WO2011105841A9 - 브라제인 발현용 재조합 발현벡터 및 높은 단맛을 가지는 신규한 브라제인 다중 변이체 - Google Patents

브라제인 발현용 재조합 발현벡터 및 높은 단맛을 가지는 신규한 브라제인 다중 변이체 Download PDF

Info

Publication number
WO2011105841A9
WO2011105841A9 PCT/KR2011/001309 KR2011001309W WO2011105841A9 WO 2011105841 A9 WO2011105841 A9 WO 2011105841A9 KR 2011001309 W KR2011001309 W KR 2011001309W WO 2011105841 A9 WO2011105841 A9 WO 2011105841A9
Authority
WO
WIPO (PCT)
Prior art keywords
brazein
seq
variant
expression vector
recombinant expression
Prior art date
Application number
PCT/KR2011/001309
Other languages
English (en)
French (fr)
Other versions
WO2011105841A2 (ko
WO2011105841A3 (ko
Inventor
공광훈
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100016660A external-priority patent/KR101083040B1/ko
Priority claimed from KR1020100016661A external-priority patent/KR20110097043A/ko
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Publication of WO2011105841A2 publication Critical patent/WO2011105841A2/ko
Publication of WO2011105841A9 publication Critical patent/WO2011105841A9/ko
Publication of WO2011105841A3 publication Critical patent/WO2011105841A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • C07K14/43Sweetening agents, e.g. thaumatin, monellin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a recombinant expression vector for brazein expression and a mass production method of brazein using the same.
  • the present invention relates to a novel brazein quaternary variant having a high sweet taste and a method for producing the same.
  • White sugar is one of the sugars, or more precisely, one of the simple carbohydrates called sucrose (sugar), also called saccharose (chemical term for sugar).
  • sucrose sucrose
  • saccharose chemical term for sugar
  • WHO World Health Organization
  • the US government (New York City, July 2003, New Jersey, September 2004, Illinois, March 2006, Connecticut) April 2006) banned the sale of sugar-based foods and high content beverages.
  • a National Obesity Countermeasure Committee was formed to announce a policy to label sugar risk warnings. From 2010, food advertisements above the sugar standard will be regulated.
  • Thaumatin is a protein contained in the fruit of the perennial plant Thaumatococcus daniellii , a miracle fruit in West Africa, more than 2,000 sugar. ⁇ 3,000 times sweeter.
  • Monellin is a protein derived from the fruit of a vine-like plant called Serendipiti berry, which grows in the rain forests of Africa, and is 3,000 times sweeter than sugar.
  • the thermal stability is low, the heat treatment during the food processing process loses the three-dimensional protein structure has a disadvantage that does not give a sweet taste.
  • research is being conducted to improve thermal stability using protein engineering techniques to overcome these disadvantages.
  • Brazzein is a sweet protein originally extracted from the fruit of Pentadipladra brazzeana Baillon in West Africa (Ming et al., FEBS Letters , 355: 106-108, 1994). Brazein has a sweet taste of about 500 to 2,000 times more than sucrose (Jin et al., Chem. Senses. 28: 491-498, 2003]. There are two types, major type and minor type. The major type of plant-derived brazein has 54 amino acids, including pyroglutamic acid residues at its amino terminus.
  • brazein has only 53 amino acid residues without pyroglutamic acid residues at the amino terminus, and are about twice as sweet as major types of brazein [Assadi-Porter et al. Arch. Biochem. Biophys. 376: 259-265, 2000.
  • Brazein is the smallest sweet protein, has a molecular weight of about 6.5 kDa, and is a monomer composed of one subunit. It consists of a single polypeptide and consists of one ⁇ -helix and two ⁇ -sheets. Brazein has eight cysteine residues to form four disulfide bonds in the molecule, resulting in very high thermal stability. In addition, the solubility and pH stability in water are very high [Gao et al., Int. J. Biol. macromol. 24: 351-359, 1999.
  • Pichia pastoris is not a generally recognized as safe (GRAS) strain, despite its high yield of 200 mg / l or 70 mg / l, and methanol, which is used as a carbon source or transcription inducing agent, is not at risk of explosion.
  • GRAS safe
  • methanol which is used as a carbon source or transcription inducing agent
  • the target protein is associated with food, there is a disadvantage that there is a restriction on the use of methanol, which is not suitable for the expression of sweet protein (brazein).
  • the production amount is limited to 5 mg / L, and there is a disadvantage in that it is difficult to commercialize by mass production.
  • brazein expressed by fusion with SNase produces an insoluble inclusion body, refolds it, and removes SNase and methionine by using cyanobromide (CNBr). Due to the separation and purification, it is technically complicated and difficult to commercialize by mass production.
  • the inventors have patented a polynucleotide containing Escherichia coli pelB signal sequence and brazein gene and a method for producing brazein using the same (Domestic Patent Registration No. 809100).
  • the present inventors have patented a method for preparing a variant and multiple variants of amino acids at specific positions which are expected to not affect the structure among the amino acids constituting brazein in order to find a natural sweetener having high thermal stability and excellent sweetness. It has been filed (Domestic Patent Application No. 2007-0117013, Domestic Patent Application No. 2008-0019008, International Patent Application PCT / KR2009 / 04855), and has a higher sweetness while having the same thermal stability as the conventional brazein.
  • the present invention has been completed by searching for and developing the quaternary variants represented.
  • the present inventors are non-pathogenic microorganisms certified as GRAS by the US Food and Drug Administration (FDA) to solve the shortcomings of the existing research, and for expressing the lactose fermentation yeast Kluyveromyces lactis ( Kluyveromyces lactis )
  • FDA US Food and Drug Administration
  • a recombinant vector for optimal expression and extracellular secretion was prepared, and the brazein in wild-type brazein and patents filed in our laboratory (Korean Patent Application Nos.
  • an object of the present invention is a host for the expression of yeast Kluyveromyces lactis, a non-pathogenic microorganism certified by GRAS for the expression of brazein, and a polynucleotide of brazein for optimal secretion expression out of the cells.
  • the present invention provides a Kluyveromyces lactis alpha-mating signal sequence and a brazein expression polynucleotide comprising a brazein gene.
  • the present invention provides a recombinant expression vector comprising the polynucleotide.
  • the present invention provides a yeast transformed with the recombinant expression vector and a mass production method of brazein using the yeast.
  • the present invention provides a novel brazein quaternary variant whose sweet taste is superior to conventional natural brazein.
  • the present invention provides a polynucleotide encoding the brazein quaternary variant.
  • the present invention provides a recombinant expression vector comprising the polynucleotide, E. coli transformed with the vector and a method for producing a brazein quaternary variant using the E. coli.
  • the present invention provides a food composition for enhancing sugar content comprising a brazein quaternary variant as an active ingredient.
  • brazein expressed through the yeast expression system has the same characteristics as brazein derived from nature.
  • calorie or sugar levels may be obtained by ingesting sweet protein even in patients who cannot enjoy taste due to diseases such as diabetes and obesity. It can be used as an alternative sweetener to make you feel sweet no matter what.
  • the brazain quaternary variant of the present invention has excellent thermal stability like the conventional braze and has a sweet taste of at least 15 times and up to 50 times higher than that of the conventional brazein. Therefore, the brazein quaternary variant of the present invention can replace other sweeteners such as sugar (sucrose) in a small amount, and can be used in various ways as a sweetener in food compositions and the like.
  • sugar sucrose
  • Figure 1 shows the expression vector pKLAC2.
  • Figure 2 shows the pKLAC2 multiple cloning site and selected restriction sites for designing the recombinant expression vector pKLAC2-brazein.
  • Figure 3 is a schematic diagram showing the manufacturing process of the recombinant expression vector pKLAC2-brazein.
  • FIG. 5 shows the integration of expression cassettes ((A) single insertion integration, (B) multiple insertion integration).
  • Figure 6 shows the gene insertion by agarose electrophoresis analysis [(A) single insertion integration, (B) multiple insertion integration, M: molecular weight marker ( ⁇ -HindIII DNA marker), NC: negative control, PC: positive Control, 1: pKLAC2-Brazin (WT-minor type), 2: pKLAC2-Brazin (H30R), 3: pKLAC2-Brazin (E35D), 4: pKLAC2-Brazin (E40A), 5: pKLAC2-Bra Jane (H30R_E35D), 6: pKLAC2-Brazane (H30R_E40A), 7: pKLAC2-Brazane (E35D_E40A), 8: pKLAC2-Brazane (H30R_E35D_E40A), 9: pKLAC2-Brazin (H30R_E35D_E40A).
  • FIG. 7 shows brazein expressed from pKLAC2-brazein in YPGal medium by SDS-PAGE analysis [M: molecular weight marker; 1-18: Brazein elution fractions obtained with a CM column.
  • FIG. 8 shows brazein expressed from pKLAC2-brazein in YPLac medium by SDS-PAGE analysis [M: molecular weight marker; 1-18: Brazein elution fractions obtained with a CM column.
  • FIG. 9 shows brazein expressed from pKLAC2-brazein at pH 4.5 by SDS-PAGE analysis [M: molecular weight marker; 1-18: Brazein elution fractions obtained with a CM column.
  • FIG. 10 shows the brazein expressed from pKLAC2-brazein at pH 5.0 by SDS-PAGE analysis [M: molecular weight marker; 1-18: Brazein elution fractions obtained with a CM column.
  • FIG. 11 shows brazein expressed from pKLAC2-brazein at pH 5.5 by SDS-PAGE analysis [M: molecular weight marker; 1-18: Brazein elution fractions obtained with a CM column.
  • FIG. 12 shows Brazein expressed from pKLAC2-brazein at pH 6.0 by SDS-PAGE analysis [M: molecular weight marker; 1-17: Brazein elution fractions obtained with a CM column.
  • FIG. 13 shows brazein expressed from pKLAC2-brazein at pH 6.5 by SDS-PAGE analysis [M: molecular weight marker; 1-18: Brazein elution fractions obtained with a CM column.
  • FIG. 14 shows Brazain expressed from pKLAC2-brazein at 25 ° C. by SDS-PAGE analysis [M: molecular weight marker; 1-18: Brazein elution fractions obtained with a CM column.
  • Figure 15 shows the change in brazein expression inoculated at 1%, 2%, 3%, 4% and 5% of the pre-culture concentration by SDS-PAGE analysis [(A) 24 hours culture, (B) 48 hours Incubation, (C) 72 hours incubation, (D) 96 hours incubation.
  • M molecular weight marker; 1: preculture concentration 1%; 2: preculture concentration 2%; 3: preculture concentration 3%; 4: preculture concentration 4%; 5: preculture concentration 5%].
  • FIG. 16 shows the results of SDS-PAGE analysis of brazein after desalting by gel filtration [M: molecular weight marker; 1-9: Brazein elution fractions obtained by gel filtration].
  • FIG. 17 shows the result of SDS-PAGE analysis of purified brazein purified by desalting by separate filter
  • A M: Molecular weight marker
  • 1 Brazein before desalting and concentration by separate filter
  • 2 brazein after desalting with a split filter and concentrated to 1/5
  • 3 liquid filtration through a separate filter
  • B M: molecular weight marker
  • 1 Brazein after desalting and concentrating with two separate filters
  • Figure 18 shows the results of HPLC analysis of purified brazein purified by CM cellulose cation exchange resin column chromatography and desalting by a separate filter [(A) Purified brazein; (B) buffer only].
  • Figure 19 shows the purification of brazein variants expressed in Kluyveromyces lactis.
  • brazein and brazein variants [M: molecular weight marker; 1: wild type brain (minor type); 2: H30R brazein variant; 3: E35D brazein variant; 4: E40A brazein variant; 5: H30R_E35D brazein variant; 6: H30R_E40A brazein variant; 7: E35D_E40A brazein variant; 8: H30R_E35D_E40A brazein variant; 9: H30R_E35D_E40A_E52K Brazein variant].
  • FIG. 21 shows the relative activity of the brazein and brazein variants (based on 100% wild type brazein activity).
  • FIG. 22 is a schematic diagram illustrating a process for preparing a recombinant expression vector for preparing a brazein quaternary variant according to the present invention.
  • Figure 23 shows the results of electrophoresis to confirm the expression of the brazein multiple quaternary variants according to the present invention
  • lane M molecular weight marker
  • lane 1 brazein fourth variant (H30R_E35D_E40A_E52K) crude extract
  • lane 2 bra Jane Quaternary Variants (H30R_E35D_E40A_E52R) crude extract
  • Lane 3 Brazein Quaternary variants (H30R_E35D_E40A_E52A) crude extract
  • Lane 4 Brazain Quaternary variants (H30R_E35D_E40A_E52H) crude extract
  • D R_E35E35E30E 35E Crude extracts
  • Figure 24 shows the results of electrophoresis to confirm the purification of brazein multiple quaternary variants according to the present invention
  • lane M molecular weight marker
  • lane 1 purified brazein quaternary variant (H30R_E35D_E40A_E52K)
  • lane 2 purification Brazaine Quaternary Variants (H30R_E35D_E40A_E52R)
  • Lane 3 Purified Brazain Quaternary Variants (H30R_E35D_E40A_E52A)
  • Lane 4 Purified Brazain Quaternary Variants (H30R_E35D_E40A_E52H)
  • Lane 5 Purified Brazine D5E40E40E40E40E40E )].
  • FIG. 25 shows the results of thermal stability by selecting a brazein variant having a high sweetness after measuring the sweetness of the brazein variant according to the present invention
  • Lane 1 relative activity of the brazein minor type after heat treatment
  • Lane 2 Relative activity of brazein quaternary variant after heat treatment (H30R_E35D_E40A_E52K)
  • lane 3 Relative activity of brazein quaternary variant after heat treatment, H30R_E35D_E40A_E52R
  • lane 4 Relative activity of brazein quaternary variant after heat treatment (H30R_E35D_E40A) Relative activity
  • lane 5 relative activity of brazein quaternary variant after heat treatment (H30R_E35D_E40A_E52H)
  • lane 6 relative activity of brazein quaternary variant after heat treatment (H30R_E35D_E40A_E52D).
  • the present invention uses a nucleotide sequence of brazein for expression of optimal secretion out of cells by using yeast Kluyveromyces lactis, a non-pathogenic microorganism certified by GRAS for expression of brazein, as a host for expression.
  • the present invention relates to a recombinant expression vector for expression and a method for mass production of brazein having high purity and yield using the same.
  • the present invention provides a Kluyveromyces lactis alpha-mating signal sequence and a brazein expression polynucleotide comprising a brazein gene.
  • the alpha-mating signal sequence of yeast is a type of signal sequence [Dominic Esposito et al., Protein Expression and Purification, 40 (2): 424-428, 2005, J.J. Clare et al., Gene. 105: 205-212, 1991], when proteins are synthesized in yeast, they migrate to endoplasmic reticulum to induce accurate disulfide bonds, inhibit the formation of insoluble aggregates of proteins, and induce proper folding. At this time, a part of the signal sequence is cut off by a signal peptidase, and then moved to the Golgi apparatus, and all the remaining signal sequences are removed by Kex peptidase, and the medium is in the form of a natural protein. Will be released.
  • Examples of the signal sequence include Saccharomyces cerevisiae alpha-mating signal sequence, Kluyveromyces lactis alpha-mating signal sequence, KT signal sequence [Tokunaga et al., Yeast, 13: 699 706, 1997), and Saccharomyces cerevisiae pre-SUC2 signal sequences (Bergkamp et al., Curr Genet, 21: 365-370).
  • brazein of the present invention when there is an additional amino acid sequence at the N-terminus, its sweetness is significantly reduced. Therefore, perfect cleavage of the yeast alpha-mating signal sequence plays a very important role in determining its sweetness. If the brazein is produced using an alpha-mating signal sequence derived from Saccharomyces cerevisiae, the brazein does not exist as a wild type and has an additional amino acid sequence at the N-terminus to enhance the sweetness of brazein. May adversely affect
  • the present inventors investigated the signal sequence suitable as the yeast alpha-mating signal sequence, and when the signal sequence derived from Kluyveromyces lactis, which is a GRAS-derived non-pathogenic strain used as a host in the present invention, is used in the present invention, All of the signal sequences were cut out from the N-terminal sequence of the secreted and excreted protein, and it was confirmed that 100% were present only as the wild type brazein subtype amino acid sequence.
  • Cluyveromyces lactis alpha-mating signal sequence of the present invention is not limited thereto, but may have a nucleotide sequence of SEQ ID NO: 1.
  • the alpha-mating sequence is linked to have the same frame upon translation into a protein on the 5 'top of the brazein nucleotide sequence of the present invention.
  • the brazein gene linked to the signal sequence may be a wild type brazein gene or a brazein variant gene.
  • the brazein gene may include all of the genes of the brazein major type, subtype, and variant.
  • it may be a wild type brazein subtype having a nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, sequence
  • It may be a brazein variant having a nucleotide sequence of the number 10.
  • the brazein expression polynucleotide of the present invention is linked to the Brazyin gene having a nucleotide sequence selected from SEQ ID NOs: 2 to 10 and a Cluyveromyces lactis alpha-mating signal sequence having a nucleotide sequence of SEQ ID NO: 1, respectively. It may be.
  • the integration of the Cluiberomyces lactis alpha-mating signal sequence and the brazein gene was named "brainin combination".
  • the present invention provides a polynucleotide encoding the brazein combination (combination).
  • the polynucleotide may be a polynucleotide encoding the amino acid sequence of SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, or SEQ ID NO: 28, and
  • the nucleotide sequence of SEQ ID NO: 11 for the amino acid of SEQ ID NO: 20 the nucleotide sequence of SEQ ID NO: 12 for the amino acid of SEQ ID NO: 21, the nucleotide sequence of SEQ ID NO: 13 for the amino acid of SEQ ID NO: 22,
  • the present invention provides a recombinant expression vector comprising the polynucleotide of the brazein combination.
  • it may further comprise an effector gene in addition to the polynucleotide.
  • a "recombinant expression vector” is a vector capable of transcription of a target protein or a target RNA in a host cell, and refers to a gene construct including an essential regulatory element operably linked to express a gene insert.
  • Vectors of the invention include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, and the like.
  • Suitable expression vectors include signal or leader sequences for membrane targeting or secretion in addition to expression control sequences such as promoters, operators, initiation codons, termination codons, polyadenylation signals, and enhancers (promoter genes) Can be.
  • the expression vector includes a selection marker for selecting a host cell containing the vector and, in the case of a replicable expression vector, a replication origin.
  • the 'operator gene' refers to a DNA sequence that controls the expression of a nucleic acid sequence operably linked in a particular host cell, 'operably linked' means that one nucleic acid fragment is combined with another nucleic acid fragment The function or expression thereof is influenced by other nucleic acid fragments. In addition, it may further comprise any operator sequence for regulating transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation.
  • the effector gene may be a promoter (constitutive promoter) to induce the expression of the target gene at all times at all times or a promoter (inducible promoter) to induce the expression of the target gene at a specific position, time, for example, yeast LAC promoter, GAL promoter (Rosaura Rodicio et al., Microbiology 152 (2006), 2635-2649), KlADH4 promoter (Michele Saliola et al., Appl Environ Microbiol. 1999 January; 65 (1): 53-60), maltase / Maltose permease bi-directional promoter (US Pat. No. 6,596,513), PGK1 promoter (V.
  • a promoter to induce the expression of the target gene at all times at all times
  • a promoter inducible promoter
  • the promoter may use a LAC4 promoter.
  • the recombinant expression vector for brazein expression may be pKLAC2-brazein, more preferably pKLAC2-brazein (WT-minor type), pKLAC2-brazein (H30R), pKLAC2-brazein (E35D) , pKLAC2-Brazin (E40A), pKLAC2-Brazin (H30R_E35D), pKLAC2-Brazin (H30R_E40A), pKLAC2-Brazin (E35D_E40A), pKLAC2-Brazin (H30R_E35D_E40A), pKLAC2-Brazin (H30R_E35D_E40A), pKLAH30E_A_E (A) have.
  • WT-minor type pKLAC2-brazein
  • H30R pKLAC2-brazein
  • E35D pKLAC2-brazein
  • pKLAC2-Brazin H30
  • the brazein and the brazein variants expressed in the vector are SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, or SEQ ID NO: 37
  • the nucleotide sequence of SEQ ID NO: 2 for the amino acid of SEQ ID NO: 29 the nucleotide sequence of SEQ ID NO: 3 for the amino acid of SEQ ID NO: 30, the nucleotide sequence of SEQ ID NO: 4 for the amino acid of SEQ ID NO: 31
  • the nucleotide sequence of SEQ ID NO: 5 for the amino acid of SEQ ID NO: 32, the nucleotide sequence of SEQ ID NO: 6 for the amino acid of SEQ ID NO: 33, the nucleotide sequence of SEQ ID NO: 7 for the amino acid of SEQ ID NO: 34, and the sequence for the amino acid of SEQ ID NO: 35 The base sequence of SEQ ID
  • the present invention also provides Kluyveromyces lactis transformed with the recombinant expression vector.
  • the yeast is transformed with the recombinant expression vector according to a conventional transformation method, wherein the transformation includes any method of introducing a nucleic acid into a host cell, and standard techniques suitable for the host cell as known in the art. This can be done by selecting. These methods include electroporation, lithium acetate (LiCH 3 COO), lithium chloride (LiCl), PEG-mediated fusion, and carrier-DNA mediated. fusion), and the like.
  • the present invention comprises the steps of culturing the Kluyveromyces lactis ( Kluyveromyces lactis ); Purifying by removing the cells from the culture solution; And a method of producing brazein comprising the step of performing a desalting process.
  • the present invention provides a culture medium composition for culturing the transformed yeast and expressing brazein at optimum efficiency. While the transformed yeast is incubated, brazein including an alpha-mating signal sequence is expressed by expression control sequences in the expression vector, and the expression of brazein in the present invention is lactose and galactose. ), A compound that promotes the expression of conventional inducible promoters such as glucose, starch.
  • the brazein containing the expressed ⁇ -Mating signal sequence is transferred to the yeast endoplasmic reticulum by the signal sequence, and the signal sequence is removed by signal peptidase and Kex peptidase of yeast. And the brazein is synthesized.
  • the yeast transformed to contain the brazein expression recombinant expression vector of the present invention can be cultured under appropriate media and conditions such that the polynucleotides encoding brazein are expressed, which is 0.5 to 5% yeast extract as a nitrogen source.
  • yeast extract as a nitrogen source.
  • Peptone is used alone or in a mixture of 0.5 to 5%, one selected from the group consisting of 1-4% galactose, 1-4% glucose, 1-4% lactose and 1-4% starch as a carbon source and expression inducer
  • the secretion efficiency is low and the secreted recombinant protein is formed into multimers in the medium.
  • the present invention controls the pH of the medium.
  • the recombinant protein translated in ribosomes is finally secreted into the medium through the endoplasmic reticulum and the Golgi apparatus.
  • the pH of the culture medium is too low, the redox potential is increased, and the conditions of the whole culture medium are transferred to oxidative properties. Multimer formation may occur.
  • the pH of the medium can be adjusted to 4.5 to 6.0.
  • the pH of the culture can be adjusted to 5.0 to 5.5.
  • the incubation is preferably carried out at a temperature of 25 to 35 °C.
  • the present invention provides a method for mass production of brazein, which comprises a chromatographic process for separating proteins from the culture medium and purifying the brazein.
  • the method for separating brazein of the present invention from the protein present in the medium of the yeast culture can be separated through various separation and purification methods used in the art, for example, salting out (ammonium sulfate precipitation and sodium phosphate precipitation), solvent Brazein can be isolated by applying techniques such as precipitation (protein fraction precipitation using acetone, ethanol, etc.), dialysis, gel filtration, ion exchange chromatography, reverse phase column chromatography and affinity chromatography, alone or in combination.
  • brazein is preferably separated using cation exchange chromatography.
  • the desalting process is preferably performed using a protein size separated filter.
  • brazein and brazein variants As described above, having an amino acid consisting of SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37 expressed in the present invention
  • SEQ ID NO: 29 As described above, having an amino acid consisting of SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37 expressed in the present invention
  • SEQ ID NO: 29 As described above, having an amino acid consisting of SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37 expressed in the present invention
  • the ratio of sweetness of braze to sucrose of 1g / 100ml about 500 ⁇ 100,000 times or more
  • the brazein according to the present invention is a subtype protein of brazein, that is, a subtype protein of wild type brazein and is expressed and purified in the present inventor's patent application (Korean Patent Application No. 2006-97619).
  • the brazein variant protein expressed and purified in the inventor's patent application shows higher yield and higher purity using simpler purification method. It is characterized by having.
  • recombinant vectors encoding the yeast secretory excretion brazein and brazein variant production were prepared.
  • the present invention also relates to novel brazein quaternary variants with sugars superior to conventional wild type brazeins.
  • the brazein quaternary variant of the present invention has a residue of glutamic acid, which is the 52nd amino acid of the brazein tertiary variant (H30R_E35D_E40A) having the amino acid sequence of SEQ ID NO: 68, of SEQ ID NO: 55 substituted with a lysine residue.
  • Brazein variants having an amino acid sequence brazein variants having an amino acid of SEQ ID NO: 56 substituted with an arginine residue, brazein variants having an amino acid of SEQ ID NO: 57 substituted with an alanine residue, histidine
  • a brazein variant having an amino acid of SEQ ID NO: 58 substituted with a residue may be a brazein variant having an amino acid of SEQ ID NO: 59 substituted with an aspartic acid residue.
  • the present invention provides a polynucleotide encoding the amino acid sequence of the E. coli pelB signal sequence and the brazein quaternary variant.
  • E. coli pelB signal sequence is a type of cell membrane gap signal sequence of E. coli (Rietsch et al., Proc. Natl. Acad. Sci. USA 93: 130408-13053, 1996, Raina et al., Ann. Rev. Microbiol. 51: 179-202, 1997, Sone et al., J. Biol. Chem. 272: 10349-10352, 1997), when the brazein of the present invention is synthesized, it moves to the cell membrane gap of E.
  • the E. coli pelB signal sequence of the present invention preferably has a nucleotide sequence of SEQ ID NO: 65, and is linked to have the same frame upon translation into a protein on the 5 'top of the nucleotide sequence of the brazein variant of the present invention.
  • the amino acid sequence of the brazein quaternary variant has the amino acid sequence of SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59
  • preferred polynucleotide is SEQ ID NO: 49 for the amino acid sequence of SEQ ID NO: 55
  • Nucleotide sequence of SEQ ID NO: 50 for the amino acid sequence of SEQ ID NO: 56 nucleotide sequence of SEQ ID NO: 51 for the amino acid sequence of SEQ ID NO: 57
  • nucleotide sequence of SEQ ID NO: 52 for the amino acid sequence of SEQ ID NO: 58
  • sequence The amino acid sequence of No. 59 may have a nucleotide sequence of SEQ ID NO: 53.
  • the present invention provides a promoter and a recombinant expression vector for brazein quaternary variant expression comprising the polynucleotide operably linked thereto.
  • the term 'promoter' refers to a DNA sequence that regulates the expression of a nucleic acid sequence operably linked in a particular host cell. “Operably linked” means that one nucleic acid fragment is combined with another nucleic acid fragment. Its function or expression is affected by other nucleic acid fragments. In addition, it may further comprise any operator sequence for regulating transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation.
  • the promoter may be a promoter (constitutive promoter) to induce the expression of the target gene at all times at all times or a promoter (inducible promoter) to induce the expression of the target gene at a specific position, time, for example E.
  • coli pelB Promoter U6 promoter, cytomegalovirus (CMV) promoter, SV40 promoter, CAG promoter (Hitoshi Niwa et al., Gene, 108: 193-199, 1991; Monahan et al., Gene Therapy 7: 24-30, 2000 ?, CaMV 35S promoter (Odell et al., Nature 313: 810-812, 1985), Rsyn7 promoter (US Patent Application No. 08 / 991,601), rice actin promoter (McElroy et al ., Plant Cell 2: 163- 171, 1990), ubiquitin promoters (Christensen et al., Plant Mol. Biol.
  • Recombinant expression vector for the expression of the brazain quaternary variant of the present invention is preferably pET26B (+)-brazein (H30R_E35D_E40A_E52K), pET26B (+)-brazein (H30R_E35D_E40A_E52R), pET26B (+)-brain ( H30R_E35D_E40A_E52A), pET26B (+)-Brazin (H30R_E35D_E40A_E52H), pET26B (+)-Brazin (H30R_E35D_ E40A_E52D), which is the main sequence of pET26B (+)-Brazin (H30R40Alate) , 40, 41, 42, 43, 44, 45, 46, 47, 48 can be prepared by the site-directed mutagenesis method using the primers.
  • the present invention also provides E. coli transformed with the recombinant expression vector.
  • the E. coli is transformed according to a conventional transformation method with the recombinant expression vector, wherein the transformation includes any method of introducing a nucleic acid into the host cell, a standard suitable for the host cell as known in the art
  • the technique can be selected and performed. These methods include electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microprojectile bombardment, electroporation, PEG-mediated fusion (PEG) mediated fusion, microinjection, liposome-mediated methods, etc., but are not limited thereto.
  • the present invention also relates to a method for preparing a brazine quaternary variant comprising culturing the transformed Escherichia coli, separating the cell membrane protein from the cultured Escherichia coli, and heat treating the purified zebrain.
  • the transformed E. coli of the present invention can be cultured under appropriate media and conditions so that the polynucleotide encoding the brazein quaternary variant is expressed, which is the same or similar to the culture conditions of conventional E. coli. While the transformed Escherichia coli is cultured, brazein including a pelB signal sequence is expressed by an expression control sequence in an expression vector, and the expression of brazein in the present invention is IPTG (isopropyl-beta-D-thiogalactopyranoside). Even without compounds that promote the expression of conventional inducible promoters. The brazein containing the expressed pelB signal sequence is moved to the cell membrane gap of E. coli by the signal sequence, and the signal sequence is removed by the signal peptidase of E. coli to synthesize brazein.
  • IPTG isopropyl-beta-D-thiogalactopyranoside
  • a known method of separating proteins from the cell membrane gap of Escherichia coli can be used (Snyder et al., J. Bacteriology 177: 953963, 1995).
  • the cultured Escherichia coli were collected, suspended in 30 mM Tris-HCl (Pri-HCl, pH 8) solution containing 20% Sucrose, and EDTA (pH 8).
  • the solution and MgSO 4 can be used to elute the protein of the cell membrane gap of E. coli.
  • the method of separating brazein of the present invention from the cell membrane gap protein of E. coli can be carried out through various separation and purification methods known in the art, for example, salting out (ammonium sulfate precipitation and sodium phosphate precipitation), solvent precipitation
  • the brazein of the present invention can be isolated by applying techniques such as (precipitation of protein fractions using acetone, ethanol, etc.), dialysis, gel filtration, ion exchange chromatography, reverse phase column chromatography and affinity chromatography, alone or in combination. have. Since the brazein of the present invention is heat stable, the method of separating the brazein may be preferably performed by heat treatment.
  • the heat treatment is preferably performed by heat-denatured proteins other than brazein by heating at 70-90 ° C. for 15-60 minutes, followed by heat-denatured protein by centrifugation at 18000 g for 30 minutes at 4 ° C. You can separate the brazein.
  • brazein quaternary variant enzymatic properties having amino acids consisting of SEQ ID NOs: 55, 56, 57, 58, and 59 having higher sweetness and high thermal stability are summarized as follows.
  • the brazein quaternary variant according to the present invention is a subtype protein of brazein, that is, a wild type subtype of protein and the present product, which are expressed and purified in the inventor's patent registration (Domestic Patent Registration No. 809100).
  • the characteristics such as thermal stability and acid resistance and water solubility are similar to those of wild type brazein and are higher. It is characterized by having a novel amino acid sequence exhibiting a sweet taste.
  • brazein quaternary variants in this invention are described in US Pat. No. 6,274,707; It exhibits a higher sweetness and effect than the brazein variants known by No. 7,153,535.
  • a recombinant vector encoding three multiple quaternary variants in which the 52 th glutamic acid residue of the brazein subtype is mutated to a lysine residue, an arginine residue, and an alanine residue is prepared based on the tertiary variant (H30R_E35D_E40A).
  • the expression, purification and activity (sweetness) were measured in the same manner as in the above example.
  • it was possible to obtain a high-purity Brazain multiple quaternary variant, having the same stability as the Brazein subtype protein and having a sweet taste of at least 15 to 50 times sweeter than the Brazein subtype protein Variants could be produced.
  • the brazein quaternary variants prepared above can also be used as an excellent sweetener.
  • the present invention provides a food composition for enhancing sugar content comprising the brazein quaternary variant of the present invention as an active ingredient.
  • the food composition of the present invention includes all forms such as functional foods, nutritional supplements, health foods and food additives.
  • Food compositions of this type can be prepared in various forms according to conventional methods known in the art.
  • beverages including alcoholic beverages
  • fruits and processed foods e.g. canned fruit, canned foods, jams, marmalade, etc.
  • fish meat and processed foods
  • meat and processed foods e.g. ham, sausage cornbeans, etc.
  • Breads and noodles e.g. udon, soba, ramen, spaghetti, macaroni, etc.
  • fruit juices various drinks, cookies, malts, dairy products (e.g. butter, cheese), edible vegetable oils, margarine, vegetable protein, retort
  • It can be prepared by adding the brazein quaternary variant of the present invention to food, frozen foods, various seasonings (eg, miso, soy sauce, sauce, etc.).
  • the food composition containing the brazein quaternary variant of the present invention in the form of a food additive, it can be prepared in powder or concentrate form.
  • the preferred content of the brazein quaternary variant of the present invention in the food composition of the present invention may include about 0.01 to 10% by weight relative to the total composition weight.
  • PCR polymerase chain reaction
  • Ultrasonic crusher (sonicator) for grinding the cells was used VCX 400 of Sonics & Materials (Danbury, USA), and Vortex Mixer was used Type 37600 Mixer of Thermolyne (USA).
  • the pH meter used Eco / Met (USA) pH / mv / TEMP Meter P25.
  • Hitachi U-2000 UV / VIS spectrophotometer was used for protein quantification.
  • the 305 system from Gilson (France) was used. DNA synthesis was commissioned by GenoTech (Seoul, Korea) and Cosmo Genetech (Seoul, Korea), and sequencing was commissioned by Cosmo Genetech (Seoul, Korea).
  • Potassium phosphate (monobasic), potassium phosphate (dibasic) is Kanto Chemical Co. (Tokyo, Japan) products; Histidine bind resins are from Pharmacia Biotech (Uppsala, Sweden); Butanol, sodium chloride, acetic acid were obtained from Duksan Pure Chemical Co. (Kyonggi, Korea); Potassium chloride and glycine were used in Daejung (Incheon, Korea).
  • the QIAquick TM gel extraction kit (50) used Qiagen (Hombrechtikon, Switzerland). The reagents for making buffers and all reagents used were purified by first-class and premium reagents.
  • the synthesized brazein was used to amplify by PCR.
  • the expression vector pET-26b (+) containing the strong T7 promoter and terminator was purchased from Novagen (Darmstadt, Gemany).
  • expression hosts E. coli DH5 ⁇ , BL21star (DE3) and XL1-blue were purchased from Pharmacia Biotech (Uppsala, Sweden) and Promega Coporation (Madison, WI, USA).
  • the wild-type brazein and brazein variant gene sequences were obtained from New England Biolab (England) using the expression vector pKLAC2 containing an ⁇ -mapping sequence and a Kex cleavage site to release proteins outside of the cells of Kluyveromyces lactis. . GG799, an expression host used for inserting the brazein gene into the genomic DNA of GG799 cells in Kluyveromyces lactis, was also purchased from New England Biolab (England).
  • Tris-tricin gel was used to make 16.5% gel according to the Schagger (1987) method.
  • the gel was electrophoresed and stained using Coomassie blue R-250, and the purity of the protein was confirmed through sufficient decolorization.
  • the molecular weight standard protein used was Polypeptide SDS- of Bio-rad, which contains triocell sulfate isomerase (26.6 kDa), myoglobin (17 kDa), ⁇ -lactalbumin (14.4 kDa), and aprotinin (6.5 kDa).
  • PAGE Melocular Weight Standards were used.
  • Protein quantitation was measured according to the BCA assay (Pierce Chemical Co, Rockford IL, USA) method, using a fetal bovine serum albumin as a standard protein at 562 nm was used to create a standard curve, and then used to measure the protein concentration. After reacting the bio-Rad protein quantitative reagent and purified brazein at room temperature for 10 minutes, the absorbance was measured at 210 nm to determine the protein concentration.
  • Example 1 Preparation and transformation of recombinant expression vector for brazein expression
  • Saccharomyces species defined as GRAS Generally recognized as safe
  • GRAS Generally recognized as safe
  • Another lineage class of Kluyveromyces lactis was used as a strain for producing brazein.
  • the wild type brazein and brazein variants introduced into the yeast expression system were selected from the wild type brazein and brazein variants that compared the activity through the expression and purification process in the earlier E. coli expression system.
  • the selected variants were the following nine species. Minor type, H30R, E35D, E40A, H30R_E35D, H30R_E40A, E35D_E40A, H30R_E35D_E40A, H30R_E35D_E40A_E52K.
  • the amino acid sequence was changed to a DNA sequence within a range that does not change.
  • the nucleotide sequence was designed based on a sequence capable of inducing high expression in Kluyveromyces lactis. In addition, it was designed to include as many restriction enzyme sites as possible to facilitate the insertion and deletion of DNA in the preparation of the variants.
  • FIG. 1 Sequence of pKLAC2 vector [New England Biolab (England)] (FIG. 1) used in Cluyveromyces lactis to use an excretion system in which the target protein brazein is discharged out of GG799 cells of Cluyveromyces lactis.
  • the gene sequence of the brazein was inserted after the gene sequence corresponding to the signal sequence that sends the protein out of the middle cell and the Kex cleavage site that cleaves the signal sequence, so that the brazein can be discharged out of the cell (Fig. 2).
  • the cloned pUC57-brazein gene was digested at 37 ° C. for 3 hours using restriction enzymes Xho I and Stu I (using 10 ⁇ M buffer).
  • the expression vector pKLAC2 gene was also cut under the same conditions as the brazein gene. Each truncated gene was isolated using a agarose gel and then purified using a purification kit. Purified brazein and pKLAC2 gene were reacted for 2 hours at 16 ° C using T4 DNA ligase (Shiga, Takara). As a result of ligation, DH5 ⁇ which was competent with 50 mM CaCl 2 was transformed to increase the DNA amount of pKLAC2-brazein produced. Transformation was carried out as follows. After mixing 10 ⁇ l of the ligation sample into the DH5 ⁇ competent cell, heat shock was applied at 42 ° C.
  • the transformed samples were incubated for 12 hours in LB-agar plates containing 30 ⁇ g / ml of ampicillin to isolate only pKLAC2-brazein / DH5 ⁇ by antibiotic selection. At this time, the grown colonies (colony) were cultured in liquid LB medium, and the recombinant expression vector pKLAC2-brazein was isolated using Promega Wizard ® Plus SV Minipreps DNA purification kit (Fig. 3).
  • the brazein gene was identified by agarose gel electrophoresis.
  • the expression vector pKLAC2 was about 9000 bp and the size of brazein was about 182 bp, respectively.
  • the method of inserting the brazein gene into the chromosome of the yeast cells was selected.
  • pKLAC2-brazein recombinant gene was cleaved with Sac II and linearized and inserted into gDNA of GG799 cells of Kluyveromyces lactis using high efficiency transformation method (FIG. 4). Transformation was used as follows.
  • YPD medium 50 mL of YPD medium was placed in a pre-warmed culture flask, inoculated with 2.5 ⁇ 10 8 GG799 cells pre-incubated and incubated for 4 hours so that the appropriate amount of cells was at least 2 ⁇ 10 7 .
  • the culture medium was centrifuged at 3000 ⁇ g for 5 minutes to collect GG799 cells. The supernatant is then discarded and homogenized with 1 mL of distilled water, transferred to a microtube and centrifuged at full speed for 30 seconds, then the supernatant is discarded and mixed again with distilled water to a final volume of 1 mL and homogenized again. I was.
  • the brazein / GG799 cells were stored in a 20% glycerol stock state in a liquid culture sample for long-term storage and stored frozen at -70 ° C.
  • the expression medium was compared by incubation using YPGal medium containing galactose as a nutrient and YPLac medium containing lactose as nutrients based on the LAC4 promoter of Kluyveromyces lactis.
  • the inoculation concentrations of the whole culture medium were changed to 1%, 2%, 3%, 4%, and 5%, and the culture temperature was expressed by culturing brazein at 30 ° C. and 25 ° C., which was optimally expressed in the E. coli expression system. The amount was compared.
  • the pH of the expression medium was changed to pH 4.5, 5.0, 5.5, 6.0, 6.5, and the culture time was changed to 24 hours, 48 hours, 72 hours, 96 hours, 120 hours, and the brazein was cultured.
  • the expression medium was compared by incubation using YPGal medium containing galactose as a nutrient and YPLac medium containing lactose as nutrients based on the LAC4 promoter of Kluyveromyces lactis.
  • YPGal medium was composed of yeast extract 1%, peptone 2%, galactose 2%
  • YPLac medium was composed of yeast extract 1%, peptone 2%, lactose 2%. Comparing the expression state on the Tris-tricin gel with the expression level measured by the BCA assay, the expression level in YPGal medium was 57.2 mg / L (FIG. 7), and the expression level in YPLac medium was 34.8 mg / L. (FIG. 8). Since the expression level in YPGal medium was about 1.6 times higher than that in YPLac medium, brazein was cultivated in YPGal medium containing 1% yeast extract, 2% peptone, and 2% galactose.
  • the pH of the expression medium was adjusted with acetic acid to compare the expression patterns to find the most suitable pH of the expression medium.
  • the pH of 1 L of YPGal medium with 1% yeast extract, 2% peptone and 2% galactose was changed to 4.5, 5.0, 5.5, 6.0 and 6.5, respectively.
  • the expression level at pH 4.5 was 32.8 mg / L (FIG. 9), and the expression level at pH 5.0 was 49.5 mg / L ( 10), the expression level at pH 5.5 was 50.51 mg / L (FIG. 11), and the expression level at pH 6.0 was 19.55 mg / L (FIG. 12).
  • the amount of expression from pH 4.5 to pH 5.5 did not change much, but it was found that the amount of expression rapidly decreased when expressed at pH 6.0.
  • the optimum temperature for culturing brazein in E. coli expression system is 30 °C
  • it is incubated at 30 °C and lower 25 °C compared the expression of brazein in the low temperature range It was.
  • the expression amount at 25 ° C. was 9.44 mg / L [FIG. 13], and 30.44 mg / L at 30 ° C. was incubated at 30 ° C. It was shown that about 2.5 times more efficient.
  • the mass-expressed brazein / GG799 cells were centrifuged at 7,000 g, 4 ° C. for 15 minutes to separate the cells and the medium. Since the GG799 cells follow the discharge route to release the target protein brazein out of the cells, the collected cells were discarded and the medium was taken.
  • the collected medium was purified through CM cellulose cation exchange resin curl (CM column) after adjusting the pH value to pH 5.0 using acetic acid.
  • CM column CM cellulose cation exchange resin curl
  • the 100 mL volume CM column was homogenized with 150 mL 50 mM sodium acetate buffer (pH 4.0). The medium was pre-adjusted pH value, the protein was adsorbed on the CM column at a rate of 1 ml / min.
  • Fractions obtained from CM cellulose cation exchange resin column purification were lyophilized, dissolved in 2 ml of distilled water, and concentrated to a total of 5 fractions. At this time, only the supernatant except NaCl, which was saturated and insoluble, was taken. The concentrated fractions were desalted using 20 mL of Sephadex G-25. A fraction of 1 ml was passed through the column followed by 10 ml of distilled water to extract the fraction. At this time, since a large protein is present in the front fractions, and impurities including NaCl, which are relatively small, are distributed in the latter fractions, the OD 280 value was measured to obtain a fraction present in the region where the protein is present. Fractions after this process were quantified by BCA analysis and lyophilized. Purity of the purified enzyme was confirmed by SDS-PAGE (FIG. 16).
  • Fractions obtained through CM cellulose cation exchange resin column purification were concentrated to 1/5 by centrifugation under conditions of 5,000 g, 20 ° C., and 1 hour using a 3,000 separation filter (FIG. 17). And 10 times the volume of the distilled water was added to the above process was repeated twice, concentrated and desalted. The fractions that were then processed were quantified by BCA analysis. Tris-tricin gel electrophoresis (FIG. 17) and HPLC analysis were performed to determine the purity (FIG. 18).
  • the column for HPLC analysis was C18 5micron 150 ⁇ 4.6 column, the detection wavelength is 210 nm, the column temperature is room temperature, 0.5 ml per minute, the mobile phase solvent 0.05% TFA-distilled water, 0.05 solvent B Analysis was performed under concentration gradient conditions using% TFA-acetonitrile. Purified brazein eluted with one peak at about 21 minutes (FIG. 18A). For reference, the buffer solution was eluted at about 5 minutes under the same conditions (Fig. 18B).
  • Brazein variants were also purified using culture and purification conditions determined as brazein wildtype.
  • brazein is a protein, not sugar, sweetness cannot be measured using a sugar meter. Thus, brazein can measure its activity by tasting directly. Since the threshold value for the first sweet taste is different for each person, the activity was measured by comparing the first sweet concentration of the sugar solution and the brazein solution.
  • the test subjects consisted of 10 men and 10 women trained in advance. First, taste the standard sugar solution dissolved in the concentrations of 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 M in order, and then check the concentration of sweetness for the first time. Brazein variants were dissolved at a stepwise concentration and then the sweetness of the solution was checked and the concentration of the step felt by the threshold value was checked to determine the relative activity of the sweetness of the sugar and the wildeous and brazein variants.
  • wild-type brazein was shown to be about 800 times sweeter as in E. coli expression system (FIG. 21).
  • the tertiary brazein variant and the quaternary brazein variant were found to exhibit sweetness of about 10,000 times and 100,000 times, respectively, compared to sucrose.
  • brazain multiple variant having a higher sweetness than brazein one specific amino acid constituting the tertiary variant of brazein (H30R_E35D_E40A) was selected and mutated to another specific amino acid.
  • E. coli XL1-Blue a supercompetent cell, was transformed.
  • the transformed XL1-Blue was selected by incubating for 12 hours in an LB-agar plate containing 50 ⁇ g / ml kanamycin, and the selected colonies were cultured in LB-agar medium. DNA was isolated from. It was confirmed by genetic analysis that the isolated DNA is linked to the E.
  • coli pelB signal sequence and the nucleotides encoding the respective brazein variants. It is named by the SEQ ID NO and nucleotide name indicated in Table 2 below. One letter designating each amino acid is designated according to a known amino acid code.
  • H30R_E35D_E40A_E52A gene SEQ ID NO: 51 H30R_E35D_E40A_E52H E. coli pelB + Brazein (H30R_E35D_E40A_E52H) gene SEQ ID NO: 52 H30R_E35D_E40A_E52D E. coli pelB + Brazein (H30R_E35D_E40A_E52D) gene SEQ ID NO: 53
  • E. coli BL21 (star), each of which introduced the five recombinant expression vectors for the brazein quaternary variant prepared in Example 5, was used as a protein inducer in 1 L of LB medium containing 30 ⁇ l / ml of kanamycin. Incubated at 37 ° C. for 12 hours without the addition of phosphorous IPTG (isopropyl ⁇ -D-thoigalactopyranoside) to express each brazein variant in each transformed Escherichia coli (see FIG. 23).
  • IPTG isopropyl ⁇ -D-thoigalactopyranoside
  • Example ⁇ 6-1> Each Escherichia coli cultured in Example ⁇ 6-1> was collected by centrifugation at 8,000 g for 10 minutes. After collection, the cells were suspended in a 30 mM Tris-HCl (pH 8.0) solution containing 20% sucrose, and then 0.5 M EDTA (pH 8.0) solution was added to a final concentration of 1 mM and room temperature. The mixture was stirred slowly for 10 minutes. It was centrifuged at 10,000 g, 4 ° C. for 10 minutes and the supernatant was removed, then cold 5 mM MgSO 4 was added and stirred slowly on ice for 10 minutes. In this process, proteins in the periplasm are released into the buffer solution.
  • Tris-HCl pH 8.0
  • EDTA pH EDTA
  • the supernatant was separated by centrifugation at 10,000 g for 10 minutes at 4 ° C., and heat treated at 80 ° C. for 30 minutes to purify the brazein quaternary variants present in the periplasm. Thereafter, dialysis was performed for 24 hours with distilled water, followed by freeze-drying to obtain purified brazein quaternary variants represented by the SEQ ID NOs in Table 3 below, and the degree of purification was primarily confirmed through SDS-PAGE.
  • the brazein protein was purified to high purity, and the molecular weight thereof was about 6.5 kDa [see FIG. 24].
  • Example 7 Determination of activity (sweetness) and thermal stability of brazein quaternary variants
  • the recombinant brazein in the present invention is not a compound of the saccharide family having a cyclic ring, sweetness cannot be measured using a sugar meter, and activity was measured using human taste.
  • the sugar measurement was performed on 20 subjects who were trained to have a similar level of sucrose minimum sucrose with a solution of sucrose, and the initial sweet taste concentration using each variant. Measured.
  • SEQ ID NO: 58 When compared to brazein (H30R_E35D_E40A_E52H) and brazein (H30R_E35D_E40A_E52D) represented by SEQ ID NO: 59 with the protein of the brazein subtype, at least 15 to about 50 times or more (minimum to 1 g / 100 ml of sucrose) Up to about 100,000 times).
  • brazein (H30R_E35D_E40A_E52K) showed the highest sweetness increase rate.
  • a brazein variant exhibiting a high sweet taste that is, a brazein (H30R_E35D_E40A_E52K) represented by SEQ ID NO: 55, a brazein represented by SEQ ID NO: 56 (H30R_E35D_E40A_E52R), SEQ ID NO: 50 mM tris-HCl (100T-HCl) hydrochloride (100 mg of Brasine variant (H30R_E35D_E40A_E52A) represented by 57, brazein (H30R_E35D_E40A_E52H) represented by SEQ ID NO: 58, and brazein (H30R_E35D_E40A_E52D) represented by SEQ ID NO: 59 (50 mg) , pH 8.0) and 20 subjects in the same manner as in Example ⁇ 7-1> based on the sweetness before heat treatment for each of the brazein quaternary variants after heating for
  • brazein H30R_E35D_E40A_E52K
  • brazein H30R_E35D_E40A_E52R
  • brazein H30R_E35D_E40A_E52A
  • calorie or sugar levels may be obtained by ingesting sweet protein even in patients who cannot enjoy taste due to diseases such as diabetes and obesity. It can be used as an alternative sweetener to make you feel sweet no matter what.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 브라제인 발현용 재조합 발현벡터 및 이를 이용한 브라제인의 대량 생산방법에 관한 것으로서, 유당 발효 효모인 클루이베로마이세스 락티스(Kluyveromyces lactis)에서 브라제인의 발현 시스템을 구축하였고, 특히 최적의 조건을 확립한 것으로, 기존 대장균 및 효모균의 발현 시스템 보다 월등히 우수한 발현량을 보여 대량 생산이 가능하다. 또한, 본 발명은 높은 단맛을 가지는 신규한 브라제인 4차 변이체에 관한 것으로서, 종래의 브라제인과 비교하였을 때 동등한 열 안정성을 가지면서 종래의 브라제인에 비해 최소 15 ~ 50배 이상의 단맛을 가지므로 적은 양으로도 더 많은 양의 설탕(수크로오스)과 같은 다른 감미료와 혼용 사용이 가능하며 더 나아가 이를 대체할 수 있으며, 식품 제조시 첨가물로서 다양하게 이용될 수 있다.

Description

브라제인 발현용 재조합 발현벡터 및 높은 단맛을 가지는 신규한 브라제인 다중 변이체
본 발명은 브라제인 발현용 재조합 발현벡터 및 이를 이용한 브라제인의 대량 생산방법에 관한 것이다. 또한, 본 발명은 높은 단맛을 가지는 신규한 브라제인 4차 변이체 및 이의 제조방법에 관한 것이다.
백색 설탕(정백당)은 당류의 하나로, 더욱 정확히 말하면 수크로오스(sucrose, 설탕)라는 간단한 탄수화물의 하나로 사카로오스(saccharose, 설탕의 화학적 용어)라고도 하는 이당류이다. 오랜 기간 동안 설탕은 감미료로서 흔하게 사용되어 왔다. 하지만 설탕의 유해성 문제로 최근 세계보건기구(WHO)에서는 설탕 사용을 현재의 10%로 제한하자는 권고안을 제시하였으며, 미국의 주 정부(뉴욕시 2003.7월, 뉴저지주 2004.9월, 일리노이주 2006.3월, 코네티컷주 2006.4월)에서는 설탕 주성분 식품 및 고함유 음료 판매를 전면 금지시켰다. 또한, 한국의 경우, 국가비만대책위원회를 구성하여 설탕 위험 경고문구 표기 방침 발표하였으며, 2010년 이후부터 설탕 기준치 이상 식품 광고 규제를 실시할 예정이다. 따라서, 설탕을 대체할 수 있는 새로운 감미료의 등장이 요구되고 있다. 1879년 미국의 아이라 렘슨과 독일의 콘스탄틴 팔베르크는 설탕보다 5백배 단맛을 내는 사카린(saccharin)을 발견하였다. 사카린은 체내에서 분해되지 않고 배설되는 장점을 가졌으나 발암성 물질이라는 논란을 불러일으켰다. 결국 인체에 무해하다고 결론이 났지만, 뒷맛이 쓰다는 단점 때문에 최근에는 많이 사용되지 않는다. 1937년 미국 일리노이대에서 사이클로헥실설파민산 나트륨이 단맛을 내는 것을 발견하였다. 상품명으로 사이클라메이트(cyclamate)로 불리면서 1950년 초부터 사용이 시작돼, 1960년대 세계 감미료 시장을 석권했다. 그러나, 발암성 물질로 판명되면서 우리나라에서는 1970년대부터 사용이 전면 금지되었다. 최근에 가장 널리 사용되는 인공 감미료는 1965년 제임스 쉬레터에 의해 발견된 아스파탐(aspartame)이다. 아스파탐은 설탕보다 약 180~200배 정도 높은 당도를 가지고 있다. 현재 시판되는 대다수의 다이어트 음료에는 아스파탐이 포함되어 있는데, 체내에 들어가면 대사과정 중 페닐알라닌을 생성한다. 따라서, 페닐알라닌을 분해하는 특정 효소 (phenylalanine hydroxylase)가 선천적으로 결핍된 페닐케톤뇨증 환자들은 이용할 수 없다는 단점을 지닌다.
이 같은 인공 감미료뿐만 아니라 천연 감미료를 개발하기 위한 연구도 계속되어 왔으며, 그 결과로서, 허브로 분류되고 있는 국화과의 다년생 식물(Stevia rabaudiana)의 잎에는 스테비오사이드(stevioside)라는 물질이 존재한다. 파라과이와 브라질의 국경 지대 원주민들은 이 물질을 4백년 이상 감미료로 사용했다. 우리나라의 소주에 첨가되기도 하는데, 설탕 보다 200배 단맛을 갖고 있다.
한편, 최근에는 열대 과일에서 추출한 감미 단백질에 대한 관심이 증대하고 있는데, 타우마틴(Thaumatin)은 서아프리카에서 기적의 과일이라고 불리는 다년생 식물(Thaumatococcus daniellii)의 과실 중에 포함되어 있는 단백질로서, 설탕 보다 2,000~3,000배나 단맛을 나타낸다. 모넬린(Monellin)은 아프리카의 다우림 지대에 생육하는 세렌디퍼티 베리(Serendipiti berry)라고 하는 넝쿨상 식물의 열매로부터 얻어지는 단백질로 설탕 보다 무려 3,000배가 달다. 그러나, 재배가 쉽지 않으며 열매로부터의 추출도 어렵다. 더욱이 열 안정성이 낮아서 식품 가공 과정에서 열 처리를 하면 삼차원적인 단백질 구조를 잃어버려 단맛을 내지 못하는 단점을 갖고 있다. 현재에는 이런 단점을 극복하기 위해서 단백질 공학 기술을 이용하여 열 안정성을 증진시키는 연구가 진행되고 있다.
한편, 브라제인(brazzein)은 서아프리카의 펜타디플란드라 브라제나 바이론(Pentadipladra brazzeana Baillon)의 열매에서 처음 추출된 감미 단백질이다[Ming et al., FEBS Letters, 355: 106-108, 1994]. 브라제인은 수크로오스(sucrose)와 비교했을 때 약 500배 내지 2,000배 이상의 단 맛을 나타내며[Jin et al., Chem. Senses. 28: 491-498, 2003], 주(major) 타입과 부(minor) 타입의 2가지 형태가 있다. 식물에서 추출한 브라제인의 대부분인 주(major) 타입은 아미노 말단 부위에 피로글루탐산(pyroglutamic acid) 잔기를 포함하여 54개의 아미노산을 가진다. 반면, 부(minor) 타입의 브라제인은 아미노 말단 부위의 피로글루탐산 잔기 없이 53개의 아미노산 잔기만을 가지며 주(major) 타입의 브라제인에 비해 약 2배 정도 강한 단 맛을 보인다[Assadi-Porter et al., Arch.. Biochem. Biophys. 376: 259-265, 2000]. 브라제인은 감미 단백질 중 가장 작은 크기로 약 6.5 kDa의 분자량을 갖고 있으며, 1개의 서브유닛(subunit)으로 구성된 단량체(monomer)이다. 단일 폴리펩티드(single polypeptide)로 이루어져 있으며 1개의 α-나선(helix)과 2개의 β-병풍구조(sheet)로 구성된다. 브라제인은 8개의 시스테인(cysteine) 잔기를 가져 분자 내에 4개의 이황화 결합(disulfide bond)를 형성하고 있어 열 안정성이 매우 높다. 또한, 물에 대한 용해도 및 pH 안정성이 매우 높다[Gao et al., Int. J. Biol. macromol. 24: 351-359, 1999].
국제특허(WO 1999/025835)에서는 메틸이용성 효모(methylotrophic yeast)인 피키아 파스토리스(Pichia pastoris)를 숙주로 하여 상기의 성질을 가지는 브라제인을 유전공학적 방법으로 생산하는 방법을 기술하고 있는데, 효모 알파-메이팅 인자(MF-α) 신호 서열(signal sequence)과 브라제인을 암호화하고 있는 유전자를 연결한 뒤, 이를 AOX1 작동유전자(promoter)를 포함하고 있는 재조합 벡터에 삽입하여, 새로운 형질전환 벡터를 생성한 후, 이를 메틸이용성 효모(methylotrophic yeast)인 피키아 파스토리스에 형질전환하여 최종 재조합 효모 균체 밖 배지로 발현된 브라제인 단백질을 분비, 발현하는 방법이 개시되어 있다. 또한, 효모 출아형 효모(budding yeast)이며, 제빵 및 양조에 사용되는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)를 이용한 브라제인 생산 방법도 기술하고 있다. 그러나, 피키아 파스토리스의 경우, 200 mg/l 또는 70 mg/l의 높은 수율을 가짐에도 불구하고 GRAS(Generally Recognized As Safe) 균주가 아니며, 탄소원이나 전사유도제로 사용되는 메탄올이 폭발의 위험성이 있으며, 특히 목적 단백질이 식품과 관련이 있는 경우는 메탄올 이용의 제한이 따르는 단점을 가지고 있어 감미 단백질(브라제인)의 발현에는 부적합하다. 또한, 사카로마이세스 세레비지애의 경우는 그 생산량이 5 mg/L으로 한계가 있어, 대량 생산에 의한 상업화가 곤란하다는 단점이 있었다.
미국 특허 제 6,274,707호 및 아사디 포터 등(Assadi-Porter et al., Arch.. Biochem. Biophys. 376: 259-265, 2000)은 상기와 같은 브라제인을 대장균을 이용한 유전공학적 방법으로 재조합 브라제인을 생산하는 방법을 기술하고 있는데, 브라제인을 암호화하고 있는 유전자를 합성하여 이를 SNase를 포함하고 있는 재조합 벡터에 삽입하여 새로운 형질전환 벡터를 생성한 후, 이를 다시 대장균에 도입하여 최종 SNase와 연결된 융합 단백질을 발현, 정제하는 방법이 개시되어 있다. 그러나, SNase와 융합되어 발현된 브라제인은 불용성 응집체(Inclusion body)를 생성하며 이를 다시 리폴딩(refolding)시키고 시아노브로마이드(cyanobromide, CNBr)을 이용하여 SNase와 메티오닌(Met)을 제거하는 방법으로 분리, 정제하기 때문에 기술적으로 복잡하고 어려워 대량 생산에 의한 상업화가 곤란한 단점이 있었다.
본 발명자들은 기존 연구의 단점을 해결하고자 선행연구를 통해 대장균 pelB 신호서열 및 브라제인 유전자를 포함하는 폴리뉴클레오티드 및 이를 이용한 브라제인의 제조방법을 특허 등록(국내 특허 등록 제809100호)한 바 있다. 또한, 본 발명자는 열 안정성이 높고, 우수한 단맛을 나타내는 천연 감미료를 찾기 위해 브라제인을 구성하고 있는 아미노산 중 구조에 영향을 주지 않을 것이라 예상되는 특정 위치의 아미노산의 변이체 및 다중 변이체의 제조방법을 특허 출원(국내 특허 출원 제2007-0117013호, 국내 특허 출원 제2008-0019008호, 국제 특허 출원 PCT/KR2009/04855호)한 바 있으며, 종래의 브라제인과 동등한 열 안정성을 가지면서 보다 더 높은 단맛을 나타내는 4차 변이체를 탐색 및 개발함으로써 본 발명을 완성하였다.
또한, 본 발명자들은 기존 연구의 단점을 해결하고자 미국 식품의약국(FDA)에 의해 GRAS로 인증된 비병원성 미생물이며, 유당(lactose) 발효 효모인 클루이베로마이세스 락티스(Kluyveromyces lactis)를 발현을 위한 숙주로 이용하였으며, 최적의 발현 및 균체 밖 분비를 위한 재조합 벡터를 제조하여, 야생형 브라제인 및 당 연구실에서 출원한 특허(한국 특허 출원 제2007-0117013호, 제2008-0019008호)에서의 브라제인의 우수한 물리적 특성을 유지하며 높은 단맛을 나타내는 브라제인 변이체와 동일한 아미노산 서열을 가지며 클루이베로마이세스 락티스에 높은 빈도로 존재하는 코돈(codon)으로 구성된 폴리뉴클레오티드를 합성하여 상기의 재조합 벡터에 삽입 후 균체 밖 분비 발현을 유도하였으며, 양이온 교환 크로마토크래피 및 탈염 과정을 통하여 높은 정제도 및 수율을 가지는 브라제인을 제조하는 방법을 개발함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 브라제인의 발현을 위하여 GRAS로 인증된 비병원생 미생물인 효모 클루이베로마이세스 락티스를 발현을 위한 숙주로 하고, 균체 밖으로의 최적 분비 발현을 위한 브라제인의 폴리뉴클레오티드 서열을 이용하여 제작된 재조합 발현벡터를 제공하는데 있고, 또한 상기 벡터를 이용한 높은 순도 및 수율을 가지는 브라제인을 대량 생산하는 방법을 제공하는데 있다.
또한, 본 발명의 목적은 종래의 브라제인 부타입의 단백질과 동등한 열 안정성을 가지면서 15 ~ 50배 이상의 단맛을 나타내는 새로운 브라제인 4차 변이체 및 이의 용도를 제공하는 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명은 클루이베로마이세스 락티스(Kluyveromyces lactis) 알파-메이팅(α-mating) 신호서열 및 브라제인 유전자를 포함하는 브라제인 발현용 폴리뉴클레오티드를 제공한다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 폴리뉴클레오티드를 포함하는 재조합 발현벡터를 제공한다.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 재조합 발현벡터로 형질전환된 효모 및 상기 효모를 이용한 브라제인의 대량 생산방법을 제공한다.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 단 맛이 종래의 천연형의 브라제인 보다 우수한 새로운 브라제인 4차변이체를 제공한다.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 브라제인 4차 변이체를 암호화하는 폴리뉴클레오티드를 제공한다.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 폴리뉴클레오티드를 포함하는 재조합 발현벡터, 상기 벡터로 형질전환된 대장균 및 상기 대장균을 이용한 브라제인 4차 변이체의 제조방법을 제공한다.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 브라제인 4차 변이체를 유효성분으로 포함하는 당도 증진용 식품 조성물을 제공한다.
본 발명에서는 클루이베로마이세스 락티스(Kluyveromyces lactis) 균주가 가지고 있는 천연 효모 세포의 세포 밖 분비서열을 이용하여 세포 외부로 브라제인을 배출함으로써 브라제인 정제의 간편성도 증대할 수 있었다. 또한, 이를 통한 브라제인은 L당 약 30 ~ 55 ㎎/L의 생산량을 나타내었다. 또한, 효모 발현계를 통해 발현된 브라제인은 천연에서 유래한 브라제인과 동일한 특성을 지니고 있다.
본 발명에서 효모 발현계를 이용하여 개발한 고효율의 감미도를 가진 재조합 브라제인을 식품감미료로 이용한다면 당뇨병, 비만 등의 질환들로 맛을 즐길 수 없는 환자들에게도 감미 단백질을 섭취함으로써 칼로리 혹은 당 수치에 상관없이 단맛을 느낄 수 있게 하는 대체 감미료로 사용할 수 있을 것이다.
본 발명의 브라제인 4차 변이체는 종래의 브라제인과 같이 우수한 열 안정성을 가지면서 종래의 브라제인에 비해 최소 15배에서 최대 50배 이상의 단맛을 가지고 있다. 따라서, 본 발명의 브라제인 4차 변이체는 적은 양으로도 더 많은 양의 설탕(수크로오스)과 같은 다른 감미료를 대체할 수 있어 식품 조성물 등에 감미료로서 다양하게 사용될 수 있다.
도 1은 발현벡터 pKLAC2 를 나타낸 것이다.
도 2는 재조합 발현벡터 pKLAC2-브라제인을 디자인하기 위한 pKLAC2 다중 클로닝 부위와 선택된 제한 부위를 나타낸 것이다.
도 3은 재조합 발현벡터 pKLAC2-브라제인의 제작과정을 나타낸 모식도이다.
도 4는 선형화된 발현 카세트의 게놈 인테그레이션(integration)을 나타낸 것이다.
도 5는 발현 카세트의 인테그레이션(integration)을 나타낸 것이다[(A) 단일 삽입 인테그레이션, (B) 다중 삽입 인테그레이션].
도 6은 유전자 삽입 여부를 아가로스 전기영동 분석으로 나타낸 것이다[(A) 단일 삽입 인테그레이션, (B) 다중 삽입 인테그레이션, M: 분자량 마커(λ-HindⅢ DNA marker), NC: 음성 대조군, PC: 양성 대조군, 1: pKLAC2-브라제인(WT-minor type), 2: pKLAC2-브라제인(H30R), 3: pKLAC2-브라제인(E35D), 4: pKLAC2-브라제인(E40A), 5: pKLAC2-브라제인(H30R_E35D), 6: pKLAC2-브라제인(H30R_E40A), 7: pKLAC2-브라제인(E35D_E40A), 8: pKLAC2-브라제인(H30R_E35D_E40A), 9: pKLAC2-브라제인(H30R_E35D_E40A_E52K)].
도 7은 YPGal 배지에서 pKLAC2-브라제인으로부터 발현된 브라제인을 SDS-PAGE 분석으로 나타낸 것이다[M: 분자량 마커; 1~18: CM 컬럼으로 얻어진 브라제인 용출 분획들].
도 8은 YPLac 배지에서 pKLAC2-브라제인으로부터 발현된 브라제인을 SDS-PAGE 분석으로 나타낸 것이다[M: 분자량 마커; 1~18: CM 컬럼으로 얻어진 브라제인 용출 분획들].
도 9는 pH 4.5에서 pKLAC2-브라제인으로부터 발현된 브라제인을 SDS-PAGE 분석으로 나타낸 것이다[M: 분자량 마커; 1~18: CM 컬럼으로 얻어진 브라제인 용출 분획들].
도 10은 pH 5.0에서 pKLAC2-브라제인으로부터 발현된 브라제인을 SDS-PAGE 분석으로 나타낸 것이다[M: 분자량 마커; 1~18: CM 컬럼으로 얻어진 브라제인 용출 분획들].
도 11은 pH 5.5에서 pKLAC2-브라제인으로부터 발현된 브라제인을 SDS-PAGE 분석으로 나타낸 것이다[M: 분자량 마커; 1~18: CM 컬럼으로 얻어진 브라제인 용출 분획들].
도 12는 pH 6.0에서 pKLAC2-브라제인으로부터 발현된 브라제인을 SDS-PAGE 분석으로 나타낸 것이다[M: 분자량 마커; 1~17: CM 컬럼으로 얻어진 브라제인 용출 분획들].
도 13은 pH 6.5에서 pKLAC2-브라제인으로부터 발현된 브라제인을 SDS-PAGE 분석으로 나타낸 것이다[M: 분자량 마커; 1~18: CM 컬럼으로 얻어진 브라제인 용출 분획들].
도 14는 25 ℃에서 pKLAC2-브라제인으로부터 발현된 브라제인을 SDS-PAGE 분석으로 나타낸 것이다[M: 분자량 마커; 1~18: CM 컬럼으로 얻어진 브라제인 용출 분획들].
도 15는 전배양액의 농도를 1%, 2%, 3%, 4% 및 5% 로 접종한 브라제인 발현 변화를 SDS-PAGE 분석으로 나타낸 것이다[(A) 24시간 배양, (B) 48시간 배양, (C) 72시간 배양, (D) 96시간 배양. M: 분자량 마커; 1: 전배양액 농도 1%; 2: 전배양액 농도 2%; 3: 전배양액 농도 3%; 4: 전배양액 농도 4%; 5: 전배양액 농도 5%].
도 16은 겔 여과법에 의해 탈염 과정을 거친 브라제인의 SDS-PAGE 분석 결과를 나타낸 것이다[M: 분자량 마커; 1~9: 겔 여과법으로 얻어진 브라제인 용출 분획들].
도 17은 분리형 필터에 의한 탈염 과정으로 정제된 재조합 브라제인의 SDS-PAGE 분석 결과를 나타낸 것이다[(A) M: 분자량 마커; 1: 분리형 필터에 의한 탈염과 농축 과정 전의 브라제인; 2: 분리형 필터에 의한 탈염과 1/5로 농축 후의 브라제인; 3: 분리형 필터를 통한 액체 여과, (B) M: 분자량 마커; 1: 2회 분리형 필터에 의한 탈염과 농축 후의 브라제인].
도 18은 CM 셀룰로오스 양이온 교환 수지 컬럼 크로마토그래피와 분리형 필터에 의한 탈염 과정으로 정제된 재조합 브라제인의 HPLC 분석 결과를 나타낸 것이다[(A) 정제된 브라제인; (B) 버퍼만].
도 19는 클루이베로마이세스 락티스 내 발현된 브라제인 변이체의 정제 과정을 나타낸 것이다.
도 20은 브라제인과 브라제인 변이체들의 SDS-PAGE 분석 결과를 나타낸 것이다[M: 분자량 마커; 1: 야생형 브라제인(minor type); 2: H30R 브라제인 변이체; 3: E35D 브라제인 변이체; 4: E40A 브라제인 변이체; 5: H30R_E35D 브라제인 변이체; 6: H30R_E40A 브라제인 변이체; 7: E35D_E40A 브라제인 변이체; 8: H30R_E35D_E40A 브라제인 변이체; 9: H30R_E35D_E40A_E52K 브라제인 변이체].
도 21은 브라제인과 브라제인 변이체의 상대적인 활성을 나타낸 것이다[야생형 브라제인 활성 100% 기준].
도 22는 본 발명에 따른 브라제인 4차 변이체를 작성하기 위한 재조합 발현벡터를 제작하는 과정을 나타낸 모식도이다.
도 23은 본 발명에 따른 브라제인 다중 4차 변이체의 발현을 확인하기 위한 전기영동 결과를 나타낸 것이다[레인 M: 분자량 마커, 레인 1: 브라제인 4차 변이체(H30R_E35D_E40A_E52K) 조추출물, 레인 2: 브라제인 4차 변이체(H30R_E35D_E40A_E52R) 조추출물, 레인 3: 브라제인 4차 변이체(H30R_E35D_E40A_E52A) 조추출물, 레인 4: 브라제인 4차 변이체(H30R_E35D_E40A_E52H) 조추출물, 레인 5: 브라제인 4차 변이체(H30R_E35D_E40A_E52D)] 조추출물].
도 24는 본 발명에 따른 브라제인 다중 4차 변이체의 정제를 확인하기 위한 전기영동 결과를 나타낸 것이다[레인 M: 분자량 마커, 레인 1: 정제된 브라제인 4차 변이체(H30R_E35D_E40A_E52K), 레인 2: 정제된 브라제인 4차 변이체(H30R_E35D_E40A_E52R), 레인 3: 정제된 브라제인 4차 변이체(H30R_E35D_E40A_E52A), 레인 4: 정제된 브라제인 4차 변이체(H30R_E35D_E40A_E52H), 레인 5: 정제된 브라제인 4차 변이체(H30R_E35D_E40A_E52D)].
도 25는 본 발명에 따른 브라제인 변이체의 단맛 측정 후 높은 단맛을 나타내는 브라제인 변이체를 선별하여 열 안정성을 수행한 결과이다[레인 1: 열 처리 후 브라제인 부타입(minor type)의 상대 활성도, 레인 2: 열처리 후 브라제인 4차 변이체(H30R_E35D_E40A_E52K)의 상대 활성도, 레인 3: 열 처리 후 브라제인 4차 변이체(H30R_E35D_E40A_E52R)의 상대 활성도, 레인 4: 열 처리 후 브라제인 4차 변이체(H30R_E35D_E40A_E52A)의 상대 활성도, 레인 5: 열 처리 후 브라제인 4차 변이체(H30R_E35D_E40A_E52H)의 상대 활성도, 레인 6: 열 처리 후 브라제인 4차 변이체(H30R_E35D_E40A_E52D)의 상대 활성도].
이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.
본 발명은 브라제인의 발현을 위하여 GRAS로 인증된 비병원생 미생물인 효모 클루이베로마이세스 락티스를 발현을 위한 숙주로 하여, 균체 밖으로의 최적 분비 발현을 위한 브라제인의 뉴클레오티드 서열을 이용한 브라제인 발현용 재조합 발현벡터 및 이를 이용한 높은 순도 및 수율을 가지는 브라제인을 대량 생산하는 방법에 관한 것이다.
본 발명은 클루이베로마이세스 락티스(Kluyveromyces lactis) 알파-메이팅(α-mating) 신호서열 및 브라제인 유전자를 포함하는 브라제인 발현용 폴리뉴클레오티드를 제공한다.
효모의 알파-메이팅(α-mating) 신호서열은 신호서열의 일종으로[Dominic Esposito et al., Protein Expression and Purification, 40(2): 424-428, 2005, J.J. Clare et al., Gene. 105: 205-212, 1991], 단백질이 효모 내에서 합성되면 소포체로 이동하여 정확한 이황화 결합을 유도하고, 단백질의 불용성 응집체 형성을 억제하며 올바른 접힘을 유도한다. 이때, 시그널 펩티다제(signal peptidase)에 의해 신호서열 일부가 잘려나가게 되며, 이후 골지체로 이동하여 Kex 펩티다제(Kex protease)에 의해 나머지 신호 서열이 모두 제거되고, 천연의 단백질 형태로 배지로 방출되게 된다. 상기 신호서열의 예로는, 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 알파-메이팅 신호서열, 클루이베로마이세스 락티스 알파-메이팅 신호서열, KT 신호서열[Tokunaga et al., Yeast, 13: 699--706, 1997), Saccharomyces cerevisiae pre-SUC2 신호서열(Bergkamp et al., Curr Genet, 21:365-370] 등이 알려져 있다.
그러나, 문헌 자료에 따르면[Anothony J. Brake et al., Proc. Natl. Acad. Sci, 81: 4642-4646, 1982] 사카로마이세스 세레비지애 유래의 알파-메이팅 신호서열 사용시 분비된 단백질의 N-말단 서열이 100% 야생형이 아닐 수 있음이 밝혀졌다. 이 신호서열을 사용할 경우 분비된 단백질의 N-말단 서열 분석 시 야생형의 단백질 서열 앞에 약 6개의 아미노산(Glu-Ala-Glu-Ala-Glu-Ala) 서열이 더 추가되어 있음을 확인할 수 있었다. 이는 세포막에 존재하는 시그널 펩티다제의 부족으로 인해 분비된 단백질의 100%를 수용하지 못하고, 일부는 신호서열이 완전히 잘리지 않은 채 배지로 방출된 것으로 추측하고 있다.
본 발명의 브라제인은 N-말단에 추가 아미노산 서열이 존재할 경우, 그 단맛이 현저하게 감소한다. 따라서, 효모 알파-메이팅 신호서열의 완벽한 절단 여부가 그 단맛을 결정하는데 매우 중요한 역할을 한다. 만일 사카로마이세스 세레비지애 유래의 알파-메이팅 신호서열을 사용하여 브라제인을 생산하게 되면, 브라제인이 야생형으로 존재하지 못하고, N-말단에 추가 아미노산 서열을 갖게 되어 브라제인의 단맛 증대에 악영향을 미칠 수 있다.
이에, 본 발명자들은 효모 알파-메이팅 신호서열로서 적합한 신호서열을 조사한 결과, 본 발명에서 숙주로 사용하고 있는 GRAS 유래 비병원성 균주인 클루이베로마이세스 락티스 유래의 신호서열을 사용하게 되면 본 발명에서 최종 분비 배출된 단백질의 N-말단 서열에서 신호서열이 모두 잘려나가 100% 모두 야생형 브라제인 부타입 아미노산 서열로만 존재함을 확인하였다.
본 발명의 클루이베로마이세스 락티스 알파-메이팅 신호서열은 이에 제한되는 것은 아니나, 서열번호 1의 염기서열을 가질 수 있다. 상기 알파-메이팅 서열은 본 발명의 브라제인 뉴클레오티드 서열의 5' 상단에 단백질로의 번역시 동일한 프레임을 가지도록 연결된다.
상기 신호서열에 연결된 브라제인 유전자는 야생형 브라제인 유전자 또는 브라제인 변이체 유전자일 수 있다. 본 발명에 있어서, 브라제인 유전자는 브라제인 주타입, 부타입, 변이체 모두의 유전자를 모두 포함할 수 있다. 예를 들어, 서열번호 2의 염기서열을 갖는 야생형 브라제인 부타입일 수 있으며, 서열번호 3, 서열번호 4, 서열번호 5, 서열번호 6, 서열번호 7, 서열번호 8, 서열번호 9, 서열번호 10의 염기서열을 갖는 브라제인 변이체일 수 있다.
따라서, 본 발명의 브라제인 발현용 폴리뉴클레오티드는 서열번호 1의 염기서열을 갖는 클루이베로마이세스 락티스 알파-메이팅 신호서열과 서열번호 2 내지 10으로부터 선택되는 염기서열을 갖는 브라제인 유전자가 각각 연결된 것일 수 있다. 본 발명에서 상기와 같이 클루이베로마이세스 락티스 알파-메이팅 신호서열과 브라제인 유전자를 통합해서 "브라제인 조합체(combination)"로 명명하였다.
한편, 본 발명은 상기 브라제인 조합체(combination)를 암호화하는 폴리뉴클레오티드를 제공한다. 상기 폴리뉴클레오티드는 서열번호 20, 서열번호 21, 서열번호 22, 서열번호 23, 서열번호 24, 서열번호 25, 서열번호 26, 서열번호 27 또는 서열번호 28의 아미노산 서열을 암호화하는 폴리뉴클레오티드일 수 있으며, 바람직하게는 서열번호 20의 아미노산에 대해서는 서열번호 11의 염기서열, 서열번호 21의 아미노산에 대해서는 서열번호 12의 염기서열, 서열번호 22의 아미노산에 대해서는 서열번호 13의 염기서열, 서열번호 23의 아미노산에 대해서는 서열번호 14의 염기서열, 서열번호 24의 아미노산에 대해서는 서열번호 15의 염기서열, 서열번호 25의 아미노산에 대해서는 서열번호 16의 염기서열, 서열번호 26의 아미노산에 대해서는 서열번호 17의 염기서열, 서열번호 27의 아미노산에 대해서는 서열번호 18의 염기서열, 서열번호 28의 아미노산에 대해서는 서열번호 19의 염기서열을 가질 수 있다.
아울러, 본 발명은 상기 브라제인 조합체의 폴리뉴클레오티드를 포함하는 재조합 발현벡터를 제공한다. 특히, 상기 폴리뉴클레오티드 외에 작동 유전자를 추가로 포함할 수 있다.
본 발명에서 "재조합 발현벡터"란 숙주세포에서 목적 단백질 발현(expression) 또는 목적 RNA를 전사(transcription)할 수 있는 벡터로서, 유전자 삽입물이 발현되도록 작동 가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 제작물을 말한다.
본 발명의 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터 등을 포함하나, 이에 제한되지 않는다. 적합한 발현벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서(촉진 유전자)와 같은 발현 조절 서열 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 또한, 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원을 포함한다.
상기 '작동 유전자'란 특정한 숙주 세포에서 작동 가능하게 연결된 핵산 서열의 발현을 조절하는 DNA 서열을 의미하며, '작동 가능하게 연결된다(operably linked)'는 것은 하나의 핵산 단편이 다른 핵산 단편과 결합되어 그의 기능 또는 발현이 다른 핵산 단편에 의해 영향을 받는 것을 말한다. 아울러, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 추가로 포함할 수 있다. 상기 작동 유전자로는 모든 시간대에 상시적으로 목적 유전자의 발현을 유도하는 프로모터(constitutive promoter) 또는 특정한 위치, 시기에 목적 유전자의 발현을 유도하는 프로모터(inducible promoter)를 사용할 수 있으며, 그 예로는 효모 LAC 프로모터, GAL 프로모터(Rosaura Rodicio et al., Microbiology 152 (2006), 2635-2649), KlADH4 프로모터(Michele Saliola et al., Appl Environ Microbiol. 1999 January; 65(1): 53-60), 말타아제/말토오스 퍼메아제 바이-디렉션널 프로모터(미국 특허 제6,596,513호), PGK1 프로모터(V. Melvydas et al., BIOLOGIJA, 4:1-4, 2006) 등이 있다. 이외에도 미국 특허 제227,326호 등에 개시된 프로모터들을 모두 사용할 수 있다. 바람직하게는 상기 프로모터는 LAC4 프로모터를 사용할 수 있다.
본 발명에서 브라제인 발현을 위한 재조합 발현벡터로 pKLAC2-브라제인일 수 있으며, 보다 바람직하게는 pKLAC2-브라제인(WT-minor type), pKLAC2-브라제인(H30R), pKLAC2-브라제인(E35D), pKLAC2-브라제인(E40A), pKLAC2-브라제인(H30R_E35D), pKLAC2-브라제인(H30R_E40A), pKLAC2-브라제인(E35D_E40A), pKLAC2-브라제인(H30R_E35D_E40A), pKLAC2-브라제인(H30R_E35D_E40A_E52K)일 수 있다.
상기 벡터에서 발현된 브라제인 및 브라제인 변이체는 서열번호 29, 서열번호 30, 서열번호 31, 서열번호 32, 서열번호 33, 서열번호 34, 서열번호 35, 서열번호 36 또는 서열번호 37의 아미노산 서열을 가질 수 있으며, 바람직하게는 서열번호 29의 아미노산에 대해서는 서열번호 2의 염기서열, 서열번호 30의 아미노산에 대해서는 서열번호 3의 염기서열, 서열번호 31의 아미노산에 대해서는 서열번호 4의 염기서열, 서열번호 32의 아미노산에 대해서는 서열번호 5의 염기서열, 서열번호 33의 아미노산에 대해서는 서열번호 6의 염기서열, 서열번호 34의 아미노산에 대해서는 서열번호 7의 염기서열, 서열번호 35의 아미노산에 대해서는 서열번호 8의 염기서열, 서열번호 36의 아미노산에 대해서는 서열번호 9의 염기서열, 서열번호 37의 아미노산에 대해서는 서열번호 10의 염기서열을 가질 수 있다.
본 발명은 또한, 상기 재조합 발현벡터로 형질전환시킨 클루이베로마이세스 락티스(Kluyveromyces lactis)를 제공한다. 상기 효모는 상기 재조합 발현벡터로 통상의 형질전환 방법에 따라 형질전환되고, 이때 형질전환은 핵산을 숙주세포에 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 숙주세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 이런 방법에는 전기충격 유전자 전달법(electroporation), 초산화 리튬(LiCH3COO)법, 염화 리튬(LiCl)법, PEG-매개 융합법(PEG-mediated fusion), 운반 DNA 융합법(Carrier-DNA mediated fusion) 등이 포함되나 이로 제한되지 않는다.
한편, 본 발명은 상기 클루이베로마이세스 락티스(Kluyveromyces lactis)를 배양하는 단계; 상기 배양액에서 균체를 제거하여 정제하는 단계; 및 탈염과정을 수행하는 단계를 포함하는 브라제인의 생산방법을 포함한다.
본 발명은 상기 형질전환된 효모를 배양하고, 브라제인을 최적의 효율로 발현시키는 배양 배지 조성을 제공한다. 상기 형질전환된 효모가 배양되는 동안, 발현벡터 내의 발현 조절 서열에 의해 알파-메이팅 신호서열을 포함하는 브라제인이 발현되고, 이러한 본원발명에서의 브라제인의 발현은 젖당(lactose), 갈락토오스(galactose), 글로코오스(glucose), 녹말(starch)과 같은 통상적인 유도성 프로모터의 발현을 촉진하는 화합물에 의해 이루어진다. 발현된 α-Mating 신호서열을 포함하는 브라제인은 신호서열에 의해 효모의 소포체로 이동하게 되고, 효모의 시그널 펩티다제(signal peptidase)와 Kex 펩티다제(Kex peptidase)에 의해 신호서열이 제거되어 브라제인이 합성되게 된다. 따라서, 본 발명의 브라제인 발현 재조합 발현벡터를 포함하도록 형질전환된 효모는 브라제인을 코딩하는 폴리뉴클레오티드가 발현되도록 적절한 배지 및 조건 하에서 배양될 수 있으며, 이는 질소 공급원으로 효모 추출물을 0.5 내지 5%, 펩톤을 0.5 내지 5%로 단독 또는 혼합하여 사용하고, 탄소 공급원 및 발현 유도제로 갈락토오스 1 내지 4%, 글루코오스 1 내지 4%, 젖당 1 내지 4% 및 전분 1 내지 4%로 이루어진 군에서 선택된 하나 이상을 사용할 수 있다. 특히, 효모 추출물 0.5 내지 5%, 펩톤 0.5 내지 5% 및 갈락토오스 1 내지 4%를 포함하는 배지에서 배양하는 것이 더욱 바람직하다.
형질전환된 효모에서 외래 단백질을 배지로 분비시키는 경우 분비 효율이 낮고 분비된 재조합 단백질이 배지 내에서 다량체로 형성되는데 이를 개선하기 위하여, 본 발명은 배지의 pH를 조절한다.
구체적으로, 리보좀에서 번역된 재조합 단백질은 소포체와 골지체를 거쳐 최종적으로 배지로 분비되는데 배양액의 pH가 너무 낮을 경우 산화환원력(redox potential)이 증가하게 되어 전체 배양액의 조건이 산화성으로 전이되므로 이황화 결합에 의한 다량체 형성이 발생할 수 있다. 이를 개선하기 위하여 본 발명에서는 배지의 pH를 4.5 내지 6.0으로 조절할 수 있다. 바람직하게는 배양액의 pH를 5.0 내지 5.5로 조절할 수 있다. 또한, 상기 배양은 25 내지 35 ℃의 온도에서 수행하는 것이 바람직하다.
본 발명은 배양된 배지에서 단백질을 분리하고, 브라제인을 정제하기 위한 크로마토그래피 과정을 포함하는 브라제인의 대량 생산방법을 제공한다. 효모 배양액의 배지에 존재하는 단백질에서 본 발명의 브라제인을 분리하는 방법은 당업계에서 사용되는 다양한 분리 및 정제방법을 통해 분리 가능하며, 예를 들어 염석(황산암모늄 침전 및 인산나트륨 침전), 용매 침전(아세톤, 에탄올 등을 이용한 단백질 분획 침전), 투석, 겔 여과, 이온 교환 크로마토그래피, 역상 컬럼 크로마토그래피 및 친화성 크로마토그래피 등의 기법을 단독 또는 조합으로 적용시켜 브라제인을 분리할 수 있으나, 본 발명에서는 바람직하기로 양이온 교환 크로마토그래피를 사용하여 브라제인을 분리한다. 특히, 상기 양이온 교환 크로마토그래피 실시 후 탈염 과정을 거치면 높은 순수도와 수율을 가진 브라제인을 생산할 수 있다. 특히 상기 탈염 과정은 단백질 크기 분리형 필터를 사용하여 수행하는 것이 바람직하다.
상기한 바와 같이, 본 발명에서 발현된 서열번호 29, 서열번호 30, 서열번호 31, 서열번호 32, 서열번호 33, 서열번호 34, 서열번호 35, 서열번호 36, 서열번호 37로 이루어진 아미노산을 가지는 브라제인 및 브라제인 변이체의 효소학적 특성을 정리하면 하기와 같다.
1) 분자량: 6.5 kDa
2) 높은 열 안정성 및 내산성
3) 높은 수용성
4) 1g/100ml의 수크로오스 대비 브라제인 단맛 비율: 약 500 ~약 100,000배 이상
이와 같이, 본 발명에 따른 브라제인은 본 발명자의 특허출원(한국 특허 출원 제2006-97619호)에서 발현, 정제된 브라제인의 부타입의 단백질, 즉 야생형의 브라제인의 부타입의 단백질과 본 발명자의 특허출원(한국 특허 출원 제2007-0117013호, 제2008-0019008호)에서 발현, 정제된 브라제인 변이체 단백질과 비교하였을 때 더 간편한 정제방법을 이용하여 더 높은 생산량을 보이며, 더 높은 정제도를 가지는 것을 그 특징으로 한다.
본 발명의 일 실시예에서는 효모 밖 분비 배출 브라제인 및 브라제인 변이체 생산을 암호화하는 재조합 벡터를 제조하였다.
본 발명의 다른 실시예에서는 상기에서 제조한 재조합 벡터를 이용하여 브라제인을 발현하고 이를 정제하였고, 그 결과 순도 높은 브라제인 변이체를 얻을 수 있었다.
본 발명은 또한, 당도가 종래의 야생형 브라제인에 비해 우수한 새로운 브라제인 4차 변이체에 관한 것이다.
본 발명의 브라제인 4차 변이체는 서열번호 68의 아미노산 서열을 가지는 브라제인 3차 변이체(H30R_E35D_E40A)의 52번째 아미노산인 글루타민산(glutamic acid) 잔기가, 라이신(lysine) 잔기로 치환된 서열번호 55의 아미노산 서열을 가지는 브라제인 변이체, 아르기닌(arginine) 잔기로 치환된 서열번호 56의 아미노산을 가지는 브라제인 변이체, 알라닌(alanine) 잔기로 치환된 서열번호 57의 아미노산을 가지는 브라제인 변이체, 히스티딘(histidine) 잔기로 치환된 서열번호 58의 아미노산을 가지는 브라제인 변이체, 아스파르트산(aspartic acid) 잔기로 치환된 서열번호 59의 아미노산을 가지는 브라제인 변이체일 수 있다.
한편, 본 발명은 대장균 pelB 신호서열 및 상기 브라제인 4차 변이체의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 제공한다. 대장균 pelB 신호서열은 대장균의 세포막 간극 신호서열의 일종으로(Rietsch et al., Proc. Natl. Acad. Sci. USA 93: 130408-13053, 1996, Raina et al., Ann. Rev. Microbiol. 51: 179-202, 1997, Sone et al., J. Biol. Chem. 272: 10349-10352, 1997), 본 발명의 브라제인이 합성되면 대장균의 세포막 간극으로 이동시켜 정확한 이황화 결합을 유도하게 하고, 브라제인 단백질의 불용성 응집체 형성을 억제하며, 불필요한 대장균 유래의 단백질을 최소로 하여 정제과정을 용이하게 할 수 있다. 본 발명의 대장균 pelB 신호서열은 바람직하게는 서열번호 65의 염기서열을 가지며, 본 발명의 브라제인 변이체의 뉴클레오티드 서열의 5' 상단에 단백질로의 번역시 동일한 프레임을 가지도록 연결된다.
상기 브라제인 4차 변이체의 아미노산 서열은 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59의 아미노산 서열을 가지며, 바람직한 폴리뉴클레오티드는 서열번호 55의 아미노산 서열에 대해서는 서열번호 49의 염기서열, 서열번호 56의 아미노산 서열에 대해서는 서열번호 50의 염기서열, 서열번호 57의 아미노산 서열에 대해서는 서열번호 51의 염기서열, 서열번호 58의 아미노산 서열에 대해서는 서열번호 52의 염기서열, 서열번호 59의 아미노산 서열에 대해서는 서열번호 53의 염기서열을 가질 수 있다.
아울러, 본 발명은 프로모터 및 이와 작동 가능하게 연결된 상기 폴리뉴클레오티드를 포함하는 브라제인 4차 변이체 발현용 재조합 발현벡터를 제공한다.
상기 '프로모터'란 특정한 숙주 세포에서 작동 가능하게 연결된 핵산 서열의 발현을 조절하는 DNA 서열을 의미하며, "작동 가능하게 연결된다(operably linked)"는 것은 하나의 핵산 단편이 다른 핵산 단편과 결합되어 그의 기능 또는 발현이 다른 핵산 단편에 의해 영향을 받는 것을 말한다. 아울러, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 추가로 포함할 수 있다. 상기 프로모터로는 모든 시간대에 상시적으로 목적 유전자의 발현을 유도하는 프로모터(constitutive promoter) 또는 특정한 위치, 시기에 목적 유전자의 발현을 유도하는 프로모터(inducible promoter)를 사용할 수 있으며, 그 예로는 대장균 pelB 프로모터, U6 프로모터, CMV(cytomegalovirus) 프로모터, SV40 프로모터, CAG 프로모터(Hitoshi Niwa et al., Gene, 108:193-199, 1991; Monahan et al., Gene Therapy 7:24-30, 2000?, CaMV 35S 프로모터(Odell et al., Nature 313:810-812, 1985), Rsyn7 프로모터(미국특허출원 제08/991,601호), 라이스 액틴(rice actin) 프로모터(McElroy et al., Plant Cell 2:163-171, 1990), 유비퀴틴 프로모터(Christensen et al., Plant Mol. Biol. 12:619-632, 1989), ALS 프로모터(미국 특허출원 제08/409,297) 등이 있다. 이외에도 미국특허 제5,608,149; 제5,608,144호 제5,604,121호 제5,569,597호, 제5,466,785호, 제5,399,680호 제5,268,463호 및 제5,608,142호 등에 개시된 프로모터들을 모두 사용할 수 있다. 본 발명에서 가장 바람직한 프로모터로 대장균 pelB 프로모터를 사용할 수 있다.
상기에서 본 발명의 브라제인 4차 변이체 발현을 위한 재조합 발현벡터는 바람직하게는 pET26B(+)-브라제인(H30R_E35D_E40A_E52K), pET26B(+)-브라제인(H30R_E35D_E40A_E52R), pET26B(+)-브라제인(H30R_E35D_E40A_E52A), pET26B(+)-브라제인(H30R_E35D_E40A_E52H), pET26B(+)-브라제인(H30R_E35D_ E40A_E52D)일 수 있으며, 이는 pET26B(+)-브라제인(H30R_E35D_E40A)를 주형(template)으로 하여 서열번호 39, 40, 41, 42, 43, 44, 45, 46, 47, 48의 프라이머를 이용한 위치-지정 돌연변이유도(site-directed mutagenesis)법에 의하여 제조할 수 있다.
본 발명은 또한, 상기 재조합 발현벡터로 형질전환된 대장균을 제공한다. 상기 대장균은 상기 재조합 발현벡터로 통상의 형질전환방법에 따라 형질전환되고, 이때, 형질전환은 핵산을 숙주세포에 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 숙주세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 이런 방법에는 전기충격유전자전달법(electroporation), 인산 칼슘(CaPO4) 침전, 염화 칼슘(CaCl2) 침전, 미세사출법(microprojectile bombardment), 전기천공법(electroporation), PEG-매개 융합법(PEG-mediated fusion), 미세주입법(microinjection), 리포좀 매개법(liposome-mediated method) 등이 포함되나 이로 제한되지 않는다.
본 발명은 또한, 상기 형질전환된 대장균을 배양하고, 배양된 대장균에서 세포막간극 단백질을 분리하고, 브라제인을 정제하기 위해 열 처리하는 것을 포함하는 브라제인 4차 변이체의 제조방법에 관한 것이다.
본 발명의 형질전환된 대장균은 브라제인 4차 변이체를 코딩하는 폴리뉴클레오티드가 발현되도록 적절한 배지 및 조건 하에서 배양될 수 있으며, 이는 통상적인 대장균의 배양 조건과 동일 또는 유사하다. 상기 형질전환된 대장균이 배양되는 동안, 발현벡터 내의 발현 조절 서열에 의해 pelB 신호서열을 포함하는 브라제인이 발현되고, 이러한 본 발명에서의 브라제인의 발현은 IPTG(isopropyl-beta-D-thiogalactopyranoside)와 같은 통상적인 유도성 프로모터의 발현을 촉진하는 화합물 없이도 이루어진다. 발현된 pelB 신호서열을 포함하는 브라제인은 신호서열에 의해 대장균의 세포막간극으로 이동하게 되고, 대장균의 시그널 펩티다제(signal peptidase)에 의해 신호서열이 제거되어 브라제인이 합성되게 된다.
형질전환된 세포에서 발현된 브라제인을 대장균의 세포막 간극에서 분리하기 위해서는 대장균의 세포막 간극에서 단백질을 분리하는 공지의 방법(Snyder et al., J. Bacteriology 177: 953963, 1995)을 이용할 수 있으며, 이에 한정되지는 않으나, 예를 들어, 배양된 대장균을 집균한 뒤, 20% 수크로오스(Sucrose)가 포함된 30 mM 트리스-염산(Tri-HCl, pH 8) 용액으로 현탁하고, EDTA(pH 8) 용액 및 MgSO4를 이용하여 대장균의 세포막 간극의 단백질을 용출시키는 방법에 의해 수행될 수 있다.
대장균의 세포막 간극 단백질에서 본 발명의 브라제인을 분리하는 방법은 당업계에 공지된 다양한 분리 및 정제방법을 통해 수행할 수 있으며, 예를 들어, 염석(황산암모늄 침전 및 인산나트륨 침전), 용매 침전(아세톤, 에탄올 등을 이용한 단백질 분획 침전), 투석, 겔 여과, 이온 교환 크로마토그래피, 역상 컬럼 크로마토그래피 및 친화성 크로마토그래피 등의 기법을 단독 또는 조합으로 적용시켜 본 발명의 브라제인을 분리할 수 있다. 본 발명의 브라제인은 열에 안정하므로 바람직하게는 브라제인을 분리하는 방법은 열 처리를 하여 수행될 수 있다. 이에 한정되지는 않으나 열 처리는 바람직하게는 70 내지 90 ℃에서 15 내지 60분간 가열하여 브라제인을 제외한 다른 단백질을 열 변성시킨 뒤 4 ℃에서 18000 g에서 30분간 원심분리를 통하여 열 변성된 단백질과 브라제인을 분리할 수 있다.
상기한 바와 같이, 본 발명에서 더 높은 단맛을 가지며 높은 열 안정성을 가지는 서열번호 55, 56, 57, 58, 59로 이루어진 아미노산을 가지는 브라제인 4차 변이체 효소학적 특성을 정리하면 하기와 같다.
1) 분자량: 6.5 kDa
2) 높은 열 안정성 및 내산성
3) 높은 수용성
4) 브라제인의 부타입의 단백질 기준 브라제인 4차 변이체 단맛 비율: 15 ~ 50배 이상
5) 1g/100ml의 수크로오스 대비 브라제인 4차 변이체 단맛 비율: 약 30,000 ~ 100,000배 이상
이와 같이 본 발명에 따른 브라제인 4차 변이체는 본 발명자의 특허 등록(국내 특허 등록 제809100호)에서 발현, 정제된 브라제인의 부타입의 단백질, 즉 야생형의 브라제인의 부타입의 단백질과 본 발명자의 국내 특허 출원 제 2007-0117013호, 국내 특허 출원 제 2008-0019008호에서 발현, 정제된 브라제인 변이체와 비교하였을 때 열 안정성 및 내산성 및 수용성 등의 특성이 야생형의 브라제인과 유사하며 더 높은 단맛을 나타내는 신규 아미노산 서열을 가지는 것을 그 특징으로 한다.
또한, 이러한 본 발명에서의 브라제인 4차 변이체는 미국 특허 제6,274,707호; 제7,153,535호에 의해 공지된 브라제인 변이체 보다 더 높은 단맛을 나타내며 효과가 있다.
참고로, 상기에서 언급한 뉴클레오티드 및 단백질 작업에는 다음의 문헌을 참조할 수 있다(Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.(1982); Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press(1989); Deutscher, M., Guide to Protein Purification Methods Enzymology, vol. 182. Academic Press. Inc., San Diego, CA(1990)).
본 발명의 실시예에서는 3차 변이체(H30R_E35D_E40A)를 바탕으로 브라제인 부타입의 52번째 글루타민산 잔기를 라이신 잔기, 아르기닌 잔기, 알라닌 잔기로 변이시킨 3종의 다중 4차 변이체를 암호화하는 재조합 벡터를 제조하여 상기의 실시예와 동일한 방법으로 발현, 정제 및 활성(단맛)을 측정하였다. 그 결과, 순도 높은 브라제인 다중 4차 변이체를 얻을 수 있었으며, 브라제인 부타입 단백질과 동일한 안정성을 가지며 브라제인 부타입 단백질과 비교하였을 때 최소 15배에서 최대 50배 이상의 단맛을 나타내는 브라제인 4차 변이체를 제작할 수 있었다. 이를 통해 상기에서 제작한 브라제인 4차 변이체 역시 우수한 감미료로 사용될 수 있음을 알 수 있다.
따라서, 본 발명은 본 발명의 브라제인 4차 변이체를 유효성분으로 포함하는 당도 증진용 식품 조성물을 제공한다.
본 발명의 식품 조성물은 기능성 식품(functional food), 영양 보조제(nutritional supplement), 건강식품(health food) 및 식품 첨가제(food additives) 등의 모든 형태를 포함한다. 상기 유형의 식품 조성물은 당업계에 공지된 통상적인 방법에 따라 다양한 형태로 제조할 수 있다.
예를 들면, 음료(알콜성 음료 포함), 과실 및 그의 가공식품(예: 과일통조림, 병조림, 잼, 마아말레이드 등), 어류, 육류 및 그 가공식품(예: 햄, 소시지 콘비이프 등), 빵류 및 면류(예: 우동, 메밀국수, 라면, 스파게티, 마카로니 등), 과즙, 각종 드링크, 쿠키, 엿, 유제품(예: 버터, 치이즈 등), 식용식물유지, 마아가린, 식물성 단백질, 레토르트 식품, 냉동식품, 각종 조미료(예: 된장, 간장, 소스 등) 등에 본 발명의 브라제인 4차 변이체를 첨가하여 제조할 수 있다.
또한, 본 발명의 브라제인 4차 변이체를 함유하는 식품 조성물을 식품 첨가제의 형태로 사용하기 위해서는 분말 또는 농축액 형태로 제조하여 사용할 수 있다.
본 발명의 식품 조성물 중 본 발명의 브라제인 4차 변이체의 바람직한 함유량으로는 전체 조성 중량에 대해 약 0.01 내지 10중량%를 포함할 수 있다.
이하, 본 발명을 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 제한되는 것은 아니다.
참조예
1. 기기
폴리머라제 연쇄 반응(polymerase chain reaction; PCR) 기기는 Thermo(Waltham, USA)사의 PCR Sprint를 이용하였고, DNA용 전기영동 (electrophoresis) 장치는 Cosmo Bio co., Ltd.(Tokyo, Japan)의 Mupid-21을 사용하였다. 균을 다루기 위한 무균 작업대는 비전 Bio tech.(Incheon, Korea)사의 Clean bench를 이용하였다. 균을 배양하기 위해 Vision Scientific(Gyeonggi, Korea)사의 Shaking incubator를 이용하였고, 균체 집균을 위한 원심분리기는 한일사(Seoul, Korea)의 HMVC-250Ⅳ와 Micro-17R을 이용하였다. 균체를 분쇄하기 위한 초음파 파쇄기(sonicator)는 Sonics & Materials사(Danbury, USA)의 VCX 400를 사용하였고, Vortex Mixer는 Thermolyne(USA)사의 Type 37600 Mixer를 이용하였다. pH 미터기는 EcoMet사(USA)의 pH/mv/TEMP Meter P25를 사용하였고, 단백질 정량을 위해서 Hitachi사(Tokyo, Japan)의 U-2000 UV/VIS 분광광도계를 이용하였고, 단백질 확인을 위한 HPLC로는 Gilson(France)사의 305 시스템을 이용하였다. DNA 합성은 (주)GenoTech(Seoul, Korea)과 (주)Cosmo Genetech(Seoul, Korea)에 의뢰하였고, 염기서열 분석은 (주)Cosmo Genetech(Seoul, Korea)에 의뢰하였다.
2. 시약
PCR 작업을 위한 Ex taq 폴리머라제와 DNA 라이게이션 용액(ligation solution) 및 DNA 작업을 위한 T4 DNA 리가아제, 제한효소 Nco I과 Xho I, 10×K 버퍼, 0.1% BSA, DNA 마커는 TaKaRa(Shiga, Japan) 제품을 사용하였다. 균주 배양을 위한 박토 트립톤, 박토 아가는 Difco laboratories(Detroit, USA) 제품을 사용하였고, 효모 추출액은 Becton Dickinson(Cockeysville, USA) 제품을 구입하여 사용하였다. 그 외 아가로오스, IPTG(isopropyl-β-D-thiogalactopyranoside), TEMED(N,N,N',N'-tetramethylethylenediamine), SDS(Sodium lauryl sulfate), trizma®Base, 글리세롤, 카나마이신 모노설페이트는 Sigma Chemical Co.(St. Louis, USA) 제품을, 30% 아크릴 아마이드 용액, 브래포드 프로테인 어세이 시약 및 폴리펩타이드 프로테인 마커는 Bio-Rad사(Hercules, USA)의 제품을, DNA 정제를 위한 Wizard® Plus SV Minipreps DNA purification kit는 Promega(Madison, USA) 제품을 사용하였다. 포타슘 포스페이트(monobasic), 포타슘 포스페이트 (dibasic)은 Kanto Chemical Co. (Tokyo, Japan) 제품을; 히스티딘 바인드 레진은 Pharmacia Biotech(Uppsala, Sweden) 제품을; 부탄올, 소디움 클로라이드, 아세트산은 Duksan Pure Chemical Co.(Kyonggi, Korea) 제품을; 포타슘 클로라이드, 글리신은 Daejung(Incheon, Korea) 제품을 사용하였다. QIAquickTM gel extraction kit(50)은 Qiagen(Hombrechtikon, Switzerland) 제품을 사용하였다. 그 외 완충용액(buffer)을 만들기 위한 시약과 사용한 모든 시약은 일급 및 특급 시약을 정제하여 사용하였다.
3. 박테리아 균주와 발현벡터
합성한 브라제인을 이용하여 PCR에 의해 증폭하였다. 강력한 T7 프로모터(promoter)와 전사종결구(terminator)를 포함하고 있는 발현벡터 pET-26b(+)는 Novagen(Darmstadt, Gemany)으로부터 구입하여 사용하였다. 형질전환을 위해 발현용 숙주인 대장균 DH5α, BL21star(DE3)와 XL1-블루는 Pharmacia Biotech(Uppsala, Sweden)와 Promega Coporation(Madison, WI, USA)으로부터 구입하였다.
4. 효모 균주와 발현벡터
야생형 브라제인과 브라제인 변이체 유전자 서열은 클루이베로마이세스 락티스 의 세포 밖으로 단백질을 배출하는 α-메이팅 서열과 Kex 절단 부위를 포함하고 있는 발현벡터 pKLAC2는 New England Biolab(England)으로부터 구입하여 사용하였다. 클루이베로마이세스 락티스에서 브라제인 유전자를 GG799 세포의 게놈 DNA에 삽입시키기 위하여 사용된 발현용 숙주인 GG799 또한 New England Biolab(England)로부터 구입하였다.
5. 단백질 전기영동(SDS-PAGE)
트리스-트리신 겔은 Schagger(1987) 방법에 따라 16.5%의 겔을 만들어 사용하였다. 전기영동이 끝난 겔은 쿠마시 블루 R-250을 사용하여 염색하였고, 충분한 탈색을 통해 단백질의 순수도를 확인하였다. 이때, 사용한 분자량 표준 단백질은 트리오세포스페이트 이소머라제(26.6 kDa), 미오글로빈(17 kDa), α-락트알부민(14.4 kDa), 아프로티닌(6.5 kDa)을 포함하고 있는 Bio- rad 사의 Polypeptide SDS-PAGE Melocular Weight Standards를 사용하였다.
6. 단백질의 정량
단백질 정량은 BCA 분석법(Pierce Chemical Co, Rockford IL, USA) 방법에 따라 측정하였으며, 562 nm에서 소태아 혈청 알부민을 표준 단백질로 사용하여 표준 곡선을 작성한 뒤, 단백질 농도를 측정하는데 이용하였다. Bio-Rad사의 단백질 정량 시약과 정제된 브라제인을 상온에서 10분간 반응시킨 후, 210 nm에서 흡광도를 측정하여 단백질의 농도를 결정하였다.
실시예 1 : 브라제인 발현용 재조합 발현벡터 제작 및 형질전환
1.야생형 브라제인 및 브라제인 변이체의 효모로의 도입
인체에 보다 무해한 발현계에서 브라제인의 생산을 구축하기 위하여 야생형 브라제인과 브라제인 변이체의 발현을 위해 산업적으로 많이 이용되고 있는 효모 균주인 GRAS(Generally recognized as safe)로 규정된 사카로마이세스 종의 다른 계통 분류인 클루이베로마이세스 락티스를 브라제인을 생산하는 균주로 사용하였다.
효모 발현계로 도입하는 야생형 브라제인 및 브라제인 변이체는 앞선 실험인 대장균 발현계에서 발현 및 정제 과정을 통해 활성도를 비교한 야생형 브라제인 및 브라제인 변이체 중 활성도가 높은 변이체를 선정하였다. 선정된 변이체는 다음의 9종이다. 야생형(minor type), H30R, E35D, E40A, H30R_E35D, H30R_E40A, E35D_E40A, H30R_E35D_E40A, H30R_E35D_E40A_E52K.
효모 발현계로 도입하는 식물로부터 추출한 브라제인의 유전자 서열을 기본으로 하여 아미노산 서열에는 변화를 주지 않는 범위 내에서 DNA 염기서열로 변화를 주어 디자인하였다. 염기서열에 변화를 줄 때에는 클루이베로마이세스 락티스에서의 고발현을 유도할 수 있는 서열을 바탕으로 디자인하였다. 또한, 변이체 작성시 DNA의 삽입 및 결손에 용이하도록 하기 위해 가능한 한 많은 제한효소 자리를 포함하도록 디자인하였다.
2. 발현을 위한 재조합 발현 벡터의 제작 및 효모 게놈 DNA로의 브라제인 유전자 삽입
클루이베로마이세스 락티스의 GG799 세포 바깥으로 목적 단백질인 브라제인이 배출되는 배출 시스템을 이용하기 위하여 클루이베로마이세스 락티스에 사용하는 pKLAC2 벡터[New England Biolab(England)](도 1)의 서열 중 세포 밖으로 단백질을 내보내는 신호서열과 신호서열을 절단하는 Kex 절단 부위(Kex cleavage site)에 해당하는 유전자 서열 다음에 브라제인의 유전자 서열을 삽입하여 브라제인이 세포 밖으로 배출될 수 있도록 설계하였다(도 2). 클로닝한 pUC57-브라제인 유전자를 제한효소 Xho I과 Stu I (10×M 버퍼 사용)을 사용해 37 ℃에서 3시간 절단(digestion)하였다. 발현벡터 pKLAC2 유전자도 브라제인 유전자와 같은 조건으로 절단하였다. 각각의 절단된 유전자를 아가로즈 겔을 사용하여 유전자를 분리한 후, 정제 키트로 유전자를 정제하였다. 정제된 브라제인과 pKLAC2 유전자는 T4 DNA 리가아제(Shiga, Takara) 사용하여 16 ℃에서 2시간 반응하였다. 연결(Ligation) 결과, 생성된 pKLAC2-브라제인의 DNA양을 증가시키기 위해 50 mM CaCl2에 의해 콤피턴트(competent)화된 DH5α에 형질전환하였다. 형질전환은 다음과 같이 실시하였다. 라이게이션 샘플 10 ㎕를 DH5α 콤피턴트 셀에 혼합한 후, 42 ℃에서 2 분간 열 충격(heat shock)을 가해 세포막(cell membrane)에 분포하여 있던 pKLAC2-브라제인 유전자가 DH5α 세포 내로 들어가게 하였다(transformation). 이렇게 형질전환시킨 샘플을 항생제 선택법(antibiotic selection)에 의해 pKLAC2-브라제인/DH5α만 분리해 내기 위해서 30 ㎍/㎖의 암피실린이 포함된 LB-아가 플레이트에서 12시간 배양하였다. 이때, 자란 콜로니(colony)를 액체 LB 배지에 배양하고, Promega의 Wizard® Plus SV Minipreps DNA purification kit을 이용해 재조합 발현벡터인 pKLAC2-브라제인을 분리하였다(도 3).
상기 pKLAC2-브라제인 유전자를 Stu I과 Xho I으로 절단한 후, 아가로즈 겔 전기영동으로 브라제인 유전자를 확인하였다. 아가로오스 겔 전기영동 결과, 발현벡터 pKLAC2는 약 9000 bp에서 브라제인은 약 182 bp에서 각각 그 크기를 나타내었다. 확인된 유전자를 효모 세포로 브라제인을 형질전환하기 위해서 효모 세포의 염색체 내에 브라제인 유전자를 삽입시키는 방법을 택하였다. pKLAC2-브라제인 재조합 유전자를 Sac Ⅱ로 절단하여 선형화하여 고효율 형질전환법을 사용하여 클루이베로마이세스 락티스의 GG799 세포의 gDNA에 삽입하였다(도 4). 형질전환은 다음과 같은 방법을 사용하였다. 50 mL의 YPD 배지를 예열해 놓은 배양 플라스크에 넣고 미리 배양해 놓은 2.5×108개의 GG799 세포를 접종하고 4시간 정도 배양하여 세포의 적정량이 최소 2×107개 이상이 되도록 하였다. 배양이 끝나면 배양액을 3000×g로 5분 동안 원심분리하여 GG799 세포를 집균하였다. 그런 다음, 상층액을 버리고 1 mL의 증류수로 균질화시키고, 이것을 마이크로 튜브에 옮기고 30초 동안 최대 속력으로 원심분리한 뒤, 상층액은 버리고 다시 최종 부피가 1 mL가 되도록 증류수를 넣고 혼합하여 다시 균질화시켰다. 이 균일화된 액체를 100 ㎕씩 마이크로 튜브에 분취한 후 30초 동안 최고 속도로 원심분리하여 상층액을 버렸다. 각각의 형질전환 튜브에 형질전환용 혼합액을 360 ㎕씩 넣고 혼합하여 세포를 다시 균질화시켰다. 그런 다음, 42 ℃의 온욕조에서 40분 동안 방치하고나서 이 튜브를 최고 속도로 30초 동안 원심분리하여 형질전환용 혼합액을 제거하고 1 mL의 증류수를 넣고 집균체를 균질화한 다음, 5 mM의 아세트아미드를 함유하고 있는 고체 YCB 배지 위에 도포하였다. 96시간 가량 지나면 pKLAC2-브라제인 유전자가 성공적으로 삽입되어 아세트아미다아제 부분을 가지고 있는 콜로니가 자라났다. 이 콜로니만을 브라제인의 발현에 이용하였다. 모든 실험 과정은 불 주위가 무균 상태라는 가정 아래 Clean bench에서 진행하였다.
3. 삽입식 형질전환 여부의 판단
1) 단일 삽입 형질전환의 확인
5 mM의 아세트아미드를 포함하고 있는 YCB평판 배지에서 자라난 콜로니 각각을 피펫으로 취하여 2 mg/ml 라이티카아제(Lyticase)를 포함하고 있는 1 M의 소르비톨 25 ㎕로 볼텍스를 이용하여 가용화시킨 후, 30 ℃에서 1시간 동안 방치하였다. 그런 다음, 라이티카아제 처리를 한 세포를 용해하기 위하여 98 ℃에서 10분 동안 열을 가하였다. 여기에 10 ㎕의 10×인테그레이션 프라이머(Integration primer) #1, #2[New England Biolab(England)]와 10 ㎕의 2 mM dNTPs, 10 ㎕의 10×ThermoPol 버퍼, 그리고 1 ㎕의 Taq DNA 폴리머라제, 34 ㎕의 증류수를 마이크로튜브에 혼합하여 최종 부피가 100 ㎕가 되도록 하였다. 이것을 94 ℃ 30초, 50 ℃ 30초, 72 ℃ 2분으로 구성된 것을 1 주기로 하여 30 주기로 PCR을 하였다. 그 이후에 72 ℃에서 10분 동안 인큐베이션하는 것으로 PCR을 종료하였다. 반응이 완료되면 반응액 중 10 ㎕를 취하여 1% 아가로오즈 겔 전기영동을 통해 유전자 삽입(integration) 여부를 확인하였다. 유전자 삽입의 여부는 클루이베로마이세스 락티스 게놈의 LAC4 위치인 2.4 kb에서의 DNA단편으로 확인할 수 있었다(도 5의 A 및 도 6의 A).
2) 다중 삽입 형질전환의 확인
효모 세포로 원하는 유전자를 형질전환 시에는 세포의 게놈(genome)으로 나란히 10개까지도 삽입될 수 있다(도 5). 다중 삽입된 균주의 경우 더 많은 단백질을 배출할 수 있다. YCB 평판 배지에서 자라난, 클루이베로마이세스 락티스의 형질전환체들은 다중 삽입된 콜로니들이 많다. 이것을 확인하기 위해서는 단일 유전자 삽입을 확인할 때와 같이 5 mM의 아세트아미드를 포함하고 있는 YCB 평판 배지에서 자라난 콜로니 각각을 피펫으로 취하여 2 mg/ml 라이티카아제(Lyticase)를 포함하고 있는 1 M의 소르비톨 25 ㎕로 볼텍스를 이용하여 가용화시킨 다음, 30 ℃에서 1시간 동안 방치하였다. 그리고 나서 라이티카아제 처리를 한 세포를 용해하기 위하여 98 ℃에서 10분 동안 열을 가하였다. 여기에 10 ㎕의 10×인테그레이션 프라이머 #2, #3[New England Biolab(England)]와, 10 ㎕의 2 mM dNTPs, 10 ㎕의 10×ThermoPol 버퍼, 그리고 1 ㎕의 Taq DNA 폴리머라제, 34 ㎕의 증류수를 마이크로튜브에 혼합하여 최종 부피가 100 ㎕가 되도록 하였다. 이것을 94 ℃ 30초, 50 ℃ 30초, 72 ℃ 2분으로 구성된 것을 1 주기로 하여 30 주기로 PCR을 하였다. 그 이후에 72 ℃에서 10분 동안 방치하는 것으로 PCR을 종료하였다. 반응이 완료되면 반응액 중 10 ㎕를 취하여 1% 아가로오즈 겔 전기영동을 통해 유전자 삽입 여부를 확인하였다. 유전자 삽입의 여부는 클루이베로마이세스 락티스의 게놈의 LAC4 위치인 2.3 kb에서의 DNA단편으로 확인할 수 있었다(도 5의 B 및 도 6의 B).
실시예 2: 브라제인의 발현
상기 브라제인/GG799 세포는 장기 보관을 위해 액체 배양한 시료를 20% 글리세롤 스톡(stock) 상태로 만들어 -70 ℃에 냉동 보관하였다.
효모 발현계에서 브라제인의 최적 발현 조건을 찾기 위하여, 발현 배지의 종류, 전배양액의 접종 농도, 발현 배지의 pH, 배양온도, 배양 시간의 변화를 주어 실험을 하였다.
발현 배지는 클루이베로마이세스 락티스가 가지고 있는 LAC4 프로모터에 근거하여 갈락토오스를 영양분으로 지니고 있는 YPGal 배지와 락토오스를 영양분으로 지니고 있는 YPLac 배지를 이용하여 배양하여 발현량을 비교하였다.
전 배양액의 접종 농도는 1%, 2%, 3%, 4%, 5%로 변화시켰으며, 배양 온도는 대장균 발현계에서 최적으로 발현된 30 ℃와 이보다 낮은 25 ℃에서 브라제인을 배양하여 발현량을 비교하였다.
발현 배지의 pH는 pH 4.5, 5.0, 5.5, 6.0, 6.5, 그리고 배양시간은 24시간, 48시간, 72시간, 96시간, 120시간으로 변화시켜 브라제인을 배양하였고 이에 따른 발현량을 비교하였다.
1. 발현 배지의 변화
발현 배지는 클루이베로마이세스 락티스가 가지고 있는 LAC4 프로모터에 근거하여 갈락토오스를 영양분으로 지니고 있는 YPGal 배지와 락토오스를 영양분으로 지니고 있는 YPLac 배지를 이용하여 배양하여 발현량을 비교하였다.
YPGal 배지는 효모 추출물 1%, 펩톤 2%, 갈락토오스 2%, YPLac 배지는 효모 추출물 1%, 펩톤 2%, 락토오스 2%로 조성되었다. 트리스-트리신 겔 상에서의 발현 상태와 BCA 분석법으로 측정한 발현량을 비교한 결과, YPGal 배지에서의 발현량이 57.2 ㎎/L 이고(도 7), YPLac 배지에서의 발현량이 34.8 ㎎/L으로 나타났다(도 8). YPGal 배지에서의 발현량이 YPLac배지에서의 발현량 보다 약 1.6배 가량 많이 발현되었으므로 조성이 효모 추출물 1%, 펩톤 2%, 갈락토오스 2% 인 YPGal 배지에서 브라제인을 배양하는 것으로 선택하였다.
2. 발현 배지의 pH 변화
발현 배지의 pH를 아세트산을 이용하여 조절하여 발현 양상을 비교하여 가장 적합한 발현 배지의 pH를 모색하였다.
조성이 효모 추출물 1%, 펩톤 2%, 갈락토오스 2% 인 YPGal 배지 1L의 pH를 각각 4.5, 5.0, 5.5, 6.0, 6.5로 변화하였다.
트리스-트리신 겔 상에서의 발현 상태와 BCA 분석법으로 측정한 발현량을 비교한 결과, pH 4.5에서의 발현량은 32.8 ㎎/L(도 9), pH 5.0에서의 발현량은 49.5 ㎎/L(도 10), pH 5.5에서의 발현량은 50.51 ㎎/L(도 11), pH 6.0에서의 발현량은 19.55 ㎎/L으로 나타났다(도 12). pH 4.5에서 pH 5.5 범위까지의 발현량은 변화가 크지 않았지만 pH 6.0에서 발현 시에는 발현량이 급격히 감소함을 알 수 있었다. 또한, pH 6.5에서 발현 시 트리스-트리신 겔 상에 나타나는 발현 양상을 보았을 때 브라제인의 이합체 분자량인 13 kDa 부근에서 밴드가 나타나는 것으로 보아 pH가 6.0 이상으로 높아지면 정상적인 브라제인의 발현이 되지 않았다(도 13). 그러므로 브라제인 배양 시 발현 배지의 최적 pH는 pH 5.0 ~ 5.5 범위로 설정하였다.
3. 배양 온도의 변화
대장균 발현계에서 브라제인을 배양할 때의 최적 온도는 30 ℃이므로 효모 발현계에서의 최적 배양온도를 찾기 위해 30 ℃와 이보다 낮은 25 ℃에서 배양하여 낮은 온도 범위에서의 브라제인의 발현 양상을 비교하였다. 트리스-트리신 겔 상에서의 발현 상태와 BCA 분석법으로 측정한 발현량을 비교한 결과, 25 ℃에서의 발현량은 9.44 ㎎/L[도 13], 30 ℃에서는 30.44 ㎎/L로 30 ℃에서 배양하는 것이 약 2.5배 가량 더 효율적인 것으로 나타났다[도 10 및 도 11].
4. 전 배양액의 농도 및 배양 시간의 변화
효모 발현계에서 브라제인을 대량 발현하기 위해서는 평판 배지에서 자라난 콜로니를 채취하여 액체 배지에 접종하여 12시간 동안 전배양을 한 후 전배양액을 미리 만들어 놓은 대량 발현용 배지에 접종하여 배양하였다. 이때, 접종하는 전배양액의 농도를 1%, 2%, 3%, 4%, 5%로 조절하였고, 배양시간 또한 24시간, 48시간, 72시간, 96시간, 120시간 동안 배양하여 트리스-트리신 겔 상에서 발현 양상을 비교하였다(도 15). 그 결과, 전배양액의 접종 농도에 따른 변화는 급격하지 않았으며 트리스-트리신 겔 상에서의 발현양상으로 보아 2% 접종, 96시간 동안 배양했을 때 다른 종류의 잡다한 단백질의 발현량이 거의 없고 브라제인의 발현이 뚜렷하게 나타났으므로 이것을 브라제인 배양의 조건으로 정하였다.
실시예 3: 브라제인의 정제
1. CM 셀룰로오스 양이온 교환수지 컬럼을 이용한 브라제인의 정제
대량 발현된 브라제인/GG799 균체를 7,000 g, 4 ℃, 15분간 원심분리하여 균체와 배지를 분리하였다. GG799 균체는 목적 단백질인 브라제인을 세포 밖으로 내보내는 배출 경로를 따르므로 모아진 균체는 버리고 배지를 취하였다. 모아진 배지는 아세트산을 이용하여 pH 5.0으로 pH 값을 조절한 뒤 CM 셀룰로오스 양이온 교환수지 컬(CM 컬럼)을 통해 정제하였다. 100 ㎖ 용량의 CM 컬럼은 50 mM 소디움 아세테이트 완충용액(pH 4.0) 150 ㎖로 균일화시켰다. pH 값을 미리 조절을 해 둔 배지를 1 ㎖/min의 속도로 CM 컬럼에 단백질을 흡착시켰다. 배양액 1 L를 모두 로딩하고 난 후에 불필요한 단백질을 제거하기 위하여 0.1 M의 NaCl을 포함하고 있는 50 mM 소디움 아세테이트를 500 ㎖ 정도를 흘려주고 그 용액의 OD280 값을 측정하여 0에 최대한 근접한 값이 나오는 것을 확인하였다. 그런 다음, 목적 단백질인 브라제인을 용출하기 위하여 0.4 M의 NaCl을 포함하고 있는 50 mM 소디움 아세테이트 완충용액을 1 ㎖/min의 속도로 용출시켜 각각 5 mL의 18개 분획을 얻었다.
2. 겔 여과법을 이용한 탈염
CM 셀룰로오스 양이온 교환수지 컬럼 정제로부터 얻은 분획들은 동결건조 후 2 ㎖의 증류수에 녹여 총 5개의 분획으로 농축하였으며, 이때 포화되어 녹지 않는 NaCl 외 상층액만을 취하였다. 농축된 분획은 20 mL의 세파덱스 G-25를 이용하여 탈염과정을 거쳤다. 1 ㎖의 분획을 컬럼에 통과시키고 뒤이어 증류수 10 ㎖를 통과시켜 분획을 받아내었다. 이때, 크기가 큰 단백질은 앞쪽의 분획들에 존재하고 상대적으로 크기가 작은 NaCl을 비롯한 불순물들은 뒤쪽의 분획들에 분포하므로 OD280 값을 측정하여 단백질이 존재하는 구간에 존재하는 분획을 얻었다. 이 과정이 끝난 분획들은 BCA 분석법을 통해 정량하였고, 동결건조하였다. 정제된 효소의 순수도는 SDS-PAGE를 통해 확인하였다(도 16).
3. 단백질 크기 분리형 필터(cut-off filter)를 이용한 탈염
CM 셀룰로오스 양이온 교환수지 컬럼 정제를 통해 얻은 분획을 3,000 분리형 필터를 이용하여 5,000 g, 20 ℃, 1시간의 조건으로 원심분리하여 1/5로 농축하였다(도 17). 그리고 부피의 10배에 해당하는 양의 증류수를 첨가한 뒤 위와 같은 과정을 2번 반복하여 거치며 농축과 탈염을 거쳤다. 그리고 나서 이 과정이 끝난 분획들은 BCA 분석법을 통해 정량하였다. 순수도를 측정하기 위해 트리스-트리신 겔 전기영동(도 17)과 HPLC 분석을 실시하였다(도 18). HPLC 분석을 위한 컬럼은 C18 5micron 150×4.6 컬럼을 사용하였고, 검출파장은 210 nm, 컬럼 온도는 상온, 분당유속은 0.5 ml, 이동상 용매로는 A 용매로 0.05% TFA - 증류수, B 용매로 0.05% TFA-아세토니트릴을 사용하여 농도구배 조건으로 분석하였다. 정제된 브라제인은 약 21분에 하나의 피크로 용출되었다(도 18의 A). 참고로 완충용액은 같은 조건에서 약 5분에 용출되었다(도 18의 B).
4. 브라제인 변이체의 정제
브라제인 야생형으로 결정된 배양 및 정제 조건을 이용하여 브라제인 변이체들도 정제하였다.
전체적인 배양 및 정제조건들은 도 19에 나타냈다. 정제된 브라제인 단백질의 순수도는 트리스-트리신 겔을 통해 확인하였다(도 20).
실시예 4: 브라제인 활성 측정
브라제인은 당이 아닌 단백질이므로 당도계를 이용하여 단맛을 측정할 수 없다. 따라서, 브라제인은 직접 맛을 봄으로써 그 활성을 측정할 수 있다. 사람마다 단맛을 처음 느끼게 되는 역치의 값은 다르기 때문에 설탕 용액과 브라제인 용액의 단맛을 처음 느끼는 농도를 비교하여 활성을 측정하였다. 피실험자는 사전에 훈련된 남성 10명, 여성 10명으로 구성하였다. 먼저, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 M 농도로 녹인 표준 설탕 용액을 차례로 맛을 보고, 처음으로 단맛을 느끼는 농도를 체크한 후, 마찬가지로 브라제인 야생형 및 브라제인 변이체를 단계별 농도로 녹인 다음 용액의 단맛을 보고 역치 값으로 느끼는 단계의 농도를 체크하여 설탕과 브라제인 야생형 및 브라제인 변이체와의 단맛의 상대 활성을 측정하였다.
수크로오스에 비해 야생형 브라제인은 대장균 발현계와 마찬가지로 약 800배 더 단맛을 내는 것으로 나타내었다(도 21). 또한, 3차 브라제인 변이체와 4차 브라제인 변이체는 수크로오스에 비해 각각 약 10,000배, 100,000배의 단맛을 나타내는 것으로 나타났다.
실시예 5: 브라제인 4차 변이체를 암호화하는 폴리뉴클레오티드의 클로닝
브라제인 보다 높은 단맛을 나타내는 브라제인 다중 변이체를 제조하기 위해 먼저 브라제인의 3차 변이체(H30R_E35D_E40A)을 구성하고 있는 하나의 특정 아미노산을 선택하여 다른 특정 아미노산으로 변이시키는 작업을 수행하였다.
먼저, 변이시킬 특정 아미노산으로 브라제인의 구조 분석을 통하여 외부 잔기(side chain)가 밖으로 향해 있으며, 극성을 가지는 52번째 잔기를 선택하였다. 이러한 구조적 정보를 바탕으로 본 발명자의 특허 등록(국내 특허 등록 제809100호)에서 사용한 대장균 내에서 브라제인의 3차 변이체(H30R_E35D_E40A)의 단백질이 합성되도록 불필요한 "ATG" 서열을 제거한 서열번호 38의 서열을 포함하는 재조합 발현벡터(pET26B(+)-Brazzein(H30R_E35D_E40A), 국내 특허 공재 제2009-93470호)를 주형으로 하기의 표 1에 명시된 5개의 프라이머와 각각의 프라이머와 상보적인 서열을 갖는 프라이머 쌍을 합성하였다. 상기 프라이머들은 브라제인 3차 변이체(H30R_E35D_E40A) 단백질을 구성하고 있는 특정 아미노산(서열번호 54)의 외부잔기 길이 및 전기적 성격을 고려하여 설계되었다[표 1 참조]. 하기 표 1의 프라이머와 QuikChangeTM Site-Directed Mutagenesis Kit(Stratagene, 미국)를 이용하여 제조사의 지침에 따라 브라제인 3차 변이체(H30R_E35D_E40A) 단백질의 52번 위치를 치환시킨 5종의 브라제인 변이체를 암호화하고 있는 뉴클레오티드를 포함하는 발현벡터를 얻을 수 있었다. 이때, 하기 표 1의 프라이머 서열 중 아래 밑줄 부분은 브라제인 변이체를 위해 변화된 서열을 나타낸다.
표 1 브라제인 4차 변이체 제작을 위해 사용된 프라이머
위치 변이 전아미노산 잔기 변이 후아미노산 잔기 사용된프라이머 비 고
변이 전 변이 후 서열번호
52 Glu (E) Lys (K) tac tgc aag tac taa(서열번호 23) positive positive 서열번호 39, 40
Arg (R) tac tgc cgt tac taa(서열번호 24) positive 서열번호 41, 42
Ala (E) tac tgc gct tac taa(서열번호 25) neutral 서열번호 43, 44
His (H) tac tgc cac tac taa(서열번호 26) positive 서열번호 45, 46
Asp (D) tac tgc gac tac taa(서열번호 27) negative 서열번호 47, 48
구체적으로, pET26B(+)-브라제인(H30R_E35D_E40A) 벡터 10 ng, 각각 최종 농도 0.2 mM의 dNTP 혼합물, 각각 125 ng의 상기 표 1에 명시된 프라이머, 10× 반응버퍼 5 ㎕, PfuTurbo DNA 폴리머라제(2.5 U/㎕, Stratagene, 미국) 1 ㎕를 포함하는 전체 50 ㎕를 반응액으로 PCR을 수행하였다. 상기 PCR 반응은 95 ℃ 1분간 전변성시킨 다음 95 ℃ 30초, 55 ℃ 1분. 68 ℃ 15분을 20회 반응시키고 68 ℃에서 15분간 최종 반응을 시켰다. 반응이 끝난 후 1.0% 아가로스(agarose) 겔 전기영동에 의해 증폭된 생성물을 확인하고 증폭이 이루어진 생성물을 37 ℃에서 1시간 동안 DpnⅠ으로 처리하였다. 그런 다음, 바로 슈퍼컴페턴트 세포(supercompetent cell)인 대장균 XL1-Blue를 형질전환하였다. 상기 형질전환된 XL1-Blue는 50 ㎍/㎖의 카나마이신(kanamycin)이 함유된 LB-아가 플레이트(LB-agar plate)에서 12시간 배양하여 선별하고, 선별된 콜로니를 LB-아가 배지에서 배양하여 대장균으로부터 DNA를 분리하였다. 상기 분리된 DNA에 대해서 대장균 pelB 신호서열과 각각의 브라제인 변이체를 암호화하고 있는 뉴클레오티드가 연결되어 있음을 유전자 분석을 통하여 확인하였다. 이는 하기 표 2의 명시되어 있는 서열번호 및 뉴클레오티드 명으로 명명하였다. 각각의 아미노산을 지칭하는 1문자는 공지된 아미노산 코드에 따라 지정하였다.
표 2 브라제인 4차 변이체를 암호화하고 있는 폴리뉴클레오티드 명 및 서열번호
브라제인 4차 변이체 위치 각각의 브라제인 4차 변이체를 암호화하고 있는 뉴클레오티드 명 서열번호
H30R_E35D_E40A_E52K E. coli pelB +Brazzein(H30R_E35D_E40A_E52K) gene 서열번호 49
H30R_E35D_E40A_E52R E. coli pelB +Brazzein(H30R_E35D_E40A_E52R) gene 서열번호 50
H30R_E35D_E40A_E52A E. coli pelB +Brazzein(H30R_E35D_E40A_E52A) gene 서열번호 51
H30R_E35D_E40A_E52H E. coli pelB +Brazzein(H30R_E35D_E40A_E52H) gene 서열번호 52
H30R_E35D_E40A_E52D E. coli pelB +Brazzein(H30R_E35D_E40A_E52D) gene 서열번호 53
상기 실험결과 총 5종의 브라제인 4차 변이체를 위한 재조합 발현벡터(pET26B(+)-Brazzein(H30R_E35D_E40A_E52K), pET26B(+)-Brazzein(H30R_E35D_E40A_E52R), pET26B(+)-Brazzein(H30R_E35D_E40A_E52A), pET26B(+)-Brazzein(H30R_E35D_E40A_E52H), pET26B(+)-Brazzein(H30R_E35D_E40A_E52D))를 제작할 수 있었으며, 이를 다시 대장균 BL21(star)로 형질전환하여 대량 발현에 이용하였다(도 22 참조).
실시예 6: 브라제인 4차 변이체의 발현 및 정제
<6-1> 브라제인 4차 변이체의 발현
상기 실시예 5에서 제작한 브라제인 4차 변이체를 위한 5종의 재조합 발현벡터를 도입한 각각의 대장균 BL21(star)을 30 ㎕/㎖의 카나마이신(kanamycin)이 포함된 LB 배지 1 ℓ에서 단백질 유도제인 IPTG(isopropyl β-D-thoigalactopyranoside)의 첨가 없이 37 ℃에서 12시간 배양하여 각각의 형질전환된 대장균에서 각각의 브라제인 변이체가 발현되도록 하였다[도 23 참조].
<6-2> 브라제인 4차 변이체의 정제
상시 실시예 <6-1>에서 배양된 각각의 대장균을 8,000 g에서 10분간 원심 분리하여 집균하였다. 집균 후, 20% 수크로오스(Sucrose)가 포함된 30 mM 트리스-염산(Tri-HCl, pH 8.0) 용액으로 현탁시킨 뒤, 0.5 M EDTA(pH 8.0) 용액을 최종 농도가 1 mM이 되도록 첨가하고 상온에서 10분 동안 천천히 교반시켰다. 이를 10,000 g, 4 ℃에서 10분 동안 원심분리를 하고 상층액을 제거한 뒤, 차가운 5 mM MgSO4를 첨가하고, 얼음 위에서 10분 동안 천천히 교반시켰다. 이 과정에서 세포막간극(periplasm)의 단백질이 완충용액으로 이탈되어 나온다. 이 후, 10,000 g, 4 ℃에서 10분 동안 원심분리를 수행하여 상층액을 분리하고, 세포막간극(periplasm)에 존재하는 브라제인 4차 변이체를 정제하기 위하여 80 ℃에서 30분간 열 처리를 하였다. 이 후, 증류수로 24시간 동안 투석 후 동결 건조하여 하기 표 3의 서열번호로 표시되는 정제된 브라제인 4차 변이체를 얻을 수 있었으며, 정제도는 일차적으로 SDS-PAGE를 통해 확인하였다.
표 3 브라제인 4차 변이체명 및 서열번호
브라제인 4차 변이체 위치 각각의 브라제인 변이체 명 서열번호
H30R_E35D_E40A_E52K Brazzein(H30R_E35D_E40A_E52K) 서열번호 55
H30R_E35D_E40A_E52R Brazzein(H30R_E35D_E40A_E52R) 서열번호 56
H30R_E35D_E40A_E52A Brazzein(H30R_E35D_E40A_E52A) 서열번호 57
H30R_E35D_E40A_E52H Brazzein(H30R_E35D_E40A_E52H) 서열번호 58
H30R_E35D_E40A_E52D Brazzein(H30R_E35D_E40A_E52D) 서열번호 59
상기 실험결과, 브라제인 단백질이 순도 높게 정제되었으며, 그 분자량은 약 6.5 kDa인 것으로 나타났다[도 24 참조].
실시예 7: 브라제인 4차 변이체의 활성(단맛) 및 열 안정성 측정
<7-1> 브라제인 4차 변이체의 단맛 측정
본 발명에서의 재조합 브라제인은 고리환을 가지는 당계열의 화합물이 아니기 때문에 당도계를 이용하여 단맛을 측정할 수 없어 사람의 미각을 이용하여 활성을 측정하였다. 당도 측정은 수크로오스(sucrose)를 용액을 이용하여 최초 단맛을 느낄 수 있는 수크로오스 최소의 농도가 거의 유사하도록 훈련된 20명의 피실험자를 대상으로 하였고, 각각의 변이체를 이용하여 최초 단맛을 느낄 수 있는 농도를 측정하였다. 또한, 브라제인 비교 단맛 비율은 수크로오스 용액의 경우 단맛을 느끼는 최저 자극량이 1g/100㎖이었으며, 브라제인 부타입의 단백질의 경우 단맛을 느끼는 최저 자극양은 500㎍/100㎖이었으므로 이를 기준으로 산정하였다(즉, 브라제인 부타입의 경우 1/0.0005 = 2000).
표 4 각각의 브라제인 4차 변이체에 대한 단 맛 테스트 결과
1차 변이체위치 서열번호 초기 단맛을 느끼는 최저 자극양 (㎍/100㎖) 수크로오스 (1g/100㎖) 대비 브라제인 4차 변이체 비교 단맛 비율(브라제인 부타입: 2000) 브라제인 부타입 비교 단맛 증가 배수
H30R_E35D_E40A_E52K 서열번호 55 110 100,000 50
H30R_E35D_E40A_E52R 서열번호 56 230 56,000 28
H30R_E35D_E40A_E52A 서열번호 57 270 42,000 21
H30R_E35D_E40A_E52H 서열번호 58 280 38,000 19
H30R_E35D_E40A_E52D 서열번호 59 300 30,000 15
그 결과, 상기의 표 4에서 나타난 바와 같이 서열번호 55로 표시되는 브라제인(H30R_E35D_E40A_E52K), 서열번호 56으로 표시되는 브라제인(H30R_E35D_E40A_E52R), 서열번호 57로 표시되는 브라제인(H30R_E35D_E40A_E52A), 서열번호 58로 표시되는 브라제인(H30R_E35D_E40A_E52H), 서열번호 59로 표시되는 브라제인(H30R_E35D_E40A_E52D)를 브라제인 부타입의 단백질과 비교하였을 경우 최소 15배에서 최대 약 50배 이상(1 g/100㎖의 수크로오스 대비 최소 약 30,000배에서 최대 약 100,000배)의 단맛을 나타내는 것으로 확인되었다. 특히, 브라제인(H30R_E35D_E40A_E52K)의 경우, 가장 높은 단맛 증가율을 나타내었다.
<7-2> 브라제인 4차 변이체의 열 안정성 측정
상기 실시예 <7-1>에서 측정된 결과를 바탕으로 높은 단맛을 나타내는 브라제인 변이체, 즉 서열번호 55로 표시되는 브라제인(H30R_E35D_E40A_E52K), 서열번호 56로 표시되는 브라제인(H30R_E35D_E40A_E52R), 서열번호 57로 표시되는 브라제인(H30R_E35D_E40A_E52A), 서열번호 58로 표시되는 브라제인(H30R_E35D_E40A_E52H), 서열번호 59로 표시되는 브라제인(H30R_E35D_E40A_E52D)와 같은 브라제인 변이체 100㎎을 50 mM 트리스-염산(Tris-HCl, pH 8.0) 용액에 용해시킨 후 80 ℃에서 4시간동안 가열 후 각각의 브라제인 4차 변이체에 대해 열처리 전의 단맛을 기준으로 상기 실시예 <7-1>과 동일한 방법으로 20명의 피실험자를 대상으로 단맛 변화 정도를 측정하고, 그 결과를 상대 활성으로 나타내어 도 25에 기재하였다.
그 결과, 서열번호 55로 표시되는 브라제인(H30R_E35D_E40A_E52K), 서열번호 56로 표시되는 브라제인(H30R_E35D_E40A_E52R), 서열번호 57로 표시되는 브라제인(H30R_E35D_E40A_E52A)과 같은 브라제인 4차 변이체에서 브라제인의 열 안정성을 그대로 유지하는 것으로 나타났다.
본 발명에서 효모 발현계를 이용하여 개발한 고효율의 감미도를 가진 재조합 브라제인을 식품감미료로 이용한다면 당뇨병, 비만 등의 질환들로 맛을 즐길 수 없는 환자들에게도 감미 단백질을 섭취함으로써 칼로리 혹은 당 수치에 상관없이 단맛을 느낄 수 있게 하는 대체 감미료로 사용할 수 있을 것이다.

Claims (25)

  1. 클루이베로마이세스 락티스(Kluyveromyces lactis) 알파-메이팅(α-mating) 신호서열 및 브라제인 유전자를 포함하는 브라제인 발현용 폴리뉴클레오티드.
  2. 제1항에 있어서, 상기 브라제인 유전자는 야생형 브라제인 유전자 또는 브라제인 변이체 유전자인 폴리뉴클레오티드.
  3. 제1항에 있어서, 서열번호 11 내지 서열번호 19로 이루어진 군에서 선택된 염기서열을 갖는 폴리뉴클레오티드.
  4. 클루이베로마이세스 락티스(Kluyveromyces lactis) 알파-메이팅(α-mating) 신호서열 및 브라제인 유전자를 포함하는 폴리뉴클레오티드를 포함하는 브라제인 발현용 재조합 발현벡터.
  5. 제4항에 있어서, LAC4 작동 유전자를 포함하는 재조합 발현벡터.
  6. 제4항에 있어서, pKLAC2-브라제인인 재조합 발현벡터.
  7. 제4항의 재조합 발현벡터로 형질전환시킨 클루이베로마이세스 락티스(Kluyveromyces lactis).
  8. 제7항의 클루이베로마이세스 락티스(Kluyveromyces lactis)를 배양하는 단계;
    상기 배양액에서 균체를 제거하여 정제하는 단계; 및
    탈염과정을 수행하는 단계
    를 포함하는 브라제인의 생산방법.
  9. 제8항에 있어서, 상기 배양은 질소 공급원으로 효모 추출물 0.5 내지 5% 및 펩톤 0.5 내지 5%로 이루어진 군에서 선택된 하나 이상을 포함하고, 탄소 공급원으로는 갈락토오스 1 내지 4%, 글루코오스 1 내지 4%, 젖당 1 내지 4% 및 전분 1 내지 4%로 이루어진 군에서 선택된 하나 이상을 포함하는 배지에서 실시하는 브라제인의 생산방법.
  10. 제8항에 있어서, 상기 배양은 효모 추출물 0.5 내지 5%, 펩톤 0.5 내지 5% 및 갈락토오스 1 내지 4%를 포함하는 배지에서 실시하는 브라제인의 생산방법.
  11. 제8항에 있어서, 상기 배양은 pH 4.5 내지 6.0에서 실시하는 브라제인의 생산방법.
  12. 제8항에 있어서, 상기 배양은 pH 5.0 내지 5.5에서 실시하는 브라제인의 생산방법.
  13. 제8항에 있어서, 상기 배양은 25 내지 35 ℃에서 실시하는 브라제인의 생산방법.
  14. 제8항에 있어서, 상기 정제는 양이온 교환 크로마토그래피를 이용하여 실시하는 브라제인의 생산방법.
  15. 제8항에 있어서, 상기 탈염은 분리형 필터(cut-off filter)를 이용하여 실시하는 브라제인의 생산방법.
  16. 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58 및 서열번호 59로 이루어진 군에서 선택된 아미노산 서열을 가지는 브라제인 4차 변이체.
  17. 대장균 pelB 신호서열 및 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58 및 서열번호 59로 이루어진 군에서 선택된 아미노산 서열을 암호화하는 브라제인 4차 변이체 발현용 폴리뉴클레오티드.
  18. 제 17 항에 있어서, 상기 대장균 pelB 신호서열은 서열번호 65의 염기서열을 가지는 폴리뉴클레오티드.
  19. 제 17 항에 있어서, 상기 폴리뉴클레오티드는 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52 및 서열번호 53으로 이루어진 군에서 선택된 염기서열을 가지는 것을 특징으로 하는 폴리뉴클레오티드.
  20. 프로모터 및 이와 작동가능하게 연결된 제 17 항의 폴리뉴클레오티드를 포함하는 것을 특징으로 하는 브라제인 4차 변이체 발현용 재조합 발현벡터.
  21. 제 20 항에 있어서, 상기 프로모터는 대장균 pelB 프로모터인 재조합 발현벡터.
  22. 제 20 항에 있어서, 상기 재조합 발현벡터는 pET26B(+)-브라제인(H30R_E35D_E40A_E52K), pET26B(+)-브라제인(H30R_E35D_ E40A_E52R), pET26B(+)-브라제인(H30R_E35D_E40A_E52A), pET26B(+)-브라제인(H30R_E35D_E40A_E52H) 및 pET26B(+)-브라제인(H30R_E35D_E40A_E52D)로 이루어진 군에서 선택된 재조합 발현벡터.
  23. 제 20 항의 재조합 발현벡터로 형질전환된 대장균.
  24. 제 23 항의 대장균을 배양하는 단계;
    상기 배양된 대장균의 세포막간극의 단백질을 분리하는 단계; 및
    상기 분리된 세포막간극 단백질을 열 처리하는 단계
    를 포함하는 브라제인 4차 변이체의 제조방법.
  25. 제 16 항의 브라제인 4차 변이제를 유효성분으로 포함하는 당도 증진용 식품 조성물.
PCT/KR2011/001309 2010-02-24 2011-02-24 브라제인 발현용 재조합 발현벡터 및 높은 단맛을 가지는 신규한 브라제인 다중 변이체 WO2011105841A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0016661 2010-02-24
KR1020100016660A KR101083040B1 (ko) 2010-02-24 2010-02-24 높은 단맛을 가지는 신규한 브라제인 다중 변이체 및 이의 제조방법
KR1020100016661A KR20110097043A (ko) 2010-02-24 2010-02-24 브라제인 발현용 재조합 발현벡터 및 이를 이용한 브라제인의 대량 생산방법
KR10-2010-0016660 2010-02-24

Publications (3)

Publication Number Publication Date
WO2011105841A2 WO2011105841A2 (ko) 2011-09-01
WO2011105841A9 true WO2011105841A9 (ko) 2012-01-26
WO2011105841A3 WO2011105841A3 (ko) 2012-04-05

Family

ID=44507451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001309 WO2011105841A2 (ko) 2010-02-24 2011-02-24 브라제인 발현용 재조합 발현벡터 및 높은 단맛을 가지는 신규한 브라제인 다중 변이체

Country Status (1)

Country Link
WO (1) WO2011105841A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108103068A (zh) * 2017-12-29 2018-06-01 深圳市国创纳米抗体技术有限公司 一种制备抗癌胚抗原的纳米抗体的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416892B1 (ko) 2012-07-30 2014-07-09 중앙대학교 산학협력단 단맛이 증가된 신규 브라제인 다중 변이체 및 이의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2608540B2 (ja) * 1982-05-19 1997-05-07 ギスト ブロカデス ナ−ムロ−ゼ フエンノ−トチヤツプ クルイベロミセス種のためのクローニング系
US5221624A (en) * 1988-11-08 1993-06-22 International Genetic Engineering, Inc. DNA encoding (Lys46, Asp97, Asp113) and (Lys46, Asp.sup.137) thaumatin I polypeptides
US6274707B1 (en) * 1999-04-14 2001-08-14 Wisconsin Alumni Research Foundation Protein sweetener
KR100809100B1 (ko) * 2006-10-04 2008-03-10 중앙대학교 산학협력단 대장균 pelB 신호서열 및 브라제인 유전자를 포함하는폴리뉴클레오티드 및 이를 이용한 브라제인의 제조방법
KR100981087B1 (ko) * 2008-02-29 2010-09-08 중앙대학교 산학협력단 높은 단맛을 가지는 신규한 브라제인 변이체 및 다중변이체의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108103068A (zh) * 2017-12-29 2018-06-01 深圳市国创纳米抗体技术有限公司 一种制备抗癌胚抗原的纳米抗体的方法
CN108103068B (zh) * 2017-12-29 2021-05-04 深圳市国创纳米抗体技术有限公司 一种制备抗癌胚抗原的纳米抗体的方法

Also Published As

Publication number Publication date
WO2011105841A2 (ko) 2011-09-01
WO2011105841A3 (ko) 2012-04-05

Similar Documents

Publication Publication Date Title
KR100981087B1 (ko) 높은 단맛을 가지는 신규한 브라제인 변이체 및 다중변이체의 제조방법
WO2011025077A1 (ko) 높은 단맛을 가지는 신규한 브라제인 변이체 및 다중 변이체의 제조방법
AU6587594A (en) Expression of heterologous polypeptides in halobacteria
US7655449B2 (en) β-fructofuranosidase variants
JP2008521767A (ja) タンパク質の単離および精製
JPH0847393A (ja) 酵母からタンパク質を分泌させるためのシグナル配列
WO2011105841A9 (ko) 브라제인 발현용 재조합 발현벡터 및 높은 단맛을 가지는 신규한 브라제인 다중 변이체
Illingworth et al. Secretion of the sweet-tasting plant protein thaumatin by Bacillus subtilis
Iwata et al. Characteristics of the nuclear form of the Arabidopsis transcription factor AtbZIP60 during the endoplasmic reticulum stress response
KR20120090019A (ko) 브라제인 발현용 재조합 발현벡터 및 이를 이용한 브라제인의 대량 생산방법
KR100990667B1 (ko) 높은 단맛을 가지는 신규한 브라제인 변이체 및 이의 용도
KR20110097043A (ko) 브라제인 발현용 재조합 발현벡터 및 이를 이용한 브라제인의 대량 생산방법
WO2023121427A1 (ko) 당전이 효소 변이체 및 이를 이용한 스테비올 배당체의 제조방법
KR100628024B1 (ko) 식물에서 상피세포재생인자 및 인간 혈청 알부민을포함하는 융합 폴리펩타이드의 생산 방법
KR101083040B1 (ko) 높은 단맛을 가지는 신규한 브라제인 다중 변이체 및 이의 제조방법
KR100809100B1 (ko) 대장균 pelB 신호서열 및 브라제인 유전자를 포함하는폴리뉴클레오티드 및 이를 이용한 브라제인의 제조방법
WO2014021526A1 (ko) 단맛이 증가된 신규 브라제인 다중 변이체 및 이의 제조방법
JP3005621B2 (ja) リシントキシン
AU618011B2 (en) Preparation of novel protein sweeteners-monellin type
JP2715000B2 (ja) 蛋白質甘味料の酵母中における発現
Yamada et al. Cloning and heterologous expression of the antibiotic peptide (ABP) genes from Rhizopus oligosporus NBRC 8631
JPS62158487A (ja) 突然変異体コ−デイング配列
KR20170094986A (ko) 재조합 레반슈크라제 발현 벡터 및 이를 이용한 레반의 대량 생산 방법
EP0323489A1 (en) Preparation of novel protein sweeteners
US20110200541A1 (en) Recombinant preparation of bromelain inhibitors and bromelain inhibitor precursor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747731

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747731

Country of ref document: EP

Kind code of ref document: A2