanol method About 2.0 g of an anion-modified pulp sample was precisely weighed and placed in a 300 mL stoppered Erlenmeyer flask. 100 mL of nitric acid methanol (a solution obtained by adding 100 mL of special concentrated nitric acid to 1 L of anhydrous methanol) was added and shaken for 3 hours to obtain Sample A. 1.5-2.0 g of the absolutely dry sample A was precisely weighed and placed in a 300 mL stoppered Erlenmeyer flask. Sample A was moistened with 15 mL of 80% methanol, and 100 mL of 0.1N NaOH was added and shaken at room temperature for 3 hours.
  • Screw diameter 15mm Screw rotation speed: 2000 rpm (screw peripheral speed: 94.2 m / min)
  • Defibration time 150 g of anion-modified pulp was defibrated under the treatment conditions of 500 g / hr to 600 g / hr. The time from when the raw material was charged to when the microfibrillated plant fiber was obtained was 15 minutes.
  • FIG. 1 An electron micrograph of the anion-modified microfibrillated plant fiber obtained is shown in FIG.
  • the fiber diameter of 100 arbitrary anion-modified microfibrillated plant fibers was measured from the SEM image of 30,000 times shown in FIG. 1, the number average fiber diameter was 22.56 nm.
  • ⁇ Preparation of anion-modified microfibrillated plant fiber sheet> The anion-modified microfibril plant fiber slurry obtained by defibration was filtered to obtain a wet web of anion-modified microfibrillated plant fibers. This wet web was heated and compressed at 110 ° C. and a pressure of 0.003 MPa for 10 minutes to obtain a bulky sheet of anion-modified microfibrillated plant fibers.
  • the filtration conditions were filtration area: about 200 cm 2 , degree of vacuum: ⁇ 30 kPa, filter paper: 5A manufactured by Advantech Toyo Co., Ltd.
  • the tensile strength of the obtained sheet was measured. As a result, the tensile strength was 103 MPa. The measurement results are shown in FIG.
  • the sheet is immersed in a resin solution obtained by adding 1 part by weight of benzoyl peroxide (“NIPER FF” manufactured by NOF Corporation) to 100 parts by weight of unsaturated polyester resin (“SANDMER FG283” manufactured by DH Material Co., Ltd.). I let you. Immersion was carried out under reduced pressure (degree of vacuum 0.01 MPa, time 30 minutes) to obtain an unsaturated polyester resin-impregnated sheet. Next, several sheets of the same unsaturated polyester resin-impregnated sheet were stacked so that the thickness of the molded body was about 1 mm.
  • NIPER FF benzoyl peroxide
  • SANDMER FG283 unsaturated polyester resin
  • the length and width of the molded product were accurately measured with calipers (manufactured by Mitutoyo Corporation). The thickness was measured with several micrometers (manufactured by Mitutoyo Corporation), and the volume of the molded product was calculated. Separately, the weight of the molded product was measured. The density was calculated from the obtained weight and volume.
  • a sample having a thickness of 1.2 mm, a width of 7 mm, and a length of 40 mm was prepared from the molded product, and the bending elastic modulus and bending strength were measured at a deformation rate of 5 mm / min (load cell 5 kN).
  • a universal material testing machine Instron 3365 type (Instron Japan Company Limited) was used as a measuring machine. Table 1 shows the resin content, flexural modulus, and flexural strength in the resulting resin composite.
  • Example 2 Preparation of anion-modified pulp> Implemented except that 22 parts by weight of sodium hydroxide, 360 parts by weight of water, 1080 parts by weight of 2-propanol (IPA) were added, and 26 parts by weight of monochloroacetic acid was added in an effective conversion.
  • IPA 2-propanol
  • a bulky sheet of anion-modified microfibrillated plant fiber was prepared.
  • the resin composite was manufactured by the method similar to Example 1 using the obtained bulky sheet. Table 1 shows the resin content, bending elastic modulus, and bending strength in the obtained resin molding material.
  • Example 3 Preparation of anion-modified pulp>
  • 10.4 parts by weight of sodium hydroxide 360 parts by weight of water, 1080 parts by weight of IPA were charged, and 12.5 parts by weight of monochloroacetic acid was added in an effective conversion.
  • a bulky sheet of anion-modified microfibrillated plant fiber was prepared.
  • the resin composite was manufactured by the method similar to Example 1 using the obtained bulky sheet. Table 1 shows the resin content, bending elastic modulus, and bending strength in the obtained resin molding material.
  • Comparative Example 1 In ⁇ Preparation of anion-modified pulp>, a bulky sheet of microfibril plant fibers and microfibrillated plant fibers was prepared by the same method as in Example 1 except that the anion modification treatment was not performed. The tensile strength of the obtained bulky sheet was measured by the same method as in Example 1. As a result, the tensile strength was 81 MPa. The measurement results are shown in FIG.
  • FIG. 1 An electron micrograph of the obtained microfibrillated plant fiber is shown in FIG.
  • the fiber diameter of 50 arbitrary anion-modified microfibrillated plant fibers was measured from the 10,000 times SEM image shown in FIG. 2, the number average fiber diameter was 240.0 nm.
  • Comparative Example 2 In ⁇ Preparation of anion-modified microfibrillated plant fiber>, the bulk of the anion-modified microfibrillated plant fiber was the same as in Comparative Example 1 except that the number of times of defibration treatment was set to 4 times (4 passes). A sheet was prepared. Furthermore, the resin composite was manufactured by the method similar to Example 1 using the obtained bulky sheet. Table 1 shows the resin content, bending elastic modulus, and bending strength in the obtained resin molding material.
  • the anion-modified microfibrillated plant fiber obtained by defibrating an anion-modified pulp with a biaxial kneader has a strong tensile strength of 108 MPa even in a sheet-like state. Also in the molded product in which the unsaturated polyester and the unsaturated polyester were combined, the result was that the bending elastic modulus and bending strength were excellent.
  • Comparative Example 1 which is a resin composite obtained using pulp that has not undergone anion modification, was inferior in both flexural modulus and flexural strength to Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paper (AREA)

Abstract

優れた機械強度を有する熱硬化性樹脂成形材料を得るために用いられる、アニオン変性ミクロフィブリル化植物繊維及びその製造方法、並びに該アニオン変性ミクロフィブリル化植物繊維と熱硬化性樹脂を含有する成形材料、及びその製造方法を提供する。熱硬化性樹脂、及び塩基存在下で式(I):X-(CH-COOH(I) (式(I)中、Xはハロゲン原子を表し、nは、1又は2を表す)で表されるカルボン酸及び/又はその塩によってアニオン変性されたアニオン変性ミクロフィブリル化植物繊維を、熱硬化性樹脂100重量部に対して、10~900重量部含有する成形材料である。

Description

成形材料及びその製造方法
 本発明は、アニオン変性ミクロフィブリル化植物繊維及び熱硬化性樹脂を含む成形材料並びにその製造方法に関する。
 従来より、樹脂の強度等の物性を向上させるため、充填剤を用いて樹脂を強化することが知られており、この中でもガラス繊維は優れた機械的物性を示すことから幅広い分野で使用されている。しかし、ガラス繊維は機械的物性に優れる半面、比重が高い為、得られた成形材料が重くなることや、廃棄時に多量の残渣が生じるといった問題がある。一方、木材や草本等から得られるセルロース繊維をミクロフィブリル化して、繊維径がナノオーダーにまで微細化されたミクロフィブリル化植物繊維(ナノファイバー)は軽くて高強度であることが知られている。このミクロフィブリル化植物繊維を用いることにより、軽くて高強度な樹脂成形材料を得る試みが近年なされている。
 例えば、特許文献1では一次壁及び二次壁外層を傷付けるという簡易な前処理を施したパルプ及び/又はセルロース系繊維を、セルロース非晶領域膨潤剤の存在下、樹脂成分と溶融混練させることにより、この溶融混練中に繊維成分を解繊してミクロフィブリル化すると共に樹脂成分中に均一に微細分散する方法が開示されている。
 また、特許文献2には、固形分濃度が65~100重量%のセルロースミクロフィブリル及び0~35重量%の添加剤からなる高強度材料が開示されている。また、パルプを微細繊維化してミクロフィブリルを得る方法として、パルプから媒体攪拌ミル処理、振動ミル処理、高圧均質化装置での処理、石臼式粉砕処理等の方法が開示されている。さらに、該添加剤として、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、ケイ素樹脂、ポリイミド樹脂などの熱硬化性樹脂が例示されている。
 特許文献3では細胞壁が変形されて、中空部である細胞内腔が消失したリグノセルロース繊維を強化材とする従来の繊維強化プラスチックが例示されている。
 特許文献4には、ホモジナイザー(高圧ホモジナイザーなど)を用いて特定の繊維長を有するセルロース繊維をミクロフィブリル化して、繊維径を小さくても繊維長が長く、保水性等に優れた微小繊維状セルロースが得られることが開示されている。しかし、特許文献4には強度を要する特殊用紙、濾過材などに有用な微小繊維状セルロース及びその製造方法、並びに微小繊維状セルロースで構成された不織布状シートに関するもので、樹脂との複合化に関しては記載がない。
 上記特許文献1~4では二軸混練機や石臼式粉砕処理、PFIミル処理、高圧ホモジナイザー処理等の機械的処理によりミクロフィブリル化植物繊維を得ている為、植物繊維の全てをミクロフィブリル化するためには多量のエネルギーを要するのみならず、その過程で繊維の切断等も生じる。そのため、ミクロフィブリル化植物繊維が本来もつ性能を十分には引き出せていなかった。
 また、機械処理に化学処理を組み合わせることで、過度にせん断力をかけないことにより切断等のダメージを抑えつつナノファイバー化する試みもなされている。
 例えば、特許文献5では天然セルロース原料に2,2,6,6-テトラメチル-1-ピペリジン-N-オキシル(TEMPO)のようなオキシル化合物を、共酸化剤とともに反応させセルロースのC6位の一級水酸基の一部をアルデヒド、及びアルデヒドを経由してカルボキシル基にまで酸化させることで静電反発により比較的軽度な機械的処理により数平均繊維径が150nm以下の微細セルロース繊維が得られることが開示されている。特許文献5では、複合化材料用のナノフィラーとして適用し得るとの記述があるものの、樹脂との複合化材料を作成した具体的な記述はなく、また、得られたナノファイバー分散液は0.1重量%で透明かつやや粘調であることが実施例1で記載されており、樹脂と複合化に脱水等に多大のエネルギーを有することや、樹脂との混合の工程において、変性したアルデヒド基やカルボキシル基が熱硬化性樹脂成形時にミクロフィブリル化植物繊維の熱劣化を誘発しやすい等の問題があった。
 また、特許文献6では多塩基酸無水物によって水酸基の一部を半エステル化する方法が開示されている。多塩基酸無水物によって水酸基の一部を半エステル化したセルロースは、変性部分がエステル結合を有するものであるため、変性部分が加水分解等の副反応を起こしてしまうという問題を有する。そのため、これらの変性したセルロース繊維を樹脂成形材料として用いた場合、さらなる強度向上の観点からは、未だ改善の余地がある。
 さらに、特許文献7のように、セルロース繊維をカルボキシメチルエーテル化し、さらにミクロフィブリル化させることによって、保水性、及び水中への再分散性を向上させたセルロース誘導体が開示されているが、セルロース繊維をミクロフィブリル化させるために用いられる手法である機械的粉砕や磨砕が、乾式や、非膨潤性溶媒を媒体とした湿式によって行われており、植物繊維のナノ解繊化が不十分であることから保水性や水分散性においては、良好な材料が得られるものの、樹脂成形材料の補強剤としては、未だ改善の余地がある。
特開2005-042283号公報 特開2003-201695号公報 特開2005-067064号公報 特開2007-231438号公報 特開2008-1728号公報 特開2009-293167号公報 特開平10-251301号公報
 本発明は、優れた機械強度を有する熱硬化性樹脂成形材料を得るために用いられる、アニオン変性ミクロフィブリル化植物繊維及びその製造方法、並びに該アニオン変性ミクロフィブリル化植物繊維と熱硬化性樹脂を含有する成形材料、及びその製造方法を提供することを目的とする。
 前述の通り、木材パルプ等の植物繊維からミクロフィブリル化植物繊維を製造するに際して、出発原料や解繊方法を工夫してナノファイバー化を促進したり、原料繊維に化学処理を施して保水性を高めたりすることが知られている。しかしながら、ミクロフィブリル化植物繊維ほどに高度に微細化した繊維の場合、解繊方法や化学処理の方法によって、繊維の分散性や表面の損傷程度等が異なり、樹脂成形材料における補強剤としてミクロフィブリル化植物繊維を用いた場合、強度等の物性に大きな違いを与える。本発明者は、植物繊維を含む材料からミクロフィブリル化植物繊維が容易に得られ、かつ、得られたミクロフィブリル化植物繊維を含む樹脂成形材料が強度の点で優れることを見出した。
 本発明はこのような知見に基づき、さらに鋭意検討を重ねて完成した発明である。すなわち、本発明は下記項1~15に示す熱硬化性樹脂成形材料用ミクロフィブリル化植物繊維、該ミクロフィブリル化植物繊維の製造方法、該植物繊維及び熱硬化性樹脂を含む成形材料、並びに該成形材料の製造方法を提供する。
 項1.塩基存在下で、式(I):
X-(CH-COOH  (I)
(式(I)中、Xはハロゲン原子を表し、nは、1又は2を表す)
で表されるカルボン酸及び/又はその塩によってアニオン変性されたアニオン変性ミクロフィブリル化植物繊維を、熱硬化性樹脂100重量部に対して、10~900重量部含有する成形材料。
 項2.無水グルコース単位における水酸基の一部が、塩基の存在下で、式(I):
X-(CH-COOH  (I)
(式中、X、及びnは、前記と同じである)
と反応して、
-O-(CH-COOR  (II)
(式(II)中、Rは、アルカリ金属を表す)
に変性したアニオン変性ミクロフィブリル化植物繊維である項1に記載の成形材料。
 項3.アニオン変性ミクロフィブリル化植物繊維が、カルボキシアルキル基を有するミクロフィブリル化植物繊維である項1又は2に記載の成形材料。
 項4.カルボキシアルキル基がカルボキシメチル基である項3に記載の成形材料。
 項5.アニオン変性ミクロフィブリル化植物繊維のシートに、熱硬化性樹脂を含浸することによって得られる項1~4のいずれかに記載の成形材料。
 項6.熱硬化性樹脂が不飽和ポリエステル樹脂である項1~5のいずれかに記載の成形材料。
 項7.アニオン変性ミクロフィブリル化植物繊維における、無水グルコース単位当たりの式(1):
X-(CH-COOH  (I)
(式中、X、及びnは、前記と同じである)
で表されるカルボン酸及び/又はその塩による置換度が0.01以上0.4未満である項1~6のいずれかに記載の成形材料。
 項8.(1)植物繊維と式(I):
X-(CH-COOH  (I)
(式中、X、及びnは、前記と同じである)
で表されるカルボン酸及び/又はその塩を、塩基存在下で反応させ、該植物繊維をアニオン変性する工程、
(2)工程(1)によって得られたアニオン変性植物繊維を、水の存在下で解繊する工程、及び
(3)工程(2)によって得られたアニオン変性ミクロフィブリル化植物繊維と熱硬化性樹脂を混合させる工程を含む
項1~7のいずれかに記載の成形材料の製造方法。
 項9.工程(3)が、工程(2)によって得られたアニオン変性ミクロフィブリル化植物繊維をシート状に形成させ、形成したシートを熱硬化性樹脂中に含浸させる工程である項8に記載の成形材料の製造方法。
 項10.工程(2)における解繊処理が、機械的な解繊処理である項8又は9に記載の成形材料の製造方法。
 項11.塩基存在下で式(I):
X-(CH-COOH  (I)
(式中、X、及びnは、前記と同じである)
で表されるカルボン酸及び/又はその塩によってアニオン変性された熱硬化性樹脂成形材料用アニオン変性ミクロフィブリル化植物繊維。
 項12.アニオン変性ミクロフィブリル化植物繊維における、無水グルコース単位当たりの式(I):
X-(CH-COOH  (I)
(式中、X、及びnは、前記と同じである)
で表されるカルボン酸及び/又はその塩による置換度が0.01以上0.4未満である項11に記載の熱硬化性樹脂成形材料用アニオン変性ミクロフィブリル化植物繊維。
 項13.シート状である項11又は12に記載の熱硬化性樹脂成形材料用アニオン変性ミクロフィブリル化植物繊維。
 項14.(1)植物繊維と式(I):
X-(CH-COOH  (I)
(式中、X、及びnは、前記と同じである)
で表されるカルボン酸及び/又はその塩を、塩基存在下で反応させ、該植物繊維をアニオン変性する工程、及び
(2)工程(1)によって得られたアニオン変性植物繊維を、水の存在下で解繊する工程を含む
項11~13のいずれかに記載の熱硬化性樹脂成形材料用アニオン変性ミクロフィブリル化植物繊維の製造方法。
 項15.項1~7のいずれかに記載の成形材料を硬化させてなる成形体。
 以下、本願発明の成形材料、及びその製造方法について、詳述する。
 本発明のアニオン変性ミクロフィブリル化植物繊維及び熱硬化性樹脂を含む成形材料は、該ミクロフィブリル化植物繊維が塩基存在下で、式(I):
X-(CH-COOH  (I)
(式(I)中、Xはハロゲン原子を表し、nは、1又は2を表す)
で表されるカルボン酸及び/又はその塩によってアニオン変性されていることを特徴とする。
 植物の細胞壁の中では、幅4nm程のセルロースミクロフィブリル(シングルセルロースナノファイバー)が最小単位として存在する。これが、植物の基本骨格物質(基本エレメント)である。そして、このセルロースミクロフィブリルが集まって、植物の骨格を形成している。本発明において、「ミクロフィブリル化植物繊維」とは、植物繊維を含む材料(例えば、木材パルプ等)をその繊維をナノサイズレベルまで解きほぐしたものである。
 本発明のアニオン変性ミクロフィブリル化植物繊維の繊維径は、平均値が通常4~200nm程度、好ましくは4~150nm程度、特に好ましくは4~100nm程度である。なお、本発明のアニオン変性ミクロフィブリル化植物繊維の繊維径の平均値は、電子顕微鏡の視野内のアニオン変性ミクロフィブリル化植物繊維の少なくとも50本以上について測定した時の平均値である。
 アニオン変性ミクロフィブリル化植物繊維は、例えば、下記工程(1)及び(2)を備えた方法により製造することができる。
 工程(1):セルロース繊維と塩基存在下で、式(I):
X-(CH-COOH  (I)
で表されるカルボン酸及び/又はその塩を反応させ、該セルロース繊維をアニオン変性する工程、
 工程(2):工程(1)によって得られたアニオン変性セルロース繊維を、水の存在下で解繊する工程。
 工程(1)において、原料となるセルロース繊維を含有する材料(セルロース繊維含有材料)としては、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物、布と言った天然セルロース原料から得られるパルプ、マーセル化を施したセルロース繊維、レーヨンやセロファン等の再生セルロース繊維等が挙げられる。特に、パルプが好ましい原材料として挙げられる。
 前記パルプとしては、植物原料を化学的、若しくは機械的に、又は両者を併用してパルプ化することで得られるケミカルパルプ(クラフトパルプ(KP)、亜硫酸パルプ(SP))、セミケミカルパルプ(SCP)、セミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、及びこれらの植物繊維を主成分とする脱墨古紙パルプ、段ボール古紙パルプ、雑誌古紙パルプが好ましいものとして挙げられる。これらの原材料は、必要に応じ、脱リグニン、又は漂白を行い、当該植物繊維中のリグニン量を調整することができる。
 これらのパルプの中でも、繊維の強度が強い針葉樹由来の各種クラフトパルプ(針葉樹未漂白クラフトパルプ(以下、NUKPということがある)、針葉樹酸素晒し未漂白クラフトパルプ(以下、NOKPということがある)、針葉樹漂白クラフトパルプ(以下、NBKPということがある))が特に好ましい。
 原料となるセルロース繊維含有材料中のリグニン含有量は、通常0~40重量%程度、好ましくは0~10重量%程度である。
 工程(1)におけるアニオン変性反応(セルロース繊維を含有する材料中の水酸基と、塩基存在下で、式(I):
X-(CH-COOH  (I)
で表されるカルボン酸及び/又はその塩による反応)は、公知の方法により行うことができる。セルロース繊維を含有する材料は、無水グルコース単位が多数結合して形成されており、各無水グルコース単位には、水酸基が複数存在する。
 セルロース繊維を含有する材料に対して、塩基存在下で前記式(I)で表されるカルボン酸及び/又はその塩と反応させることにより、セルロース繊維中の無水グルコース単位における水酸基の一部とハロゲン原子とが反応する。その結果、無水グルコース単位における水酸基の一部が、式(II)
-O-(CH-COOR  (II)
(式(II)中、Rは、アルカリ金属を表す)
に変性したセルロース繊維が得られる。
 前記セルロース繊維含有材料に作用(反応)させる前記式(I)で表されるカルボン酸及び/又はその塩としては、具体的には、モノクロロ酢酸、3-クロロプロピオン酸、モノクロロ酢酸ナトリウム又は3-クロロプロピオン酸ナトリウムが用いられ、塩基としては一般的に水酸化ナトリウムが用いられる。なお、モノクロロ酢酸又はモノクロロ酢酸ナトリウムを用いた場合には、カルボキシメチル基を有するセルロース繊維が得られる。
 セルロース繊維と前記式(I)で表されるカルボン酸及び/又はその塩との反応における反応溶媒としては、水及び/又は炭素数1~4のアルコールの存在下で行うことが好ましい。水としては、水道水、精製水、イオン交換水、純水、工業用水等を使用すればよい。さらに、炭素数1~4のアルコールとしては、具体的にはメタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール等が挙げられる。水と炭素数1~4のアルコールは、それぞれ単独で使用でき、混合して使用してもよい。水と炭素数1~4のアルコールとを混合して使用する場合、その組成比は適宜調整されるが、得られるアニオン変性ミクロフィブリル化植物繊維における、無水グルコース単位当たりの前記式(I)で表されるカルボン酸及び/又はその塩による置換度が0.01以上0.4未満になるように調整することが望ましい。
 工程(1)において、セルロース繊維を含有する材料と前記塩基及び前記式(I)で表されるカルボン酸及び/又はその塩とを作用(反応)させる温度は、50~80℃程度が好ましく、好ましくは60~80℃程度がより好ましく、70~80℃程度がさらに好ましい。また、セルロース繊維を含有する材料と前記式(I)で表されるカルボン酸及び/又はその塩とを作用(反応)させる時間は、10分~2時間程度が好ましく、30分~2時間程度がより好ましく、1~2時間程度がさらに好ましい。なお、工程(1)を行う圧力については、特に制限がなく、大気圧下で行えばよい。
 工程(1)において、セルロース繊維を含有する材料と前記前記式(I)で表されるカルボン酸及び/又はその塩の使用量は、セルロース繊維含有材料100重量部に対して、10~1000重量部程度が好ましく、10~800重量部程度がより好ましく、10~300重量部程度がさらに好ましい。
 また、塩基の使用量としては、反応に使用する水100重量部に対して、1~7重量部程度が好ましく、1~5重量部程度がより好ましく、1~3重量部程度がさらに好ましい。
 さらに、前記反応溶媒の使用量としては、セルロース繊維含有材料100重量部に対して、100~50000重量部程度が好ましく、100~10000重量部程度がより好ましく、100~500重量部程度がさらに好ましい。
 かくして得られるアニオン変性セルロース繊維は、セルロースの内部にまで塩基及び前記式(I)で表されるカルボン酸及び/又はその塩が浸透し、セルロース繊維を含む材料の内部まで十分にアニオン化され、アニオン同士の電気的な反発効果が大きくなるために、解繊が進行しやすくなるものと考えられる。
 また、工程(1)で得られたアニオン変性されたセルロース繊維含有材料をそのまま工程(2)に供してもよいが、前記工程(1)でアニオン変性を行った後、反応系中に残存する塩基等の成分を中和してから工程(2)に供するのが好ましい。さらに、当該中和工程の他に、常法により洗浄、精製を行っても良い。また、引き続く工程(2)の解繊処理に適切な繊維濃度となるように水の量を増減させてもよい。
 ただし、本発明においては、工程(1)と工程(2)との間には、アニオン変性されたセルロース繊維含有材料の乾燥工程を設けるべきではない。工程(1)でアニオン変性されたセルロース繊維含有材料を乾燥させると、続く工程(2)で乾燥物を解繊処理しても、本発明のようなナノレベルまで解繊された、高強度を有するミクロフィブリル化植物繊維を得ることは困難である。セルロース分子は多数の水酸基を有するために、一旦乾燥工程を経たセルロース繊維含有材料は隣り合う繊維同士が強固な水素結合でつながりあってしまい強力に凝集する(例えば、紙、パルプでは、このような乾燥時の繊維の凝集をHornificationと呼称する)。一度凝集した繊維を機械的な力で解繊することは、非常に困難である。よって、これを機械的にいかに粉砕しても、ミクロンオーダーの粒子のみが形成されることになる。
 本発明においては、工程(1)でアニオン変性されたセルロース繊維含有材料は、工程(2)において、水の存在下で解繊される。セルロース繊維含有材料の解繊処理の方法は、公知の方法が採用でき、例えば、前記セルロース繊維含有材料の水懸濁液、スラリーをリファイナー、高圧ホモジナイザー、グラインダー、一軸又は多軸混練機等により機械的に摩砕、ないし叩解することにより解繊する方法が使用できる。必要に応じて、リファイナー処理後に一軸又は多軸混練機処理を行うといったように、上記の解繊方法を組み合わせて処理することが好ましい。
 工程(2)においては、前記工程(1)でアニオン変性されたセルロース繊維含有材料を一軸又は多軸混練機(以下、単に「混練機」ということがある)で解繊することが好ましい。混練機(混練押出機)には、一軸混練機、二軸以上の多軸混練機があり、本発明においては、何れを使用してもよい。多軸混練機を用いた場合、ミクロフィブリル化植物繊維の分散性をより向上させることができるので好ましい。多軸混練機の中でも、入手のしやすさ等の観点から、二軸混練機が好ましい。
 前記一軸又は多軸混練機のスクリューの周速の下限値は、通常45m/分程度である。スクリューの周速の下限値は60m/分程度が好ましく、90m/分程度が特に好ましい。また、スクリューの周速の上限値は通常200m/分程度である。スクリューの周速の上限値は150m/分程度が好ましく、100m/分程度が特に好ましい。
 本発明において使用される混練機のL/D(スクリュー径Dと混練部の長さLの比)は、通常15~60程度、好ましくは30~60程度である。
 一軸又は多軸混練機による解繊時間は、セルロース繊維含有材料の種類、前記混練機のL/D等によっても異なるが、前記のL/Dの範囲内であれば、通常30~60分程度、好ましくは30~45分程度である。
 混練機による解繊に供する回数(パス)は、目的とするミクロフィブリル化植物繊維の繊維径、繊維長、また、前記混練機のL/D等によっても変化するが、通常1~8回程度、好ましくは1~4回程度である。パルプを前記混練機による解繊に供する回数(パス)があまりに多くなりすぎると、解繊はより進行するものの、同時に発熱も生じるため、セルロースが着色したり、熱ダメージ(シート強度の低下)につながる。
 混練機には、スクリューの存在する混練部は1カ所であってもよいし、2カ所以上存在してもよい。
 また、混練部が2カ所以上存在する場合、各混練部の間に1個又は2個以上のせき止め構造(返し)を有していてもよい。なお、本発明においては、スクリューの周速が45m/分以上と従来のスクリューの周速よりもかなり大きいので、混練機への負荷を軽減するためには、せき止め構造を有しない方がより好ましい。
 二軸混練機を構成する二本のスクリューの回転方向は異方向、同方向のどちらでもよい。また、二軸混練機を構成する二本のスクリューの噛み合いは、完全噛み合い型、不完全噛み合い型、非噛み合い型があるが、本発明の解繊に用いるものとしては、完全噛み合い型が好ましい。
 スクリュー長さとスクリュー直径の比(スクリュー長さ/スクリュー直径)は20~150程度であればよい。具体的な二軸混練機としては、テクノベル社製「KZW」、日本製鋼所製「TEX」、東芝機械社製「TEM」、コペリオン社製「ZSK」等を用いることができる。
 解繊に供する原料パルプと水との混合物中の原料パルプの割合は、通常10~70重量%程度、好ましくは20~50重量%程度である。
 また、解繊時の温度には特別の制約はないが、通常10~100℃で行うことが可能であり、特に好ましい温度は20~80℃である。
 前記の通り、本発明においては、工程(2)による解繊に供する前に、アニオン変性された植物繊維含有材料をリファイナー等による予備解繊に供しても良い。リファイナー等による予備解繊の方法は、従来公知の方法が採用できる。リファイナーによる予備解繊を行うことにより、前記混練機にかかる負荷を低減することができ、生産効率の点からも好ましい。
 本発明のアニオン変性ミクロフィブリル化植物繊維は、上記のような製造方法によって得られ、無水グルコース単位当たりの前記式(I)で表されるカルボン酸及び/又はその塩による置換度の下限値は、0.01程度が好ましく、0.03程度がより好ましく、0.08程度がさらに好ましい。また、当該置換度の上限値は、0.4未満程度が好ましく、0.3程度が好ましく、0.2程度がより好ましい。前記式(I)で表されるカルボン酸及び/又はその塩による置換度は、実施例に記載の方法により測定した値である。
 本発明のアニオン変性ミクロフィブリル化植物繊維中のリグニン含有量は、前記原料セルロース繊維含有材料のリグニン含有量と同じく、通常0~40重量%程度、好ましくは0~10重量%程度である。
 また本発明において、高強度、高弾性率を有するミクロフィブリル化植物繊維を得るためには、ミクロフィブリル化植物繊維を構成するセルロースは、最も高強度化・高弾性率化されているセルロースI型結晶構造を有することが好ましい。なお、セルロースI型の結晶化度は通常60%以上である。
 本発明の成形材料は、前記の工程(1)及び(2)のような方法で得られるアニオン変性ミクロフィブリル化植物繊維を、例えば、さらに、(3)熱硬化性樹脂と混合させる工程を行うことにより得られる。
 熱硬化性樹脂の種類としては、本発明のアニオン変性ミクロフィブリル化植物繊維と混合できれば特に制限はないが、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、ケイ素樹脂、ポリイミド樹脂等が例示でき、これらの熱硬化性樹脂は、一種単独又は二種以上組み合わせて使用できる。
 成形材料におけるアニオン変性ミクロフィブリル化植物繊維の含有量は、熱硬化性樹脂100重量部に対して、10~900重量部程度であり、10~100重量部程度が好ましく、10~50重量部程度がより好ましい。アニオン変性ミクロフィブリル化植物繊維の含有量を、上記の数値範囲に設定することにより、軽量・高強度な成形材料が得られるという効果が得られる。
 成形材料には、さらに、添加剤を本発明の効果を損なわない程度に含有していてもよい。具体的には、界面活性剤、でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物;着色剤;可塑剤;香料;顔料;流動調整剤;レベリング剤;導電剤;帯電防止剤;紫外線吸収剤;紫外線分散剤;消臭剤等が挙げられる。
 本発明の成形材料は、熱硬化性樹脂、前記アニオン変性フィブリル化植物繊維及び必要に応じて添加される他の成分を混合することにより得られる。混合方法は特に限定されないが、例えば、アニオン性ミクロフィブリル化植物繊維のシートに液状の樹脂を含浸させる方法が挙げられる。
含浸方法は、フィブリル化植物繊維の繊維集合体の形状等により適宜選択すればよいが、例えば、アニオン変性ミクロフィブリル化植物繊維シートに液状の樹脂を浸漬させる方法が挙げられる。浸漬は、常圧下で行ってもよいが減圧下で行うことも出来る。
 アニオン変性ミクロフィブリル化植物繊維を熱硬化性樹脂成形材料の用途として用いる場合におけるシートの成形方法としては、特に限定されないが、例えば、前記工程(1)及び(2)によって得られたミクロフィブリル化植物繊維と水の混合液(スラリー)を吸引ろ過し、フィルター上にシート状になったミクロフィブリル化植物繊維を乾燥、加熱圧縮等することによって、ミクロフィブリル化植物繊維をシート状に成形することができる。
 本発明のアニオン変性ミクロフィブリル化植物繊維から得られるシートの引っ張り強度は、通常60~200MPa程度、好ましくは80~200MPa程度である。本発明のアニオン変性ミクロフィブリル化植物繊維から得られるシートの引っ張り強度は、シートの坪量や密度等によって異なることがある。本発明では、坪量100g/mのシートを作成し、密度が0.8~1.0g/cmのアニオン変性ミクロフィブリル化植物繊維から得られるシートの引っ張り強度を測定した。
 なお、引っ張り強度は、以下の方法により測定した値である。坪量100g/mに調製し乾燥アニオン変性ミクロフィブリル化植物繊維を裁断して10mm×50mmの長方形シートを作成し、試験片を得る。試験片を引っ張り試験機に取り付け、荷重を加えながら試験片にかかる応力とひずみを測定する。試験片が破断した際の、試験片単位断面積当たりにかかった荷重を引っ張り強度とする。
 また、アニオン変性ミクロフィブリル化植物繊維から得られるシートの引っ張り弾性率は、通常6.0~8.0GPa程度、好ましくは7.0~8.0GPa程度である。アニオン変性ミクロフィブリル化植物繊維から得られるシートの引っ張り弾性率は、シートの坪量や密度等によって異なることがある。本発明では、坪量100g/mのシートを作成し、密度が0.8~1.0g/cmのアニオン変性ミクロフィブリル化植物繊維から得られるシートの引っ張り弾性率を測定した。なお、引っ張り強度は、以下の方法により測定した値である。
 本発明の成形体は前記の成形材料を本発明の成形体は、前記成形材料を硬化することによって得られる。成形材料の硬化方法としては、通常の熱可塑性樹脂組成物の成形方法と同様な方法をいずれも適用することができ、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等を採用することができる。本発明の成形体は、前記成形材料を加熱圧縮により硬化して得られるものが好ましい。
 成形の条件は樹脂の成形条件を必要に応じて適宜調整して適用すればよい。成形材料がシート状である場合、例えば、該シート状の成形材料を金型に入れ、加熱圧縮して硬化する方法を採用することができる。シート状の成形材料を2枚以上重ね、これを加熱圧縮して1つの成形体を得ることもできる。
 本発明の成形体の密度は、使用するミクロフィブリル化植物繊維、不飽和ポリエステル樹脂等の種類、使用割合等によって変化するが、通常1.1~1.4g/m程度である。
 本発明の成形材料は、高い機械強度を有しているので、例えば、従来のミクロフィブリル化植物繊維の成形体、ミクロフィブリル化植物繊維含有樹脂成形体で使用されていた分野に加え、より高い機械強度(引っ張り強度等)が要求される分野にも使用できる。例えば、自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等の筺体、構造材、内部部品等;建築材;文具等の事務機器等として有効に使用することができる。
 本発明は、植物繊維と前記式(I)で表されるカルボン酸及び/又はその塩を塩基存在下で反応させることにより、該植物繊維をアニオン変性させ、アニオン変性植物繊維を、水の存在下で解繊することによって、原料の解繊処理がしやすく、かつ、得られるアニオン変性ミクロフィブリル化植物繊維は、極めて細い。そのため、アニオン変性ミクロフィブリル化植物繊維によって得られるシートは、引張り強度の点で特に優れるという効果が得られるため、熱硬化性樹脂成形材料用の補強剤として有用である。
 また、実際に、前記アニオン変性ミクロフィブリル化植物繊維と熱硬化性樹脂を混合した成形材料は、曲げ弾性率や曲げ強度において優れるという効果が得られる。
実施例1において得られたアニオン変性ミクロフィブリル化植物繊維の電子顕微鏡写真(30,000倍)である。 比較例1において得られたミクロフィブリル化植物繊維の電子顕微鏡写真(10,000倍)である。 実施例1、及び比較例1によって得られた嵩高シートの引張り強度の結果を示すグラフである。
[実施例]
 以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
<アニオン変性パルプの調製>   
 針葉樹漂白クラフトパルプ(NBKP)のスラリー(パルプスラリー濃度2重量%の水懸濁液)をシングルディスクリファイナー(熊谷理機工業株式会社製)に通液させ、カナディアンスタンダードフリーネス(CSF)値が100mL以下になるまで、繰返しリファイナー処理を行った。得られたスラリーを遠心脱水機(株式会社コクサン製)を用いて2000rpm、15分の条件で脱液し、パルプ濃度を25重量%にまで濃縮した。次に、回転数を800rpmに調節したIKA攪拌機に上記パルプを乾燥重量で60重量部、水酸化ナトリウム150重量部、水2850重量部を仕込み、30℃で1時間混合攪拌した後に、モノクロロ酢酸を有効換算で179部添加し、さらに30分間攪拌した。その後、70℃まで昇温した後に1時間エーテル化反応を実施した。冷却後反応物を取り出して中和、洗浄、濃縮して25重量%濃度のアニオン変性パルプを得た。アニオン変性パルプのアニオン基の置換度(カルボキシメチル化度(DS))を表1に示す。
 なお、カルボキシメチル化度は、硝酸メタノール法で測定した。
<硝酸メタノール法>
 アニオン変性パルプ試料約2.0gを精秤して、300mL共栓三角フラスコに入れた。硝酸メタノール(無水メタノール1Lに特級濃硝酸100mLを加えた液)100mLを加え、3時間振とうしてサンプルAを得た。その絶乾サンプルAを1.5~2.0g精秤し、300mL共栓三角フラスコに入れた。80%メタノール15mLでサンプルAを湿潤し、0.1N-NaOH100mLを加えて室温で3時間振とうした。指示薬としてフェノール・フタレインを用いて、0.1N-HSOで過剰のNaOHを逆適定した。カルボキシメチル化度は次式によって算出した。
{100×F’-(0.1N-HSOの適定量(mL))×F×0.1}/A = B
カルボキシメチル化度(DS)= 0.162×B / 1-0.058×B
 A :絶乾サンプルの精秤値(g)
 B :Aの1gを中和するのに必要な1N-NaOHの量(mL)
 F :0.1N-HSOのファクター
 F’:0.1N-NaOHのファクター
<アニオン変性ミクロフィブリル化植物繊維の調製>
 得られたアニオン変性パルプを二軸混練機(テクノベル社製のKZW)に投入し、解繊処理を行った。二軸混練機による解繊条件は以下の通りである。
 [解繊条件]
 スクリュー直径:15mm
 スクリュー回転数:2000rpm(スクリュー周速:94.2m/分)
 解繊時間:150gのアニオン変性パルプを500g/hr~600g/hrの処理条件で解繊した。原料を投入してからミクロフィブリル化植物繊維が得られる迄の時間は15分間であった。
 L/D:  45
 解繊処理に供した回数:1回(1パス)
 せき止め構造:0個。
 得られたアニオン変性ミクロフィブリル化植物繊維の電子顕微鏡写真を図1に示す。図1で示される30,000倍のSEM画像より任意のアニオン変性ミクロフィブリル化植物繊維100本の繊維径を実測したところ、数平均繊維径は22.56nmであった。
<アニオン変性ミクロフィブリル化植物繊維シートの調製>
 前記、解繊によって得られたアニオン変性ミクロフィブリル植物繊維スラリーをろ過してアニオン変性ミクロフィブリル化植物繊維のウェットウェブを得た。このウェットウェブを110℃、圧力0.003MPaで10分間加熱圧縮し、アニオン変性ミクロフィブリル化植物繊維の嵩高シートを得た。なお、ろ過条件は、ろ過面積:約200cm、減圧度:-30kPa、ろ紙:アドバンテック東洋株式会社製の5Aとした。
 得られたシートについての引っ張り強度を測定した。その結果、引っ張り強度は、103MPaとなった。測定結果を図3に示す。
<アニオン変性ミクロフィブリル化植物繊維-不飽和ポリエステル複合体の成形物の製造>
 前記、アニオン変性ミクロフィブリル化植物繊維のウェットウェブをエタノール浴に1時間浸漬させた後に110℃、圧力0.003MPaで10分間加熱圧縮し嵩高なシートを得た。この嵩高シートを幅30mm×長さ40mmにカットして105℃で1時間乾燥させ、重量を測定した。さらに、不飽和ポリエステル樹脂(ディーエイチ・マテリアル株式会社製「サンドマーFG283」)100重量部にベンゾイルパーオキサイド(日油株式会社製「ナイパーFF」)1重量部を加えた樹脂液に該シートを浸漬させた。浸漬は減圧下(真空度0.01MPa、時間30分)で行い、不飽和ポリエステル樹脂含浸シートを得た。次に、該不飽和ポリエステル樹脂含浸シートを、成形体の厚さが約1mmとなるようそれぞれ同じものを数枚重ねた。余分な樹脂をはき出した後、金型に入れ、加熱プレス(温度:90℃、時間:30分)を行って、アニオン変性ミクロフィブリル化植物繊維の不飽和ポリエステル複合体の成形物を得た。なお、得られた成形物の重量を測定し、前記シートの乾燥重量との差から樹脂含有率(重量%)を算出した。
 前記成形物の長さ、幅をノギス(株式会社ミツトヨ製)で正確に測定した。厚さを数か所マイクロメーター(株式会社ミツトヨ製)で測定し、成形物の体積を計算した。別途成形物の重量を測定した。得られた重量、体積より密度を算出した。
 前記成形物から厚さ1.2mm、幅7mm、長さ40mmのサンプルを作成し、変形速度5mm/分で曲げ弾性率及び曲げ強度を測定した(ロードセル5kN)。測定機として万能材料試験機インストロン3365型(インストロンジャパンカンパニイリミテッド製)を用いた。得られた樹脂複合体中の樹脂含有割合、曲げ弾性率及び曲げ強度を表1に示す。
実施例2
 <アニオン変性パルプの調製>において、水酸化ナトリウム22重量部、水360重量部、2-プロパノール(IPA)を1080重量部仕込んだ点、モノクロロ酢酸を有効換算で26重量部添加した点以外は実施例1と同様の方法にて、アニオン変性ミクロフィブリル化植物繊維の嵩高シートを調製した。さらに得られた嵩高シートを用いて実施例1と同様の方法にて、樹脂複合体を製造した。得られた樹脂成形材料中の樹脂含有割合、曲げ弾性率及び曲げ強度を表1に示す。
実施例3
 <アニオン変性パルプの調製>において、水酸化ナトリウム10.4重量部、水360重量部、IPAを1080重量部仕込んだ点、モノクロロ酢酸を有効換算で12.5重量部添加した点以外は実施例1と同様の方法にて、アニオン変性ミクロフィブリル化植物繊維の嵩高シートを調製した。さらに得られた嵩高シートを用いて実施例1と同様の方法にて、樹脂複合体を製造した。得られた樹脂成形材料中の樹脂含有割合、曲げ弾性率及び曲げ強度を表1に示す。
比較例1
 <アニオン変性パルプの調製>において、アニオン変性処理を行わなかった以外は、実施例1と同様の方法によって、ミクロフィブリル植物繊維、及びミクロフィブリル化植物繊維の嵩高シートを調製した。得られた嵩高シートについての引っ張り強度を実施例1と同様の方法で測定した。その結果、引っ張り強度は、81MPaとなった。測定結果を図3に示す。
 さらに、得られた嵩高シートを用いて実施例1と同様の方法にて、樹脂複合体を製造した。得られた樹脂複合体の樹脂含有割合、曲げ弾性率及び曲げ強度を表1に示す。
 また、前記得られたミクロフィブリル化植物繊維の電子顕微鏡写真を図2に示す。図2で示される10,000倍のSEM画像より任意のアニオン変性ミクロフィブリル化植物繊維50本の繊維径を実測したところ、数平均繊維径は240.0nmであった。
比較例2
<アニオン変性ミクロフィブリル化植物繊維の調製>において、解繊処理に供した回数を:4回(4パス)とした以外は比較例1と同様の方法によって、アニオン変性ミクロフィブリル化植物繊維の嵩高シートを調製した。さらに得られた嵩高シートを用いて実施例1と同様の方法にて、樹脂複合体を製造した。得られた樹脂成形材料中の樹脂含有割合、曲げ弾性率及び曲げ強度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
・考察
 実施例1より、アニオン変性したパルプを二軸混練機により解繊して得られたアニオン変性ミクロフィブリル化植物繊維は、シート状の状態でも、引っ張り強度が108MPaと強く、また、該シートと不飽和ポリエステルを複合化した成形物においても、曲げ弾性率及び曲げ強度が優れているという結果が得られた。
 一方、アニオン変性を行っていないパルプを用いて得られる樹脂複合体である比較例1は、曲げ弾性率、及び曲げ強度がいずれも実施例1と比較して、劣るものとなった。
 実施例1と比較例1の繊維の顕微鏡写真から判るように、アニオン変性パルプを調製することで、ナノ化が進行して、繊維同士の水素結合が強固になった結果シート強度が上昇し、該シートと不飽和ポリエステルを複合化した成形物においても、曲げ弾性率及び曲げ強度が優れるようになったと考えられる。

 
 

Claims (15)

  1. 塩基存在下で、式(I):
    X-(CH-COOH  (I)
    (式(I)中、Xはハロゲン原子を表し、nは、1又は2を表す)
    で表されるカルボン酸及び/又はその塩によってアニオン変性されたアニオン変性ミクロフィブリル化植物繊維を、熱硬化性樹脂100重量部に対して、10~900重量部含有する成形材料。
  2. 無水グルコース単位における水酸基の一部が、塩基の存在下で、式(I):
    X-(CH-COOH  (I)
    (式中、X、及びnは、前記と同じである)
    と反応して、
    -O-(CH-COOR  (II)
    (式(II)中、Rは、アルカリ金属を表す)
    に変性したアニオン変性ミクロフィブリル化植物繊維である請求項1に記載の成形材料。
  3. アニオン変性ミクロフィブリル化植物繊維が、カルボキシアルキル基を有するミクロフィブリル化植物繊維である請求項1又は2に記載の成形材料。
  4. カルボキシアルキル基がカルボキシメチル基である請求項3に記載の成形材料。
  5. アニオン変性ミクロフィブリル化植物繊維のシートに、熱硬化性樹脂を含浸することによって得られる請求項1~4のいずれかに記載の成形材料。
  6. 熱硬化性樹脂が不飽和ポリエステル樹脂である請求項1~5のいずれかに記載の成形材料。
  7. アニオン変性ミクロフィブリル化植物繊維における、無水グルコース単位当たりの式(I):
    X-(CH-COOH  (I)
    (式中、X、及びnは、前記と同じである)
    で表されるカルボン酸及び/又はその塩による置換度が0.01以上0.4未満である請求項1~6のいずれかに記載の成形材料。
  8. (1)植物繊維と式(I):
    X-(CH-COOH  (I)
    (式中、X、及びnは、前記と同じである)
    で表されるカルボン酸及び/又はその塩を、塩基存在下で反応させ、該植物繊維をアニオン変性する工程、
    (2)工程(1)によって得られたアニオン変性植物繊維を、水の存在下で解繊する工程、及び
    (3)工程(2)によって得られたアニオン変性ミクロフィブリル化植物繊維と熱硬化性樹脂を混合させる工程を含む
    請求項1~7のいずれかに記載の成形材料の製造方法。
  9. 工程(3)が、工程(2)によって得られたアニオン変性ミクロフィブリル化植物繊維をシート状に形成させ、形成したシートを熱硬化性樹脂中に含浸させる工程である請求項8に記載の成形材料の製造方法。
  10. 工程(2)における解繊処理が、機械的な解繊処理である請求項8又は9に記載の成形材料の製造方法。
  11. 塩基存在下で式(I):
    X-(CH-COOH  (I)
    (式中、X、及びnは、前記と同じである)
    で表されるカルボン酸及び/又はその塩によってアニオン変性された熱硬化性樹脂成形材料用アニオン変性ミクロフィブリル化植物繊維。
  12. アニオン変性ミクロフィブリル化植物繊維における、無水グルコース単位当たりの式(I):
    X-(CH-COOH  (I)
    (式中、X、及びnは、前記と同じである)
    で表されるカルボン酸及び/又はその塩による置換度が0.01以上0.4未満である請求項11に記載の熱硬化性樹脂成形材料用アニオン変性ミクロフィブリル化植物繊維。
  13. シート状である請求項11又は12に記載の熱硬化性樹脂成形材料用アニオン変性ミクロフィブリル化植物繊維。
  14. (1)植物繊維と式(I):
    X-(CH-COOH  (I)
    (式中、X、及びnは、前記と同じである)
    で表されるカルボン酸及び/又はその塩を、塩基存在下で反応させ、該植物繊維をアニオン変性する工程、及び
    (2)工程(1)によって得られたアニオン変性植物繊維を、水の存在下で解繊する工程を含む
    請求項11~13のいずれかに記載の熱硬化性樹脂成形材料用アニオン変性ミクロフィブリル化植物繊維の製造方法。
  15. 請求項1~7のいずれかに記載の成形材料を硬化させてなる成形体。
     
PCT/JP2011/056166 2010-03-19 2011-03-16 成形材料及びその製造方法 WO2011115154A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2793818A CA2793818C (en) 2010-03-19 2011-03-16 Molding material and manufacturing method therefor
CN201180013979.0A CN102892825B (zh) 2010-03-19 2011-03-16 成形材料及其制造方法
US13/635,785 US9327426B2 (en) 2010-03-19 2011-03-16 Molding material and manufacturing method therefor
EP11756338.7A EP2548917B1 (en) 2010-03-19 2011-03-16 Molding material and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-065023 2010-03-19
JP2010065023A JP5622412B2 (ja) 2010-03-19 2010-03-19 成形材料及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011115154A1 true WO2011115154A1 (ja) 2011-09-22

Family

ID=44649238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056166 WO2011115154A1 (ja) 2010-03-19 2011-03-16 成形材料及びその製造方法

Country Status (6)

Country Link
US (1) US9327426B2 (ja)
EP (1) EP2548917B1 (ja)
JP (1) JP5622412B2 (ja)
CN (1) CN102892825B (ja)
CA (1) CA2793818C (ja)
WO (1) WO2011115154A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013122209A1 (ja) * 2012-02-17 2013-08-22 Dic株式会社 繊維強化樹脂複合体、及び繊維強化樹脂用の強化マトリクス樹脂
JP2013166250A (ja) * 2012-02-14 2013-08-29 Oji Holdings Corp 成形内装材用シート及びその製造方法
JP2016155897A (ja) * 2015-02-23 2016-09-01 日本製紙株式会社 複合体の製造方法
JP2018131477A (ja) * 2017-02-13 2018-08-23 曙ブレーキ工業株式会社 摩擦材用の熱硬化性樹脂組成物、摩擦材及び摩擦材用の熱硬化性樹脂組成物の製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012206B2 (ja) 2012-03-08 2016-10-25 地方独立行政法人京都市産業技術研究所 変性セルロースナノファイバー及び変性セルロースナノファイバーを含む樹脂組成物
JP5496435B2 (ja) * 2012-03-09 2014-05-21 国立大学法人京都大学 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物
EP2826792B1 (en) 2012-03-14 2022-01-05 Nippon Paper Industries Co., Ltd. Method for producing anion-modified cellulose nanofiber dispersion
JP2014175232A (ja) * 2013-03-12 2014-09-22 Mitsubishi Paper Mills Ltd 電池用セパレータ
GB201304717D0 (en) 2013-03-15 2013-05-01 Imerys Minerals Ltd Paper composition
JP2014189932A (ja) * 2013-03-28 2014-10-06 Nippon Zeon Co Ltd 不織布
CN106414505B (zh) * 2013-09-06 2020-08-11 芬兰国家技术研究中心股份公司 表面改性的纤维素纳米纤维、生物复合树脂组合物及其制造方法
JP5885373B2 (ja) * 2013-10-04 2016-03-15 Dic株式会社 樹脂組成物、成形体、及び樹脂組成物の製造方法
JP2016533918A (ja) * 2013-10-10 2016-11-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 脱フィブリル化されたセルロースを含有するリグノセルロース材料
EP3095815B1 (en) * 2014-01-17 2018-11-28 Nippon Paper Industries Co., Ltd. Dry solids of anionically modified cellulose nanofibers and processes for preparing them
US10125260B2 (en) * 2014-02-19 2018-11-13 The University Of Akron Low aromatic content bio-mass fillers for free radical and ionic cure thermoset polymers
TWI716892B (zh) * 2014-05-26 2021-01-21 日商王子控股股份有限公司 含微細纖維素纖維片、複合片及其應用
CN104892772B (zh) * 2015-05-13 2017-04-26 浙江农林大学 以禾本科植物为原料生产纳米纤维的方法
SE540082C2 (en) * 2016-07-15 2018-03-20 Innventia Ab Method of producing a carboxyalkylated NFC product, a carboxyalkylated NFC product and use thereof
JP6228707B1 (ja) 2016-12-21 2017-11-08 日本製紙株式会社 酸型カルボキシメチル化セルロースナノファイバー及びその製造方法
JP7024953B2 (ja) * 2017-03-10 2022-02-24 国立大学法人京都大学 化学修飾リグノセルロースの熱圧成形体、及びその製造方法
EP3779038A4 (en) * 2018-03-30 2022-01-05 Nippon Paper Industries Co., Ltd. OXIDIZED MICROFIBRILLARY CELLULOSE FIBERS AND RELATED COMPOSITION
US11891499B2 (en) * 2018-07-19 2024-02-06 Kemira Oyj Granular cellulose product
JP7187243B2 (ja) * 2018-10-05 2022-12-12 大王製紙株式会社 セルロース繊維の成形体及びその製造方法
CN113492472A (zh) * 2020-07-31 2021-10-12 国际竹藤中心 一种热固性植物纤维预浸料及其制备方法和应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251301A (ja) 1997-03-07 1998-09-22 Nippon Paper Ind Co Ltd セルロース誘導体とその製法
JP2003201695A (ja) 2001-12-26 2003-07-18 Kansai Tlo Kk セルロースミクロフィブリルを用いた高強度材料
JP2005042283A (ja) 2003-07-08 2005-02-17 Kansai Tlo Kk 脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法
JP2005067064A (ja) 2003-08-26 2005-03-17 Matsushita Electric Works Ltd 植物繊維を用いた繊維強化プラスチック
JP2007231438A (ja) 2006-02-28 2007-09-13 Daicel Chem Ind Ltd 微小繊維状セルロース及びその製造方法
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
JP2008248092A (ja) * 2007-03-30 2008-10-16 Starlite Co Ltd フェノール樹脂複合材およびその製造方法
JP2008248093A (ja) * 2007-03-30 2008-10-16 Starlite Co Ltd フェノール樹脂組成物の製造方法
JP2008291105A (ja) * 2007-05-24 2008-12-04 Dh Material Kk 熱硬化性樹脂組成物、成形材料、成形品、成形品の分解方法、及びウレタン(メタ)アクリレート樹脂
JP2008310309A (ja) * 2007-05-11 2008-12-25 Hitachi Chem Co Ltd 液晶表示装置
JP2008310310A (ja) * 2007-05-15 2008-12-25 Hitachi Chem Co Ltd 偏光解消材料及びそれを用いた偏光解消素子、並びに、液晶表示装置
JP2009029927A (ja) * 2007-07-26 2009-02-12 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法及び成形体の製造方法
JP2009293167A (ja) 2008-06-09 2009-12-17 Nobuo Shiraishi ナノ繊維の製造方法、ナノ繊維、混合ナノ繊維、複合化方法、複合材料および成形品

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3244664A (en) * 1960-10-24 1966-04-05 Phillips Petroleum Co Silicon-containing polymers
US4405324A (en) * 1981-08-24 1983-09-20 Morca, Inc. Absorbent cellulosic structures
US6124058A (en) * 1996-05-20 2000-09-26 Kuraray Co., Ltd. Separator for a battery comprising a fibrillatable fiber
EA001682B1 (ru) * 1996-07-15 2001-06-25 Родиа Шими Жидкая среда, содержащая нанофибриллы целлюлозы, и ее применение при разработке нефтяных месторождений
BR9916641A (pt) 1998-12-30 2001-09-25 Kimberly Clark Co Processo de reciclagem por explosão a vapor de fibras e tecidos fabricados a partir das fibras recicladas
US6602994B1 (en) * 1999-02-10 2003-08-05 Hercules Incorporated Derivatized microfibrillar polysaccharide
WO2002022172A2 (en) * 2000-09-14 2002-03-21 University Of Iowa Research Foundation Powdered/microfibrillated cellulose
US7789995B2 (en) * 2002-10-07 2010-09-07 Georgia-Pacific Consumer Products, LP Fabric crepe/draw process for producing absorbent sheet
KR20120088678A (ko) 2003-07-31 2012-08-08 고쿠리츠 다이가쿠 호진 교토 다이가쿠 섬유 강화 복합 재료, 그 제조 방법 및 그 이용
US7541396B2 (en) * 2004-12-29 2009-06-02 Weyerhaeuser Nr Company Method for making carboxyalkyl cellulose
TWI391427B (zh) * 2005-02-01 2013-04-01 Pioneer Corp 纖維強化複合材料及其製造方法與用途,以及纖維素纖維集合體
US20090298976A1 (en) * 2005-10-26 2009-12-03 Hiroyuki Yano Fiber-Reinforced Composition Resin Composition, Adhesive and Sealant
US7718036B2 (en) * 2006-03-21 2010-05-18 Georgia Pacific Consumer Products Lp Absorbent sheet having regenerated cellulose microfiber network
WO2008010464A1 (fr) 2006-07-19 2008-01-24 Kyoto University Cellulose microfibrillée possédant une structure cristalline de cellulose de type ii et article moulé contenant cette cellulose microfibrillée
EP2308907B1 (en) * 2008-07-31 2014-01-01 Kyoto University Molding material containing unsaturated polyester resin and microfibrillated plant fiber
US20100065236A1 (en) * 2008-09-17 2010-03-18 Marielle Henriksson Method of producing and the use of microfibrillated paper
FI124724B (fi) * 2009-02-13 2014-12-31 Upm Kymmene Oyj Menetelmä muokatun selluloosan valmistamiseksi
CN102656316B (zh) * 2009-12-01 2015-04-15 日本制纸株式会社 纤维素纳米纤维
JP5881274B2 (ja) * 2010-02-05 2016-03-09 国立大学法人京都大学 カチオン性ミクロフィブリル化植物繊維及びその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251301A (ja) 1997-03-07 1998-09-22 Nippon Paper Ind Co Ltd セルロース誘導体とその製法
JP2003201695A (ja) 2001-12-26 2003-07-18 Kansai Tlo Kk セルロースミクロフィブリルを用いた高強度材料
JP2005042283A (ja) 2003-07-08 2005-02-17 Kansai Tlo Kk 脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法
JP2005067064A (ja) 2003-08-26 2005-03-17 Matsushita Electric Works Ltd 植物繊維を用いた繊維強化プラスチック
JP2007231438A (ja) 2006-02-28 2007-09-13 Daicel Chem Ind Ltd 微小繊維状セルロース及びその製造方法
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
JP2008248092A (ja) * 2007-03-30 2008-10-16 Starlite Co Ltd フェノール樹脂複合材およびその製造方法
JP2008248093A (ja) * 2007-03-30 2008-10-16 Starlite Co Ltd フェノール樹脂組成物の製造方法
JP2008310309A (ja) * 2007-05-11 2008-12-25 Hitachi Chem Co Ltd 液晶表示装置
JP2008310310A (ja) * 2007-05-15 2008-12-25 Hitachi Chem Co Ltd 偏光解消材料及びそれを用いた偏光解消素子、並びに、液晶表示装置
JP2008291105A (ja) * 2007-05-24 2008-12-04 Dh Material Kk 熱硬化性樹脂組成物、成形材料、成形品、成形品の分解方法、及びウレタン(メタ)アクリレート樹脂
JP2009029927A (ja) * 2007-07-26 2009-02-12 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法及び成形体の製造方法
JP2009293167A (ja) 2008-06-09 2009-12-17 Nobuo Shiraishi ナノ繊維の製造方法、ナノ繊維、混合ナノ繊維、複合化方法、複合材料および成形品

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166250A (ja) * 2012-02-14 2013-08-29 Oji Holdings Corp 成形内装材用シート及びその製造方法
WO2013122209A1 (ja) * 2012-02-17 2013-08-22 Dic株式会社 繊維強化樹脂複合体、及び繊維強化樹脂用の強化マトリクス樹脂
JP5392590B1 (ja) * 2012-02-17 2014-01-22 Dic株式会社 繊維強化樹脂複合体、及び繊維強化樹脂用の強化マトリクス樹脂
JP2016155897A (ja) * 2015-02-23 2016-09-01 日本製紙株式会社 複合体の製造方法
JP2018131477A (ja) * 2017-02-13 2018-08-23 曙ブレーキ工業株式会社 摩擦材用の熱硬化性樹脂組成物、摩擦材及び摩擦材用の熱硬化性樹脂組成物の製造方法
US11002330B2 (en) 2017-02-13 2021-05-11 Akebono Brake Industry Co., Ltd. Thermosetting resin composition for friction material, friction material and method for producing thermosetting resin composition for friction material

Also Published As

Publication number Publication date
US20130005866A1 (en) 2013-01-03
CA2793818A1 (en) 2011-09-22
US9327426B2 (en) 2016-05-03
EP2548917A4 (en) 2014-10-01
EP2548917A1 (en) 2013-01-23
CA2793818C (en) 2018-01-16
CN102892825B (zh) 2016-01-20
JP5622412B2 (ja) 2014-11-12
EP2548917B1 (en) 2018-05-02
CN102892825A (zh) 2013-01-23
JP2011195738A (ja) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5622412B2 (ja) 成形材料及びその製造方法
JP5881274B2 (ja) カチオン性ミクロフィブリル化植物繊維及びその製造方法
JP5638001B2 (ja) セルロースナノファイバー
JP5540176B2 (ja) ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法
JP5398180B2 (ja) リグニン含有ミクロフィブリル化植物繊維及びその製造方法
CN107805851B (zh) 磷酸酯化微细纤维素纤维及其制造方法
JP5531295B2 (ja) 不飽和ポリエステル樹脂とミクロフィブリル化植物繊維を含有する成形材料
JP5207246B2 (ja) セルロースii型結晶構造を有するミクロフィブリル化セルロース及び該ミクロフィブリル化セルロースを含有する成形体
JP2012214563A (ja) 変性ミクロフィブリル化植物繊維を含む樹脂組成物
JP2008169497A (ja) ナノファイバーの製造方法およびナノファイバー
JP2013011026A (ja) セルロースナノファイバーを主成分とする高強度材料及びその製造方法
JP6503182B2 (ja) 成形体及びその製造方法
JP2013087132A (ja) 微細繊維状セルロースの製造方法
JP2012057268A (ja) 微細繊維状セルロースの製造方法
Lavoratti et al. Dynamic mechanical analysis of cellulose nanofiber/polyester resin composites
KR102588704B1 (ko) 셀룰로오스 마이크로 파이버의 제조 방법 및 이에 의해 제조된 셀룰로오스 마이크로 파이버
JP2023173941A (ja) 多孔質粒子およびその製造方法
Ahn et al. Kang-Jae Kim, Jung Myoung Lee, Eun

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013979.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756338

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13635785

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2793818

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011756338

Country of ref document: EP