WO2011108546A1 - 高炉の操業方法、製鉄所の操業方法、および酸化炭素含有ガスの利用方法 - Google Patents

高炉の操業方法、製鉄所の操業方法、および酸化炭素含有ガスの利用方法 Download PDF

Info

Publication number
WO2011108546A1
WO2011108546A1 PCT/JP2011/054647 JP2011054647W WO2011108546A1 WO 2011108546 A1 WO2011108546 A1 WO 2011108546A1 JP 2011054647 W JP2011054647 W JP 2011054647W WO 2011108546 A1 WO2011108546 A1 WO 2011108546A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
blast furnace
hydrogen
reaction
separated
Prior art date
Application number
PCT/JP2011/054647
Other languages
English (en)
French (fr)
Inventor
等 斉間
茂木 康弘
浅沼 稔
▲高▼木 克彦
泰平 野内
藤林 晃夫
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011017404A external-priority patent/JP5810537B2/ja
Priority claimed from JP2011026229A external-priority patent/JP5640786B2/ja
Priority claimed from JP2011035508A external-priority patent/JP5640803B2/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020127021177A priority Critical patent/KR101464056B1/ko
Priority to CN2011800115527A priority patent/CN102782161A/zh
Priority to EP11750656.8A priority patent/EP2543743B1/en
Publication of WO2011108546A1 publication Critical patent/WO2011108546A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B2005/005Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/22Increasing the gas reduction potential of recycled exhaust gases by reforming
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • C21B2100/282Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • C21B2100/284Increasing the gas reduction potential of recycled exhaust gases by separation of nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention CO 2 and / or modify the separated recovered CO 2 and / or CO from a gas mixture containing CO, method of operation the blast furnace to be used as a heat source (fuel) and a reducing agent in a blast furnace, CO 2 and /
  • CO 2 and / or CO separated and recovered from a mixed gas containing CO is reformed and used in a steel plant as a heat source (fuel) or a reducing agent, and a method of operating a steel plant, and a carbon oxide-containing gas (CO 2 or CO 2 2 and a mixed gas containing CO).
  • Japan's CO 2 emissions are about 30% due to power generation, 10% due to steel production, and in other areas, the transportation and civilian sectors account for a large proportion.
  • CO 2 is emitted in order to convert chemical energy of coal, oil, and natural gas into electric energy by complete oxidation of these fossil fuels. Therefore, an amount of CO 2 commensurate with the use of fossil fuel is inevitably generated.
  • Such fossil fuel power generation gradually decreases in the long term due to the use of so-called soft energy such as solar power generation, wind power generation, tidal power generation, biomass power generation, and nuclear power generation. it is conceivable that.
  • CO 2 is generated in various processes, but the largest source is the blast furnace process.
  • the generation of CO 2 in this blast furnace process results from the reduction of oxygen in the iron ore by reducing iron ore, which is iron oxide, with carbon as a reducing material. For this reason, it can be said that generation of CO 2 is inevitable in steel production.
  • hot air of 1000 ° C or higher is blown from the lower part of the blast furnace, coke is burned, heat necessary for the reduction and melting of iron ore is supplied, and reducing gas (CO) is generated. Reduce stones and get hot metal.
  • Patent Document 1 discloses a blast furnace operating method in which a hydrocarbon-based gas such as LNG is blown in order to reduce the ratio of reducing materials such as coke in a blast furnace.
  • Patent Document 2 discloses a technique in which when a low reductant ratio operation is directed in a blast furnace, a part of the blast furnace gas is burned and injected into the blast furnace shaft portion as a high temperature gas for heat compensation of the upper part of the furnace. ing. This document also discloses a technique for removing CO 2 in the blast furnace gas as necessary.
  • Patent Document 3 discloses a method in which blast furnace gas is reacted with dimethyl ether in the presence of a catalyst to reform dimethyl ether and CO 2 in the blast furnace gas into CO and hydrogen.
  • Patent Document 4 discloses a technique in which a blast furnace gas, a mixture of blast furnace gas and coke oven gas, or a gas obtained by removing carbon dioxide gas from a blast furnace gas is burned and introduced into a blast furnace shaft portion.
  • Patent Document 1 can reduce the reducing material (coke and the like) by blowing LNG into the blast furnace, and can indirectly reduce the amount of CO 2 generated in the blast furnace, but effectively uses the generated CO 2.
  • this does not mean that the actual amount of generated CO 2 is reduced.
  • the technique of Patent Document 2 is not a technique for reducing the substantial amount of CO 2 generation as in Patent Document 1, and does not describe the use of separated CO 2 more effectively.
  • the dimethyl ether used in the method of Patent Document 3 is produced by once converting coal, petroleum, or natural gas into synthesis gas such as CO and H 2 , and further produced from the synthesis gas.
  • synthesis gas such as CO and H 2
  • CO 2 is newly generated because energy is input in the manufacturing process.
  • blast furnace gas, coke oven gas, and converter gas are by-produced from the blast furnace, coke oven, and converter, respectively, and these by-product gases are used as heat sources (fuel) for heating furnaces and hot air furnaces in the ironworks.
  • fuel heat sources
  • the amount of blast furnace gas generated and the amount of heat generated are reduced.
  • the heat source (fuel) in the steelworks is generally insufficient.
  • Patent Document 4 discloses a method of removing carbon dioxide and returning it to the blast furnace shaft portion.
  • the blast furnace gas has a low calorific value of 1000 kcal / m 3 or less, and is generally used as a fuel gas by mixing with other high calorific gas. Decreasing the calorific value of the blast furnace gas has a negative effect such as the need to increase the mixing ratio of the high calorific gas, resulting in an increase in carbon dioxide emission.
  • the production of CO 2 is inevitable in steel production.
  • CO is generated and the CO is changed to CO 2 . For this reason, how to effectively reuse the generated CO 2 and the mixed gas containing CO to reduce the actual amount of generated CO 2 is an important issue.
  • the present invention has been made in view of the above problems, and an object of the present invention is to effectively use the generated CO 2 and / or CO, and to reduce the substantial amount of generated CO 2. Is to provide. Another object of the present invention is to effectively use the generated CO 2 and / or CO to reduce the substantial amount of CO 2 generated, and a shortage of by-product gas serving as a heat source in the steelworks. It is to provide a method of operating a steel mill that can compensate for this even in some cases. Another object of the present invention is to provide a blast furnace or steelworks that can substantially reduce the amount of CO 2 generated in the blast furnace by effectively using CO 2 and / or CO discharged from the blast furnace. It is to provide a method of operation. Another object of the present invention is to provide a method for operating a blast furnace or a steelworks that can be carried out at a lower cost by reducing the purchase amount of hydrogen necessary for reforming CO 2 and / or CO. is there.
  • Another object of the present invention is to reduce the substantial amount of CO 2 generated by reforming the generated CO 2 and effectively using it in a blast furnace, and can be implemented at low cost. It is to provide a method for operating a blast furnace. Another object of the present invention is to reduce the substantial amount of generated CO 2 by reforming the generated CO 2 and effectively using it in the steel works, and to reduce the amount of CO 2 generated as a heat source in the steel works. An object of the present invention is to provide a method of operating a steel mill that can compensate for a shortage of raw gas and that can be carried out at a low cost. Another object of the present invention is to provide a method of operating a blast furnace or a steelworks that can effectively modify and effectively utilize CO 2 discharged from a blast furnace.
  • Another object of the present invention is to provide a method of using a carbon oxide-containing gas that can efficiently use a carbon oxide-containing gas (a mixed gas containing CO 2 or CO 2 and CO). .
  • a method of operating a steel mill characterized by being used as a fuel and / or a reducing agent in the steel mill.
  • the present inventors have separated and recovered CO 2 from a mixed gas containing CO 2 (preferably blast furnace gas) and converted it into CO. (Reform) and use this CO as fuel for equipment such as heating furnaces and hot air furnaces in steelworks, or by blowing it into the blast furnace as a reducing agent, thereby substantially reducing CO 2 generation.
  • a new operation method was created. That is, the gist of the present invention is as follows.
  • a method of operating a blast furnace comprising:
  • the carbon oxide-containing gas such as blast furnace gas or converter gas generated in ironworks (mixed gas containing CO 2 or CO 2 and CO) were collected and carbon oxides from the recovered carbon dioxide-containing gas (CO 2 or separating CO 2 and CO), the CO 2 in the separated carbon dioxide is reduced by converting the CO by a hydrocarbon-based reducing agent, reduction of CO 2 separated from the CO (carbon oxide-containing gas obtained by them
  • the idea was to reuse the CO and / or CO obtained by separating from the carbon oxide-containing gas in a blast furnace. Based on the above idea, the present invention has the following features.
  • the operation of the entire blast furnace and steelworks used can be carried out at a low cost, and the amount of CO 2 generated can be reduced.
  • the by-product gas which becomes a heat source in the steelworks is insufficient due to the operation of the low reducing material ratio operation in the blast furnace or for other reasons, the shortage can be appropriately compensated.
  • the reaction heat generated when CO 2 and / or CO is converted to CH 4 is used for the production of hydrogen, and the produced hydrogen is used in the conversion (reforming) step, thereby further reducing the present invention.
  • the reaction pressure in this dehydrogenation reaction step is a methanation reaction that converts CO 2 and / or CO into CH 4.
  • a blast furnace or steel plant of the present invention by separating and recovering CO 2 from a gas mixture containing CO 2 converts this into CO (reforming), and a heating furnace or hot air furnace of this CO steelworks Because it is used as fuel in facilities such as, or blown into the blast furnace as a reducing agent, it is possible to carry out operations that effectively use CO 2 in the entire blast furnace and steelworks at low cost, and the amount of CO 2 generated Can be reduced. Moreover, even when the by-product gas which becomes a heat source in the steelworks is insufficient due to the operation of the low reducing material ratio operation in the blast furnace or for other reasons, the shortage can be appropriately compensated.
  • the carbon oxide-containing gas (CO 2 or a mixed gas containing CO 2 and CO) is efficiently reused to substantially suppress the generation of CO 2. can do.
  • Drawing 1 is an explanatory view showing one embodiment of equipment with which a process (A2) is performed.
  • Drawing 2 is an explanatory view showing one embodiment of equipment with which a process (A2) and a process (A5) are performed.
  • Drawing 3 is an explanatory view showing other embodiments of equipment with which a process (A2) and a process (A5) are performed.
  • FIG. 4 is an explanatory view showing another embodiment of the facility in which the step (A2) and the step (A5) are performed.
  • FIG. 5 is an explanatory diagram showing another embodiment of the facility in which the step (A2) and the step (A5) are performed.
  • FIG. 6 is an explanatory view showing another embodiment of the equipment in which the step (A2) and the step (A5) are performed.
  • FIG. 7 is an explanatory diagram showing another embodiment of the facility in which the step (A2) and the step (A5) are performed.
  • FIG. 8 is an explanatory diagram showing another embodiment of the facility in which the step (A2) and the step (A5) are performed.
  • FIG. 9 is an explanatory diagram showing an embodiment of a method having a step (A5) of producing hydrogen from an organic hydride.
  • FIG. 10 is an explanatory diagram showing an embodiment (gas treatment flow) when a blast furnace gas is used as a mixed gas in the blast furnace operating method according to the first embodiment of the present invention.
  • FIG. 11 is an explanatory diagram showing another embodiment (gas treatment flow) when a blast furnace gas is used as a mixed gas in the blast furnace operating method according to the first embodiment of the present invention.
  • FIG. 12 is an explanatory diagram showing one embodiment (gas treatment flow) when blast furnace gas is used as a mixed gas in the blast furnace operating method according to the second embodiment of the present invention.
  • FIG. 13 is explanatory drawing which shows one embodiment (gas processing flow) at the time of using blast furnace gas as mixed gas in the operating method of the steel mill which is the 2nd Embodiment of this invention.
  • FIG. 14 is a diagram showing an example of a method for using the carbon oxide-containing gas of the present invention.
  • FIG. 15 is a diagram showing an embodiment of a method for using the carbon oxide-containing gas of the present invention.
  • FIG. 16 is a diagram showing an embodiment of a method for using the carbon oxide-containing gas of the present invention.
  • Blast furnace method which is a first embodiment of the first embodiment the present invention includes a step (A1) for separation and recovery of CO 2 and / or CO from a gas mixture comprising CO 2 and / or CO, the process ( A step of adding hydrogen to CO 2 and / or CO separated and recovered in A1) to convert CO 2 and / or CO into CH 4 (A2), and H 2 O from the gas obtained through the step (A2) A step (A3) of separating and removing, and a step (A4) of blowing the gas that has passed through the step (A3) into the blast furnace.
  • the blast furnace operating method has a step (A5) of producing hydrogen using the reaction heat generated in the step (A2), and at least a part of the hydrogen produced in this step (A5) is obtained. It may be used in the step (A2).
  • CH 4 blown into the blast furnace in the step (A4) is converted into a reducing agent (reducing gas) by the reaction of the following formula (3) in the blast furnace.
  • combustion heat of CH 4 can also be used for the reduction and dissolution of iron ore in the blast furnace, so heat compensation at the lower part of the blast furnace is not required as much as iron ore reduction by hydrogen as shown in equation (1). .
  • the mixed gas is not limited as long as it is a mixed gas containing CO 2 and / or CO.
  • examples of the mixed gas generated in the iron making process include blast furnace gas and converter gas.
  • the mixed gas is not limited to these, and is a mixed gas generated in other industrial fields. Also good.
  • the CO 2 in order to efficiently separated is desirably high CO 2 concentration in the mixed gas, when the blast furnace gas, converter gas, etc. furnace flue gas assumes, as the mixed gas, CO 2 It is preferable to target those containing 15 vol% or more.
  • the present invention is most useful when a blast furnace gas is used as a mixed gas of the raw material.
  • a blast furnace gas By reforming CO 2 and CO contained in the blast furnace gas into CH 4 and circulating them as a heat source and a reducing agent in the blast furnace, CO 2 emissions from the can be reduced.
  • the general composition of the blast furnace gas is about CO 2 : 15 to 25 vol%, CO: 15 to 25 vol%, N 2 : 45 to 55 vol%, and hydrogen: 0 to 5 vol%.
  • blast furnace gas is used as the raw material mixed gas, a part or all of the blast furnace gas generated from the blast furnace is targeted. For example, when 10 vol% of the blast furnace gas is used, the CO 2 emission amount is about 12%. It can be reduced to some extent.
  • Step (A1) The mixed gas which is the raw material gas is a mixed gas containing CO 2 and / or CO.
  • CO 2 and / or CO is separated and recovered from this mixed gas.
  • the mixed gas containing CO 2 and CO is the CO 2 and CO were separated and recovered from the mixed gas, it is preferable to convert the CH 4 in step (A2) (reforming), the invention is not limited thereto For example, only CO 2 may be separated and recovered from a mixed gas containing CO 2 and CO.
  • Any method may be used for separating and recovering CO 2 and CO from the mixed gas.
  • CO 2 and CO When CO 2 and CO are separately collected from the mixed gas, CO 2 may be separated and recovered, and then CO may be separated and recovered, or vice versa. CO 2 and CO may be separated and recovered simultaneously.
  • a method for separating and recovering CO 2 from the mixed gas for example, a method in which CO 2 is liquefied or solidified by pressurization or cooling, CO 2 is absorbed in a basic aqueous solution such as caustic soda or amine, and then heated or reduced in pressure.
  • a method for separating and collecting, a method for separating and collecting CO 2 by adsorption on activated carbon, zeolite, or the like, and then separating and collecting by heating or decompression, a method for separating and collecting by a CO 2 separation membrane, etc. are known, and any method including these can be used. Can be adopted.
  • Examples of the method for separating and recovering CO from the mixed gas include, for example, a method in which CO is adsorbed on an adsorbent such as copper / activated carbon, copper / alumina, copper / zeolite, etc., and then separated and recovered by heating or reduced pressure.
  • a method of separating and recovering CO by heating or depressurization after absorbing CO in the absorbing solution is known, and any method including these can be adopted.
  • the method for separating and recovering CO 2 and the method for separating and recovering CO may be performed simultaneously or in combination, and CO 2 and CO may be separated and recovered simultaneously.
  • the gas purity of CO 2 or CO separated and recovered from the mixed gas is not particularly limited, but from the viewpoint of downsizing the reactor used in the reforming step, it is preferably 80 vol% or more.
  • Step (A2) In the step (A2), adding hydrogen to the separated recovered CO 2 and / or CO in the above step (A1), converted to CO 2 and / or CO to CH 4 (reforming) to.
  • a method of reforming to CH 4 by adding hydrogen to CO 2 and / or CO a known method of reforming using a specific catalyst or the like can be employed.
  • the CO 2 reduction reaction with hydrogen is shown in the following formula (5)
  • the CO reduction reaction with hydrogen is shown in the following formula (6).
  • the above formulas (5) and (6) are exothermic reactions.
  • low temperature is advantageous in equilibrium, and the CO 2 equilibrium conversion at 300 ° C. is about 95%.
  • a low temperature is advantageous in terms of equilibrium, and the CO equilibrium conversion rate at 300 ° C. is about 98%.
  • a methanation catalyst usually used can be used.
  • CO 2 and CO can be reformed to CH 4 by using a transition metal catalyst such as iron, Ni, Co, and Ru.
  • Ni-based catalysts are particularly preferable because they have high activity and high heat resistance and can be used up to a temperature of about 500 ° C.
  • Iron ore may be used as a catalyst.
  • a high crystal water ore increases its specific surface area when dehydrated crystal water and can be suitably used as a catalyst.
  • the inlet pressure of the methanation reactor is 0.2 to 1 MPa in consideration of the pressure loss of the catalyst layer and the pressure loss when a heat exchanger as described later is installed downstream of the methanation reactor. It is desirable to operate at a degree, more preferably about 0.3 to 0.6 MPa. If the reaction pressure in the methanation reactor is too low, it becomes necessary to install a suction blower downstream of the methanation reactor due to pressure loss, and power consumption increases. On the other hand, if the reaction pressure in the methanation reactor is too high, the power consumption for increasing the pressure of CO 2 and / or CO and H 2 to the reaction pressure increases.
  • CO to CH 4 When modifying the CO 2, CO to CH 4, to CO 2, CO and may each be individually reformed, may be modified in admixture with CO 2 and CO.
  • the source of hydrogen added to CO 2 and / or CO is arbitrary, but for example, hydrogen generated by decomposing a hydrogen-containing compound such as ammonia can be used.
  • the decomposition of ammonia is shown by the following formula (7).
  • the above equation (7) shows an equilibrium conversion of about 95% at 400 ° C.
  • Ammonia can be decomposed into nitrogen and hydrogen by using a transition metal catalyst such as iron, Ni, and Co. Iron ore may be used as a catalyst. In particular, a high crystal water ore increases its specific surface area when dehydrated crystal water and can be suitably used as a catalyst. Ammonia is generated when producing coke for carbonization of coal (ammonia generation amount is about 3.3 Nm 3 / t-coal), and currently recovered as liquid ammonium or ammonium sulfate. If this ammonia can be used as a hydrogen source in the present invention, it is not necessary to procure hydrogen from outside the steelworks, or the amount procured from outside the steelworks can be reduced.
  • a transition metal catalyst such as iron, Ni, and Co.
  • Iron ore may be used as a catalyst.
  • a high crystal water ore increases its specific surface area when dehydrated crystal water and can be suitably used as a catalyst.
  • Examples of other hydrogen-containing compounds for obtaining hydrogen include coke oven gas.
  • a method of separating and recovering hydrogen in coke oven gas by PSA (physical adsorption), etc., reforming hydrocarbons in coke oven gas (partial oxidation), and hydrogen from this reformed gas A method such as a method of separating and recovering PSA (physical adsorption) or the like can be employed.
  • Biomass may be partially oxidized, and hydrogen may be separated and recovered from the obtained gas by PSA (physical adsorption) or the like.
  • hydrogen is supplied to step (A2) after separating and removing gas components other than hydrogen after decomposition (nitrogen in the case of ammonia).
  • gas components other than hydrogen after decomposition nitrogen in the case of ammonia.
  • hydrogen obtained from other sources include dehydration of hydrogen produced by reforming hydrocarbons such as natural gas by steam reforming, hydrogen obtained by vaporizing liquefied hydrogen, and organic hydride. Examples include hydrogen produced as a raw material, hydrogen produced by electrolysis of water, and the like.
  • CO with hydrogen added is usually used.
  • 2 and / or CO are introduced into a reactor packed with catalyst to produce a reaction that converts (reforms) CO 2 and / or CO to CH 4 .
  • a reactor a fixed bed reactor, a fluidized bed reactor, a gas bed reactor, or the like can be used. Depending on the type of these reactors, the physical properties of the catalyst are appropriately selected.
  • FIG. 1 shows an embodiment of equipment in which the step (A2) is performed.
  • a plurality of reactors 1 (methanation reactors) filled with a catalyst 3 (for example, a Ni-based catalyst) are used as gas flows. It is arranged in series with the path 4.
  • These reactors 1 are adiabatic fixed bed reactors.
  • CO 2 and / or CO to which hydrogen is added are sequentially introduced into the plurality of reactors 1, and a reaction for converting (reforming) CO 2 and / or CO into CH 4 occurs in each reactor 1.
  • a heat exchanger 2 is disposed in the gas flow path 4 on the downstream side of each reactor 1, and reaction heat (gas sensible heat) of the methanation reaction in each reactor 1 is heat recovered by this heat exchanger 2.
  • reaction heat gas sensible heat
  • water is used as a heat medium (5 is a heat medium flow path), and steam is generated by the heat exchanger 2 to perform heat recovery.
  • the amount of catalyst charged in one reactor 1 is reduced and the downstream of the reactor 1 as in this embodiment.
  • the reaction temperature is controlled while heat is recovered by the heat exchanger 2 installed on the side, and the methanation reaction is completed in a reactor group in which several sets of such reactors 1 and 2 are arranged in series. It is preferable to do so.
  • the amount of hydrogen mixed with CO 2 and / or CO is preferably a stoichiometric ratio or more.
  • the amount of hydrogen is 1 or more and 1.2 or less as a stoichiometric ratio with respect to CO 2 and / or CO. It is preferable that When the stoichiometric ratio is less than 1, not only the unreacted residual CO 2 and / or CO increases, but also the carbonaceous matter may be deposited on the methanation catalyst to shorten the catalyst life. On the other hand, when the stoichiometric ratio exceeds 1.2, no adverse effect on the reaction is recognized, but the H 2 remaining unreacted increases and the economic efficiency is lowered.
  • Step (A3) H 2 O is separated and removed from the gas that has undergone the above step (A2) (hereinafter referred to as “reformed gas”).
  • reformed gas gas that has undergone the above step (A2)
  • CO 2 and / or CO is reformed to CH 4 with hydrogen
  • H 2 O is produced.
  • H 2 O is introduced into the blast furnace, coke in the blast furnace is consumed, and conversely, CO 2 emission increases. Therefore, it is necessary to separate and remove H 2 O from the reformed gas.
  • a cooling method, an adsorption method, or the like can be applied as a method for separating and removing H 2 O from the reformed gas. In the cooling method, the reformed gas is cooled to a dew point temperature or lower, and H 2 O is condensed and removed.
  • the dew point temperature is determined by the H 2 O concentration in the reformed gas
  • H 2 O can be appropriately condensed and removed, and air blown into a normal blast furnace. Since it becomes comparable to the air moisture concentration, it is preferable for blast furnace operation.
  • the adsorption method dehumidifying adsorbents such as silica gel are used, but the method of repeating adsorption and regeneration in the adsorption tower, the honeycomb rotor method of repeating regeneration and adsorption continuously while the adsorbent molded in the honeycomb shape rotates, etc. Can be adopted as appropriate.
  • heat exchange with the reformed gas (usually normal temperature) in the middle of being supplied to the blast furnace through the step (A3) may be performed.
  • the reformed gas is usually a gas mainly composed of CH 4 or a gas substantially consisting of CH 4 .
  • Step (A4) the reformed gas that has undergone step (A3) is blown into the blast furnace as a heat source and a reducing agent.
  • the reformed gas is preferably blown into the blast furnace by increasing the gas temperature. For this reason, after the heat is exchanged with the high-temperature reformed gas immediately after the step (A2), the temperature is raised. It may be blown into a blast furnace.
  • the reformed gas may be heated by indirect heating using another heat source.
  • the reformed gas is normally blown into the blast furnace through a tuyere, but is not limited thereto. When the gas after reforming is blown from the tuyere, it is common to install a blowing lance at the tuyere and blow from the blowing lance.
  • Step (A5) hydrogen is produced by recovering and utilizing the reaction heat generated in the step (A2).
  • at least a part of the hydrogen produced in this step (A5) is used as a step.
  • FIGS. 2 to 8 show embodiments of equipment in which the step (A2) and the step (A5) are performed, respectively.
  • the reaction heat generated when CO 2 and / or CO is converted to CH 4 in the step (A2) is extremely large.
  • the outlet gas temperature of the methanation reactor is controlled to be about 400 to 500 ° C. If heat is recovered from the reformed gas, the heat can be effectively utilized in the production of hydrogen, which is generally a large endothermic reaction.
  • Examples of the method for producing hydrogen include the following, but are not limited thereto.
  • a method of producing hydrogen by steam reforming of hydrocarbons generating steam with the reaction heat generated in step (A2), and using the steam as steam for reforming reaction.
  • Steam is generated by the reaction heat generated in step (A2), electric power is generated by this steam, and hydrogen is separated from the hydrogen-containing gas by the PSA method (pressure swing method) using the electric power. How to manufacture.
  • This method includes, for example, a method for separating hydrogen from coke oven gas and the like, a method for separating hydrogen from gasification gas such as biomass and plastic, and the like.
  • the method (1) a hydrogen production reactor that performs dehydration reaction of organic hydride is used.
  • a hydrogen production reactor that performs ammonia decomposition is used.
  • Reactors for hydrogen production that perform steam reforming are used, respectively, and the heat of reaction generated in the step (A2) is used as a heat source in these hydrogen production reactors.
  • FIG. 2 to FIG. 6 show several embodiments of equipment configurations suitable for carrying out the above methods (1) to (3).
  • the organic hydride that is a raw material for producing hydrogen in the method (1) is liquid at room temperature. From the viewpoint of energy saving in the hydrogen production process, hydrogen that is liquid at room temperature. It is preferable to use production raw materials. This is because when the hydrogen production raw material is pressurized and supplied to the hydrogen production reactor, the liquid can be pressurized with much smaller power than the gas.
  • a plurality of reactors 1 (methanation reactors) filled with a catalyst 3 (for example, a Ni-based catalyst) are arranged in series in the gas flow path 4.
  • the heat exchanger 2 is disposed in the gas flow path 4 on the downstream side of each reactor 1, and the reaction heat (gas sensible heat) of the methanation reaction in each reactor 1 is the heat exchanger 2 (5 is the heat). Heat is recovered in the medium flow path.
  • a hydrogen production raw material is used as a heat medium, that is, organic hydride is used in the method (1), ammonia is used in the method (2), and hydrocarbon is used in the method (3).
  • step 2 the hydrogen production raw material is preheated by performing direct heat exchange with the hydrogen production raw material.
  • the preheated hydrogen production raw material is introduced into the hydrogen production reactor 6, and hydrogen is produced by any one of the methods (1) to (3).
  • the methanation reaction heat is effective for preheating the raw material hydrocarbon, but in order to perform the steam reforming reaction at a high reaction rate, It is also preferable to supply a higher temperature heat source.
  • a plurality of reactors 1 (methanation reactors) filled with a catalyst 3 (for example, a Ni-based catalyst) are arranged in series in the gas flow path 4.
  • the heat exchanger 2 is disposed in the gas flow path 4 on the downstream side of each reactor 1, and the reaction heat (gas sensible heat) of the methanation reaction in each reactor 1 is the heat exchanger 2 (5 is the heat). Heat is recovered in the medium flow path.
  • water is used as a heat medium
  • steam is generated in the heat exchanger 2 to recover heat
  • the steam is further heat-exchanged with the hydrogen production raw material in the heat exchanger 7 (8 is a hydrogen production raw material stream). Road), preheat hydrogen production raw material.
  • the preheated hydrogen production raw material is introduced into the hydrogen production reactor 6, and hydrogen is produced by any one of the methods (1) to (3).
  • a plurality of reactors 1 (methanation reactors) filled with a catalyst 3 (for example, a Ni-based catalyst) are arranged in series in the gas flow path 4. Is done.
  • the gas flow path 4 on the downstream side of each reactor 1 passes through the inside of the hydrogen production reactor 6a (shell-and-tube type reactor), and the sensible heat of the gas flowing through the gas flow path 4 is the hydrogen production reactor. It is used as a heat source for 6a.
  • hydrogen production reactor 6a into which the hydrogen production raw material is introduced hydrogen is produced by any one of the methods (1) to (3).
  • the flow direction of the hydrogen production raw material and the gas flow path 4 is generally countercurrent, but may be cocurrent.
  • the shell and tube type is exemplified as the hydrogen production reactor 6a, but the present invention is not limited to this.
  • a plurality of reactors 1 (methanation reactors) filled with a catalyst 3 (for example, a Ni-based catalyst) are arranged in series in the gas flow path 4.
  • the heat exchanger 2 is disposed in the gas flow path 4 on the downstream side of each reactor 1, and the reaction heat (gas sensible heat) of the methanation reaction in each reactor 1 is the heat exchanger 2 (5 is the heat). Heat is recovered in the medium flow path.
  • water is used as the heat medium, and steam is generated by the heat exchanger 2 to perform heat recovery.
  • the heat medium flow path 5 through which the steam passes passes through the interior of the hydrogen production reactor 6a (shell-and-tube reactor), and the sensible heat of the steam is used as a heat source of the hydrogen production reactor 6a.
  • hydrogen is produced by any one of the methods (1) to (3).
  • the flow direction of the hydrogen production raw material and the gas flow path 4 is generally countercurrent, but may be cocurrent.
  • the shell and tube type is exemplified as the hydrogen production reactor 6a, but the present invention is not limited to this.
  • a plurality of reactors 1 (methanation reactors) filled with a catalyst 3 (for example, a Ni-based catalyst) are arranged in series in the gas flow path 4.
  • the heat exchanger 2 is disposed in the gas flow path 4 on the downstream side of each reactor 1, and the reaction heat (gas sensible heat) of the methanation reaction in each reactor 1 is the heat exchanger 2 (5 is the heat). Heat is recovered in the medium flow path.
  • water is used as a heat medium and steam is generated by the heat exchanger 2 to recover heat.
  • the downstream side 1 or Water from the steam drum 9 is caused to flow through the heat medium flow path 5 to the heat exchanger 2a attached to the two or more reactors 1 (heat exchanger 2a disposed on the downstream side of the reactor 1). Steam is generated in 2a to recover heat. After this steam is removed from the liquid via the steam drum 9, the heat exchanger 2b attached to one or more reactors 1 on the upstream side (the heat exchanger 2b disposed on the downstream side of the reactor 1). The heat exchanger 2b generates superheated steam to recover the heat.
  • the heat exchanger 2 arranged in this embodiment has three heat exchangers 2a and one heat exchanger 2b.
  • the superheated steam generated in the heat exchanger 2b is heat-exchanged with the hydrogen production raw material in the heat exchanger 7 (8 is a hydrogen production raw material flow path) to preheat the hydrogen production raw material.
  • This preheated hydrogen production raw material is introduced into the hydrogen production reactor 6, and hydrogen is produced by any one of the methods (1) to (3).
  • the method of generating superheated steam by the reaction heat of the step (A2) and using this superheated steam as a heat source for preheating the hydrogen production raw material is excellent in thermal efficiency and is particularly preferable.
  • the mechanism for generating superheated steam shown in FIG. 6 may be applied to the facility of the embodiment of FIG.
  • FIG. 7 shows an embodiment of an equipment configuration suitable for carrying out the method (4).
  • a plurality of reactors 1 methanation reactors
  • a catalyst 3 for example, a Ni-based catalyst
  • the heat exchanger 2 is disposed in the gas flow path 4 on the downstream side of each reactor 1, and the reaction heat (gas sensible heat) of the methanation reaction in each reactor 1 is the heat exchanger 2 (5 is the heat). Heat is recovered in the medium flow path.
  • water is used as a heat medium
  • steam is generated in the heat exchanger 2 to recover heat
  • the steam is supplied to the hydrogen production reactor 10 to which hydrocarbons are supplied.
  • Hydrogen is produced by steam reforming of hydrocarbons. Since the steam reforming reaction temperature is high, this method using steam generated by utilizing the heat of reaction of the methanation reaction as at least part of steam for the reforming reaction is particularly useful. It is particularly effective in terms of thermal efficiency to generate superheated steam and supply it as at least a part of steam for reforming reaction in the equipment configuration as shown in FIG.
  • FIG. 8 shows an embodiment of an equipment configuration suitable for carrying out the method (5) and the method (6).
  • a plurality of reactors 1 (methanation reactors) filled with a catalyst 3 (for example, a Ni-based catalyst) are arranged in series in the gas flow path 4,
  • a heat exchanger 2 is arranged in the gas flow path 4 on the downstream side of each reactor 1, and the reaction heat (gas sensible heat) of the methanation reaction in each reactor 1 is the heat exchanger 2 (5 is a heat medium flow).
  • Heat heat
  • water is used as a heat medium and steam is generated in the heat exchanger 2 to recover heat.
  • the downstream side 1 or Water from the steam drum 9 is caused to flow through the heat medium flow path 5 to the heat exchanger 2a attached to the two or more reactors 1 (heat exchanger 2a disposed on the downstream side of the reactor 1). Steam is generated in 2a to recover heat. After this steam is removed from the liquid via the steam drum 9, the heat exchanger 2b attached to one or more reactors 1 on the upstream side (the heat exchanger 2b disposed on the downstream side of the reactor 1). The heat exchanger 2b generates superheated steam to recover the heat.
  • the heat exchanger 2 arranged in this embodiment has three heat exchangers 2a and one heat exchanger 2b.
  • the superheated steam generated in the heat exchanger 2b is supplied to the steam turbine 11 to generate power.
  • the electric power is supplied to a hydrogen production facility (not shown), and the electric power is used to produce hydrogen by electrolyzing water in the method (5), and the PSA method in the method (6).
  • the amount of power generation may be increased by combining waste heat power generation such as thermoelectric conversion using waste steam discharged from the steam turbine 11 or waste heat of pressurized exhaust heat water.
  • the method of recovering heat of reaction generated in the step (A2) with steam is excellent in heat transfer efficiency and has a lot of experience in power generation facilities.
  • This is a preferable method.
  • the outlet temperature of the methanation reactor is set to 400 to 500 ° C. Since it can be set, the heat of reaction can be recovered with superheated intermediate pressure (pressure of about 2 to 5 MPa) steam, and hydrogen can be produced efficiently, which is particularly preferable.
  • the organic hydride used as the hydrogen production raw material in the method (1) is at least one selected from hydrides of monocyclic aromatic compounds and hydrides of polycyclic aromatic compounds. Specific examples include cyclohexane, methylcyclohexane, dimethylcyclohexane, decalin, methyldecalin, dimethyldecalin, tetralin, perhydroanthracene, and the like, and one or more of these can be used.
  • the dehydration reaction temperature of the organic hydride is about 300 to 400 ° C., which is lower than the outlet gas temperature of the adiabatic methanation reactor 1. Therefore, hydrogen can be produced by dehydrogenation of organic hydride with any of the equipment configurations shown in FIGS.
  • FIG. 9 schematically shows an embodiment in which hydrogen is produced from an organic hydride by the method (1) and used for the methanation reaction in step (A2).
  • 1 is a reactor in which a methanation reaction is performed (methanation reactor)
  • 4 is a gas flow path
  • 6 is a reactor for hydrogen production (dehydrogenation reactor) in which an organic hydride dehydrogenation reaction is performed
  • 12 Is a hydrogen separation device (distillation tower) for separating hydrogen from the dehydrogenation reaction product in the hydrogen production reactor 6
  • 13 is a pump for supplying organic hydride to the hydrogen production reactor 6
  • 14 is organic hydride dehydrogenation production
  • the physical flow path, 15 is a back pressure valve
  • 16 is an organic hydride dehydrogenation product flow path after hydrogen separation.
  • the reaction pressure of the dehydrogenation reaction in the reactor 6 for hydrogen production is preferably higher than the reaction pressure of the methanation reaction in the reactor 1. This is because by providing such a pressure difference, a compressor for introducing the hydrogen produced in the hydrogen production reactor 6 into the reactor 1 becomes unnecessary, and the energy efficiency in the system becomes very high. It is.
  • the inlet pressure of the hydrogen production reactor 6 in which the dehydrogenation reaction is performed is the reactor 1 in which the methanation reaction is performed. It is preferable to increase the pressure by 0.1 to 0.5 MPa, more preferably 0.2 to 0.4 MPa.
  • the reaction pressure of the dehydrogenation reaction in the dehydrogenation reactor (reactor 6) is made higher than the reaction pressure of the methanation reaction in the methanation reactor (reactor 1), preferably a pressure difference in the above-mentioned range is provided.
  • the pressure of the dehydrogenation reaction is maintained by the pressure supplied to the dehydrogenation reactor (reactor 6) by increasing the pressure of the organic hydride, and further, the methanation reactor (reactor 1) without increasing the pressure of the separated hydrogen. ) Can be smoothly introduced, and energy saving of the entire process can be achieved.
  • the decomposition reaction of ammonia as a hydrogen source has a reaction temperature of about 400 ° C. at which the equilibrium conversion becomes 95% or more at a reaction pressure of 0.1 MPa. Therefore, in this case as well, hydrogen can be produced by any of the methods shown in FIGS. 2 to 6 as in the dehydrogenation reaction of organic hydride. Since the substances produced by ammonia decomposition are only N 2 and H 2 , the conversion rate exceeding the equilibrium can be achieved by performing the decomposition reaction in a membrane reactor that combines an existing hydrogen separation membrane such as a Pd membrane and an ammonia decomposition catalyst. Is achievable and is preferred.
  • a transition metal catalyst such as iron, Ru, Ni, or Co can be used. Iron ore may be used as a catalyst.
  • a high crystal water ore increases its specific surface area when dehydrated crystal water and can be suitably used as a catalyst.
  • the hydrogen produced in the step (A5) described above is removed as necessary and then joined to the hydrogen supply pipe upstream of the methanation reactor in the step (A2), and is necessary for the methanation reaction. Used as part of hydrogen.
  • the above “removal of impurities as necessary” is necessary in each step of the methanation reaction in step (A2), injecting methanation gas into the blast furnace in step (A4), and hydrogen production in step (A5). It means that impurities are removed to a level.
  • the hydrogen purity may be 90% or more, more preferably 95% or more.
  • the hydrogen purity is less than 90%, it tends to cause a decrease in the activity of the catalyst for producing methane due to impurities in hydrogen and a decrease in heat transfer efficiency in a heat exchanger installed downstream of the methanation reactor.
  • the reduction efficiency of iron ore in the blast furnace and the thermal efficiency may be reduced.
  • the hydrogen purity is higher than 99.999%, there is no technical problem in the steps (A2), (A4), and (A5).
  • the purity is higher than necessary, the cost is increased. It is preferable to set the upper limit at 999%.
  • FIG. 10 shows one embodiment (gas treatment flow) of the present invention in which blast furnace gas is used as the source gas (mixed gas).
  • step (A1) CO 2 and / or CO is separated and recovered from the blast furnace gas. Since the blast furnace gas contains H 2 O and N 2 , the quality of the remaining gas (reformed blast furnace gas) can be improved by separating and removing these, and this remaining gas can be used as a fuel or hydrogen source. it can.
  • step (A2) adding hydrogen to CO 2 and / or CO, which is separated and recovered from the blast furnace gas, CO 2 and / or conversion of CO to CH 4 (reforming) to. Hydrogen is obtained by decomposing a hydrogen-containing compound such as ammonia. After separating and removing gas components (nitrogen in the case of ammonia) other than hydrogen after decomposing, hydrogen is supplied to the step (A2).
  • the reformed gas that has undergone the step (A2) is cooled by heat exchange with the reformed gas immediately before being introduced into the blast furnace, and then H 2 O is separated and removed as a step (A3).
  • CO 2 and / or CO and unreacted hydrogen that have not been reformed in step (A2) remain in the reformed gas, CO 2 and / or CO and hydrogen are separated and recovered, It can be reused in (A2).
  • the reformed gas that has undergone the step (A3) in this way is heated up by exchanging heat with the high-temperature reformed gas immediately after the step (A2), and then enters the blast furnace together with hot air from the tuyere. It is blown (step (A4)).
  • FIG. 11 shows one embodiment of the present invention (gas treatment flow) when blast furnace gas is used as the source gas (mixed gas).
  • the steps (A1) to (A4) are the same as in FIG. 10, but in the step (A5), hydrogen is produced using the reaction heat generated in the step (A2). Hydrogen is supplied to the step (A2) and used for the methanation reaction.
  • hydrogen is produced by the methods (1) to (6) and the facilities shown in FIGS.
  • the first operating method of steelworks which is an embodiment of the present invention, a mixed gas containing CO 2 and / or CO CO 2 and / or CO and a step of separating and recovering (A1), in the step (A1) adding hydrogen to the separated and collected CO 2 and / or CO, and CO 2 and / or CO and step (A2) to be converted to CH 4, is separated and removed of H 2 O from the gas passed through the step (A2) It has a process (A3), and uses the gas which passed through this process (A3) as a fuel and / or a reducing agent in an ironworks. Further preferably, the operation method of the steelworks has a step (A5) of producing hydrogen using the reaction heat generated in the step (A2), and at least one of the hydrogen produced in this step (A5). Part is preferably used in step (A2).
  • the equipment in the steelworks that supplies the gas that has undergone the step (A3) is a hot blast furnace that produces hot air supplied to the blast furnace, a heating furnace such as a heat storage burner that heats steel pieces such as a slab, Examples include a coke oven and a sintering machine.
  • a heating furnace such as a heat storage burner that heats steel pieces such as a slab
  • Examples include a coke oven and a sintering machine.
  • the fuel gas used in the hot stove is usually prepared by mixing blast furnace gas and coke oven gas and adjusting the calorific value (about 1000 kcal / Nm 3 ). It is possible to utilize CH 4 obtained in the invention. CH 4 to CO 2 and / or CO in the present invention obtained by reforming (about 8000 ⁇ 8500kcal / Nm 3 in the low combustion heat) is the usual blast furnace gas (approximately at low combustion heat 800 kcal / Nm 3) Compared with blast furnace gas, the amount of heat generated is higher than that of blast furnace gas, which reduces piping costs. As mentioned earlier, blast furnace gas, coke oven gas, and converter gas are produced as by-products from blast furnaces, coke ovens, and converters, respectively.
  • Steps (A1) to (A3) and Step (A5) and the target raw material gas (mixed gas) in this steel mill operation method are the same as the blast furnace operation method described above.
  • it may be used after the temperature is raised by exchanging heat with the high-temperature reformed gas immediately after the step (A2).
  • the reformed gas may be heated by indirect heating using another heat source.
  • the reformed gas (CH 4 ) is used in equipment such as a hot stove, usually the fuel used in the equipment (for example, in the case of a hot stove, mixed gas of blast furnace gas and coke oven gas) is used. Determine the amount of gas after reforming in consideration of the amount. The amount of fuel that is normally used is reduced according to the amount of gas used for reforming.
  • Example 1 A part of the blast furnace gas was reformed and circulated according to the processing flow as shown in FIG.
  • Step (A1) About 10 vol% of the blast furnace gas generated from the blast furnace, after CO 2 adsorbent adsorbing the CO 2 at an absolute pressure 200kPa is introduced into the adsorption tower filled, desorbed CO 2 at an absolute pressure of 7 kPa, CO 2 was obtained (CO 2 concentration 99 vol%).
  • the blast furnace gas after separation and recovery of CO 2 is introduced into an adsorption tower filled with a CO adsorbent to adsorb CO at an absolute pressure of 200 kPa, and then desorbs CO at an absolute pressure of 7 kPa to produce CO (CO concentration 99 vol%).
  • Steps (A2) to (A4) The CO 2 and CO (mixed gas of CO 2 and CO) separated and recovered as described above are led to a reformer (reactor), and H 2 obtained by decomposition of ammonia is added (H 2 / (CO 2 + CO): 5 molar ratio), and reformed (converted) to CH 4 under the conditions of reaction temperature: 500 ° C. and SV (Space Velocity): 100 h ⁇ 1 using a Ni-based catalyst.
  • the (CO 2 + CO) conversion was about 100%.
  • the reformed gas was cooled by a heat exchanger, H 2 O was removed by a moisture removing device, and unreacted H 2 was adsorbed and separated (removed), and then blown from a blast furnace tuyere.
  • the adsorbed and separated H 2 was used again as hydrogen for (CO 2 + CO) reforming.
  • the reducing material ratio 439 kg / tp (coke ratio: 329 kg / tp, pulverized coal ratio: 110 kg / tp), CO 2 emission amount: 1358 kg / tp, and the present invention Compared with the blast furnace operating conditions before implementation, CO 2 emissions were reduced by about 11.7%.
  • Example 2 A part of the blast furnace gas was reformed and circulated according to the processing flow as shown in FIG. In step (A2) and step (A5), a mechanism for obtaining superheated steam shown in FIG. 6 in the equipment shown in FIG. 5 (however, equipment in which five sets of reactor 1 and heat exchanger 2 are arranged in series) The equipment incorporating was used.
  • Step (A1) About 10 vol% of the blast furnace gas generated from the blast furnace, after CO 2 adsorbent adsorbing the CO 2 at an absolute pressure 200kPa is introduced into the adsorption tower filled, desorbed CO 2 at an absolute pressure of 7 kPa, CO 2 was obtained (CO 2 concentration 99 vol%).
  • the blast furnace gas after separation and recovery of CO 2 is introduced into an adsorption tower filled with a CO adsorbent to adsorb CO at an absolute pressure of 200 kPa, and then desorbs CO at an absolute pressure of 7 kPa to produce CO (CO concentration 99 vol%).
  • Steps (A2) to (A4) The CO 2 , CO (a mixed gas of CO 2 and CO) separated and recovered as described above, and H 2 having a purity of 99% are mixed with each gas so that the molar ratio of H 2 / (CO 2 + CO) is 5.
  • the flow rate was controlled to obtain a raw material gas.
  • the raw material gas was introduced into a facility in which five sets of adiabatic methanation reactors and heat exchangers filled with Ni catalyst were connected in series. Reactor inlet temperature: 265 ° C, reactor outlet temperature: 470 ° C, SV (Space Velocity): CO 2 and CO were reformed (converted) to CH 4 under the condition of 2000 h ⁇ 1 .
  • the reactor inlet temperature was 220 ° C. and the reactor outlet temperature was 250 ° C. [CO 2 + CO] conversion was about 100%.
  • the reformed gas was cooled with a heat exchanger, H 2 O was removed with a water removing device, and unreacted H 2 was adsorbed and separated (removed), and then blown from the blast furnace tuyere. The adsorbed and separated H 2 was used again as hydrogen for (CO 2 + CO) reforming.
  • the reducing material ratio 439 kg / tp (coke ratio: 329 kg / tp, pulverized coal ratio: 110 kg / tp), CO 2 emission amount: 1358 kg / tp, and the present invention Compared with the blast furnace operating conditions before implementation, CO 2 emissions were reduced by about 11.7%.
  • Step (A5) As a hydrogen production reactor, a dehydrogenation reactor for producing hydrogen by dehydration reaction of organic hydride was used. Steam was generated in a heat exchanger downstream of the methanation reactor, and the steam was supplied to the shell side of a methylcyclohexane (MCH) dehydrogenation reactor (shell and tube reactor) to serve as a heat source for the dehydrogenation reaction. This steam was superheated steam having a pressure of 4 MPa and a temperature of 400 ° C., and the flow rate was 38 t / h.
  • MCH methylcyclohexane
  • step A5 a compressor for introducing the raw material gas into the methanation reactor (step A2), a compressor for blowing the methanation gas into the blast furnace (step A4), and a booster pump for water supplied to the heat exchanger (step) Since the power of A5) was driven by steam, the steam usable as a heat source for the MCH dehydrogenation reaction was 26 t / h.
  • a Pt-based dehydrogenation catalyst is charged on the tube side of the dehydrogenation reactor (SV: 100 h ⁇ 1 ), MCH is supplied thereto at 21 t / h, a dehydrogenation reaction is carried out at a pressure of 0.2 MPa, and the reaction temperature is normal. It was. Since the dehydrogenation reactor outlet gas contains unreacted MCH toluene and a small amount in addition to H 2, the distillation column installed downstream of the dehydrogenation reactor to separate the H 2. Since the target purity of H 2 was 95%, the top temperature of the distillation column was 42 ° C., and water cooling was sufficient for the condenser.
  • the amount of hydrogen produced was 12700 Nm 3 / h, and about 20% of H 2 supplied to the step (A2) could be by-produced.
  • the entire amount of H 2 separated in the distillation tower was introduced into the raw material gas supply system in step (A2) and used for the methanation reaction in the methanation reactor.
  • Example 3 A part of the blast furnace gas was reformed and circulated according to the processing flow as shown in FIG. In step (A2) and step (A5), a mechanism for obtaining superheated steam shown in FIG. 6 in the equipment shown in FIG. 5 (however, equipment in which five sets of reactor 1 and heat exchanger 2 are arranged in series) The equipment incorporating was used.
  • Step (A1) Similar to the second embodiment.
  • Steps (A2) to (A4) Similar to the second embodiment.
  • Step (A5) As the hydrogen production reactor, a membrane reactor that produces hydrogen by NH 3 decomposition was used. Otherwise, in the same manner as in the step (A5) of Example 2, H 2 was produced using 26 t / h of superheated steam having a pressure of 4 MPa and a temperature of 400 ° C. The supply amount of NH 3 was 14 t / h. Since 1/3 moles of N 2 in H 2 is produced in the decomposition of NH 3, they were separated and H 2 from the cracked gas by PSA method. As a result, the production amount of H 2 having a purity of 99% was 21900 Nm 3 / h, and about 30% of H 2 supplied in the step (A2) could be by-produced. A Ru system was used as the NH 3 decomposition catalyst. The total amount of the produced H 2 was introduced into the raw material gas supply system in step (A2) and used for the methanation reaction in the methanation reactor.
  • Example 4 A part of the blast furnace gas was reformed and circulated according to the processing flow as shown in FIG. In step (A2) and step (A5), a mechanism for obtaining superheated steam shown in FIG. 6 in the equipment shown in FIG. 5 (however, equipment in which five sets of reactor 1 and heat exchanger 2 are arranged in series) The equipment incorporating was used.
  • Step (A1) Similar to the second embodiment.
  • Steps (A2) to (A4) The CO 2 , CO (mixed gas of CO 2 and CO) separated and recovered from the blast furnace gas, and H 2 having a purity of 99% are mixed with each gas so that the molar ratio of H 2 / (CO 2 + CO) is 5.
  • the flow rate was controlled to obtain a raw material gas.
  • the raw material gas was introduced into a facility in which five sets of adiabatic methanation reactors and heat exchangers filled with Ni-based catalyst were connected in series. Reactor inlet temperature: 265 ° C, reactor outlet temperature: 470 ° C, SV (Space Velocity): CO 2 and CO were reformed (converted) to CH 4 under the conditions of 2000 h ⁇ 1 and reactor inlet pressure of 0.3 MPa.
  • the final stage reactor (the fifth reactor) was set at a reactor inlet temperature: 220 ° C. and a reactor outlet temperature: 250 ° C. [CO 2 + CO] conversion was about 100%.
  • the pressure of the methanation gas on the outlet side of the heat exchanger downstream of the final stage reactor was 0.2 MPa.
  • the reformed gas was cooled by a heat exchanger, H 2 O was removed by a moisture removing device, and unreacted H 2 was adsorbed and separated (removed), and then blown from a blast furnace tuyere.
  • the adsorbed and separated H 2 was used again as hydrogen for (CO 2 + CO) reforming.
  • the reducing material ratio 439 kg / tp (coke ratio: 329 kg / tp, pulverized coal ratio: 110 kg / tp), CO 2 emission amount: 1358 kg / tp, and the present invention Compared with the blast furnace operating conditions before implementation, CO 2 emissions were reduced by about 11.7%.
  • Step (A5) As a hydrogen production reactor, a dehydrogenation reactor for producing hydrogen by dehydration reaction of organic hydride was used. Steam was generated in a heat exchanger downstream of the methanation reactor, and the steam was supplied to the shell side of a methylcyclohexane (MCH) dehydrogenation reactor (shell and tube reactor) to serve as a heat source for the dehydrogenation reaction. This steam was superheated steam having a pressure of 4 MPa and a temperature of 400 ° C., and the flow rate was 38 t / h.
  • MCH methylcyclohexane
  • step A5 a compressor for introducing the raw material gas into the methanation reactor (step A2), a compressor for blowing the methanation gas into the blast furnace (step A4), and a booster pump for water supplied to the heat exchanger (step) Since the power of A5) was driven by steam, the steam usable as a heat source for the MCH dehydrogenation reaction was 26 t / h.
  • the tube side of the dehydrogenation reactor was filled with a Pt-based dehydrogenation catalyst (SV: 100 h ⁇ 1 ), and MCH was increased to 0.6 MPa and supplied at 20 t / h.
  • the dehydrogenation reaction was carried out at the desired reaction temperature.
  • the dehydrogenation reactor outlet pressure was 0.5 MPa. Since the dehydrogenation reactor outlet gas contains unreacted MCH toluene and a small amount in addition to H 2, the distillation column installed downstream of the dehydrogenation reactor to separate the H 2. Since the top pressure of the distillation tower was 0.4 MPa and the target purity of H 2 was 95%, the top temperature of the distillation tower was 57 ° C., and the condenser was sufficiently cooled with water.
  • the amount of hydrogen produced was 10600 Nm 3 / h, and 16% of H 2 supplied in the step (A2) could be by-produced.
  • the entire amount of H 2 separated in the distillation tower was introduced into the raw material gas supply system in step (A2) and used for the methanation reaction in the methanation reactor. Since the top pressure of the distillation column, that is, the pressure of separated hydrogen is 0.4 MPa, it is sufficiently higher than the pressure at the inlet of the methanation reactor (0.3 MPa). We were able to introduce into vessel.
  • the pressure of the dehydrogenation reaction could be maintained only by the pressure of the raw material MCH (0.6 MPa), and its boosting shaft power was as low as 8 kW, and a large energy saving was achieved as a whole process.
  • Example 5 A part of the blast furnace gas was reformed and circulated according to the processing flow as shown in FIG. In step (A2) and step (A5), a mechanism for obtaining superheated steam shown in FIG. 6 in the equipment shown in FIG. 5 (however, equipment in which five sets of reactor 1 and heat exchanger 2 are arranged in series) The equipment incorporating was used.
  • Step (A1) Similar to the second embodiment.
  • Steps (A2) to (A4) The same as in the fourth embodiment.
  • Step (A5) The MCH dehydrogenation reaction was performed in the same manner as in Example 4 except that the pressure of MCH was increased to 1.1 MPa and supplied to the dehydrogenation reactor.
  • the dehydrogenation reactor outlet pressure was 1 MPa.
  • the production amount of hydrogen was 9200 Nm 3 / h, which was 10% or more lower than that of Example 4, the booster shaft power of MCH was 19 kW, which was only 2.5 times that of Example 4 (8 kW).
  • Example 6 A part of the blast furnace gas was reformed and circulated according to the processing flow as shown in FIG. In step (A2) and step (A5), a mechanism for obtaining superheated steam shown in FIG. 6 in the equipment shown in FIG. 5 (however, equipment in which five sets of reactor 1 and heat exchanger 2 are arranged in series) The equipment incorporating was used.
  • Step (A1) Similar to the second embodiment.
  • Steps (A2) to (A4) The same as in the fourth embodiment.
  • Step (A5) MCH dehydrogenation reaction was carried out in the same manner as in Example 4 except that MCH was pressurized to 0.3 MPa and supplied to the dehydrogenation reactor.
  • the dehydrogenation reactor outlet pressure was 0.2 MPa. Since the top pressure of the distillation tower was 0.1 MPa, the top temperature of the distillation tower was 28 ° C., and water cooling was insufficient for condenser cooling, and installation of a chiller was necessary.
  • the production amount of hydrogen increased to 12700 Nm 3 / h, which was higher than that of Example 4, the pressure of the produced hydrogen was 0.1 MPa. Therefore, a compressor was required for introduction into the methanation reactor, and the boost shaft power Needed a large power of 830kW. Although the booster shaft power of MCH was 3 kW, the boost power was 833 kW in total, and the energy balance of the entire process was lower than that in Example 4.
  • the method of operating a blast furnace according to a second embodiment of the second embodiment the present invention includes the steps (B1) for separating and recovering CO 2 from a gas mixture comprising CO 2, which is separated and recovered in this step (B1) CO 2 was added hydrogen reducing agent, the conversion of CO 2 to CO and (reforming) to step (B2), separating and removing of H 2 O or H 2 O and N 2 from the gas passed through the step (B2) And a step (B4) of blowing the gas (usually CO gas or CO-based gas) that has undergone this step (B3) into the blast furnace.
  • step (B1) were each separated and recovered CO 2 and CO from the gas mixture in, in step (B4), the step of the gas passing through the (B3), step It is blown into the blast furnace together with the CO separated and recovered in (B1).
  • the CO blown into the blast furnace in the step (B4) functions as an auxiliary reducing agent for iron ore. Reduction of iron ore with CO is an exothermic reaction, and heat compensation at the bottom of the blast furnace is not required as much as iron ore reduction with hydrogen.
  • the mixed gas if a mixed gas containing a mixed gas or CO 2 and CO containing CO 2, the kind is not limited.
  • examples of the mixed gas generated in the iron making process include blast furnace gas and converter gas.
  • the mixed gas is not limited to these, and is a mixed gas generated in other industrial fields. Also good.
  • the CO 2 in order to efficiently separated is desirably high CO 2 concentration in the mixed gas, when the blast furnace gas, converter gas, etc. furnace flue gas assumes, as the mixed gas, CO 2 It is preferable to target those containing 15 vol% or more.
  • the present invention is most useful when a blast furnace gas is used as a mixed gas of the raw material, and CO 2 emission from the blast furnace is achieved by reforming CO 2 contained in the blast furnace gas into CO and circulating it as a reducing agent in the blast furnace.
  • the amount can be reduced.
  • the general composition of the blast furnace gas is about CO 2 : 15 to 25 vol%, CO: 15 to 25 vol%, N 2 : 45 to 55 vol%, and hydrogen: 0 to 5 vol%.
  • blast furnace gas is used as the mixed gas of the raw material, a part or all of the blast furnace gas generated from the blast furnace is targeted. For example, when 20 vol% of the blast furnace gas is used, the CO 2 emission amount is 5-6. % Can be reduced.
  • steps (B1) to (B4) constituting the blast furnace operating method according to the second embodiment of the present invention will be described.
  • Step (B1) The mixed gas which is the raw material gas is a mixed gas containing CO 2 (or a mixed gas containing CO 2 and CO), and in this step (B1), CO 2 is separated and recovered from this mixed gas.
  • CO 2 and CO are separated and recovered from the mixed gas, and the separated and recovered CO is obtained by converting (reforming) CO 2 in step (B2).
  • the present invention is not limited to this. For example, only CO 2 may be separated and recovered from a mixed gas containing CO 2 and CO. Good.
  • Any method may be used for separating and recovering CO 2 and CO from the mixed gas.
  • CO 2 and CO When CO 2 and CO are separately collected from the mixed gas, CO 2 may be separated and recovered, and then CO may be separated and recovered, or vice versa. CO 2 and CO may be separated and recovered simultaneously.
  • a method for separating and recovering CO 2 from the mixed gas for example, a method in which CO 2 is liquefied or solidified by pressurization or cooling, CO 2 is absorbed in a basic aqueous solution such as caustic soda or amine, and then heated or reduced in pressure.
  • a method for separating and collecting, a method for separating and collecting CO 2 by adsorption on activated carbon, zeolite, or the like, and then separating and collecting by heating or decompression, a method for separating and collecting by a CO 2 separation membrane, etc. are known, and any method including these can be used. Can be adopted.
  • Examples of the method for separating and recovering CO from the mixed gas include, for example, a method in which CO is adsorbed on an adsorbent such as copper / activated carbon, copper / alumina, copper / zeolite, etc., and then separated and recovered by heating or reduced pressure.
  • An adsorbent such as copper / activated carbon, copper / alumina, copper / zeolite, etc.
  • a method of separating and recovering CO by heating or depressurization after absorbing CO in the absorbing solution is known, and any method including these can be adopted.
  • the gas purity of CO 2 or CO separated and recovered from the mixed gas is not particularly limited, but from the viewpoint of downsizing the reactor used in the reforming step, it is preferably 80 vol% or more.
  • Process (B2) In this step (B2), adding hydrogen reducing agent to CO 2 separated and collected in the step (B1), conversion of CO 2 to CO (reforming), but the hydrogen-based reducing agent (gas)
  • the hydrogen-based reducing agent gas
  • One or more selected from hydrogen, hydrocarbon, ammonia and the like are used.
  • LNG or LPG containing CH 4 or the like
  • steelworks byproduct gas eg, coke oven gas etc.
  • hydrogen iv
  • ammonia ammonia
  • hydrogen-based reducing agents that do not contain carbon that is, hydrogen and ammonia are particularly preferable.
  • Ammonia is generated when producing coke for carbonization of coal (ammonia generation amount is about 3.3 Nm 3 / t-coal), and currently recovered as liquid ammonium or ammonium sulfate. If this ammonia can be used as a hydrogen-based reducing agent in the present invention, it is not necessary to procure a hydrogen-based reducing agent from outside the steelworks, or the amount procured from outside the steelworks can be reduced.
  • CO 2 reduction reaction with hydrogen is shown in the following formula (8)
  • CO 2 reduction reaction with ammonia is shown in the following formula (9).
  • the reaction of the above formula (8) shows about 45% CO 2 equilibrium conversion at 500 ° C.
  • the above formula (9) shows about 95% CO 2 equilibrium conversion.
  • a transition metal catalyst such as Fe, Ni, Co or the like is used for both reactions (the same applies when a hydrocarbon such as CH 4 is used as a hydrogen-based reducing agent), and CO 2 is reformed to CO.
  • Iron ore may be used as the catalyst.
  • the high crystal water ore increases the specific surface area when the crystal water is dehydrated and can be suitably used as a catalyst.
  • a catalyst in which a noble metal element such as Pd or Ru is supported on an oxide carrier such as Al 2 O 3 may be used.
  • CO 2 was added hydrogen reducing agent, to reform the CO 2 to CO using a catalyst, typically a CO 2 mixed with hydrogen-based reducing agent is introduced into the reactor in which the catalyst is filled, A reaction for converting (reforming) CO 2 into CO is generated.
  • a catalyst typically a CO 2 mixed with hydrogen-based reducing agent is introduced into the reactor in which the catalyst is filled.
  • a reaction for converting (reforming) CO 2 into CO is generated.
  • the reactor a fixed bed reactor, a fluidized bed reactor, a gas bed reactor, or the like can be used. However, considering that the reaction is an endothermic reaction, a fluid bed reactor or a gas bed reactor is particularly preferable. . Depending on the type of these reactors, the physical properties of the catalyst are appropriately selected.
  • the amount of the hydrogen-based reducing agent mixed with CO 2 is preferably greater than the stoichiometric ratio.
  • the reaction for reforming CO 2 to CO is an endothermic reaction as shown in the above reaction formula, and the heat source for that is unrecovered iron making such as COG sensible heat, slag sensible heat, sinter sensible heat, etc.
  • the exhaust heat of the place may be used, or the heat obtained by burning the CO obtained in the present invention may be used. Separately, fuel may be burned and used as a heat source.
  • H 2 O or H 2 O and N 2 are separated and removed from the gas that has undergone the step (B2) (hereinafter referred to as “reformed gas”).
  • reformed gas a component that consumes a reducing material (such as coke) in the blast furnace is generated at the same time, and this component is included in the reformed gas.
  • hydrogen or a hydrocarbon such as CH 4 is used as the hydrogen-based reducing agent
  • H 2 O is generated
  • ammonia is used as the hydrogen-based reducing agent
  • H 2 O and N 2 is generated.
  • H 2 O When H 2 O is introduced into the blast furnace, coke in the blast furnace is consumed, and conversely, CO 2 emission increases. On the other hand, even if N 2 is introduced into the blast furnace, the coke in the blast furnace is not consumed, but sensible heat for making N 2 into a high-temperature gas is required, resulting in an increase in the amount of coke used. Therefore, H 2 O (for example, when hydrogen or a hydrocarbon such as CH 4 is used as the hydrogen reducing agent) or H 2 O and N 2 (for example, ammonia is used as the hydrogen reducing agent) from the reformed gas. Case) need to be separated and removed.
  • H 2 O for example, when hydrogen or a hydrocarbon such as CH 4 is used as the hydrogen reducing agent
  • N 2 for example, ammonia is used as the hydrogen reducing agent
  • a cooling method, an adsorption method, or the like can be applied as a method for separating and removing H 2 O from the reformed gas.
  • the reformed gas is cooled to a dew point temperature or lower to coagulate and remove H 2 O.
  • the dew point temperature is determined by the concentration of H 2 O in the reformed gas, normally, if the reformed gas is cooled to 30 ° C. or less, H 2 O can be appropriately coagulated and removed, and air blown into a normal blast furnace. Since it becomes comparable to the air moisture concentration, it is preferable for blast furnace operation.
  • adsorption method dehumidifying adsorbents such as silica gel are used, but the method of repeating adsorption and regeneration in the adsorption tower, the honeycomb rotor method of repeating regeneration and adsorption continuously while the adsorbent molded in the honeycomb shape rotates, etc. Can be adopted as appropriate.
  • a method of cooling the reformed gas for example, heat exchange with the reformed gas (usually normal temperature) in the middle of being supplied to the blast furnace through the step (B3) may be performed.
  • a method of separating and recovering CO from the mixed gas as in the step (B1) is applied, and the CO is effectively separated from the reformed gas.
  • a method of separating and removing N 2 can be employed. The specific method is as described in the step (B1).
  • the hydrogen-based reducing agent for example, hydrogen or / and ammonia
  • a part of the hydrogen-based reducing agent for example, hydrogen or / and ammonia
  • the post-reforming gas is usually a gas mainly composed of CO or a gas consisting essentially of CO.
  • the reformed gas that has undergone step (B3) is blown into the blast furnace as an auxiliary reducing agent. If CO is also separated and recovered from the mixed gas in step (B1), the gas is mixed with this CO. Then, it may be blown into the blast furnace.
  • the gas after reforming (or the gas after reforming in which CO separated and recovered in the step (B1) is mixed) is preferably blown into the blast furnace at a higher gas temperature in consideration of blast furnace operation. ) May be blown into the blast furnace after the temperature is raised by exchanging heat with the high-temperature reformed gas immediately after. The reformed gas may be heated by indirect heating using another heat source.
  • the reformed gas is normally blown into the blast furnace through a tuyere, but is not limited thereto.
  • gas after reforming is blown from the tuyere, it is common to install a blowing lance at the tuyere and blow from the blowing lance.
  • FIG. 12 shows an embodiment (gas treatment flow) in the case where blast furnace gas is used as the source gas (mixed gas) in the blast furnace operating method according to the second embodiment of the present invention.
  • step (B1) CO 2 and CO are separately recovered from the blast furnace gas. Since the blast furnace gas contains H 2 O and N 2 , the quality of the remaining gas (reformed blast furnace gas) can be improved by separating and removing these, and this remaining gas can be used as a fuel or hydrogen source. it can.
  • step (B2) adding hydrogen reducing agent to CO 2 separated recovered from blast furnace gas, converting the CO 2 to CO (reforming) to.
  • step (B3) H 2 O or H 2 O and N 2 are separated and removed.
  • H 2 O is separated and removed by dehydration and the reformed gas contains N 2 (for example, when ammonia is used as a hydrogen-based reducing agent)
  • N 2 is separated and removed. If CO 2 that has not been reformed in step (B2) or an unreacted hydrogen reducing agent remains in the reformed gas, CO 2 is separated and removed, and the hydrogen reducing agent is separated. It is collected and sent to step (B2) for reuse.
  • the reformed gas having undergone the step (B3) is mixed with the CO separated and recovered from the mixed gas in the step (B1), the high-temperature reformed gas immediately after the step (B2). After heat-exchanging and raising temperature, it is blown into the blast furnace with hot air from the tuyere.
  • the operation method of the steelworks which is the 2nd Embodiment of this invention is demonstrated.
  • the operation method of the steelworks the step (B1) for separating and recovering CO 2 from a gas mixture containing CO 2, hydrogen was added reducing agent to CO 2 separated recovered in this step (B1), CO 2 A step (B2) for converting (reforming) CO into CO, and a step (B3) for separating and removing H 2 O or H 2 O and N 2 from the gas that has undergone this step (B2).
  • Gas usually CO gas or CO-based gas
  • step (B1) were each separated and recovered CO 2 and CO from the gas mixture in step a gas passed through the (B3), in step (B1) Together with the generated CO, it is supplied to the facilities in the steelworks that are used.
  • a facility such as a heat storage burner that heats a steel slab such as a hot blast furnace or a slab for producing hot blast supplied to the blast furnace as the equipment in the steelworks that supplies the gas that has undergone the step (B3).
  • Examples include, but are not limited to, furnaces, coke ovens, and sintering machines.
  • the fuel gas used in the hot stove is usually prepared by mixing blast furnace gas and coke oven gas and adjusting the calorific value (about 1000 kcal / Nm 3 ). It is possible to utilize the CO obtained in the invention.
  • CO (about 3000 kcal / Nm 3 ) obtained by reforming CO 2 has a higher calorific value than ordinary blast furnace gas (about 800 kcal / Nm 3 ), and less than blast furnace gas. This will reduce the piping cost.
  • blast furnace gas, coke oven gas, and converter gas are produced as by-products from blast furnaces, coke ovens, and converters, respectively. Although it is used as (fuel), the by-product gas serving as the heat source may be insufficient for various reasons, and CO obtained by reforming the CO 2 is useful as a heat source to compensate for this. .
  • steps (B1) to (B3) and the target raw material gas (mixed gas) in this steel mill operation method are the same as the blast furnace operation method described above.
  • the reformed gas that has undergone the step (B3) is used as a fuel and / or a reducing agent for a hot stove or a heating furnace, but when CO is also separated and recovered from the mixed gas in the step (B1), this CO and It may be used after mixing.
  • the post-reforming gas (or the post-reforming gas mixed with the CO separated and recovered in step (B1)) is preferably used by increasing the gas temperature. Therefore, the high-temperature gas immediately after passing through step (B2) is used. It may be used after the temperature is raised by exchanging heat with the reformed gas.
  • the reformed gas may be heated by indirect heating using another heat source.
  • equipment such as a hot stove
  • FIG. 13 shows an embodiment in which the blast furnace gas is used as the raw material gas (mixed gas) and the reformed gas is used in the hot stove in the operation method of the steel mill according to the second embodiment of the present invention.
  • 2 shows a gas processing flow).
  • step (B1) CO 2 and CO are separately recovered from the blast furnace gas. Since the blast furnace gas contains H 2 O and N 2 , the quality of the remaining gas (reformed blast furnace gas) can be improved by separating and removing these, and this remaining gas can be used as a fuel or hydrogen source. it can.
  • step (B2) adding hydrogen reducing agent to CO 2 separated recovered from blast furnace gas, converting the CO 2 to CO (reforming) to.
  • step (B3) H 2 O or H 2 O and N 2 are separated and removed.
  • H 2 O is separated and removed by dehydration and the reformed gas contains N 2 (for example, when ammonia is used as a hydrogen-based reducing agent)
  • N 2 is separated and removed. If CO 2 that has not been reformed in step (B2) or an unreacted hydrogen reducing agent remains in the reformed gas, CO 2 is separated and removed, and the hydrogen reducing agent is separated. It is collected and sent to step (B2) for reuse.
  • the reformed gas that has undergone the step (B3) is mixed with the CO separated and recovered from the mixed gas in the step (B1), the high-temperature reformed gas immediately after the step (B2). After the temperature is raised by exchanging heat with, the fuel is supplied to the hot stove as fuel.
  • Example regarding operation method of blast furnace The blast furnace operation condition before implementing this invention is shown below.
  • Air flow 1112 Nm 3 / tp
  • Oxygen enrichment 7.6 Nm 3 / tp Humidity during blowing: 25 g / Nm 3
  • Air temperature 1150 ° C
  • Reducing material ratio 497 kg / tp (coke ratio: 387 kg / tp, pulverized coal ratio: 110 kg / tp)
  • Example 1 A part of the blast furnace gas was reformed and circulated according to the processing flow as shown in FIG. About 20 vol% of the blast furnace gas generated from the blast furnace, after the CO 2 adsorbed by the absolute pressure 200kPa is introduced into the adsorption tower CO 2 adsorbent is filled, desorbed this CO 2 at an absolute pressure 7 kPa, CO 2 (CO 2 concentration 99 vol%) was obtained (hereinafter, CO 2 separated and recovered from this blast furnace gas is referred to as “CO 2 gas x”).
  • the blast furnace gas after the separation and recovery of CO 2 is introduced into an adsorption tower filled with a CO adsorbent, and CO is adsorbed at an absolute pressure of 200 kPa. Then, the CO is desorbed at an absolute pressure of 7 kPa, and CO (CO (The concentration of 99 vol%) was obtained (hereinafter, the separated and recovered CO from this blast furnace gas is referred to as “CO gas y”).
  • the CO 2 gas x is guided to a reformer (reactor), where H 2 is added as a hydrogen-based reducing agent (H 2 / CO 2 : 2 molar ratio), and a reaction temperature is 600 using a Ni-based catalyst. It was reformed (converted) to CO under the conditions of ° C and SV (Space Velocity): 100 h- 1 . The CO 2 conversion was about 55%.
  • the reformed gas is cooled by a heat exchanger, H 2 O is removed by a moisture removing device, and then introduced into a CO adsorption tower to separate CO (adsorption ⁇ desorption). CO gas z ").
  • the gas after the CO separation was unreacted H 2 and was used again as a hydrogen-based reducing agent for CO 2 reforming.
  • the CO gas z was mixed with the CO gas y and then blown from the blast furnace tuyere.
  • the reducing material ratio 469 kg / tp (coke ratio: 359 kg / tp, pulverized coal ratio: 110 kg / tp), CO 2 emissions: 1453 kg / tp, Compared to the blast furnace operating conditions before implementation, CO 2 emissions were reduced by about 5.6%.
  • Example 2 Except for using about 10 vol% of the blast furnace gas generated from the blast furnace, the same treatment as in Example 1 was performed, and CO gas was blown from the blast furnace tuyere.
  • the reducing material ratio 484 kg / tp (coke ratio: 374 kg / tp, pulverized coal ratio: 110 kg / tp), CO 2 emission amount: 1499 kg / tp, Compared to the blast furnace operating conditions before implementation, CO 2 emissions were reduced by about 2.6%.
  • Example 3 The same treatment as in Example 1 was performed except that ammonia was used as the hydrogen-based reducing agent, and CO gas was blown from the blast furnace tuyere.
  • the CO 2 gas x separated and recovered from the blast furnace gas is led to a reformer (reactor), where ammonia is added as a hydrogen-based reducing agent (NH 3 / CO 2 : 1.5 molar ratio), and Ni—Co Using a system catalyst, it was reformed (converted) to CO under the conditions of reaction temperature: 500 ° C. and SV: 200 h ⁇ 1 .
  • the CO 2 conversion was about 90%.
  • the reducing material ratio 469 kg / tp (coke ratio: 359 kg / tp, pulverized coal ratio: 110 kg / tp), CO 2 emissions: 1453 kg / tp, Compared to the blast furnace operating conditions before implementation, CO 2 emissions were reduced by about 5.6%.
  • Example 4 CO obtained by reforming CO 2 by the same method as in Example 1 was used as fuel in a hot air furnace.
  • the blast furnace gas 493Nm 3 / t-p (calorific value: 740kcal / Nm 3) and coke oven gas: 40Nm 3 / t (calorific value: 4580kcal / Nm 3) by mixing 533 nm 3 / t- p (calorific value: 1028 kcal / Nm 3 ) is mixed gas, this mixed gas is burned in a hot stove to store heat in the hot stove, and air is supplied to the stored hot stove so that 1112 Nm 3 / t -p Hot air of 1150 ° C is produced and blown to the blast furnace.
  • CO gas obtained by the present invention method instead of the coke oven gas: 75Nm 3 / t-p (calorific value: 2950kcal / Nm 3) the blast furnace gas: 493Nm 3 / t- p (calorific value: 740kcal / Nm 3) to be mixed to a mixed gas of 568Nm 3 / t-p (1032kcal / Nm 3), to burn the mixed gas in a hot air oven, 1112Nm 3 / t-p, 1150 °C The hot air was manufactured and blown into the blast furnace.
  • the coke oven gas of 40 Nm 3 / tp used in normal operation could be reduced, and the reduced coke oven gas could be used in the in-house heating furnace.
  • Carbon dioxide-containing gas generated in the steel industry or other industries (CO 2 or a mixture containing CO 2 and CO) is used in one embodiment of the present invention. More specifically, carbon oxide (CO 2 or CO 2 and CO) is separated and recovered from a carbon oxide-containing gas generated in the steel industry or other industries, and CO in the carbon oxide is recovered. and CO by reducing 2, by the resulting CO reused in the blast furnace, a method of using the carbon oxide-containing gas to perform the reduction of substantial CO 2.
  • a carbon oxide-containing gas such as a blast furnace gas or a converter gas generated in the iron making process.
  • a gas having a carbon oxide concentration (total concentration of CO 2 and CO) of 80% or more is separated from the recovered carbon oxide-containing gas, and the separated gas (total concentration of CO 2 and CO) Is a method in which CO 2 in the gas is reduced by a reducing agent and converted to a gas mainly composed of CO and hydrogen, and the obtained CO and hydrogen are reused in a blast furnace.
  • the concentration of carbon oxide in the recovered carbon oxide-containing gas is less than 80%, the reactor becomes large in the subsequent reduction step, and the influence of sensible heat from other components increases, which is not economical.
  • the carbon oxide-containing gas (CO 2 or a mixed gas containing CO 2 and CO) as a raw material needs to be limited to a gas generated in the iron making process.
  • the oxygen concentration is preferably 5% or less. This is because if the oxygen concentration is higher than 5%, more reducing agent is consumed by combustion.
  • Raw material is separated carbon oxide (CO 2 or CO 2 and CO) from the carbon oxide-containing gas (mixed gas containing CO 2 or CO 2 and CO), the method of recovering the availability of a variety of known methods. That is, separate the CO 2, after recovering, separate CO, recovery and methods, or separation of CO and vice versa, after recovering, separated CO 2, recovery and a method of, the more CO 2 and CO at the same time It is a method of separation and recovery.
  • Methods for separating and recovering CO 2 include, for example, a method in which it is adsorbed on activated carbon or zeolite and separated and recovered by heating or decompression (adsorption separation method), a method in which it is liquefied or solidified by pressurization or cooling, caustic soda, amine, etc.
  • adsorption separation method a method in which it is adsorbed on activated carbon or zeolite and separated and recovered by heating or decompression
  • adsorption separation method a method in which it is liquefied or solidified by pressurization or cooling, caustic soda, amine, etc.
  • adsorption separation method For absorption in a basic aqueous solution and separation and recovery by heating or reduced pressure, for separation and recovery by a CO 2 separation membrane, for absorption by solid carbon dioxide absorbent such as barium titanate and for separation and recovery by heating or reduced pressure
  • Any known method can be employed. Among them, it is particularly preferable to use an adsorption separation method that has little
  • Methods for separating and recovering CO include, for example, a method of adsorbing to a CO adsorbent such as copper / activated carbon, copper / alumina, copper / zeolite, etc., and separating and recovering by heating or reduced pressure (adsorption separation method), and copper as a main component.
  • adsorption separation method any known method can be employed, such as a method of absorbing in a CO absorbing solution and separating and recovering by heating or decompression.
  • the method of separating and recovering CO 2 and the method of separating and recovering CO may be performed simultaneously or in combination to separate CO 2 and CO simultaneously.
  • a known method can be used as a method for obtaining CO by reducing CO 2 in the carbon oxide separated and recovered as described above.
  • dry reforming using methane as a reducing agent such as the following formula (10)
  • methane as a reducing agent such as the following formula (10)
  • the reaction proceeds at 700 to 900 ° C. when a catalyst is used, but the reaction proceeds thermally at a high temperature exceeding 1000 ° C.
  • gas is blown into the blast furnace, the higher the temperature, the better. It is possible to adopt either a method using a catalyst or a method in which the reaction proceeds thermally, and it is not necessary to cool after the reaction. It is desirable to be able to.
  • the reducing agent to be used need not be limited to methane, hydrocarbons such as liquefied petroleum gas (LPG), alcohols and ethers such as methanol and dimethyl ether (DME), Aldehydes and ketones can be used.
  • LPG liquefied petroleum gas
  • DME dimethyl ether
  • the following formula (11) shows the CO 2 reduction reaction formula when LPG is used as the reducing agent
  • the following formula (12) shows the CO 2 reduction reaction formula when DME is used as the reducing agent.
  • the carbon oxide is separated and recovered from the carbon oxide-containing gas, and CO (CO obtained by separating from the carbon oxide-containing gas and the carbon oxide is reduced by reducing CO 2 in the separated and recovered carbon oxide.
  • CO CO obtained by separating from the carbon oxide-containing gas and the carbon oxide is reduced by reducing CO 2 in the separated and recovered carbon oxide.
  • the separated and recovered CO 2 and CO may be mixed and then reduced.
  • CO 2 after CO 2 is reduced, it may be mixed with CO that has been separately separated and recovered.
  • CO 2 and CO may be separated and recovered simultaneously and reduced.
  • it is preferable to set a condition that the conversion rate of CO 2 is 50% or more, and particularly preferably 70% or more.
  • the reaction between the CO 2 and a reducing agent such as methane, LPG, or DME is an endothermic reaction. Therefore, in order to advance these reactions, it is necessary to apply heat from the outside. On the other hand, there may be waste heat that is not used in steelworks and chemical factories. Therefore, in one embodiment of the present invention, these exhaust heats may be used as a part or all of a heat source for advancing the endothermic reaction. Specific examples include sensible heat of blast furnace slag and converter slag at steelworks, and sensible heat of red hot coke. And the position at the time of introducing the gas whose CO concentration is 80% or more into the blast furnace may be in the vicinity of the tuyere of the blast furnace or may be the upper part of the blast furnace.
  • the carbon oxide-containing gas (CO 2 or a mixed gas containing CO 2 and CO) can be efficiently reused to substantially suppress CO 2.
  • Hydrogen obtained by reducing CO 2 may be used for other purposes without introducing a part or all of it into the blast furnace.
  • the carbon oxide-containing gas does not contain CO, the above separation and recovery of CO are not performed. Even when the carbon oxide-containing gas contains CO, the same applies to the case where CO is not separated and recovered due to its low content.
  • FIG. 14 shows Example 1 (Invention Example 1) of a method for using a carbon oxide-containing gas according to an embodiment of the present invention.
  • blast furnace gas nitrogen: 52%, carbon dioxide: 22%, carbon monoxide: 23%, hydrogen: 3%) generated from the blast furnace 101 is used as a carbon dioxide adsorbent.
  • PSA unit adsorption tower
  • This mixed gas of CO 2 and CO is mixed with the same amount of DME (reducing agent) as CO 2, and a reforming reaction is performed in the reforming reactor 103 at normal pressure and 280 ° C. in the presence of a copper catalyst.
  • DME reducing agent
  • a reforming reaction is performed in the reforming reactor 103 at normal pressure and 280 ° C. in the presence of a copper catalyst.
  • 90% of CO 2 was converted, and the concentration of CO in the carbon oxide produced by the reforming reaction became 95%.
  • the CO and hydrogen concentrations in the total product were 49% and 47%, respectively.
  • carbon oxide-containing gas such as blast furnace gas
  • FIG. 15 shows Example 2 (Invention Example 2) of the method for using the carbon oxide-containing gas according to one embodiment of the present invention.
  • blast furnace gas nitrogen: 52%, carbon dioxide: 22%, carbon monoxide: 23%, hydrogen: 3%) generated from the blast furnace 101 is maintained at 30 ° C.
  • MEA monoethanolamine
  • the obtained MEA (monoethanolamine) aqueous solution was passed through the absorption tower 104, and CO 2 was absorbed.
  • the aqueous MEA solution having absorbed CO 2 was heated to 100 ° C. in the recovery tower 105 to release CO 2, and by cooling this generated gas, water was condensed and CO 2 was recovered.
  • the purity of CO 2 was 99%.
  • FIG. 16 shows Example 3 (Invention Example 3) of the method for using the carbon oxide-containing gas according to one embodiment of the present invention.
  • a high-temperature blast furnace slag 110 was used as a heat source of the reforming reactor 103 in Example 1 of the present invention. Others were carried out in the same manner as Example 1 of the present invention.
  • the high temperature blast furnace slag 110 heats the heat medium and further heats the dimethyl ether 109 to become a low temperature blast furnace slag 111. Dimethyl ether 109 heated by the slag sensible heat recovery device 106 is sent to the reforming reactor 103.
  • the heated heat medium is sent to the reforming reactor 103 by the heat medium circulation line 107 and cooled by supplying reaction heat to an endothermic reaction in which carbon dioxide gas and dimethyl ether are reformed to CO and hydrogen, It is sent again to the slag sensible heat recovery device 106 by the heat medium circulation pump 108.
  • the concentration of CO in the product carbon oxides by reforming reaction was 93%.
  • the CO and hydrogen concentrations in the total product were 48% and 46%, respectively. This was directly introduced into the tuyere of the blast furnace.
  • carbon oxide-containing gas such as blast furnace gas
  • the present invention CO 2 and / or modify the separated recovered CO 2 and / or CO from a gas mixture containing CO, method of operation the blast furnace to be used as a heat source (fuel) and a reducing agent in a blast furnace, CO 2 and /
  • CO 2 and / or CO separated and recovered from a mixed gas containing CO is reformed and used in a steel plant as a heat source (fuel) or a reducing agent, and a method of operating a steel plant, and a carbon oxide-containing gas (CO 2 or CO 2 2 and a mixed gas containing CO).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture Of Iron (AREA)
  • Industrial Gases (AREA)

Abstract

 COおよび/又はCOを含む混合ガスからCOおよび/又はCOを分離回収する工程(A1)と、該工程(A1)で分離回収されたCOおよび/又はCOに水素を添加し、COおよび/又はCOをCHに変換する工程(A2)と、該工程(A2)を経たガスからHOを分離除去する工程(A3)と、該工程(A3)を経たガスを高炉内に吹き込む工程(A4)を有する。混合ガスからCOおよび/又はCOを分離回収してこれをCHに変換(改質)し、このCHを高炉に吹き込み、CHが熱源および還元剤として機能するようにしたので、COおよび/又はCOを有効に利用した高炉操業を低コストに実施することができ、CO発生量の削減を図ることができる。

Description

高炉の操業方法、製鉄所の操業方法、および酸化炭素含有ガスの利用方法
 本発明は、COおよび/又はCOを含む混合ガスから分離回収したCOおよび/又はCOを改質し、高炉において熱源(燃料)や還元剤として利用する高炉の操業方法、COおよび/又はCOを含む混合ガスから分離回収したCOおよび/又はCOを改質し、製鉄所内において熱源(燃料)や還元剤として利用する製鉄所の操業方法、および酸化炭素含有ガス(CO又はCOとCOを含有する混合ガス)の利用方法に関する。
 COの増加による地球温暖化が、国際的な問題として大きく取り上げられており、その排出量を削減することが全世界的な課題となっている。発生ガスからCOを分離、回収するために様々な技術開発が試みられているが、回収したCOをどのように利用するかについては、有効な手段は提案されていない。回収したCOを地中に埋める技術、いわゆるCCS(Carbon dioxide Capture and Storage)が欧州や米国、日本などを中心に盛んに研究されている。しかしながら、この方法は、COを地中に埋めた後の安全性の観点から、特に地震国である日本においては、社会的な合意が得られにくい。また、財団法人地球環境産業技術研究機構(RITE)の試算によれば、近海を含む日本付近でのCOの埋設可能量を排出量で除した値、すなわち寿命は、わずか50年~100年程度であるとされている。したがって、少なくとも日本においては、CCSはCO排出削減のための抜本的な解決策にはなりにくいと考えられる。
 統計によれば、日本のCO排出量は、発電に伴う排出が約30%、鉄鋼生産に伴う排出が10%で、その他では、運輸部門、民生部門が大きな割合を占めている。発電所では、石炭、石油、天然ガスの化学エネルギーを、それら化石燃料の完全酸化によって電力エネルギーに変換するため、COが排出される。それ故、化石燃料の使用に見合う量のCOは必然的に発生してしまう。しかしながら、このような化石燃料による発電は、長期的には太陽光発電、風力発電、潮力発電などのいわゆるソフト・エネルギーの利用、バイオマス発電、原子力発電の普及により、徐々に減少していくものと考えられる。
 一方、鉄鋼生産では種々のプロセスでCOが発生するが、最大の発生源は高炉プロセスである。この高炉プロセスにおけるCOの発生は、酸化鉄である鉄鉱石を還元材の炭素により還元し、鉄鉱石中の酸素を除去することに起因する。このため、鉄鋼生産においては、COの発生は不可避であると言える。高炉プロセスでは、高炉下部から1000℃以上の熱風を送風し、コークスを燃焼させ、鉄鉱石の還元、溶解に必要な熱を供給するとともに、還元ガス(CO)を生成させ、この還元ガスで鉄鉱石を還元し、溶銑を得る。
 COを発生させない鉄鉱石の還元方法としては、還元ガスとして水素を用いることが考えられる。高炉に水素を吹き込んだ場合、鉄鉱石の水素による還元反応は下記(1)式で表される。コークスなどの燃焼により発生するCOによる還元反応は下記(2)式で表される。すなわち、水素による還元反応は吸熱反応であるため、水素を高炉に直接吹き込んだ場合、炉下部の熱を奪い、鉄鉱石の還元、溶解に必要な熱が不足する恐れがあり、炉下部の熱補償が必要となる。
 Fe2O3+3H2=2Fe+3H2O ΔH=100.1kJ/mol(吸熱)   …(1)
 Fe2O3+3CO=2Fe+3CO2 ΔH=-23.4kJ/mol(発熱)   …(2)
 一方、特許文献1には、高炉でのコークスなどの還元材比を削減するために、LNGなどの炭化水素系ガスを吹き込む高炉操業方法が開示されている。特許文献2には、高炉で低還元材比操業を指向した場合には、炉上部の熱補償のために、高炉ガスの一部を燃焼させ、高温ガスとして高炉シャフト部に吹き込む技術が開示されている。同文献には、必要に応じて高炉ガス中のCOを除去する技術も開示されている。特許文献3には、高炉ガスを触媒の存在下でジメチルエーテルと反応させ、ジメチルエーテルと高炉ガス中のCOをCOと水素とに改質する方法が開示されている。特許文献4には、高炉ガス、高炉ガスとコークス炉ガスの混合物、又は高炉ガスから炭酸ガスを除去したガスを燃焼し、高炉シャフト部に導入する技術が示されている。
特開2006-233332号公報 特開2008-214735号公報 特開2009-192125号公報 特開2008-214735号公報
 上述したように鉄鋼生産においてCOの発生は不可避である。このため、発生したCOをいかに有効に利用し、実質のCO発生量を削減するかが重要な課題となる。しかしながら、特許文献1の方法は、高炉にLNGを吹き込むことにより、還元材(コークスなど)が低減でき、間接的に高炉で発生するCO量を低減できるが、発生したCOを有効に利用し、実質のCO発生量を削減するというものではない。また、特許文献2の技術も、特許文献1と同様に実質のCO発生量を削減する技術ではなく、また、分離されたCOをさらに有効に利用することについては記載されていない。また、特許文献3の方法で用いられるジメチルエーテルは、石炭、石油、又は天然ガスをCOおよびHなどの合成ガスに一旦変換し、さらにその合成ガスから製造されるものであるため、製造コストが高く、また、その製造工程においてエネルギーを投入することからCOが新たに発生する問題がある。
 製鉄所においては高炉、コークス炉、および転炉からそれぞれ高炉ガス、コークス炉ガス、転炉ガスが副生し、これら副生ガスは製鉄所内の加熱炉や熱風炉などの熱源(燃料)として利用されている。一方、高炉において低還元材比操業を指向した場合、高炉ガスの発生量および発熱量が低下する。また、低還元材比操業に見合うだけのコークス量で良いことから、コークスの生産量を低減することが可能であり、結果としてコークス炉ガスも減少する。したがって、低還元材比操業では、総じて製鉄所内での熱源(燃料)が不足することになる。また、高炉やコークス炉の稼働率が低下したり、設備トラブルなどで発生ガス量が少なくなった場合や、CO低減のために鉄スクラップを多量に使用した場合などにおいても、副生ガスの発生量が減少し、製鉄所内での熱源(燃料)が不足することになる。このように熱源となる副生ガスが不足した場合、外部から重油、天然ガスなど炭素含有の燃料を購入する必要がある。
 特許文献4には、炭酸ガスを除去して高炉シャフト部へ戻す方法が示されている。しかしながら、この方法では、炭酸ガスよりも窒素を除去しなければ、その効果は小さく、さらに循環、導入された窒素分だけ、高炉ガスの窒素分が増え、高炉ガスの熱量が低下することになる。元来、高炉ガスは1000kcal/m以下の低熱量であり、他の高熱量ガスと混合することにより、燃料ガスとして利用されるのが一般的である。高炉ガスの熱量低下は、高熱量ガスの混合比率を上げる必要があるなど負の効果をもたらし、結果的には炭酸ガス排出量を増やす結果となる。このように、鉄鋼生産においてはCOの発生は不可避である。また、同時にCOも発生し、そのCOがCOに変化してしまう。このため、発生したCOやCOを含有する混合ガスをいかに効率的に再利用して、実質のCO発生量を削減するかが重要な課題となる。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、発生したCOおよび/又はCOを有効に利用し、実質のCO発生量を削減することができる高炉の操業方法を提供することにある。また、本発明の他の目的は、発生したCOおよび/又はCOを有効に利用し、実質のCO発生量を削減することができるとともに、製鉄所内で熱源となる副生ガスが不足した場合でもこれを補うことができる製鉄所の操業方法を提供することにある。また、本発明の他の目的は、特に高炉から排出されるCOおよび/又はCOを有効に利用することで、高炉のCO発生量を実質的に低減することができる高炉又は製鉄所の操業方法を提供することにある。また、本発明の他の目的は、COおよび/又はCOを改質するために必要な水素の購入量を減らし、より低コストに実施可能な高炉又は製鉄所の操業方法を提供することにある。
 また、本発明の他の目的は、発生したCOを改質して高炉で有効に利用することで、実質のCO発生量を削減することができ、しかも低コストに実施することができる高炉の操業方法を提供することにある。また、本発明の他の目的は、発生したCOを改質して製鉄所内で有効に利用することで、実質のCO発生量を削減することができるとともに、製鉄所内で熱源となる副生ガスが不足した場合でもこれを補うことができ、しかも低コストに実施することができる製鉄所の操業方法を提供することにある。また、本発明の他の目的は、特に高炉から排出されるCOを改質して有効利用することができる高炉又は製鉄所の操業方法を提供することにある。
 また、本発明の他の目的は、酸化炭素含有ガス(CO又はCOとCOを含有する混合ガス)を効率的に利用することができる酸化炭素含有ガスの利用方法を提供することにある。
 本発明者らは、上記のような従来技術の課題を解決すべく鋭意検討した結果、COおよび/又はCOを含む混合ガス(好ましくは高炉ガス)からCOおよび/又はCOを分離回収してこれをCHに変換(改質)し、このCHを熱源(燃料)および還元剤として高炉に吹き込み、或いは製鉄所内の加熱炉、熱風炉などのような設備で熱源(燃料)などとして用いることで、実質的なCO発生量の削減を果たすことができる新たな高炉又は製鉄所の操業方法を創案した。同時に、そのような操業方法において、COおよび/又はCOをCHに変換する際に発生する反応熱を利用して水素を製造することで、より低コストで実施可能な操業方法を創案した。すなわち、本発明の要旨は以下のとおりである。
 COおよび/又はCOを含む混合ガスからCOおよび/又はCOを分離回収する工程(A1)と、該工程(A1)で分離回収されたCOおよび/又はCOに水素を添加し、COおよび/又はCOをCHに変換する工程(A2)と、該工程(A2)を経たガスからHOを分離除去する工程(A3)と、該工程(A3)を経たガスを高炉内に吹き込む工程(A4)を有することを特徴とする高炉の操業方法。
 COおよび/又はCOを含む混合ガスからCOおよび/又はCOを分離回収する工程(A1)と、該工程(A1)で分離回収されたCOおよび/又はCOに水素を添加し、COおよび/又はCOをCHに変換する工程(A2)と、該工程(A2)を経たガスからHOを分離除去する工程(A3)を有し、該工程(A3)を経たガスを製鉄所内で燃料および/又は還元剤として利用することを特徴とする製鉄所の操業方法。
 また、本発明者らは、上記のような従来技術の課題を解決すべく鋭意検討した結果、COを含む混合ガス(好ましくは高炉ガス)からCOを分離回収してこれをCOに変換(改質)し、このCOを製鉄所内の加熱炉や熱風炉などのような設備の燃料などとして使用し、或いは還元剤として高炉に吹き込むことで、実質的なCO発生量の削減を果たすことができる新たな操業方法を創案した。すなわち、本発明の要旨は以下のとおりである。
 COを含む混合ガスからCOを分離回収する工程(B1)と、該工程(B1)で分離回収されたCOに水素系還元剤を添加し、COをCOに変換する工程(B2)と、該工程(B2)を経たガスからHO又はHOとNを分離除去する工程(B3)と、該工程(B3)を経たガスを高炉内に吹き込む工程(B4)を有することを特徴とする高炉の操業方法。
 COを含む混合ガスからCOを分離回収する工程(B1)と、該工程(B1)で分離回収されたCOに水素系還元剤を添加し、COをCOに変換する工程(B2)と、該工程(B2)を経たガスからHO又はHOとNを分離除去する工程(B3)を有し、該工程(B3)を経たガスを製鉄所内の設備において燃料および/又は還元剤として用いることを特徴とする製鉄所の操業方法。
 さらに、本発明者らは、上記のような従来技術の課題を解決すべく鋭意検討した結果、鉄鋼業あるいはその他の産業などで発生したCOを回収し、これを還元してCOとして高炉で再利用することにより、実質的なCOの削減を果たすことが出来ることを見出した。すなわち、製鉄所において発生する高炉ガスや転炉ガスなどの酸化炭素含有ガス(CO又はCOとCOを含有する混合ガス)を回収し、回収した酸化炭素含有ガスから酸化炭素(CO又はCOとCO)を分離し、分離した酸化炭素中のCOを炭化水素系還元剤により還元してCOに変換し、それらによって得られたCO(酸化炭素含有ガスから分離したCOを還元して得られたCOおよび/又は、酸化炭素含有ガスから分離して得られたCO)を高炉にて再利用することを着想した。上記の着想に基づいて、本発明は以下の特徴を有している。
 CO又はCOとCOを含有する混合ガスからCO又はCOとCOを分離した後、分離した前記CO又は前記COとCOを炭化水素系還元剤と接触させてCOと水素に転化させ、得られたCOを高炉に導入することを特徴とする酸化炭素含有ガスの利用方法。
 本発明の高炉又は製鉄所の操業方法によれば、COおよび/又はCOを含む混合ガスからCOおよび/又はCOを分離回収してこれをCHに変換(改質)し、このCHを熱源(燃料)および還元剤として高炉に吹き込み、或いは製鉄所内の加熱炉や熱風炉などのような設備で熱源(燃料)などとして用いるようにしたので、COおよび/又はCOを有効に利用した高炉や製鉄所全体の操業を低コストに実施することができ、CO発生量の削減を図ることができる。また、高炉での低還元材比操業の実施やその他の理由で製鉄所内で熱源となる副生ガスが不足した場合でも、その不足分を適切に補うことができる。
 さらに、COおよび/又はCOをCHに変換する際に発生する反応熱を水素の製造に利用し、製造された水素を上記変換(改質)工程で用いることにより、本発明をより低コストで実施することができる。また、上記反応熱を熱源に利用して有機ハイドライドの脱水素反応により水素を製造するとともに、この脱水素反応工程での反応圧力を、COおよび/又はCOをCHに変換するメタン化反応工程の反応圧力よりも高くすることで、系内でのエネルギー効率が高められ、プロセス全体の省エネルギー化を達成することができる。
 本発明の高炉又は製鉄所の操業方法によれば、COを含む混合ガスからCOを分離回収してこれをCOに変換(改質)し、このCOを製鉄所内の加熱炉や熱風炉などの設備で燃料などとして利用し、或いは還元剤として高炉に吹き込むようにしたので、高炉や製鉄所全体においてCOを有効に利用した操業を低コストに実施することができ、CO発生量の削減を図ることができる。また、高炉での低還元材比操業の実施やその他の理由で製鉄所内で熱源となる副生ガスが不足した場合でも、その不足分を適切に補うことができる。
 本発明に係る酸化炭素含有ガスの利用方法によれば、酸化炭素含有ガス(CO又はCOとCOを含有する混合ガス)を効率的に再利用し、実質的にCOの発生を抑制することができる。
図1は、工程(A2)が行われる設備の一実施形態を示す説明図である。 図2は、工程(A2)および工程(A5)が行われる設備の一実施形態を示す説明図である。 図3は、工程(A2)および工程(A5)が行われる設備の他の実施形態を示す説明図である。 図4は、工程(A2)および工程(A5)が行われる設備の他の実施形態を示す説明図である。 図5は、工程(A2)および工程(A5)が行われる設備の他の実施形態を示す説明図である。 図6は、工程(A2)および工程(A5)が行われる設備の他の実施形態を示す説明図である。 図7は、工程(A2)および工程(A5)が行われる設備の他の実施形態を示す説明図である。 図8は、工程(A2)および工程(A5)が行われる設備の他の実施形態を示す説明図である。 図9は、有機ハイドライドから水素を製造する工程(A5)を有する方法の一実施形態を示す説明図である。 図10は、本発明の第1の実施形態である高炉の操業方法において、混合ガスとして高炉ガスを用いる場合の一実施態様(ガスの処理フロー)を示す説明図である。 図11は、本発明の第1の実施形態である高炉の操業方法において、混合ガスとして高炉ガスを用いる場合の他の実施態様(ガスの処理フロー)を示す説明図である。 図12は、本発明の第2の実施形態である高炉の操業方法において、混合ガスとして高炉ガスを用いる場合の一実施態様(ガスの処理フロー)を示す説明図である。 図13は、本発明の第2の実施形態である製鉄所の操業方法において、混合ガスとして高炉ガスを用いる場合の一実施態様(ガスの処理フロー)を示す説明図である。 図14は、本発明の酸化炭素含有ガスの利用方法の一実施例を示す図である。 図15は、本発明の酸化炭素含有ガスの利用方法の一実施例を示す図である。 図16は、本発明の酸化炭素含有ガスの利用方法の一実施例を示す図である。
第1の実施形態
 本発明の第1の実施形態である高炉操業方法は、COおよび/又はCOを含む混合ガスからCOおよび/又はCOを分離回収する工程(A1)と、該工程(A1)で分離回収されたCOおよび/又はCOに水素を添加し、COおよび/又はCOをCHに変換する工程(A2)と、該工程(A2)を経たガスからHOを分離除去する工程(A3)と、該工程(A3)を経たガスを高炉内に吹き込む工程(A4)とを有する。さらに、好ましくは、高炉操業方法は、工程(A2)で発生する反応熱を利用して水素を製造する工程(A5)を有し、この工程(A5)で製造された水素の少なくとも一部を工程(A2)で用いるとよい。
 工程(A4)で高炉内に吹き込まれたCHは、高炉内において下記(3)式の反応により還元剤(還元ガス)に変換される。
 CH4+1/2O2=CO+2H2 ΔH=-8.5kJ/mol(発熱)  …(3)
 上記(3)式は発熱反応であり、鉄鉱石の還元に必要な熱として供給される。生成する還元ガスは下記(4)式に示すように鉄鉱石を還元する。
 Fe2O3+CO+2H2=2Fe+CO2+2H2O ΔH=58.9kJ/mol(吸熱)  …(4)
 上記のようにCHの燃焼熱も高炉内の鉄鉱石の還元、溶解に利用できるので、さきに(1)式に示したような水素による鉄鉱石還元ほど高炉下部への熱補償は必要ない。
 混合ガスとしては、COおよび/又はCOを含む混合ガスであれば、その種類は問わない。例えば、製鉄プロセスで発生する混合ガスとしては、高炉ガスや転炉ガスなどが代表的なものとして挙げられるが、これらに限定されるものではなく、他の産業分野で発生する混合ガスであってもよい。COを効率的に分離するためには、混合ガスのCO濃度が高いことが望ましいが、高炉ガス、転炉ガス、加熱炉燃焼排ガスなどを前提にした場合、混合ガスとしては、COを15vol%以上含むものを対象とすることが好ましい。
 本発明が最も有用なのは、原料の混合ガスとして高炉ガスを用いる場合であり、高炉ガスに含まれるCOとCOをCHに改質して高炉に熱源および還元剤として循環させることにより、高炉からのCO排出量を削減することができる。高炉ガスの一般的な組成は、CO:15~25vol%、CO:15~25vol%、N:45~55vol%、水素:0~5vol%程度である。原料の混合ガスとして高炉ガスを用いる場合、高炉から発生する高炉ガスの一部又は全部を対象とするが、例えば、高炉ガスの10vol%を使用した場合には、CO排出量を約12%程度削減できる。
 以下、本発明の第1の実施形態である高炉の操業方法について、これを構成する工程(A1)~(A4)、さらに工程(A5)について説明する。
工程(A1)
 原料ガスである混合ガスは、COおよび/又はCOを含む混合ガスであり、この工程(A1)では、この混合ガスからCOおよび/又はCOを分離回収する。COとCOを含む混合ガスの場合には、混合ガスからCOとCOを分離回収し、工程(A2)でCHに変換(改質)することが好ましいが、これに限られるものではなく、例えば、COとCOを含む混合ガスからCOのみを分離回収するようにしてもよい。
 混合ガスからCO、COを分離回収する方法は、それぞれ任意の方法でよい。混合ガスからCOとCOを各々分離回収する場合、COを分離回収した後、COを分離回収してもよいし、その逆でもよい。COとCOを同時に分離回収してもよい。混合ガスからCOを分離回収する方法としては、例えば、加圧又は冷却によりCOを液化又は固化する方法、苛性ソーダやアミンなどの塩基性水溶液にCOを吸収させた後、加熱又は減圧により分離回収する方法、活性炭やゼオライトなどにCOを吸着させた後、加熱又は減圧により分離回収する方法、CO分離膜により分離回収する方法などが知られており、これらを含む任意の方法を採用することができる。
 混合ガスからCOを分離回収する方法としては、例えば、銅/活性炭、銅/アルミナ、銅/ゼオライトなどの吸着剤にCOを吸着させた後、加熱又は減圧により分離回収する方法、銅を主要成分とする吸収液にCOを吸収させた後、加熱又は減圧により分離回収する方法などが知られており、これらを含む任意の方法を採用することができる。以上のようなCOを分離回収する方法とCOを分離回収する方法とを同時又は複合的に実施し、COおよびCOを同時に分離回収してもよい。混合ガスから分離回収されたCOやCOのガス純度に特別な制限はないが、改質工程で使用する反応器の小型化などの観点からは、80vol%以上の純度であることが好ましい。
工程(A2)
 この工程(A2)では、上記工程(A1)で分離回収されたCOおよび/又はCOに水素を添加し、COおよび/又はCOをCHに変換(改質)する。COおよび/又はCOに水素を添加してCHに改質する方法には、特定の触媒などを用いて改質を行う公知の方法を採用することができる。水素によるCOの還元反応を下記(5)式に、水素によるCOの還元反応を下記(6)式に、それぞれ示す。
 CO2+4H2=CH4+2H2O ΔH=-39.4kJ/mol(発熱)  …(5)
 CO+3H2=CH4+H2O ΔH=-49.3kJ/mol(発熱)  …(6)
 上記(5)式、(6)式は発熱反応である。(5)式は平衡的には低温が有利であり、300℃におけるCO平衡転化率は約95%を示す。(6)式も平衡的には低温が有利であり、300℃におけるCO平衡転化率は約98%を示す。これらの反応には通常使用されているメタン化触媒を利用できる。具体的には、鉄、Ni、Co、Ruなどの遷移金属系触媒を用いることにより、COやCOをCHに改質可能である。なかでもNi系触媒は活性が高く、また耐熱性も高く500℃程度の温度まで使用可能であるので、特に好ましい。鉄鉱石を触媒として用いてもよく、特に高結晶水鉱石は、結晶水を脱水すると比表面積が増加し、触媒として好適に利用できる。
 メタン化反応器は、触媒層の圧力損失や、メタン化反応器下流側に後述するような熱交換器を設置する場合にはその圧力損失を考慮して、その入口圧力が0.2~1MPa程度、より好ましくは0.3~0.6MPa程度で運転されることが望ましい。メタン化反応器での反応圧力が低すぎると、圧力損失のためにメタン化反応器下流に吸引ブロワを設置する必要が生じ、消費動力が増大する。一方、メタン化反応器での反応圧力が高すぎると、COおよび/又はCO、およびHを反応圧力まで昇圧するための消費動力が増大する。
 CO、COをCHに改質する場合、CO、COをそれぞれ個別に改質してもよいし、COとCOを混合した状態で改質してもよい。COおよび/又はCOに添加される水素の供給源は任意であるが、例えば、アンモニアなどのような含水素化合物を分解して生成させた水素を用いることができる。アンモニアの分解は下記(7)式で示される。
 NH3=1/2N2+3/2H2 ΔH=11.0kJ/mol(吸熱)  …(7)
 上記(7)式は400℃で約95%の平衡転化率を示す。アンモニアは、鉄、Ni、Coなどの遷移金属系触媒を用いることにより、窒素と水素に分解可能である。鉄鉱石を触媒として用いてもよく、特に高結晶水鉱石は、結晶水を脱水すると比表面積が増加し、触媒として好適に利用できる。アンモニアは石炭を乾留するコークスを製造する際に発生し(アンモニア発生量は約3.3Nm/t-石炭)、現状では、液安又は硫安として回収されている。このアンモニアを本発明において水素源として利用できれば、製鉄所外から水素を調達する必要がなくなり、或いは製鉄所外から調達する量を少なくすることができる。
 水素を得るための他の含水素化合物としては、例えば、コークス炉ガスなどが挙げられる。コークス炉ガスから水素を得る場合、コークス炉ガス中の水素をPSA(物理吸着)などで分離回収する方法、コークス炉ガス中の炭化水素を改質(部分酸化)し、この改質ガスから水素をPSA(物理吸着)などで分離回収する方法、などの方法を採ることができる。バイオマスを部分酸化し、得られたガスからPSA(物理吸着)などで水素を分離回収してもよい。アンモニアなどの含水素化合物を分解して水素を得る場合、分解した後の水素以外のガス成分(アンモニアの場合には窒素)を分離除去した後、水素を工程(A2)に供給する。他の供給源から得られる水素としては、例えば、天然ガスなどの炭化水素を水蒸気改質などによって改質することで製造された水素、液化水素を気化させて得られた水素、有機ハイドライドを脱水素して製造された水素、水の電気分解によって製造された水素などが挙げられる。
 COおよび/又はCOに水素を添加し、触媒を用いてCHに改質(CO、COをそれぞれ個別に若しくは混合した状態で改質)するためには、通常、水素を添加したCOおよび/又はCOを触媒が充填されている反応器に導入し、COおよび/又はCOをCHに変換(改質)する反応を生じさせる。反応器としては、固定層反応器、流動層反応器、気流層反応器などを用いることができる。これら反応器の形式によって、触媒の物理的な性状が適宜選択される。
 これらのなかでも、メタン化反応器としては、耐熱性に優れるNi系触媒などの触媒を充填した断熱型の固定層反応器は工業的実績が多い。図1は、工程(A2)が行われる設備の一実施形態を示すものであり、触媒3(例えば、Ni系触媒など)を充填した複数基の反応器1(メタン化反応器)がガス流路4に直列に配置されている。これらの反応器1は、断熱型の固定層反応器からなる。これら複数の反応器1に、水素を添加したCOおよび/又はCOが順次導入され、各反応器1においてCOおよび/又はCOをCHに変換(改質)する反応が生じる。各反応器1の下流側のガス流路4には熱交換器2が配置され、各反応器1でのメタン化反応の反応熱(ガス顕熱)がこの熱交換器2で熱回収される。この実施形態では熱媒体として水を用い(5が熱媒体流路)、熱交換器2で蒸気を発生させて熱回収を行っている。
 反応温度の制御を適切に行いつつ、メタン化反応を効率的に生じさせるには、本実施形態のように、1基の反応器1に充填する触媒量を少なくするとともに、反応器1の下流側に設置された熱交換器2によって熱回収を行いながら反応温度制御を行い、このような反応器1と熱交換器2のセットを数基直列に配列した反応器群でメタン化反応を完結させるようにすることが好ましい。
 COおよび/又はCOに混合する水素の量は、量論比以上であることが好ましく、具体的には、水素の量はCOおよび/又はCOに対する量論比で1以上1.2以下であることが好ましい。量論比が1未満では未反応で残留するCOおよび/又はCOが増加するだけでなく、メタン化触媒上に炭素質が析出して触媒寿命を短くする恐れがある。一方、量論比が1.2を超えると、反応に対する悪影響は認められないものの、未反応で残留するHが増えて経済性が低下する。
工程(A3)
 この工程(A3)では、上記工程(A2)を経たガス(以下、「改質後ガス」という)からHOを分離除去する。水素によってCOおよび/又はCOをCHに改質した場合、HOが生成する。HOが高炉に導入されると、高炉内のコークスを消費し、逆にCO排出量が増加する。したがって、改質後ガスからHOを分離除去する必要がある。改質後ガスからHOを分離除去する方法としては、冷却方式、吸着方式などを適用できる。冷却方式では、改質後ガスを露点温度以下に冷却し、HOを凝縮除去する。露点温度は改質ガス中のHO濃度によって決まるが、通常、改質後ガスを30℃以下まで冷却すれば、HOを適切に凝縮除去することができ、通常高炉に吹き込まれる送風空気湿分濃度と同程度となるので、高炉操業上好ましい。吸着方式では、シリカゲルなどの除湿用吸着剤を用いるが、吸着塔内で吸着と再生を繰り返す方式、ハニカム状に成型された吸着剤が回転しながら再生、吸着を連続的に繰り返すハニカムローター方式などを適宜採用できる。改質後ガスを冷却する方法としては、例えば、工程(A3)を経て高炉に供給される途中の改質後ガス(通常、常温)と熱交換させるようにしてもよい。
 上記工程(A2)でCOおよび/又はCOの改質のために添加した水素の一部が未反応状態で改質後ガス中に残存していても(通常、添加した水素の一部は未反応状態で改質後ガス中に残存する)、本発明では特に問題とはならないが、残存水素を分離回収して、工程(A2)で再利用してもよい。改質後ガスから水素を分離回収するには、例えば、H以外のガスを吸着剤で吸着分離するPSA法などの方法を採ることができる。改質後ガスに上記工程(A2)でCHに改質されなかったCOおよび/又はCO(特にCO)が残存している場合には、例えば、さきに述べたような方法でCOおよび/又はCOを分離除去してもよい。以上により、改質後ガスは、通常、CH主体のガス又は実質的にCHのみからなるガスとなる。
工程(A4)
 この工程(A4)では、工程(A3)を経た改質後ガスを熱源および還元剤として高炉内に吹き込む。改質後ガスは、高炉操業を考慮するとガス温度を高めて高炉内に吹き込むことが好ましく、このため工程(A2)を経た直後の高温の改質後ガスと熱交換して昇温させてから高炉に吹き込んでもよい。他の熱源を用いて間接加熱により改質後ガスを昇温させてもよい。改質後ガスの高炉内への吹き込みは、通常、羽口を通じて行うが、これに限られるものではない。改質後ガスを羽口から吹き込む場合、羽口に吹込みランスを設置し、この吹込みランスから吹き込むのが一般的である。
工程(A5)
 この工程(A5)は、工程(A2)で発生する反応熱を回収、利用して水素を製造するものであり、本発明では、この工程(A5)で製造された水素の少なくとも一部を工程(A2)で用いる。図2~図8は、それぞれ工程(A2)および工程(A5)が行われる設備の実施形態を示している。さきに挙げた式(5)、(6)に示されるように、工程(A2)においてCOおよび/又はCOをCHに変換する際に発生する反応熱は極めて大きい。特に、Ni系触媒などのような耐熱性の高い触媒と断熱型のメタン化反応器を用い、メタン化反応器の出側ガス温度が400~500℃程度になるように制御し、このような改質後ガスから熱回収を行えば、一般に大きな吸熱反応である水素の製造において、その熱を有効に利用することができる。
 工程(A5)の実施形態である水素の製造方法としては、例えば、以下のようなものが挙げられるが、これらに限定されるものではない。
(1)単環芳香族化合物および/又は多環芳香族化合物の水素化物(以下、説明の便宜上、これらを総称して「有機ハイドライド」という場合がある)の脱水素反応により水素を製造するとともに、その脱水素反応の熱源として工程(A2)で発生する反応熱を利用する方法。
(2)工程(A2)で発生する反応熱を熱源としてアンモニアを分解し、水素を製造する方法。
(3)炭化水素の水蒸気改質により水素を製造するとともに、原料となる炭化水素の予熱用の熱源として工程(A2)で発生する反応熱を利用する方法。
(4)炭化水素の水蒸気改質により水素を製造するとともに、工程(A2)で発生する反応熱で蒸気を発生させ、この蒸気を改質反応用の水蒸気として利用する方法。
(5)工程(A2)で発生する反応熱で蒸気を発生させ、この蒸気により発電を行い、その電力により水の電気分解を行うことで水素を製造する方法。
(6)工程(A2)で発生する反応熱で蒸気を発生させ、この蒸気により発電を行い、その電力を用いたPSA法(圧力スイング法)により水素含有ガスから水素を分離することで水素を製造する方法。この方法には、例えば、コークス炉ガスなどから水素を分離する方法、バイオマスやプラスチックなどのガス化ガスから水素を分離する方法などが含まれる。
 上記(1)の方法では有機ハイドライドの脱水素反応を行う水素製造用反応器が、上記(2)の方法ではアンモニア分解を行う水素製造用反応器が、上記(3)の方法では炭化水素の水蒸気改質を行う水素製造用反応器が、それぞれ用いられ、これらの水素製造用反応器での熱源に、工程(A2)で発生する反応熱が利用される。図2~図6は、上記(1)~(3)の方法を実施するのに好適な設備構成の幾つかの実施形態を示している。以上挙げた方法のなかで、上記(1)の方法において水素製造原料となる有機ハイドライドは常温で液体であるが、水素製造プロセスでの省エネルギーの観点からは、そのような常温で液体である水素製造原料を用いた方が好ましい。これは、水素製造用反応器に水素製造原料を昇圧して供給する時、気体に較べて液体の方が遥かに小さい動力で昇圧できるからである。
 図2の実施形態では、図1の実施形態と同じく、触媒3(例えば、Ni系触媒など)が充填された複数基の反応器1(メタン化反応器)がガス流路4に直列に配置され、各反応器1の下流側のガス流路4に熱交換器2が配置され、各反応器1でのメタン化反応の反応熱(ガス顕熱)がこの熱交換器2(5が熱媒体流路)で熱回収される。この実施形態では、熱媒体として水素製造原料、すなわち上記(1)の方法では有機ハイドライドを、上記(2)の方法ではアンモニアを、上記(3)の方法では炭化水素をそれぞれ用い、熱交換器2でその水素製造原料と直接熱交換を行って水素製造原料を予熱する。予熱された水素製造原料は水素製造用反応器6に導入され、上記(1)~(3)のいずれかの方法により水素が製造される。上記(3)の方法については、一般に、水蒸気改質反応温度は高いので、メタン化反応熱は原料炭化水素の予熱用として有効であるが、高い反応率で水蒸気改質反応を行うには、より高温の熱源も供給することが好ましい。
 図3の実施形態では、図1の実施形態と同じく、触媒3(例えば、Ni系触媒など)が充填された複数基の反応器1(メタン化反応器)がガス流路4に直列に配置され、各反応器1の下流側のガス流路4に熱交換器2が配置され、各反応器1でのメタン化反応の反応熱(ガス顕熱)がこの熱交換器2(5が熱媒体流路)で熱回収される。この実施形態では、熱媒体として水を用い、熱交換器2で蒸気を発生させて熱回収を行い、さらにその蒸気を熱交換器7で水素製造原料と熱交換させ(8が水素製造原料流路)、水素製造原料を予熱する。予熱された水素製造原料は水素製造用反応器6に導入され、上記(1)~(3)のいずれかの方法により水素が製造される。
 図4の実施形態では、図1の実施形態と同じく、触媒3(例えば、Ni系触媒など)が充填された複数基の反応器1(メタン化反応器)がガス流路4に直列に配置される。各反応器1の下流側のガス流路4が、水素製造用反応器6a(シェルアンドチューブ型反応器)の内部を通過し、ガス流路4を流れるガスの顕熱が水素製造用反応器6aの熱源として利用される。水素製造原料が導入される水素製造反応器6aでは、上記(1)~(3)のいずれかの方法により水素が製造される。水素製造原料とガス流路4の流れ方向は向流とすることが一般的であるが、並流としてもよい。本実施形態では水素製造用反応器6aとしてシェルアンドチューブ型を例示したが、これに限定されるものではない。
 図5の実施形態では、図1の実施形態と同じく、触媒3(例えば、Ni系触媒など)が充填された複数基の反応器1(メタン化反応器)がガス流路4に直列に配置され、各反応器1の下流側のガス流路4に熱交換器2が配置され、各反応器1でのメタン化反応の反応熱(ガス顕熱)がこの熱交換器2(5が熱媒体流路)で熱回収される。この実施形態では、熱媒体として水を用い、熱交換器2で蒸気を発生させて熱回収を行う。蒸気が通る熱媒体流路5が、水素製造用反応器6a(シェルアンドチューブ型反応器)の内部を通過し、蒸気の顕熱が水素製造用反応器6aの熱源として利用される。水素製造原料が導入される水素製造用反応器6aでは、上記(1)~(3)のいずれかの方法により水素が製造される。水素製造原料とガス流路4の流れ方向は向流とすることが一般的であるが、並流としてもよい。本実施形態では水素製造用反応器6aとしてシェルアンドチューブ型を例示したが、これに限定されるものではない。
 図6の実施形態では、図1の実施形態と同じく、触媒3(例えば、Ni系触媒など)が充填された複数基の反応器1(メタン化反応器)がガス流路4に直列に配置され、各反応器1の下流側のガス流路4に熱交換器2が配置され、各反応器1でのメタン化反応の反応熱(ガス顕熱)がこの熱交換器2(5が熱媒体流路)で熱回収される。この実施形態では、熱媒体として水を用い、熱交換器2で蒸気を発生させて熱回収を行うが、ガス流路4に直列に配置された複数の反応器のうち、下流側の1又は2以上の反応器1に付設された熱交換器2a(反応器1の下流側に配置された熱交換器2a)に熱媒体流路5を通じてスチームドラム9からの水が流され、熱交換器2aで蒸気を発生させて熱回収を行う。この蒸気はスチームドラム9を経て液体分が除かれた後、上流側の1又は2以上の反応器1に付設された熱交換器2b(反応器1の下流側に配置された熱交換器2b)に送られ、この熱交換器2bで過熱蒸気を発生させて熱回収を行う。本実施形態で配置された熱交換器2は、熱交換器2aが3基、熱交換器2bが1基である。熱交換器2bで発生した過熱蒸気を熱交換器7で水素製造原料と熱交換させ(8が水素製造原料流路)、水素製造原料を予熱する。この予熱された水素製造原料は水素製造用反応器6に導入され、上記(1)~(3)のいずれかの方法により水素が製造される。このように工程(A2)の反応熱で過熱蒸気を発生させ、この過熱蒸気を水素製造原料の予熱用熱源として用いる方法は、熱効率に優れており特に好ましい。図6に示される過熱蒸気を発生させる機構は、図5の実施形態の設備に適用してもよい。
 上記(4)の方法では炭化水素の水蒸気改質を行う水素製造用反応器が用いられ、工程(A2)で発生する反応熱で発生させたスチームが水素製造用反応器に導入される。図7は、(4)の方法を実施するのに好適な設備構成の一実施形態を示している。図7の実施形態では、図1の実施形態と同じく、触媒3(例えば、Ni系触媒など)が充填された複数基の反応器1(メタン化反応器)がガス流路4に直列に配置され、各反応器1の下流側のガス流路4に熱交換器2が配置され、各反応器1でのメタン化反応の反応熱(ガス顕熱)がこの熱交換器2(5が熱媒体流路)で熱回収される。この実施形態では、熱媒体として水を用い、熱交換器2で蒸気を発生させて熱回収を行い、さらにその蒸気が炭化水素が供給される水素製造用反応器10に改質反応用の水蒸気として導入され、炭化水素の水蒸気改質により水素が製造される。水蒸気改質反応温度は高いので、メタン化反応の反応熱を利用して発生させた蒸気を改質反応用の水蒸気の少なくとも一部として利用するこの方法は特に有用である。図6のような設備構成で、過熱蒸気を発生させて改質反応用の水蒸気の少なくとも一部として供給することは、熱効率の面から特に有効である。
 図8は上記(5)の方法および(6)の方法を実施するのに好適な設備構成の一実施形態を示している。この実施形態では、図1の実施形態と同じく、触媒3(例えば、Ni系触媒など)が充填された複数基の反応器1(メタン化反応器)がガス流路4に直列に配置され、各反応器1の下流側のガス流路4に熱交換器2が配置され、各反応器1でのメタン化反応の反応熱(ガス顕熱)がこの熱交換器2(5が熱媒体流路)で熱回収される。この実施形態では、熱媒体として水を用い、熱交換器2で蒸気を発生させて熱回収を行うが、ガス流路4に直列に配置された複数の反応器のうち、下流側の1又は2以上の反応器1に付設された熱交換器2a(反応器1の下流側に配置された熱交換器2a)に熱媒体流路5を通じてスチームドラム9からの水が流され、熱交換器2aで蒸気を発生させて熱回収を行う。この蒸気はスチームドラム9を経て液体分が除かれた後、上流側の1又は2以上の反応器1に付設された熱交換器2b(反応器1の下流側に配置された熱交換器2b)に送られ、この熱交換器2bで過熱蒸気を発生させて熱回収を行う。本実施形態で配置された熱交換器2は、熱交換器2aが3基、熱交換器2bが1基である。熱交換器2bで発生した過熱蒸気をスチームタービン11に供給して発電を行う。その電力を水素製造設備(図示せず)に供給し、その電力を用いて、上記(5)の方法では水の電気分解を行うことで水素を製造し、上記(6)の方法ではPSA法により水素含有ガスから水素を分離することで水素を製造する。この方法では、スチームタービン11から排出される廃スチーム或いは加圧排熱水の廃熱を利用した熱電変換などの廃熱発電を組み合わせ、発電量を増加させてもよい。
 以上述べた種々の実施形態のうち、工程(A2)で発生する反応熱を蒸気で熱回収する方法(図3、図5~図8)は、伝熱効率に優れ、発電設備などで多くの実績を有することから好ましい方法である。特に、図1において説明したような、メタン化反応器として耐熱性に優れるNi系触媒などを充填した断熱型の固定層反応器を採用した場合、メタン化反応器出口温度を400~500℃に設定することができるため、反応熱を過熱中圧(圧力2~5MPa程度)蒸気で回収することができ、効率的に水素を製造できるため特に好ましい。
 上記(1)の方法において水素製造原料に用いる有機ハイドライドは、単環芳香族化合物の水素化物および多環芳香族化合物の水素化物の中から選ばれる1種以上である。具体的には、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカリン、メチルデカリン、ジメチルデカリン、テトラリン、パーヒドロアントラセンなどが挙げられ、これらの1種以上を用いることができる。有機ハイドライドの脱水素反応温度は300~400℃程度であり、断熱型のメタン化反応器1の出口ガス温度よりも低い温度である。したがって、図2~図6に示す何れの設備構成によっても有機ハイドライドの脱水素による水素製造が可能である。
 図9は、上記(1)の方法で有機ハイドライドから水素を製造し、この水素を工程(A2)のメタン化反応に利用する場合の一実施形態を模式的に示したものであり、設備構成としては、例えば、図2~図6に示すものが採用可能である。図において、1はメタン化反応が行われる反応器(メタン化反応器)、4はガス流路、6は有機ハイドライドの脱水素反応が行われる水素製造用反応器(脱水素反応器)、12は水素製造用反応器6での脱水素反応生成物から水素を分離する水素分離装置(蒸留塔)、13は有機ハイドライドを水素製造用反応器6に供給するポンプ、14は有機ハイドライド脱水素生成物流路、15は背圧弁、16は水素分離後の有機ハイドライド脱水素生成物流路である。
 水素製造用反応器6における脱水素反応の反応圧力は、反応器1におけるメタン化反応の反応圧力よりも高くすることが好ましい。これは、そのような圧力差を設けることにより、水素製造用反応器6で製造された水素を反応器1に導入するためのコンプレッサーが不要となり、系内でのエネルギー効率が非常に高くなるためである。具体的には、水素製造用反応器6や水素分離装置12の圧力損失にもよるが、脱水素反応が行われる水素製造用反応器6の入口圧力は、メタン化反応が行われる反応器1の入口圧力よりも0.1~0.5MPa高くすることが好ましく、0.2~0.4MPa高くすることがより好ましい。脱水素反応器(反応器6)の入口圧力とメタン化反応器(反応器1)の入口圧力の差が小さすぎると、脱水素反応器で製造された水素をメタン化反応器に円滑に導入できなくなる場合があり、一方、脱水素反応器の入口圧力とメタン化反応器の入口圧力の差が大きすぎると、有機ハイドライドの脱水素反応は平衡上、低圧ほど有利であるため、水素収率が低下する。脱水素反応器(反応器6)における脱水素反応の反応圧力を、メタン化反応器(反応器1)におけるメタン化反応の反応圧力よりも高くすること、好ましくは上述した範囲の圧力差を設けることにより、有機ハイドライドを昇圧して脱水素反応器(反応器6)に供給した圧力で脱水素反応の圧力が維持され、さらに、分離した水素を昇圧することなくメタン化反応器(反応器1)に円滑に導入することができ、プロセス全体の省エネルギー化を達成することができる。
 上記(2)の方法において水素源となるアンモニアの分解反応は、反応圧力0.1MPaにおいて平衡転化率が95%以上となる反応温度は約400℃である。したがって、この場合も有機ハイドライドの脱水素反応と同様、図2~図6に示す何れの方法によっても水素の製造が可能である。アンモニア分解で生成する物質はNとHだけであるので、Pd膜などの既存の水素分離膜とアンモニア分解触媒とを組み合わせたメンブレンリアクター中で分解反応を行うことによって、平衡を超える転化率が達成可能であり、好ましい。アンモニア分解触媒としては鉄、Ru、Ni、Coなどの遷移金属系触媒を用いることができる。鉄鉱石を触媒として用いてもよく、特に高結晶水鉱石は、結晶水を脱水すると比表面積が増加し、触媒として好適に利用できる。
 以上説明してきた工程(A5)によって製造された水素は、必要に応じて不純物を除去した後、工程(A2)のメタン化反応器の上流の水素供給配管に合流させ、メタン化反応に必要な水素の一部として利用される。前記「必要に応じて不純物を除去」とは、工程(A2)のメタン化反応、工程(A4)の高炉内へのメタン化ガスの吹き込み、および工程(A5)の水素製造の各工程において必要とされるレベルまで不純物を除去することを意味する。具体的には、水素純度として90%以上、より好ましくは95%以上であればよい。水素純度が90%未満では水素中の不純物によるメタン製造触媒の活性低下やメタン化反応器下流に設置された熱交換器などでの伝熱効率の低下の原因となりやすい。工程(A4)の高炉への吹込みにおいて、高炉内での鉄鉱石の還元効率の低下や熱効率の低下の原因となるおそれもある。水素純度が99.999%より高くても工程(A2),(A4),(A5)での技術上の問題はないが、必要以上に高純度とするとコスト高となるので、水素純度は99.999%を上限とするのが好ましい。
 図10は、原料ガス(混合ガス)として高炉ガスを用いる場合の本発明の一実施態様(ガスの処理フロー)を示したものである。この実施形態では、まず、工程(A1)として、高炉ガスからCOおよび/又はCOが分離回収される。高炉ガスはHOやNを含んでいるので、これらを分離除去することにより、残部ガス(改質高炉ガス)の品位を高めることができ、この残部ガスは燃料や水素源などとして利用できる。次に、工程(A2)として、高炉ガスから分離回収されたCOおよび/又はCOに水素を添加し、COおよび/又はCOをCHに変換(改質)する。水素は、アンモニアなどの含水素化合物を分解して得られ、分解した後の水素以外のガス成分(アンモニアの場合には窒素)を分離除去した後、水素が工程(A2)に供給される。
 上記工程(A2)を経た改質後ガスは、高炉に導入される直前の改質後ガスと熱交換されることで冷却された後、工程(A3)として、HOが分離除去される。改質後ガス中に工程(A2)で改質されなかったCOおよび/又はCOや未反応の水素が残存している場合には、COおよび/又はCOと水素を分離回収し、工程(A2)で再利用することもできる。このようにして工程(A3)を経た改質後ガスは、上記工程(A2)を経た直後の高温の改質後ガスと熱交換して昇温させた後、羽口から熱風とともに高炉内に吹き込まれる(工程(A4))。
 図11は、原料ガス(混合ガス)として高炉ガスを用いる場合の本発明の一実施態様(ガスの処理フロー)を示したものである。この実施形態では、工程(A1)~(A4)は図10と同様であるが、工程(A5)において、工程(A2)で発生する反応熱を利用して水素を製造し、この製造された水素が工程(A2)に供給されて、メタン化反応に利用される。工程(A5)では、例えば、さきに挙げた(1)~(6)の方法と図2~図8の設備で水素が製造される。
 次に、本発明の第1の実施形態である製鉄所の操業方法について説明する。
 本発明の第1の実施形態である製鉄所の操業方法は、COおよび/又はCOを含む混合ガスからCOおよび/又はCOを分離回収する工程(A1)と、該工程(A1)で分離回収されたCOおよび/又はCOに水素を添加し、COおよび/又はCOをCHに変換する工程(A2)と、該工程(A2)を経たガスからHOを分離除去する工程(A3)を有し、該工程(A3)を経たガスを製鉄所内で燃料および/又は還元剤として利用するものである。さらに、好ましくは、製鉄所の操業方法は、工程(A2)で発生する反応熱を利用して水素を製造する工程(A5)を有し、この工程(A5)で製造された水素の少なくとも一部を工程(A2)で用いることが望ましい。
 工程(A3)を経たガスを供給する製鉄所内の設備としては、上述した高炉以外に、高炉に供給する熱風を製造する熱風炉、スラブなどの鋼片を加熱する蓄熱バーナのような加熱炉、コークス炉、焼結機などを挙げることができる。加熱炉や熱風炉などの設備に本発明で得られたCHを燃料として供給することで、それらの設備で使用する燃料ガス量を節減することができる。
 熱風炉で使用される燃料ガスは、通常、高炉ガスとコークス炉ガスを混合し、発熱量(約1000kcal/Nm)を調整したものであるが、この高炉ガスやコークス炉ガスの代わりに本発明で得られたCHを利用することが可能である。本発明においてCOおよび/又はCOを改質して得られたCH(低位燃焼熱で約8000~8500kcal/Nm)は、通常の高炉ガス(低位燃焼熱で約800kcal/Nm)に比較して発熱量が高く、高炉ガスなどに比べて少ない量で済み、配管コストなどの削減につながる。さきに述べたように、製鉄所では高炉、コークス炉、転炉からそれぞれ高炉ガス、コークス炉ガス、転炉ガスが副生し、これら副生ガスは製鉄所内の加熱炉や熱風炉などの熱源(燃料)として利用されているが、この熱源となる副生ガスが種々の理由で不足して、天然ガスなどの外部燃料を使用する場合があり、これを補う熱源として、上記COおよび/又はCOを改質して得られたCHを用いれば、外部燃料使用量の削減が可能となる。
 この製鉄所の操業方法における工程(A1)~(A3)および工程(A5)の内容や対象となる原料ガス(混合ガス)については、さきに述べた高炉の操業方法と同様である。改質後ガスのガス温度を高めて利用する必要がある場合、工程(A2)を経た直後の高温の改質後ガスと熱交換して昇温させてから利用してもよい。他の熱源を用いて間接加熱により改質後ガスを昇温させてもよい。改質後ガス(CH)を熱風炉などの設備で利用する場合、通常、当該設備で使用されている燃料(例えば、熱風炉の場合には高炉ガスとコークス炉ガスの混合ガス)の使用量を考慮して改質後ガスの使用量を決める。改質後ガスの使用量に応じて、通常使用されている燃料を減量する。
[実施例]
 本発明を実施する前の高炉操業条件を以下に示す。
送風量:1112Nm/t-p
酸素富化量:7.6Nm/t-p
送風中湿分:25g/Nm
送風温度:1150℃
還元材比:497kg/t-p(コークス比:387kg/t-p、微粉炭比:110kg/t-p)
高炉ガス発生量(dry):1636Nm/t-p(窒素:54.0vol%,CO:21.4vol%,CO:21.0vol%,水素:3.6vol%)
CO排出量(高炉に供給したCをCO換算):1539kg/t-p
[実施例1]
 図10に示すような処理フローに従い、高炉ガスの一部を改質、循環させた。
工程(A1)
 高炉から発生した高炉ガスの約10vol%を、CO吸着剤が充填された吸着塔に導入して絶対圧200kPaでCOを吸着させた後、COを絶対圧7kPaで脱着させ、CO(CO濃度99vol%)を得た。COが分離、回収された後の高炉ガスをCO吸着剤が充填された吸着塔に導入して絶対圧200kPaでCOを吸着させた後、COを絶対圧7kPaで脱着させ、CO(CO濃度99vol%)を得た。
工程(A2)~(A4)
 上記のように分離回収されたCOとCO(COとCOの混合ガス)を改質器(反応器)に導き、アンモニアの分解により得られたHを添加し(H/(CO+CO):5モル比)、Ni系触媒を用いて反応温度:500℃、SV(Space Velocity):100h-1の条件でCHに改質(変換)した。(CO+CO)転化率は約100%であった。この改質後ガスを熱交換器で冷却し、水分除去装置でHOを除去し、未反応のHを吸着分離(除去)した後、高炉羽口から吹き込んだ。吸着分離したHは、再度(CO+CO)改質用の水素として利用した。この実施例では、還元材比:439kg/t-p(コークス比:329kg/t-p、微粉炭比:110kg/t-p)、CO排出量:1358kg/t-pとなり、本発明を実施する前の高炉操業条件と比較してCO排出量を約11.7%削減できた。
[実施例2]
 図11に示すような処理フローに従い、高炉ガスの一部を改質、循環させた。工程(A2)および工程(A5)では、図5に示す設備(但し、反応器1と熱交換器2のセットが5基直列に配置された設備)に、図6に示す過熱蒸気を得る機構を組み込んだ設備を用いた。
工程(A1)
 高炉から発生した高炉ガスの約10vol%を、CO吸着剤が充填された吸着塔に導入して絶対圧200kPaでCOを吸着させた後、COを絶対圧7kPaで脱着させ、CO(CO濃度99vol%)を得た。COが分離、回収された後の高炉ガスをCO吸着剤が充填された吸着塔に導入して絶対圧200kPaでCOを吸着させた後、COを絶対圧7kPaで脱着させ、CO(CO濃度99vol%)を得た。
工程(A2)~(A4)
 上記のように分離回収されたCO,CO(COとCOの混合ガス)と、純度99%のHをH/(CO+CO)のモル比が5となるように各ガスの流量を制御して原料ガスとした。Ni系触媒を充填した断熱型のメタン化反応器と熱交換器のセットを5基直列とした設備に原料ガスを導入し、反応器入口温度:265℃、反応器出口温度:470℃、SV(Space Velocity):2000h-1の条件でCOとCOをCHに改質(変換)した。但し、最終段の反応器(5基目)だけは、反応器入口温度:220℃、反応器出口温度:250℃とした。[CO+CO]転化率は約100%であった。この改質後ガスを熱交換器で冷却し、水分除去装置でHOを除去し、さらに、未反応のHを吸着分離(除去)した後、高炉羽口から吹き込んだ。吸着分離したHは、再度(CO+CO)改質用の水素として利用した。この実施例では、還元材比:439kg/t-p(コークス比:329kg/t-p、微粉炭比:110kg/t-p)、CO排出量:1358kg/t-pとなり、本発明を実施する前の高炉操業条件と比較してCO排出量を約11.7%削減できた。
工程(A5)
 水素製造用反応器としては、有機ハイドライドの脱水素反応により水素を製造する脱水素反応器を用いた。メタン化反応器下流の熱交換器で蒸気を発生させ、その蒸気をメチルシクロヘキサン(MCH)脱水素反応器(シェルアンドチューブ型反応器)のシェル側に供給し、脱水素反応の熱源とした。この蒸気は、圧力4MPa、温度400℃の過熱蒸気であり、流量は38t/hであった。但し、メタン化反応器に原料ガスを導入するためのコンプレッサー(工程A2)、メタン化ガスを高炉内に吹き込むためのコンプレッサー(工程A4)、並びに、熱交換器に供給する水の昇圧ポンプ(工程A5)の動力を蒸気駆動としたため、MCH脱水素反応の熱源として利用可能な蒸気は26t/hであった。
 脱水素反応器のチューブ側にPt系脱水素触媒を充填し(SV:100h-1)、ここにMCHを21t/h供給し、圧力0.2MPa、反応温度は成行きで脱水素反応を行った。脱水素反応器出口ガスにはHの他にトルエンと微量の未反応MCHが含まれるので、脱水素反応器の下流に蒸留塔を設置して、Hを分離した。Hの目標純度を95%としたため、蒸留塔の塔頂温度は42℃であり、コンデンサーは水冷で十分であった。水素の製造量は12700Nm/hであり、工程(A2)に供給するHの約20%を副生することができた。蒸留塔で分離されたHの全量を工程(A2)の原料ガス供給系に導入し、メタン化反応器でのメタン化反応に利用した。
[実施例3]
 図11に示すような処理フローに従い、高炉ガスの一部を改質、循環させた。工程(A2)および工程(A5)では、図5に示す設備(但し、反応器1と熱交換器2のセットが5基直列に配置された設備)に、図6に示す過熱蒸気を得る機構を組み込んだ設備を用いた。
工程(A1)
 実施例2と同様である。
工程(A2)~(A4)
 実施例2と同様である。
工程(A5)
 水素製造用反応器としては、NH分解により水素を製造するメンブレンリアクターを用いた。それ以外は実施例2の工程(A5)と同様、圧力4MPa、温度400℃の過熱蒸気を26t/h利用して、Hの製造を行った。NHの供給量は14t/hであった。NHの分解ではHの1/3モルのNが生成するので、PSA法によって分解ガスからHを分離した。その結果、純度99%のH製造量は21900Nm/hとなり、工程(A2)で供給するHの約30%を副生することができた。NH分解触媒はRu系を用いた。製造されたHの全量を工程(A2)の原料ガス供給系に導入し、メタン化反応器でのメタン化反応に利用した。
[実施例4]
 図11に示すような処理フローに従い、高炉ガスの一部を改質、循環させた。工程(A2)および工程(A5)では、図5に示す設備(但し、反応器1と熱交換器2のセットが5基直列に配置された設備)に、図6に示す過熱蒸気を得る機構を組み込んだ設備を用いた。
工程(A1)
 実施例2と同様である。
工程(A2)~(A4)
 高炉ガスから分離回収されたCO,CO(COとCOの混合ガス)と、純度99%のHをH/(CO+CO)のモル比が5となるように各ガスの流量を制御して原料ガスとした。Ni系触媒を充填した断熱型のメタン化反応器と熱交換器のセットを5基直列とした設備に原料ガスを導入し、反応器入口温度:265℃、反応器出口温度:470℃、SV(Space Velocity):2000h-1、反応器入口圧力0.3MPaの条件でCOとCOをCHに改質(変換)した。但し、最終段の反応器(5基目)だけは反応器入口温度:220℃、反応器出口温度:250℃とした。[CO+CO]転化率は約100%であった。最終段反応器下流の熱交換器出口側のメタン化ガスの圧力は0.2MPaであった。
 前記改質後ガスを熱交換器で冷却し、水分除去装置でHOを除去し、未反応のHを吸着分離(除去)した後、高炉羽口から吹き込んだ。吸着分離したHは、再度(CO+CO)改質用の水素として利用した。この実施例では、還元材比:439kg/t-p(コークス比:329kg/t-p、微粉炭比:110kg/t-p)、CO排出量:1358kg/t-pとなり、本発明を実施する前の高炉操業条件と比較してCO排出量を約11.7%削減できた。
工程(A5)
 水素製造用反応器としては、有機ハイドライドの脱水素反応により水素を製造する脱水素反応器を用いた。メタン化反応器下流の熱交換器で蒸気を発生させ、その蒸気をメチルシクロヘキサン(MCH)脱水素反応器(シェルアンドチューブ型反応器)のシェル側に供給し、脱水素反応の熱源とした。この蒸気は、圧力4MPa、温度400℃の過熱蒸気であり、流量は38t/hであった。但し、メタン化反応器に原料ガスを導入するためのコンプレッサー(工程A2)、メタン化ガスを高炉内に吹き込むためのコンプレッサー(工程A4)、並びに、熱交換器に供給する水の昇圧ポンプ(工程A5)の動力を蒸気駆動としたため、MCH脱水素反応の熱源として利用可能な蒸気は26t/hであった。
 脱水素反応器のチューブ側にPt系脱水素触媒を充填し(SV:100h-1)、ここにMCHを0.6MPaに昇圧して20t/h供給した。反応温度は成行きで脱水素反応を行った。脱水素反応器出口圧力は0.5MPaであった。脱水素反応器出口ガスにはHの他にトルエンと微量の未反応MCHが含まれるので、脱水素反応器の下流に蒸留塔を設置して、Hを分離した。蒸留塔の塔頂圧は0.4MPa、Hの目標純度は95%としたため、蒸留塔塔頂温度は57℃であり、コンデンサーは水冷で十分であった。
 水素の製造量は10600Nm/hであり、工程(A2)で供給するHの16%を副生することができた。蒸留塔で分離されたHの全量を工程(A2)の原料ガス供給系に導入し、メタン化反応器でのメタン化反応に利用した。蒸留塔の塔頂圧、すなわち、分離した水素の圧力は0.4MPaなので、メタン化反応器入口圧力(0.3MPa)よりも十分に高く、製造した水素は何ら昇圧する必要なく、メタン化反応器に導入できた。脱水素反応の圧力は原料であるMCHの圧力(0.6MPa)だけで維持することができ、その昇圧軸動力は8kWと低く、プロセス全体として大きな省エネルギーが達成できた。
[実施例5]
 図11に示すような処理フローに従い、高炉ガスの一部を改質、循環させた。工程(A2)および工程(A5)では、図5に示す設備(但し、反応器1と熱交換器2のセットが5基直列に配置された設備)に、図6に示す過熱蒸気を得る機構を組み込んだ設備を用いた。
工程(A1)
 実施例2と同様である。
工程(A2)~(A4)
 実施例4と同様である。
工程(A5)
 MCHを1.1MPaに昇圧して脱水素反応器に供給した以外は実施例4と同様にしてMCH脱水素反応を行った。脱水素反応器出口圧力は1MPaであった。水素の製造量は9200Nm/hと実施例4よりも1割以上減少したものの、MCHの昇圧軸動力は19kWと、実施例4(8kW)の2.5倍に過ぎなかった。
[実施例6]
 図11に示すような処理フローに従い、高炉ガスの一部を改質、循環させた。工程(A2)および工程(A5)では、図5に示す設備(但し、反応器1と熱交換器2のセットが5基直列に配置された設備)に、図6に示す過熱蒸気を得る機構を組み込んだ設備を用いた。
工程(A1)
 実施例2と同様である。
工程(A2)~(A4)
 実施例4と同様である。
工程(A5)
 MCHを0.3MPaに昇圧して脱水素反応器に供給した以外は実施例4と同様にしてMCH脱水素反応を行った。脱水素反応器出口圧力は0.2MPaであった。蒸留塔の塔頂圧を0.1MPaとしたため、蒸留塔塔頂温度は28℃となり、コンデンサー冷却は水冷では不十分であり、チラーの設置が必要であった。水素の製造量は12700Nm/hと実施例4よりも増加したものの、製造した水素の圧力が0.1MPaであるので、メタン化反応器に導入するためにはコンプレッサーが必要となり、昇圧軸動力は830kWと大きな動力が必要となった。MCHの昇圧軸動力は3kWであったものの、昇圧動力は合計で833kWとなり、プロセス全体としてのエネルギー収支は実施例4に較べて低下した。
第2の実施形態
 本発明の第2の実施形態である高炉の操業方法は、COを含む混合ガスからCOを分離回収する工程(B1)と、この工程(B1)で分離回収されたCOに水素系還元剤を添加し、COをCOに変換(改質)する工程(B2)と、この工程(B2)を経たガスからHO又はHOとNを分離除去する工程(B3)と、この工程(B3)を経たガス(通常、COガス又はCO主体のガス)を高炉内に吹き込む工程(B4)を有する。混合ガスがCOとともにCOを含む場合の好ましい実施形態では、工程(B1)において混合ガスからCOとCOを各々分離回収し、工程(B4)では、工程(B3)を経たガスを、工程(B1)で分離回収されたCOとともに高炉内に吹き込む。工程(B4)で高炉内に吹き込まれたCOは、鉄鉱石の補助還元剤として機能する。COによる鉄鉱石の還元は発熱反応であり、水素による鉄鉱石還元ほど高炉下部への熱補償は必要ない。
 混合ガスとしては、COを含む混合ガス或いはCOとCOを含む混合ガスであれば、その種類は問わない。例えば、製鉄プロセスで発生する混合ガスとしては、高炉ガスや転炉ガスなどが代表的なものとして挙げられるが、これらに限定されるものではなく、他の産業分野で発生する混合ガスであってもよい。COを効率的に分離するためには、混合ガスのCO濃度が高いことが望ましいが、高炉ガス、転炉ガス、加熱炉燃焼排ガスなどを前提にした場合、混合ガスとしては、COを15vol%以上含むものを対象とすることが好ましい。本発明が最も有用なのは、原料の混合ガスとして高炉ガスを用いる場合であり、高炉ガスに含まれるCOをCOに改質して高炉に還元剤として循環させることにより、高炉からのCO排出量を削減することができる。高炉ガスの一般的な組成は、CO:15~25vol%、CO:15~25vol%、N:45~55vol%、水素:0~5vol%程度である。原料の混合ガスとして高炉ガスを用いる場合、高炉から発生する高炉ガスの一部又は全部を対象とするが、例えば、高炉ガスの20vol%を使用した場合には、CO排出量を5~6%程度削減することができる。
 以下、本発明の第2の実施形態である高炉の操業方法を構成する工程(B1)~(B4)について説明する。
工程(B1)
 原料ガスである混合ガスは、COを含む混合ガス(或いはCOとCOを含む混合ガス)であり、この工程(B1)では、この混合ガスからCOを分離回収する。COとCOを含む混合ガスの場合には、混合ガスからCOとCOを各々分離回収し、この分離回収されたCOを、工程(B2)でCOを変換(改質)して得られたCOとともに、最終的に高炉に吹き込むようにすることが好ましいが、これに限られるものではなく、例えば、COとCOを含む混合ガスから、COのみを分離回収するようにしてもよい。
 混合ガスからCO、COを分離回収する方法は、それぞれ任意の方法でよい。混合ガスからCOとCOを各々分離回収する場合、COを分離回収した後、COを分離回収してもよいし、その逆でもよい。COとCOを同時に分離回収してもよい。混合ガスからCOを分離回収する方法としては、例えば、加圧又は冷却によりCOを液化又は固化する方法、苛性ソーダやアミンなどの塩基性水溶液にCOを吸収させた後、加熱又は減圧により分離回収する方法、活性炭やゼオライトなどにCOを吸着させた後、加熱又は減圧により分離回収する方法、CO分離膜により分離回収する方法などが知られており、これらを含む任意の方法を採用することができる。
 混合ガスからCOを分離回収する方法としては、例えば、銅/活性炭、銅/アルミナ、銅/ゼオライトなどの吸着剤にCOを吸着させた後、加熱又は減圧により分離回収する方法、銅を主要成分とする吸収液にCOを吸収させた後、加熱又は減圧により分離回収する方法などが知られており、これらを含む任意の方法を採用することができる。混合ガスから分離回収されたCOやCOのガス純度に特別な制限はないが、改質工程で使用する反応器の小型化などの観点からは、80vol%以上の純度であることが好ましい。
工程(B2)
 この工程(B2)では、上記工程(B1)で分離回収されたCOに水素系還元剤を添加し、COをCOに変換(改質)するが、水素系還元剤(ガス)としては、水素、炭化水素、アンモニアなどの中から選ばれる1種以上が用いられる。具体的には、(i)CHなどを含むLNGやLPG、(ii)CHおよび水素などを含む製鉄所副生ガス(例えば、コークス炉ガスなど)、(iii)水素、(iv)アンモニア、などが挙げられ、これらの1種以上を用いることができる。CO排出量を低減する観点からは、実施の工程でCOを新たに発生させないものの方が好ましいので、上記のなかでも炭素を含まない水素系還元剤、すなわち、水素やアンモニアが特に好適である。アンモニアは石炭を乾留するコークスを製造する際に発生し(アンモニア発生量は約3.3Nm/t-石炭)、現状では、液安又は硫安として回収されている。このアンモニアを本発明において水素系還元剤として利用できれば、製鉄所外から水素系還元剤を調達する必要がなくなり、或いは製鉄所外から調達する量を少なくすることができる。
 COを水素系還元剤(好ましくは水素又は/およびアンモニア)で還元する方法には、特定の触媒などを用いて還元を行う公知の方法を採用することができる。水素によるCO還元反応を下記(8)式に、またアンモニアによるCO還元反応を下記(9)式に示す。
 CO2+H2=CO+H2O ΔH=9.9kJ/mol(吸熱)  …(8)
 CO2+NH3=CO+1/2H2+H2O+1/2N2 ΔH=20.9kJ/mol(吸熱)  …(9)
 上記(8)式の反応は、500℃で約45%のCO平衡転化率を示し、上記(9)式の反応は約95%のCO平衡転化率を示す。通常、両反応ともFe、Ni、Coなどの遷移金属系触媒が用いられ(水素系還元剤としてCHなどの炭化水素を用いる場合も同様)、COがCOに改質される。触媒としては鉄鉱石を用いてもよい。特に高結晶水鉱石は、結晶水を脱水すると比表面積が増加し、触媒として好適に利用できる。Pd、Ruなどの貴金属系元素をAlなどの酸化物担体に担持した触媒を用いてもよい。
 COに水素系還元剤を添加し、触媒を用いてCOをCOに改質するには、通常、水素系還元剤を混合したCOを触媒が充填されている反応器に導入し、COをCOに変換(改質)する反応を生じさせる。反応器としては、固定層反応器、流動層反応器、気流層反応器などを用いることができるが、反応が吸熱反応であることを考慮すると、流動層反応器又は気流層反応器が特に好ましい。これら反応器の形式によって、触媒の物理的な性状が適宜選択される。COに混合する水素系還元剤の量は、量論比以上であることが好ましい。COをCOに改質するための反応は、上記反応式に示されるように吸熱反応であり、そのための熱源は、COG顕熱、スラグ顕熱、焼結鉱顕熱などの未回収の製鉄所の排熱を利用してもよいし、本発明で得られたCOを燃焼して得られる熱を利用してもよい。別途燃料を燃焼させて熱源としてもよい。
工程(B3)
 この工程(B3)では、上記工程(B2)を経たガス(以下、「改質後ガス」という)からHO又はHOとNを分離除去する。水素系還元剤によってCOをCOに改質した場合、同時に高炉内の還元材(コークスなど)を消費する成分が生成し、この成分が改質後ガス中に含まれてしまうことになる。具体的には、例えば、水素系還元剤として水素やCHなどの炭化水素を用いた場合にはHOが生成し、水素系還元剤としてアンモニアを用いた場合にはHOとNが生成する。HOが高炉に導入されると、高炉内のコークスを消費し、逆にCO排出量が増加する。一方、Nが高炉に導入されても高炉内のコークスを消費することはないが、Nを高温ガスにするための顕熱が必要となり、結果としてコークス使用量の増加に繋がる。したがって、改質後ガスからHO(例えば、水素系還元剤として水素やCHなどの炭化水素を用いた場合)又はHOとN(例えば、水素系還元剤としてアンモニアを用いた場合)を分離除去する必要がある。
 改質後ガスからHOを分離除去する方法としては、冷却方式、吸着方式などを適用できる。冷却方式では、改質後ガスを露点温度以下に冷却し、HOを凝集除去する。露点温度は改質ガス中のHO濃度によって決まるが、通常、改質後ガスを30℃以下まで冷却すれば、HOを適切に凝集除去することができ、通常高炉に吹き込まれる送風空気湿分濃度と同程度となるので、高炉操業上好ましい。吸着方式では、シリカゲルなどの除湿用吸着剤を用いるが、吸着塔内で吸着と再生を繰り返す方式、ハニカム状に成型された吸着剤が回転しながら再生、吸着を連続的に繰り返すハニカムローター方式などを適宜採用できる。改質後ガスを冷却する方法としては、例えば、工程(B3)を経て高炉に供給される途中の改質後ガス(通常、常温)と熱交換させるようにしてもよい。改質後ガスからNを分離除去するには、例えば、工程(B1)で行われるような混合ガスからCOを分離回収する方法を適用し、改質後ガスからCOを分離することで実質的にNを分離除去する方法を採ることができる。具体的な方法は、工程(B1)で述べたとおりである。
 上記工程(B2)でCOの改質のために添加した水素系還元剤(例えば、水素又は/およびアンモニア)の一部が未反応状態で改質後ガス中に残存している場合には、これを分離回収し、工程(B2)で水素系還元剤として再利用することもできる。改質後ガスから水素やアンモニアなどのような水素系還元剤を分離回収するには、例えば、それらのガス成分を吸着剤で吸着させるなどの方法を採ることができる。改質後ガスに上記工程(B2)でCOに改質されなかったCOが残存している場合には、例えば、さきに述べたような方法でCOを分離除去してもよい。以上により、改質後ガスは、通常、CO主体のガス又は実質的にCOのみからなるガスとなる。
工程(B4)
 この工程(B4)では、工程(B3)を経た改質後ガスを補助還元剤として高炉内に吹き込むが、上記工程(B1)で混合ガスからCOも分離回収した場合には、このCOと混合してから高炉内に吹き込んでもよい。改質後ガス(又は工程(B1)で分離回収されたCOが混合された改質後ガス)は、高炉操業を考慮するとガス温度を高めて高炉内に吹き込むことが好ましく、このため工程(B2)を経た直後の高温の改質後ガスと熱交換して昇温させてから高炉に吹き込んでもよい。他の熱源を用いて間接加熱により改質後ガスを昇温させてもよい。改質後ガスの高炉内への吹き込みは、通常、羽口を通じて行うが、これに限られるものではない。改質後ガスを羽口から吹き込む場合、羽口に吹込みランスを設置し、この吹込みランスから吹き込むのが一般的である。
 図12は、本発明の第2の実施形態である高炉の操業方法において、原料ガス(混合ガス)として高炉ガスを用いる場合の一実施態様(ガスの処理フロー)を示したものである。この実施形態では、まず、工程(B1)として、高炉ガスからCOとCOが各々分離回収される。高炉ガスはHOやNを含んでいるので、これらを分離除去することにより、残部ガス(改質高炉ガス)の品位を高めることができ、この残部ガスは燃料や水素源などとして利用できる。次に、工程(B2)として、高炉ガスから分離回収されたCOに水素系還元剤を添加し、COをCOに変換(改質)する。
 この改質後ガスは、高炉に導入される直前の改質後ガス(工程(B1)で分離回収されたCOが混合された改質後ガス)と熱交換されることで冷却された後、工程(B3)として、HO又はHOとNが分離除去される。まず、脱水によりHOが分離除去され、改質ガスがNを含んでいる場合(例えば、水素系還元剤としてアンモニアを用いた場合)にはNが分離除去される。改質後ガス中に工程(B2)で改質されなかったCOや未反応の水素系還元剤が残存している場合には、COが分離除去されるとともに、水素系還元剤が分離回収され、工程(B2)に送られて再利用される。このようにして工程(B3)を経た改質後ガスに、上記工程(B1)で混合ガスから分離回収されたCOを混合した後、上記工程(B2)を経た直後の高温の改質後ガスと熱交換して昇温させた後、羽口から熱風とともに高炉に吹き込まれる。
 次に、本発明の第2の実施形態である製鉄所の操業方法について説明する。
 この製鉄所の操業方法では、COを含む混合ガスからCOを分離回収する工程(B1)と、この工程(B1)で分離回収されたCOに水素系還元剤を添加し、COをCOに変換(改質)する工程(B2)と、この工程(B2)を経たガスからHO又はHOとNを分離除去する工程(B3)を有し、この工程(B3)を経たガス(通常、COガス又はCO主体のガス)を製鉄所内において燃料および/又は還元剤として用いる。混合ガスがCOとともにCOを含む場合の好ましい実施形態では、工程(B1)において混合ガスからCOとCOを各々分離回収し、工程(B3)を経たガスを、工程(B1)で分離回収されたCOとともに、利用される製鉄所内の設備に供給する。工程(B3)を経たガスを供給する製鉄所内の設備としては、上述した高炉以外に、例えば、高炉に供給する熱風を製造する熱風炉、スラブなどの鋼片を加熱する蓄熱バーナのような加熱炉、コークス炉、焼結機などが挙げられるが、これらに限定されない。加熱炉や熱風炉などの設備に本発明で得られたCOを燃料として供給することで、それらの設備で使用する燃料ガス量を節減することができる。
 熱風炉で使用される燃料ガスは、通常、高炉ガスとコークス炉ガスを混合し、発熱量(約1000kcal/Nm)を調整したものであるが、この高炉ガスやコークス炉ガスの代わりに本発明で得られたCOを利用することが可能である。本発明においてCOを改質して得られたCO(約3000kcal/Nm)は、通常の高炉ガス(約800kcal/Nm)に比較して発熱量が高く、高炉ガスなどに比べて少ない量で済み、配管コストなどの削減につながる。さきに述べたように、製鉄所では高炉、コークス炉、転炉からそれぞれ高炉ガス、コークス炉ガス、転炉ガスが副生し、これら副生ガスは製鉄所内の加熱炉や熱風炉などの熱源(燃料)として利用されているが、この熱源となる副生ガスが種々の理由で不足する場合があり、これを補う熱源として、上記COを改質して得られたCOは有用である。
 この製鉄所の操業方法における工程(B1)~(B3)の内容や対象となる原料ガス(混合ガス)については、さきに述べた高炉の操業方法と同様である。工程(B3)を経た改質後ガスを熱風炉や加熱炉などの燃料および/又は還元剤として利用するが、上記工程(B1)で混合ガスからCOも分離回収した場合には、このCOと混合してから利用してもよい。改質後ガス(又は工程(B1)で分離回収されたCOが混合された改質後ガス)は、ガス温度を高めて利用することが好ましく、このため工程(B2)を経た直後の高温の改質後ガスと熱交換して昇温させてから利用してもよい。他の熱源を用いて間接加熱により改質後ガスを昇温させてもよい。改質後ガスを熱風炉などの設備で利用する場合、通常、当該設備で使用されている燃料(例えば、熱風炉の場合には高炉ガスとコークス炉ガスの混合ガス)の使用量を考慮して改質後ガスの使用量を決める。改質後ガスの使用量に応じて、通常使用されている燃料を減量する。
 図13は、本発明の第2の実施形態である製鉄所の操業方法において、原料ガス(混合ガス)として高炉ガスを用いるとともに、改質後ガスを熱風炉で使用する場合の一実施態様(ガスの処理フロー)を示したものである。この実施形態では、まず、工程(B1)として、高炉ガスからCOとCOが各々分離回収される。高炉ガスはHOやNを含んでいるので、これらを分離除去することにより、残部ガス(改質高炉ガス)の品位を高めることができ、この残部ガスは燃料や水素源などとして利用できる。次に、工程(B2)として、高炉ガスから分離回収されたCOに水素系還元剤を添加し、COをCOに変換(改質)する。
 この改質後ガスは、熱風炉に供給される前の改質後ガス(工程(B1)で分離回収されたCOが混合された改質後ガス)と熱交換されることで冷却された後、工程(B3)として、HO又はHOとNが分離除去される。まず、脱水によりHOが分離除去され、改質ガスがNを含んでいる場合(例えば、水素系還元剤としてアンモニアを用いた場合)にはNが分離除去される。改質後ガス中に工程(B2)で改質されなかったCOや未反応の水素系還元剤が残存している場合には、COが分離除去されるとともに、水素系還元剤が分離回収され、工程(B2)に送られて再利用される。このようにして工程(B3)を経た改質後ガスに、上記工程(B1)で混合ガスから分離回収されたCOを混合した後、上記工程(B2)を経た直後の高温の改質後ガスと熱交換して昇温させた後、熱風炉に燃料として供給される。
[実施例]
(1)高炉の操業方法に関する実施例
 本発明を実施する前の高炉操業条件を以下に示す。
送風量:1112Nm/t-p
酸素富化量:7.6Nm/t-p
送風中湿分:25g/Nm
送風温度:1150℃
還元材比:497kg/t-p(コークス比:387kg/t-p、微粉炭比:110kg/t-p)
高炉ガス発生量(dry):1636Nm/t-p(窒素:54.0vol%,CO:21.4vol%,CO:21.0vol%,水素:3.6vol%)
CO排出量(高炉に供給したCをCO換算):1539kg/t-p
[実施例1]
 図12に示すような処理フローに従い、高炉ガスの一部を改質、循環させた。高炉から発生した高炉ガスの約20vol%を、CO吸着剤が充填された吸着塔に導入して絶対圧200kPaでCOを吸着させた後、このCOを絶対圧7kPaで脱着させ、CO(CO濃度99vol%)を得た(以下、この高炉ガスから分離、回収されたCOを「COガスx」という)。COが分離、回収された後の高炉ガスをCO吸着剤が充填された吸着塔に導入して絶対圧200kPaでCOを吸着させた後、このCOを絶対圧7kPaで脱着させ、CO(CO濃度99vol%)を得た(以下、この高炉ガスから分離、回収されたCOを「COガスy」という)。
 上記COガスxを改質器(反応器)に導き、ここで水素系還元剤としてHを添加し(H/CO:2モル比)、Ni系触媒を用いて反応温度:600℃、SV(Space Velocity):100h-1の条件でCOに改質(変換)した。CO転化率は約55%であった。この改質後ガスを熱交換器で冷却し、水分除去装置でHOを除去した後、CO吸着塔に導入してCOを分離(吸着→脱着)した(以下、この分離したCOを「COガスz」という)。CO分離後のガスは未反応のHであり、再度、CO改質用の水素系還元剤として利用した。上記COガスzを上記COガスyと混合した後、高炉羽口から吹き込んだ。この実施例では、還元材比:469kg/t-p(コークス比:359kg/t-p、微粉炭比:110kg/t-p)、CO排出量:1453kg/t-pとなり、本発明を実施する前の高炉操業条件と比較してCO排出量を約5.6%削減できた。
[実施例2]
 高炉から発生した高炉ガスの約10vol%を用いた以外は、実施例1と同様の処理を行い、COガスを高炉羽口から吹き込んだ。この実施例では、還元材比:484kg/t-p(コークス比:374kg/t-p、微粉炭比:110kg/t-p)、CO排出量:1499kg/t-pとなり、本発明を実施する前の高炉操業条件と比較してCO排出量を約2.6%削減できた。
[実施例3]
 水素系還元剤としてアンモニアを用いた以外は、実施例1と同様の処理を行い、COガスを高炉羽口から吹き込んだ。高炉ガスから分離回収されたCOガスxを改質器(反応器)に導き、ここで水素系還元剤としてアンモニアを添加し(NH/CO:1.5モル比)、Ni-Co系触媒を用いて反応温度:500℃、SV:200h-1の条件でCOに改質(変換)した。CO転化率は約90%であった。この実施例では、還元材比:469kg/t-p(コークス比:359kg/t-p、微粉炭比:110kg/t-p)、CO排出量:1453kg/t-pとなり、本発明を実施する前の高炉操業条件と比較してCO排出量を約5.6%削減できた。
(2)製鉄所の操業方法に関する実施例
[実施例4]
 実施例1と同様の方法でCOを改質して得られたCOを熱風炉で燃料として利用した。通常の操業では、高炉ガス:493Nm/t-p(発熱量:740kcal/Nm)とコークス炉ガス:40Nm/t(発熱量:4580kcal/Nm)を混合して533Nm/t-p(発熱量:1028kcal/Nm)の混合ガスとし、この混合ガスを熱風炉にて燃焼させて熱風炉を蓄熱し、この蓄熱された熱風炉に空気を供給することで、1112Nm/t-p、1150℃の熱風を製造し、高炉に送風している。これに対して本実施例では、上記コークス炉ガスの代わりに本発明法で得られたCOガス:75Nm/t-p(発熱量:2950kcal/Nm)を高炉ガス:493Nm/t-p(発熱量:740kcal/Nm)に混合して568Nm/t-p(1032kcal/Nm)の混合ガスとし、この混合ガスを熱風炉で燃焼させ、1112Nm/t-p、1150℃の熱風を製造し、高炉に送風した。この結果、通常の操業で利用していた40Nm/t-pのコークス炉ガスが削減でき、削減されたコークス炉ガスは所内の加熱炉で使用することができた。
酸化炭素含有ガスの利用方法
 本発明の一実施形態である酸化炭素含有ガスの利用方法は、鉄鋼業あるいはその他の産業などで発生した酸化炭素含有ガス(CO又はCOとCOを含有する混合ガス)の利用方法であり、さらに詳しくは、鉄鋼業あるいはその他の産業などで発生した酸化炭素含有ガスから酸化炭素(CO又はCOとCO)を分離、回収し、その酸化炭素中のCOを還元してCOとし、得られたCOを高炉で再利用することにより、実質的なCOの削減を行う酸化炭素含有ガスの利用方法である。
 すなわち、本発明の一実施形態である酸化炭素含有ガスの利用方法においては、製鉄過程で発生する高炉ガスや転炉ガスなどの酸化炭素含有ガス(CO又はCOとCOを含有する混合ガス)を回収し、回収した酸化炭素含有ガスから、酸化炭素の濃度(COとCOの合計の濃度)が80%以上となるガスを分離し、分離したガス(COとCOの合計の濃度が80%以上となるガス)中のCOを還元剤により還元して、COおよび水素を主成分としたガスに変換し、得られたCOと水素を高炉にて再利用する方法である。回収した酸化炭素含有ガス中の酸化炭素の濃度が80%未満であると、その後工程である還元工程において、反応器が大きくなる、他成分の顕熱の影響が大きくなるなど経済的でない。
 本発明の一実施形態である酸化炭素含有ガスの利用方法では、原料となる酸化炭素含有ガス(CO又はCOとCOを含有する混合ガス)は、製鉄過程で発生したガスに限る必要はないが、後に還元剤(炭化水素系還元剤)にて還元する工程があるため、その酸素濃度が5%以下であることが望ましい。酸素濃度が5%より高いと燃焼により消費される還元剤が多くなるからである。原料である酸化炭素含有ガス(CO又はCOとCOを含有する混合ガス)から酸化炭素(CO又はCOとCO)を分離、回収する方法は、様々な既知の方法が利用できる。すなわち、COを分離、回収した後、COを分離、回収する方法や、あるいはその逆にCOを分離、回収した後、COを分離、回収する方法や、さらにはCOおよびCOを同時に分離、回収する方法である。
 COを分離、回収する方法としては、例えば、活性炭やゼオライトなどに吸着させ加熱あるいは減圧により分離、回収する方法(吸着分離法)、加圧あるいは冷却により液化あるいは固化する方法、苛性ソーダ、アミンなどの塩基性水溶液に吸収し加熱あるいは減圧により分離、回収する方法、CO分離膜により分離、回収する方法、チタン酸バリウムなどの固体炭酸ガス吸収剤に吸収させ加熱あるいは減圧により分離、回収する方法など、既知の方法のいずれをも採用することができる。その中でも、特に後工程への影響が少なく、技術的に確立されている吸着分離法を用いることが好ましい。
 COを分離、回収する方法としては、例えば、銅/活性炭、銅/アルミナ、銅/ゼオライトなどのCO吸着剤に吸着させ加熱あるいは減圧により分離、回収する方法(吸着分離法)、銅を主要成分とするCO吸収液に吸収させ加熱あるいは減圧により分離、回収する方法など、既知の方法のいずれをも採用することができる。その中でも、特に後工程への影響が少なく、技術的に確立されている吸着分離法を用いることが好ましい。
 COを分離、回収する方法とCOを分離、回収する方法とを同時あるいは複合的に実施し、COおよびCOを同時に分離しても良い。
 上記のようにして分離、回収した酸化炭素中のCOを還元してCOを得る方法についても、既知の方法を用いることができる。例えば、下記(10)式のようなメタンを還元剤としたドライ・リフォーミングが挙げられる。メタンを還元剤としたドライ・リフォーミング法は、触媒を用いれば700~900℃にて反応が進行するが、1000℃を越えるような高温では熱的に反応が進行する。高炉へガスを吹き込む場合、高温であるほど望ましく、触媒を用いる方法でも熱的に反応を進行させる方法でも、いずれでも採用することが出来、反応後冷却する必要は無く、そのまま高炉に導入することが出来ると望ましい。このように高温の反応を行うためには、外部より熱を加える必要があるが、例えば高炉スラグや転炉スラグなどの未利用の顕熱を用いることも可能であり、加熱により不必要な炭酸ガスを発生させない意味からも望ましい。
  CO + CH → 2CO + 2H   …(10)
 このドライ・リフォーミング法においては、使用する還元剤はメタンに限る必要はなく、液化石油ガス(LPG : Liquefied Petroleum Gas)などの炭化水素、メタノール、ジメチルエーテル(DME)などのアルコール類やエーテル類、アルデヒド類、ケトン類を用いることが可能である。還元剤としてLPGを使用した場合のCOの還元反応式を下記(11)式に示し、還元剤としてDMEを使用した場合のCOの還元反応式を下記(12)式に示す。
  3CO + C → 6CO + 4H   …(11)
  CO + (CHO → 3CO + 3H  …(12)
 上記において、酸化炭素含有ガスから酸化炭素を分離、回収し、分離、回収した酸化炭素中のCOを還元することによって、CO(酸化炭素含有ガスから分離して得られたCOと、酸化炭素含有ガスから分離したCOを還元して得られたCO)の濃度が80%以上となるガスを得る際には、別々に分離、回収したCOとCOを混合した後、還元してもよいし、あるいは、COを還元した後、別途分離、回収してあったCOと混合してもよい。COとCOを同時に分離、回収し、それを還元してもよい。これらのCOと還元剤との反応では、COの転化率を50%以上とする条件を設定するのが好ましく、70%以上とすることが特に好ましい。
 上記のCOとメタン、LPG、DMEなどの還元剤との反応は吸熱反応である。それゆえ、これらの反応を進行させるためには、外部より熱を加える必要がある。一方、製鉄所や化学工場では、利用されていない排熱がある場合がある。そこで、本発明の一実施形態においては、これらの排熱を吸熱反応を進行させるための熱源の一部又は全部として用いても良い。具体的には、製鉄所における高炉スラグや転炉スラグの顕熱、赤熱コークスの顕熱などが挙げられる。そして、そのCOの濃度が80%以上のガスを高炉に導入する際の位置は、高炉の羽口付近であってもよいし、高炉上部であってもよい。
 上記のようにして、この実施形態においては、酸化炭素含有ガス(CO又は、COとCOを含有する混合ガス)を効率的に再利用し、実質的にCOを抑制することができる。COを還元して得られた水素は、その一部又は全部を高炉に導入せずに、他の用途に用いてもよい。酸化炭素含有ガスがCOを含有していない場合は、上記に示したCOの分離、回収は行わない。酸化炭素含有ガスがCOを含有していても、その含有量が少ないなどでCOを分離、回収しない場合も同様である。
[実施例1]
 図14に本発明の一実施形態である酸化炭素含有ガスの利用方法の実施例1(本発明例1)を示す。本発明例1として、図14に示すように、高炉101から発生した高炉ガス(窒素:52%、二酸化炭素:22%、一酸化炭素:23%、水素:3%)を、二酸化炭素吸着剤と一酸化炭素吸着剤とを混合した吸着剤を充填した吸着塔(PSAユニット)102において、絶対圧力200kPaにて吸着させ、これを絶対圧力7kPaにて脱着させ、COとCOの合計の濃度が99%のガスを得た。このCOとCOの混合ガスを、COと同量のDME(還元剤)と混合し、改質反応器103において、銅系触媒存在下、常圧、280℃にて改質反応を行ったところ、COの90%が転化し、改質反応による生成酸化炭素中のCOの濃度が95%となった。全生成物中のCOおよび水素の濃度は、それぞれ49%、47%となった。これを高炉の羽口にそのまま導入した。これにより、本発明においては、酸化炭素含有ガス(高炉ガスなど)を効率的に再利用し、実質的にCOを抑制することができることが確認された。
[実施例2]
 図15に本発明の一実施形態である酸化炭素含有ガスの利用方法の実施例2(本発明例2)を示す。本発明例2として、図15に示すように、高炉101から発生した高炉ガス(窒素:52%、二酸化炭素:22%、一酸化炭素:23%、水素:3%)を、30℃に保持されたMEA(モノエタノールアミン)水溶液を入れた吸収塔104に流通させ、COを吸収させた。COを吸収させたMEA水溶液を回収塔105において100℃に加温し、COを放出させ、この発生ガスを冷却することにより、水を凝縮させ、COを回収した。COの純度は99%であった。このCOとメタンを主成分とする天然ガスと混合し、900℃にてニッケル系触媒の存在下で改質反応を行った。この結果、COの98%が反応し、生成物中のCOおよび水素の濃度は、共に49%となった。これを高炉の羽口にそのまま導入した。これにより、本発明においては、酸化炭素含有ガス(高炉ガスなど)を効率的に再利用し、実質的にCOを抑制することができることが確認された。
[実施例3]
 図16に本発明の一実施形態である酸化炭素含有ガスの利用方法の実施例3(本発明例3)を示す。本発明例3として、図16に示すように、前述の本発明例1における改質反応器103の熱源として、高温の高炉スラグ110を用いた。その他は本発明例1と同様の方法で行った。高温の高炉スラグ110は、スラグ顕熱回収装置106において、熱媒を加熱し、さらにジメチルエーテル109を加熱して、低温の高炉スラグ111となる。スラグ顕熱回収装置106にて加熱されたジメチルエーテル109は、改質反応器103に送られる。一方、加熱された熱媒は、熱媒循環ライン107によって改質反応器103に送られ、炭酸ガスとジメチルエーテルがCOと水素に改質される吸熱反応へ反応熱を供給することによって冷却され、熱媒循環ポンプ108によって再度スラグ顕熱回収装置106に送られる。そして、本発明例1と同じ条件にて試験を行ったところ、COの88%が転化し、改質反応による生成酸化炭素中のCOの濃度が93%となった。全生成物中のCOおよび水素の濃度は、それぞれ48%、46%となった。これを高炉の羽口にそのまま導入した。これにより、本発明においては、酸化炭素含有ガス(高炉ガスなど)を効率的に再利用し、実質的にCOを抑制することができることが確認された。
 以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。例えば、このように、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例および運用技術などは全て本発明の範疇に含まれる。
 本発明は、COおよび/又はCOを含む混合ガスから分離回収したCOおよび/又はCOを改質し、高炉において熱源(燃料)や還元剤として利用する高炉の操業方法、COおよび/又はCOを含む混合ガスから分離回収したCOおよび/又はCOを改質し、製鉄所内において熱源(燃料)や還元剤として利用する製鉄所の操業方法、および酸化炭素含有ガス(CO又はCOとCOを含有する混合ガス)の利用方法に適用することができる。
 1 反応器
 2,2a,2b 熱交換器
 3 触媒
 4 ガス流路
 5 熱媒体流路
 6,6a 水素製造用反応器
 7 熱交換器
 8 水素製造原料流路
 9 スチームドラム
 10 水素製造用反応器
 11 スチームタービン
 12 水素分離装置
 13 ポンプ
 14 有機ハイドライド脱水素生成物流路
 15 背圧弁
 16 水素分離後の有機ハイドライド脱水素生成物流路
 101 高炉
 102 PSAユニット
 103 改質反応器
 104 吸収塔
 105 回収塔
 106 スラグ顕熱回収装置
 107 熱媒循環ライン
 108 熱媒循環ポンプ
 109 ジメチルエーテル
 110 高炉スラグ(高温)
 111 高炉スラグ(低温)

Claims (31)

  1.  COおよび/又はCOを含む混合ガスからCOおよび/又はCOを分離回収する工程(A1)と、
     該工程(A1)で分離回収されたCOおよび/又はCOに水素を添加し、COおよび/又はCOをCHに変換する工程(A2)と、
     該工程(A2)を経たガスからHOを分離除去する工程(A3)と、
     該工程(A3)を経たガスを高炉内に吹き込む工程(A4)と、
     を含むことを特徴とする高炉の操業方法。
  2.  COおよび/又はCOを含む混合ガスからCOおよび/又はCOを分離回収する工程(A1)と、
     該工程(A1)で分離回収されたCOおよび/又はCOに水素を添加し、COおよび/又はCOをCHに変換する工程(A2)と、
     該工程(A2)を経たガスからHOを分離除去する工程(A3)と、
     を含み、
     該工程(A3)を経たガスを製鉄所内で燃料および/又は還元剤として利用する
     ことを特徴とする製鉄所の操業方法。
  3.  工程(A3)は、さらに、工程(A2)を経たガスから下記(i)および/又は(ii)を分離除去又は分離回収する工程を含むことを特徴とする請求項1又は2に記載の高炉又は製鉄所の操業方法。
     (i)工程(A2)で改質されることなく残存したCOおよび/又はCO
     (ii)工程(A2)で消費されることなく残存した水素
  4.  混合ガスが高炉ガスであることを特徴とする請求項1~3のうち、いずれか1項に記載の高炉又は製鉄所の操業方法。
  5.  工程(A2)で用いる水素の少なくとも一部がアンモニアを分解して得られたものであることを特徴とする請求項1~4のうち、いずれか1項に記載の高炉又は製鉄所の操業方法。
  6.  工程(A2)で発生する反応熱を利用して水素を製造する工程(A5)を含み、
     該工程(A5)で製造された水素の少なくとも一部を工程(A2)で用いる
     ことを特徴とする請求項1~5のうち、いずれか1項に記載の高炉又は製鉄所の操業方法。
  7.  工程(A5)は、単環芳香族化合物および/又は多環芳香族化合物の水素化物の脱水素反応により水素を製造するとともに、その脱水素反応の熱源として工程(A2)で発生する反応熱を利用する工程を含むことを特徴とする請求項6に記載の高炉又は製鉄所の操業方法。
  8.  工程(A5)は、工程(A2)でのメタン化反応の反応圧力よりも高い反応圧力で脱水素反応を行うことで水素を製造する工程を含むことを特徴とする請求項7に記載の高炉又は製鉄所の操業方法。
  9.  工程(A5)における脱水素反応の反応圧力が、単環芳香族化合物および/又は多環芳香族化合物の水素化物を反応器に供給する圧力で維持されることを特徴とする請求項8に記載の高炉又は製鉄所の操業方法。
  10.  工程(A5)で製造された水素を、さらに昇圧することなく工程(A2)に供給することを特徴とする請求項8又は9に記載の高炉又は製鉄所の操業方法。
  11.  工程(A5)は、工程(A2)で発生する反応熱を熱源としてアンモニアを分解し、水素を製造する工程を含むことを特徴とする請求項6に記載の高炉又は製鉄所の操業方法。
  12.  アンモニアの分解反応を水素分離膜の存在下で行うことを特徴とする請求項11に記載の高炉又は製鉄所の操業方法。
  13.  工程(A5)は、炭化水素の水蒸気改質により水素を製造するとともに、炭化水素の予熱用の熱源として工程(A2)で発生する反応熱を利用する工程を含むことを特徴とする請求項6に記載の高炉又は製鉄所の操業方法。
  14.  工程(A5)は、炭化水素の水蒸気改質により水素を製造するとともに、工程(A2)で発生する反応熱で水蒸気を発生させ、この水蒸気を改質反応用の水蒸気として利用する工程を含むことを特徴とする請求項6に記載の高炉又は製鉄所の操業方法。
  15.  工程(A5)は、工程(A2)で発生する反応熱で蒸気を発生させ、該蒸気により発電を行い、その電力により水の電気分解を行うことで水素を製造する工程を含むことを特徴とする請求項6に記載の高炉又は製鉄所の操業方法。
  16.  工程(A5)は、工程(A2)で発生する反応熱で蒸気を発生させ、該蒸気により発電を行い、その電力を用いたPSA法により水素含有ガスから水素を分離することで水素を製造する工程を含むことを特徴とする請求項6に記載の高炉又は製鉄所の操業方法。
  17.  COを含む混合ガスからCOを分離回収する工程(B1)と、
     該工程(B1)で分離回収されたCOに水素系還元剤を添加し、COをCOに変換する工程(B2)と、
     該工程(B2)を経たガスからHO又はHOとNを分離除去する工程(B3)と、
     該工程(B3)を経たガスを高炉内に吹き込む工程(B4)と、
     を含むことを特徴とする高炉の操業方法。
  18.  混合ガスがCOとともにCOを含み、
     工程(B1)では、混合ガスからCOとCOを各々分離回収し、
     工程(B4)では、工程(B3)を経たガスを、工程(B1)で分離回収したCOとともに高炉内に吹き込むことを特徴とする請求項17に記載の高炉の操業方法。
  19.  COを含む混合ガスからCOを分離回収する工程(B1)と、
     該工程(B1)で分離回収されたCOに水素系還元剤を添加し、COをCOに変換する工程(B2)と、
     該工程(B2)を経たガスからHO又はHOとNを分離除去する工程(B3)と、
     を含み、
     該工程(B3)を経たガスを製鉄所内の設備において燃料および/又は還元剤として用いることを特徴とする製鉄所の操業方法。
  20.  混合ガスがCOとともにCOを含み、
     工程(B1)では、混合ガスからCOとCOを各々分離回収し、
     工程(B3)を経たガスを、工程(B1)で分離回収したCOとともに製鉄所内の設備において燃料および/又は還元剤として用いることを特徴とする請求項19に記載の製鉄所の操業方法。
  21.  工程(B3)では、さらに、工程(B2)を経たガスから下記(i)又は/および(ii)を分離除去又は分離回収することを特徴とする請求項17~20のうち、いずれか1項に記載の高炉又は製鉄所の操業方法。
     (i)工程(B2)で改質されることなく残存したCO
     (ii)工程(B2)で消費されることなく残存した水素系還元剤
  22.  混合ガスが高炉ガスであることを特徴とする請求項17~21のうち、いずれか1項に記載の高炉又は製鉄所の操業方法。
  23.  水素系還元剤が、水素又は/およびアンモニアであることを特徴とする請求項17~22のうち、いずれか1項に記載の高炉又は製鉄所の操業方法。
  24.  CO又は、COとCOを含有する混合ガスからCO又は、COとCOを分離した後、分離した前記CO又は、前記COとCOを炭化水素系還元剤と接触させてCOと水素に転化させ、得られたCOを高炉に導入することを特徴とする酸化炭素含有ガスの利用方法。
  25.  CO又は、COとCOを含有する混合ガスが、製鉄所で副生する高炉ガスであることを特徴とする請求項24に記載の酸化炭素含有ガスの利用方法。
  26.  CO又は、COとCOを含有する混合ガスが、製鉄所で副生する転炉ガスであることを特徴とする請求項24に記載の酸化炭素含有ガスの利用方法。
  27.  CO又は、COとCOを含有する混合ガスからCO又は、COとCOを分離する方法が、吸着分離法であることを特徴とする請求項24~26のうち、いずれか1項に記載の酸化炭素含有ガスの利用方法。
  28.  炭化水素系還元剤が、メタンを主成分とするガスであることを特徴とする前記請求項24~27のうち、いずれか1項に記載の酸化炭素含有ガスの利用方法。
  29.  炭化水素系還元剤が、液化石油ガスを主成分とするガスであることを特徴とする請求項24~27のうち、いずれか1項に記載の酸化炭素ガス含有ガスの利用方法。
  30.  炭化水素系還元剤が、メタノールおよび/又はジメチルエーテルを主成分とするガスおよび/又は液であることを特徴とする請求項24~27のうち、いずれか1項に記載の酸化炭素ガス含有ガスの利用方法。
  31.  分離した前記CO又は、前記COとCOを炭化水素系還元剤と接触させてCOと水素に転化させる際の熱源の一部あるいは全部として、製鉄所の排熱を用いることを特徴とする請求項24~30のうち、いずれか1項に記載の酸化炭素ガス含有ガスの利用方法。
PCT/JP2011/054647 2010-03-02 2011-03-01 高炉の操業方法、製鉄所の操業方法、および酸化炭素含有ガスの利用方法 WO2011108546A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127021177A KR101464056B1 (ko) 2010-03-02 2011-03-01 고로의 조업 방법, 제철소의 조업 방법, 및 산화탄소 함유 가스의 이용 방법
CN2011800115527A CN102782161A (zh) 2010-03-02 2011-03-01 高炉的操作方法、炼钢厂的操作方法和含氧化碳气体的利用方法
EP11750656.8A EP2543743B1 (en) 2010-03-02 2011-03-01 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2010045392 2010-03-02
JP2010-045392 2010-03-02
JP2010074110 2010-03-29
JP2010-074110 2010-03-29
JP2010078851 2010-03-30
JP2010-078851 2010-03-30
JP2011017404A JP5810537B2 (ja) 2010-03-02 2011-01-31 酸化炭素含有ガスの利用方法
JP2011026229A JP5640786B2 (ja) 2010-03-30 2011-02-09 高炉又は製鉄所の操業方法
JP2011-026229 2011-02-09
JP2011-035508 2011-02-22
JP2011035508A JP5640803B2 (ja) 2010-03-29 2011-02-22 高炉又は製鉄所の操業方法
JP2011-017404 2011-07-29

Publications (1)

Publication Number Publication Date
WO2011108546A1 true WO2011108546A1 (ja) 2011-09-09

Family

ID=47112399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054647 WO2011108546A1 (ja) 2010-03-02 2011-03-01 高炉の操業方法、製鉄所の操業方法、および酸化炭素含有ガスの利用方法

Country Status (4)

Country Link
EP (1) EP2543743B1 (ja)
KR (1) KR101464056B1 (ja)
CN (1) CN102782161A (ja)
WO (1) WO2011108546A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095681A (ja) * 2011-10-29 2013-05-20 Jfe Steel Corp Co2及び/又はcoからのメタンの製造方法及び装置
KR101349503B1 (ko) * 2011-11-03 2014-01-09 현대건설주식회사 제철설비의 부생가스를 이용한 메탄 가스 제조방법
JP2014028984A (ja) * 2012-07-31 2014-02-13 Jfe Steel Corp 高炉の操業方法
JP2015051954A (ja) * 2013-09-09 2015-03-19 千代田化工建設株式会社 水素及び合成天然ガスの製造装置及び製造方法
JP2015516490A (ja) * 2012-04-24 2015-06-11 武▲漢凱▼迪工程技▲術▼研究▲総▼院有限公司 余剰電力を利用する排ガス中二酸化炭素の天然ガス変換方法および装置
JP2016531973A (ja) * 2013-07-09 2016-10-13 ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー メタネーション方法および電力プラント煙道ガスの二酸化炭素メタネーションを備える電力プラント
EP3530640A1 (en) 2018-02-20 2019-08-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Methane production device and methane production method
TWI697564B (zh) * 2019-12-09 2020-07-01 財團法人金屬工業研究發展中心 熱處理爐
WO2021205935A1 (ja) * 2020-04-06 2021-10-14 三菱重工業株式会社 固体炭素生成装置および固体炭素生成方法
CN113955757A (zh) * 2021-11-26 2022-01-21 内蒙古禹源机械有限公司 碳中和气化渣制二氧化碳捕捉剂并联产氢气与合金的装置及工艺
CN114456854A (zh) * 2022-02-13 2022-05-10 新疆八一钢铁股份有限公司 一种脱除富氢碳循环高炉煤气中co2的系统
WO2023107960A1 (en) * 2021-12-07 2023-06-15 Twelve Benefit Corporation Integrated systems employing carbon oxide electrolysis in steel production
US11939284B2 (en) 2022-08-12 2024-03-26 Twelve Benefit Corporation Acetic acid production

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525829A (ja) * 2012-07-03 2015-09-07 エイチワイエル テクノロジーズ、エス.エー. デ シー.ヴイ 炉頂ガス再循環および燃焼式管状加熱炉を備える高炉を運転する方法およびシステム
DE102013009993A1 (de) 2013-06-14 2014-12-18 CCP Technology GmbH Hochofen und Verfahren zum Betrieb eines Hochofens
EP3045425B1 (en) * 2013-09-09 2019-11-06 Chiyoda Corporation Manufacturing device and manufacturing method for hydrogen and synthetic natural gas
JP6232985B2 (ja) * 2013-12-05 2017-11-22 株式会社Ihi 発電システム
DE102013113958A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113921A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113950A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113933A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Erzeugung von Synthesegas im Verbund mit einem Hüttenwerk
DE102013113913A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
JP6258039B2 (ja) * 2014-01-07 2018-01-10 新日鐵住金株式会社 高炉の操業方法
EP3292765A4 (en) 2015-04-03 2019-03-13 Konkuk University Glocal Industry-Academic Collaboration Foundation ANTIBACTERIAL COMPOSITION FOR THE CONTROL OF CARBAPENEMA-RESISTANT GRAM NEGATIVE BACTERIA COMPRISING AN ADK PROTEIN AS ACTIVE INGREDIENT
KR101758521B1 (ko) * 2015-12-23 2017-07-17 주식회사 포스코 열풍로를 이용한 이산화탄소 분해 및 재활용 방법
DE102016209027A1 (de) * 2016-05-24 2017-11-30 Thyssenkrupp Ag Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes
KR101881973B1 (ko) * 2016-12-05 2018-07-25 주식회사 포스코 수소 생산 설비 및 수소 생산 방법
DE102018209042A1 (de) * 2018-06-07 2019-12-12 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung sowie ein Verfahren zum Betreiben des Anlagenverbundes.
CN114667357A (zh) * 2019-11-25 2022-06-24 杰富意钢铁株式会社 高炉的操作方法和高炉附属设备
EP4083234A4 (en) * 2019-12-26 2023-07-05 JFE Steel Corporation BLAST FURNACE OPERATION METHOD AND AUXILIARY BLAST FURNACE EQUIPMENT
WO2021140841A1 (ja) * 2020-01-10 2021-07-15 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
KR20220082037A (ko) * 2020-01-23 2022-06-16 제이에프이 스틸 가부시키가이샤 고로의 조업 방법 및 고로 부대 설비
KR20220129625A (ko) * 2020-04-24 2022-09-23 제이에프이 스틸 가부시키가이샤 고로의 조업 방법 및 고로 부대 설비
BR112022021678A2 (pt) * 2020-04-27 2022-12-20 Jfe Steel Corp Linha de fabricação de aço e método de produção de ferro reduzido
CN112899422B (zh) * 2021-01-18 2022-03-11 广东韶钢松山股份有限公司 一种高炉停炉的降料面方法
IT202100011189A1 (it) * 2021-05-03 2022-11-03 Nextchem S P A Processo a basso impatto ambientale per la riduzione di minerali ferrosi in altoforno impiegante gas di sintesi
WO2022254235A1 (en) * 2021-05-31 2022-12-08 Arcelormittal A method for manufacturing direct reduced iron
LU500245B1 (en) * 2021-06-03 2022-12-07 Wurth Paul Sa Method for operating a blast furnace installation
BE1030059B1 (de) * 2021-12-21 2023-07-17 Thyssenkrupp Ag Vorrichtung zur vereinfachten Bindung von Kohlendioxid aus einem Hüttengas
US20230295755A1 (en) * 2022-03-17 2023-09-21 Fluor Technologies Corporation Modular direct reduction systems and associated methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119385A (en) * 1978-03-10 1979-09-17 Satoyuki Inui Novel carried catalyst and method of methanizing carbon dioxide or monoxide using it
JPH05330802A (ja) * 1992-05-27 1993-12-14 Kansai Coke & Chem Co Ltd アンモニア分解ガスの製造法および水素の製造法
JP2001226295A (ja) * 2000-02-15 2001-08-21 Nkk Corp アンモニアを用いた高炉ガスからのメタンの製造方法
JP2006233332A (ja) 2005-01-31 2006-09-07 Jfe Steel Kk 高炉操業方法
JP2007056159A (ja) * 2005-08-25 2007-03-08 Nippon Steel Corp 高熱量ガスの生成方法
JP2007090137A (ja) * 2005-09-27 2007-04-12 National Institute For Materials Science 炭化水素の水蒸気改質用触媒
JP2007326053A (ja) * 2006-06-08 2007-12-20 Japan Energy Corp 反応装置
JP2008214735A (ja) 2007-03-08 2008-09-18 Jfe Steel Kk 高炉の操業方法
JP2009120897A (ja) * 2007-11-14 2009-06-04 Jfe Steel Corp 高炉ガスの利用方法
JP2009192125A (ja) 2008-02-14 2009-08-27 Jfe Steel Corp 高炉ガスの改質方法及び利用方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119385A (en) * 1978-03-10 1979-09-17 Satoyuki Inui Novel carried catalyst and method of methanizing carbon dioxide or monoxide using it
JPH05330802A (ja) * 1992-05-27 1993-12-14 Kansai Coke & Chem Co Ltd アンモニア分解ガスの製造法および水素の製造法
JP2001226295A (ja) * 2000-02-15 2001-08-21 Nkk Corp アンモニアを用いた高炉ガスからのメタンの製造方法
JP2006233332A (ja) 2005-01-31 2006-09-07 Jfe Steel Kk 高炉操業方法
JP2007056159A (ja) * 2005-08-25 2007-03-08 Nippon Steel Corp 高熱量ガスの生成方法
JP2007090137A (ja) * 2005-09-27 2007-04-12 National Institute For Materials Science 炭化水素の水蒸気改質用触媒
JP2007326053A (ja) * 2006-06-08 2007-12-20 Japan Energy Corp 反応装置
JP2008214735A (ja) 2007-03-08 2008-09-18 Jfe Steel Kk 高炉の操業方法
JP2009120897A (ja) * 2007-11-14 2009-06-04 Jfe Steel Corp 高炉ガスの利用方法
JP2009192125A (ja) 2008-02-14 2009-08-27 Jfe Steel Corp 高炉ガスの改質方法及び利用方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095681A (ja) * 2011-10-29 2013-05-20 Jfe Steel Corp Co2及び/又はcoからのメタンの製造方法及び装置
KR101349503B1 (ko) * 2011-11-03 2014-01-09 현대건설주식회사 제철설비의 부생가스를 이용한 메탄 가스 제조방법
JP2015516490A (ja) * 2012-04-24 2015-06-11 武▲漢凱▼迪工程技▲術▼研究▲総▼院有限公司 余剰電力を利用する排ガス中二酸化炭素の天然ガス変換方法および装置
JP2014028984A (ja) * 2012-07-31 2014-02-13 Jfe Steel Corp 高炉の操業方法
JP2016531973A (ja) * 2013-07-09 2016-10-13 ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー メタネーション方法および電力プラント煙道ガスの二酸化炭素メタネーションを備える電力プラント
US9885257B2 (en) 2013-07-09 2018-02-06 Mitsubishi Hitachi Power Systems Europe Gmbh Flexibly operable power plant and method for the operation thereof
US10227901B2 (en) 2013-07-09 2019-03-12 Mitsubishi Hitachi Power Systems Europe Gmbh Methanation method and power plant comprising CO2 methanation of power plant flue gas
JP2015051954A (ja) * 2013-09-09 2015-03-19 千代田化工建設株式会社 水素及び合成天然ガスの製造装置及び製造方法
EP3530640A1 (en) 2018-02-20 2019-08-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Methane production device and methane production method
TWI697564B (zh) * 2019-12-09 2020-07-01 財團法人金屬工業研究發展中心 熱處理爐
WO2021205935A1 (ja) * 2020-04-06 2021-10-14 三菱重工業株式会社 固体炭素生成装置および固体炭素生成方法
JP7463174B2 (ja) 2020-04-06 2024-04-08 三菱重工業株式会社 固体炭素生成装置および固体炭素生成方法
CN113955757A (zh) * 2021-11-26 2022-01-21 内蒙古禹源机械有限公司 碳中和气化渣制二氧化碳捕捉剂并联产氢气与合金的装置及工艺
CN113955757B (zh) * 2021-11-26 2023-11-03 内蒙古禹源机械有限公司 气化渣制二氧化碳捕捉剂并联产氢气与合金的装置及工艺
WO2023107960A1 (en) * 2021-12-07 2023-06-15 Twelve Benefit Corporation Integrated systems employing carbon oxide electrolysis in steel production
CN114456854A (zh) * 2022-02-13 2022-05-10 新疆八一钢铁股份有限公司 一种脱除富氢碳循环高炉煤气中co2的系统
US11939284B2 (en) 2022-08-12 2024-03-26 Twelve Benefit Corporation Acetic acid production

Also Published As

Publication number Publication date
CN102782161A (zh) 2012-11-14
EP2543743A4 (en) 2016-06-08
KR101464056B1 (ko) 2014-11-21
KR20120105562A (ko) 2012-09-25
EP2543743A1 (en) 2013-01-09
EP2543743B1 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5796672B2 (ja) 高炉又は製鉄所の操業方法
WO2011108546A1 (ja) 高炉の操業方法、製鉄所の操業方法、および酸化炭素含有ガスの利用方法
CA2660293C (en) Hydrogen production method and facility
EP2516326B1 (en) Conversion of hydrocarbons to carbon dioxide and electrical power
AU2010334600B2 (en) Conversion of hydrocarbons to carbon dioxide and electrical power
Medrano et al. Thermodynamic analysis of a membrane-assisted chemical looping reforming reactor concept for combined H2 production and CO2 capture
KR101321072B1 (ko) 일산화탄소 및 수소를 포함하는 합성가스 제조장치 및 그의 제조방법
US8926729B2 (en) Method and apparatus for direct reduction ironmaking
JP2003081605A (ja) 液化co2回収を伴う水素製造方法
EP2459755A2 (en) Method for producing direct reduced iron with limited co2 emissions
JP5810537B2 (ja) 酸化炭素含有ガスの利用方法
JP2014005510A (ja) 高炉操業方法
JP5640786B2 (ja) 高炉又は製鉄所の操業方法
KR20230029630A (ko) 수소 생성 방법
CA3178048A1 (en) Process for producing hydrogen
CN114466815A (zh) 用于二氧化碳的转化的工艺
JP6019893B2 (ja) 高炉の操業方法
Sun et al. Simulation of the calcium looping process (CLP) for hydrogen, carbon monoxide and acetylene poly-generation with CO2 capture and COS reduction
TWI491734B (zh) 使用具有高一氧化碳含量之合成氣體製造直接還原鐵的方法
JP2013010697A (ja) 製鉄所発生ガスからのメタノールの製造方法及び高炉操業方法
WO2013064870A1 (en) Process for producing direct reduced iron (dri) with less co2 emissions to the atmosphere
JP2008143770A (ja) 廃熱回収システムおよび廃熱回収装置
KR101684484B1 (ko) 용융슬래그로부터 회수한 현열의 활용을 극대화한 개질 촉매반응 공정 및 설비
JP2000233918A (ja) Coの製造方法
CN106241736A (zh) 一种利用焦炉煤气制取冶金还原气的工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011552.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2124/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127021177

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011750656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011750656

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE