WO2011113296A1 - 浴室用取暖换气扇 - Google Patents

浴室用取暖换气扇 Download PDF

Info

Publication number
WO2011113296A1
WO2011113296A1 PCT/CN2011/000207 CN2011000207W WO2011113296A1 WO 2011113296 A1 WO2011113296 A1 WO 2011113296A1 CN 2011000207 W CN2011000207 W CN 2011000207W WO 2011113296 A1 WO2011113296 A1 WO 2011113296A1
Authority
WO
WIPO (PCT)
Prior art keywords
air passage
switching plate
passage switching
air
fan
Prior art date
Application number
PCT/CN2011/000207
Other languages
English (en)
French (fr)
Inventor
翁叶帆
田亮
袁洪坚
金双
石川诚
荒井卓也
Original Assignee
广东松下环境系统有限公司
松下电器产业株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东松下环境系统有限公司, 松下电器产业株式会社 filed Critical 广东松下环境系统有限公司
Priority to JP2012540280A priority Critical patent/JP5551264B2/ja
Priority to US13/574,737 priority patent/US9347464B2/en
Publication of WO2011113296A1 publication Critical patent/WO2011113296A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/009Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by bleeding, by passing or recycling fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • F24F2013/205Mounting a ventilator fan therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater

Definitions

  • the present invention relates to a heating ventilating fan for a bathroom, and more particularly to an air leakage preventing structure for a heating ventilating fan for a bathroom. Background technique
  • a prior art bathroom heating ventilating fan 100 includes: a frame 110 having an opening 102 connected to the indoor opening 101 and the joint, and a mask 110a having an opening 101 covering the lower portion of the frame 110.
  • the ventilator periphery, the blade 120, the motor 130, the heater 140, and the air path switching plate 150.
  • the heating ventilating fan 100 is operated, the wind is sucked from the air inlet 160 of the mask 110 a of the heating ventilating fan 100, and then passes through the air passage switching plate 150 to perform air passage switching by the rotation of the air passage switching plate 150, thereby realizing the heating ventilating fan 100. Selection of heating, ventilation, and drying functions.
  • the air passage switching plate 150 Since the air passage switching plate 150 needs to be rotated to realize the selection of the above functions, it is necessary to ensure a certain gap 180 between the air passage switching plate 150 and the air passage wall 170, so that the air passage switching plate 150 can smoothly rotate. In this case, when the heating ventilating fan 100 is operated, a small portion of the wind blows into the gap 180, causing loss of air volume, and noise is generated; however, if the air passage switching plate 150 and the surrounding air passage wall 170 are When the gap 180 is set too small, when the heating ventilating fan is operated, when the wind blows into the gap, a noise may occur or the wind path switching plate 150 may not be flexibly rotated. Summary of the invention
  • a heating ventilating fan for a bathroom is a ventilating fan for a bathroom, comprising: a ventilating fan frame, a fan snail shell provided with a fan blade and a motor, and a downstream flow of the fan snail shell outlet and at least The air passage switching plate and the heater that switch the air passages of the two directions are provided with an air leakage preventing structure for guiding the air into the air passage switching plate at the air outlet of the fan snail shell.
  • the air leakage preventing structure is a tab protruding from the air outlet of the fan snail shell into the air passage switching plate, and the air passage switching plate has a rotating piece overlapping the outer side of the tab.
  • the air passage wall forming the air passage is extended from the air outlet of the fan snail shell, and the tab forms the air passage switching plate between the downstream side of the air outlet of the fan snail shell and the air passage wall of the air passage. The interval between the rotors.
  • the tab is disposed around the entire air outlet of the fan snail shell. .
  • the tab is protruded from a position above the rotating shaft of the air outlet of the fan snail shell.
  • the tab is protruded from a position lower than a rotating shaft of the air passage switching plate that traverses the air outlet of the fan snail shell.
  • the air leakage preventing structure refers to a convex structure that is engageable with each other on the air passage switching plate and the air passage wall forming the air passage.
  • the convex structure is provided with convex portions on the left and right sides of the air passage switching plate and the air passage wall, respectively, and the convex portions on the air passage switching plate and the convex ribs on the air passage wall can be engaged with each other.
  • the convex portion of the air passage switching plate is provided with a first air passage switching plate convex portion and a second air passage switching plate convex portion respectively on a side plate of the air passage switching plate adjacent to the air passage wall,
  • the convex portion of the air passage wall is provided with a first air passage wall convex portion at a central portion of the air passage wall.
  • the convex portion of the air passage switching plate is provided with a third air passage switching plate convex portion and a fourth air passage switching plate convex portion respectively at a front end portion and a rear end portion of the air passage switching plate adjacent to the air passage wall.
  • the convex portion of the air passage wall is provided with a second air passage wall convex portion at a central portion on the air outlet side of the air passage wall.
  • a third air passage wall convex portion is provided on the top surface side of the air passage wall, and a lowest point of the third air passage switching plate convex portion is higher than a lowest point of the third air passage wall convex portion.
  • the present invention has an advantage in that air volume and noise reduction can be ensured while ensuring a gap required for smooth rotation of the air passage switching plate.
  • the present invention has the following structure.
  • a control unit that controls the motor, the heater, and the air passage switching plate is provided, and a sensor that detects a position of the air passage switching plate and transmits a signal to the control unit is further provided.
  • the sensor is provided by a first body-side sensing element disposed on a side of the air passage wall of the fan snail shell and disposed outside the air passage switching plate rotor, and corresponding to the first body-side sensing element
  • the first air passage switching plate side is provided by a sensing element.
  • the first body-side sensing element is disposed corresponding to a movable limit point of the sensing element on the side of the first air passage switching plate that moves with the air passage switching plate.
  • the sensor is disposed on a second body side sensing element disposed on a top surface of the air passage wall of the fan snail shell and disposed on an outer side of the air passage switching plate rotor, and corresponds to the second body side sensing element
  • the second air passage switching plate side of the position is constituted by the sensing element.
  • the sensor is provided by a third body-side sensing element disposed on a bottom surface of the air passage wall of the fan snail shell and disposed outside the air passage switching plate rotor, and corresponding to the third body-side sensing element
  • the third air passage switching plate side is provided by the sensing element.
  • the first, second, and third body-side sensing elements are magnetic sensors, and the sensing elements on the first, second, and third air path switching plate sides are magnets.
  • the magnetic sensor is an electromagnet.
  • Figure 1 is a schematic view of a known technique
  • 3A and 3B are schematic views of a second embodiment
  • 4A and 4B are schematic views of a third embodiment
  • 5A, 5B, 5C, and 5D are schematic views of a fourth embodiment
  • 6A, 6B, 6C, and 6D are schematic views of the fifth embodiment.
  • FIG. 7A and 7B are schematic views showing a first embodiment of the sixth embodiment.
  • Fig. 8 is a schematic view showing a second embodiment of the sixth embodiment.
  • Fig. 9 is a schematic view showing a third embodiment of the sixth embodiment. detailed description
  • a heating ventilating fan 100 for a bathroom includes: a ventilating fan frame 110, a ventilating fan periphery constituted by a mask 110a covering an opening 101 below the ventilating fan frame 1 10, a fan provided with a blade 120 and a motor 130.
  • the snail shell 131, the air passage switching plate 150, the heater 140, and the like are provided with an air outlet 111 on the side wall of the ventilating fan frame 110.
  • the mask 110a has an air inlet 160 and an indoor air outlet 112.
  • the fan snail shell 131 has an air outlet 132 which is a square tubular shape surrounded by a top wall, a side wall and a bottom wall.
  • the bathroom heating ventilating fan 100 has an air passage from the air outlet 132 to the air outlet 111 provided on the side wall of the ventilating fan frame 110 and from the air outlet 132 An air passage provided in the indoor air outlet 112 of the ventilating fan mask that is blown into the room.
  • the air passage switching plate 150 has a rotating shaft 151 that traverses the fan snail casing air outlet 132. Further, a rotating main shaft 151 is provided around the rotating shaft 151, and the main board 152 for switching the air path is provided, and the main board 152 is continuously rotated toward the rotating shaft. A rotor 155 having side plates 154. Further, the air passage switching plate 150 flows down the air outlet 132 of the fan snail casing 131, and according to the position of the main plate 152, the air outlet is switched to two directions, that is, the above two air passages. The air outlet 132 of the fan snail casing 131 is provided with an air leakage preventing structure for guiding air into the air passage switching plate.
  • the air leakage preventing structure shown in FIG. 2B is a tab 200 protruding from the periphery of the entire air outlet 132 of the fan snail shell 131 into the air passage switching plate 150, and the rotor 155 of the above-described switching board 150 and the tab The outer sides of 200 overlap.
  • the air passage wall 170 forming the air passage extends from the air outlet 132 of the fan snail shell 131 to the air outlet I'l of the ventilating fan and the air outlet 112 that is blown into the room, and the tab 200 is in the fan snail shell 131.
  • a constant space 190 in which the air passage switching plate 150 rotor 155 is accommodated is formed between the downstream side of the tuyere 132 and the air passage wall 170.
  • the tab 200 protrudes from the periphery of the entire air outlet 132 toward the inner side of the air passage to form a "mouth” shape. Moreover, the "mouth" shape is divided into upper and lower portions by the rotation shaft 151 of the air passage switching plate 150 as described above, and the portion near the top surface 134 of the fan snail shell 131 is the upper end 210 of the tab 200, which is close to the fan. The portion of the bottom surface 135 of the snail shell 131 is the lower end 220 of the tab 200.
  • the heating ventilating fan for the bathroom 100 controls the heating, ventilation, and drying functions of the heating ventilating fan 100 by controlling the rotational position of the air passage switching plate 150.
  • FIG. 2A a cross-sectional view of the heating ventilating fan 100 for the bathroom in the heating mode is controlled by the stepping motor, and the air passage switching plate 150 is turned to the top surface 134 side of the fan snail shell 131, and both sides of the air passage switching plate 150
  • the side plate 154 and the front end portion 1521 of the main plate 152 are engaged from the downstream side of the air outlet 132 into the space 190 between the upper end 210 of the tab 200 and the air passage wall 170. That is, the upper end 210 of the tab 200 and the air passage wall 170 are configured to receive the side walls 154 on both sides of the air passage switching plate 150 and the front end portion 1521 of the main plate 152.
  • the wind is sucked from the air inlet 160 of the heating ventilating fan, passes through the blade 120, and is blown out from the air outlet 132 of the fan snail casing 131, and is blown toward the heater 140.
  • the wind is sucked from the air inlet 160 of the heating ventilating fan, passes through the blade 120, and is blown out from the air outlet 132 of the fan snail casing 131, and is blown toward the heater 140.
  • the tab 200 is protruded from the downstream side of the fan snail shell 131, and the outer side of the tab 200 overlaps with the air passage switching plate 150 to form a housing structure, and the air blown from the fan snail shell 131 does not leak to the air passage.
  • the outer side of the plate 150 is guided into the air passage switching plate 150, and finally flows to the air passage which is one of the two air passages and is blown toward the indoor air outlet 112 in the room.
  • FIG. 2C a sectional view of the heating ventilating fan 100 for the bathroom in the ventilation mode is controlled by the stepping motor, and the air passage switching plate 150 is turned to the bottom surface 135 of the fan snail shell 131, on both sides of the air passage switching plate 150.
  • the side plate 154 and the rear end portion 1522 are engaged from the downstream side of the air outlet 132 into the space 190 between the lower end 220 of the "port"-shaped tab 200 and the air passage wall 170. That is, the lower end 220 of the tab 200 and the air passage wall 170 are configured to receive the side walls 154 on both sides of the air passage switching plate 150 and the rear end portion 1522 of the main plate 152.
  • the heating ventilating fan 100 When the heating ventilating fan 100 is operated, the wind is sucked from the air inlet 160 of the heating ventilating fan, passes through the blade 120, and is blown out from the air outlet 132 of the fan snail casing 131, and is blown toward the air outlet 111. With the above configuration, it is possible to prevent the wind from directly flowing out from the gap between the air passage switching plate 150 and the air passage wall 170.
  • the fin 200 is protruded from the downstream side of the fan snail shell 131, and the outer side thereof overlaps with the lower end 220 of the air passage switching plate 150 to form a housing structure, and the air blown from the fan snail shell 131 does not leak to the air passage.
  • the outer side of the plate 150 is guided into the air passage switching plate 150, and finally flows to the air passage of the air outlet 111 of the ventilating fan which is one of the two air passages.
  • the mouth-shaped tab 200 covers the gap between the air passage switching plate 150 and the air passage wall 170 from the upstream side of the wind, thereby preventing the wind from being blown into the gap between the air passage switching plate 150 and the air passage wall 170, thereby The generation of noise is prevented and the occurrence of poor rotation of the air passage switching plate 150 is prevented, and the effect of ensuring the air volume is achieved. This improves product performance and energy efficiency.
  • FIGS. 3A and 3B are schematic views showing a second embodiment of the present invention.
  • the air passage wall 170 is extended on the downstream side of the air outlet 132 of the fan snail casing 131, and the tab 300 projecting downward from the air outlet 132 of the fan snail casing 131 forms a certain interval 290 with the inner side of the air passage wall 170.
  • the tab 300 is disposed on the upper side of the rotary shaft 151 of the air passage switching plate 150 of the air outlet 132 of the fan snail casing 131. That is, the inverted "U" shape is formed.
  • the air passage switching plate 150 is received by the space 290 formed between the outer side of the tab 300 and the air passage wall 170.
  • a cross-sectional view of the heating ventilating fan 100 for the bathroom in the heating mode is controlled by the stepping motor, and the air passage switching plate 150 is turned to the top surface 134 side of the fan snail shell 131, and both sides of the air passage switching plate 150
  • the side plate 154 and the front end portion 1521 of the main plate 152 are engaged from the downstream side of the wind into the space 290 between the inverted U-shaped tab 300 and the air passage wall 170, and the tab 300 and the air passage wall 170 form a accommodating wind.
  • the structure of the side plate 154 on both sides of the road switching board 150 and the front end portion 1521 of the main board 152 are controlled by the stepping motor, and the air passage switching plate 150 is turned to the top surface 134 side of the fan snail shell 131, and both sides of the air passage switching plate 150
  • the side plate 154 and the front end portion 1521 of the main plate 152 are engaged from the downstream side of the wind into the space 290 between the inverted U-shaped tab 300 and the air passage wall 1
  • the heating ventilator 100 When the heating ventilator 100 is running, the wind is ventilating from the heating fan
  • the suction port 160 of 100 is sucked, passes through the blade 120, and is blown out from the air outlet 132 of the fan snail casing 131, and is blown toward the heater 140.
  • the fin 300 is protruded from the downstream side of the fan snail shell 131, and the outer side thereof overlaps with the air passage switching plate 150 to form a housing structure, and the air blown from the fan snail shell 131 does not leak but is guided to the wind.
  • the road switching plate 150 finally, it is possible to flow to the air path which is one of the two air passages and is blown toward the air outlet 112 in the room. Thereby improving product performance and energy utilization efficiency.
  • FIGS. 4A and 4B are schematic views showing a third embodiment of the present invention.
  • the air passage wall 170 is extended on the downstream side of the air outlet 132 of the fan snail shell 131, and the tab 400 projecting downward from the air outlet 132 of the fan snail shell 131 forms a certain interval 390 with the inner side of the air passage wall 170.
  • the tab 400 is disposed on the lower side of the rotating shaft 151 of the air passage switching plate 150 of the fan sash casing 131. That is, the "U" shape is formed.
  • the air passage switching plate 150 is received by the space 390 formed between the outer side of the tab 400 and the air passage wall 170.
  • FIG. 4A a cross-sectional view of the heating ventilating fan 100 for the bathroom in the ventilation mode is controlled by the stepping motor, and the air passage switching plate 150 is turned to the bottom surface 135 side of the fan snail shell 131, and both sides of the air passage switching plate 150
  • the side plate 154 and the rear end portion 1522 are inserted into the space 390 between the U-shaped tab 400 and the air passage wall 170 from the downstream side of the wind, and the tab 400 and the air passage wall 170 form the storage air passage switching plate 150.
  • the structure of the side side plate 154 and the rear end portion 1522 are inserted into the space 390 between the U-shaped tab 400 and the air passage wall 170 from the downstream side of the wind, and the tab 400 and the air passage wall 170 form the storage air passage switching plate 150.
  • the wind is sucked from the air inlet 160 of the heating ventilating fan 100, passes through the blade 120, and is blown out from the air outlet 132 of the fan snail casing 131, and is blown toward the air outlet 11 1 .
  • the wind is sucked from the air inlet 160 of the heating ventilating fan 100, passes through the blade 120, and is blown out from the air outlet 132 of the fan snail casing 131, and is blown toward the air outlet 11 1 .
  • the fin 400 is protruded from the downstream side of the fan snail shell 131, and the outer side thereof overlaps with the air passage switching plate 150 to form a housing structure, and the air blown from the fan snail shell 131 does not leak but is guided to the wind.
  • the road switching plate 150 finally, it is possible to flow to the air passage of the air outlet 11 1 of the ventilating fan which is one of the two air passages. This improves product performance and energy efficiency.
  • FIGS. 5A, 5B, 5C, and 5D are schematic views of a fourth embodiment of the present invention.
  • a pair of first air passage switching plate convex portions 161 and a second portion are provided on the left side surface 1541 and the right side surface 1542 of the side wall 154 of the air passage switching plate 150 opposite to the air passage wall 170.
  • the first air passage switching plate convex portion 161 and the second air passage switching plate convex portion 162 are radially provided from the rotation shaft 151 like the end surface of the side plate 154 of the air passage switching plate 150.
  • a first air passage wall convex portion 171 is provided at each of the left side portion and the right side portion 176 of the air passage wall 170. That is, the first air passage wall convex portion 171 is provided on a line connecting the rotating shaft 151 from the air passage switching plate 150 to the lower end of the air outlet 111. Further, the first air passage wall convex portion 171 is located between the first air passage switching plate convex portion 161 and the second air passage switching plate convex portion 162.
  • the position of the air passage switching plate 150 is set, and the first air passage switching plate convex portion 161 and the first air passage wall are disposed on the air passage switching plate 150 and the air passage wall 170.
  • the convex portion 171, or the second air passage switching plate convex portion 162 and the first air passage wall convex portion 171 are vertically overlapped and engaged with each other, and the ventilating fan is disposed from the air outlet 132 to the side wall of the ventilating fan frame 110.
  • the air passage of the air outlet 111 is spaced apart from the air passage provided from the air outlet 132 to the indoor air outlet 112 of the ventilation fan mask, and the wind can be prevented from directly between the air passage switching plate 150 and the air passage wall 170.
  • the gap flows to the outside of the air passage switching plate 150.
  • FIG. 5C a sectional view of the heating ventilating fan 100 for the bathroom in the heating mode is controlled by the stepping motor, and the air passage switching plate 150 is turned to the top surface 134 side of the fan snail shell 131.
  • the air passage switching plate 150 The second air passage switching plate convex portion 162 provided on the left side surface (not shown) and the right side surface 1542 is respectively provided with the first side (not shown) and the right side 176 of the air passage wall 170.
  • the air passage wall convex portion 171 is engaged with each other to form an airtight state, thereby preventing wind from flowing directly from the gap between the air passage switching plate 150 and the air passage wall 170 to the outside of the air passage switching plate 150.
  • FIG. 5D a sectional view of the heating ventilating fan 100 for the bathroom in the ventilation mode is controlled by the stepping motor, and the air passage switching plate 150 is turned to the bottom surface 135 side of the fan snail shell 131.
  • the air passage switching plate 150 The first air passage wall convex portion 171 provided on the left side surface (not shown) and the right side surface 1542, and the first air passage wall convex portion 171 provided on the left side and the right side 176 of the air passage wall 170, respectively.
  • the close contact state is formed, thereby preventing the wind from flowing directly from the gap between the air passage switching plate 150 and the air passage wall 170 to the outside of the air passage switching plate 150.
  • FIGS. 6A, 6B, 6C, and 6D are schematic views showing a fifth embodiment of the present invention.
  • a third air passage switching plate convex portion 164 and a fourth air passage switching plate opposed to the air passage wall 170 are provided on the outer side of the front end portion 1521 and the rear end portion 1522 of the air passage switching plate 150, respectively.
  • the convex portion 165 is provided with a second air passage wall convex portion 186 at a lower middle end of the air outlet wall 111 side of the air passage wall 170. Further, the second air passage wall convex portion 186 is located between the third air passage switching plate convex portion 164 and the fourth air passage switching plate convex rib 165.
  • the third air passage switching plate convex portion 164 and the second air passage wall convex portion 186 or the fourth air passage provided to the air passage switching plate 150 and the air passage wall 170 are passed.
  • the switching plate convex portion 165 and the second air passage wall convex portion 186 are overlapped and engaged to prevent wind from directly from the air passage switching plate 150 and the air passage wall
  • the gap between the 170 flows to the outside of the air passage switching plate 150.
  • FIG. 6C a cross-sectional view of the heating ventilating fan 100 for the bathroom in the heating mode is controlled by the stepping motor, and the air passage switching plate 150 is turned to the top surface 134 side of the fan snail shell 131.
  • the air passage switching plate 150 The fourth air passage switching plate convex portion 165 of the rear end portion 1522 is engaged with the second air passage wall convex portion 186 of the air passage wall 170 to form a close state, thereby preventing wind from directly from the air passage switching plate 150 and the air passage.
  • the gap between the walls 170 flows to the outside of the air passage switching plate 150.
  • FIG. 6D a cross-sectional view of the heating ventilating fan 100 for the bathroom in the ventilation mode is controlled by the stepping motor, and the air passage switching plate 150 is turned to the bottom surface 135 side of the fan snail shell 131.
  • the air passage switching plate 150 The third air passage switching plate convex portion 164 of the front end portion 1521 is engaged with the second air passage wall convex portion 186 of the air passage wall 170 to form a close state, thereby preventing wind from directly from the air passage switching plate 150 and the air passage.
  • the gap between the walls 170 flows to the outside of the air passage switching plate 150.
  • this embodiment also provides a downwardly projecting "V"-shaped third air passage wall convex portion 177 on the top surface 172 side of the air passage wall 170, and the front end portion 1521 of the air passage switching plate 150.
  • the lowest point 1640 of the third air passage switching plate convex portion 164 is higher than the lowest point 1770 of the "V"-shaped third air passage wall convex portion 177.
  • the third wind path wall convex portion 177 is provided with a front side 1772 on the side of the air outlet 132 and a rear side 1771 on the downstream side of the air outlet 132, and has an apex below.
  • the sectional shape thereof is a right-angled triangle formed by the front side 1772 which is a hypotenuse and the rear side 177 which is one side.
  • the air passage switching plate 150' is turned to the top surface 134 side of the fan snail shell 131 by the stepping motor control, and at this time, the third end portion 1521 of the air passage switching plate 150 is
  • the air passage switching plate convex portion 164 is engaged with the rear side 1771 of the third air passage wall convex portion 177, and the fourth air passage switching plate convex portion 165 and the air passage wall 170 of the rear end portion 1522 of the air passage switching plate 150 are
  • the second air passage wall convex portion 186 is engaged with each other to form a close contact state, and the front side 1772 of the "V"-shaped third air passage wall convex portion 177 is formed to have a triangular cross section as described above.
  • the front side 1772 also has a function of guiding the wind blown by the air outlet side to the guide plate in the air passage switching plate 150. Therefore, the third air passage wall convex portion 177 of the above-mentioned "V" shape can prevent the wind from directly flowing from the gap between the air passage switching plate 150 and the air passage wall 170 to the outside of the air passage switching plate 150, and can also be reduced. Small wind resistance, improve performance. Thereby improving product performance and energy utilization efficiency.
  • the sixth embodiment of the present invention is based on the above-described second embodiment of the second embodiment in which the tab 300 as the air leakage preventing structure is provided, and is further provided with a control motor 130, a heater 140, and a wind.
  • the control unit of the road switching board 150 is further provided with a position for detecting the air passage switching plate 150 and transmitting a signal to the control unit. Sensor.
  • the sensor detects the position of the air passage switching plate 150 and transmits a signal to the control unit.
  • the control unit controls the stepping motor to rotate the air passage switching plate to the normal position based on the position signal.
  • the position of the air passage switching plate 150 can be detected, when the air passage switching plate 150 is displaced from the normal position due to an external factor during the heating operation or the ventilation operation, the position can be made by the control portion. correct.
  • the air leakage preventing structure of the present invention not only the air can be surely guided into the air passage switching plate 150, but also the air leakage caused by the positional deviation of the air passage switching plate 150 can be prevented.
  • the senor is provided by a first body-side sensing element disposed on a side surface of the air passage wall 170 of the fan snail shell 131 and a side plate 154 disposed on the side plate 154 of the air passage switching plate 150 rotor 155, and the first body
  • the first air passage switching plate side disposed at a corresponding position of the side sensing element is constituted by the sensing element.
  • FIG. 7A and 7B are schematic views showing a first embodiment of the sixth embodiment.
  • the first body-side sensing elements 0101 and 0012 provided on the side surface of the air passage wall 170 of the fan snail casing 131 and the first air passage switching plate side moved along with the air passage switching plate 150 are transmitted.
  • the movable limit point of the sensing element 551 is correspondingly set.
  • the side plate 154 of the air passage switching plate 150 is provided with a first air passage switching plate side sensing element 551.
  • the first air passage switching plate side of the first air passage switching plate side is radially disposed from the rotation shaft 151 like the end surface of the side plate 154 of the air passage switching plate 150. (The same position as the convex portion of the first air passage switching plate of Fig. 5A)
  • the side surface (one side or both sides) of the left side or right side surface 176 of the air passage wall 170 is radially disposed from the rotating shaft 151 to the first body side sensing elements 001, 0012 at two places.
  • the first body-side sensing elements 001 1 and 0012 disposed at two sides of the air passage wall 170 and the first air passage switching plate side moved by the air passage switching plate 150 are moved by the movable limit point of the sensing element 551 Corresponding settings.
  • the first body-side sensing element 0011 on the side of the air passage wall 170 is corresponding to the position of the sensing element 551 on the side of the air passage switching plate side in the heating mode, gP, air path switching plate 150 is rotated to the top surface 134 side of the fan snail shell 131, and the first air passage switching plate side provided on the upper end surface of the side plate 154 of the air passage switching plate 150 is also rotated by the sensing element 551, and the first body side sensor
  • the first air passage switching plate side when the 0011 reaches the upper limit point state is radially disposed from the rotation shaft 151 in the opposing direction of the sensor element 551.
  • the first body side sensing element 0012 and the ventilation mode on the other side of the air passage wall 170 The first air passage switching plate side on the side of the air passage switching plate is rotated by the corresponding position of the sensing element 551, gp, and the air passage switching plate 150 is rotated to the bottom surface 135 side of the fan snail shell 131, and is disposed on the air passage switching plate 150.
  • the first air passage switching plate side of the upper end surface of the side plate 154 is also rotated by the sensing element 551, and the first body side sensor 0012 and the first air passage switching plate side when the lower limit point state is reached are the sensing elements.
  • the 551 is radially disposed from the rotating shaft 151 in a relative direction.
  • the first body-side sensing elements 0101 and 0012 provided at the side 2 of the air passage wall 170 are disposed corresponding to the movable limit points above and below the sensing element 551 on the side of the air passage switching plate, heating is performed.
  • the side plate 154 of the air passage switching plate 150 rotates, the first air passage switching plate side is moved by the sensing element 551 until it moves to the upper movable limit point, and is set corresponding to the upper limit point.
  • the first body side sensing element 0011 on one side detects the normal position of the air passage switching plate 150 during the heating operation.
  • the first air passage switching plate side is moved by the sensing element 551 until it moves to the lower movable limit point, and passes through the lower limit
  • the first body side sensing element 0012 on the other side corresponding to the point is set to detect the normal position of the air passage switching plate 150 during the ventilation operation.
  • the control unit transmits a signal to the stepping motor based on the position signal to control the rotation of the air passage switching plate 150.
  • the first air passage switching plate side is disposed on the side of the air passage wall 170 at the two sides of the air passage wall 170 from the rotation shaft 151 so as to be flush with the end surface of the upper side plate 154.
  • a body-side sensing element 001 1 , 0012 is radially disposed on the side of the air passage wall 170 from the rotating shaft, because the first body-side sensing element 0011 is far from the first body-side sensing element 0012, When the first air passage switching plate side is detected by the sensing element 551, mutual interference does not occur. Therefore, the first air passage switching plate side can be stably detected by the first main body side sensing elements 001 1 and 0012. Sensing element 551.
  • the first body side sensing elements 0101, 0012 disposed at the side 2 of the air passage wall 170 and the first air passage switching plate side disposed on the side plate 154 of the air passage switching plate 150 are guided by the sensing element 551, through the axis
  • the non-contact sensing of the direction can detect the position of the air passage switching plate 150.
  • the air passage switching plate 150 Since the normal position of the air passage switching plate 150 during the dry operation and the ventilation operation can be accurately detected, when the heating operation or the ventilation operation is performed, the air passage switching plate 150 is deviated from the normal position due to an external factor. At the time, the position can be corrected by the control unit.
  • the air leakage preventing structure of the present invention not only the air can be surely guided into the air passage switching plate 150, but also the air leakage caused by the positional deviation of the air passage switching plate 150 can be prevented.
  • Fig. 8 is a schematic view showing a second embodiment of the sixth embodiment.
  • the sensor may also be disposed on the second body side sensing element 0021 disposed on the top surface of the air passage wall 170 of the fan cow cowl 131.
  • the second air passage switching plate side sensing element 552 is disposed outside the front end portion 1521 of the rotor piece 155 of the air passage switching plate 150 and at a position corresponding to the second body side sensing element 0021.
  • the second body-side sensing element 0021 disposed on the inner side of the top surface of the air passage wall 170 and the second air passage switching plate side disposed on the front end portion 1521 of the air passage switching plate 150 are guided by the sensing element 552
  • the non-contact sensing of the direction can detect the normal position of the air passage switching plate during heating operation.
  • the second body side sensing element 0021 is disposed on the air path.
  • the second air passage switching plate side of the front end portion 1521 of the switching plate 150 is disposed in the opposite direction by the sensing element 552.
  • the second body side sensing element 0021 and the second air path switching board side sensing element 552 may be respectively disposed on the inner side of the top surface of the air passage wall 170 and the outer side of the front end portion 1521 of the air passage switching plate 150, in the heating mode. Set for relative orientation.
  • the control unit transmits a signal to the stepping motor based on the position signals of the second body-side sensing element 0021 and the second air passage switching plate side by the sensing element 552 to control the rotation of the air passage switching plate.
  • the position can be corrected by the control unit.
  • the air leakage preventing structure of the embodiment of the present invention can not only reliably guide the air into the air passage switching plate 150, but also effectively prevent the air passage switching plate 150 from leaking due to the positional deviation.
  • Fig. 9 is a schematic view showing a third embodiment of the sixth embodiment.
  • the sensor is disposed on a third body side sensing element 0031 disposed on a bottom surface of the air passage wall 170 of the fan snail shell 131 and on an outer side of the air passage switching plate 150 rotor 155, and is configured as described above.
  • the third air passage switching plate side disposed corresponding to the third body side sensing element 0031 is constituted by the sensing element 553.
  • the third body side sensing element 0031 disposed on the inner side of the bottom surface of the air passage wall 170 and the third air passage switching plate side disposed on the rear end portion 1522 of the air passage switching plate 150 are subjected to radial non-contact transmission by the sensing element 553. Sense, detecting the normal position of the air passage switching plate during ventilation operation.
  • the third body side sensing element 0031 and the air passage switching plate 150 are disposed.
  • the third air passage switching plate side of the rear end portion 1522 is disposed in the opposite direction by the sensing element 553.
  • the third body side sensing element 0031 and the third air passage switching plate side sensing element 553 may be respectively disposed at an inner side of the bottom surface of the air passage wall 170 and an outer portion of the rear end portion 1522 of the air passage switching plate 150, in the ventilation mode.
  • the time is set for the relative direction.
  • the control unit transmits a signal to the stepping motor based on the position signals of the third body side sensing element 0031 and the third air passage switching plate side by the sensing element 553 to control the rotation of the air passage switching plate.
  • the normal position of the air passage switching plate 150 during the ventilation operation can be accurately detected.
  • the position can be corrected by the control unit.
  • the air leakage preventing structure of the embodiment of the present invention can not only reliably guide the air into the air passage switching plate 150, but also effectively prevent the air passage switching plate 150 from leaking due to the positional deviation.
  • first, second, and third body-side sensing elements are magnetic sensors
  • first, second, and third air passage switching plate sides are magnets.
  • the first body side sensing element, the second body side sensing element, and the third body side sensing element are hole elements in the magnetic sensor. Further, the first, second, and third air passage switching plate sides are magnets.
  • the magnet sensor can The magnetic field generated by the magnet is detected.
  • the first, second, and third body-side sensing elements are magnetic sensors using the hole elements, and the first to third air-way switching plate-side sensing elements are magnets, compared with mechanical switches. For non-contact, and, the miniaturization of the sensor can be achieved.
  • the magnetic sensor (the first, second, and third body-side sensing elements) may be an electromagnet.
  • the sensing elements of the first, second and third body sides are electromagnets.
  • the control unit controls the stepping motor to rotate the air passage switching plate during the ventilation operation or the heating operation
  • the magnets are detected by the first, second, and third body-side sensing elements (first, second, and The sensing element on the side of the three-winding switchboard enters the detection range of the electromagnet, and then the magnetic sensor (the first, second, and third body-side sensing elements) on the main body side of the electromagnet is powered on, and ventilates.
  • the air passage switching plate 150 is rotated to the vicinity of the normal position, and the magnetic sensors (the first main body side sensing element and the second main body side sensing element) on the main body side are attracted to the air passage switching plate 150.
  • the magnet on the side (the sensor element on the first air passage switching plate side and the sensor element on the second air passage switching plate side).
  • the air passage switching plate 150 maintains the normal position during the heating operation and the ventilation operation.
  • the wind switch When the plate 150 is out of the normal position it can be adjusted to the normal position and locked.
  • the air leakage preventing structure of the sixth embodiment is a structure having the tab 300 of the second embodiment, and the air leakage preventing structure of any of the first embodiment, the second embodiment, and the fifth embodiment is implemented.
  • the air leakage preventing structure according to the embodiment of the present invention can not only reliably guide the air into the air passage switching plate 150, but also effectively prevent the air passage switching plate during the heating operation.
  • the air leakage caused by the positional deviation on the ventilation position side due to its own weight is also prevented, and the air leakage caused by the positional deviation of the air passage switching plate 150 due to the wind pressure during the ventilation operation can be effectively prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Central Heating Systems (AREA)
  • Ventilation (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Flow Control Members (AREA)
  • Air Conditioning Control Device (AREA)

Description

浴室用取暖换气扇
技术领域
' 本发明是关于一种浴室用取暖换气扇, 特别是关于一种浴室用取暖换气扇的漏风 防止结构。 背景技术
如图 1所示, 先有技术的一种浴室用取暖换气扇 100,包括: 具有向室内开口 101 以及与接头相连接的开口 102的框架 110、有遮盖框架 110下方的开口 101的面罩 110a 所构成的换气扇外围、 扇叶 120、 马达 130、 加热器 140以及风路切换板 150。 当取暖 换气扇 100运转时, 风从取暖换气扇 100的面罩 110 a的吸风口 160被吸入, 然后经 过风路切换板 150, 通过风路切换板 150的转动进行风路切换, 从而实现取暖换气扇 100的取暖、 换气、 和干燥功能的选取。
由于风路切换板 150需要通过转动来实现上述功能的选取, 这样的话, 风路切换 板 150与风路壁 170之间需要确保一定的间隙 180, 才能使风路切换板 150顺畅的转 动。 这样的话, 当取暖换气扇 100运转时, 有一小部分的风吹向该间隙 180内, 导致 风量流失的同时, 还会产生噪音; 但如果风路切换板 150与四周的风路壁 170之间的 间隙 180设置得过小的话, 当取暖换气扇运转时, 风吹向该间隙内时会产生萧声或导 致出现风路切换板 150无法灵活转动等问题。 发明内容
本发明的目的在于提供一种浴室用取暖换气扇, 能够降低噪音。
为实现上述目的, 本发明提供的一种浴室用取暖换气扇是一种浴室用换气扇, 包 括: 换气扇框架、 设有扇叶和马达的风扇蜗牛壳、 设置于风扇蜗牛壳出风口的下流且 至少可以切换两个方 '向的风路的风路切换板以及加热器等, 在风扇蜗牛壳出风口设有 将空气向风路切换板内引导的漏风防止结构。 - 所述的漏风防止结构是从风扇蜗牛壳的出风口向风路切换板内突出设置的凸片, 风路切换板具有与凸片的外侧相重叠的转片。
形成风路的风路壁从上述风扇蜗牛壳的出风口开始延设, 所述的凸片在风扇蜗牛 壳的出风口的下流侧与风路的风路壁之间形成收纳上述风路切换板转片的间隔。 所述的凸片设置于风扇蜗牛壳的整个出风口的周围。. .
所述的凸片比风路切换板具有的横穿风扇蜗牛壳出风口的转轴更靠上方的位置 突出设置。
所述的凸片比风路切换板具有的横穿风扇蜗牛壳出风口的转轴更靠下方的位置 突出设置。
所述的漏风防止结构是指在风路切换板上和形成风路的风路壁上设有能够相互 卡合的凸结构。
所述的凸结构为分别在风路切换板和风路壁的左右两侧上分别设置凸部, 并且风 路切换板上的凸部和风路壁上的凸部筋能够互相卡合。
所述的风路切换板的凸部为在与风路壁相邻接的风路切换板的侧板上分别设置 第一风路切换板凸部和第二风路切换板凸部, 所述的风路壁的凸部为在上述风路壁的 中部位置设置第一风路壁凸部。
所述的风路切换板的凸部为在与风路壁相邻接的风路切换板的前端部和后端部 上分别设置第三风路切换板凸部和第四风路切换板凸部, 所述的风路壁的凸部为在风 路壁出风口侧的中部位置上设置第二风路壁凸部。
还在所述的风路壁的顶面侧设置第三风路壁凸部, 上述第三风路切换板凸部的最 低点高于上述第三风路壁凸部的最低点。
本发明的优点在于, 在确保风路切换板顺畅转动所需的间隙的同时, 能够确保风 量及降低噪音。
另外, 本发明还有以下结构。
设有控制上述马达、 上述加热器和上述风路切换板的控制部,还设有检测上述风 路切换板的位置,并向上述控制部发送信号的传感器。
所述的传感器由设置于上述风扇蜗牛壳的风路壁侧面的第一本体侧传感元件和设 置于上述风路切换板转片的外侧, 并与上述第一本体侧传感元件相对应位置设置的第 一风路切换板侧被传感元件所构成。
所述的第一本体侧传感元件与随上述风路切换板而移动的上述第一风路切换板 侧被传感元件的可移动界限点相对应设置。
所述的传感器由设置于上述风扇蜗牛壳的风路壁顶面的第二本体侧传感元件和 设置于上述风路切换板转片的外侧, 并与上述第二本体侧传感元件相对应位置设置的 第二风路切换板侧被传感元件所构成。 所述的传感器由设置于上述风扇蜗牛壳的风路壁底面的第三本体侧传感元件和 设置于上述风路切换板转片的外侧, 并与上述第三本体侧传感元件相对应位置设置的 第三风路切换板侧被传感元件所构成。
所述的第一、 第二、 第三本体侧传感元件为磁性传感器, 所述的第一、 第二、 第 三风路切换板侧的被传感元件为磁铁。
所述的磁性传感器为电磁铁。
通过上述结构, 确保风路切换板顺畅转动所需的必要空间、确保风量和低减噪音 的同时, 因为可以通过传感器检测风路切换板的位置, 所以, 当在取暖运转或换气运 转中, 因外部因素而引起风路切换板偏离正常位置的情况发生时, 通过控制部可以对 其位置进行更正。 附图说明
图 1为公知技术示意图;
图 2Α、 '2Β、 2C、 2D为第一实施例示意图;
图 3A、 3B为第二实施例示意图;
图 4A、 4B为第三实施例示意图;
图 5A、 5B、 5C、 5D为第四实施例示意图;
图 6A、 6B、 6C、 6D为第五实施例示意图。
图 7A、 7B为第六实施例的第一种实施形态的示意图。
图 8为第六实施例的第二种实施形态的示意图。
图 9为第六实施例的第三种实施形态的示意图。 具体实施方式
如图 2A、 2B、 2C、 2D所示, 为本发明第一实施例示意图。 如图 2A所示, 为一种 浴室用取暖换气扇 100, 包括: 换气扇框架 110、 由遮盖换气扇框架 1 10下方的开口 101的面罩 110a所构成的换气扇外围、 设有扇叶 120和马达 130的风扇蜗牛壳 131、 风路切换板 150以及加热器 140等,换气扇框架 110的侧壁设有出风口 111。面罩 110 a具有吸风口 160和室内出风口 112。风扇蜗牛壳 131具有出风口 132, 该出风口 132 为由顶面壁、 侧壁和底壁所围成的方形的筒状。 浴室用取暖换气扇 100本体具有从出 风口 132到设置于换气扇框架 110的侧壁上的出风口 111的风路以及从出风口 132到 设置于换气扇面罩的吹向室内的室内出风口 112的风路。
如图 2B、 2D所示, 风路切换板 150具有横穿风扇蜗牛壳出风口 132的转轴 151, 而且, 转轴 151的周围设有切换上述风路的主板 152和使该主板 152向转轴连续转动 的具有侧板 154的转片 155。 而且, 风路切换板 150在风扇蜗牛壳 131的出风口 132 的下流, 根据上述主板 152的位置, 出风口切换为两个方向即上述的两个风路。 风扇 蜗牛壳 131的出风口 132设有将空气向风路切换板内引导的漏风防止结构。
如图 2B所示的漏风防止结构为从风扇蜗牛壳 131的整个出风口 132的周围向风 路切换板 150内突出设置的凸片 200, 上述^路切换板 150的转片 155与该凸片 200 的外侧相重叠。
形成风路的风路壁 170从上述风扇蜗牛壳 131的出风口 132开始向换气扇的出风 口 I'l l和吹向室内的出风口 112延设, 上述凸片 200在风扇蜗牛壳 131的出风口 132 的下流侧与风路壁 170之间形成收纳上述风路切换板 150转片 155的一定的间隔 190。
凸片 200, 是从整个出风口 132的周围向风路内侧突出形成 "口"字形。 而且, 该 "口"字形以上述的风路切换板 150的转轴 151为界线分为上和下两部分, 其靠近 风扇蜗牛壳 131顶面 134的部分为凸片 200的上端 210, 其靠近风扇蜗牛壳 131底面 135的部分为凸片 200的下端 220。
浴室用取暖换气扇 100 通过控制风路切换板 150 的转动位置来实现取暖换气扇 100的取暖、 换气和干燥功能的选择。
再如图 2A所示, 为浴室用取暖换气扇 100在取暖模式下的剖视图, 通过步进电 机控制, 风路切换板 150转至风扇蜗牛壳 131的顶面 134侧, 风路切换板 150两侧的 侧板 154和主板 152的前端部 1521从出风口 132的下流侧卡入凸片 200的上端 210 与风路壁 170之间的间隔 190内。 也就是说, 凸片 200的上端 210和风路壁 170形成 收纳风路切换板 150两侧的侧壁 154和主板 152的前端部 1521的结构。 取暖换气扇 100运转时,风从取暖换气扇的吸风口 160被吸入,穿过扇叶 120后从风扇蜗牛壳 131 的出风口 132吹出, 吹向加热器 140。 通过上述结构, 可以防止风直接从风路切换板 150与风路壁 170之间的间隙流出。
也就是说, 在风扇蜗牛壳 131的下流侧突出设置凸片 200, 凸片 200的外侧与风 路切换板 150相重叠形成收纳结构, 从风扇蜗牛壳 131吹出的空气不会漏到风路切换 板 150的外侧, 而是被引导到风路切换板 150内, 最后可以流向作为两个风路之一的 吹向室内的室内出风口 112的风路。 如图 2C所示, 为浴室用取暖换气扇 100在换气模式下的剖视图, 通过步进电机 控制, 风路切换板 150转至风扇蜗牛壳 131的底面 135位置, 风路切换板 150两侧的 侧板 154和后端部 1522从出风口 132的下流侧卡入 "口"字形的凸片 200的下端 220 与风路壁 170之间的间隔 190内。 也就是说, 凸片 200的下端 220和风路壁 170形成 收纳风路切换板 150两侧的侧壁 154和主板 152的后端部 1522的结构。 取暖换气扇 100运转时,风从取暖换气扇的吸风口 160被吸入,穿过扇叶 120后从风扇蜗牛壳 131 的出风口 132吹出, 吹向出风口 111。 通过上述结构, 可以防止风直接从风路切换板 150与风路壁 170之间的间隙流出。
也就是说, 在风扇蜗牛壳 131的下流侧突出设置凸片 200, 其外侧与风路切换板 150的下端 220相重叠形成收纳结构, 从风扇蜗牛壳 131吹出的空气不会漏到风路切 换板 150的外侧, 而是被引导到风路切换板 150内, 最后可以流向作为两个风路之一 的换气扇的出风口 111的风路。
如上所述, 风路切换板 150在转动时, 与风路壁 170相接触的部分存在一定的间 隙, 通过上述在风扇蜗牛壳 131出风口 132与风路之间设有漏风防止结构, 即 "口" 字形凸片 200, 从风的上流侧遮盖风路切换板 150与风路壁 170之间的间隙, 可以防 止风吹向风路切换板 150与风路壁 170之间的间隙内, 从而防止噪音的产生和防止风 路切换板 150转动不良的产生, 并达到确保风量的作用。 从而提高产品性能和能量利 用效率。
如图 3A、 3B所示, 为本发明第二实施例示意图。 在风扇蜗牛壳 131 出风口 132 的下流侧延设风路壁 170, 从上述风扇蜗牛壳 131的出风口 132向下流侧突出设置的 凸片 300与风路壁 170的内侧形成一定的间隔 290。
凸片 300与风扇蜗牛壳 131出风口 132的风路切换板 150的转轴 151相比更靠上 方侧设置。 即形成倒 "U"字形。
而且, 在一定的转动位置, 风路切换板 150被凸片 300的外侧与风路壁 170之间 形成的间隔 290所收纳。
再如图 3A所示, 为浴室用取暖换气扇 100在取暖模式下的剖视图, 通过步进电 机控制, 风路切换板 150转至风扇蜗牛壳 131的顶面 134侧, 风路切换板 150两侧的 侧板 154和主板 152的前端部 1521从风的下流侧卡入倒 "U"字形的凸片 300与风路 壁 170之间的间隔 290内, 凸片 300与风路壁 170形成收纳风路切换板 150两侧的侧 板 154和主板 152的前端部 1521的结构。 取暖换气扇 100运转时, 风从取暖换气扇 100的吸风口 160被吸入, 穿过扇叶 120后从风扇蜗牛壳 131的出风口 132吹出, 吹 向加热器 140。 通过上述结构, 可以防止风直接从风路切换板 150与风路壁 170之间 的间隙流出。
也就是说, 向风扇蜗牛壳 131的下流侧突出设置凸片 300, 其外侧与风路切换板 150相重叠形成收纳结构, 从风扇蜗牛壳 131吹出的空气不会泄漏, 而是被引导到风 路切换板 150内, 最后可以流向作为两个风路之一的吹向室内的出风口 112的风路。 从而提高产品性能和能量利用效率。
如图 4A、 4B所示, 为本发明第三实施例示意图。 在风扇蜗牛壳 131 出风口 132 的下流侧延设风路壁 170, 从上述风扇蜗牛壳 131的出风口 132向下流侧突出设置的 凸片 400与风路壁 170的内侧形成一定的间隔 390。
凸片 400与风扇蜗牛壳 131出风口 132的风路切换板 150的转轴 151相比更靠下 方侧设置。 即形成 "U"字形。
而且, 在一定的转动位置, 风路切换板 150被凸片 400的外侧与风路壁 170之间 形成的间隔 390所收纳。
再如图 4A所示, 为浴室用取暖换气扇 100在换气模式下的剖视图, 通过步进电 机控制, 风路切换板 150转至风扇蜗牛壳 131的底面 135侧, 风路切换板 150两侧的 侧板 154和后端部 1522从风的下流侧卡入 U字形的凸片 400与风路壁 170之间的间 隔 390内, 凸片 400与风路壁 170形成收纳风路切换板 150两侧的侧板 154和后端部 1522的结构。 取暖换气扇 100运转时, 风从取暖换气扇 100的吸风口 160被吸入, 穿 过扇叶 120后从风扇蜗牛壳 131的出风口 132吹出, 吹向出风口 11 1。通过上述结构, 可以防止风直接从风路切换板 150与风路壁 170之间的间隙流出。
也就是说, 向风扇蜗牛壳 131的下流侧突出设置凸片 400, 其外侧与风路切换板 150相重叠形成收纳结构, 从风扇蜗牛壳 131吹出的空气不会泄漏, 而是被引导到风 路切换板 150内, 最后可以流向作为两个风路之一的换气扇的出风口 11 1的风路。 从 而提高产品性能和能量利用效率。
如图 5A、 5B、 5C、 . 5D所示, 为本发明第四实施例示意图。 如图 5A、 5B所示, 在 风路切换板 150的侧板 154与风路壁 170相对的左侧面 1541和右侧面 1542各设置一 对第一风路切换板凸部 161和第二风路切换板凸部 162。 也就是说, 第一风路切换板 凸部 161和第二风路切换板凸部 162像给风路切换板 150的侧板 154的端面镶边那样, 从转轴 151开始呈放射状设置。 而且, 在风路壁 170的左侧和右侧 176的中部位置各设有第一风路壁凸部 171。 也就是说,第一风路壁凸部 171设置在连接从风路切换板 150的转轴 151到出风口 111 下端的线上。 而且, 该第一风路壁凸部 171位于上述第一风路切换板凸部 161和第二 风路切换板凸部 162之间。
当取暖换气扇运转处于换气模式或取暖模式时, 设定风路切换板 150的位置, 通 过在风路切换板 150和风路壁 170的第一风路切换板凸部 161和第一风路壁凸部 171、 或第二风路切换板凸部 162和第一风路壁凸部 171上下相重叠卡合的凸结构, 把从出 风口 132到设置于换气扇框架 1 10的侧壁上的换气扇的出风口 111的风路和从出风口 132到设置于换气扇面罩的吹向室内的室内出风口 112的风路分隔开, 可以防止风直 接从风路切换板 150与风路壁 170之间的间隙流向风路切换板 150的外侧。
具体是指:
如图 5C所示, 为浴室用取暖换气扇 100在取暖模式下的剖视图, 通过步进电机 控制, 风路切换板 150转至风扇蜗牛壳 131的顶面 134侧, 此时, 风路切换板 150左 侧面 (图中未示) 和右侧面 1542设有的第二风路切换板凸部 162分别与风路壁 170 的左侧 (图中未示) 和右侧 176设有的第一风路壁凸部 171相卡合, 形成密合状态, 从而防止风直接从风路切换板 150与风路壁 170之间的间隙流向风路切换板 150的外 侧。
如图 5D所示, 为浴室用取暖换气扇 100在换气模式下的剖视图, 通过步进电机 控制, 风路切换板 150转至风扇蜗牛壳 131的底面 135侧, 此时, 风路切换板 150左 侧面 (图中未示) 和右侧面 1542设有的第一风路切换板凸部 161分别与风路壁 170 的左侧和右侧 176设有的第一风路壁凸部 171相卡合, 形成密合状态, 从而防止风直 接从风路切换板 150与风路壁 170之间的间隙流向风路切换板 150的外侧。
如图 6A、 6B、 6C、 6D所示, 为本发明第五实施例示意图。 如图 6A、 6B所示, 在 风路切换板 150的前端部 1521和后端部 1522的外侧分别设置与风路壁 170相对的第 三风路切换板凸部 164和第四风路切换板凸部 165, 在风路壁 170出风口 111侧的中 部下端设有第二风路壁凸部 186。 而且, 第二风路壁凸部 186位于第三风路切换板凸 部 164和第四风路切换板凸部筋 165之间。
当取暖换气扇运转处于换气模式或取暖模式时, 通过设置于风路切换板 150和风 路壁 170的第三风路切换板凸部 164和第二风路壁凸部 186、 或第四风路切换板凸部 165和第二风路壁凸部 186相重叠卡合, 可以防止风直接从风路切换板 150与风路壁 170之间的间隙流向风路切换板 150的外侧。
具体是指:
如图 6C所示, 为浴室用取暖换气扇 100在取暖模式下的剖视图, 通过步进电机 控制, 风路切换板 150转至风扇蜗牛壳 131的顶面 134侧, 此时, 风路切换板 150后 端部 1522的第四风路切换板凸部 165与风路壁 170的第二风路壁凸部 186相卡合, 形成密合状态, 从而防止风直接从风路切换板 150与风路壁 170之间的间隙流向风路 切换板 150的外侧。
如图 6D所示, 为浴室用取暖换气扇 100在换气模式下的剖视图, 通过步进电机 控制, 风路切换板 150转至风扇蜗牛壳 131的底面 135侧, 此时, 风路切换板 150的 前端部 1521的第三风路切换板凸部 164与风路壁 170的第二风路壁凸部 186相卡合, 形成密合状态, 从而防止风直接从风路切换板 150与风路壁 170之间的间隙流向风路 切换板 150的外侧。
再如图 6C所示, 本实施例还在风路壁 170的顶面 172侧设置向下突出的 " V"字 形的第三风路壁凸部 177, 并且风路切换板 150前端部 1521 的第三风路切换板凸部 164的最低点 1640高于所述的 "V"字形第三风路壁凸部 177的最低点 1770。 第三风 路壁凸部 177设有位于出风口 132侧的前侧 1772和位于出风口 132的下流侧的后侧 1771 , 且其下方有顶点。 而且, 其断面形状是由作为斜边的前侧 1772 和作为一边的 后侧 177而形成的直角三角形。
而且,当取暖换气扇 100运转为取暖模式时,通过步进电机控制,风路切换板 150 '转至风扇蜗牛壳 131的顶面 134侧, 此时, 风路切换板 150前端部 1521的第三风路 切换板凸部 164与第三风路壁凸部 177的后侧 1771相卡合, 同时风路切换板 150后 端部 1522的第四风路切换板凸部 165与风路壁 170的第二风路壁凸部 186相卡合, 形成密合状态, 而且, "V"字形的第三风路壁凸部 177的前侧 1772如前面所说明的 那样, 形成断面形状为三角形的斜边, 即前侧 1772还具有将出风口侧吹出的风引导 风至风路切换板 150 内的引导板的作用。 因此, 通过上述 "V"字形的第三风路壁凸 部 177, 不但可以防止风直接从风路切换板 150与风路壁 170之间的间隙流向风路切 换板 150的外侧, 还可以减小风阻, 提高性能。 从而提高产品性能和能量利用效率。
本发明的第六实施例为在上述第二实施例的在设有作为漏风防止结构的凸片 300 的上述第二实施例的实施状态的基础上, 还设有控制马达 130、 加热器 140和风路切 换板 150的控制部, 还设有检测风路切换板 150的位置, 并向上述控制部发送信号的 传感器。
取暖运转或换气运转中, 传感器检测风路切换板 150 的位置, 并向控制部发送 信号。 当风路切换板 150的位置偏离正常位置的情况发生时, 根据该位置信号, 控制 部控制步进电机,使风路切换板转动到正常位置。
由于可以检测到风路切换板 150的位置, 所以, 当在取暖运转或换气运转中, 因 外部因素而引起风路切换板 150偏离正常位置的情况发生时, 通过控制部可以对其位 置进行更正。
因此,通过本发明的漏风防止结构,不仅可以将空气确实地引导到风路切换板 150 内, 而且可以防止风路切换板 150因位置偏离而造成的漏风。
另外, 传感器由设置于上述风扇蜗牛壳 131的风路壁 170侧面的第一本体侧传感 元件和设置于上述风路切换板 150转片 155的侧板 154的外侧, 并与上述第一本体侧 传感元件相对应位置设置的第一风路切换板侧被传感元件所构成。
图 7A、 7B为第六实施例的第一种实施形态的示意图。 如图 7A所示, 设置于风扇 蜗牛壳 131的风路壁 170的侧面的第一本体侧传感元件 0011、 0012与随风路切换板 150而移动的上述第一风路切换板侧被传感元件 551的可移动界限点相对应设置。
如图 7A所示,风路切换板 150的侧板 154设有第一风路切换板侧被传感元件 551。 本实施形态的第一风路切换板侧被传感元件 551像给风路切换板 150的侧板 154上方 的端面镶边那样, 从转轴 151开始呈放射状设置。 (与图 5A的第一风路切换板凸部的 位置相同)
如图 7A所示, 风路壁 170的左侧或右侧面 176的侧面 (其中一侧或两侧) 从转 轴 151开始呈放射状将第一本体侧传感元件 0011、 0012设置于 2处。
设置于风路壁 170侧面的 2处的第一本体侧传感元件 001 1、 0012与随风路切换 板 150而移动的第一风路切换板侧被传感元件 551的可移动界限点相对应设置。
也就是说, 风路壁 170—侧的第一本体侧感应元件 0011与取暖模式时的风路切 换板侧第一风路切换板侧被传感元件 551位置相对应, gP, 风路切换板 150转动到风 扇蜗牛壳 131的顶面 134侧, 设置于风路切换板 150的侧板 154的上方端面的第一风 路切换板侧被传感元件 551也随之转动, 第一本体侧传感器 0011与到达上方的界限 点状态时的第一风路切换板侧被传感元件 551呈相对方向从转轴 151开始呈放射状设 置。
另外, 如图 7B所示, 风路壁 170另一侧的第一本体侧传感元件 0012与换气模式 时的风路切换板侧的第一风路切换板侧被传感元件 551相对应位置, gp, 风路切换板 150转动到风扇蜗牛壳 131的底面 135侧, 设置于风路切换板 150的侧板 154的上方 端面的第一风路切换板侧被传感元件 551也随之转动, 第一本体侧传感器 0012与到 达下方的界限点状态时的第一风路切换板侧被传感元件 551呈相对方向从转轴 151开 始呈放射状设置。
如上所述, 由于设置于风路壁 170侧面 2处的第一本体侧传感元件 0011、 0012 与风路切换板侧被传感元件 551的上方以及下方的可移动界限点相对应设置, 取暖运 转时, 随着风路切换板 150的侧板 154的转动, 第一风路切换板侧被传感元件 551直 至移动到上方的可移动界限点时, 通过与该上方的界限点相对应设置的一侧的第一本 体侧传感元件 0011检测取暖运转时风路切换板 150的正常位置。
而且, 换气运转时, 随着风路切换板 150的侧板 154的转动, 第一风路切换板侧 被传感元件 551直至移动到下方的可移动界限点时, 通过与该下方的界限点相对应设 置的另一侧的第一本体侧传感元件 0012检测换气运转时风路切换板 150的正常位置。
控制部根据该位置信号, 向步进电机发送信号, 控制风路切换板 150的转动。 另外, 第一风路切换板侧被传感元件 551像给侧板 154上方的端面镶边那样, 从 转轴 151开始呈放射状设置于被分离部分, 设置于风路壁 170侧面的 2处的第一本体 侧传感元件 001 1、 0012在风路壁 170的侧面从转轴开始呈放射状设置于分离部分的 话, 因为第一本体侧传感元件 0011与第一本体侧传感元件 0012相距较远, 对第一风 路切换板侧被传感元件 551进行检测时不会产生相互干涉, 所以, 通过第一本体侧传 感元件 001 1、 0012可以很稳定地检测到第一风路切换板侧被传感元件 551。
通过设置于风路壁 170的侧面 2处的第一本体侧传感元件 0011、 0012和设置于 风路切换板 150的侧板 154的第一风路切换板侧被传感元件 551, 通过轴线方向的非 接触的传感, 可以检测到风路切换板 150的位置。
由于可以准确检测到干燥运转和换气运转时的风路切换板 150的正常位置,所以, 当在取暖运转或换气运转中, 因外部因素而引起风路切换板 150偏离正常位置的情况 发生时, 通过控制部可以对其位置进行更正。
因此,通过本发明的漏风防止结构,不仅可以将空气确实地引导到风路切换板 150 内, 而且可以防止风路切换板 150因位置偏离而造成的漏风。
图 8为第六实施例的第二种实施形态的示意图。 如图 8所示, 所述的传感器也可 由设置于风扇窝牛壳 131的风路壁 170顶面的第二本体侧传感元件 0021和设置于上 述风路切换板 150的转片 155的前端部 1521的外侧, 并与上述第二本体侧传感元件 0021相对应位置设置第二风路切换板侧被传感元件 552所构成。
通过设置于风路壁 170的顶面内侧的第二本体侧传感元件 0021和设置于风路切 换板 150的前端部 1521的第二风路切换板侧被传感元件 552 ,通过从径向方向的非接 触传感, 可以检测取暖运转时风路切换板的正常位置。
也就是说, 取暖模式时的风路切换板 150的位置, SP, 风路切换板 150转动到风 扇蜗牛壳 131的顶面 134侧时, 第二本体侧传感感应元件 0021与设置于风路切换板 150的前端部 1521的第二风路切换板侧被传感元件 552为相对方向设置。
第二本体侧传感元件 0021和第二风路切换板侧被传感元件 552可以分别设置于 风路壁 170的顶面内侧和风路切换板 150的前端部 1521外侧的任意部分, 取暖模式 时为相对方向设置。
控制部根据第二本体侧传感元件 0021和第二风路切换板侧被传感元件 552的位 置信号, 向步进电机发送信号, 控制风路切换板的转动。
当在取暖运转中,因外部因素而引起风路切换板 150偏离正常位置的情况发生时, 通过控制部可以对其位置进行更正。
因此, 通过本发明实施例的漏风防止结构, 不仅可以将空气确实地引导到风路切 换板 150内, 而且可以有效地防止风路切换板 150因位置偏离而造成的漏风。
图 9为第六实施例的第三种实施形态的示意图。 如图 9所示,所述的传感器由设 置于风扇蜗牛壳 131的风路壁 170底面的第三本体侧传感元件 0031和设置于上述风 路切换板 150转片 155的外侧, 并与上述第三本体侧传感元件 0031相对应位置设置 的第三风路切换板侧被传感元件 553所构成。
通过设置于风路壁 170底面内侧的第三本体侧传感元件 0031和设置于风路切换 板 150后端部 1522的第三风路切换板侧被传感元件 553, 通过径向非接触传感, 检测 换气运转时风路切换板的正常位置。
也就是说, 换气模式时风路切换板 150的位置, 即风路切换板 150转动到风扇蜗 牛壳 131的底面 135侧时, 第三本体侧传感元件 0031与设置于风路切换板 150的后 端部 1522的第三风路切换板侧被传感元件 553为相对方向设置。
第三本体侧传感元件 0031和第三风路切换板侧被传感元件 553可以分别设置于 风路壁 170的底面内侧和风路切换板 150的后端部 1522外侧的任意部分, 换气模式 时为相对方向设置。 控制部根据第三本体侧传感元件 0031和第三风路切换板侧被传感元件 553的位 置信号, 向步进电机发送信号, 控制风路切换板的转动。
可以准确地检测到换气运转时风路切换板 150的正常位置。
当在换气运转中,因外部因素而引起风路切换板 150偏离正常位置的情况发生时, 通过控制部可以对其位置进行更正。
因此, 通过本发明实施例的漏风防止结构, 不仅可以将空气确实地引导到风路切 换板 150内, 而且可以有效地防止风路切换板 150因位置偏离而造成的漏风。
另外, 第一、 第二、 第三本体侧传感元件为磁性传感器,第一、 第二、 第三风路 切换板侧被传感元件为磁铁。
第一本体侧传感元件、 第二本体侧传感元件、 第三本体侧传感元件为磁性传感器 中的空穴元件。 而且, 第一、 第二、 第三风路切换板侧被传感元件为磁铁。
通过风路切换板 150的转动, 当第一、 第二、 第三风路切换板侧被传感元件进入 第一、 第二、 第三本体侧传感元件的检测范围内的话, 磁铁传感器可以检测到磁铁所 产生的磁场。
第一.、 第二、 第三本体侧传感元件为使用空穴元件的磁性传感器, 第一〜第三风 路切换板侧被传感元件如果为磁铁的话, 与机械式的开关相比, 为非接触, 而且, 可 以实现传感器的小型化。
而且, 上述磁性传感器 (第一、 第二、 第三本体侧的传感元件) 可为电磁铁。 gp,第一、 第二、 第三本体侧的传感元件为电磁铁。
通过风路切换板 150的转动, 第一、 第二、 第三风路切换板侧被传感元件进入第 一、 第二、 第三本体侧传感元件的检测范围内的话, 磁铁的磁场会发生变化, 电磁铁 的线圈会产生电压。
换气运转时或取暖运转时, 控制部控制步进电机使风路切换板转动时, 首先, 通 过第一、 第二、 第三本体侧传感元件检测到磁铁 (第一、 第二、 第三风路切换板侧被 传感元件) 进入电磁铁的检测范围内, 然后, 电磁铁的本体侧的磁性传感器 (第一、 第二、第三本体侧传感元件)接通电源,换气运转时或取暖运转时,将风路切换板 150 转带至正常位置的附近, 本体侧的磁性传感器 (第一本体侧传感元件、 第二本体侧传 感元件)将吸引风路切换板 150侧的磁铁 (第一风路切换板侧被传感元件、 第二风路 切换板侧被传感元件)。
可以确保风路切换板 150在取暖运转以及换气运转时保持正常位置。 当风路切换 板 150偏离正常位置时, 可以将其调整到正常位置并锁闭。
另外, 上述第六实施例的漏风防止结构为具有第二实施例的凸片 300的结构, 第 一实施例、 第二实施例、 第五实施例的任一实施例的具有漏风防止结构的实施形态, 通过第六实施例说明的控制部和传感器, 通过本发明实施例的漏风防止结构, 不仅可 以将空气确实地引导到风路切换板 150内, 而且可以有效地防止取暖运转中风路切换 板 150因其自重而引起向换气位置侧发生位置偏离而造成的漏风, 而且, 还可以有效 地防止换气运转中因风压而引起风路切换板 150发生位置偏离而造成的漏风。

Claims

1、一种浴室用取暖换气扇,包括: 换气扇框架、设有扇叶和马达的风扇蜗牛壳、 设置于风扇蜗牛壳出风口的下流且至少可以切换两个方向的风路的风路切换板以及 加热器等, 其特征在于: 在上述风扇蜗牛壳出风口设有将空气向风路切换板内引导的 漏风防止结构。
2、 根据权利要求 1 所述的浴室用取暖换气扇, 其特征在于: 所述的漏风防止结 构是从上述风扇蜗牛壳的出风口向上述风路切换板内突出设置的凸片, 上述风路切换 板具有与凸片的外侧相重叠的转片。
3、 根据权利要求 2所述的浴室用取暖换气扇, 其特征在于: 形成风路的风路壁 从上述风扇蜗牛壳的出^^口开始延设, 所述的凸片在上述风扇蜗牛壳的出风口的下流 侧与上述风路的风路壁之间形成收纳上述风路切换板转片的间隔。
4、 根据权利要求 3所述的浴室用取暖换气扇, 其特征在于: 所述的凸片设置于 上述风扇蜗牛壳的整个出风口的周围。
5、 根据权利要求 3所述的浴室用取暖换气扇, 其特征在于: 所述的凸片比风路 切换板具有的横穿上述风扇蜗牛壳出风口的转轴更靠上方的位置突出设置。
6、 根据权利要求 3所述的浴室用取暖换气扇, 其特征在于: 所述的凸片比风路 切换板具有的横穿风扇蜗牛壳出风口的转轴更靠下方的位置突出设置。
7、 根据权利要求 1 所述的浴室用取暖换气扇, 其特征在于: 所述的漏风防止结 构是指在上述风路切换板和形成风路的风路壁上设有能够相互卡合的凸结构。
8、 根据权利要求 7所述的浴室用取暖换气扇, 其特征在于: 所述的凸结构为分 别在上述风路切换板和上述风路壁的左右两侧上分别设置凸部, 并且上述风路切换板 上的凸部和上述风路壁上的凸部能够互相卡合。
9、 根据权利要求 7所述的浴室用取暖换气扇, 其特征在于: 所述的风路切换板 的凸部为在与上述风路壁相邻接的风路切换板的侧板上分别设置第一风路切换板凸 部和第二风路切换板凸部, 所述的风路壁的凸部为在上述风路壁的中部位置设置第一 风路壁凸部。
10、 根据权利要求 7所述的浴室用取暖换气扇, 其特征在于: 所述的风路切换板 的凸部为在与上述风路壁相邻接的风路切换板的前端部和后端部上分别设置第三风 路切换板凸部和第四风路切换板凸部, 所述的风路壁的凸部为在上述风路壁出风口侧 的中部位置上设置第二风路壁凸部。
11、 根据权利要求 10所述的浴室用取暖换气扇, 其特征在于: 还在所述的风路 壁的顶面侧设置第三风路壁凸部, 上述第三风路切换板凸部的最低点高于上述第三风 路壁凸部的最低点。 :
12、根据权利要求 1所述的浴室用取暖换气扇,其特征在于: 设有控制上述马达、 上述加热器和上述风路切换板的控制部,还设有检测上述风路切换板的位置,并向上 述控制部发送信号的传感器。
13、 根据权利要求 12所述的浴室用取暖换气扇, 其特征在于: 所述的传感器由 设置于上述风扇蜗牛壳的风路壁侧面的第一本体侧传感元件和设置于上述风路切换 板转片的外侧, 并与上述第一本体侧传感元件相对应位置设置的第一风路切换板侧被 传感元件所构成。
14、 根据权利要求 13所述的浴室用取暖换气扇, 其特征在于: 所述的第一本体 侧传感元件与随上述风路切换板而移动的上述第一风路切换板侧被传感元件的可移 动界限点相对应设置。
15、 根据权利要求 12所述的浴室用取暖换气扇, 其特征在于: 所述的传感器由 设置于上述风扇蜗牛壳的风路壁顶面的第二本体侧传感元件和设置于上述风路切换 板转片的外侧, 并与上述第二本体侧传感元件相对应位置设置的第二风路切换板侧被 传感元件所构成。
16、 根据权利要求 12 所述的浴室用取暖换气扇, 其特征在于: 所述的传感器由 设置于上述风扇蜗牛壳的风路壁底面的第三本体侧传感元件和设置于上述风路切换 板转片的外侧, 并与上述第三本体侧传感元件相对应位置设置的第三风路切换板侧被 传感元件所构成。
17、 根据权利要求 12至 16的任意一项所述的浴室用取暖换气扇, 其特征在于: 所述的第一、 第二、 第三本体侧的传感元件为磁性传感器, 所述的第一、 第二、 第三 风路切换板侧的被传感元件为磁铁。
18、 根据权利要求 17所述的浴室用取暖换气扇, 其特征在于: 所述的磁性传感 器为电磁铁。
PCT/CN2011/000207 2010-03-15 2011-02-10 浴室用取暖换气扇 WO2011113296A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012540280A JP5551264B2 (ja) 2010-03-15 2011-02-10 浴室用暖房換気扇
US13/574,737 US9347464B2 (en) 2010-03-15 2011-02-10 Heating and ventilation fan for bathroom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101271888A CN102192593B (zh) 2010-03-15 2010-03-15 浴室用取暖换气扇
CN201010127188.8 2010-03-15

Publications (1)

Publication Number Publication Date
WO2011113296A1 true WO2011113296A1 (zh) 2011-09-22

Family

ID=44601185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000207 WO2011113296A1 (zh) 2010-03-15 2011-02-10 浴室用取暖换气扇

Country Status (5)

Country Link
US (1) US9347464B2 (zh)
JP (1) JP5551264B2 (zh)
CN (2) CN103423204B (zh)
HK (2) HK1158734A1 (zh)
WO (1) WO2011113296A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103423204B (zh) * 2010-03-15 2015-12-02 广东松下环境系统有限公司 浴室用取暖换气扇
CN104654462A (zh) * 2015-02-10 2015-05-27 徐立群 集成吊顶超薄智能新型多功能电器
JP6301279B2 (ja) * 2015-04-06 2018-03-28 リンナイ株式会社 風路切換装置
JP6460956B2 (ja) * 2015-10-21 2019-01-30 リンナイ株式会社 浴室暖房乾燥機
JP6650558B2 (ja) * 2015-11-18 2020-02-19 パナソニックIpマネジメント株式会社 浴室換気乾燥機
CN105546623B (zh) * 2016-02-01 2018-09-14 广东爱美信电器有限公司 一种可联动调节热风比例的浴霸
CN114962304A (zh) * 2016-03-25 2022-08-30 台达电子工业股份有限公司 换气扇
TWI605197B (zh) * 2016-07-21 2017-11-11 建準電機工業股份有限公司 換氣扇
WO2019012634A1 (ja) * 2017-07-12 2019-01-17 三菱電機株式会社 浴室乾燥機
CN108980965A (zh) * 2018-09-20 2018-12-11 奥普家居股份有限公司 多通道取暖的浴室取暖器
CN110553305A (zh) * 2019-09-03 2019-12-10 王易 一种空调型顶装取暖器
US11913460B2 (en) 2020-03-20 2024-02-27 Greenheck Fan Corporation Exhaust fan
CN113280509B (zh) * 2021-05-06 2023-02-10 宁波公牛生活电器有限公司 取暖器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250787A (ja) * 1996-03-19 1997-09-22 Fuji Kogyo Kk 浴室換気乾燥機
US5839879A (en) * 1995-12-05 1998-11-24 Denso Corporation Centrifugal blower
CN101576095A (zh) * 2008-05-05 2009-11-11 广东松下环境系统有限公司 带加热器的换气扇

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2915096B2 (ja) 1990-06-19 1999-07-05 科学技術振興事業団 多重変調磁場による電子スピン共鳴画像装置
JPH07171299A (ja) * 1993-12-21 1995-07-11 Matsushita Seiko Co Ltd 浴室換気乾燥機
JP3271907B2 (ja) * 1996-08-30 2002-04-08 大阪瓦斯株式会社 換気装置
JPH11108414A (ja) * 1997-10-09 1999-04-23 Toshiba Corp 天井用換気扇
AUPP408298A0 (en) * 1998-06-15 1998-07-02 Backwell-Ixl Pty. Ltd. Ventilation fitting
US6526598B1 (en) * 2001-05-30 2003-03-04 Robert V. Black Self-contained venting toilet
CN2494437Y (zh) * 2001-07-31 2002-06-05 英志企业股份有限公司 改良的浴室通风扇
JP4341681B2 (ja) * 2002-02-01 2009-10-07 マックス株式会社 換気装置
JP2003279116A (ja) * 2002-03-26 2003-10-02 Toto Ltd 空調機
JP4034121B2 (ja) * 2002-05-31 2008-01-16 松下エコシステムズ株式会社 浴室乾燥機
JP2004162950A (ja) * 2002-11-11 2004-06-10 Max Co Ltd 多室用換気装置
JP4258255B2 (ja) * 2003-04-01 2009-04-30 マックス株式会社 浴室換気乾燥装置
CN2748674Y (zh) * 2004-11-08 2005-12-28 广东松下环境系统有限公司 换气扇
JP2007064567A (ja) * 2005-08-31 2007-03-15 Toto Ltd 暖房装置
US7473074B2 (en) * 2006-02-13 2009-01-06 Intelligent Home Products, Inc. Exhaust fan
JP4292587B1 (ja) * 2008-08-26 2009-07-08 Toto株式会社 浴室乾燥機
CN103423204B (zh) * 2010-03-15 2015-12-02 广东松下环境系统有限公司 浴室用取暖换气扇

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839879A (en) * 1995-12-05 1998-11-24 Denso Corporation Centrifugal blower
JPH09250787A (ja) * 1996-03-19 1997-09-22 Fuji Kogyo Kk 浴室換気乾燥機
CN101576095A (zh) * 2008-05-05 2009-11-11 广东松下环境系统有限公司 带加热器的换气扇

Also Published As

Publication number Publication date
HK1192602A1 (zh) 2014-08-22
HK1158734A1 (en) 2012-07-20
CN102192593A (zh) 2011-09-21
US20130004299A1 (en) 2013-01-03
US9347464B2 (en) 2016-05-24
JP2013512371A (ja) 2013-04-11
CN102192593B (zh) 2013-10-09
JP5551264B2 (ja) 2014-07-16
CN103423204B (zh) 2015-12-02
CN103423204A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2011113296A1 (zh) 浴室用取暖换气扇
WO2020233312A1 (zh) 空调器及用于空调器制冷的导风板控制方法
TWI463102B (zh) Heating Ventilator
JP4123276B2 (ja) 空気調和機の室内機
CN206330253U (zh) 一种改进风道切换结构的暖风机
WO2013000365A1 (zh) 取暖换气扇
KR102206327B1 (ko) 제습기
WO2011127741A1 (zh) 浴室用取暖换气扇
CN113357801A (zh) 进风结构、新风装置及空调
CN104279736B (zh) 壁挂式空调器
CN113280404B (zh) 立式空调
TWM564687U (zh) Ventilation fan connector assembly
JP2007285164A (ja) シロッコファン及び空気調和機
CN208296249U (zh) 空调器室内机的壳体组件、空调器室内机及空调器
CN112412880A (zh) 风机及空调器
JP2016196995A (ja) 風路切換装置
KR20090083739A (ko) 천장형 공기조화기
CN112013529A (zh) 空调器及其导风组件
KR20170079281A (ko) 기류전환장치
CN205117809U (zh) 蜗壳及具有其的涡流风机、空调器
KR101322717B1 (ko) 이알브이에 채택되는 에어 플랜지
JP2006300347A (ja) 空気調和機
JP5504624B2 (ja) 遠心送風機
CN215949942U (zh) 风机和家用电器
JP2012177378A (ja) 送風装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012540280

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13574737

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755613

Country of ref document: EP

Kind code of ref document: A1