WO2011114874A1 - 成膜方法 - Google Patents

成膜方法 Download PDF

Info

Publication number
WO2011114874A1
WO2011114874A1 PCT/JP2011/054532 JP2011054532W WO2011114874A1 WO 2011114874 A1 WO2011114874 A1 WO 2011114874A1 JP 2011054532 W JP2011054532 W JP 2011054532W WO 2011114874 A1 WO2011114874 A1 WO 2011114874A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
film
heat treatment
light
Prior art date
Application number
PCT/JP2011/054532
Other languages
English (en)
French (fr)
Inventor
礼奈 鶴岡
池田 寿雄
鶴目 卓也
通 園田
井上 智
Original Assignee
株式会社半導体エネルギー研究所
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所, シャープ株式会社 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2012505596A priority Critical patent/JP5775511B2/ja
Priority to US13/635,201 priority patent/US8951816B2/en
Publication of WO2011114874A1 publication Critical patent/WO2011114874A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/18Deposition of organic active material using non-liquid printing techniques, e.g. thermal transfer printing from a donor sheet
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/048Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a film forming method for forming a film on a substrate.
  • EL electroluminescence
  • the basic structure of these light-emitting elements is such that a light-emitting layer containing a light-emitting substance is sandwiched between a pair of electrodes. By applying voltage to this element, light emission from the light-emitting substance can be obtained.
  • the EL layer constituting the light emitting element has at least a light emitting layer.
  • the EL layer can have a stacked structure including a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like in addition to the light-emitting layer.
  • a transfer substrate is prepared in which a light absorption layer is formed on one surface of a support substrate, and a transfer layer is formed on the light absorption layer. Further, a transfer substrate is prepared in which a lower electrode is formed on a substrate, a hole injection layer is formed on the lower electrode, and a hole transport layer is formed on the hole injection layer.
  • the transfer layer of the transfer substrate and the hole transport layer of the transfer substrate are arranged to face each other, and laser light is irradiated from the other surface of the support substrate, and the light absorption layer absorbs the laser light,
  • a light emitting layer is formed on the hole transport layer (see, for example, Patent Document 1).
  • the transfer layer transferred to the transfer substrate can be improved in quality, but the problem is that the underlying layer of the transfer layer is damaged. appear.
  • the energy density of the light absorbed by the light absorption layer is reduced, the underlying layer of the transfer layer transferred to the transfer substrate can be prevented from being damaged, but there is a problem that the transfer layer cannot be improved. .
  • An object of one embodiment of the present invention is to provide a film formation method capable of improving the quality of a transfer layer transferred to a deposition target substrate and suppressing damage to an underlying layer of the transfer layer.
  • an absorption layer formed on one surface of a first substrate and a material layer formed on the absorption layer and including a film formation material are provided on one side of the first substrate.
  • the first layer is disposed on the deposition surface of the second substrate so as to face the deposition surface;
  • a second layer containing the film formation material is formed on the first layer of the second substrate.
  • a third layer containing the film formation material is formed on the second layer of the second substrate.
  • the first heat treatment is performed, so that the second layer is formed over the first layer of the second substrate, and the second heat treatment is performed at a higher energy density than the first heat treatment.
  • the third layer is formed on the second layer. Since the second layer and the first layer are separated from each other by the boundary, the third layer can be improved in quality and the first layer, which is the base layer of the second layer, can be damaged. Can be suppressed.
  • the material layer may contain two or more kinds of film forming materials and a polymer compound that satisfies the following formula (1).
  • Ta-100 ⁇ S ⁇ 400 (1)
  • S shows the glass transition temperature (degreeC) of a high molecular compound
  • Ta shows the high temperature (degreeC) among the sublimation temperature which each of the said 2 or more types of film-forming material has.
  • One embodiment of the present invention includes a first absorption layer formed over one surface of a first substrate, and a first material layer formed over the first absorption layer and containing a film formation material.
  • One side of the first substrate comprising: The first layer is disposed on the deposition surface of the second substrate so as to face the deposition surface; A second layer containing the film forming material on the first layer of the second substrate by subjecting the first material layer to a first heat treatment from the other surface of the first substrate.
  • the third substrate having a second absorption layer formed on one surface of the third substrate, and a second material layer formed on the second absorption layer and containing the film forming material.
  • One side of The second substrate is disposed so as to face the deposition surface, A third layer containing the film forming material on the second layer of the second substrate by subjecting the second material layer to a second heat treatment from the other surface of the third substrate.
  • a film forming method for forming In the second heat treatment a higher density energy than that in the first heat treatment is applied to the second material layer.
  • each of the first material layer and the second material layer includes two or more types of film formation materials and a polymer compound that satisfies the following formula (1). It is also possible.
  • S shows the glass transition temperature (degreeC) of a high molecular compound
  • Ta shows the high temperature (degreeC) among the sublimation temperature which each of the said 2 or more types of film-forming material has.
  • the third layer and the second layer are mixed; It is possible that the third layer and the first layer are not mixed.
  • the energy density applied to the material layer in the second heat treatment is such that the deposition material included in the third layer reaches the second layer and does not reach the first layer.
  • the energy density is preferable.
  • the energy density applied to the material layer in the first heat treatment is preferably an energy density that prevents the film formation material included in the second layer from reaching the first layer.
  • a light source is used to irradiate light from the other surface side of the first substrate, and the absorption layer is heated by absorbing light. Is preferably used.
  • the first heat treatment uses a method in which light is irradiated from the other surface side of the first substrate using a halogen lamp, and the first absorption layer is heated by absorbing the light
  • a flash lamp is used to irradiate light from the other surface side of the third substrate, and the second absorption layer is heated by absorbing light. preferable.
  • the first layer is a hole transport layer;
  • the second layer and the third layer are preferably layers containing a light emitting substance.
  • a transfer layer transferred to a deposition target substrate can be improved in quality, and a deposition method can be provided that can prevent damage to the underlying layer of the transfer layer. .
  • FIGS. 4A to 4C are cross-sectional views illustrating a film formation method of one embodiment of the present invention.
  • FIGS. FIGS. 4A to 4C are cross-sectional views illustrating a film formation method of one embodiment of the present invention.
  • FIGS. FIGS. 4A to 4C are cross-sectional views illustrating a film formation method of one embodiment of the present invention.
  • FIGS. 4A to 4D are cross-sectional views illustrating a film formation method of one embodiment of the present invention.
  • FIG. 1A to 1C are cross-sectional views illustrating a film formation method of one embodiment of the present invention.
  • an absorption layer 12 is formed on one surface of a first substrate 11 which is a support substrate, and an organic EL material layer (at least containing a film formation material) (on the absorption layer 12).
  • a film formation substrate (donor substrate) 10 on which a “material layer”) 13 is formed is prepared.
  • FIG. 1A illustrates a case where the material layer 13 is made of only a film forming material.
  • a deposition target substrate 20 in which a desired layer, for example, a hole transport layer 23 is deposited on the second substrate 22 by a deposition process is prepared.
  • the second substrate 22 that is the deposition target substrate 20 is disposed at a position facing the surface on which the absorption layer 12 and the material layer 13 are formed. It is preferable that the film forming material included in the material layer 13 is not included in the hole transport layer 23.
  • the irradiation condition at this time is a low power condition with a low energy density (for example, a charge voltage of 650 V).
  • the irradiated light passes through the first substrate 11 and is absorbed by the absorption layer 12.
  • the absorbed light is converted into thermal energy, whereby the material layer 13 in a region overlapping with the absorption layer 12 is heated (first heat treatment).
  • the heated material layer 13 is transferred onto the hole transport layer 23. That is, as shown in FIG. 1B, the first EL layer 13 a containing a film forming material is formed over the hole transport layer 23, and the material layer 13 containing the film forming material is formed on the film forming substrate 10. Is left behind.
  • the hole transport layer 23 is separated by the boundary without being mixed. That is, the low power condition with a low energy density is an energy density at which the film forming material included in the first EL layer 13a does not reach the hole transport layer 23, and as a result, the hole transport layer 23 is damaged.
  • the first EL layer 13a and the hole transport layer 23 are separated by a boundary.
  • first EL layer 13a and the hole transport layer 23 are separated by the boundary, for example, TEM (Transmission Electron Microscope) or oblique cutting ToF-SIMS (Time of Flight-Secondary Ion Mass Spectrometer). May be confirmed by.
  • TEM Transmission Electron Microscope
  • ToF-SIMS Time of Flight-Secondary Ion Mass Spectrometer
  • the irradiation condition at this time is a high power condition with a high energy density (for example, a charge voltage of 800 V).
  • the irradiated light passes through the first substrate 11 and is absorbed by the absorption layer 12.
  • the absorbed light is converted into thermal energy, whereby the material layer 13 in a region overlapping with the absorption layer 12 is heated (second heat treatment).
  • the heated material layer 13 is transferred onto the first EL layer 13a. That is, as shown in FIG. 1C, the second EL layer 13b containing a film formation material is formed over the first EL layer 13a.
  • the film formation substrate 10 includes a material layer containing a material other than the film formation material. Is left behind.
  • the second EL layer 13b Since the light is irradiated under the condition of high power with high energy density as described above, the second EL layer 13b is of a high quality, specifically, a residue can be hardly formed, and a layer film can be uniformly formed on the entire surface. Therefore, it is possible to form a thick layer, to shorten the tact time and to increase the throughput. Further, the second EL layer 13b and the first EL layer 13a are mixed, but the second EL layer 13b and the hole transport layer 23 are separated without being mixed. That is, under the high power condition with high energy density, the film forming material included in the second EL layer 13b reaches the first EL layer 13a and is mixed, but does not reach the hole transport layer 23 and is mixed.
  • the second EL layer 13b and the hole transport layer 23 are not mixed. Therefore, when the first EL layer 13a is formed under the high power condition with high energy density and the second EL layer 13b is formed, the film formation material contained in the second EL layer 13b is the hole transport layer. 23 has a function of protecting it from reaching the inside.
  • the thickness of the first EL layer 13a is set so that the film forming material contained in the second EL layer 13b is formed when the second EL layer 13b is formed under a high power condition with high energy density.
  • the thickness is preferably set so as not to reach the hole transport layer 23, and may be several nm, for example.
  • the upper limit of the thickness of the first EL layer 13a is the maximum film thickness that can be transferred under low power conditions with low energy density, and the maximum film thickness that can be transferred is determined by the low power conditions.
  • the second EL layer 13b including one layer is used.
  • a second EL layer including two or more layers may be used.
  • the first substrate 11 is a substrate that transmits light used for forming a material layer on a deposition target substrate. Therefore, the first substrate 11 is preferably a substrate having a high light transmittance. Specifically, when lamp light or laser light is used to form the material layer, it is preferable to use a substrate that transmits the light as the first substrate 11.
  • a glass substrate, a quartz substrate, a plastic substrate containing an inorganic material, or the like can be used.
  • the absorption layer 12 is a layer that absorbs light irradiated to heat the material layer 13 and converts it into heat. For this reason, it should just be formed in the area
  • the absorption layer 12 is preferably formed of a material having a low reflectance of 70% or less with respect to the irradiated light and a high absorption rate. Moreover, it is preferable that the absorption layer 12 is formed with the material excellent in heat resistance so that itself may not change with heat.
  • Examples of materials that can be used for the absorption layer 12 include metal nitrides such as titanium nitride, tantalum nitride, molybdenum nitride, tungsten nitride, chromium nitride, and manganese nitride, molybdenum, titanium, tungsten, and carbon. preferable.
  • metal nitrides such as titanium nitride, tantalum nitride, molybdenum nitride, tungsten nitride, chromium nitride, and manganese nitride, molybdenum, titanium, tungsten, and carbon. preferable.
  • the absorbing layer 12 can be formed using various methods.
  • the absorption layer 12 can be formed by a sputtering method using a target such as molybdenum, tantalum, titanium, or tungsten, or a target using an alloy thereof.
  • the absorbing layer 12 is not limited to a single layer and may be composed of a plurality of layers.
  • the film thickness of the absorbing layer 12 is preferably a film thickness that does not transmit the irradiated light. Although it varies depending on the material, the film thickness is preferably 100 nm or more and 2 ⁇ m or less. In particular, by setting the thickness of the absorption layer 12 to 100 nm or more and 600 nm or less, it is possible to efficiently absorb irradiated light and generate heat.
  • the absorption layer 12 may transmit a part of the irradiated light.
  • a material that does not decompose even when irradiated with light is preferably used for the material layer 13.
  • the “film formation temperature” refers to a temperature at which at least a part of the film formation material is transferred from the film formation substrate to the film formation substrate by the action of heat.
  • the material layer 13 is a layer that is transferred to the second substrate by heating. It is a layer formed including a film forming material to be formed on a deposition target substrate. In this embodiment mode, one kind of organic material is used as the film forming material included in the material layer 13, but two or more kinds of organic materials can also be used as the film forming material.
  • the material layer 13 may be a single layer or a plurality of layers may be stacked. Note that in this embodiment mode, transfer indicates that a film formation material included in the material layer 13 is transferred onto a deposition target substrate.
  • the material layer 13 is formed by various methods. For example, a wet coating method such as spin coating, spray coating, ink jet, dip coating, casting, die coating, roll coating, blade coating, bar coating, gravure coating, nozzle printing or printing Can be used. Alternatively, a dry method such as a vacuum evaporation method or a sputtering method can be used.
  • a wet coating method such as spin coating, spray coating, ink jet, dip coating, casting, die coating, roll coating, blade coating, bar coating, gravure coating, nozzle printing or printing Can be used.
  • a dry method such as a vacuum evaporation method or a sputtering method can be used.
  • a desired film forming material may be dissolved or dispersed in a solvent, and a solution or dispersion may be adjusted.
  • the solvent is not particularly limited as long as it can dissolve or disperse the film forming material and does not react with the film forming material.
  • halogen solvents such as chloroform, tetrachloromethane, dichloromethane, 1,2-dichloroethane, or chlorobenzene
  • ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, n-propyl methyl ketone, or cyclohexanone
  • benzene toluene
  • Aromatic solvents such as xylene, ester solvents such as ethyl acetate, n-propyl acetate, n-butyl acetate, ethyl propionate, ⁇ -butyrolactone, or diethyl carbonate
  • ether solvents such as tetrahydrofuran or dioxane, dimethylformamide
  • an amide solvent such as dimethylacetamide, dimethyl sulfoxide, hexane, water, or the like can be used.
  • the material layer is not necessarily a uniform layer as long as the film thickness and uniformity of the EL layers 13a and 13b formed on the second substrate 22 are maintained.
  • it may be formed in a fine island shape, or may be formed in a layered structure.
  • the second substrate 22 is not limited to a specific one as long as it has necessary heat resistance and has an insulating surface.
  • a glass substrate, a quartz substrate, a stainless steel substrate on which an insulating film is formed, and the like can be given.
  • a plastic substrate having heat resistance enough to withstand heat treatment may be used.
  • a flash lamp is used as a light source for both light irradiation under a low power condition and light irradiation under a high power condition, but various light sources can be used as long as a power difference can be secured. A thing may be used.
  • a discharge lamp such as a xenon lamp or a metal halide lamp, or a heating lamp such as a halogen lamp or a tungsten lamp can be used as the light source.
  • These light sources may be used as flash lamps (for example, xenon flash lamps, krypton flash lamps, etc.).
  • the flash lamp can irradiate a large area repeatedly in a short time (0.1 ms to 10 ms), so that it can irradiate a large area efficiently and uniformly regardless of the area of the first substrate. Can be heated.
  • heating of the first substrate 11 can be controlled by changing the length of time for which light is emitted.
  • a laser oscillation device may be used as the light source.
  • the laser light include gas lasers such as Ar laser, Kr laser, and excimer laser, single crystal YAG, YVO 4 , forsterite (Mg 2 SiO 4 ), YAlO 3 , GdVO 4 , or polycrystalline (ceramic).
  • gas lasers such as Ar laser, Kr laser, and excimer laser, single crystal YAG, YVO 4 , forsterite (Mg 2 SiO 4 ), YAlO 3 , GdVO 4 , or polycrystalline (ceramic).
  • YAG, Y 2 O 3 , YVO 4 , YAlO 3 , GdVO 4 with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, Ta added as dopants are used as the medium.
  • Lasers, glass lasers, ruby lasers, alexandrite lasers, Ti: sapphire lasers, copper vapor lasers, or gold vapor lasers that are oscillated from one or more types can be used.
  • a solid-state laser whose laser medium is solid there are advantages that a maintenance-free state can be maintained for a long time and output is relatively stable.
  • infrared light wavelength 800nm or more
  • heat conversion in the absorption layer 12 is efficiently performed, and the film forming material can be efficiently heated.
  • each of the first and second heat treatments is preferably performed in an atmosphere with little moisture and oxygen or a reduced pressure atmosphere.
  • the reduced-pressure atmosphere can be obtained by evacuating the film forming chamber so that the degree of vacuum is 5 ⁇ 10 ⁇ 3 Pa or less, preferably about 10 ⁇ 4 Pa to 10 ⁇ 6 Pa.
  • the case where the second substrate 22 that is a deposition target substrate is located below the first substrate 11 that is a deposition substrate is illustrated. It is not limited. The direction in which the substrate is installed can be set as appropriate.
  • the material layer 13 including a film forming material has been described.
  • the material layer 13 may be changed to the following.
  • a light emitting substance is used for the first film forming material included in the material layer, and an organic compound that disperses the light emitting substance is used for the second film forming material.
  • the light-emitting substance for example, a fluorescent compound that emits fluorescence or a phosphorescent compound that emits phosphorescence can be used.
  • the organic compound that disperses the light-emitting substance when the light-emitting substance is a fluorescent compound, a substance having a singlet excitation energy (energy difference between the ground state and the singlet excited state) larger than that of the fluorescent compound is used. preferable.
  • the light-emitting substance is a phosphorescent compound
  • a substance having a triplet excitation energy (energy difference between a ground state and a triplet excited state) larger than that of the phosphorescent compound is preferably used.
  • two or more kinds of organic compounds in which a light emitting substance is dispersed may be used as a film forming material included in the material layer, or two or more kinds of light emitting substances dispersed in an organic compound may be used. Further, an organic compound in which two or more kinds of luminescent substances are dispersed and two or more kinds of luminescent substances may be used.
  • a polymer compound having a glass transition temperature satisfying the following formula (1) is used. More preferably, a polymer compound having a glass transition temperature satisfying the following formula (2) is used. Note that in the following formulas (1) and (2), the sublimation temperatures of the first film-forming material and the second film-forming material are measured at the same degree of vacuum (for example, a degree of vacuum of 10 ⁇ 3 Pa).
  • Ta-100 ⁇ S ⁇ 400 (1) Ta-70 ⁇ S ⁇ 400 (2)
  • S shows the glass transition temperature (degreeC) of a high molecular compound
  • Ta is high temperature among the sublimation temperatures of a 1st film-forming material or a 2nd film-forming material. (° C.).
  • the temperature reaches the lower one of the sublimation temperatures of the first film forming material or the second film forming material.
  • the film-forming material that has reached the sublimation temperature is hardly transferred from the material layer. This is because the high molecular compound suppresses the movement of the first film formation material and the second film formation material in the material layer.
  • the first film forming material and the second film forming material can easily move in the material layer, It is transferred onto the film formation substrate. Accordingly, there is little time difference between the transfer of the first film formation material and the transfer of the second film formation material, and an EL layer with a small concentration gradient can be formed over the deposition target substrate.
  • the material having the lower sublimation temperature moves in the material layer before reaching the sublimation temperature of the material having the higher sublimation temperature. Since it is difficult to suppress this, the film-forming material having a low sublimation temperature is transferred first, and then the film-forming material having a high sublimation temperature is transferred. Further, if the glass transition temperature of the polymer compound is higher than the range of the above formula (1), the first film-forming material and the second film-forming material after the first sublimation temperature exceeds the higher temperature, The film-forming material and the second film-forming material are prevented from moving in the material layer, and transfer is not easily performed. Since the first film-forming material and the second film-forming material reach a high temperature, they may be decomposed.
  • the polymer compound a polymer compound having a glass transition temperature satisfying the above formula (1), preferably the above formula (2) is used.
  • a material having a glass transition temperature of 200 ° C. was used as the polymer compound, and a material having a sublimation temperature of 210 ° C. and a material having a sublimation temperature of 260 ° C. were used as the first film formation material and the second film formation material. In some cases, good transfer was achieved. On the other hand, a material having a glass transition temperature of 200 ° C. is used as the polymer compound, and a material having a sublimation temperature of 210 ° C. and a material having a sublimation temperature of 302 ° C. are used as the first film forming material and the second film forming material. If it was, good transfer was not realized. This indicates that a suitable EL layer can be realized under the conditions meeting the above formulas (1) and (2).
  • the polymer compound contained in the material layer is preferably a cycloolefin polymer. Since the cycloolefin polymer is easily dissolved in a solvent, after the film is formed on the deposition target substrate, the cycloolefin polymer containing the first film-forming material and the second film-forming material remaining on the film-forming substrate is reused in the solvent. By dissolving, the deposition substrate can be reused. Therefore, the consumption and cost of the material can be suppressed. Further, as the polymer compound, olefin, vinyl, acrylic, polyimide (PI), or the like may be used, or a polymer material EL material may be used.
  • polymer material EL material examples include poly (N-vinylcarbazole) (PVK) and poly (p-phenylene vinylene) (PPV).
  • PVK poly (N-vinylcarbazole)
  • PPV poly (p-phenylene vinylene)
  • a cross-linked polymer such as an epoxy resin, an acrylic resin, or siloxane may be used.
  • a polymer compound means a polymer (polymer) having a repeating structure of one or more kinds of monomers.
  • the viscosity of a polymer compound is easy to adjust, the viscosity of the polymer compound solution can be freely adjusted according to the application. For example, when a material layer is formed by a droplet discharge method, by increasing the viscosity of a solution of a polymer compound, the polymer compound does not spread on the deposition surface, and a fine pattern can be formed. .
  • Adjustment of the viscosity of the polymer compound can be realized by adjusting the molecular weight of the polymer compound or changing the ratio of the polymer compound and the solvent. In general, as the ratio of the polymer compound increases, the viscosity of the solution increases.
  • FIG. 2A to 2C are cross-sectional views illustrating a film formation method of one embodiment of the present invention.
  • the same portions as those in FIG. 1 are denoted by the same reference numerals, and only different portions will be described.
  • Embodiment 1 shown in FIG. 1 is a film formation method using one film formation substrate, but this embodiment is a film formation method using two film formation substrates. This will be described in detail below.
  • an absorption layer 12 is formed on one surface of the first substrate 11 which is a support substrate, and an organic EL material layer (hereinafter, referred to as at least a film-forming material) is formed on the absorption layer 12.
  • a film formation substrate (donor substrate) 10a on which a "material layer") 14 is formed is prepared.
  • the light is irradiated from the back surface of the first substrate 11 with a flash lamp as indicated by an arrow.
  • the irradiation conditions at this time are the same as those in the step shown in FIG.
  • the heated material layer 14 is transferred onto the hole transport layer 23. That is, as shown in FIG. 2B, the first EL layer 13a containing a film formation material is formed over the hole transport layer 23, and no film formation material is left on the film formation substrate 10a.
  • the same effect as in the first embodiment can be obtained by irradiating light under the condition of low power with low energy density.
  • an absorption layer 12 is formed on one surface of a third substrate 11a that is a supporting substrate, and an organic EL material layer (hereinafter, referred to as at least a film-forming material) is formed on the absorption layer 12.
  • a film formation substrate (donor substrate) 10b on which a "material layer") 15 is formed is prepared.
  • the second substrate 22 as the deposition target substrate 20 is disposed at a position facing the surface on which the absorption layer 12 and the material layer 15 are formed.
  • the heated material layer 15 is transferred onto the first EL layer 13a. That is, as shown in FIG. 2C, the second EL layer 13b containing a film formation material is formed over the first EL layer 13a, and the film formation material is not left on the film formation substrate 10b.
  • the same effect as in the first embodiment can be obtained by irradiating light under the condition of high power with high energy density.
  • the film formation method by each of the first and second heat treatments forms a film on the deposition target substrate 20 by a transfer process depending on the film thicknesses of the material layers 14 and 15 formed on the first substrate 11 or the third substrate 11a.
  • the film thickness of each of the first and second EL layers 13a and 13b can be controlled. That is, since the material layers 14 and 15 formed on the film formation substrates 10a and 10b may be transferred as they are, a film thickness monitor is unnecessary. Therefore, it is not necessary for the user to adjust the film formation rate using the film thickness monitor, and the film formation process can be fully automated. Therefore, productivity can be improved.
  • FIG. 3A to 3C are cross-sectional views illustrating a film formation method of one embodiment of the present invention.
  • the same portions as those in FIG. 2 are denoted by the same reference numerals, and only different portions will be described.
  • light irradiation is performed by a flash lamp under a low power condition with a low energy density and a high power condition with a high energy density.
  • Light irradiation under a low power condition is performed with a halogen lamp, and light irradiation with a high energy density is performed with a flash lamp.
  • Embodiment 4 a film formation method of one embodiment of the present invention will be described. Note that in this embodiment, the case where an EL layer of a light-emitting element is formed using the film formation method of one embodiment of the present invention will be described. Note that the film formation method described in this embodiment is performed using the same materials and manufacturing methods as those in Embodiment 1 unless otherwise specified.
  • FIG. 4 shows an example in which a reflective layer and a heat insulating layer are formed on the first substrate.
  • a reflective layer 203 is selectively formed on one surface of the first substrate 201 which is a support substrate.
  • the reflective layer 203 has an opening.
  • a heat insulating layer 205 is formed on the reflective layer 203.
  • the heat insulating layer 205 has an opening formed at a position overlapping the opening of the reflective layer 203.
  • an absorption layer 207 that covers the opening is formed over the first substrate 201 over which the reflective layer 203 and the heat insulating layer 205 are formed.
  • an organic EL material layer hereinafter referred to as “material layer” 209 including a film forming material is formed over the absorption layer 207.
  • overlap means not only a case where elements (for example, a reflective layer and an absorption layer) constituting a film formation substrate are in direct contact with each other but also an overlapping layer. Including the case of overlapping.
  • a reflective layer 203 is selectively formed on one surface of the first substrate 201.
  • the reflective layer 203 is a layer that reflects light irradiated from the other surface of the first substrate 201 and blocks the material layer 209 formed in a region overlapping with the reflective layer 203 so as not to apply heat. Therefore, the reflective layer 203 is preferably formed of a material having a high reflectance with respect to the light to be irradiated. Specifically, the reflective layer 203 is preferably formed of a material having a high reflectance with a reflectance of 85% or more, more preferably 90% or more, with respect to the irradiated light. .
  • Examples of a material that can be used for the reflective layer 203 include aluminum, silver, gold, platinum, copper, an alloy containing aluminum (eg, an aluminum-titanium alloy, an aluminum-neodymium alloy, and an aluminum-titanium alloy), or silver.
  • An alloy (silver-neodymium alloy) or the like can be used.
  • the reflective layer 203 can be formed using various methods. For example, it can be formed by sputtering, electron beam vapor deposition, vacuum vapor deposition, or the like. Moreover, although the film thickness of the reflective layer 203 changes with materials, it is preferable to set it as 100 nm or more. By setting the film thickness to 100 nm or more, the irradiated light can be prevented from passing through the reflective layer 203.
  • the type of material suitable for the reflective layer 203 varies depending on the wavelength of light applied to the first substrate 201.
  • the reflective layer is not limited to a single layer, and may be composed of a plurality of layers.
  • the absorption layer 207 may be formed directly over the first substrate 201 without providing a reflective layer.
  • the reflectance between the reflective layer 203 and the absorption layer 207 is larger.
  • the difference in reflectance with respect to the wavelength of the irradiated light is 25% or more, more preferably 30% or more.
  • various methods can be used for forming the opening of the reflective layer 203, but dry etching is preferably used. By using dry etching, the sidewall of the opening becomes sharp and a fine pattern can be formed.
  • a heat insulating layer 205 is selectively formed on the reflective layer 203.
  • the heat insulating layer 205 is a layer for suppressing the material layer 209 located in the region overlapping with the reflective layer 203 from being heated and sublimated.
  • the heat insulating layer 205 for example, titanium oxide, silicon oxide, silicon oxynitride, zirconium oxide, titanium carbide, or the like can be preferably used.
  • the heat insulating layer 205 is formed using a material having lower thermal conductivity than the material used for the reflective layer 203 and the absorbing layer 207.
  • oxynitride is a substance having a higher oxygen content than nitrogen in its composition.
  • the heat insulating layer 205 can be formed using various methods. For example, it can be formed by a sputtering method, an electron beam evaporation method, a vacuum evaporation method, a CVD (chemical vapor deposition) method, or the like. Moreover, although the film thickness of a heat insulation layer changes with materials, it is 10 nm or more and 2 micrometers or less, Preferably it can be 100 nm or more and 600 nm or less. By setting the thickness of the heat insulating layer 205 to 10 nm or more and 2 ⁇ m or less, even when the reflective layer 203 is heated, there is an effect of blocking heat conduction to the material layer 209 positioned on the reflective layer 203.
  • the heat insulating layer 205 has an opening formed in a region overlapping with the opening of the reflective layer 203.
  • Various methods can be used to form the pattern of the heat insulating layer 205, but dry etching is preferably used. By using dry etching, the patterned heat insulating layer 205 has a sharp sidewall, and a fine pattern can be formed.
  • the sidewalls of the openings provided in the heat insulating layer 205 and the reflective layer 203 can be aligned, and a finer pattern can be formed. This is preferable.
  • the heat insulating layer 205 is formed only at a position overlapping the reflective layer 203, but the heat insulating layer 205 may be formed to cover the reflective layer 203 and the opening of the reflective layer 203. In this case, the heat insulating layer 205 needs to have transparency to visible light.
  • an absorption layer 207 covering the opening is formed on the first substrate 201 on which the reflective layer 203 and the heat insulating layer 205 are formed.
  • the absorption layer 207 can be formed using a material similar to that of the absorption layer 12 described in Embodiment 1. Note that the absorption layer 207 may be selectively formed. For example, after the absorption layer 207 is formed over the entire surface of the first substrate 201, the absorption layer 207 is patterned and formed into an island shape so as to cover the openings of the reflective layer 203 and the heat insulating layer 205.
  • the material layer 209 is formed on the absorption layer 207.
  • the material layer 209 can be the same as that in Embodiment 1.
  • the second substrate 211 is disposed on the first substrate 201 at a position facing the surface on which the material layer 209 and the like are formed.
  • the first substrate which is one electrode of the light-emitting element is formed over the second substrate 211.
  • the electrode layer 213 is provided.
  • An end portion of the first electrode layer 213 is covered with an insulator 215.
  • an electrode indicates an electrode that serves as an anode or a cathode of a light emitting element.
  • the hole transport layer 217 is provided over the first electrode layer 213.
  • the surface of the material layer 209 and the surface of the second substrate 211 are arranged with a predetermined distance.
  • the predetermined distance is 0 mm or more and 2 mm or less, preferably 0 mm or more and 0.05 mm or less, and more preferably 0 mm or more and 0.03 mm or less.
  • the predetermined distance is defined by the distance between the surface of the material layer 209 on the first substrate and the surface of the second substrate.
  • the predetermined distance is a material layer on the first substrate. It is defined by the distance between the surface of 209 and the outermost surface of the layer formed on the second substrate, that is, the surface of these films (conductive film or partition wall).
  • the same effect as in the first embodiment can be obtained by irradiating light under the condition of low power with low energy density.
  • the same effect as in the first embodiment can be obtained by irradiating light under the condition of high power with high energy density.
  • FIG. 5A to 5D are cross-sectional views illustrating a film formation method of one embodiment of the present invention.
  • the same portions as those in FIG. 4 are denoted by the same reference numerals, and only different portions are described.
  • the fourth embodiment shown in FIG. 4 is a film forming method using one film forming substrate 200
  • this embodiment is a film forming method using two film forming substrates 200a and 200b. It is. This will be described in detail below.
  • the reflective layer 203, the heat insulating layer 205, and the absorption layer 207 are formed over one surface of the first substrate 201 which is a supporting substrate, and at least a film formation material is formed over the absorption layer 207.
  • a film formation substrate (donor substrate) 200a on which an organic EL material layer (hereinafter referred to as “material layer”) 209a is formed is prepared.
  • the reflective layer 203, the heat insulating layer 205, and the absorption layer 207 are formed over one surface of the third substrate 201a which is a support substrate, and at least a film formation material is formed over the absorption layer 207.
  • a film formation substrate (donor substrate) 200b on which an organic EL material layer (hereinafter referred to as “material layer”) 209b is formed is prepared.
  • step shown in FIG. 5C light is irradiated from the back surface of the first substrate 201 by a flash lamp as indicated by an arrow 110a.
  • the irradiation conditions at this time are the same as those in the step shown in FIG.
  • the heated material layer 209 a is transferred onto the hole transport layer 217. That is, the first EL layer 218 containing a film formation material is formed over the hole transport layer 217.
  • the same effect as in the fourth embodiment can be obtained by irradiating light under the condition of low power with low energy density.
  • the second substrate 211 that is a deposition target substrate is provided in a position facing the surface over which the absorption layer 207 and the material layer 209b are formed in the third substrate 201a.
  • light is emitted from the back surface of the third substrate 201a by a flash lamp as indicated by an arrow 110. Irradiation conditions other than the energy density at this time are the same as those in the step shown in FIG.
  • the heated material layer 209 b is transferred onto the first EL layer 218. That is, the second EL layer 219 including a film formation material is formed over the first EL layer 218.
  • the same effect as in the fourth embodiment can be obtained by irradiating light under conditions of high power with high energy density.
  • Embodiments 1 to 5 can be combined with each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 被成膜基板に転写された転写層を良質なものにでき、且つ転写層の下地層が損傷することを抑制できる成膜方法を提供する。本発明の一態様は、第1の基板11の一方の面上に形成された吸収層12と、前記吸収層上に形成され、成膜材料を含む材料層13とを有する前記第1の基板の一方の面と、第1の層23が被成膜面上に形成された第2の基板22の前記被成膜面とを対向させて配置し、前記第1の基板の他方の面から前記材料層に第1の加熱処理をすることにより、前記第2の基板の前記第1の層上に前記成膜材料を含む第2の層13aを形成し、前記第1の基板の他方の面から前記材料層に第2の加熱処理をすることにより、前記第2の基板の前記第2の層上に前記成膜材料を含む第3の層13bを形成する成膜方法であって、第2の加熱処理では、第1の加熱処理より高密度のエネルギーが材料層に加えられている成膜方法である。

Description

成膜方法
 本発明は、基板上に膜を形成する成膜方法に関する。
 近年、エレクトロルミネッセンス(Electro Luminescence、以下ELとも記す)を利用した発光素子の研究が盛んに行われている。これら発光素子の基本的な構成は、一対の電極間に発光性の物質を含む発光層を挟んだものである。この素子に電圧を印加することにより、発光性の物質からの発光が得られる。
 発光素子を構成するEL層は、少なくとも発光層を有する。また、EL層は、発光層の他に、正孔注入層、正孔輸送層、電子輸送層、電子注入層などを有する積層構造とすることもできる。
 以下に、従来の成膜方法について説明する。
 支持基板の一方の面上に光吸収層を形成し、この光吸収層上に転写層を形成した転写用基板を用意する。また、基板上に下部電極を形成し、この下部電極上に正孔注入層を形成し、この正孔注入層上に正孔輸送層を形成した被転写基板を用意する。
 次いで、転写用基板の転写層と被転写基板の正孔輸送層とを対向させて配置し、支持基板の他方の面からレーザ光を照射し、そのレーザ光を光吸収層に吸収させ、その熱を利用して転写層を被転写基板の正孔輸送層上に転写することで、正孔輸送層上に発光層を形成する(例えば特許文献1参照)。
特開2006-309995号公報
 上記従来の成膜方法では、光吸収層に吸収させる光のエネルギー密度を大きくすると、被転写基板に転写された転写層を良質なものにできるが、転写層の下地層が損傷するという課題が発生する。一方、光吸収層に吸収させる光のエネルギー密度を小さくすると、被転写基板に転写された転写層の下地層が損傷することを抑制できるが、転写層を良質なものにできないという課題が発生する。
 本発明の一態様は、被成膜基板に転写された転写層を良質なものにでき、且つ転写層の下地層が損傷することを抑制できる成膜方法を提供することを課題とする。
 本発明の一態様は、第1の基板の一方の面上に形成された吸収層と、前記吸収層上に形成され、成膜材料を含む材料層とを有する前記第1の基板の一方の面と、
 第1の層が被成膜面上に形成された第2の基板の前記被成膜面とを対向させて配置し、
 前記第1の基板の他方の面から前記材料層に第1の加熱処理をすることにより、前記第2の基板の前記第1の層上に前記成膜材料を含む第2の層を形成し、
 前記第1の基板の他方の面から前記材料層に第2の加熱処理をすることにより、前記第2の基板の前記第2の層上に前記成膜材料を含む第3の層を形成する成膜方法であって、
 前記第2の加熱処理では、前記第1の加熱処理より高密度のエネルギーが前記材料層に加えられていることを特徴とする成膜方法である。
 上記本発明の一態様によれば、第1の加熱処理をすることにより、第2の基板の第1の層上に第2の層を形成し、第1の加熱処理より高いエネルギー密度で第2の加熱処理をすることにより、第2の層上に第3の層を形成している。そして、第2の層と第1の層は境界によって分離されているため、第3の層を良質なものにでき、且つ第2の層の下地層である第1の層を損傷することを抑制できる。
 また、本発明の一態様に係る成膜方法において、
 前記材料層は、二種類以上の成膜材料及び下記式(1)を満たす高分子化合物を含むことも可能である。
 Ta-100≦S≦400 ・・・(1)
 ただし、式(1)中、Sは高分子化合物のガラス転移温度(℃)を示し、Taは、前記二種類以上の成膜材料それぞれの有する昇華温度のうち高い温度(℃)を示す。
 高分子材料を用いることで、均一な濃度分布を有する膜を成膜できる。
 本発明の一態様は、第1の基板の一方の面上に形成された第1の吸収層と、前記第1の吸収層上に形成され、成膜材料を含む第1の材料層とを有する前記第1の基板の一方の面と、
 第1の層が被成膜面上に形成された第2の基板の前記被成膜面とを対向させて配置し、
 前記第1の基板の他方の面から前記第1の材料層に第1の加熱処理をすることにより、前記第2の基板の前記第1の層上に前記成膜材料を含む第2の層を形成し、
 第3の基板の一方の面上に形成された第2の吸収層と、前記第2の吸収層上に形成され、前記成膜材料を含む第2の材料層とを有する前記第3の基板の一方の面と、
 前記第2の基板の前記被成膜面とを対向させて配置し、
 前記第3の基板の他方の面から前記第2の材料層に第2の加熱処理をすることにより、前記第2の基板の前記第2の層上に前記成膜材料を含む第3の層を形成する成膜方法であって、
 前記第2の加熱処理では、前記第1の加熱処理より高密度のエネルギーが前記第2の材料層に加えられていることを特徴とする成膜方法である。
 また、本発明の一態様に係る成膜方法において、前記第1の材料層及び前記第2の材料層それぞれは、二種類以上の成膜材料及び下記式(1)を満たす高分子化合物を含むことも可能である。
 Ta-100≦S≦400 ・・・(1)
 ただし、式(1)中、Sは高分子化合物のガラス転移温度(℃)を示し、Taは、前記二種類以上の成膜材料それぞれの有する昇華温度のうち高い温度(℃)を示す。
 高分子材料を用いることで、均一な濃度分布を有する膜を成膜できる。
 また、本発明の一態様に係る成膜方法において、
 前記第3の層と前記第2の層は混合されており、
 前記第3の層と前記第1の層は混合されていないことも可能である。
 また、本発明の一態様に係る成膜方法において、
 前記第2の加熱処理で前記材料層に加えられるエネルギー密度は、前記第3の層に含まれる前記成膜材料が、前記第2の層内に到達し且つ前記第1の層内に到達しないエネルギー密度であることが好ましい。
 また、本発明の一態様に係る成膜方法において、
 前記第1の加熱処理で前記材料層に加えられるエネルギー密度は、前記第2の層に含まれる前記成膜材料が前記第1の層内に到達しないエネルギー密度であることが好ましい。
 また、本発明の一態様に係る成膜方法において、
 前記第1の加熱処理及び前記第2の加熱処理それぞれは、光源を用いて前記第1の基板の他方の面側から光を照射し、前記吸収層が光を吸収することで加熱される方式を用いることが好ましい。
 また、本発明の一態様に係る成膜方法において、
 前記第1の加熱処理は、ハロゲンランプを用いて前記第1の基板の他方の面側から光を照射し、前記第1の吸収層が光を吸収することで加熱される方式を用い、
 前記第2の加熱処理は、フラッシュランプを用いて前記第3の基板の他方の面側から光を照射し、前記第2の吸収層が光を吸収することで加熱される方式を用いることが好ましい。
 また、本発明の一態様に係る成膜方法において、
 前記第1の層は正孔輸送層であり、
 前記第2の層及び前記第3の層は発光物質を含む層であることが好ましい。
 本発明の一態様を適用することで、被成膜基板に転写された転写層を良質なものにでき、且つ転写層の下地層が損傷することを抑制できる成膜方法を提供することができる。
(A)~(C)は、本発明の一態様の成膜方法を説明するための断面図。 (A)~(C)は、本発明の一態様の成膜方法を説明するための断面図。 (A)~(C)は、本発明の一態様の成膜方法を説明するための断面図。 (A)~(C)は、本発明の一態様の成膜方法を説明するための断面図。 (A)~(D)は、本発明の一態様の成膜方法を説明するための断面図。
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 (実施の形態1)
 本実施の形態では、本発明の一態様の成膜方法について説明する。なお、本実施の形態では、本発明の一態様の成膜方法を利用して、発光素子のEL層を形成する場合について説明する。また、本実施の形態は、光源を用いて加熱処理を行う場合について説明する。図1(A)~(C)は、本発明の一態様の成膜方法を説明するための断面図である。
 まず、図1(A)に示すように、支持基板である第1の基板11の一方の面上に吸収層12を形成し、吸収層12上に少なくとも成膜材料を含む有機EL材料層(以下、「材料層」という。)13を形成した成膜用基板(ドナー基板)10を用意する。なお、図1(A)には、材料層13は成膜材料のみからなる場合を図示する。また、第2の基板22上に成膜処理により所望の層、例えば正孔輸送層23を成膜した被成膜基板20を用意する。そして、第1の基板11において、吸収層12及び材料層13が形成された面に対向する位置に、被成膜基板20である第2の基板22を配置する。なお、材料層13に含まれる成膜材料が正孔輸送層23には含まれていないことが好ましい。
 次いで、第1の基板11の裏面、すなわち材料層13が形成された面と反対側の面から矢印のように光をフラッシュランプによって照射する。この際の照射条件は、エネルギー密度の低い低パワーの条件(例えばチャージ電圧650V)とする。照射された光は、第1の基板11を透過して、吸収層12において吸収される。吸収された光が熱エネルギーへと変換されることで、吸収層12と重なる領域の材料層13が加熱される(第1の加熱処理)。加熱した材料層13は、正孔輸送層23上に転写される。つまり、図1(B)に示すように正孔輸送層23上には成膜材料を含む第1のEL層13aが成膜され、成膜用基板10には成膜材料を含む材料層13が残される。
 上記のようにエネルギー密度の低い低パワーの条件で光を照射するため、第1のEL層13aの下地層である正孔輸送層23が損傷することを抑制でき、第1のEL層13aと正孔輸送層23は、混合されることなく、境界によって分離される。つまり、エネルギー密度の低い低パワー条件は、第1のEL層13aに含まれる成膜材料が正孔輸送層23内に到達しないエネルギー密度であり、その結果、正孔輸送層23が損傷することを抑制でき、第1のEL層13aと正孔輸送層23は境界によって分離される。
 なお、第1のEL層13aと正孔輸送層23が当該境界によって分離されていることは、例えば、TEM(Transmission Electron Microscope)や斜め切削のToF-SIMS(Time of Flight-Secondary Ion Mass Spectrometry)によって確認できる場合がある。
 次いで、図1(B)に示すように、第1の基板11の裏面から矢印のように光をフラッシュランプによって照射する。この際の照射条件は、エネルギー密度の高い高パワーの条件(例えばチャージ電圧800V)とする。照射された光は、第1の基板11を透過して、吸収層12において吸収される。吸収された光が熱エネルギーへと変換されることで、吸収層12と重なる領域の材料層13が加熱される(第2の加熱処理)。加熱した材料層13は、第1のEL層13a上に転写される。つまり、図1(C)に示すように第1のEL層13a上には成膜材料を含む第2のEL層13bが成膜される。なお、成膜用基板10には成膜材料は残されない。材料層13に成膜材料以外の材料(例えば、後述する高分子化合物など)が含まれる場合、図1(C)において、成膜用基板10には、成膜材料以外の材料を含む材料層が残される。
 上記のようにエネルギー密度の高い高パワーの条件で光を照射するため、第2のEL層13bを良質なもの、具体的には、残渣が出にくく全面に均一に層膜形成ができ、層の断面プロファイルのバラツキが少なく、層を厚く形成することが可能であり、タクトが短くスループットを高くすることができる。また、第2のEL層13bと第1のEL層13aは混合されるが、第2のEL層13bと正孔輸送層23は混合されることなく分離される。つまり、エネルギー密度の高い高パワー条件は、第2のEL層13bに含まれる成膜材料が第1のEL層13a内に到達して混在するが、正孔輸送層23内に到達せず混在しないエネルギー密度であり、その結果、第2のEL層13bと正孔輸送層23は混合されることがない。従って、第1のEL層13aは、エネルギー密度の高い高パワー条件とすることにより第2のEL層13bを形成する際に、第2のEL層13bに含まれる成膜材料が正孔輸送層23内に到達しないように保護する機能を有している。言い換えると、第1のEL層13aの厚さは、エネルギー密度の高い高パワー条件とすることにより第2のEL層13bを形成する際に、第2のEL層13bに含まれる成膜材料が正孔輸送層23内に到達しない厚さとすることが好ましく、例えば数nmの厚さとしても良い。また、第1のEL層13aの厚さの上限は、エネルギー密度の低い低パワー条件で転写可能な最大膜厚であり、その転写可能な最大膜厚は低パワー条件によって決められる。
 なお、本実施の形態では、一層からなる第2のEL層13bを用いているが、EL層を厚く形成する場合は二層以上からなる第2のEL層を用いても良い。
 以下に本実施の形態の各構成について詳細に説明する。
 第1の基板11は、材料層を被成膜基板に成膜するために照射する光を透過する基板である。よって、第1の基板11は光の透過率が高い基板であることが好ましい。具体的には、材料層を成膜するためにランプ光やレーザ光を用いる場合、第1の基板11として、それらの光を透過する基板を用いることが好ましい。第1の基板11としては、例えば、ガラス基板、石英基板、無機材料を含むプラスチック基板などを用いることができる。
 吸収層12は、材料層13を加熱するために照射する光を吸収して、熱へと変換する層である。このため、少なくとも材料層13を加熱する領域に形成されていれば良く、吸収層12は例えば島状に形成されていても良い。吸収層12は、照射される光に対して、70%以下の低い反射率を有し、また、高い吸収率を有する材料で形成されていることが好ましい。また、吸収層12は、それ自体が熱によって変化しないように、耐熱性に優れた材料で形成されていることが好ましい。吸収層12に用いることができる材料としては、例えば、窒化チタン、窒化タンタル、窒化モリブデン、窒化タングステン、窒化クロム、窒化マンガンなどの金属窒化物や、モリブデン、チタン、タングステン、カーボンなどを用いることが好ましい。
 吸収層12は、種々の方法を用いて形成することができる。例えば、スパッタリング法で、モリブデン、タンタル、チタン、タングステンなどのターゲット、またはこれらの合金を用いたターゲットを用い、吸収層12を形成することができる。また、吸収層12は一層に限らず複数の層により構成されていてもよい。
 吸収層12の膜厚は、照射される光が透過しない膜厚であることが好ましい。材料によって異なるが、100nm以上2μm以下の膜厚であることが好ましい。特に、吸収層12の膜厚を100nm以上600nm以下とすることで、照射される光を効率良く吸収して発熱させることができる。
 なお、吸収層12は、材料層13に含まれる成膜材料が成膜温度まで加熱されるのであれば、照射する光の一部が透過してもよい。ただし、一部が透過する場合には、光が照射しても分解しない材料を、材料層13に用いることが好ましい。また、「成膜温度」とは、熱の作用によって成膜材料の少なくとも一部が成膜用基板より被成膜基板へ転写される温度を示す。
 材料層13は加熱により第2の基板に転写される層である。被成膜基板上に成膜する成膜材料を含んで形成される層である。本実施の形態では、材料層13に含む成膜材料として一種類の有機材料を用いたが、成膜材料として二種類以上の有機材料を用いることもできる。また、材料層13は単層でも良いし、複数の層が積層されていても良い。なお、本実施の形態において、転写とは、材料層13に含まれる成膜材料が、被成膜基板上に移されることを示す。
 材料層13は、種々の方法により形成される。例えば、湿式法であるスピンコート法、スプレーコート法、インクジェット法、ディップコート法、キャスト法、ダイコート法、ロールコート法、ブレードコート法、バーコート法、グラビアコート法、ノズルプリンティング法又は印刷法等を用いることができる。また、乾式法である真空蒸着法、スパッタリング法等を用いることができる。
 湿式法を用いて材料層13を形成するには、所望の成膜材料を溶媒に溶解あるいは分散させ、溶液あるいは分散液を調整すればよい。溶媒は、成膜材料を溶解あるいは分散させることができ、且つ成膜材料と反応しないものであれば特に限定されない。例えば、クロロホルム、テトラクロロメタン、ジクロロメタン、1,2-ジクロロエタン、或いはクロロベンゼンなどのハロゲン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、n-プロピルメチルケトン、或いはシクロヘキサノンなどのケトン系溶媒、ベンゼン、トルエン、或いはキシレンなどの芳香族系溶媒、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、プロピオン酸エチル、γ-ブチロラクトン、或いは炭酸ジエチルなどのエステル系溶媒、テトラヒドロフラン、或いはジオキサンなどのエーテル系溶媒、ジメチルホルムアミド、或いはジメチルアセトアミドなどのアミド系溶媒、ジメチルスルホキシド、ヘキサン、又は水等を用いることができる。また、これらの溶媒複数種を混合して用いてもよい。湿式法を用いることにより、材料の利用効率を高めることができ、製造コストを低減することができる。
 なお、第2の基板22上に形成されるEL層13a,13bの膜厚および均一性が保たれるのであれば、材料層は必ずしも均一の層である必要はない。例えば、微細な島状に形成されていてもよいし、凹凸を有する層状に形成されていてもよい。
 第2の基板22は、必要な耐熱性を有していて表面に絶縁性を有する基板であれば特定のものに限定されない。例えば、ガラス基板、石英基板、絶縁膜を形成したステンレス基板等が挙げられる。また、加熱処理に耐えうる程度の耐熱性を有するプラスチック基板を用いても良い。
 また、本実施の形態では、低パワーの条件での光照射及び高パワーの条件での光照射ともに光源としてフラッシュランプを用いているが、パワー差を確保できるのであれば、光源としては種々のものを用いても良い。
 例えば、キセノンランプ、メタルハライドランプのような放電灯、ハロゲンランプ、タングステンランプのような発熱灯を光源として用いることができる。また、これらの光源をフラッシュランプ(例えばキセノンフラッシュランプ、クリプトンフラッシュランプなど)として用いても良い。フラッシュランプは短時間(0.1ミリ秒乃至10ミリ秒)で非常に強度の高い光を繰り返し、大面積に照射することができるため、第1の基板の面積にかかわらず、効率よく均一に加熱することができる。また、発光させる時間の長さを変えることによって第1の基板11の加熱の制御もできる。
 また、光源としてレーザ発振装置を用いてもよい。レーザ光としては、例えば、Arレーザ、Krレーザ、エキシマレーザなどの気体レーザ、単結晶のYAG、YVO、フォルステライト(MgSiO)、YAlO、GdVO、若しくは多結晶(セラミック)のYAG、Y、YVO、YAlO、GdVOに、ドーパントとしてNd、Yb、Cr、Ti、Ho、Er、Tm、Taのうち1種または複数種添加されているものを媒質とするレーザ、ガラスレーザ、ルビーレーザ、アレキサンドライトレーザ、Ti:サファイアレーザ、銅蒸気レーザまたは金蒸気レーザのうち一種または複数種から発振されるものを用いることができる。また、レーザ媒体が固体である固体レーザを用いると、メンテナンスフリーの状態を長く保てるという利点や、出力が比較的に安定している利点を有している。
 なお、照射する光としては、赤外光(波長800nm以上)であることが好ましい。赤外光であることにより、吸収層12における熱変換が効率よく行われ、成膜材料を効率よく加熱させることができる。
 また、第1及び第2の加熱処理それぞれは、水分と酸素が少ない雰囲気、又は減圧雰囲気で行われることが好ましい。減圧雰囲気は、成膜室内を真空排気手段により真空度が5×10-3Pa以下、好ましくは10-4Pa乃至10-6Pa程度の範囲になるように真空排気することで得られる。
 なお、本実施の形態では、被成膜基板である第2の基板22が、成膜用基板である第1の基板11の下方に位置する場合を図示したが、本実施の形態はこれに限定されない。基板の設置する向きは適宜設定することができる。
 また、本実施の形態では、成膜材料を含む材料層13を用いて説明したが、材料層13を以下のものに変更しても良い。
 材料層に含まれる第1の成膜材料に発光物質を用い、かつ第2の成膜材料に発光物質を分散する有機化合物を用いる。
 発光物質としては、例えば蛍光を発光する蛍光性化合物や、燐光を発光する燐光性化合物を用いることができる。
 発光物質を分散する有機化合物としては、発光物質が蛍光性化合物の場合には、蛍光性化合物よりも一重項励起エネルギー(基底状態と一重項励起状態とのエネルギー差)が大きい物質を用いることが好ましい。また、発光物質が燐光性化合物の場合には、燐光性化合物よりも三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)が大きい物質を用いることが好ましい。
 なお、材料層に含まれる成膜材料として、発光物質を分散させる有機化合物を2種類以上用いても良いし、有機化合物に分散される発光物質を2種類以上用いても良い。また、2種類以上の発光物質を分散させる有機化合物と2種類以上の発光物質を用いても良い。
 材料層に含まれる高分子化合物としては、ガラス転移温度が下記式(1)を満たす高分子化合物を用いる。さらに好ましくは、ガラス転移温度が下記式(2)を満たす高分子化合物を用いる。なお、下記式(1)、(2)において、第1の成膜材料及び第2の成膜材料の昇華温度は同じ真空度(例えば真空度10-3Pa)で測定することとする。
 Ta-100≦S≦400 ・・・(1)
 Ta-70≦S≦400 ・・・(2)
 ただし、式(1)、(2)中、Sは高分子化合物のガラス転移温度(℃)を示し、Taは、第1の成膜材料又は第2の成膜材料の昇華温度のうち高い温度(℃)を示す。
 高分子化合物のガラス転移温度が上記式(1)、好ましくは上記式(2)を満たす範囲であれば、第1の成膜材料又は第2の成膜材料の昇華温度のうち低い温度に達しても、昇華温度に達した成膜材料は材料層から転写されにくい。これは、高分子化合物によって、第1の成膜材料及び第2の成膜材料が材料層中で移動することを抑制されるためである。そして、第1の成膜材料又は第2の成膜材料の昇華温度のうち高い温度以上で、第1の成膜材料及び第2の成膜材料は材料層中を移動することが容易となり、被成膜基板上に転写される。よって、第1の成膜材料の転写と第2の成膜材料の転写に時間差が生じにくくなり、被成膜基板上に濃度勾配の少ないEL層を形成することができる。
 しかし、高分子化合物のガラス転移温度が上記式(1)の範囲より低いと、昇華温度が高い方の材料の昇華温度に達するまでに、昇華温度の低い方の材料が材料層中で移動することを抑制されにくいため、昇華温度の低い成膜材料が先に転写され、その後、昇華温度の高い成膜材料が転写される。また、高分子化合物のガラス転移温度が上記式(1)の範囲より高いと、第1の成膜材料及び第2の成膜材料の昇華温度のうち高い温度を超えた後も、第1の成膜材料及び第2の成膜材料は材料層中で移動することが抑制され、転写が容易に行われなくなる。第1の成膜材料及び第2の成膜材料が高温に達する為、分解する可能性がある。
 よって、高分子化合物としては、ガラス転移温度が上記式(1)、好ましくは上記式(2)を満たす高分子化合物を用いる。
 なお、高分子化合物としてガラス転移温度が200℃の材料を用い、第1の成膜材料および第2の成膜材料として、昇華温度が210℃の材料および昇華温度が260℃の材料を用いた場合には、良好な転写が実現された。一方で、高分子化合物としてガラス転移温度が200℃の材料を用い、第1の成膜材料および第2の成膜材料として、昇華温度が210℃の材料および昇華温度が302℃の材料を用いた場合には、良好な転写は実現されなかった。このことは、上記式(1)、(2)に合致する条件において、好適なEL層が実現されることを示すものである。
 材料層に含まれる高分子化合物としては、シクロオレフィンポリマーが好ましい。シクロオレフィンポリマーは溶媒に溶けやすいため、被成膜基板に成膜した後、成膜用基板上に残った第1の成膜材料及び第2の成膜材料を含むシクロオレフィンポリマーを溶媒に再溶解することで、成膜用基板を再利用することが可能である。したがって、材料の消費量及びコストを抑えることができる。また、高分子化合物として、オレフィン、ビニル、アクリル又はポリイミド(PI)等を用いても良いし、高分子材料のEL材料を用いても良い。高分子材料のEL材料としては、例えば、ポリ(N-ビニルカルバゾール)(PVK)やポリ(p-フェニレンビニレン)(PPV)が挙げられる。また、エポキシ樹脂、アクリル樹脂やシロキサンのような架橋型ポリマーを用いても良い。なお、本明細書中において、高分子化合物とは、1種もしくは複数種の単量体(モノマー)による繰り返し構造を持つ重合体(ポリマー)を意味する。
 高分子化合物は粘度の調整が容易であるため、用途に応じて高分子化合物の溶液の粘度を自由に調整できる。例えば、液滴吐出法により材料層が形成される場合、高分子化合物の溶液の粘度を高めることで、被成膜面上に高分子化合物が拡がらず、微細なパターンを形成することができる。
 高分子化合物の粘度の調整は、高分子化合物の分子量を調整する、又は高分子化合物と溶媒の比率を変えることで実現することができる。一般に、高分子化合物の比率が高くなると、溶液の粘度が高くなる。
 (実施の形態2)
 図2(A)~(C)は、本発明の一態様の成膜方法を示す断面図であり、図1と同一部分には同一符号を付し、異なる部分についてのみ説明する。
 図1に示す実施の形態1は、一枚の成膜用基板を用いた成膜方法であるが、本実施の形態は、二枚の成膜用基板を用いた成膜方法である。これについて以下に詳細に説明する。
 図2(A)に示す工程では、支持基板である第1の基板11の一方の面上に吸収層12を形成し、吸収層12上に少なくとも成膜材料を含む有機EL材料層(以下、「材料層」という。)14を形成した成膜用基板(ドナー基板)10aを用意する。
 第1の基板11の裏面から矢印のように光をフラッシュランプによって照射する。この際の照射条件は、図1(A)に示す工程と同様とする。このように第1の加熱処理を行うことにより、加熱した材料層14は、正孔輸送層23上に転写される。つまり、図2(B)に示すように正孔輸送層23上には成膜材料を含む第1のEL層13aが成膜され、成膜用基板10aには成膜材料が残されない。
 上記のようにエネルギー密度の低い低パワーの条件で光を照射することにより、実施の形態1と同様の効果を得ることができる。
 図2(B)に示す工程では、支持基板である第3の基板11aの一方の面上に吸収層12を形成し、吸収層12上に少なくとも成膜材料を含む有機EL材料層(以下、「材料層」という。)15を形成した成膜用基板(ドナー基板)10bを用意する。そして、第3の基板11aにおいて、吸収層12及び材料層15が形成された面に対向する位置に、被成膜基板20である第2の基板22を配置する。
 次いで、第3の基板11aの裏面から矢印のように光をフラッシュランプによって照射する。この際の照射条件は、図1(B)に示す工程と同様とする。このように第2の加熱処理を行うことにより、加熱した材料層15は、第1のEL層13a上に転写される。つまり、図2(C)に示すように第1のEL層13a上には成膜材料を含む第2のEL層13bが成膜され、成膜用基板10bには成膜材料が残されない。
 上記のようにエネルギー密度の高い高パワーの条件で光を照射することにより、実施の形態1と同様の効果を得ることができる。
 第1及び第2の加熱処理それぞれによる成膜方法は、第1の基板11又は第3の基板11aに形成した材料層14,15の膜厚によって、転写処理により被成膜基板20に成膜される第1及び第2のEL層13a,13bそれぞれの膜厚を制御することができる。つまり、成膜用基板10a,10bに形成した材料層14,15をそのまま転写すればよいため、膜厚モニターが不要である。よって、膜厚モニターを利用した成膜速度の調節を使用者が行う必要がなく、成膜工程を全自動化することが可能である。そのため、生産性の向上を図ることができる。
 (実施の形態3)
 図3(A)~(C)は、本発明の一態様の成膜方法を示す断面図であり、図2と同一部分には同一符号を付し、異なる部分についてのみ説明する。
 図2に示す実施の形態2では、エネルギー密度の低い低パワーの条件及びエネルギー密度の高い高パワーの条件それぞれでの光照射をフラッシュランプによって行っているが、本実施の形態では、エネルギー密度の低い低パワーの条件での光照射をハロゲンランプによって行い、エネルギー密度の高い高パワーの条件での光照射をフラッシュランプによって行う。
 本実施の形態においても実施の形態2と同様の効果を得ることができる。
 (実施の形態4)
 本実施の形態では、本発明の一態様の成膜方法について説明する。なお、本実施の形態では、本発明の一態様の成膜方法を利用して、発光素子のEL層を形成する場合について説明する。なお、本実施の形態に示す成膜方法において、特に記載がない場合には、実施の形態1と同様の材料及び作製方法によって行うものとする。
 図4には第1の基板に反射層及び断熱層を形成する場合の一例を示している。
 図4(A)において、支持基板である第1の基板201の一方の面上に反射層203が選択的に形成されている。なお、反射層203は開口部を有している。また、反射層203上に断熱層205が形成されている。なお、断熱層205は反射層203の有する開口部と重なる位置に開口部が形成されている。また、反射層203及び断熱層205が形成された第1の基板201上に開口部を覆う吸収層207が形成されている。また、吸収層207上に成膜材料を含む有機EL材料層(以下、「材料層」という。)209が形成されている。
 なお、本明細書において、「重なる」とは、成膜用基板を構成する要素(例えば、反射層や吸収層等)同士が直接接して重なり合う場合だけでなく、間に別の層を介して重なり合う場合も含むものとする。
 まず、図4(A)に示すように、第1の基板201の一方の面上に反射層203を選択的に形成する。反射層203は、第1の基板201の他方の面から照射する光を反射して、反射層203と重なる領域に形成された材料層209に、熱を与えないように遮断する層である。よって、反射層203は、照射する光に対して高い反射率を有する材料で形成されていることが好ましい。具体的には、反射層203は、照射される光に対して、反射率が85%以上、さらに好ましくは、反射率が90%以上の高い反射率を有する材料で形成されていることが好ましい。
 反射層203に用いることができる材料としては、例えば、アルミニウム、銀、金、白金、銅、アルミニウムを含む合金(例えば、アルミニウム-チタン合金、アルミニウム-ネオジム合金、アルミニウム-チタン合金)、または銀を含む合金(銀-ネオジム合金)などを用いることができる。
 なお、反射層203は、種々の方法を用いて形成することができる。例えば、スパッタリング法、電子ビーム蒸着法、真空蒸着法などにより形成することができる。また、反射層203の膜厚は、材料により異なるが、100nm以上とすることが好ましい。100nm以上の膜厚とすることにより、照射した光が反射層203を透過することを抑制することができる。
 また、第1の基板201に照射する光の波長により、反射層203に好適な材料の種類は変化する。また、反射層は一層に限らず複数の層により構成されていても良い。また、反射層を設けず第1の基板201上に直接吸収層207を形成しても良い。
 また、反射層203と吸収層207の反射率は差が大きいほど好ましい。具体的には、照射する光の波長に対して、反射率の差が25%以上、より好ましくは30%以上である。
 また、反射層203の開口部を形成する際には種々な方法を用いることができるが、ドライエッチングを用いることが好ましい。ドライエッチングを用いることにより、開口部の側壁が鋭くなり、微細なパターンを成膜することができる。
 次に、反射層203上に断熱層205を選択的に形成する。断熱層205は、反射層203と重なる領域に位置する材料層209が加熱され昇華するのを抑制するための層である。断熱層205としては、例えば、酸化チタン、酸化珪素、酸化窒化珪素、酸化ジルコニウム、炭化チタン等を好ましく用いることができる。ただし、断熱層205は、反射層203及び吸収層207に用いる材料よりも熱伝導率の低い材料を用いる。なお、本明細書において、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い物質である。
 断熱層205は、様々な方法を用いて形成することができる。例えば、スパッタリング法、電子ビーム蒸着法、真空蒸着法、またはCVD(chemical vapor deposition)法などにより形成することができる。また、断熱層の膜厚は、材料により異なるが、10nm以上2μm以下、好ましくは100nm以上600nm以下とすることができる。断熱層205を10nm以上2μm以下の膜厚とすることにより、反射層203が加熱された場合でも、反射層203の上に位置する材料層209に熱が伝導するのを遮断する効果を有する。
 また、断熱層205は、反射層203の開口部と重なる領域に開口部が形成されている。断熱層205のパターンを形成する際には、種々の方法を用いることができるが、ドライエッチングを用いることが好ましい。ドライエッチングを用いることにより、パターン形成された断熱層205の側壁が鋭くなり、微細なパターンを成膜することができる。
 なお、断熱層205と、反射層203のパターン形成を一度のエッチング工程によって行うと、断熱層205と反射層203に設けられる開口部の側壁をそろえることができ、より微細なパターンを成膜することができるため好ましい。
 また、本実施の形態において、断熱層205は反射層203と重なる位置のみに形成されているが、反射層203及び反射層203の開口部を覆って断熱層205を形成しても良い。この場合、断熱層205は可視光に対する透過性を有する必要がある。
 次に、反射層203及び断熱層205が形成された第1の基板201上に開口部を覆う吸収層207を形成する。吸収層207は、実施の形態1で示した吸収層12と同様の材料を用いることができる。なお、吸収層207は選択的に形成しても良い。例えば、吸収層207を第1の基板201の全面に形成した後に、吸収層207をパターン形成して、反射層203及び断熱層205の開口部を覆うように島状にパターン形成する。この場合、全面に吸収層を形成する場合に比べ、吸収層内を面方向に熱が伝導することを防止できるため、より微細なEL層のパターン形成が可能となり、高性能な発光装置を実現することができる。
 次に、吸収層207上に材料層209を形成する。材料層209は、実施の形態1と同様のものを用いることができる。
 次いで、図4(B)に示すように、第1の基板201において、材料層209等が形成された面に対向する位置に、第2の基板211を配置する。なお、ここでは本発明の一態様の成膜用基板を用いて発光素子のEL層を形成する場合について説明するため、第2の基板211上には、発光素子の一方の電極となる第1の電極層213を有している。第1の電極層213の端部は、絶縁物215で覆われている。本実施の形態において、電極は、発光素子の陽極あるいは陰極となる電極を示している。そして、第1の電極層213上に正孔輸送層217を有している。
 材料層209の表面と第2の基板211の表面は、所定距離だけの間隔をとって配置される。ここで、所定距離は、0mm以上2mm以下、好ましくは0mm以上0.05mm以下、さらに好ましくは0mm以上0.03mm以下とする。
 なお、所定距離は、第1の基板上の材料層209の表面と、第2の基板の表面との距離で定義するものとする。ただし、第2の基板上に何らかの膜(例えば、電極として機能する導電膜又は隔壁等)が形成され、被成膜基板表面に凹凸を有する場合、所定距離は、第1の基板上の材料層209の表面と、第2の基板に形成された層の最表面、即ち、これらの膜(導電膜又は隔壁等)の表面との距離で定義するものとする。
 そして、図4(B)に示すように、第1の基板201の裏面、すなわち材料層209が形成された面と反対側の面から矢印110aのように光をフラッシュランプによって照射する。この際の照射条件は、図1(A)に示す工程と同様とする。このようにして第1の加熱処理を行うことにより、加熱した材料層209の一部は、正孔輸送層217上に転写される。つまり、図4(B)に示すように正孔輸送層217上には成膜材料を含む第1のEL層218が成膜され、成膜用基板200には成膜材料を含む材料層209が残される。
 上記のようにエネルギー密度の低い低パワーの条件で光を照射することにより、実施の形態1と同様の効果を得ることができる。
 この後、図4(C)に示すように、第1の基板201の裏面から矢印110のように光をフラッシュランプによって照射する。この際のエネルギー密度以外の照射条件は、図1(B)に示す工程と同様とする。このようにして第2の加熱処理を行うことにより、加熱した材料層209は、第1のEL層218上に転写される。つまり、第1のEL層218上には成膜材料を含む第2のEL層219が成膜される。このようにして第2の基板211上に、発光素子のEL層218,219が選択的に形成される。
 上記のようにエネルギー密度の高い高パワーの条件で光を照射することにより、実施の形態1と同様の効果を得ることができる。
 (実施の形態5)
 図5(A)~(D)は、本発明の一態様の成膜方法について説明する断面図であり、図4と同一部分には同一符号を付し、異なる部分についてのみ説明する。
 図4に示す実施の形態4は、一枚の成膜用基板200を用いた成膜方法であるが、本実施の形態は、二枚の成膜用基板200a,200bを用いた成膜方法である。これについて以下に詳細に説明する。
 図5(A)に示す工程では、支持基板である第1の基板201の一方の面上に反射層203、断熱層205、吸収層207を形成し、吸収層207上に少なくとも成膜材料を含む有機EL材料層(以下、「材料層」という。)209aを形成した成膜用基板(ドナー基板)200aを用意する。
 図5(B)に示す工程では、支持基板である第3の基板201aの一方の面上に反射層203、断熱層205、吸収層207を形成し、吸収層207上に少なくとも成膜材料を含む有機EL材料層(以下、「材料層」という。)209bを形成した成膜用基板(ドナー基板)200bを用意する。
 図5(C)に示す工程では、第1の基板201の裏面から矢印110aのように光をフラッシュランプによって照射する。この際の照射条件は、図4(B)に示す工程と同様とする。このように第1の加熱処理を行うことにより、加熱した材料層209aは、正孔輸送層217上に転写される。つまり、正孔輸送層217上には成膜材料を含む第1のEL層218が成膜される。
 上記のようにエネルギー密度の低い低パワーの条件で光を照射することにより、実施の形態4と同様の効果を得ることができる。
 図5(D)に示す工程では、第3の基板201aにおいて、吸収層207及び材料層209bが形成された面に対向する位置に、被成膜基板である第2の基板211を配置する。次いで、第3の基板201aの裏面から矢印110のように光をフラッシュランプによって照射する。この際のエネルギー密度以外の照射条件は、図4(C)に示す工程と同様とする。このように第2の加熱処理を行うことにより、加熱した材料層209bは、第1のEL層218上に転写される。つまり、第1のEL層218上には成膜材料を含む第2のEL層219が成膜される。
 上記のようにエネルギー密度の高い高パワーの条件で光を照射することにより、実施の形態4と同様の効果を得ることができる。
 なお、実施の形態1~5を互いに組み合わせて実施することも可能である。
10,10a,10b  成膜用基板(ドナー基板)
11  第1の基板
11a  第3の基板
12  吸収層
13,14,15  材料層
13a  第1のEL層
13b  第2のEL層
20  被成膜基板
22  第2の基板
23  正孔輸送層
110,110a  矢印
200、200a、200b  成膜用基板(ドナー基板)
201  第1の基板
201a  第3の基板
203  反射層
205  断熱層
207  吸収層
209,209a,209b  材料層
211  第2の基板
213  第1の電極
215  絶縁物
217  正孔輸送層
218  第1のEL層
219  第2のEL層

Claims (11)

  1.  第1の基板の一方の面上に形成された吸収層と、前記吸収層上に形成され、成膜材料を含む材料層とを有する前記第1の基板の一方の面と、
     第1の層が被成膜面上に形成された第2の基板の前記被成膜面とを対向させて配置し、
     前記第1の基板の他方の面から前記材料層に第1の加熱処理をすることにより、前記第2の基板の前記第1の層上に前記成膜材料を含む第2の層を形成し、
     前記第1の基板の他方の面から前記材料層に第2の加熱処理をすることにより、前記第2の基板の前記第2の層上に前記成膜材料を含む第3の層を形成する成膜方法であって、
     前記第2の加熱処理では、前記第1の加熱処理より高密度のエネルギーが前記材料層に加えられていることを特徴とする成膜方法。
  2.  請求項1において、
     前記材料層は、二種類以上の成膜材料及び下記式(1)を満たす高分子化合物を含むことを特徴とする成膜方法。
     Ta-100≦S≦400 ・・・(1)
     ただし、式(1)中、Sは高分子化合物のガラス転移温度(℃)を示し、Taは、前記二種類以上の成膜材料それぞれの有する昇華温度のうち高い温度(℃)を示す。
  3.  第1の基板の一方の面上に形成された第1の吸収層と、前記第1の吸収層上に形成され、成膜材料を含む第1の材料層とを有する前記第1の基板の一方の面と、
     第1の層が被成膜面上に形成された第2の基板の前記被成膜面とを対向させて配置し、
     前記第1の基板の他方の面から前記第1の材料層に第1の加熱処理をすることにより、前記第2の基板の前記第1の層上に前記成膜材料を含む第2の層を形成し、
     第3の基板の一方の面上に形成された第2の吸収層と、前記第2の吸収層上に形成され、前記成膜材料を含む第2の材料層とを有する前記第3の基板の一方の面と、
     前記第2の基板の前記被成膜面とを対向させて配置し、
     前記第3の基板の他方の面から前記第2の材料層に第2の加熱処理をすることにより、前記第2の基板の前記第2の層上に前記成膜材料を含む第3の層を形成する成膜方法であって、
     前記第2の加熱処理では、前記第1の加熱処理より高密度のエネルギーが前記第2の材料層に加えられていることを特徴とする成膜方法。
  4.  請求項3において、
     前記第1の材料層及び前記第2の材料層それぞれは、二種類以上の成膜材料及び下記式(1)を満たす高分子化合物を含むことを特徴とする成膜方法。
     Ta-100≦S≦400 ・・・(1)
     ただし、式(1)中、Sは高分子化合物のガラス転移温度(℃)を示し、Taは、前記二種類以上の成膜材料それぞれの有する昇華温度のうち高い温度(℃)を示す。
  5.  請求項1乃至4のいずれか一項において、
     前記第2の層と第1の層は境界によって分離されていることを特徴とする成膜方法。
  6.  請求項1乃至5のいずれか一項において、
     前記第3の層と前記第2の層は混合されており、
     前記第3の層と前記第1の層は混合されていないことを特徴とする成膜方法。
  7.  請求項1乃至6のいずれか一項において、
     前記第2の加熱処理で前記材料層に加えられるエネルギー密度は、前記第3の層に含まれる前記成膜材料が、前記第2の層に到達し且つ前記第1の層内に到達しないエネルギー密度であることを特徴とする成膜方法。
  8.  請求項1乃至7のいずれか一項において、
     前記第1の加熱処理で前記材料層に加えられるエネルギー密度は、前記第2の層に含まれる前記成膜材料が前記第1の層内に到達しないエネルギー密度であることを特徴とする成膜方法。
  9.  請求項1乃至8のいずれか一項において、
     前記第1の加熱処理及び前記第2の加熱処理それぞれは、光源を用いて前記第1の基板の他方の面側から光を照射し、前記吸収層が光を吸収することで加熱される方式を用いることを特徴とする成膜方法。
  10.  請求項3又は4において、
     前記第1の加熱処理は、ハロゲンランプを用いて前記第1の基板の他方の面側から光を照射し、前記第1の吸収層が光を吸収することで加熱される方式を用い、
     前記第2の加熱処理は、フラッシュランプを用いて前記第3の基板の他方の面側から光を照射し、前記第2の吸収層が光を吸収することで加熱される方式を用いることを特徴とする成膜方法。
  11.  請求項1乃至10のいずれか一項において、
     前記第1の層は正孔輸送層であり、
     前記第2の層及び前記第3の層は発光物質を含む層であることを特徴とする成膜方法。
PCT/JP2011/054532 2010-03-18 2011-02-28 成膜方法 WO2011114874A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012505596A JP5775511B2 (ja) 2010-03-18 2011-02-28 成膜方法
US13/635,201 US8951816B2 (en) 2010-03-18 2011-02-28 Film forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-062711 2010-03-18
JP2010062711 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011114874A1 true WO2011114874A1 (ja) 2011-09-22

Family

ID=44648977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054532 WO2011114874A1 (ja) 2010-03-18 2011-02-28 成膜方法

Country Status (3)

Country Link
US (1) US8951816B2 (ja)
JP (1) JP5775511B2 (ja)
WO (1) WO2011114874A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140140416A (ko) * 2013-05-29 2014-12-09 삼성디스플레이 주식회사 유기발광 디스플레이 장치 제조방법 및 이에 따라 제조된 유기발광 디스플레이 장치
KR102325208B1 (ko) * 2014-08-12 2021-11-12 삼성디스플레이 주식회사 도너마스크, 이를 이용한 유기발광 디스플레이 장치 제조방법 및 유기발광 디스플레이 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309995A (ja) * 2005-04-27 2006-11-09 Sony Corp 転写用基板および表示装置の製造方法ならびに表示装置
JP2007299736A (ja) * 2006-05-03 2007-11-15 Samsung Sdi Co Ltd 平板表示素子用ドナー基板及びそれを用いた有機電界発光素子の製造方法
JP2008291352A (ja) * 2007-04-27 2008-12-04 Semiconductor Energy Lab Co Ltd 成膜方法及び発光装置の作製方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904961A (en) 1997-01-24 1999-05-18 Eastman Kodak Company Method of depositing organic layers in organic light emitting devices
CN101397649B (zh) 2001-02-01 2011-12-28 株式会社半导体能源研究所 能够将有机化合物沉积在衬底上的装置
JP4101522B2 (ja) 2001-02-01 2008-06-18 株式会社半導体エネルギー研究所 成膜装置及び成膜方法
US6610455B1 (en) 2002-01-30 2003-08-26 Eastman Kodak Company Making electroluminscent display devices
KR100478524B1 (ko) 2002-06-28 2005-03-28 삼성에스디아이 주식회사 고분자 및 저분자 발광 재료의 혼합물을 발광 재료로사용하는 유기 전계 발광 소자
JP2006086069A (ja) 2004-09-17 2006-03-30 Three M Innovative Properties Co 有機エレクトロルミネッセンス素子及びその製造方法
US7396631B2 (en) 2005-10-07 2008-07-08 3M Innovative Properties Company Radiation curable thermal transfer elements
US7678526B2 (en) 2005-10-07 2010-03-16 3M Innovative Properties Company Radiation curable thermal transfer elements
JP2008235010A (ja) 2007-03-20 2008-10-02 Sony Corp 表示装置の製造方法
US8367152B2 (en) 2007-04-27 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light-emitting device
JP2008288017A (ja) 2007-05-17 2008-11-27 Sony Corp 有機el表示装置の製造方法
KR20090041314A (ko) * 2007-10-23 2009-04-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 증착용 기판 및 발광장치의 제조방법
US8080811B2 (en) * 2007-12-28 2011-12-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing evaporation donor substrate and light-emitting device
US7919340B2 (en) * 2008-06-04 2011-04-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
JP4551465B2 (ja) 2008-06-24 2010-09-29 東京エレクトロン株式会社 蒸着源、成膜装置および成膜方法
KR101116485B1 (ko) 2008-08-12 2012-02-29 장명계 2중 삽입 구조물의 미드솔을 갖는 건강신발 및 제조방법
JP4752902B2 (ja) 2008-12-01 2011-08-17 住友ベークライト株式会社 絶縁膜または保護膜の不純物低減方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309995A (ja) * 2005-04-27 2006-11-09 Sony Corp 転写用基板および表示装置の製造方法ならびに表示装置
JP2007299736A (ja) * 2006-05-03 2007-11-15 Samsung Sdi Co Ltd 平板表示素子用ドナー基板及びそれを用いた有機電界発光素子の製造方法
JP2008291352A (ja) * 2007-04-27 2008-12-04 Semiconductor Energy Lab Co Ltd 成膜方法及び発光装置の作製方法

Also Published As

Publication number Publication date
JPWO2011114874A1 (ja) 2013-06-27
US8951816B2 (en) 2015-02-10
JP5775511B2 (ja) 2015-09-09
US20130011943A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP6039661B2 (ja) Oledマイクロキャビティおよび緩衝層のための材料および方法
CN102067726B (zh) 图案形成方法及使用其的装置的制造方法以及装置
WO2010113357A1 (ja) ドナー基板、転写膜の製造方法、及び、有機電界発光素子の製造方法
EP2473646B1 (en) Organic vapor jet printing device with a chiller plate
US8618568B2 (en) Method for manufacturing light-emitting device and film formation substrate
KR100699998B1 (ko) 유기 전계 발광 소자 및 그의 제조 방법
JP2009277651A (ja) 成膜用基板及び発光装置の作製方法
TW200941790A (en) Method for forming film and method for manufacturing light emitting device
JP2010098303A (ja) 金属酸化物前駆体層の作製方法、金属酸化物層の作製方法及び電子デバイス
JP5666556B2 (ja) 成膜方法及び成膜用基板の作製方法
US8486736B2 (en) Method for manufacturing light-emitting device
Chen et al. Vacuum‐assisted preparation of high‐quality quasi‐2D perovskite thin films for large‐area light‐emitting diodes
JP5775511B2 (ja) 成膜方法
JP5747022B2 (ja) 成膜方法及び成膜用基板の作製方法
JP2002280174A (ja) ドナーフィルムおよびそれを用いて製造された有機led表示パネル
JP4126932B2 (ja) 表面処理方法及び処理装置、有機el装置の製造方法及び製造装置、有機el装置、電子機器
JP4233469B2 (ja) 蒸着装置
JP5413180B2 (ja) パターニング方法及びそれを用いたデバイスの製造方法
JP2011040375A (ja) 転写用ドナー基板とその製造方法及びそれを用いたデバイスの製造方法
JP2003168559A (ja) 有機led用ドナーフィルムと基板、及び、それらを用いた有機led表示パネルとその製造方法
JP5438313B2 (ja) 成膜方法
JP2010086840A (ja) パターニング方法およびこれを用いたデバイスの製造方法
JP5433165B2 (ja) 発光装置の作製方法
JP2009259571A (ja) 有機エレクトロルミネッセンス装置の製造装置及び有機エレクトロルミネッセンス装置の製造方法
JP2010061823A (ja) パターニング方法およびこれを用いたデバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756063

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505596

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13635201

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756063

Country of ref document: EP

Kind code of ref document: A1