WO2011111127A1 - 逐次比較型ad変換器、移動体無線装置 - Google Patents

逐次比較型ad変換器、移動体無線装置 Download PDF

Info

Publication number
WO2011111127A1
WO2011111127A1 PCT/JP2010/005606 JP2010005606W WO2011111127A1 WO 2011111127 A1 WO2011111127 A1 WO 2011111127A1 JP 2010005606 W JP2010005606 W JP 2010005606W WO 2011111127 A1 WO2011111127 A1 WO 2011111127A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitors
voltage
converter
capacitor
sampling
Prior art date
Application number
PCT/JP2010/005606
Other languages
English (en)
French (fr)
Inventor
松本秋憲
崎山史朗
徳永祐介
桑原一郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2010800652274A priority Critical patent/CN102792594A/zh
Publication of WO2011111127A1 publication Critical patent/WO2011111127A1/ja
Priority to US13/597,936 priority patent/US20120319880A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/0678Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
    • H03M1/068Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
    • H03M1/0682Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS using a differential network structure, i.e. symmetrical with respect to ground
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors

Definitions

  • the present invention relates to an AD converter that converts an analog signal into a digital code, and more particularly to a successive approximation AD converter.
  • FIG. 14 shows the configuration of the successive approximation AD converter described in Non-Patent Document 1.
  • This successive approximation AD converter converts an analog signal Vin into a 6-bit digital code (six bit values D95 to D90), and includes six capacitors 95 to 90 and six inverters.
  • a supply switching unit 901, a comparator 902, and a control unit 903 are provided.
  • One ends of the capacitors 95 to 90 are connected to the sampling node Ns9.
  • the capacitance value of the capacitor 90 is C 0
  • the capacitance values of the capacitors 91, 92, 93, 94, and 95 are 2C 0 , 4C 0 , 8C 0 , 16C 0 , and 32C 0 , respectively.
  • the supply switching unit 901 supplies one of the reference voltage Vref and the ground voltage Vss to the other ends of the capacitors 95 to 90 as control voltages V95 to V90 in response to control by the control unit 903.
  • the comparator 902 compares the analog voltage V901 with the comparison voltage Vx.
  • the control unit 903 controls the sampling switch SW9 and the supply switching unit 901 and determines the bit values D95 to D90 in synchronization with the sampling clock fs and the internal clock fck.
  • control unit 903 sets the control voltage V95 to the reference voltage Vref, sets the control voltages V94 to V90 to the ground voltage Vss, and changes the sampling switch SW9 from the off state to the on state. Switch.
  • control unit 903 switches the sampling switch SW9 from the on state to the off state in synchronization with the falling edge of the sampling clock fs.
  • control unit 903 selects the bit value D95 (MSB: most significant bit value) among the bit values D95 to D90 as the bit value to be processed (hereinafter referred to as the bit value Di).
  • i 95 to 90.
  • control unit 903 determines whether the analog voltage V901 is lower than the comparison voltage Vx based on the comparison result by the comparator 902. If the analog voltage V901 is lower than the comparison voltage Vx, the process proceeds to step ST905; otherwise, the process proceeds to step ST906.
  • control unit 903 determines the bit value Di to be “0” in synchronization with the rising edge of the internal clock fck. In addition, the control unit 903 synchronizes with the falling edge of the internal clock fck, and the control voltage corresponding to the bit value next to the bit value Di among the control voltages V95 to V90 (hereinafter referred to as control voltage Vi-1). Is switched from the ground voltage Vss to the reference voltage Vref. For example, when the bit value Di is the bit value D95, the control unit 903 switches the control voltage V94 corresponding to the bit value D94 from the ground voltage Vss to the reference voltage Vref. Next, the control unit 903 selects a bit value next to the bit value Di among the bit values D95 to D90 as a bit value to be processed. Next, the process proceeds to step ST907.
  • control unit 903 determines the bit value Di to be “1” in synchronization with the rising edge of the internal clock fck. In addition, the control unit 903 synchronizes with the falling edge of the internal clock fck, and outputs a control voltage (hereinafter referred to as control voltage Vi) corresponding to the bit value Di among the control voltages V95 to V90 from the reference voltage Vref to the ground voltage. While switching to Vss, the control voltage Vi-1 is switched from the ground voltage Vss to the reference voltage Vref. Then, the control unit 903 selects the bit value next to the bit value Di from the bit values D95 to D90 as the bit value to be processed. Next, the process proceeds to step ST907.
  • control unit 903 determines whether or not the bit value Di is the bit value D90 (LSB: least significant bit value). When the bit value Di is not the bit value D90, the process proceeds to step ST904, and when the bit value Di is the bit value D90, the process proceeds to step ST908.
  • control unit 903 determines whether or not the analog voltage V901 is lower than the comparison voltage Vx based on the comparison result by the comparator 902. If the analog voltage V901 is lower than the comparison voltage Vx, the process proceeds to step ST909; otherwise, the process proceeds to step ST910.
  • control unit 903 determines bit value D90 to be “0” in synchronization with the rising edge of internal clock fck (ST909).
  • control section 903 determines bit value D90 to be “1” in synchronization with the rising edge of internal clock fck (ST910).
  • the capacity 900 corresponds to the combined capacity of the capacity 93 to 90.
  • the capacitance value of the capacitor 95 is “2C”
  • the capacitance value of the capacitor 94 can be expressed as “C”
  • the capacitance value of the capacitor 900 can be approximately expressed as “C”.
  • step ST903 as shown in FIG. 16A, the reference voltage Vref is applied to the other end of the capacitor 95, and the ground voltage Vss is applied to the other ends of the capacitors 94 and 900.
  • the control voltage V95 applied to the other end of the capacitor 95 is switched from the reference voltage Vref to the ground voltage Vss and applied to the other end of the capacitor 94.
  • the control voltage V94 is switched from the ground voltage Vss to the reference voltage Vref. In this case, as shown in FIG.
  • the charges Q1, Q2, and Q3 move in the capacitors 94, 900, and 95, respectively, and the charges are redistributed in the capacitors 94, 95, and 900, respectively.
  • the charge Q1 that moves in the capacitor 94 to which the reference voltage Vref is applied after the control voltage is switched corresponds to the charge consumed by the charge redistribution.
  • the analog voltage V901 before switching the control voltage is “V (k)”
  • V (k + 1) the charge Q1 is expressed by the following equation: Become.
  • the first term on the right side of the above equation means that the charge of “C ⁇ Vref” has moved from the power supply to the ground by switching the control voltage, and the second term on the right side corresponds to the amount of change in the analog voltage V901. This means that the charge has moved. That is, the charge of “C ⁇ Vref” is consumed every time step ST906 is executed.
  • an object of the present invention is to provide a successive approximation AD converter capable of reducing power consumption.
  • the successive approximation type AD converter converts the first and second analog signals whose voltage values change complementarily to a digital code composed of n + 1 (n ⁇ 2) bit values.
  • a converter n second up capacitances and n second downs each having one end connected to a second sampling node and having a binary weighted capacitance value, respectively And a second supply switching unit that supplies one of the ground voltage and the power supply voltage to the other ends of the n second up capacitors and the n second down capacitors.
  • a capacitive DA converter ; first and second sampling switches for sampling the first and second analog signals to the first and second sampling nodes, respectively, during a sampling period; and a first sampling node at the first sampling node.
  • a comparator for comparing one analog voltage with the second analog voltage at the second sampling node, and the other end of the n first up capacitors and the n second up capacitors in the sampling period.
  • the power supply voltage is applied to the other ends of the n first down capacitors and the n second down capacitors.
  • the first and second supply switching units are controlled so that the n + 1 bit values are determined in order from the most significant bit value, so that the least significant bit of the n + 1 bit values is determined.
  • the n + 1 bits according to the comparison result by the comparator
  • the bit value corresponding to the bit determination period is determined among the values, and the comparison result by the comparator is used in each of the n bit determination periods so that the first and second analog voltages are asymptotic to each other.
  • a control unit that controls the first and second supply switching units.
  • the capacitor array is divided into an up capacitor array (n up capacitors) and a down capacitor array (n down capacitors).
  • the power consumption in the first and second capacitor DA converters can be reduced by individually controlling the up capacitor array and the down capacitor array. As a result, the power consumption of the successive approximation AD converter can be reduced.
  • the control unit is configured so that the n number of bits are determined when the first analog voltage is lower than the second analog voltage in each of the n number of bit determination periods.
  • the first up capacitance and the n second down capacitances are supplied with the power supply voltage and the ground voltage to the first up capacitance and the second down capacitance corresponding to the bit determination period, respectively.
  • the n first down capacitances and the n second up capacitances are controlled.
  • the first and second supply switching units are controlled so that the ground voltage and the power supply voltage are supplied to the first down capacitor and the second up capacitor corresponding to the bit determination period, respectively. It may be.
  • the first capacitor DA converter further includes a first input capacitor connected between the first sampling node and a ground node to which the ground voltage is applied, and the second capacitor DA.
  • the converter may further include a second input capacitor connected between the second sampling node and the ground node.
  • Each of the first and second capacitor DA converters further includes a first and a second coupling capacitor, and one end of the first coupling capacitor has the n first up capacitors and the n capacitors.
  • the first down capacitors the p first up capacitors corresponding to the upper p bits of the digital code, one end of the p first down capacitors, and the first sampling node, respectively.
  • each of the q first up capacitors and the q first down capacitors is connected to one end of the q first up capacitors and the q first down capacitors via the first coupling capacitor.
  • the first sun One end of the second coupling capacitor is connected to a ring node, and one end of the second coupling capacitor corresponds to the upper p bits of the digital code among the n second up capacitors and the n second down capacitors.
  • One end of the up capacitor and the q second down capacitors may be connected to the second sampling node via the second coupling capacitor.
  • the successive approximation AD converter includes a plurality of first correction capacitors each having one end connected to the other end of the first coupling capacitor, the other ends of the plurality of first correction capacitors, and the above-described one.
  • a first capacitance correction unit that switches a connection state with a ground node to which a ground voltage is applied; a plurality of second correction capacitors each having one end connected to the other end of the second coupling capacitor; A second capacitance correction unit that switches a connection state between the other end of the second correction capacitance and the ground node.
  • the successive approximation AD converter includes a plurality of first offset adjustment capacitors each having one end connected to the other end of the first coupling capacitor, and the other ends of the plurality of first offset adjustment capacitors.
  • a first offset adjustment unit that supplies one of the ground voltage and the power supply voltage to each other; a plurality of second offset adjustment capacitors each having one end connected to the other end of the second coupling capacitor;
  • a second offset adjustment unit that supplies either the ground voltage or the power supply voltage to the other end of the plurality of second offset adjustment capacitors may be further included.
  • the successive approximation type AD converter is a successive approximation type AD converter that converts an analog signal into a digital code including n + 1 (n ⁇ 2) bit values.
  • N up capacitors and n down capacitors each having one end connected to the sampling node and having binary weighted capacitance values, and grounded to the other ends of the n up capacitors and the n down capacitors
  • a capacitor DA converter including a supply switching unit that supplies one of a voltage and a power supply voltage; a sampling switch that samples the analog signal to the sampling node during a sampling period; a comparison voltage; and an analog voltage at the sampling node; And the n number of up-converters in the sampling period.
  • the supply switching unit is controlled so that the ground voltage is supplied to the other end of the capacitor and the power supply voltage is supplied to the other end of the n down capacitors, and the n + 1 bit values are the most significant bits.
  • a bit value corresponding to the bit determination period is determined among the n + 1 bit values in accordance with the comparison result by the comparator, and the analog voltage is asymptotic to the comparison voltage.
  • a control unit that controls the supply switching unit according to the comparison result by the comparator in each of the n bit determination periods.
  • the capacitor array is divided into an up capacitor array (n up capacitors) and a down capacitor array (n down capacitors), and the up capacitor array and the down capacitor array are divided.
  • the power consumption of the successive approximation AD converter can be reduced.
  • FIG. 3 is a diagram illustrating a configuration example of a successive approximation AD converter according to the first embodiment.
  • movement of the successive approximation type AD converter shown in FIG. The figure which shows the specific example of operation
  • FIG. 1 The figure which shows the structural example of the modification 1 of the successive approximation type AD converter shown in FIG.
  • FIG. 6 is a diagram illustrating a configuration example of a successive approximation AD converter according to a second embodiment.
  • movement of the successive approximation type AD converter shown in FIG. The figure which shows the structural example of the modification 1 of the successive approximation type AD converter shown in FIG.
  • FIG. 1 shows a configuration example of a successive approximation AD converter 1 according to the first embodiment.
  • the successive approximation AD converter 1 includes capacitive DA converters 101p and 101n, sampling switches SWp and SWn, a comparator 102, and a control unit 103.
  • One end of the up capacitors 15up to 11up is connected to the sampling node Nsp.
  • the capacity values of the up capacities 15up to 11up are weighted binary. For example, when the capacitance value of the up-capacitor 11up and C 0, up capacity 12up, 13up, 14up, the capacitance value of 15up, respectively, the 2C 0, 4C 0, 8C 0 , 16C 0.
  • the up capacities 15up to 11up respectively correspond to the bit values D5 to D1 excluding the bit value D0 (LSB: least significant bit value).
  • the down capacitors 15dp to 11dp have the same configuration as the up capacitors 15up to 11up.
  • the supply switching unit 100p receives either the ground voltage Vss (for example, 0 V) or the power supply voltage Vdd (for example, 1 V) at the other end of the up capacitors 15up to 11up and the down capacitors 15dp to 11dp. Supply either one.
  • inverters 16u-16u and inverters 16d-16d use either one of ground voltage Vss or power supply voltage Vss as control voltages Vup5-Vup1 and control voltages Vdp5-Vdp1, and increase capacity 15up Are supplied to the other end of ⁇ 11up and the other end of down capacitance 15dp ⁇ 11dp, respectively.
  • the inverters 16u to 16u and the inverters 16d to 16d are responsive to control by the control unit 103 to either the ground voltage Vss or the power supply voltage Vdd, the control voltages Vun5 to Vun1, and the control voltage Vdn5. Are supplied to the other ends of the up capacitors 15un to 11un and the other ends of the down capacitors 15dn to 11dn, respectively.
  • Sampling switches SWp and SWn are provided for sampling analog signals Vinp and Vinn to sampling nodes Nsp and Nsn, respectively. Each of the sampling switches SWp and SWn switches between an on state and an off state in response to control by the control unit 103.
  • the comparator 102 compares the analog voltage Vp at the sampling node Nsp with the analog voltage Vn at the sampling node Nsn. For example, the output of the comparator 102 is at a low level when the analog voltage Vp is lower than the analog voltage Vn, and is at a high level when the analog voltage Vp is not lower than the analog voltage Vn.
  • the control unit 103 controls the sampling switches SWp and SWn and the supply switching units 100p and 100n and determines the bit values D5 to D0 in synchronization with the sampling clock fs and the internal clock fck. For example, as shown in FIG. 3, six pulses of the internal clock fck are generated within one cycle of the sampling clock fs (specifically, the low level period of the sampling clock fs).
  • the sampling period Ps is defined by a high level period (a period from the rising edge to the falling edge) of the sampling clock fs.
  • the least significant bit determination period P0 is defined by the fifth falling edge of the internal clock fck and the rising edge of the sampling clock fs.
  • the bit determination periods P5 to P1 and the least significant bit determination period P0 correspond to the bit values D5 to D1 and the bit value D0 (the least significant bit value), respectively.
  • the control unit 103 supplies the ground voltage Vss to the other ends of the up capacitors 15up to 11up and the up capacitors 15un to 11un, and supplies the power supply voltage to the other ends of the down capacitors 15dp to 11dp and the down capacitors 15dn to 11dn.
  • the supply switching units 100p and 100n are controlled so that Vdd is supplied.
  • control unit 103 determines that the bit values D5 to D0 are sequentially determined from the bit value D5 (MSB: most significant bit value) in each of the bit determination periods P5 to P1 and the least significant bit determination period P0. A bit value corresponding to the bit determination period is determined from the bit values D5 to D0 according to the comparison result by the comparator 102.
  • control unit 103 controls the supply switching units 100p and 100n according to the comparison result by the comparator 102 in each of the bit determination periods P5 to P1 so that the analog voltages Vp and Vn are asymptotic to each other. More specifically, in each of the bit determination periods P5 to P1, when the analog voltage Vp is lower than the analog voltage Vn, the control unit 103 sets the bit determination period of the up capacitors 15up to 11up and the down capacitors 15dn to 11dn.
  • ⁇ ST101 First, when the sampling period Ps is started, the control unit 103 sets the control voltages Vup5 to Vup1 and the control voltages Vun5 to Vun1 to the ground voltage Vss, and sets the control voltages Vdp5 to Vdp1 and the control voltages Vdn5 to Vdn1 to the power supply voltage Vdd.
  • the sampling switches SWp and SWn are switched from the off state to the on state.
  • control unit 103 determines whether or not the bit value Di is the bit value D0 (least significant bit value). If the bit value Di is not the bit value D0, the process proceeds to step ST104. If the bit value Di is the bit value D0, the process proceeds to step ST107.
  • bit determination period Pi the control unit 103 determines whether the analog voltage Vp is lower than the analog voltage Vn based on the comparison result by the comparator 102. Determine whether or not. If the analog voltage Vp is lower than the analog voltage Vn, the process proceeds to step ST105. Otherwise, the process proceeds to step ST106.
  • control unit 103 determines the bit value Di to be “0”. In addition, the control unit 103 switches the control voltage corresponding to the bit determination period Pi (hereinafter referred to as the control voltage Vupi) from the ground voltage Vss to the power supply voltage Vdd among the control voltages Vup5 to Vup1, and the control voltages Vdn5 to Vdn1. Of these, the control voltage (hereinafter referred to as control voltage Vdni) corresponding to the bit determination period Pi is switched from the power supply voltage Vdd to the ground voltage Vss. Next, the control unit 103 selects the bit value next to the bit value Di among the bit values D5 to D0 as the next processing target. Next, the process proceeds to step ST103.
  • control unit 103 determines the bit value Di to be “1”. In addition, the control unit 103 switches the control voltage (hereinafter referred to as control voltage Vdpi) corresponding to the bit determination period Pi from the control voltages Vdp5 to Vdp1 from the power supply voltage Vdd to the ground voltage Vss, and the control voltages Vun5 to Vun1. Among them, the control voltage (hereinafter referred to as control voltage Vuni) corresponding to the bit determination period Pi is switched from the ground voltage Vss to the power supply voltage Vdd. Next, the control unit 103 selects the bit value next to the bit value Di among the bit values D5 to D0 as the next processing target. Next, the process proceeds to step ST103.
  • step ST107 When it is determined in step ST103 that the bit value Di is the bit value D0 (least significant bit value), the control unit 103 performs comparison by the comparator 102 in the least significant bit determination period P0 corresponding to the bit value D0. Based on the result, it is determined whether or not the analog voltage Vp is lower than the analog voltage Vn. If the analog voltage Vp is lower than the analog voltage Vn, the process proceeds to step ST108; otherwise, the process proceeds to step ST109.
  • control unit 103 determines bit value D0 to be “0” (ST108). On the other hand, when analog voltage Vp is not lower than analog voltage Vn, control unit 103 determines bit value D0 to be “1” (ST109).
  • a bit determination period P5 corresponding to the bit value D5 (most significant bit value) (for example, a period from the falling edge of the sampling clock fs to the first falling edge of the internal clock fck)
  • the control unit 103 determines the bit value D5 to be “1” in synchronization with the first rising edge of the internal clock fck.
  • the control unit 103 switches the control voltage Vdp5 corresponding to the bit determination period P5 from the power supply voltage Vdd to the ground voltage Vss and enters the bit determination period P5.
  • the corresponding control voltage Vun5 is switched from the ground voltage Vss to the power supply voltage Vdd.
  • the analog voltage Vp decreases and the analog voltage Vn increases.
  • the control unit 103 sets the internal clock fck. In synchronization with the second rising edge, the bit value D4 is determined to be “1”.
  • the control unit 103 switches the control voltage Vdp4 corresponding to the bit determination period P4 from the power supply voltage Vdd to the ground voltage Vss and enters the bit determination period P4.
  • the corresponding control voltage Vun4 is switched from the ground voltage Vss to the power supply voltage Vdd.
  • the control unit 103 sets the bit values D3 and D2 in synchronization with the third and fourth rising edges of the internal clock fck. Set to “0”.
  • the control unit 103 synchronizes the control voltages Vup3 and Vup2 corresponding to the bit determination periods P3 and P2 from the ground voltage Vss to the power supply voltage Vdd in synchronization with the third and fourth falling edges of the internal clock fck.
  • the control voltages Vdn3 and Vdn2 corresponding to the bit determination periods P3 and P2 are switched from the power supply voltage Vdd to the ground voltage Vss.
  • the analog voltage Vp increases and the analog voltage Vn decreases.
  • the control unit 103 determines the bit value D1 to be “1” in synchronization with the fifth rising edge of the internal clock fck.
  • the control unit 103 switches the control voltage Vdp1 corresponding to the bit determination period P1 from the power supply voltage Vdd to the ground voltage Vss and enters the bit determination period P1.
  • the corresponding control voltage Vun1 is switched from the ground voltage Vss to the power supply voltage Vdd.
  • the control unit 103 performs the internal clock fck.
  • the bit value D0 is determined to be “1” in synchronization with the sixth rising edge.
  • up capacitors 15u and 14u correspond to up capacitors 15up and 14up
  • up capacitor 10u corresponds to a combined capacitor of up capacitors 13up to 11up
  • down capacitors 15d and 14d have down capacitors 15dp.
  • 14 dp the down capacitance 10 d corresponds to the combined capacitance of the down capacitances 13 dp to 11 dp.
  • the capacitance values of the capacitors 15u and 15d are “C”
  • the capacitance values of the capacitors 14u and 14d can be expressed as “C / 2”
  • the capacitance values of the capacitors 10u and 10d are approximately “C / 2”. Can express.
  • step ST102 as shown in FIG. 4A, the ground voltage Vss is applied to the other ends of the up capacitors 15u, 14u, 10u, and the power supply voltage Vdd is applied to the other ends of the down capacitors 15d, 14d, 10d. Applied.
  • step ST106 the control voltage applied to the other end of the down capacitor 15d is switched from the power supply voltage Vdd to the ground voltage Vss. In this case, as shown in FIG.
  • the charges Q1, Q2,..., Q6 move in the up capacitors 15u, 14u, 10u and the down capacitors 15d, 14d, 10d, respectively, and the up capacitors 15u, 14u, 10u, and down
  • the charges are redistributed in the capacitors 15d, 14d, and 10d.
  • the charges Q5 and Q6 that move through the down capacitors 14d and 10d to which the power supply voltage Vdd is applied after the control voltage is switched correspond to the charges consumed by the charge redistribution.
  • the analog voltage Vp before switching the control voltage is “V (k)” and the analog voltage Vp after switching the control voltage is “V (k + 1)”
  • the charges Q5 and Q6 are given by It can be expressed as follows.
  • the amount of charge transfer in step ST106 (the amount of charge transfer in the capacitive DA converter 101p) is less than the amount of charge transfer in the conventional successive approximation AD converter (ST906) (smaller by “C ⁇ Vdd”). I understand that.
  • the amount of charge transfer in step ST105 (the amount of charge transfer in the capacitive DA converter 101n) is also smaller than the amount of charge transfer in the conventional successive approximation AD converter (ST906).
  • the capacity array of the capacity DA converter 101p is divided into an up capacity array (up capacity 15up to 11up) and a down capacity array (down capacity 15dp to 11dp), and the up capacity array and the down capacity array are individually provided.
  • the power consumption in the capacitive DA converter 101p can be reduced.
  • the power consumption in the capacitive DA converter 101n can be reduced.
  • the power consumption of the successive approximation AD converter 1 can be reduced.
  • the impedance of the power supply voltage is the lowest inside the semiconductor integrated circuit. Therefore, by applying the power supply voltage Vdd to the other ends of the up capacitors 15up to 11up and the up capacitors 15un to 11un, other voltages having higher impedance than the power supply voltage Vdd are supplied to the up capacitors 15up to 11up and the up capacitors 15un to 11un.
  • the settling time can be shortened compared with the case where the voltage is applied to the other end.
  • the successive approximation AD converter 1a shown in FIG. 5 includes capacitive DA converters 201p and 201n instead of the capacitive DA converters 101p and 101n shown in FIG.
  • Capacitance DA converters 201p and 201n include input capacitors 21p and 21n, respectively, in addition to the configurations of the capacity DA converters 101p and 101n shown in FIG.
  • Input capacitor 21p is connected between sampling node Nsp and a ground node (a node to which ground voltage Vss is applied), and input capacitor 21n is connected between sampling node Nsn and the ground node.
  • the input range of the successive approximation AD converter 1a can be adjusted.
  • the input range of the successive approximation AD converter 1 shown in FIG. More specifically, if the capacitance values of the input capacitors 21p and 21n are “128C 0 ”, the input range of the successive approximation AD converter 1a is 62 / (62 + 128) times the input range of the successive approximation AD converter 1.
  • the input range of the successive approximation AD converter 1a can be within the linear range of a sampling buffer (not shown) provided in the preceding stage of the successive approximation AD converter 1a.
  • the successive approximation AD converter 1b shown in FIG. 6 includes series-parallel type capacitive DA converters 301p and 301n instead of the capacitive DA converters 101p and 101n shown in FIG.
  • the successive approximation AD converter 1b further includes correction capacitance arrays 311p and 311n and capacitance correction units 312p and 312n.
  • Other configurations are the same as those of the successive approximation AD converter 1 shown in FIG.
  • Capacitance DA converters 301p and 301n include coupling capacitors 30p and 30n, respectively, in addition to the configurations of the capacity DA converters 101p and 101n shown in FIG.
  • the p up capacitors 15up and 14up and the p down capacitors 15dp and 14dp correspond to the upper p bits (here, bit values D5 and D4) of the digital code, respectively, and q up capacitors 13up to 11up.
  • the q down capacitors 13dp to 11dp correspond to lower q bits (here, bit values D3, D2, and D1) excluding the least significant bit of the digital code.
  • the p up capacitors 15un and 14un and the p down capacitors 15dn and 14dn correspond to the upper p bits (here, bit values D5 and D4) of the digital code, respectively, and q up capacitors 13un to 11un.
  • the q down capacitors 13dn to 11dn correspond to lower q bits (here, bit values D3, D2, D1) excluding the least significant bit of the digital code.
  • Capacitance DA converters 301p and 301n may further include input capacitors 21p and 21n shown in FIG.
  • the correction capacitor array 311p is composed of a plurality (four in this case) of correction capacitors 31 to 31. One end of the correction capacitors 31 to 31 constituting the correction capacitor array 311p is connected to the other end of the coupling capacitor 30p.
  • the capacitance correction unit 312p switches the connection state between the other end of the correction capacitors 31 to 31 constituting the correction capacitor array 311p and the ground node (a node to which the ground voltage Vss is applied).
  • the capacitance correction unit 312p includes a plurality (four in this case) of switches SW3 to SW3 respectively connected between the other ends of the correction capacitors 31 to 31 constituting the correction capacitor array 311p and the ground node.
  • the correction capacitor array 311n is composed of a plurality (here, four) of correction capacitors 31 to 31. One end of the correction capacitors 31 to 31 constituting the correction capacitor array 311n is connected to the other end of the coupling capacitor 30n.
  • the capacitance correction unit 312n switches the connection state between the other ends of the correction capacitors 31 to 31 constituting the correction capacitor array 311n and the ground node.
  • the capacitance correction unit 312n includes a plurality (four in this case) of switches SW3 to SW3 respectively connected between the other ends of the correction capacitors 31 to 31 constituting the correction capacitor array 311n and the ground node.
  • the unit capacitance of the upper capacitance array (up capacitance 15up, 14up and down capacitance 15dp, 14dp) is “C u1 ”, the parasitic capacitance added to the common electrode of the upper capacitance array is “C p1 ”, and the lower capacitance array
  • the unit capacitance (up capacitance 13up to 11up and down capacitance 13dp to 11dp) is “C u2 ”,
  • the capacitance value of the coupling capacitor 30p is “C a ”
  • the capacitance value of the equivalent capacitor including the upper capacitor array and the coupling capacitor 30p is “C eq1 ”
  • the equivalent capacitor including the coupling capacitor 30p and the lower capacitor array is When the capacitance value is “C eq2 ”, the following equation is obtained.
  • indicates that the upper capacitor array and the coupling capacitor 30p (or the coupling capacitor 30p and the lower capacitor array) are connected in series.
  • Equation 10 substituting Equation 10 and Equation 12 into Equation 13 gives the following equation.
  • Equation 7 substituting Equation 7 and Equation 8 into Equation 15 gives the following equation.
  • the capacitance value C a of the coupling capacitance 30p is 1 / ⁇ 2 q (C u2 / C u1 ) ⁇ 1 ⁇ times the total capacitance value C T2 of the lower capacitance array, the voltage of the lower capacitance array The fluctuation can be equivalently converted into the voltage fluctuation of the sampling node Nsp via the coupling capacitor 30p, and the linearity of the capacitor DA converter 301p can be maintained.
  • the capacitance value C a of the coupling capacitance 30p is q Regardless of the value, it is always “2C 0 ”.
  • the connection state of the correction capacitor array 311p is controlled by the capacitor correction unit 312p so that the equation (18) is satisfied.
  • the linearity of the capacitive DA converter 301n can be maintained by the same principle as this. As a result, the linearity of the successive approximation AD converter 1b can be improved.
  • the successive approximation AD converter 1b may not include the correction capacitor arrays 311p and 311n and the capacitor correction units 312p and 312n.
  • the successive approximation AD converter 1c shown in FIG. 7 includes offset adjustment capacitor arrays 401p and 401n and offset adjustment units 402p and 402n in addition to the configuration of the successive approximation AD converter 1 shown in FIG. .
  • the offset adjustment capacitor array 401p is composed of a plurality (three in this case) of offset adjustment capacitors 41 to 41. One ends of the offset adjustment capacitors 41 to 41 constituting the offset adjustment capacitor array 401p are connected to the sampling node Nsp.
  • the offset adjustment unit 402p supplies either the ground voltage Vss or the power supply voltage Vdd to the other ends of the offset adjustment capacitors 41 to 41 constituting the offset capacitor array 401p in response to external control.
  • the offset adjustment unit 402p includes a plurality (three in this case) of inverters 42 to 42.
  • Inverters 42 to 42 respectively supply either one of ground voltage Vss or power supply voltage Vdd to the other ends of offset adjustment capacitors 41 to 41 as offset control voltages Vop1 to Vop3 in response to external control.
  • the inverters 42 to 42 respectively switch the offset control voltages Vop1 to Vop3 from the ground voltage Vss to the power supply voltage Vdd (or from the power supply voltage Vdd to the ground voltage Vss) immediately after sampling in response to external control. Any one of the operations that does not change the offset voltages Vop1 to Vop3 is executed.
  • the offset adjustment capacitor array 401n is composed of a plurality (three in this case) of offset adjustment capacitors 41 to 41. One end of the offset adjustment capacitors 41 to 41 constituting the offset capacitor array 401n is connected to the sampling node Nsn.
  • the offset adjustment unit 402n supplies either the ground voltage Vss or the power supply voltage Vdd to the other ends of the offset adjustment capacitors 41 to 41 constituting the offset capacitor array 401n.
  • the offset adjustment unit 402n includes a plurality (three in this case) of inverters 42 to 42. Inverters 42 to 42 respectively supply one of ground voltage Vss and power supply voltage Vdd to the other ends of offset adjustment capacitors 41 to 41 as offset control voltages Von1 to Von3 in response to external control.
  • each of the inverters 42 to 42 switches the offset control voltages Von1 to Von3 from the ground voltage Vss to the power supply voltage Vdd (or from the power supply voltage Vdd to the ground voltage Vss) in response to external control immediately after sampling. Any one of the operations that does not change the offset voltages Von1 to Von3 is executed.
  • the offset of the comparator 102 can be adjusted (for example, “0”), and as a result, the offset of the successive approximation AD converter 1c is adjusted (for example, “0”). ”).
  • the offset adjustment capacitor arrays 401p and 401n and the offset adjustment units 402p and 402n may be used for mismatch correction of weighted capacitors (up and down capacitors) included in the capacitor DA converters 101p and 101n.
  • the capacitance values of the offset adjustment capacitors 41 to 41 constituting the offset adjustment capacitor arrays 401p and 401n may all be the same or may be weighted.
  • successive approximation AD converter 1c may include the capacitive DA converters 201p and 201n shown in FIG. 5 instead of the capacitive DA converters 101p and 101n.
  • the successive approximation AD converter 1d shown in FIG. 8 replaces the correction capacitor arrays 311p and 311n and the capacitor correction units 312p and 312n shown in FIG. 6 with offset adjustment capacitor arrays 401p and 401n and offset adjustment units 402p and 402n. Is provided. Other configurations are the same as those of the successive approximation AD converter 1b shown in FIG. One end of the offset adjustment capacitors 41 to 41 constituting the offset adjustment capacitor array 401p is connected to the sampling node Nsp, and one end of the offset adjustment capacitors 41 to 41 constituting the offset adjustment capacitor array 401n is connected to the sampling node Nsn. .
  • the offset of the comparator 102 can be adjusted (for example, “0”), and as a result, the offset of the successive approximation AD converter 1c is adjusted (for example, “0”). Can).
  • the offset adjustment capacitor arrays 401p and 401n and the offset adjustment units 402p and 402n may be used for mismatch correction of the weighted capacitors (up capacitor and down capacitor) included in the capacitor DA converters 301p and 301n, or a coupling capacitor. It may be used for correcting the capacitance values of 30p and 30n.
  • the successive approximation AD converter 1d includes the correction capacitor arrays 311p and 311n shown in FIG.
  • capacitance correction units 312p and 312n may be further provided.
  • FIG. 9 shows a configuration example of the successive approximation AD converter 2 according to the second embodiment.
  • the successive approximation AD converter 2 includes a capacitive DA converter 101, a sampling switch SWs, a comparator 202, and a control unit 203.
  • One ends of the up capacitors 15u to 11u and the down capacitors 15d to 11d are connected to the sampling node Ns.
  • the supply switching unit 100 supplies either the ground voltage Vss or the power supply voltage Vdd to the other ends of the up capacitors 15u to 11u and the down capacitors 15d to 11d.
  • the inverters 16u to 16u and the inverters 16d to 16d are responsive to control by the control unit 203 to either the ground voltage Vss or the power supply voltage Vdd, the control voltages Vu5 to Vu1, and the control voltage Vd5.
  • To Vd1 are supplied to the other ends of the up capacitors 15u to 11u and the other ends of the down capacitors 15d to 11d, respectively.
  • sampling switch SWs is provided for sampling the analog signal Vin to the sampling node Ns.
  • Sampling switch SWs switches between an on state and an off state in response to control by control unit 203.
  • the comparator 202 compares the comparison voltage Va (for example, 0.5 V) with the analog voltage V101 at the sampling node Ns. For example, the output of the comparator 202 is at a low level when the analog voltage V101 is lower than the comparison voltage Va, and is at a high level when the analog voltage V101 is not lower than the comparison voltage Va.
  • Va for example, 0.5 V
  • the control unit 203 controls the sampling switch SWs and the supply switching unit 100 and determines the bit values D5 to D0 in synchronization with the sampling clock fs and the internal clock fck.
  • control unit 203 is configured such that the ground voltage Vss is supplied to the other ends of the up capacitors 15u to 11u and the power supply voltage Vdd is supplied to the other ends of the down capacitors 15d to 11d.
  • the supply switching unit 100 is controlled.
  • the control unit 203 also determines the bit determination periods P5 to P1 and the least significant bit determination period P0 (see FIG. 3) so that the bit values D5 to D0 are sequentially determined from the bit value D5 (MSB: most significant bit value). ), The bit value corresponding to the bit determination period is determined from the bit values D5 to D0 according to the comparison result by the comparator 202.
  • control unit 203 controls the supply switching unit 100 according to the comparison result by the comparator 202 in each of the bit determination periods P5 to P1 (see FIG. 3) so that the analog voltage V101 gradually approaches the comparison voltage Va. To do. More specifically, in each of the bit determination periods P5 to P1, when the analog voltage V101 is lower than the comparison voltage Va, the control unit 203 sets the up capacity corresponding to the bit determination period among the up capacity 15u to 11u. When the supply switching unit 100 is controlled so that the power supply voltage Vdd is supplied to the other end, and the analog voltage V101 is not lower than the comparison voltage Va, it corresponds to the bit determination period of the down capacitors 15d to 11d. The supply switching unit 100 is controlled so that the ground voltage Vss is supplied to the other end of the down capacitor.
  • ⁇ ST201 First, when the sampling period Ps is started, the control unit 203 sets the control voltages Vu5 to Vu1 to the ground voltage Vss, sets the control voltages Vd5 to Vd1 to the power supply voltage Vdd, and turns the sampling switch SWs on from the off state. Switch to state.
  • control unit 203 determines whether or not the bit value Di is the bit value D0 (least significant bit value). When the bit value Di is not the bit value D0, the process proceeds to step ST204, and when the bit value Di is the bit value D0, the process proceeds to step ST207.
  • bit determination period Pi the control unit 203 determines whether the analog voltage V101 is lower than the comparison voltage Va based on the comparison result by the comparator 202. Determine whether or not. If the analog voltage V101 is lower than the comparison voltage Va, the process proceeds to step ST205, and if not, the process proceeds to step ST206.
  • control unit 203 determines the bit value Di to be “0”. Further, the control unit 203 switches the control voltage (hereinafter referred to as control voltage Vui) corresponding to the bit determination period Pi among the control voltages Vu5 to Vu1 from the ground voltage Vss to the power supply voltage Vdd. Next, the control unit 103 selects the bit value next to the bit value Di among the bit values D5 to D0 as the next processing target. Next, the process proceeds to step ST203.
  • control unit 203 determines the bit value Di to be “1”. Further, the control unit 203 switches the control voltage (hereinafter referred to as control voltage Vdi) corresponding to the bit determination period Pi from the control voltages Vd5 to Vd1 from the power supply voltage Vdd to the ground voltage Vss. Next, the control unit 203 selects the bit value next to the bit value Di from the bit values D5 to D0 as the next processing target. Next, the process proceeds to step ST203.
  • step ST207 when it is determined in step ST203 that the bit value Di is the bit value D0 (least significant bit value), the control unit 203 performs comparison by the comparator 202 in the least significant bit determination period P0 corresponding to the bit value D0. Based on the result, it is determined whether or not the analog voltage V101 is lower than the comparison voltage Va. If the analog voltage V101 is lower than the comparison voltage Va, the process proceeds to step ST208, and if not, the process proceeds to step ST209.
  • control unit 203 determines bit value D0 to be “0” (ST208). On the other hand, when analog voltage V101 is not lower than comparison voltage Va, control unit 203 determines bit value D0 to be “1” (ST209).
  • the capacity array of the capacity DA converter 101 is divided into the up capacity array (up capacity 15u to 11u) and the down capacity array (down capacity 15d to 11d), and the up capacity array and the down capacity array are individually provided.
  • the power consumption in the capacitive DA converter 101 can be reduced.
  • the power consumption of the successive approximation AD converter 2 can be reduced.
  • the impedance of the power supply voltage is the lowest inside the semiconductor integrated circuit. Therefore, by applying the power supply voltage Vdd to the other ends of the up capacitors 15u to 11u, the settling time can be made longer than in the case where another voltage having a higher impedance than the power supply voltage Vdd is applied to the other ends of the up capacitors 15u to 11u. Can be shortened.
  • the successive approximation AD converter 2a shown in FIG. 11 includes a capacitive DA converter 201 instead of the capacitive DA converter 101 shown in FIG.
  • Other configurations are the same as those of the successive approximation AD converter 2 shown in FIG.
  • the capacitor DA converter 201 has an input capacitor 21 connected between the sampling node Ns and the ground node (a node to which the ground voltage Vss is applied) in addition to the configuration of the capacitor DA converter 101 shown in FIG. Including. With this configuration, the input range of the successive approximation AD converter 2a can be made narrower than the input range of the successive approximation AD converter 2 shown in FIG.
  • the input range of the successive approximation AD converter 2 a can be set to 62 / (62 + 128) times the input range of the successive approximation AD converter 2.
  • the input range of the successive approximation type AD converter 2a can be kept within the linear range of a sampling buffer (not shown) provided in the preceding stage of the successive approximation type AD converter 2a.
  • the successive approximation AD converter 2b shown in FIG. 12 includes an offset adjustment capacitor array 401 and an offset adjustment unit 402 in addition to the configuration of the successive approximation AD converter 2 shown in FIG.
  • the offset adjustment capacitor array 401 includes a plurality (three in this case) of offset adjustment capacitors 41 to 41. One ends of the offset adjustment capacitors 41 to 41 are connected to the sampling node Ns.
  • the offset adjustment unit 402 supplies one of the ground voltage Vss and the power supply voltage Vdd to the other ends of the offset adjustment capacitors 41 to 41 in response to external control.
  • the offset adjustment unit 42 includes a plurality of (here, three) inverters 42 to 42.
  • Inverters 42 to 42 respectively supply either one of ground voltage Vss or power supply voltage Vdd to the other ends of offset adjustment capacitors 41 to 41 as offset control voltages Vop1 to Vop3 in response to external control.
  • the inverters 42 to 42 respectively switch the offset control voltages Vop1 to Vop3 from the ground voltage Vss to the power supply voltage Vdd (or from the power supply voltage Vdd to the ground voltage Vss) immediately after sampling in response to external control. Any one of the operations that does not change the offset voltages Vop1 to Vop3 is executed.
  • the offset of the comparator 202 can be adjusted (for example, “0”), and as a result, the offset of the successive approximation AD converter 2b is adjusted (for example, “0”). Can). Further, the offset adjustment capacitor array 401 and the offset adjustment unit 402 may be used for mismatch correction of the weighted capacitors (up capacitor and down capacitor) included in the capacitor DA converter 101.
  • the successive approximation AD converters 1, 1a, 1b, 1c, and 1d are applicable to mobile radio apparatuses.
  • the mobile radio apparatus shown in FIG. 13 includes an antenna 51 (receiving unit), a low noise amplifier (LNA) 52, a gain amplifier 53, a buffer amplifier 54, a digital signal, in addition to the successive approximation AD converter 1. And a processing circuit (DSP) 55.
  • LNA low noise amplifier
  • DSP processing circuit
  • the antenna 51 receives a radio signal and outputs a pair of analog signals Vinp and Vinn (weak analog signals).
  • the low noise amplifier 52 amplifies the analog signals Vinp and Vinn with as little noise as possible.
  • the gain amplifier 53 further amplifies the analog signals Vinp and Vinn amplified by the low noise amplifier 52.
  • the buffer amplifier 54 converts the output impedance to the successive approximation AD converter 1.
  • the successive approximation AD converter 1 converts the analog signals Vinp and Vinn supplied from the antenna 51 via the low noise amplifier 52, the gain amplifier 53, and the buffer amplifier 54 into digital codes.
  • the digital signal processing circuit 55 processes the digital code obtained by the successive approximation AD converter 1.
  • the power consumption of the mobile radio apparatus can be reduced by applying the successive approximation AD converter capable of reducing the power consumption to the mobile radio apparatus.
  • the lifetime of the battery mounted in the mobile radio apparatus can be extended, and the mobile radio apparatus can be used for a long time.
  • the successive approximation AD converters 2, 2a, 2b are also applicable to mobile radio apparatuses.
  • the antenna 301 receives a radio signal and outputs a single analog signal, and the successive approximation AD converter 2. Converts a single analog signal supplied from the antenna 301 via the low noise amplifier 302, the gain amplifier 303, and the buffer amplifier 304 into a digital code.
  • the successive approximation AD converter described above can reduce power consumption, it is useful for products that require reduced power consumption (for example, mobile radio devices).

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

 サンプリングスイッチ(SWp,SWn)は、サンプリング期間において、アナログ信号(Vinp,Vinn)をサンプリングノード(Nsp,Nsn)にそれぞれサンプリングする。制御部(103)は、サンプリング期間において、アップ容量(15up~11up,15un~11un)に接地電圧(Vss)が供給されるとともにダウン容量(15dp~11dp,15dn~11dn)に電源電圧(Vdd)が供給されるように、供給切替部(100p,100n)を制御する。また、制御部(103)は、アナログ電圧(Vp,Vn)が互いに漸近するように、最下位ビット値(D0)を除くビット値(D5~D1)にそれぞれ対応するビット決定期間の各々において比較器(102)の比較結果に応じて供給切替部(100p,100n)を制御する。

Description

逐次比較型AD変換器、移動体無線装置
 この発明は、アナログ信号をデジタルコードに変換するAD変換器に関し、さらに詳しくは、逐次比較型AD変換器に関する。
 現在、比較的簡素な回路構成で実現され、比較的安価に製造できるCMOSプロセスとの整合性が高く、且つ、中位の変換速度と中位の変換精度が実現できる製造用途の広いAD変換器として、逐次比較型AD変換器が知られている(例えば、特許文献1や非特許文献1など)。
 図14は、非特許文献1に記載された逐次比較型AD変換器の構成を示す。この逐次比較型AD変換器は、アナログ信号Vinを6ビットのデジタルコード(6個のビット値D95~D90)に変換するものであり、6個の容量95~90と、6個のインバータからなる供給切替部901と、比較器902と、制御部903とを備える。容量95~90の一端は、サンプリングノードNs9に接続される。容量90の容量値をCとすると、容量91,92,93,94,95の容量値は、それぞれ、2C,4C,8C,16C,32Cとなる。供給切替部901は、制御部903による制御に応答して、基準電圧Vrefおよび接地電圧Vssのいずれか一方を、制御電圧V95~V90として容量95~90の他端に供給する。比較器902は、アナログ電圧V901と比較電圧Vxとを比較する。制御部903は、サンプリングクロックfsおよび内部クロックfckに同期して、サンプリングスイッチSW9および供給切替部901の制御やビット値D95~D90の決定を実行する。
 次に、図15を参照して、従来の逐次比較型AD変換器による動作について説明する。
  《ST901》
 制御部903は、サンプリングクロックfsの立ち上がりエッジに同期して、制御電圧V95を基準電圧Vrefに設定するとともに制御電圧V94~V90を接地電圧Vssに設定し、サンプリングスイッチSW9をオフ状態からオン状態に切り替える。
  《ST902》
 次に、制御部903は、サンプリングクロックfsの立ち下がりエッジに同期して、サンプリングスイッチSW9をオン状態からオフ状態に切り替える。
  《ST903》
 次に、制御部903は、ビット値D95~D90のうちビット値D95(MSB:最上位ビット値)を処理対象のビット値(以下、ビット値Diと表記)として選択する。ここでは、i=95~90 である。
  《ST904》
 次に、制御部903は、比較器902による比較結果に基づいて、アナログ電圧V901が比較電圧Vxよりも低いか否かを判定する。アナログ電圧V901が比較電圧Vxよりも低い場合には、ステップST905へ進み、そうでない場合には、ステップST906へ進む。
  《ST905》
 アナログ電圧V901が比較電圧Vxよりも低い場合、制御部903は、内部クロックfckの立ち上がりエッジに同期して、ビット値Diを“0”に決定する。また、制御部903は、内部クロックfckの立ち下がりエッジに同期して、制御電圧V95~V90のうちビット値Diの次のビット値に対応する制御電圧(以下、制御電圧Vi-1と表記)を接地電圧Vssから基準電圧Vrefに切り替える。例えば、ビット値Diがビット値D95である場合、制御部903は、ビット値D94に対応する制御電圧V94を接地電圧Vssから基準電圧Vrefに切り替える。次に、制御部903は、ビット値D95~D90のうちビット値Diの次のビット値を処理対象のビット値として選択する。次に、ステップST907へ進む。
  《ST906》
 一方、アナログ電圧V901が比較電圧Vxよりも低くない場合、制御部903は、内部クロックfckの立ち上がりエッジに同期して、ビット値Diを“1”に決定する。また、制御部903は、内部クロックfckの立ち下がりエッジに同期して、制御電圧V95~V90のうちビット値Diに対応する制御電圧(以下、制御電圧Viと表記)を基準電圧Vrefから接地電圧Vssに切り替えるとともに、制御電圧Vi-1を接地電圧Vssから基準電圧Vrefに切り替える。そして、制御部903は、ビット値D95~D90のうちビット値Diの次のビット値を処理対象のビット値として選択する。次に、ステップST907へ進む。
  《ST907》
 次に、制御部903は、ビット値Diがビット値D90(LSB:最下位ビット値)であるか否かを判定する。ビット値Diがビット値D90ではない場合には、ステップST904へ進み、ビット値Diがビット値D90である場合には、ステップST908へ進む。
  《ST908》
 次に、制御部903は、比較器902による比較結果に基づいてアナログ電圧V901が比較電圧Vxよりも低いか否かを判定する。アナログ電圧V901が比較電圧Vxよりも低い場合には、ステップST909へ進み、そうでない場合には、ステップST910へ進む。
  《ST909,ST910》
 アナログ電圧V901が比較電圧Vxよりも低い場合、制御部903は、内部クロックfckの立ち上がりエッジに同期して、ビット値D90を“0”に決定する(ST909)。一方、アナログ電圧V901が比較電圧Vxよりも低くない場合、制御部903は、内部クロックfckの立ち上がりエッジに同期して、ビット値D90を“1”に決定する(ST910)。
特開2007-142863号公報
M. Van. Elzakker et al., "A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," ISSCC Dig. Tech. Papers, pp.244-245, Feb. 2008.
 ここで、図16(a),図16(b)を参照して、図14に示した逐次比較型AD変換器における電荷移動について説明する。図中、容量900は、容量93~90の合成容量に相当する。また、容量95の容量値を“2C”とすると、容量94の容量値は“C”と表現でき、容量900の容量値は“C”と近似的に表現できる。
 ステップST903では、図16(a)のように、容量95の他端には、基準電圧Vrefが印加され、容量94,900の他端には、接地電圧Vssが印加されている。アナログ電圧V901が比較電圧Vxよりも低くない場合、ステップST906において、容量95の他端に印加された制御電圧V95は、基準電圧Vrefから接地電圧Vssに切り替えられ、容量94の他端に印加された制御電圧V94は、接地電圧Vssから基準電圧Vrefに切り替えられる。この場合、図16(b)のように、容量94,900,95において電荷Q1,Q2,Q3がそれぞれ移動し、容量94,95,900において電荷が再分配される。また、制御電圧が切り替えられた後に基準電圧Vrefが印加される容量94(すなわち、電荷の供給源に接続される容量94)を移動する電荷Q1は、電荷再分配によって消費される電荷に相当する。ここで、制御電圧を切り替える前のアナログ電圧V901を“V(k)”とし、制御電圧を切り替えた後のアナログ電圧V901を“V(k+1)”とすると、電荷Q1は、次式のようになる。
Figure JPOXMLDOC01-appb-M000001
 上式の右辺第1項は、制御電圧の切り替えによって“C・Vref”の電荷が電源から接地に移動したことを意味しており、右辺第2項は、アナログ電圧V901の変化量に応じた電荷が移動したことを意味している。すなわち、ステップST906が実行される毎に“C・Vref”の電荷が消費されることになる。
 以上のように、従来の逐次比較型AD変換器では、制御電圧の切り替えによって電源から接地に電荷が移動してしまうので、逐次比較型AD変換器の消費電力を低減することが困難であった。
 そこで、この発明は、消費電力を低減可能な逐次比較型AD変換器を提供することを目的とする。
 この発明の1つの局面に従うと、逐次比較型AD変換器は、電圧値が互いに相補的に変化する第1および第2のアナログ信号をn+1個(n≧2)のビット値からなるデジタルコードに変換する逐次比較型AD変換器であって、それぞれの一端が第1のサンプリングノードに接続されるとともにバイナリに重み付けされた容量値をそれぞれ有するn個の第1アップ容量およびn個の第1ダウン容量と、上記n個の第1アップ容量および上記n個の第1ダウン容量の他端に接地電圧および電源電圧のいずれか一方を供給する第1の供給切替部とを含む第1の容量DA変換器と、それぞれの一端が第2のサンプリングノードに接続されるとともにバイナリに重み付けされた容量値をそれぞれ有するn個の第2アップ容量およびn個の第2ダウン容量と、上記n個の第2アップ容量および上記n個の第2ダウン容量の他端に上記接地電圧および上記電源電圧のいずれか一方を供給する第2の供給切替部とを含む第2の容量DA変換器と、サンプリング期間において上記第1および第2のアナログ信号を上記第1および第2のサンプリングノードにそれぞれサンプリングする第1および第2のサンプリングスイッチと、上記第1のサンプリングノードにおける第1のアナログ電圧と上記第2のサンプリングノードにおける第2のアナログ電圧とを比較する比較器と、上記サンプリング期間において、上記n個の第1アップ容量および上記n個の第2アップ容量の他端に上記接地電圧が供給されるとともに上記n個の第1ダウン容量および上記n個の第2ダウン容量の他端に上記電源電圧が供給されるように上記第1および第2の供給切替部を制御し、上記n+1個のビット値が最上位ビット値から順番に決定されるように、上記n+1個のビット値のうち最下位ビット値を除くn個のビット値にそれぞれ対応するn個のビット決定期間および上記最下位ビット値に対応する最下位ビット決定期間の各々において、上記比較器による比較結果に応じて上記n+1個のビット値のうち当該ビット決定期間に対応するビット値を決定するとともに、上記第1および第2のアナログ電圧が互いに漸近するように、上記n個のビット決定期間の各々において、上記比較器による比較結果に応じて上記第1および第2の供給切替部を制御する制御部とを備える。
 上記逐次比較型AD変換器では、第1および第2の容量DA変換器の各々において容量アレイをアップ容量アレイ(n個のアップ容量)とダウン容量アレイ(n個のダウン容量)とに分割し、アップ容量アレイおよびダウン容量アレイを個別に制御することにより、第1および第2の容量DA変換器における消費電力を低減できる。その結果、逐次比較型AD変換器の消費電力を低減できる。
 なお、上記逐次比較型AD変換器において、上記制御部は、上記n個のビット決定期間の各々において、上記第1のアナログ電圧が上記第2のアナログ電圧よりも低い場合には、上記n個の第1アップ容量および上記n個の第2ダウン容量のうちそのビット決定期間に対応する第1アップ容量および第2ダウン容量に上記電源電圧および上記接地電圧がそれぞれ供給されるように上記第1および第2の供給切替部を制御し、上記第1のアナログ電圧が上記第2のアナログ電圧よりも低くない場合には、上記n個の第1ダウン容量および上記n個の第2アップ容量のうちそのビット決定期間に対応する第1ダウン容量および第2アップ容量に上記接地電圧および上記電源電圧がそれぞれ供給されるように上記第1および第2の供給切替部を制御しても良い。
 また、上記第1の容量DA変換器は、上記第1のサンプリングノードと上記接地電圧が印加される接地ノードとの間に接続された第1の入力容量をさらに含み、上記第2の容量DA変換器は、上記第2のサンプリングノードと上記接地ノードとの間に接続された第2の入力容量をさらに含んでいても良い。このように構成することにより、逐次比較型AD変換器の入力レンジを調整することができる。
 なお、上記第1および第2の容量DA変換器は、それぞれ、第1および第2の結合容量をさらに含み、上記第1の結合容量の一端は、上記n個の第1アップ容量および上記n個の第1ダウン容量のうち上記デジタルコードの上位pビットにそれぞれ対応するp個の第1アップ容量およびp個の第1ダウン容量の一端と上記第1のサンプリングノードとに接続され、上記第1の結合容量の他端は、上記n個の第1アップ容量および上記n個の第1ダウン容量のうち上記デジタルコードの最下位ビットを除く下位qビット(p+q=n)にそれぞれ対応するq個の第1アップ容量およびq個の第1ダウン容量の一端に接続され、上記q個の第1アップ容量および上記q個の第1ダウン容量の一端は、上記第1の結合容量を介して上記第1のサンプリングノードに接続されており、上記第2の結合容量の一端は、上記n個の第2アップ容量および上記n個の第2ダウン容量のうち上記デジタルコードの上位pビットにそれぞれ対応するp個の第2アップ容量およびp個の第2ダウン容量の一端と上記第2のサンプリングノードとに接続され、上記第2の結合容量の他端は、上記n個の第2アップ容量および上記n個の第2ダウン容量のうち上記デジタルコードの最下位ビットを除く下位qビットにそれぞれ対応するq個の第2アップ容量およびq個の第2ダウン容量の一端に接続され、上記q個の第2アップ容量および上記q個の第2ダウン容量の一端は、上記第2の結合容量を介して上記第2のサンプリングノードに接続されていても良い。このように構成することにより、第1および第2の容量DA変換器の実装面積を削減できる。
 なお、上記逐次比較型AD変換器は、それぞれの一端が上記第1の結合容量の他端に接続された複数の第1の補正容量と、上記複数の第1の補正容量の他端と上記接地電圧が印加された接地ノードとの接続状態を切り替える第1の容量補正部と、それぞれの一端が上記第2の結合容量の他端に接続された複数の第2の補正容量と、上記複数の第2の補正容量の他端と上記接地ノードとの接続状態を切り替える第2の容量補正部とをさらに備えていても良い。このように構成することにより、第1および第2の容量DA変換器の線形性を保つことができ、逐次比較型AD変換器の線形性を改善できる。
 または、上記逐次比較型AD変換器は、それぞれの一端が上記第1の結合容量の他端に接続された複数の第1のオフセット調整容量と、上記複数の第1のオフセット調整容量の他端に上記接地電圧および上記電源電圧のいずれか一方を供給する第1のオフセット調整部と、それぞれの一端が上記第2の結合容量の他端に接続された複数の第2のオフセット調整容量と、上記複数の第2のオフセット調整容量の他端に上記接地電圧および上記電源電圧のいずれか一方を供給する第2のオフセット調整部とをさらに備えていても良い。このように構成することにより、比較器のオフセットを調整することができ、その結果、逐次比較型AD変換器のオフセットを調整できる。
 この発明のもう1つの局面に従うと、逐次比較型AD変換器は、アナログ信号をn+1個(n≧2)のビット値からなるデジタルコードに変換する逐次比較型AD変換器であって、それぞれの一端がサンプリングノードに接続されるとともにバイナリに重み付けされた容量値をそれぞれ有するn個のアップ容量およびn個のダウン容量と、上記n個のアップ容量および上記n個のダウン容量の他端に接地電圧および電源電圧のいずれか一方を供給する供給切替部とを含む容量DA変換器と、サンプリング期間において上記アナログ信号を上記サンプリングノードにサンプリングするサンプリングスイッチと、比較電圧と上記サンプリングノードにおけるアナログ電圧とを比較する比較器と、上記サンプリング期間において、上記n個のアップ容量の他端に上記接地電圧が供給されるとともに上記n個のダウン容量の他端に上記電源電圧が供給されるように上記供給切替部を制御し、上記n+1個のビット値が最上位ビット値から順番に決定されるように、上記n+1個のビット値のうち最下位ビット値を除くn個のビット値にそれぞれ対応するn個のビット決定期間および上記最下位ビット値に対応する最下位ビット決定期間の各々において、上記比較器による比較結果に応じて上記n+1個のビット値のうち当該ビット決定期間に対応するビット値を決定するとともに、上記アナログ電圧が上記比較電圧に漸近するように、上記n個のビット決定期間の各々において、上記比較器による比較結果に応じて上記供給切替部を制御する制御部とを備える。
 上記逐次比較型AD変換器では、容量DA変換器において容量アレイをアップ容量アレイ(n個のアップ容量)とダウン容量アレイ(n個のダウン容量)とに分割し、アップ容量アレイおよびダウン容量アレイを個別に制御することにより、容量DA変換器における消費電力を低減できる。その結果、逐次比較型AD変換器の消費電力を低減できる。
 以上のように、逐次比較型AD変換器の消費電力を低減できる。
実施形態1による逐次比較型AD変換器の構成例を示す図。 図1に示した逐次比較型AD変換器の動作について説明するための図。 図1に示した逐次比較型AD変換器の動作の具体例を示す図。 電荷移動について説明するための図。 図1に示した逐次比較型AD変換器の変形例1の構成例を示す図。 図1に示した逐次比較型AD変換器の変形例2の構成例を示す図。 図1に示した逐次比較型AD変換器の変形例3の構成例を示す図。 図1に示した逐次比較型AD変換器の変形例4の構成例を示す図。 実施形態2による逐次比較型AD変換器の構成例を示す図。 図9に示した逐次比較型AD変換器の動作について説明するための図。 図9に示した逐次比較型AD変換器の変形例1の構成例を示す図。 図9に示した逐次比較型AD変換器の変形例2の構成例を示す図。 移動体無線装置の構成例を示す図。 従来の逐次比較型AD変換器の構成例を示す図。 従来の逐次比較型AD変換器の動作について説明するための図。 電荷移動について説明するための図。
 以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。
 (実施形態1)
 図1は、実施形態1による逐次比較型AD変換器1の構成例を示す。逐次比較型AD変換器1は、電圧値が互いに相補的に変化するアナログ信号Vinp,Vinnをn+1個(n≧2、ここでは、n=5)のビット値D5~D0からなるデジタルコードに変換する。逐次比較型AD変換器1は、容量DA変換器101p,101nと、サンプリングスイッチSWp,SWnと、比較器102と、制御部103とを備える。
  〔容量DA変換器〕
 容量DA変換器101pは、n個(ここでは、n=5)のアップ容量15up~11upと、n個(ここでは、n=5)のダウン容量15dp~11dpと、供給切替部100pとを含む。アップ容量15up~11upの一端は、サンプリングノードNspに接続される。アップ容量15up~11upの容量値は、バイナリに重み付けされている。例えば、アップ容量11upの容量値をCとすると、アップ容量12up,13up,14up,15upの容量値は、それぞれ、2C,4C,8C,16Cとなる。また、アップ容量15up~11upは、それぞれ、ビット値D0(LSB:最下位ビット値)を除くビット値D5~D1にそれぞれ対応している。ダウン容量15dp~11dpは、アップ容量15up~11upと同様の構成を有している。供給切替部100pは、制御部103による制御に応答して、アップ容量15up~11upおよびダウン容量15dp~11dpの他端に接地電圧Vss(例えば、0V)および電源電圧Vdd(例えば、1V)のいずれか一方を供給する。ここでは、供給切替部100pは、n個(ここでは、n=5)のインバータ16u~16uと、n個(ここでは、n=5)のインバータ16d~16dとを含む。インバータ16u~16uおよびインバータ16d~16dは、制御部103による制御に応答して、接地電圧Vssおよび電源電圧Vssのいずれか一方を、制御電圧Vup5~Vup1および制御電圧Vdp5~Vdp1として、アップ容量15up~11upの他端およびダウン容量15dp~11dpの他端にそれぞれ供給する。
 容量DA変換器101nは、容量DA変換器101pと同様の構成を有しており、n個(ここでは、n=5)のアップ容量15un~11unと、n個(ここでは、n=5)のダウン容量15dn~11dnと、供給切替部100nとを含む。アップ容量15un~11unおよびダウン容量15dn~11dnの一端は、サンプリングノードNsnに接続される。供給切替部100nは、制御部103による制御に応答して、アップ容量15un~11unおよびダウン容量15dn~11dnの他端に接地電圧Vssおよび電源電圧Vddのいずれか一方を供給する。容量DA変換器101nでは、インバータ16u~16uおよびインバータ16d~16dは、制御部103による制御に応答して、接地電圧Vssおよび電源電圧Vddのいずれか一方を、制御電圧Vun5~Vun1および制御電圧Vdn5~Vdn1として、アップ容量15un~11unの他端およびダウン容量15dn~11dnの他端にそれぞれ供給する。
  〔サンプリングスイッチ〕
 サンプリングスイッチSWp,SWnは、アナログ信号Vinp,VinnをサンプリングノードNsp,Nsnにそれぞれサンプリングするために設けられている。サンプリングスイッチSWp,SWnの各々は、制御部103による制御に応答して、オン状態とオフ状態とを切り替える。
  〔比較器〕
 比較器102は、サンプリングノードNspにおけるアナログ電圧VpとサンプリングノードNsnにおけるアナログ電圧Vnとを比較する。例えば、比較器102の出力は、アナログ電圧Vpがアナログ電圧Vnよりも低い場合にはローレベルになり、アナログ電圧Vpがアナログ電圧Vnよりも低くない場合にはハイレベルになる。
  〔制御部〕
 制御部103は、サンプリングクロックfsおよび内部クロックfckに同期して、サンプリングスイッチSWp,SWnおよび供給切替部100p,100nの制御や、ビット値D5~D0の決定を実行する。例えば、図3のように、サンプリングクロックfsの1周期内(詳しくは、サンプリングクロックfsのローレベル期間)において内部クロックfckの6個のパルスが発生する。ここでは、サンプリング期間Psは、サンプリングクロックfsのハイレベル期間(立ち上がりエッジから立ち下がりエッジまでの期間)によって規定される。n個(ここでは、n=5)のビット決定期間P5~P1は、サンプリングクロックfsの立ち下がりエッジおよび内部クロックfckの第1番目~第5番目の立ち下がりエッジによって規定される。最下位ビット決定期間P0は、内部クロックfckの第5番目の立ち下がりエッジおよびサンプリングクロックfsの立ち上がりエッジによって規定される。また、ビット決定期間P5~P1および最下位ビット決定期間P0は、それぞれ、ビット値D5~D1およびビット値D0(最下位ビット値)に対応する。
 制御部103は、サンプリング期間Psにおいて、アップ容量15up~11upおよびアップ容量15un~11unの他端に接地電圧Vssが供給されるとともにダウン容量15dp~11dpおよびダウン容量15dn~11dnの他端に電源電圧Vddが供給されるように、供給切替部100p,100nを制御する。
 また、制御部103は、ビット値D5~D0がビット値D5(MSB:最上位ビット値)から順番に決定されるように、ビット決定期間P5~P1および最下位ビット決定期間P0の各々において、比較器102による比較結果に応じてビット値D5~D0のうちそのビット決定期間に対応するビット値を決定する。
 さらに、制御部103は、アナログ電圧Vp,Vnが互いに漸近するように、ビット決定期間P5~P1の各々において、比較器102による比較結果に応じて供給切替部100p,100nを制御する。詳しく説明すると、ビット決定期間P5~P1の各々において、制御部103は、アナログ電圧Vpがアナログ電圧Vnよりも低い場合には、アップ容量15up~11upおよびダウン容量15dn~11dnのうちそのビット決定期間に対応するアップ容量およびダウン容量の他端に電源電圧Vddおよび接地電圧Vssがそれぞれ供給されるように、供給切替部100p,100nを制御し、アナログ電圧Vpがアナログ電圧Vnよりも低くない場合には、ダウン容量15dp~11dpおよびアップ容量15un~11unのうちそのビット決定期間に対応するダウン容量およびアップ容量の他端に接地電圧Vssおよび電源電圧Vddがそれぞれ供給されるように、供給切替部100p,100nを制御する。
  〔動作〕
 次に、図2を参照して、逐次比較型AD変換器1による動作について説明する。
   《ST101》
 まず、制御部103は、サンプリング期間Psが開始されると、制御電圧Vup5~Vup1および制御電圧Vun5~Vun1を接地電圧Vssに設定するとともに制御電圧Vdp5~Vdp1および制御電圧Vdn5~Vdn1を電源電圧Vddに設定し、サンプリングスイッチSWp,SWnをオフ状態からオン状態に切り替える。
   《ST102》
 次に、制御部103は、サンプリング期間Psが終了すると、サンプリングスイッチSWp,SWnをオン状態からオフ状態に切り替える。また、制御部103は、6個のビット値D5~D0のうちビット値D5(最上位ビット値)を処理対象のビット値(以下、ビット値Diと表記)として選択する。ここでは、i=5~0 である。
   《ST103》
 次に、制御部103は、ビット値Diがビット値D0(最下位ビット値)であるか否かを判定する。ビット値Diがビット値D0ではない場合には、ステップST104へ進み、ビット値Diがビット値D0である場合には、ステップST107へ進む。
   《ST104》
 次に、ビット値Diに対応するビット決定期間(以下、ビット決定期間Piと表記)において、制御部103は、比較器102による比較結果に基づいて、アナログ電圧Vpがアナログ電圧Vnよりも低いか否かを判定する。アナログ電圧Vpがアナログ電圧Vnよりも低い場合には、ステップST105へ進み、そうでない場合には、ステップST106へ進む。
   《ST105》
 アナログ電圧Vpがアナログ電圧Vnよりも低い場合、制御部103は、ビット値Diを“0”に決定する。また、制御部103は、制御電圧Vup5~Vup1のうちビット決定期間Piに対応する制御電圧(以下、制御電圧Vupiと表記)を接地電圧Vssから電源電圧Vddに切り替えるとともに、制御電圧Vdn5~Vdn1のうちビット決定期間Piに対応する制御電圧(以下、制御電圧Vdniと表記)を電源電圧Vddから接地電圧Vssに切り替える。次に、制御部103は、ビット値D5~D0のうちビット値Diの次のビット値を次の処理対象として選択する。次に、ステップST103へ進む。
   《ST106》
 一方、アナログ電圧Vpがアナログ電圧Vnよりも低くない場合、制御部103は、ビット値Diを“1”に決定する。また、制御部103は、制御電圧Vdp5~Vdp1のうちビット決定期間Piに対応する制御電圧(以下、制御電圧Vdpiと表記)を電源電圧Vddから接地電圧Vssに切り替えるとともに、制御電圧Vun5~Vun1のうちビット決定期間Piに対応する制御電圧(以下、制御電圧Vuniと表記)を接地電圧Vssから電源電圧Vddに切り替える。次に、制御部103は、ビット値D5~D0のうちビット値Diの次のビット値を次の処理対象として選択する。次に、ステップST103へ進む。
   《ST107》
 また、ステップST103においてビット値Diがビット値D0(最下位ビット値)であると判定された場合、ビット値D0に対応する最下位ビット決定期間P0において、制御部103は、比較器102による比較結果に基づいて、アナログ電圧Vpがアナログ電圧Vnよりも低いか否かを判定する。アナログ電圧Vpがアナログ電圧Vnよりも低い場合には、ステップST108へ進み、そうでない場合には、ステップST109へ進む。
   《ST108,ST109》
 アナログ電圧Vpがアナログ電圧Vnよりも低い場合、制御部103は、ビット値D0を“0”に決定する(ST108)。一方、アナログ電圧Vpがアナログ電圧Vnよりも低くない場合、制御部103は、ビット値D0を“1”に決定する(ST109)。
  〔具体例〕
 次に、図3を参照して、逐次比較型AD変換器1による動作について具体例を挙げて説明する。
 サンプリング期間Psが経過した後、ビット値D5(最上位ビット値)に対応するビット決定期間P5(例えば、サンプリングクロックfsの立ち下がりエッジから内部クロックfckの第1番目の立ち下がりエッジまでの期間)において、制御部103は、内部クロックfckの第1番目の立ち上がりエッジに同期して、ビット値D5を“1”に決定する。次に、制御部103は、内部クロックfckの第1番目の立ち下がりエッジに同期して、ビット決定期間P5に対応する制御電圧Vdp5を電源電圧Vddから接地電圧Vssに切り替えるとともにビット決定期間P5に対応する制御電圧Vun5を接地電圧Vssから電源電圧Vddに切り替える。これにより、アナログ電圧Vpが降下するとともにアナログ電圧Vnが上昇する。
 次に、ビット値D4に対応するビット決定期間P4(例えば、内部クロックfckの第1番目の立ち下がりエッジから第2番目の立ち下がりエッジまでの期間)において、制御部103は、内部クロックfckの第2番目の立ち上がりエッジに同期して、ビット値D4を“1”に決定する。次に、制御部103は、内部クロックfckの第2番目の立ち下がりエッジに同期して、ビット決定期間P4に対応する制御電圧Vdp4を電源電圧Vddから接地電圧Vssに切り替えるとともにビット決定期間P4に対応する制御電圧Vun4を接地電圧Vssから電源電圧Vddに切り替える。これにより、アナログ電圧Vpが降下するとともにアナログ電圧Vnが上昇する。
 次に、ビット値D3,D2にそれぞれ対応するビット決定期間P3,P2において、制御部103は、内部クロックfckの第3番目および第4番目の立ち上がりエッジに同期して、ビット値D3,D2を“0”に決定する。次に、制御部103は、内部クロックfckの第3番目および第4番目の立ち下がりエッジに同期して、ビット決定期間P3,P2に対応する制御電圧Vup3,Vup2を接地電圧Vssから電源電圧Vddに切り替えるとともにビット決定期間P3,P2に対応する制御電圧Vdn3,Vdn2を電源電圧Vddから接地電圧Vssに切り替える。これにより、アナログ電圧Vpが上昇するとともにアナログ電圧Vnが降下する。
 次に、ビット値D1に対応するビット決定期間P1において、制御部103は、内部クロックfckの第5番目の立ち上がりエッジに同期して、ビット値D1を“1”に決定する。次に、制御部103は、内部クロックfckの第5番目の立ち下がりエッジに同期して、ビット決定期間P1に対応する制御電圧Vdp1を電源電圧Vddから接地電圧Vssに切り替えるとともにビット決定期間P1に対応する制御電圧Vun1を接地電圧Vssから電源電圧Vddに切り替える。
 次に、ビット値D0に対応する最下位ビット決定期間P0(例えば、内部クロックfckの第5番目の立ち下がりエッジからサンプリングクロックfsの立ち上がりエッジまでの期間)において、制御部103は、内部クロックfckの第6番目の立ち上がりエッジに同期して、ビット値D0を“1”に決定する。
  〔電荷移動〕
 次に、図4(a),図4(b)を参照して、図1に示した容量DA変換器101p,101nにおける電荷移動について説明する。ここでは、容量DA変換器101pを例に挙げて説明する。なお、図中、アップ容量15u,14uは、それぞれ、アップ容量15up,14upに相当し、アップ容量10uは、アップ容量13up~11upの合成容量に相当し、ダウン容量15d,14dは、ダウン容量15dp,14dpに相当し、ダウン容量10dは、ダウン容量13dp~11dpの合成容量に相当する。また、容量15u,15dの容量値を“C”とすると、容量14u,14dの容量値は“C/2”と表現でき、容量10u,10dの容量値は“C/2”と近似的に表現できる。
 ステップST102では、図4(a)のように、アップ容量15u,14u,10uの他端には、接地電圧Vssが印加され、ダウン容量15d,14d,10dの他端には、電源電圧Vddが印加される。次に、アナログ電圧Vpがアナログ電圧Vnよりも低くない場合、ステップST106において、ダウン容量15dの他端に印加される制御電圧は、電源電圧Vddから接地電圧Vssに切り替えられる。この場合、図4(b)のように、アップ容量15u,14u,10uおよびダウン容量15d,14d,10dにおいて電荷Q1,Q2,…,Q6がそれぞれ移動し、アップ容量15u,14u,10uおよびダウン容量15d,14d,10dにおいて電荷が再分配される。また、制御電圧が切り替えられた後に電源電圧Vddが印加されるダウン容量14d,10dを移動する電荷Q5,Q6は、電荷再分配によって消費される電荷に相当する。ここで、制御電圧を切り替える前のアナログ電圧Vpを“V(k)”とし、制御電圧を切り替えた後のアナログ電圧Vpを“V(k+1)”とすると、電荷Q5,Q6は、次式のように表現できる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 また、電荷Q5,Q6の和は、次式のように表現できる。
Figure JPOXMLDOC01-appb-M000004
 上式より、ステップST106における電荷移動量(容量DA変換器101pにおける電荷移動量)は、従来の逐次比較型AD変換器(ST906)における電荷移動量よりも少ない(“C・Vdd”だけ少ない)ことがわかる。これと同様に、ステップST105における電荷移動量(容量DA変換器101nにおける電荷移動量)も、従来の逐次比較型AD変換器(ST906)における電荷移動量よりも少ない。
 以上のように、容量DA変換器101pの容量アレイをアップ容量アレイ(アップ容量15up~11up)とダウン容量アレイ(ダウン容量15dp~11dp)とに分割し、アップ容量アレイおよびダウン容量アレイを個別に制御することにより、容量DA変換器101pにおける消費電力を低減できる。これと同様の原理により、容量DA変換器101nにおける消費電力も低減できる。その結果、逐次比較型AD変換器1の消費電力を低減できる。
 また、一般的に、半導体集積回路の内部では、電源電圧のインピーダンスが最も低い。したがって、電源電圧Vddをアップ容量15up~11upおよびアップ容量15un~11unの他端に印加することにより、電源電圧Vddよりもインピーダンスが高い他の電圧をアップ容量15up~11upおよびアップ容量15un~11unの他端に印加する場合よりも、セトリング時間を短縮できる。
 (実施形態1の変形例1)
 図5に示した逐次比較型AD変換器1aは、図1に示した容量DA変換器101p,101nに代えて、容量DA変換器201p,201nを備える。その他の構成は、図1に示した逐次比較型DA変換器1の構成と同様である。容量DA変換器201p,201nは、それぞれ、図1に示した容量DA変換器101p,101nの構成に加えて、入力容量21p,21nを含む。入力容量21pは、サンプリングノードNspと接地ノード(接地電圧Vssが印加されるノード)との間に接続され、入力容量21nは、サンプリングノードNsnと接地ノードとの間に接続される。このように構成することにより、逐次比較型AD変換器1aの入力レンジを調整することができる。例えば、図1に示した逐次比較型AD変換器1の入力レンジよりも狭くすることができる。具体的に説明すると、入力容量21p,21nの容量値を“128C”とすると、逐次比較型AD変換器1aの入力レンジを逐次比較型AD変換器1の入力レンジの62/(62+128)倍に設定できる。これにより、例えば、逐次比較型AD変換器1aの入力レンジを逐次比較型AD変換器1aの前段に設けられるサンプリングバッファ(図示せず)の線形レンジ内に収めることができる。
 (実施形態1の変形例2)
 図6に示した逐次比較型AD変換器1bは、図1に示した容量DA変換器101p,101nに代えて、直並列型の容量DA変換器301p,301nを備える。また、逐次比較型AD変換器1bは、補正容量アレイ311p,311nおよび容量補正部312p,312nをさらに備える。その他の構成は、図1に示した逐次比較型AD変換器1の構成と同様である。
  〔容量DA変換器〕
 容量DA変換器301p,301nは、それぞれ、図1に示した容量DA変換器101p,101nの構成に加えて、結合容量30p,30nを含む。
 結合容量30pの一端は、p個(ここでは、p=2)のアップ容量15up,14upおよびp個(ここでは、p=2)のダウン容量15dp,14dpの一端とサンプリングノードNspとに接続される。結合容量30pの他端は、q個(p+q=n、ここでは、q=3)個のアップ容量13up~11upおよびq個(p+q=n、ここでは、q=3)のダウン容量13dp~11dpの一端に接続される。すなわち、アップ容量13up~11upおよびダウン容量13dp~11dpの一端は、結合容量30pを介してサンプリングノードNspに接続されている。なお、p個のアップ容量15up,14upおよびp個のダウン容量15dp,14dpは、デジタルコードの上位pビット(ここでは、ビット値D5,D4)にそれぞれ対応し、q個のアップ容量13up~11upおよびq個のダウン容量13dp~11dpは、デジタルコードの最下位ビットを除く下位qビット(ここでは、ビット値D3,D2,D1)にそれぞれ対応している。
 結合容量30nの一端は、p個(ここでは、p=2)のアップ容量15un,14unおよびp個(ここでは、p=2)のダウン容量15dn,14dnの一端とサンプリングノードNsnとに接続される。結合容量30nの他端は、q個(p+q=n、ここでは、q=3)個のアップ容量13un~11unおよびq個(p+q=n、ここでは、q=3)のダウン容量13dn~11dnの一端に接続される。すなわち、アップ容量13un~11unおよびダウン容量13dn~11dnの一端は、結合容量30nを介してサンプリングノードNsnに接続されている。なお、p個のアップ容量15un,14unおよびp個のダウン容量15dn,14dnは、デジタルコードの上位pビット(ここでは、ビット値D5,D4)にそれぞれ対応し、q個のアップ容量13un~11unおよびq個のダウン容量13dn~11dnは、デジタルコードの最下位ビットを除く下位qビット(ここでは、ビット値D3,D2,D1)にそれぞれ対応している。
 以上のように、直並列型の容量アレイを用いて容量DA変換器301p,301nを構成することにより、直列型の容量アレイを用いて容量DA変換器を構成する場合(例えば、図1に示した容量DA変換器101p,101n)よりも、容量DA変換器の実装面積を削減できる。例えば、アップ容量11upおよびダウン容量11dpの容量値を“C”とすると、アップ容量15upおよびダウン容量15dnの容量値を“2C”とし、アップ容量14upおよびダウン容量14dnの容量値を“C”とすることができる。なお、容量DA変換器301p,301nは、それぞれ、図5に示した入力容量21p,21nをさらに含んでいても良い。
  〔補正容量アレイ,容量補正部〕
 補正容量アレイ311pは、複数(ここでは、4個)の補正容量31~31によって構成される。補正容量アレイ311pを構成する補正容量31~31の一端は、結合容量30pの他端に接続される。容量補正部312pは、補正容量アレイ311pを構成する補正容量31~31の他端と接地ノード(接地電圧Vssが印加されるノード)との接続状態を切り替える。例えば、容量補正部312pは、補正容量アレイ311pを構成する補正容量31~31の他端と接地ノードとの間にそれぞれ接続された複数(ここでは、4個)のスイッチSW3~SW3を含む。
 補正容量アレイ311nは、複数(ここでは、4個)の補正容量31~31によって構成される。補正容量アレイ311nを構成する補正容量31~31の一端は、結合容量30nの他端に接続される。容量補正部312nは、補正容量アレイ311nを構成する補正容量31~31の他端と接地ノードとの接続状態を切り替える。例えば、容量補正部312nは、補正容量アレイ311nを構成する補正容量31~31の他端と接地ノードとの間にそれぞれ接続された複数(ここでは、4個)のスイッチSW3~SW3を含む。
  〔結合容量の設計および容量補正〕
 次に、結合容量30p,30nの設計と、補正容量アレイ311p,311nおよび容量補正部312p,312nを用いた容量補正について説明する。ここでは、容量DA変換器301pを例に挙げて説明する。
 まず、上位容量アレイ(アップ容量15up,14upおよびダウン容量15dp,14dp)の単位容量を“Cu1”とし、上位容量アレイの共通電極に付加された寄生容量を“Cp1”とし、下位容量アレイ(アップ容量13up~11upおよびダウン容量13dp~11dp)の単位容量を“Cu2”とし、下位容量アレイの共通電極に付加された寄生容量を“Cp2”とし、補正容量アレイ311pの容量値(補正容量31~31のうち他端に接地ノードが接続された補正容量の合計容量値)を“Ctrim”とすると、上位容量アレイの合計容量値“CT1”および下位容量アレイの合計容量値“CT2”は、次式のようになる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 また、結合容量30pの容量値を“C”とし、上位容量アレイと結合容量30pとを含む等価容量の容量値を“Ceq1”とし、結合容量30pと下位容量アレイとを含む等価容量の容量値を“Ceq2”とすると、次式のようになる。なお、次式において、“||”は、上位容量アレイと結合容量30p(または、結合容量30pと下位容量アレイ)が互いに直列に接続されていることを示している。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 さらに、上位容量アレイの単位電荷量(Cu1・Vdd)に対する電圧変動(サンプリングノードNspの電圧変動)を“ΔV”とすると、次式のようになる。
Figure JPOXMLDOC01-appb-M000009
 この電圧変動ΔVを下位容量アレイの単位容量で生じる電圧変動ΔV’に換算すると、次式のようになる。
Figure JPOXMLDOC01-appb-M000010
 一方、下位容量アレイの単位電荷量(Cu2・Vdd)に対する電圧変動を“ΔV”とすると、次式のようになる。
Figure JPOXMLDOC01-appb-M000011
 この電圧変動ΔVを上位容量アレイに現れる電圧変動ΔV’(サンプリングノードNspの電圧変動)に換算すると、次式のようになる。
Figure JPOXMLDOC01-appb-M000012
 ここで、電圧変動ΔV’および電圧変動ΔV’は互いに等しいので、次式の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000013
 次に、数10の式および数12の式を数13の式に代入すると、次式のようになる。
 上式を整理すると、次式のようになる。
Figure JPOXMLDOC01-appb-M000015
 次に、数7の式および数8の式を数15の式に代入すると、次式のようになる。
Figure JPOXMLDOC01-appb-M000016
 上式を整理して、結合容量30pの容量値Caについて解くと、次式のようになる。
Figure JPOXMLDOC01-appb-M000017
 上式より、結合容量30pの容量値Cを下位容量アレイの合計容量値CT2の1/{2(Cu2/Cu1)-1}倍に設計することにより、下位容量アレイの電圧変動を、結合容量30pを介して、サンプリングノードNspの電圧変動に等価に換算でき、容量DA変換器301pの線形性を保つことができる。
 特に、上位容量アレイの単位容量と下位容量アレイの単位容量とを互いに等しい値に設計する場合(Cu1=Cu2=Cの場合)、次式のようになる。
Figure JPOXMLDOC01-appb-M000018
 具体的に説明すると、q=1~5の場合、次式のようになる(図6の例は、q=3の場合に相当する)。
Figure JPOXMLDOC01-appb-M000019
 ここで、下位容量アレイの寄生容量Cp2が十分小さく“0”とみなせ、且つ、補正容量アレイの容量値Ctrimが“0”である場合、結合容量30pの容量値Cは、qの値によらず常に“2C”となる。ただし、実際には、上位容量アレイおよび下位容量アレイの各々には寄生容量が付加されるので、数18の式が成り立つように容量補正部312pによって補正容量アレイ311pの接続状態を制御して下位容量アレイの合計容量値CT2を補正することにより、容量DA変換器301pの線形性を保つことができる。また、これと同様の原理により、容量DA変換器301nの線形性を保つことができる。その結果、逐次比較型AD変換器1bの線形性を改善できる。
 なお、逐次比較型AD変換器1bは、補正容量アレイ311p,311nおよび容量補正部312p,312nを備えていなくても良い。
 (実施形態1の変形例3)
 図7に示した逐次比較型AD変換器1cは、図1に示した逐次比較型AD変換器1の構成に加えて、オフセット調整容量アレイ401p,401nと、オフセット調整部402p,402nとを備える。
 オフセット調整容量アレイ401pは、複数(ここでは、3個)のオフセット調整容量41~41によって構成される。オフセット調整容量アレイ401pを構成するオフセット調整容量41~41の一端は、サンプリングノードNspに接続される。オフセット調整部402pは、外部制御に応答して、オフセット容量アレイ401pを構成するオフセット調整容量41~41の他端に接地電圧Vssおよび電源電圧Vddのいずれか一方を供給する。例えば、オフセット調整部402pは、複数(ここでは、3個)のインバータ42~42を含む。インバータ42~42は、それぞれ、外部制御に応答して、接地電圧Vssおよび電源電圧Vddのいずれか一方を、オフセット制御電圧Vop1~Vop3としてオフセット調整容量41~41の他端に供給する。例えば、インバータ42~42は、それぞれ、サンプリング直後に、外部制御に応答して、オフセット制御電圧Vop1~Vop3を接地電圧Vssから電源電圧Vddへ(または、電源電圧Vddから接地電圧Vssへ)切り替える動作およびオフセット電圧Vop1~Vop3を変化させない動作のいずれか1つを実行する。
 オフセット調整容量アレイ401nは、複数(ここでは、3個)のオフセット調整容量41~41によって構成される。オフセット容量アレイ401nを構成するオフセット調整容量41~41の一端は、サンプリングノードNsnに接続される。オフセット調整部402nは、外部制御に応答して、オフセット容量アレイ401nを構成するオフセット調整容量41~41の他端に接地電圧Vssおよび電源電圧Vddのいずれか一方を供給する。例えば、オフセット調整部402nは、複数(ここでは、3個)のインバータ42~42を含む。インバータ42~42は、それぞれ、外部制御に応答して、接地電圧Vssおよび電源電圧Vddのいずれか一方を、オフセット制御電圧Von1~Von3としてオフセット調整容量41~41の他端に供給する。例えば、インバータ42~42は、それぞれ、サンプリング直後に、外部制御に応答して、オフセット制御電圧Von1~Von3を接地電圧Vssから電源電圧Vddへ(または、電源電圧Vddから接地電圧Vssへ)切り替える動作およびオフセット電圧Von1~Von3を変化させない動作のいずれか1つを実行する。
 以上のように構成することにより、比較器102のオフセットを調整する(例えば、“0”にする)ことができ、その結果、逐次比較型AD変換器1cのオフセットを調整する(例えば、“0”にする)ことができる。また、オフセット調整容量アレイ401p,401nおよびオフセット調整部402p,402nは、容量DA変換器101p,101nに含まれる重み付け容量(アップ容量およびダウン容量)のミスマッチ補正に利用されても良い。
 なお、オフセット調整容量アレイ401p,401nを構成するオフセット調整容量41~41の容量値は、全て同一であっても良いし、重み付けされていても良い。
 また、逐次比較型AD変換器1cは、容量DA変換器101p,101nに代えて、図5に示した容量DA変換器201p,201nを備えていても良い。
 (実施形態1の変形例4)
 図8に示した逐次比較型AD変換器1dは、図6に示した補正容量アレイ311p,311nおよび容量補正部312p,312nに代えて、オフセット調整容量アレイ401p,401nおよびオフセット調整部402p,402nを備える。その他の構成は、図6に示した逐次比較型AD変換器1bの構成と同様である。オフセット調整容量アレイ401pを構成するオフセット調整容量41~41の一端は、サンプリングノードNspに接続され、オフセット調整容量アレイ401nの構成するオフセット調整容量41~41の一端は、サンプリングノードNsnに接続される。このように構成することにより、比較器102のオフセットを調整する(例えば、“0”にする)ことができ、その結果、逐次比較型AD変換器1cのオフセットを調整する(例えば、“0”にする)ことができる。また、オフセット調整容量アレイ401p,401nおよびオフセット調整部402p,402nは、容量DA変換器301p,301nに含まれる重み付け容量(アップ容量およびダウン容量)のミスマッチ補正に利用されても良いし、結合容量30p,30nの容量値の補正に利用されても良い。
 なお、逐次比較型AD変換器1dは、図6に示した補正容量アレイ311p,311n
および容量補正部312p,312nをさらに備えていても良い。
 (実施形態2)
 図9は、実施形態2による逐次比較型AD変換器2の構成例を示す。逐次比較型AD変換器2は、アナログ信号Vinをn+1個(n≧2、ここでは、n=5)のビット値D5~D0からなるデジタルコードに変換する。逐次比較型AD変換器2は、容量DA変換器101と、サンプリングスイッチSWsと、比較器202と、制御部203とを備える。
  〔容量DA変換器〕
 容量DA変換器101は、図1に示した容量DA変換器101pと同様の構成を有しており、n個(ここでは、n=5)のアップ容量15u~11uと、n個(ここでは、n=5)のダウン容量15d~11dと、供給切替部100とを含む。アップ容量15u~11uおよびダウン容量15d~11dの一端は、サンプリングノードNsに接続される。供給切替部100は、制御部203による制御に応答して、アップ容量15u~11uおよびダウン容量15d~11dの他端に接地電圧Vssおよび電源電圧Vddのいずれか一方を供給する。容量DA変換器101では、インバータ16u~16uおよびインバータ16d~16dは、制御部203による制御に応答して、接地電圧Vssおよび電源電圧Vddのいずれか一方を、制御電圧Vu5~Vu1および制御電圧Vd5~Vd1として、アップ容量15u~11uの他端およびダウン容量15d~11dの他端にそれぞれ供給する。
  〔サンプリングスイッチ〕
 サンプリングスイッチSWsは、アナログ信号VinをサンプリングノードNsにサンプリングするために設けられている。サンプリングスイッチSWsは、制御部203による制御に応答して、オン状態とオフ状態とを切り替える。
  〔比較器〕
 比較器202は、比較電圧Va(例えば、0.5V)とサンプリングノードNsにおけるアナログ電圧V101とを比較する。例えば、比較器202の出力は、アナログ電圧V101が比較電圧Vaよりも低い場合にはローレベルになり、アナログ電圧V101が比較電圧Vaよりも低くない場合にはハイレベルになる。
  〔制御部〕
 制御部203は、サンプリングクロックfsおよび内部クロックfckに同期して、サンプリングスイッチSWsおよび供給切替部100の制御や、ビット値D5~D0の決定を実行する。
 制御部203は、サンプリング期間Ps(図3参照)において、アップ容量15u~11uの他端に接地電圧Vssが供給されるとともにダウン容量15d~11dの他端に電源電圧Vddが供給されるように、供給切替部100を制御する。
 また、制御部203は、ビット値D5~D0がビット値D5(MSB:最上位ビット値)から順番に決定されるように、ビット決定期間P5~P1および最下位ビット決定期間P0(図3参照)の各々において、比較器202による比較結果に応じてビット値D5~D0のうちそのビット決定期間に対応するビット値を決定する。
 さらに、制御部203は、アナログ電圧V101が比較電圧Vaに漸近するように、ビット決定期間P5~P1(図3参照)の各々において、比較器202による比較結果に応じて供給切替部100を制御する。詳しく説明すると、ビット決定期間P5~P1の各々において、制御部203は、アナログ電圧V101が比較電圧Vaよりも低い場合には、アップ容量15u~11uのうちそのビット決定期間に対応するアップ容量の他端に電源電圧Vddが供給されるように、供給切替部100を制御し、アナログ電圧V101が比較電圧Vaよりも低くない場合には、ダウン容量15d~11dのうちそのビット決定期間に対応するダウン容量の他端に接地電圧Vssが供給されるように、供給切替部100を制御する。
  〔動作〕
 次に、図10を参照して、逐次比較型AD変換器2による動作について説明する。
   《ST201》
 まず、制御部203は、サンプリング期間Psが開始されると、制御電圧Vu5~Vu1を接地電圧Vssに設定するとともに制御電圧Vd5~Vd1を電源電圧Vddに設定し、サンプリングスイッチSWsをオフ状態からオン状態に切り替える。
   《ST202》
 次に、制御部203は、サンプリング期間Psが経過すると、サンプリングスイッチSWsをオン状態からオフ状態に切り替える。また、制御部203は、6個のビット値D5~D0のうちビット値D5(最上位ビット値)を処理対象のビット値(以下、ビット値Diと表記)として選択する。ここでは、i=5~0 である。
   《ST203》
 次に、制御部203は、ビット値Diがビット値D0(最下位ビット値)であるか否かを判定する。ビット値Diがビット値D0ではない場合には、ステップST204へ進み、ビット値Diがビット値D0である場合には、ステップST207へ進む。
   《ST204》
 次に、ビット値Diに対応するビット決定期間(以下、ビット決定期間Piと表記)において、制御部203は、比較器202による比較結果に基づいて、アナログ電圧V101が比較電圧Vaよりも低いか否かを判定する。アナログ電圧V101が比較電圧Vaよりも低い場合には、ステップST205へ進み、そうでない場合には、ステップST206へ進む。
   《ST205》
 アナログ電圧V101が比較電圧Vaよりも低い場合、制御部203は、ビット値Diを“0”に決定する。また、制御部203は、制御電圧Vu5~Vu1のうちビット決定期間Piに対応する制御電圧(以下、制御電圧Vuiと表記)を接地電圧Vssから電源電圧Vddに切り替える。次に、制御部103は、ビット値D5~D0のうちビット値Diの次のビット値を次の処理対象として選択する。次に、ステップST203へ進む。
   《ST206》
 一方、アナログ電圧V101が比較電圧Vaよりも低くない場合、制御部203は、ビット値Diを“1”に決定する。また、制御部203は、制御電圧Vd5~Vd1のうちビット決定期間Piに対応する制御電圧(以下、制御電圧Vdiと表記)を電源電圧Vddから接地電圧Vssに切り替える。次に、制御部203は、ビット値D5~D0のうちビット値Diの次のビット値を次の処理対象として選択する。次に、ステップST203へ進む。
   《ST207》
 また、ステップST203においてビット値Diがビット値D0(最下位ビット値)であると判定された場合、ビット値D0に対応する最下位ビット決定期間P0において、制御部203は、比較器202による比較結果に基づいて、アナログ電圧V101が比較電圧Vaよりも低いか否かを判定する。アナログ電圧V101が比較電圧Vaよりも低い場合には、ステップST208へ進み、そうでない場合には、ステップST209へ進む。
   《ST208,ST209》
 アナログ電圧V101が比較電圧Vaよりも低い場合、制御部203は、ビット値D0を“0”に決定する(ST208)。一方、アナログ電圧V101が比較電圧Vaよりも低くない場合、制御部203は、ビット値D0を“1”に決定する(ST209)。
 以上のように、容量DA変換器101の容量アレイをアップ容量アレイ(アップ容量15u~11u)とダウン容量アレイ(ダウン容量15d~11d)とに分割し、アップ容量アレイおよびダウン容量アレイを個別に制御することにより、容量DA変換器101における消費電力を低減できる。その結果、逐次比較型AD変換器2の消費電力を低減できる。
 また、一般的に、半導体集積回路の内部では、電源電圧のインピーダンスが最も低い。したがって、電源電圧Vddをアップ容量15u~11uの他端に印加することにより、電源電圧Vddよりもインピーダンスが高い他の電圧をアップ容量15u~11uの他端に印加する場合よりも、セトリング時間を短縮できる。
 (実施形態2の変形例1)
 図11に示した逐次比較型AD変換器2aは、図9に示した容量DA変換器101に代えて、容量DA変換器201を備える。その他の構成は、図9に示した逐次比較型AD変換器2の構成と同様である。容量DA変換器201は、図9に示した容量DA変換器101の構成に加えて、サンプリングノードNsと接地ノード(接地電圧Vssが印加されるノード)との間に接続された入力容量21を含む。このように構成することにより、逐次比較型AD変換器2aの入力レンジを図9に示した逐次比較型AD変換器2の入力レンジよりも狭くすることができる。例えば、入力容量21の容量値を“128C”とすると、逐次比較型AD変換器2aの入力レンジを逐次比較型AD変換器2の入力レンジの62/(62+128)倍に設定できる。これにより、例えば、逐次比較型AD変換器2aの入力レンジを逐次比較型AD変換器2aの前段に設けられるサンプリングバッファ(図示せず)の線形レンジ内に収めることができる。
 (実施形態2の変形例2)
 図12に示した逐次比較型AD変換器2bは、図9に示した逐次比較型AD変換器2の構成に加えて、オフセット調整容量アレイ401と、オフセット調整部402とを備える。オフセット調整容量アレイ401は、複数(ここでは、3個)のオフセット調整容量41~41によって構成される。オフセット調整容量41~41の一端は、サンプリングノードNsに接続される。オフセット調整部402は、外部制御に応答して、オフセット調整容量41~41の他端に接地電圧Vssおよび電源電圧Vddのいずれか一方を供給する。例えば、オフセット調整部42は、複数(ここでは、3個)のインバータ42~42を含む。インバータ42~42は、それぞれ、外部制御に応答して、接地電圧Vssおよび電源電圧Vddのいずれか一方を、オフセット制御電圧Vop1~Vop3としてオフセット調整容量41~41の他端に供給する。例えば、インバータ42~42は、それぞれ、サンプリング直後に、外部制御に応答して、オフセット制御電圧Vop1~Vop3を接地電圧Vssから電源電圧Vddへ(または、電源電圧Vddから接地電圧Vssへ)切り替える動作およびオフセット電圧Vop1~Vop3を変化させない動作のいずれか1つを実行する。このように構成することにより、比較器202のオフセットを調整する(例えば、“0”にする)ことができ、その結果、逐次比較型AD変換器2bのオフセットを調整する(例えば、“0”にする)ことができる。また、オフセット調整容量アレイ401およびオフセット調整部402は、容量DA変換器101に含まれる重み付け容量(アップ容量およびダウン容量)のミスマッチ補正に利用されても良い。
 (移動体無線装置)
 図13のように、逐次比較型AD変換器1,1a,1b,1c,1dは、移動体無線装置に適用可能である。図13に示した移動体無線装置は、逐次比較型AD変換器1の他に、アンテナ51(受信部)と、ローノイズアンプ(LNA)52と、ゲインアンプ53と、バッファアンプ54と、デジタル信号処理回路(DSP)55とを備える。
 アンテナ51は、無線信号を受信して一対のアナログ信号Vinp,Vinn(微弱なアナログ信号)を出力する。ローノイズアンプ52は、できる限りノイズを付加せずにアナログ信号Vinp,Vinnを増幅する。ゲインアンプ53は、ローノイズアンプ52によって増幅されたアナログ信号Vinp,Vinnをさらに増幅する。バッファアンプ54は、逐次比較型AD変換器1への出力インピーダンスを変換する。逐次比較型AD変換器1は、アンテナ51からローノイズアンプ52,ゲインアンプ53,およびバッファアンプ54を経由して供給されたアナログ信号Vinp,Vinnをデジタルコードに変換する。デジタル信号処理回路55は、逐次比較型AD変換器1によって得られたデジタルコードを処理する。
 以上のように、消費電力を低減可能な逐次比較型AD変換器を移動体無線装置に適用することにより、移動体無線装置の消費電力を低減できる。これにより、移動体無線装置に搭載された電池の寿命を延ばすことができ、移動体無線装置を長時間使用することができる。
 なお、逐次比較型AD変換器2,2a,2bも、移動体無線装置に適用可能である。例えば、逐次比較型AD変換器2を図13に示した移動体無線装置に適用する場合、アンテナ301は、無線信号を受信して単一のアナログ信号を出力し、逐次比較型AD変換器2は、アンテナ301からローノイズアンプ302,ゲインアンプ303,およびバッファアンプ304を経由して供給された単一のアナログ信号をデジタルコードに変換する。
 以上説明したように、上述の逐次比較型AD変換器は、消費電力を低減できるので、消費電力の低減化が要求される製品(例えば、移動体無線装置)などに有用である
1,1a,1b,1c,1d,2,2a,2b  逐次比較型AD変換器
101p,101n,101  容量DA変換器
15up~11up,15un~11un,15u~11u  アップ容量
15dp~11dp,15dn~11dn,15d~11d  ダウン容量
100p,100n,100  供給切替部
SWp,SWn,SWs  サンプリングスイッチ
102  比較器
103  制御部
201p,201n,201  容量DA変換器
21p,21n,21  入力容量
301p,301n  容量DA変換器
30p,30n  結合容量
311p,311n  補正容量アレイ
31  補正容量
312p,312n  容量補正部
401p,401n,401  オフセット調整容量アレイ
41  オフセット調整容量
402p,402n,402  オフセット調整部

Claims (11)

  1.  電圧値が互いに相補的に変化する第1および第2のアナログ信号をn+1個(n≧2)のビット値からなるデジタルコードに変換する逐次比較型AD変換器であって、
     それぞれの一端が第1のサンプリングノードに接続されるとともにバイナリに重み付けされた容量値をそれぞれ有するn個の第1アップ容量およびn個の第1ダウン容量と、前記n個の第1アップ容量および前記n個の第1ダウン容量の他端に接地電圧および電源電圧のいずれか一方を供給する第1の供給切替部とを含む第1の容量DA変換器と、
     それぞれの一端が第2のサンプリングノードに接続されるとともにバイナリに重み付けされた容量値をそれぞれ有するn個の第2アップ容量およびn個の第2ダウン容量と、前記n個の第2アップ容量および前記n個の第2ダウン容量の他端に前記接地電圧および前記電源電圧のいずれか一方を供給する第2の供給切替部とを含む第2の容量DA変換器と、
     サンプリング期間において前記第1および第2のアナログ信号を前記第1および第2のサンプリングノードにそれぞれサンプリングする第1および第2のサンプリングスイッチと、
     前記第1のサンプリングノードにおける第1のアナログ電圧と前記第2のサンプリングノードにおける第2のアナログ電圧とを比較する比較器と、
     前記サンプリング期間において、前記n個の第1アップ容量および前記n個の第2アップ容量の他端に前記接地電圧が供給されるとともに前記n個の第1ダウン容量および前記n個の第2ダウン容量の他端に前記電源電圧が供給されるように、前記第1および第2の供給切替部を制御し、前記n+1個のビット値が最上位ビット値から順番に決定されるように、前記n+1個のビット値のうち最下位ビット値を除くn個のビット値にそれぞれ対応するn個のビット決定期間および前記最下位ビット値に対応する最下位ビット決定期間の各々において、前記比較器による比較結果に応じて前記n+1個のビット値のうち当該ビット決定期間に対応するビット値を決定するとともに、前記第1および第2のアナログ電圧が互いに漸近するように、前記n個のビット決定期間の各々において、前記比較器による比較結果に応じて前記第1および第2の供給切替部を制御する制御部とを備える
    ことを特徴とする逐次比較型AD変換器。
  2.  請求項1において、
     前記制御部は、前記n個のビット決定期間の各々において、前記第1のアナログ電圧が前記第2のアナログ電圧よりも低い場合には、前記n個の第1アップ容量および前記n個の第2ダウン容量のうち当該ビット決定期間に対応する第1アップ容量および第2ダウン容量に前記電源電圧および前記接地電圧がそれぞれ供給されるように前記第1および第2の供給切替部を制御し、前記第1のアナログ電圧が前記第2のアナログ電圧よりも低くない場合には、前記n個の第1ダウン容量および前記n個の第2アップ容量のうち当該ビット決定期間に対応する第1ダウン容量および第2アップ容量に前記接地電圧および前記電源電圧がそれぞれ供給されるように前記第1および第2の供給切替部を制御する
    ことを特徴とする逐次比較型AD変換器。
  3.  請求項1において、
     前記第1の容量DA変換器は、前記第1のサンプリングノードと前記接地電圧が印加される接地ノードとの間に接続された第1の入力容量をさらに含み、
     前記第2の容量DA変換器は、前記第2のサンプリングノードと前記接地ノードとの間に接続された第2の入力容量をさらに含む
    ことを特徴とする逐次比較型AD変換器。
  4.  請求項1において、
     前記第1および第2の容量DA変換器は、それぞれ、第1および第2の結合容量をさらに含み、
     前記第1の結合容量の一端は、前記n個の第1アップ容量および前記n個の第1ダウン容量のうち前記デジタルコードの上位pビットにそれぞれ対応するp個の第1アップ容量およびp個の第1ダウン容量の一端と前記第1のサンプリングノードとに接続され、
     前記第1の結合容量の他端は、前記n個の第1アップ容量および前記n個の第1ダウン容量のうち前記デジタルコードの最下位ビットを除く下位qビット(p+q=n)にそれぞれ対応するq個の第1アップ容量およびq個の第1ダウン容量の一端に接続され、
     前記q個の第1アップ容量および前記q個の第1ダウン容量の一端は、前記第1の結合容量を介して前記第1のサンプリングノードに接続されており、
     前記第2の結合容量の一端は、前記n個の第2アップ容量および前記n個の第2ダウン容量のうち前記デジタルコードの上位pビットにそれぞれ対応するp個の第2アップ容量およびp個の第2ダウン容量の一端と前記第2のサンプリングノードとに接続され、
     前記第2の結合容量の他端は、前記n個の第2アップ容量および前記n個の第2ダウン容量のうち前記デジタルコードの最下位ビットを除く下位qビットにそれぞれ対応するq個の第2アップ容量およびq個の第2ダウン容量の一端に接続され、
     前記q個の第2アップ容量および前記q個の第2ダウン容量の一端は、前記第2の結合容量を介して前記第2のサンプリングノードに接続されている
    ことを特徴とする逐次比較型AD変換器。
  5.  請求項4において、
     それぞれの一端が前記第1の結合容量の他端に接続された複数の第1の補正容量と、
     前記複数の第1の補正容量の他端と前記接地電圧が印加された接地ノードとの接続状態を切り替える第1の容量補正部と、
     それぞれの一端が前記第2の結合容量の他端に接続された複数の第2の補正容量と、
     前記複数の第2の補正容量の他端と前記接地ノードとの接続状態を切り替える第2の容量補正部とをさらに備える
    ことを特徴とする逐次比較型AD変換器。
  6.  請求項4において、
     それぞれの一端が前記第1の結合容量の他端に接続された複数の第1のオフセット調整容量と、
     前記複数の第1のオフセット調整容量の他端に前記接地電圧および前記電源電圧のいずれか一方を供給する第1のオフセット調整部と、
     それぞれの一端が前記第2の結合容量の他端に接続された複数の第2のオフセット調整容量と、
     前記複数の第2のオフセット調整容量の他端に前記接地電圧および前記電源電圧のいずれか一方を供給する第2のオフセット調整部とをさらに備える
    ことを特徴とする逐次比較型AD変換器。
  7.  請求項1において、
     それぞれの一端が前記第1のサンプリングノードに接続された複数の第1のオフセット調整容量と、
     前記複数の第1のオフセット調整容量の他端に前記接地電圧および前記電源電圧のいずれか一方を供給する第1のオフセット調整部と、
     それぞれの一端が前記第2のサンプリングノードに接続された複数の第2のオフセット調整容量と、
     前記複数の第2のオフセット調整容量の他端に前記接地電圧および前記電源電圧のいずれか一方を供給する第2のオフセット調整部とをさらに備える
    ことを特徴とする逐次比較型AD変換器。
  8.  無線信号を受信して当該無線信号に応じた第1および第2のアナログ信号を出力する受信部と、
     前記受信部からの第1および第2のアナログ信号をデジタルコードに変換する請求項1~7のいずれか1項に記載の逐次比較型AD変換器と、
     前記逐次比較型AD変換器によって得られたデジタルコードを処理するデジタル信号処理部とを備える
    ことを特徴とする移動体無線装置。
  9.  アナログ信号をn+1個(n≧2)のビット値からなるデジタルコードに変換する逐次比較型AD変換器であって、
     それぞれの一端がサンプリングノードに接続されるとともにバイナリに重み付けされた容量値をそれぞれ有するn個のアップ容量およびn個のダウン容量と、前記n個のアップ容量および前記n個のダウン容量の他端に接地電圧および電源電圧のいずれか一方を供給する供給切替部とを含む容量DA変換器と、
     サンプリング期間において前記アナログ信号を前記サンプリングノードにサンプリングするサンプリングスイッチと、
     比較電圧と前記サンプリングノードにおけるアナログ電圧とを比較する比較器と、
     前記サンプリング期間において、前記n個のアップ容量の他端に前記接地電圧が供給されるとともに前記n個のダウン容量の他端に前記電源電圧が供給されるように前記供給切替部を制御し、前記n+1個のビット値が最上位ビット値から順番に決定されるように、前記n+1個のビット値のうち最下位ビット値を除くn個のビット値にそれぞれ対応するn個のビット決定期間および前記最下位ビット値に対応する最下位ビット決定期間の各々において、前記比較器による比較結果に応じて前記n+1個のビット値のうち当該ビット決定期間に対応するビット値を決定するとともに、前記アナログ電圧が前記比較電圧に漸近するように、前記n個のビット決定期間の各々において、前記比較器による比較結果に応じて前記供給切替部を制御する制御部とを備える
    ことを特徴とする逐次比較型AD変換器。
  10.  請求項9において、
     前記制御部は、前記n個のビット決定期間の各々において、前記アナログ電圧が前記比較電圧よりも低い場合には、前記n個のアップ容量のうち当該ビット決定期間に対応するアップ容量に前記電源電圧が供給されるように前記供給切替部を制御し、前記アナログ電圧が前記比較電圧よりも低くない場合には、前記n個のダウン容量のうち当該ビット決定期間に対応するダウン容量に前記接地電圧が供給されるように前記供給切替部を制御する
    ことを特徴とする逐次比較型AD変換器。
  11.  無線信号を受信して当該無線信号に応じたアナログ信号を出力する受信部と、
     前記受信部からのアナログ信号をデジタルコードに変換する請求項9または10に記載の逐次比較型AD変換器と、
     前記逐次比較型AD変換器によって得られたデジタルコードを処理するデジタル信号処理部とを備える
    ことを特徴とする移動体無線装置。
PCT/JP2010/005606 2010-03-09 2010-09-14 逐次比較型ad変換器、移動体無線装置 WO2011111127A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800652274A CN102792594A (zh) 2010-03-09 2010-09-14 逐次比较型ad转换器、移动体无线装置
US13/597,936 US20120319880A1 (en) 2010-03-09 2012-08-29 Successive approximation ad converter and mobile wireless device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010051483A JP2011188240A (ja) 2010-03-09 2010-03-09 逐次比較型ad変換器、移動体無線装置
JP2010-051483 2010-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/597,936 Continuation US20120319880A1 (en) 2010-03-09 2012-08-29 Successive approximation ad converter and mobile wireless device

Publications (1)

Publication Number Publication Date
WO2011111127A1 true WO2011111127A1 (ja) 2011-09-15

Family

ID=44562976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005606 WO2011111127A1 (ja) 2010-03-09 2010-09-14 逐次比較型ad変換器、移動体無線装置

Country Status (4)

Country Link
US (1) US20120319880A1 (ja)
JP (1) JP2011188240A (ja)
CN (1) CN102792594A (ja)
WO (1) WO2011111127A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074979A (ja) * 2010-09-29 2012-04-12 Fujitsu Ltd 逐次比較a/d変換器
WO2015181682A1 (ja) * 2014-05-28 2015-12-03 株式会社半導体エネルギー研究所 アナログ/デジタル変換回路、半導体装置、及び電子機器
WO2017158996A1 (ja) * 2016-03-16 2017-09-21 ソニー株式会社 アナログデジタル変換器、電子装置およびアナログデジタル変換器の制御方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9071388B2 (en) 2012-08-03 2015-06-30 Entropic Communications, LLC. Switchable diplexer with physical layout to provide improved isolation
JP5743986B2 (ja) * 2012-09-10 2015-07-01 株式会社東芝 半導体集積回路およびイメージセンサ
US9197239B2 (en) * 2014-01-08 2015-11-24 Maxlinear, Inc. Method and system for analog-to-digital converter with near-constant common mode voltage
CN104852741B (zh) * 2014-02-13 2018-04-17 财团法人成大研究发展基金会 非同步逐渐逼近式模拟至数字转换器
US9300316B2 (en) 2014-02-28 2016-03-29 Qualcomm Incorporated Voltage doubling circuit for an analog to digital converter (ADC)
JP6287433B2 (ja) * 2014-03-25 2018-03-07 セイコーエプソン株式会社 逐次比較型アナログ−デジタル変換器、物理量検出センサー、電子機器及び移動体並びに逐次比較型アナログ−デジタル変換方法
JP6455063B2 (ja) * 2014-10-15 2019-01-23 セイコーエプソン株式会社 ドライバー及び電子機器
JP6767715B2 (ja) * 2015-05-27 2020-10-14 パナソニックIpマネジメント株式会社 Ad変換器
WO2017158677A1 (ja) * 2016-03-14 2017-09-21 オリンパス株式会社 Ad変換器およびイメージセンサ
JPWO2017158678A1 (ja) 2016-03-14 2019-01-17 オリンパス株式会社 Ad変換器およびイメージセンサ
WO2017168502A1 (ja) 2016-03-28 2017-10-05 オリンパス株式会社 Ad変換器およびイメージセンサ
KR101972689B1 (ko) * 2016-10-25 2019-04-25 선전 구딕스 테크놀로지 컴퍼니, 리미티드 Dac 커패시터 어레이 및 아날로그-디지털 컨버터, 아날로그-디지털 컨버터 전력 소비를 감소하는 방법
WO2018108260A1 (en) 2016-12-14 2018-06-21 Widex A/S A hearing assistive device with a divided power supply voltage as voltage reference
EP3340654A1 (en) 2016-12-20 2018-06-27 Widex A/S Integrated circuit component for a hearing assistive device
KR102654276B1 (ko) * 2017-02-13 2024-04-04 에스케이하이닉스 주식회사 아날로그-디지털 변환기 및 이를 이용한 반도체 장치
JP7159634B2 (ja) * 2018-06-18 2022-10-25 株式会社ソシオネクスト コンパレータ及びad変換器
KR102682129B1 (ko) * 2018-12-20 2024-07-09 삼성전자주식회사 Adc, 집적 회로, 및 센서 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311144A (ja) * 2005-04-27 2006-11-09 Sanyo Electric Co Ltd デジタルアナログ変換器、およびそれを用いた逐次比較型アナログデジタル変換器
JP2007049637A (ja) * 2005-08-12 2007-02-22 Fujitsu Ltd 逐次比較型ad変換器。

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581252A (en) * 1994-10-13 1996-12-03 Linear Technology Corporation Analog-to-digital conversion using comparator coupled capacitor digital-to-analog converters
US6667707B2 (en) * 2002-05-02 2003-12-23 Analog Devices, Inc. Analog-to-digital converter with the ability to asynchronously sample signals without bias or reference voltage power consumption
JP3839027B2 (ja) * 2004-04-09 2006-11-01 Necエレクトロニクス株式会社 Ad変換器
JP4690105B2 (ja) * 2005-04-26 2011-06-01 パナソニック株式会社 逐次比較型a/dコンバータ
US7432844B2 (en) * 2006-12-04 2008-10-07 Analog Devices, Inc. Differential input successive approximation analog to digital converter with common mode rejection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311144A (ja) * 2005-04-27 2006-11-09 Sanyo Electric Co Ltd デジタルアナログ変換器、およびそれを用いた逐次比較型アナログデジタル変換器
JP2007049637A (ja) * 2005-08-12 2007-02-22 Fujitsu Ltd 逐次比較型ad変換器。

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074979A (ja) * 2010-09-29 2012-04-12 Fujitsu Ltd 逐次比較a/d変換器
WO2015181682A1 (ja) * 2014-05-28 2015-12-03 株式会社半導体エネルギー研究所 アナログ/デジタル変換回路、半導体装置、及び電子機器
WO2017158996A1 (ja) * 2016-03-16 2017-09-21 ソニー株式会社 アナログデジタル変換器、電子装置およびアナログデジタル変換器の制御方法
US10505558B2 (en) 2016-03-16 2019-12-10 Sony Corporation Analog-to-digital converter, electronic device, and method of controlling analog-to-digital converter

Also Published As

Publication number Publication date
CN102792594A (zh) 2012-11-21
JP2011188240A (ja) 2011-09-22
US20120319880A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
WO2011111127A1 (ja) 逐次比較型ad変換器、移動体無線装置
US7515086B2 (en) Pipelined analog-to-digital converter and method of analog-to-digital conversion
CN108574487B (zh) 逐次逼近寄存器模数转换器
US8159382B2 (en) Low power converter and shutdown SAR ADC architecture
US7515083B2 (en) Analog-to-digital converting system
US8368578B2 (en) Asynchronous digital slope analog-to-digital converter and method thereof
KR101253224B1 (ko) 아날로그 디지털 변환기
US8531328B2 (en) Analog digital converter
US8004448B2 (en) Dual DAC structure for charge redistributed ADC
US7852254B1 (en) 1-bit cell circuit used in a pipelined analog to digital converter
US7847720B2 (en) Pipelined analog-to-digital converter
JP2008244716A (ja) 冗長ビット付きデジタル−アナログ変換器及びこれを用いたアナログ−デジタル変換器及びこれを用いたイメージセンサ
US20060125676A1 (en) Analog-to-digital converter in which settling time of amplifier circuit is reduced
CN111446964B (zh) 一种新型十四比特流水线-逐次逼近型模数转换器
JP2006303671A (ja) 積分器およびそれを使用する巡回型ad変換装置
US8493260B2 (en) Successive approximation analog to digital converter
CN104485957A (zh) 流水线模数转换器
US20100308870A1 (en) Switched capacitor circuit and pipelined analog-to-digital conversion circuit with the switched capacitor circuit
Ahmadi et al. A 3.3 fJ/conversion-step 250kS/s 10b SAR ADC using optimized vote allocation
KR20200106119A (ko) 아날로그 디지털 변환기
KR20090032700A (ko) 파이프라인 아날로그-디지털 컨버터 및 그의 구동 방법
JP2004096636A (ja) アナログ−デジタル変換回路
US10476513B1 (en) SAR ADC with high linearity
Chen et al. A 1-V 8-bit 100kS/s-to-4MS/s asynchronous SAR ADC with 46fJ/conv.-step
CN112968704B (zh) 基于暂态电容切换方式的逐次逼近型模数转换器量化方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065227.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847360

Country of ref document: EP

Kind code of ref document: A1