WO2011105442A1 - ジアリールカーボネートの製造方法 - Google Patents

ジアリールカーボネートの製造方法 Download PDF

Info

Publication number
WO2011105442A1
WO2011105442A1 PCT/JP2011/054018 JP2011054018W WO2011105442A1 WO 2011105442 A1 WO2011105442 A1 WO 2011105442A1 JP 2011054018 W JP2011054018 W JP 2011054018W WO 2011105442 A1 WO2011105442 A1 WO 2011105442A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
titanium
carbonate
composition
diaryl carbonate
Prior art date
Application number
PCT/JP2011/054018
Other languages
English (en)
French (fr)
Inventor
ブディアント 西山
信寿 三宅
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to JP2012501828A priority Critical patent/JP5652965B2/ja
Priority to US13/579,649 priority patent/US9079170B2/en
Priority to SG2012051728A priority patent/SG183102A1/en
Priority to BR112012019338-4A priority patent/BR112012019338B1/pt
Priority to ES11747402T priority patent/ES2916720T3/es
Priority to EA201290685A priority patent/EA025536B1/ru
Priority to CN201180009107.7A priority patent/CN102753516B/zh
Priority to EP11747402.3A priority patent/EP2540697B1/en
Publication of WO2011105442A1 publication Critical patent/WO2011105442A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0214Aryloxylates, e.g. phenolates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0252Nitrogen containing compounds with a metal-nitrogen link, e.g. metal amides, metal guanidides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/62Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/42Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for producing diaryl carbonates.
  • Diaryl carbonate is useful as an industrial raw material for polycarbonate, which is an engineering plastic. Therefore, a technique for stably producing diaryl carbonate with high efficiency is important.
  • diaryl carbonate dialkyl carbonate and an aromatic monohydroxy compound (for example, phenol) are subjected to an ester exchange reaction represented by the following formula (A) to obtain alkyl aryl carbonate.
  • a method of obtaining diaryl carbonate by performing disproportionation reaction represented by the following formula (B) using carbonate is known.
  • R represents a linear or branched aliphatic group having 1 to 12 carbon atoms or an alicyclic aliphatic group having 5 to 12 carbon atoms.
  • both the transesterification reaction represented by the above formula (A) and the disproportionation reaction represented by the above formula (B) are equilibrium reactions and have a slow reaction rate.
  • the transesterification has a problem that the reaction efficiency is poor because the equilibrium is biased toward the original system.
  • Such catalysts include titanium compounds (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1), organotin compounds (see, for example, Patent Document 3 and Non-Patent Document 2), and nitrogen-containing basic compounds. (See, for example, Patent Document 4), samarium compounds (for example, see Non-Patent Document 3), and the like.
  • the catalyst used in the reactions shown in the above formulas (A) and (B) is solid or liquid, but there is also a report on a method for supplying the catalyst.
  • a method of supplying a catalyst for example, titanium tetraalkoxide having an alkyl moiety similar to the alkyl moiety in the dialkyl carbonate used as a raw material (see, for example, Patent Document 9).
  • a catalyst for example, titanium tetraalkoxide
  • Patent Document 9 a catalyst having an alkyl moiety similar to the alkyl moiety in the dialkyl carbonate used as a raw material
  • a dialkyl carbonate, an aromatic hydroxy compound and a catalyst are continuously supplied to a reactor, alcohol produced as a by-product is continuously extracted from a distillation column attached to the reactor, and an alkyl is further removed from the reactor.
  • a method for extracting an aromatic carbonate composed of aryl carbonate, diaryl carbonate, or a mixture thereof for example, see Patent Document 10.
  • separating the supply position of a dialkyl carbonate and an aromatic hydroxy compound, and the supply position of a catalyst is mentioned (for example, refer patent document 11). According to these methods, it is possible to prevent the catalyst from being deposited by long-time operation and prevent clogging.
  • the catalyst used for the reaction shown in the above formulas (A) and (B) is usually in a state dissolved in the reaction solution under the reaction conditions. Further, since the catalyst has a boiling point higher than that of the aromatic carbonate, in order to obtain a high-purity aromatic carbonate from the reaction product liquid, first, the low boiling point component is removed from the reaction product liquid, and then, among the high boiling point components. It is necessary to separate the diaryl carbonate from the catalyst to purify the diaryl carbonate. At this time, it is known that the catalyst may be recovered as a high-boiling component and reused, or a partially deactivated component may be removed (see, for example, Patent Document 8). In addition, a method of separating a catalyst by using a catalyst having a low boiling point such as alkylamine is also known (see, for example, Patent Document 12).
  • the decrease in the catalyst function is determined only by analyzing the concentrations of the product alkylaryl carbonate and diaryl carbonate with a certain operating time and decreasing the product concentration. For this reason, the cause is unknown due to fluctuations in operating conditions, etc., but productivity may decrease.
  • the present invention elucidates the influence of the by-product produced on the catalyst in the production of diaryl carbonate, suppresses the deterioration of the catalyst function, and the catalyst is stably supplied without clogging in the reactor.
  • An object of the present invention is to provide a stable and efficient method for producing diaryl carbonate.
  • the present inventors have conducted intensive research on a method for producing diaryl carbonate. As a result, it has been clarified that the productivity of diaryl carbonate is stable when a specific by-product coexists with a metal-containing catalyst composition in a specific amount. It was clarified that the clogging of the catalyst in the reactor can be suppressed by using. And by controlling the ratio of the metal atom of a metal containing catalyst composition and a specific by-product, and also by using a specific composition in a specific process, it is diaryl with high efficiency stably for a long period of time. The inventors have found that carbonate can be produced and have completed the present invention.
  • the present invention relates to the following, for example.
  • a method for producing a diaryl carbonate using a metal-containing catalyst composition as a reaction catalyst A step (1) of obtaining an alkylaryl carbonate by transesterifying the dialkyl carbonate and the aromatic monohydroxy compound, and taking out by-produced alcohol out of the reaction system; A step (2) of obtaining a reaction product containing a diaryl carbonate by subjecting the alkylaryl carbonate obtained in the step (1) to a transesterification reaction or a disproportionation reaction; Separating the reaction product obtained in step (2) into a low-boiling component containing diaryl carbonate and a high-boiling component containing a reaction catalyst by distillation (3); The step (4) of recycling the high boiling point component separated in the step (3) to the step (1) and / or the step (2), The high boiling point component separated in the step (3) contains 70% by mass or less of a component having a higher boiling point than the diaryl carbonate.
  • the high boiling point component separated in the step (3) includes a compound represented by the following formula (1),
  • the compounds shown in the following (i) to (iii) contained in the high-boiling components at the time of recycling in the step (4) satisfy the following conditions (iv) to (vi), respectively.
  • Ar 1 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms, X and YO are located in the ortho position, X is a hydroxy group, 2) represents a substituent represented by the following formula (3), and Y represents hydrogen or a substituent represented by the following formula (3).
  • R 1 represents a linear or branched aliphatic group having 1 to 12 carbon atoms, an alicyclic aliphatic group having 5 to 12 carbon atoms, or unsubstituted or Represents a substituted aryl group having 6 to 20 carbon atoms.
  • the titanium-containing catalyst composition is a titanium-containing composition formed from a diaryl carbonate and an aryloxy titanium composition, and titanium constituting the aryloxy titanium composition with respect to 100% by mass of the titanium-containing composition.
  • Ar 2 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms
  • Ar 3 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms
  • Ar The two substituents in 2 are located ortho to each other.
  • Ar 4 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms
  • R 2 represents a linear or branched aliphatic group having 1 to 12 carbon atoms or a carbon number.
  • Ar 5 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms, and the two hydroxy groups in Ar 5 are located in the ortho positions with respect to each other.
  • Ar 6 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms, and Ar 7 and Ar 8 each independently represents an unsubstituted or substituted carbon atom having 6 to 20 carbon atoms.
  • Ar 9 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms
  • Ar 10 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms
  • R R 3 represents a linear or branched aliphatic group having 1 to 12 carbon atoms or an alicyclic aliphatic group having 5 to 12 carbon atoms
  • the two substituents in Ar 9 are located in the ortho positions relative to each other.
  • the step (1) and / or the step (2) includes a diaryl carbonate, an aryloxytitanium composition and a compound represented by the following formula (X) and / or the following formula (Y) Done in
  • the ratio of the total number of moles of the compound represented by the following formula (X) and the following formula (Y) to the number of moles of titanium atoms represented by the following formula (X) and the following formula (Y) (1) to [8], wherein the total number of compounds / titanium atom is 0.005 to 4.
  • Ar 21 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms
  • Ar 22 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms
  • Ar The two substituents in 21 are located ortho to each other.
  • Ar 23 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms
  • Ar 24 and Ar 25 each independently represents an unsubstituted or substituted carbon atom having 6 to 20 carbon atoms.
  • a sample for analysis is prepared by adding one or more equivalents of a monodentate ligand or a polydentate ligand coordinated with a metal atom to the collected high boiling point component with respect to the titanium atom in the high boiling point component, Any one of [1] to [9], further comprising a step of quantifying the compounds shown in (i) to (iii) contained in the high-boiling component by analyzing the analytical sample.
  • the collected high boiling point component is at least one additive selected from the group consisting of water, polyvalent hydroxy compounds, nitrogen-containing heterocyclic compounds, sulfur-containing heterocyclic compounds, fluorine-substituted alcohols, and fluorine-substituted organic acids.
  • the method further comprises the step of quantifying the compounds shown in (i) to (iii) contained in the high-boiling component by analyzing the analytical sample by gas chromatography or liquid chromatography. [1] The process for producing a diaryl carbonate according to any one of [10].
  • the method further includes a step of controlling the compounds shown in (i) to (iii) contained in the high-boiling components when recycled in the step (4) to satisfy the conditions (iv) to (vi), respectively.
  • the dialkyl carbonate used in the step (1) is a compound represented by the following formula (9):
  • the aromatic monohydroxy compound used in the step (1) is a compound represented by the following formula (10)
  • the alkylaryl carbonate obtained in the step (1) is a compound represented by the following formula (11):
  • the method for producing a diaryl carbonate according to any one of [1] to [12], wherein the diaryl carbonate obtained in the step (2) is a compound represented by the following formula (12).
  • R 4 represents a linear or branched aliphatic group having 1 to 12 carbon atoms or an alicyclic aliphatic group having 5 to 12 carbon atoms.
  • Ar 11 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms.
  • R 5 represents a linear or branched aliphatic group having 1 to 12 carbon atoms or an alicyclic aliphatic group having 5 to 12 carbon atoms, and Ar 12 is unsubstituted or substituted.
  • step (1) The reaction of the step (1) and the step (2) Reaction comprising at least one selected from the group consisting of a stirring tank, a multistage stirring tank, a packed tower, a distillation tower, a multistage distillation tower, a continuous multistage distillation tower, a reactor equipped with a support inside, and a forced circulation reactor
  • step (1) a dialkyl carbonate and an aromatic monohydroxy compound are continuously fed to the reactor, The method for producing a diaryl carbonate according to [15], wherein the reaction product obtained in the step (2) is continuously taken out from the reaction apparatus.
  • Distillation in the step (3) is performed by a distillation tower, The bottom temperature of the distillation column is 150 to 300 ° C., The method for producing a diaryl carbonate according to any one of [1] to [19], wherein the residence time at the bottom of the distillation column is 0.02 to 100 hr. [21] The method for producing a diaryl carbonate according to [3] or [4], wherein the aryloxytitanium composition is phenoxytitanium. [22] The method for producing a diaryl carbonate according to any one of [1] to [21], wherein the diaryl carbonate is diphenyl carbonate.
  • diaryl carbonate can be produced stably for a long time with high productivity.
  • the schematic block diagram of an example of the manufacturing apparatus which enforces the manufacturing method of the diaryl carbonate in this Embodiment is shown.
  • the schematic block diagram of an example of the manufacturing apparatus which enforces the manufacturing method of the diaryl carbonate in this Embodiment is shown.
  • the schematic block diagram of an example of the manufacturing apparatus which enforces the manufacturing method of the diaryl carbonate in this Embodiment is shown.
  • the present embodiment the best mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • positional relationships such as up, down, left and right are based on the positional relationships shown in the drawings unless otherwise specified.
  • the dimensional ratios in the drawings are not limited to the illustrated ratios.
  • the method for producing a diaryl carbonate according to the present embodiment is a method for producing a diaryl carbonate using a metal-containing catalyst composition as a reaction catalyst, and by transesterifying a dialkyl carbonate and an aromatic monohydroxy compound, A step (1) of obtaining an aryl carbonate and taking out by-produced alcohol out of the reaction system, and an alkylaryl carbonate obtained in the step (1) are subjected to a transesterification reaction or a disproportionation reaction, thereby producing a diaryl carbonate.
  • a component having a higher boiling point than diaryl carbonate is contained in an amount of 70% by mass or less, and the high boiling component separated in the step (3) includes a compound represented by the following formula (1), and is recycled in the step (4).
  • Ar 1 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms, X and Y—O are located in the ortho position, X is a hydroxy group, and the following formula ( 2) represents a substituent represented by the following formula (3), and Y represents hydrogen or a substituent represented by the following formula (3).
  • R 1 is a linear or branched aliphatic group having 1 to 12 carbon atoms, an alicyclic aliphatic group having 5 to 12 carbon atoms, or unsubstituted. Alternatively, it represents a substituted aryl group having 6 to 20 carbon atoms.
  • Step (1) is a step of obtaining an alkylaryl carbonate by transesterifying a dialkyl carbonate and an aromatic monohydroxy compound, and taking out by-produced alcohol out of the reaction system.
  • the transesterification reaction is usually performed in the presence of a reaction catalyst described later.
  • the dialkyl carbonate used in the step (1) is preferably a compound represented by the following formula (9).
  • R 4 represents a linear or branched aliphatic group having 1 to 12 carbon atoms or an alicyclic aliphatic group having 5 to 12 carbon atoms.
  • R 4 is more preferably an aliphatic alkyl group having 1 to 8 carbon atoms.
  • dialkyl carbonate examples include dimethyl carbonate, diethyl carbonate, dipropyl carbonate (each isomer), dibutenyl carbonate (each isomer), dibutyl carbonate (each isomer), dipentyl carbonate (each isomer), and dihexyl carbonate. (Each isomer), diheptyl carbonate (each isomer), dioctyl carbonate (each isomer), dinonyl carbonate (each isomer), didecyl carbonate (each isomer), dicyclopentyl carbonate, dicyclohexyl carbonate, dicyclo Examples include heptyl carbonate.
  • the dialkyl carbonate is preferably a dialkyl carbonate in which R 4 in the formula (9) is a linear or branched aliphatic group having 1 to 6 carbon atoms.
  • dialkyl carbonates include dimethyl carbonate, diethyl carbonate, dipropyl carbonate (each isomer), dibutenyl carbonate (each isomer), dibutyl carbonate (each isomer), dipentyl carbonate (each isomer). , Dihexyl carbonate (each isomer).
  • Such a dialkyl carbonate can be easily separated from the diaryl carbonate by distillation, and is suitable from a practical viewpoint.
  • the aromatic monohydroxy compound used in the step (1) is preferably a compound represented by the following formula (10).
  • Ar 11 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms.
  • Ar 11 in the formula (10) is, for example, phenyl, tolyl (each isomer), xylyl (each isomer), trimethylphenyl (each isomer), tetramethylphenyl (each isomer), ethylphenyl ( Each isomer), propylphenyl (each isomer), butylphenyl (each isomer), diethylphenyl (each isomer), methylethylphenyl (each isomer), pentylphenyl (each isomer), hexylphenyl (each Isomers), phenyl groups such as cyclohexylphenyl (each isomer) and various alkylphenyl groups; various alkoxyphenyls such as methoxyphenyl (each isomer), ethoxyphenyl (each isomer), butoxyphenyl (each isomer) Groups: fluoroph
  • A represents a single bond, —O—, —S—, —CO—, —SO 2 —, an alkylene group represented by the following formula (10a-1), a substituted alkylene group, or the following (10a- It represents any divalent group selected from the group consisting of cycloalkylene groups shown in 2).
  • the aromatic ring in the formula (10a) is substituted with a substituent such as a lower alkyl group having 1 to 12 carbon atoms, a lower alkoxy group having 1 to 12 carbon atoms, an ester group, a hydroxy group, a nitro group, a halogen, or a cyano group. May be substituted.
  • a substituent such as a lower alkyl group having 1 to 12 carbon atoms, a lower alkoxy group having 1 to 12 carbon atoms, an ester group, a hydroxy group, a nitro group, a halogen, or a cyano group. May be substituted.
  • R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, a lower alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, an aryl group or an aralkyl group. And may be substituted with a halogen atom or an alkoxy group.
  • k is an integer of 3 to 11, and the hydrogen atom in —CH 2 — may be substituted with a lower alkyl group having 1 to 12 carbon atoms, an aryl group, a halogen atom, or the like. .
  • Ar 11 in the formula (10) examples include naphthyl (each isomer), methylnaphthyl (each isomer), dimethylnaphthyl (each isomer), chloronaphthyl (each isomer), methoxynaphthyl ( Isomers), naphthyl groups such as cyanonaphthyl (each isomer) and various substituted naphthyl groups; pyridine (each isomer), coumaryl (each isomer), quinolyl (each isomer), methylpyridyl (each isomer) ), Chloropyridyl (each isomer), methylcoumaryl (each isomer), methylquinolyl (each isomer), and various substituted and unsubstituted heteroaromatic groups.
  • Examples of the aromatic monohydroxy compound represented by the formula (10) include phenol, cresol (each isomer), xylenol (each isomer), trimethylphenol (each isomer), tetramethylphenol (each isomer), Ethylphenol (each isomer), propylphenol (each isomer), butylphenol (each isomer), diethylphenol (each isomer), methylethylphenol (each isomer), methylpropylphenol (each isomer), di Various alkylphenols such as propylphenol (each isomer), methylbutylphenol (each isomer), pentylphenol (each isomer), hexylphenol (each isomer), cyclohexylphenol (each isomer); methoxyphenol (each isomer) Body), ethoxyphenol (each isomer), etc. Turkey alkoxy phenols; various substituted phenols represented by the
  • aromatic monohydroxy compound represented by the formula (10) examples include naphthol (each isomer) and various substituted naphthols; hydroxypyridine (each isomer), hydroxycoumarin (each isomer), hydroxyquinoline ( Heteroaromatic monohydroxy compounds such as each isomer) are also used.
  • the aromatic monohydroxy compound is preferably an aromatic monohydroxy compound in which Ar 11 in the formula (10) is an aromatic group having 6 to 10 carbon atoms, and particularly preferably phenol.
  • transesterification reaction Using the above-described dialkyl carbonate and aromatic monohydroxy compound, transesterification as shown in the following formula (a) can be carried out in the presence of a reaction catalyst described later to obtain an alkylaryl carbonate.
  • R represents an alkyl group
  • Ar represents an aryl group
  • the alkylaryl carbonate obtained in the step (1) is preferably a compound represented by the following formula (11).
  • R 5 represents a linear or branched aliphatic group having 1 to 12 carbon atoms or an alicyclic aliphatic group having 5 to 12 carbon atoms, and Ar 12 is unsubstituted or substituted. And an aryl group having 6 to 20 carbon atoms.
  • R 5 and Ar 12 correspond to R 4 in the dialkyl carbonate described above and Ar 11 in the aromatic monohydroxy compound described above, respectively.
  • alkylaryl carbonate examples include methylphenyl carbonate, ethylphenyl carbonate, propylphenyl carbonate (each isomer), butylphenyl carbonate (each isomer), pentylphenyl carbonate (each isomer), and hexylphenyl carbonate.
  • R 5 in the formula (11) is methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), etc.
  • Ar 12 in the formula (11) is an aromatic group having 6 to 10 carbon atoms.
  • the content of metal atoms in the metal-containing catalyst composition in the step (1) is preferably 0.0001 to 20% by mass, more preferably 0.001 to 15% by mass, and More preferably, the content is 01 to 10% by mass.
  • the metal atom content in the metal-containing catalyst composition is within the above range, the fluidity of the composition tends to be good.
  • the metal atom content in the metal-containing catalyst composition can be determined by the method described in the examples described later.
  • the reaction temperature is preferably 150 to 300 ° C., more preferably 160 to 270 ° C., and further preferably 180 to 250 ° C.
  • the reaction pressure is preferably 0.1 to 2.0 ⁇ 10 7 Pa, more preferably 0.5 to 1.0 ⁇ 10 7 Pa, and 1 to 5.0 ⁇ 10 6 Pa. More preferably.
  • the reaction time is preferably 0.05 to 50 hr, more preferably 0.1 to 35 hr, and further preferably 0.2 to 25 hr.
  • Such reaction conditions are preferable in terms of controlling reaction conditions in industrial production.
  • Step (2) is a step of obtaining a reaction product containing diaryl carbonate by subjecting the alkylaryl carbonate obtained in step (1) described above to a transesterification reaction or disproportionation reaction.
  • the transesterification reaction is a reaction represented by the following formula (a ′), and is a reaction in which the alkylaryl carbonate and the aromatic monohydroxy compound further react to form a diaryl carbonate and an alcohol.
  • the transesterification reaction is usually performed in the presence of a reaction catalyst to be described later, similarly to the transesterification reaction in the aforementioned step (1).
  • the disproportionation reaction is a reaction as shown in the following formula (b), and is usually performed in the presence of a reaction catalyst described later.
  • R represents an alkyl group
  • Ar represents an aryl group.
  • the alcohol by-produced by the reaction represented by the above formula (a) and / or (a ′) may be recovered for recycling and is preferably used for the synthesis of dialkyl carbonate.
  • the aliphatic carbonate can be obtained by a conventionally known method.
  • the aliphatic carbonate produced by the reaction represented by the above formula (b) is recovered for recycling, recycled, and reused in the reaction represented by the above formula (a) from the viewpoint of effective use of the compound. To preferred.
  • the reaction solution containing carbonate is used as it is or after the starting materials and reactants are removed, and then supplied to the second reactor to carry out the disproportionation reaction mainly represented by the above formula (b).
  • the dialkyl carbonate produced as a by-product in the process is extracted from the upper part of the distillation column in a gaseous state by distillation, and purified if necessary, and then reused as a starting material of the above formula (a). It is preferable to add a process.
  • the diaryl carbonate obtained in the step (2) is preferably a compound represented by the following formula (12).
  • Ar 13 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms. Ar 13 corresponds to Ar 12 of the alkyl aryl carbonate described above.
  • diaryl carbonate represented by the formula (12) examples include diaryl carbonates in which R 5 in the above alkyl aryl carbonate having R 5 and Ar 12 is substituted with Ar 12 described above.
  • diaryl carbonate examples include diphenyl carbonate, ditolyl carbonate, di (ethylphenyl) carbonate, di (butylphenyl) carbonate, dixylyl carbonate, di (trimethylphenyl) carbonate, di (chlorophenyl) carbonate, di (nitro Phenyl) carbonate, di (methoxyphenyl) carbonate, dicumyl carbonate, dinaphthyl carbonate, dibenzoylphenyl carbonate and the like.
  • these diaryl carbonates those in which Ar 13 is an aromatic group having 6 to 10 carbon atoms are particularly preferred, and diphenyl carbonate is more preferred.
  • the metal atom content in the metal-containing catalyst composition in the step (2) is preferably 0.0001 to 20% by mass, more preferably 0.001 to 15% by mass, and More preferably, the content is 01 to 10% by mass.
  • the metal atom content in the metal-containing catalyst composition is within the above range, the fluidity of the composition tends to be good.
  • the reaction temperature is preferably 150 to 300 ° C., more preferably 160 to 270 ° C., and further preferably 180 to 250 ° C.
  • the reaction pressure is preferably 0.1 to 2.0 ⁇ 10 7 Pa, more preferably 0.5 to 1.0 ⁇ 10 7 Pa, and 1 to 5.0 ⁇ 10 6 Pa. More preferably.
  • the reaction time is preferably 0.05 to 50 hr, more preferably 0.1 to 35 hr, and further preferably 0.2 to 25 hr.
  • Such reaction conditions are preferable in terms of controlling reaction conditions in industrial production.
  • Step (3) is a step of distilling the reaction product obtained in step (2) into a low-boiling component containing diaryl carbonate and a high-boiling component containing a reaction catalyst.
  • the distillation in the step (3) is preferably performed using a distillation column.
  • the bottom temperature of the distillation column is preferably 150 to 300 ° C., more preferably 160 to 270 ° C., and further preferably 180 to 250 ° C.
  • the residence time at the bottom of the distillation column is preferably 0.02 to 100 hr, more preferably 0.05 to 80 hr, and further preferably 0.1 to 50 hr.
  • the low boiling point component separated in the step (3) includes, for example, unreacted alkyl aryl carbonate in addition to diaryl carbonate.
  • a component having a boiling point higher than that of diaryl carbonate is usually contained, but the remaining diaryl carbonate that could not be separated may be contained.
  • the component having a higher boiling point than the diaryl carbonate is contained by 70% by mass or less, and preferably by 60% by mass or less. 50% by mass or less is more preferable.
  • the minimum of content of a component with a boiling point higher than this diaryl carbonate is not specifically limited, For example, it is 0.1 mass% or more.
  • the content of components having a boiling point higher than that of the diaryl carbonate can be determined by the method described later in (Quantitative analysis of compound of formula (1)).
  • the high-boiling component separated in the step (3) includes a compound represented by the following formula (1).
  • Ar 1 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms, X and Y—O are located in the ortho position, X is a hydroxy group, and the following formula ( 2) represents a substituent represented by the following formula (3), and Y represents hydrogen or a substituent represented by the following formula (3).
  • R 1 is a linear or branched aliphatic group having 1 to 12 carbon atoms, an alicyclic aliphatic group having 5 to 12 carbon atoms, or unsubstituted. Alternatively, it represents a substituted aryl group having 6 to 20 carbon atoms.
  • Ar 1 examples include phenylene, methylphenylene (each isomer), dimethylphenylene (each isomer), trimethylphenylene (each isomer), tetramethylphenylene, ethylphenylene (each isomer), diethylphenylene (each Isomers), methylethylphenylene (each isomer), pentylphenylene (each isomer), hexylphenylene (each isomer), cyclohexylphenylene (each isomer), and other phenylene groups and various alkylphenylene groups; methoxyphenylene (Each isomer), various alkoxyphenylene groups such as ethoxyphenylene (each isomer), butoxyphenylene (each isomer); fluorophenylene (each isomer), chlorophenylene (each isomer), bromophenylene (each isomer) ), Chloro
  • R 1 corresponds to R 5 or Ar 12 of the alkylaryl carbonate described above.
  • A is a single bond, —O—, —S—, —CO—, —SO 2 —, an alkylene group or a substituted alkylene group represented by the following formula (1a-1), or a group represented by the following formula (1a-2)
  • R 10 , R 11 , R 12 and R 13 are each independently a hydrogen atom, a lower alkyl group, a cycloalkyl group, an aryl group or an aralkyl group, which is substituted with a halogen atom or an alkoxy group. Also good.
  • k is an integer of 3 to 11, and the hydrogen atom may be substituted with a lower alkyl group, an aryl group or a halogen atom.
  • the compound represented by the formula (1) is preferably at least one selected from the group of compounds represented by the following formulas (4) to (8).
  • Ar 2 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms
  • Ar 3 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms
  • Ar The two substituents in 2 are located ortho to each other.
  • Ar 4 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms
  • R 2 represents a linear or branched aliphatic group having 1 to 12 carbon atoms or a carbon number. Represents an alicyclic aliphatic group of 5 to 12, and the two substituents in Ar 4 are located in the ortho positions relative to each other.
  • Ar 5 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms, and the two hydroxy groups in Ar 5 are located in the ortho positions relative to each other.
  • Ar 6 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms
  • Ar 7 and Ar 8 each independently represents an unsubstituted or substituted carbon atom having 6 to 20 carbon atoms.
  • the two substituents in Ar 6 are located in the ortho positions relative to each other.
  • Ar 9 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms
  • Ar 10 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms
  • R 10 3 represents a linear or branched aliphatic group having 1 to 12 carbon atoms or an alicyclic aliphatic group having 5 to 12 carbon atoms, and the two substituents in Ar 9 are located in the ortho positions.
  • the compound represented by the above formula (1) may be produced by a reaction between a raw material and an oxidizing substance, or may be produced as a by-product in the presence of a metal-containing catalyst composition due to a Fries transition reaction.
  • aromatic monohydroxy compound which is a raw material of the step (1)
  • an oxidizing substance such as oxygen
  • This aromatic dihydroxy compound corresponds to the case where X is a hydroxy group and Y is hydrogen in the compound represented by the formula (1).
  • Ar represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms
  • Ar ′ has two hydroxy groups at the ortho position, and has an unsubstituted or substituted group.
  • An arylene group having 6 to 20 carbon atoms is represented.
  • the aromatic dihydroxy compound by-produced by coexistence with an oxidizing substance such as oxygen further reacts with dialkyl carbonate, alkylaryl carbonate, or diaryl carbonate, and the following formula (d) and the following formula ( As shown in e), it changes to aromatic carbonates.
  • Ar represents an arylene group having a substituent at the ortho position
  • R and R ′ represent an alkyl group or an aryl group.
  • Ar represents an arylene group having a substituent at the ortho position
  • R and R ′ represent an alkyl group or an aryl group.
  • the metal-containing catalyst composition described later has a function of greatly improving the reaction rate of the transesterification reaction and the disproportionation reaction, thereby improving the productivity of diaryl carbonate.
  • Ar and Ar ′ represent an aryl group
  • Ar ′′ represents an arylene group
  • the salicylic acid ester produced by the above formula (f) is generally a compound represented by the above formula (4).
  • R represents an alkyl group
  • Ar represents an aryl group
  • Ar ′ represents an arylene group
  • the salicylic acid ester produced by the reaction of the formula (g) is generally a compound represented by the formula (5) described above.
  • salicylic acid ester by the side reaction described above increases as the temperature is higher, and furthermore, salicylic acid ester has a high boiling point, and thus is not separated from a metal-containing catalyst composition having a high boiling point by distillation separation. As a result, it becomes easy to coexist with the metal-containing catalyst composition.
  • the salicylic acid ester described above corresponds to the case where X is the formula (3) and Y is hydrogen in the compound represented by the formula (1).
  • Such salicylic acid ester reacts with dialkyl carbonate, alkylaryl carbonate, and diaryl carbonate to produce salicylic acid carbonate ester as shown in the following formula (h).
  • the salicylic acid carbonate ester thus produced corresponds to the case where X is the above formula (3) and Y is the above formula (3) in the compound represented by the above formula (1).
  • Ar represents an arylene group having a substituent at the ortho position
  • R and R ′ represent an alkyl group or an aryl group
  • Ar ′ represents an aryl group.
  • salicylic acid esters produced by the above-described fleece transfer reaction generally cause the productivity of the originally intended diaryl carbonate to be significantly reduced.
  • the method for producing a diaryl carbonate according to the present embodiment is described later in (i) to (iii) such as aromatic dihydroxy compounds, aromatic carbonates derived from the aromatic dihydroxy compounds, and salicylic acid esters.
  • aromatic dihydroxy compounds such as aromatic dihydroxy compounds, aromatic carbonates derived from the aromatic dihydroxy compounds, and salicylic acid esters.
  • Step (4) is a step of recycling the high-boiling components separated in step (3) to step (1) and / or step (2).
  • the total number of moles of the compound group (i) / number of moles of metal atoms is preferably 0.005 to 10, and more preferably 0.005 to 5.
  • the total number of moles of the compound group (ii) / the number of moles of metal atoms is preferably 0.005 to 3, more preferably 0.005 to 2.5.
  • the number of moles of the compound (iii) / the number of moles of metal atoms is preferably less than 1.7, and more preferably less than 1.5.
  • the lower limit of “the number of moles of the compound (iii) / the number of moles of metal atoms” is not particularly limited, but is, for example, 0.001 or more.
  • the total number of moles of the compound represented by the formula (1) / the number of moles of metal atoms is 0.005 to 10. Preferably, it is 0.005 to 5, more preferably 0.005 to 4.
  • the compound represented by the formula (1) is by-produced and accumulated, thereby reducing the productivity of diaryl carbonate. Therefore, in order to stably secure the productivity of diaryl carbonate, a part of the metal-containing catalyst composition contained in the distillation residue and the compound represented by the formula (1) are circulated and extracted.
  • the contained catalyst composition or the composition A described later is supplied to the production process, and the production is carried out in an environment that satisfies the above conditions (iv) to (vi).
  • the accumulated amount of the compound represented by the formula (1) may be small at the initial stage, but the distillation residue is previously prepared so as to satisfy the above conditions (iv) to (vi). It is also possible to add the compounds represented by the formula (1) to the metal-containing catalyst composition contained in and circulate them in the diaryl carbonate production process.
  • the target diaryl carbonate and the alkyl aryl carbonate produced in the intermediate step coexist with a high concentration metal-containing catalyst composition, or a metal-containing catalyst.
  • a high concentration metal-containing catalyst composition or a metal-containing catalyst.
  • the mixture of the product and the metal-containing catalyst composition is separated by distillation or the like, and the metal-containing catalyst composition contained in the distillation residue is circulated and recycled. It is generally used. At this time, some products coexist with a high concentration metal-containing catalyst composition in the recovery section of the distillation column.
  • the concentration of the metal-containing catalyst composition in the distillation residue liquid is preferably 20% by mass or less, more preferably It adjusts so that it may become 10 mass% or less.
  • the lower limit of the concentration of the metal-containing catalyst composition is preferably 0.05% by mass.
  • the aromatic dihydroxy compound is considered to be generated particularly when oxygen is mixed from the air into the raw material. Therefore, for example, if the raw material is previously purified by distillation in order to prevent oxygen contamination, and stored in a nitrogen atmosphere, the production of aromatic dihydroxy compounds can be suppressed.
  • the amount of oxygen contained in all raw materials applied in the production process is preferably 500 ppm or less, more preferably 50 ppm or less.
  • the by-product compound represented by the above formula (1) may form a stable complex with the metal component contained in the reaction catalyst. Then, the quantitative analysis of the compound represented by the formula (1) is made inaccurate, and as a result, the molar ratio between the compound represented by the formula (1) and the metal atom (the compound represented by the formula (1)). / Metal atom) The problem is that it cannot be calculated accurately.
  • the mixture containing the compound represented by the above formula (1) and the metal-containing catalyst composition is accurately quantitatively analyzed, and the molar ratio of the compound represented by the above formula (1) and the metal atom (formula It is important to accurately obtain the compound (metal atom represented by (1)).
  • a method for accurately quantitatively analyzing the molar ratio of the compound represented by the above formula (1) and the metal atom specifically, a method for producing a diaryl carbonate
  • an additive for dissociating the complexes is added to the generated mixture containing the compound represented by the above formula (1) and the metal-containing catalyst composition, Examples of the method include performing a process such as filtration as necessary, and performing quantitative analysis by gas chromatography, high performance liquid chromatography, or the like, which is a general analyzer.
  • the additive is selected according to the type of reaction catalyst.
  • a monodentate ligand or a polydentate ligand coordinated with a metal atom specifically, water, a polyvalent hydroxy compound, a nitrogen-containing heterocyclic compound, a sulfur-containing heterocyclic compound, a fluorine-substituted alcohol
  • examples include fluorine-substituted organic acids.
  • water, catechol, phenanthroline, hexafluoroisopropanol, and trifluoroacetic acid are used.
  • a monodentate ligand that collects a high-boiling component at the time of recycling in the step (4) and coordinates with a metal atom to the collected high-boiling component.
  • an analytical sample is prepared, and the high-boiling component is analyzed by analyzing the analytical sample. It is preferable that the method further includes a step of quantifying the compounds shown in the above (i) to (iii).
  • a high-boiling component at the time of recycling in the step (4) is collected, and water, a polyvalent hydroxy compound, a nitrogen-containing heterocyclic compound, a sulfur-containing heterocyclic system is added to the collected high-boiling component.
  • Sample for analysis by adding at least one additive selected from the group consisting of compounds, fluorine-substituted alcohols, and fluorine-substituted organic acids to the metal atom in the high boiling point component in an amount of 1 equivalent or more, preferably 3 equivalents or more.
  • analyzing the sample for analysis by gas chromatography or liquid chromatography to further quantify the compounds shown in (i) to (iii) contained in the high-boiling components. Is preferred.
  • the method for producing a diaryl carbonate according to the present embodiment includes the above (i) to (i) to (b) contained in the high-boiling components contained in the recycling step (4) after the compound quantification step shown in (i) to (iii) above. It is preferable that the method further includes a step of controlling the compound shown in (iii) so as to satisfy the conditions (iv) to (vi). As described above, the step of controlling to satisfy the conditions (iv) to (vi) includes, for example, a step of controlling the concentration of the metal-containing catalyst composition, the reaction temperature, and the residence time. In the case where the compound represented by) is an aromatic dihydroxy compound, a step of preventing oxygen from being mixed into the raw material from the air can be used.
  • the reaction catalyst used in the present embodiment is a metal-containing catalyst composition.
  • the metal-containing catalyst composition is preferably a metal-containing catalyst composition that dissolves in the reaction solution or exists in a liquid state, and is a metal-containing catalyst composition having at least one metal-oxygen-carbon bond. Preferably there is.
  • the metal portion is preferably a metal of Group 4, Group 5, Group 8, Group 13 or Group 14 of the Periodic Table, and Ti, V, More preferred is at least one metal selected from the group consisting of Zr, Fe, Al and Sn. These have high catalytic activity and are suitable from a practical viewpoint.
  • the metal-containing catalyst composition is preferably an alkyloxy metal composition having an alkoxy group or an aryloxy metal composition having an aryl group.
  • the metal-containing catalyst composition is preferably a titanium-containing catalyst composition.
  • the titanium-containing catalyst composition will be described later in detail.
  • the metal-containing catalyst composition used in the present embodiment preferably includes at least one selected from compounds represented by the following formulas (D1), (D2), and (D3).
  • M represents zirconium, iron or aluminum
  • Q represents an alkoxy group or an aryloxy group
  • n represents a valence of the metal M
  • m and n are integers of 1 or more
  • m n.
  • Sn represents tin
  • Z represents an alkyl group
  • O represents an oxygen atom
  • T represents an alkoxy group or an aryloxy group
  • k represents an integer of 0, 1
  • j + 2k + 1 4.
  • V represents vanadium
  • O oxygen
  • L represents an alkoxy group or an aryloxy group
  • s represents an integer of 0, 1
  • t represents an integer of 3 to 5
  • 2s + t 5.
  • the alkoxy group and aryloxy group in the above formulas (D1) to (D3) are the same as the alkoxy group and aryloxy group of the titanium-containing catalyst composition described later.
  • zirconium-containing catalyst composition examples include tetramethoxyzirconium, tetraethoxyzirconium, tetrapropoxyzirconium (each isomer), tetrabutoxyzirconium (each isomer), and tetraphenoxyzirconium.
  • Specific examples of the iron-containing catalyst composition include trimethoxy iron, triethoxy iron, tripropoxy iron (each isomer), tributoxy iron (each isomer), and triphenoxy iron.
  • the aluminum-containing catalyst composition examples include trimethoxyaluminum, triethoxyaluminum, tripropoxyaluminum (each isomer), tributoxyaluminum (each isomer), and triphenoxyaluminum.
  • tin-containing catalyst composition examples include tin tetramethoxide, tin tetrabutoxide, tin tetraphenoxide, monobutyltin oxide methoxide, monobutyltin oxide ethoxide, monobutyltin oxide propoxide (each isomer), monobutyltin butoxide (Each isomer), monobutyltin pentoxide (each isomer), monobutyltin phenoxide, monooctyltin oxide methoxide, monooctyltin oxide ethoxide, monooctyltin oxide propoxide (each isomer), monooctyltin butoxide (Each isomer), monooctyltin pentoxide (each isomer), monooctyltin phenoxide, dibutyltin dimethoxide, dibutyltin diethoxide, dibut
  • vanadium-containing catalyst composition examples include vanadium pentamethoxide, vanadium pentaethoxide, vanadium pentapropoxide (each isomer), vanadium pentaboxide (each isomer), vanadium oxide trimethoxide, vanadium oxide triethoxy. And vanadium oxide tripropoxide (each isomer) and vanadium oxide tributoxide (each isomer).
  • a catalyst containing two or more kinds of metals can be applied as the metal-containing catalyst described above.
  • the titanium-containing catalyst composition is preferably an organic oxytitanium composition having at least one R—O—Ti bond (R represents an organic group containing a carbon atom in the range of 1 to 20).
  • the titanium-containing catalyst composition is preferably dissolved in the reaction solution or present in liquid form.
  • the titanium-containing catalyst composition is preferably an alkyloxy titanium composition and / or an aryloxy titanium composition described later.
  • the titanium-containing catalyst composition used in the present embodiment is more preferably a titanium-containing composition formed from a diaryl carbonate and an aryloxy titanium composition.
  • the step (1) and / or the step (2) is usually performed in the presence of a reaction catalyst.
  • the amount of the titanium-containing catalyst composition used for carrying out the method for producing diaryl carbonate in the present embodiment varies depending on various conditions such as the type of reaction catalyst, the raw material and its quantitative ratio, reaction temperature, reaction pressure, etc.
  • the ratio relative to the total mass of the raw materials is preferably 0.0001 to 50 mass%, more preferably 0.001 to 30 mass%.
  • the titanium-containing catalyst composition usually promotes the transesterification reaction in step (1) and the transesterification reaction or disproportionation reaction in step (2).
  • the titanium-containing catalyst composition used in the present embodiment is preferably an organic oxytitanium composition having at least one R—O—Ti bond.
  • the organic oxytitanium composition having an R—O—Ti bond is an organic oxytitanium composed of tetravalent Ti atoms, and the Ti atoms are R—O— groups (R represents an organic group). This is a substituted organic oxytitanium.
  • the “organic oxytitanium composition having an R—O—Ti bond” means that “organic oxytitanium having an R—O—Ti bond” is not only one type but also a plurality of types are mixed. It means that there is also. This is because it is difficult to specify the structure precisely.
  • the organic oxytitanium composition may be a monomer or a multimer (organic polytitanoxane).
  • polytitanoxane refers to an organic-inorganic hybrid compound containing a Ti—O—Ti repeating structure and an R—O—Ti (R represents an organic group) bond.
  • the Ti atom constituting the polytitanoxane is preferably tetravalent.
  • the polytitanoxane used in the present embodiment is a polytitanoxane containing at least one of polytitanoxanes composed of structural units selected from the group consisting of the following general formulas (1b), (2b), (3b) and (4b). Is preferred. That is, a structure in which a structural unit represented by the following formula is combined to form a linear, branched, or cyclic structure via a Ti—O—Ti bond with each other, or a combination thereof may be used.
  • R represents an organic group.
  • the R group is an organic group described in Nomenclature (IUPAC Nomenclature of Organic Chemistry) defined by IUPAC (The International Union of Pure and Applied Chemistry).
  • a plurality of R groups are contained in the organic polytitanoxane, but may be the same or different.
  • As the structure in which a branched chain structure or a cyclic structure is formed for example, those represented by the following formulas (1c) and (2c) can be considered.
  • organometallic compounds and metal complexes include organometallic compounds and metal complexes.
  • organic and / or “organic group” and / or “substituent” and the like, and the compounds used in the present embodiment will be described below. And / or composed of atoms not containing a metalloid. More preferably, an “organic compound”, “organic group”, “organization” composed of atoms selected from H (hydrogen atom), C (carbon atom), N (nitrogen atom), O (oxygen atom), and S (sulfur atom) “Substituent” is used in this embodiment.
  • the aliphatic and aliphatic groups include both saturated and unsaturated, chain and cyclic, and the above H (hydrogen atom); C (carbon atom); N (nitrogen atom); O (oxygen atom); S (sulfur atom); Si (silicon atom); “organic compound” “organic group” composed of atoms selected from Cl (chlorine atom), halogen atom selected from Br (bromine atom) and I (iodine atom) “Refers to“ substituent ”.
  • an aromatic group such as an aralkyl group is bonded to an aliphatic group
  • the “aliphatic group substituted with an aromatic group” or “group consisting of an aliphatic group bonded with an aromatic group” "Often written.
  • aliphatic groups that may be aromatically substituted aliphatic groups that are aromatically substituted
  • aliphatic groups to which aromatic groups are bonded It is written as “base” or the like.
  • the R group is preferably a group composed of a carbon atom, a hydrogen atom, and an oxygen atom, and any of an aliphatic group, an aromatic group, and a group formed by bonding an aliphatic group and an aromatic group.
  • Acyclic hydrocarbon group, cyclic hydrocarbon group (for example, monocyclic hydrocarbon group, condensed polycyclic hydrocarbon group, bridged cyclic hydrocarbon group, spiro hydrocarbon group, ring assembly hydrocarbon)
  • a group in which one or more selected groups are bonded, and a group in which these groups are bonded through a covalent bond with a specific nonmetal atom (carbon, oxygen) are represented.
  • the covalent bond with the specific nonmetal atom (carbon, oxygen) is, for example, a state in which a group represented by the following formulas (1d) to (4d) and the above group are bonded by a covalent bond.
  • the R group preferably used in the present embodiment includes an aliphatic group, an aromatic group, and an aliphatic group and an aromatic group, considering the difficulty of side reactions.
  • a group containing carbon atoms in the range of 1 to 20 is preferable.
  • a group containing carbon atoms in the range of 1 to 10 is preferable.
  • a group containing a carbon atom in the range of 1 to 7 is more preferable.
  • R group is a group in which at least one selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group is bonded to each other, and at least one selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group.
  • the group or more is a group selected from groups constituted by bonds selected from the above formulas (1d) to (4d).
  • R groups include a methyl group, an ethyl group, a propyl group (each isomer), a butyl group (each isomer), a pentyl group (each isomer), a hexyl group (each isomer), and a heptyl group.
  • each isomer cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopropylmethyl group, cyclobutylmethyl group, cyclopentylmethyl group, cyclohexylmethyl group, phenyl group, phenylmethyl group, cresyl group (Each isomer), phenylethyl group, furfuryl group, pyrazyl group and the like.
  • the organic oxytitanium composition having an R—O—Ti bond used in this embodiment includes not only the monomer structure having a (R—O—) 4 Ti structure but also the above-mentioned various R—O—Ti bonds. It is preferable to use polytitanoxane. Since it is extremely difficult to determine the structure by isolating polytitanoxane, in the present embodiment, a composition containing at least one polytitanoxane having an R—O—Ti bond is a polytitanoxane composition having an R—O—Ti bond. It is a thing.
  • the polytitanoxane composition having the R—O—Ti bond has the following formula (1) from the Ti atoms contained in the individual polytitanoxanes having the R—O—Ti bond constituting the composition and the following “molar ratio”. It is preferable that the composition has a molar average multimerization degree of 1.1 or more and 12 or less.
  • a poly titanoxane composition contains at least one kind of poly titanoxane having a different degree of multimerization (number of Ti atoms in the molecule).
  • the above “molar ratio” is the number of moles of polytitanoxane having an individual degree of multimerization with respect to the total number of moles of polytitanoxane in the polytitanoxane composition.
  • molar average multimerization degree refers to a product of the molar ratio of polytitanoxane of each multimerization degree and the multimerization degree, and represents an integrated value for all multimerization degrees. That is, it represents an average value of how many Ti atoms are contained in one polytitanoxane molecule.
  • Pn is a positive number representing the molar average multimerization degree.
  • Z represents the number of types of polytitanoxane having R—O—Ti bonds with different degrees of multimerization contained in the polytitanoxane composition having R—O—Ti bonds, and represents an integer of 1 or more.
  • p w is a positive natural number representing the number of Ti atoms contained in the polytitanoxane molecular structure w having an R—O—Ti bond contained in the composition.
  • m w is a mole fraction of the molecular structure w with respect to the composition, and satisfies the following formula (2).
  • z is synonymous with z described in the above formula (1), and R—O—Ti having a different degree of multimerization contained in the polytitanoxane composition having an R—O—Ti bond. It represents the number of types of polytitanoxane having a bond, and represents an integer of 1 or more.
  • the molar average multimerization degree is 1.5.
  • the polytitanoxane is used as a catalyst for producing a diaryl carbonate, it is preferable that the polytitanoxane is as low as possible and contains a R—O—Ti bond having a high degree of molar average multimerization. In consideration of fluidity, it is preferable that the molar average multimerization degree is not so high. Accordingly, the above-described molar average multimerization degree is preferably in the range of 1.1 to 12 and most preferably in the range of 2 to 8.
  • Alkyloxytitanium composition As an example of the organic oxytitanium composition having R—O—Ti bond used as the titanium-containing catalyst composition in the present embodiment, an alkyloxytitanium composition can be given. Among these, a polytitanoxane composition having an alkoxy group is preferable.
  • Alkyloxytitanium is an organicoxytitanium that constitutes the organicoxytitanium composition having the R—O—Ti bond, and the R group is an alkyl group, and —O— that forms the R—O—Ti bond is Represents organic oxytitanium, which is oxygen bonded to an alkyl group.
  • the alkyloxytitanium composition is an organic oxytitanium composition having the R—O—Ti bond described above, in which R is only limited to an alkyl group, and some examples of R groups (R is an alkyl group) It is only excluded.
  • R groups include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl group. (Each isomer), octyl group (each isomer), nonyl group (each isomer), decyl group (each isomer).
  • R groups include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl group. (Each isomer), octyl group (each
  • a cycloalkyloxytitanium composition is an example of an organic oxytitanium composition having an R—O—Ti bond used as a titanium-containing catalyst composition in the present embodiment.
  • a polytitanoxane composition having a cycloalkoxy group is preferable.
  • Cycloalkyloxytitanium is —O which forms R—O—Ti bond when R group is cycloalkyl group among the organic oxytitanium constituting the organic oxytitanium composition having R—O—Ti bond.
  • R is only limited to a cycloalkyl group among the organicoxytitanium having the R—O—Ti bond described above, and some examples of R groups (R is cycloalkyl) It only removes the non-base example).
  • R groups include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group.
  • Preferred examples of the R group are a cyclopentyl group and a cyclohexyl group.
  • the organic oxytitanium composition having an R—O—Ti bond used in the present embodiment when the R group is an alkyl group and when it is a cycloalkyl group, the above steps (1) and (2) Therefore, the cycloalkyloxytitanium composition described above will be described as synonymous with the alkyloxytitanium composition (strictly speaking, the alkyl group is branched and / or linear, and cycloalkyl Although the group is cyclic, there is no difference in reactivity and the like, and thus it is synonymous in this specification. Similarly, a group in which a cycloalkyl group and an alkyl group are bonded is synonymous.
  • the aryloxytitanium composition used as the titanium-containing catalyst composition in the present embodiment is an organicoxytitanium composition having the R—O—Ti bond, wherein the R group is a group having an aromatic ring, and R— An organic oxytitanium composition in which —O—, which forms an O—Ti bond, is oxygen bonded to a group having an aromatic ring. Especially, it is preferable that it is a poly titanoxane composition which has an aryloxy group.
  • the polytitanoxane having an aryloxy group is the R— It can be represented by the following formula according to the definition of the polytitanoxane composition having an O—Ti bond.
  • the structure of the polytitanoxane is the combination of the above formulas (1b) to (4b) as described for the polytitanoxane having the R—O—Ti bond (in the case of the polytitanoxane having an aryloxy group, the above formulas (1b) to (4b)
  • the R group is an Ar group), that is, it is diverse by the following formulas (1f) to (4f), and it is difficult to specify the structure by the current analysis method, and it is presumed to be a mixture of various structures.
  • Ar is a group having an aromatic ring
  • the Ar group forms an Ar—O—Ti bond
  • the oxygen atom of the ArO group in the bond is an Ar group It represents a group bonded to the aromatic ring inside.
  • the aryloxy group constituting the aryloxytitanium is preferably represented by the following formula (ArO).
  • ring A is composed of an integer number of carbon atoms in the range of 6 to 20, containing an aromatic group to which oxygen bonded to Ti is bonded at any position that maintains aromaticity. Represents an organic group, which may be monocyclic, multicyclic or heterocyclic, and may be substituted by other substituents. In this specification, ring A is often referred to as an Ar group.
  • the Ar group is not particularly limited as long as it is a group having an aromatic ring.
  • it is a group composed of a carbon atom, a hydrogen atom, and an oxygen atom, and includes an aromatic group, an aliphatic group, and an aromatic group. And a group formed by bonding with.
  • it is a group having an aromatic ring, which is an acyclic hydrocarbon group, a cyclic hydrocarbon group (for example, a monocyclic hydrocarbon group, a condensed polycyclic hydrocarbon group, a bridged cyclic carbon group).
  • the above-described covalent bond with the specific non-metallic atom means, for example, a state in which a group represented by the following formulas (1d) to (4d) and the above group are bonded by a covalent bond. is there.
  • the Ar group that can be preferably used in the present embodiment is an aromatic group and a group formed by bonding an aliphatic group and an aromatic group, considering the difficulty of side reactions.
  • More preferable Ar group is a group having an aromatic ring, wherein at least one selected from the group consisting of a cycloalkyl group and an aryl group is bonded to each other, and an alkyl group, a cycloalkyl group, and an aryl group. At least one selected from the group consisting of the above groups is a group selected from a group constituted by a bond selected from the above formulas (1d) to (4d). More preferably, it is a group composed of 6 or 7 integer carbon atoms.
  • Ar groups include phenyl group, cresyl group (each isomer), xylyl group (each isomer), naphthyl group, and the like.
  • Examples of a preferable Ar group are a phenyl group and a cresyl group (each isomer).
  • the aryl group constituting the diaryl carbonate and the above-described aryl group constituting the aryloxytitanium composition are the same type of aryl group. (That is, the aryloxy group constituting the aryloxytitanium composition is the same aryloxy group as the aryloxy group constituting the diaryl carbonate).
  • the aryloxytitanium composition used in the present embodiment not only a monomer structure having an (Ar—O—) 4 Ti structure but also a polytitanoxane having the above Ar—O—Ti bond can be preferably used. As described above, it is extremely difficult to determine the structure by isolating polytitanoxane, and the polytitanoxane having an Ar—O—Ti bond used in this embodiment is at least one polytitanoxane having an Ar—O—Ti bond. A polytitanoxane composition having an Ar—O—Ti bond contained above.
  • the polytitanoxane composition having an Ar—O—Ti bond has the following formula (1) from the Ti atom contained in each of the polytitanoxanes having an Ar—O—Ti bond constituting the composition and the following “molar ratio”. It is preferable that the composition has a molar average multimerization degree of 1.1 or more and 12 or less.
  • a poly titanoxane composition contains at least one kind of poly titanoxane having a different degree of multimerization (number of Ti atoms in the molecule).
  • the above “molar ratio” is the number of moles of polytitanoxane having an individual degree of multimerization with respect to the total number of moles of polytitanoxane in the polytitanoxane composition.
  • the “molar average multimerization degree” refers to a product of the molar ratio of polytitanoxane of each multimerization degree and the multimerization degree, and represents an integrated value for all the multimerization degrees. That is, it represents an average value of how many Ti atoms are contained in one polytitanoxane molecule.
  • Pn is a positive number representing the molar average multimerization degree.
  • z represents the number of polytitanoxanes having Ar—O—Ti bonds with different degrees of multimerization contained in the polytitanoxane composition having Ar—O—Ti bonds, and represents an integer of 1 or more.
  • p w is a positive natural number representing the number of Ti atoms contained in the polytitanoxane molecular structure w having an Ar—O—Ti bond contained in the composition.
  • m w is a mole fraction of the molecular structure w relative to the composition, and satisfies the following mathematical formula (2). The sum of the mole fractions is 1 (left side).
  • z is synonymous with z explained in the above formula (1), and Ar—O—Ti having a different degree of multimerization contained in the polytitanoxane composition having an Ar—O—Ti bond. It represents the number of types of polytitanoxane having a bond, and represents an integer of 1 or more.
  • the molar average multimerization degree is 1.5.
  • the aryloxytitanium composition is used as a reaction catalyst in the diaryl carbonate production method of the present embodiment, it is a polytitanoxane having an Ar—O—Ti bond with a low molecular weight as much as possible and a high degree of molar average multimerization. In view of fluidity, it is preferable that the degree of multimerization is not so high. Therefore, the above-described molar average multimerization degree is preferably in the range of 1.1 to 12, more preferably in the range of 2 to 8.
  • the titanium-containing catalyst composition used in the present embodiment is more preferably a titanium-containing composition containing the above-described aryloxytitanium composition and diaryl carbonate.
  • the titanium-containing composition can be obtained by a method described later by mixing an aryloxy titanium composition and a diaryl carbonate.
  • the aryloxy titanium composition can be obtained, for example, by reacting the alkyloxy titanium composition described above with an aromatic monohydroxy compound described later.
  • the diaryl carbonate that is a raw material for obtaining the titanium-containing catalyst composition is the same as that described in the paragraph of the above step (2).
  • the titanium constituting the aryloxy titanium composition is preferably tetravalent.
  • the aryloxy titanium composition preferably has an integer of 1 to 4 aryloxy groups per titanium atom.
  • the titanium-containing catalyst composition used in the present embodiment can be produced, for example, by the following method. First, the above-mentioned alkyloxytitanium composition is reacted with an aromatic monohydroxy compound described later to obtain an aryloxytitanium composition. At this time, since ROH corresponding to the alkyloxy group is generated, the alkyloxy titanium composition and the aromatic monohydroxy compound to be used are selected by comparing the boiling points of the ROH and the aromatic monohydroxy compound.
  • the aromatic monohydroxy compound to be used will be described.
  • the aromatic monohydroxy compound is an aromatic monohydroxy compound represented by the following formula (1h).
  • the Ar group is a ring A represented by the following formula (2h).
  • the ring A is composed of an integer number of carbon atoms in the range of 6 to 20, containing an aromatic group to which oxygen forming an OH group is bonded at an arbitrary position that maintains aromaticity.
  • An organic group which may be monocyclic, multicyclic or heterocyclic, and may be substituted by other substituents.
  • the Ar group is not particularly limited as long as it is a group having an aromatic ring.
  • the Ar group is a group composed of a carbon atom, a hydrogen atom, and an oxygen atom, and includes an aromatic group, an aliphatic group, and an aromatic group. And a group formed by bonding. More specifically, it is a group having an aromatic ring, which is an acyclic hydrocarbon group, a cyclic hydrocarbon group (for example, a monocyclic hydrocarbon group, a condensed polycyclic hydrocarbon group, a bridged cyclic carbon group).
  • the covalent bond with the specific nonmetallic atom (carbon, oxygen) is a state in which, for example, a group represented by the following formulas (1d) to (4d) and the above group are bonded by a covalent bond. It is.
  • the Ar group that can be preferably used in the present embodiment is an aromatic group and a group formed by bonding an aliphatic group and an aromatic group, considering the difficulty of side reactions.
  • Ar groups are groups having an aromatic ring, wherein at least one selected from the group consisting of a cycloalkyl group and an aryl group is bonded to each other, and an alkyl group, a cycloalkyl group, and an aryl group. At least one selected from the group consisting of is a group selected from a group constituted by a bond selected from the above formulas (1d) to (4d).
  • Ar groups include phenyl group, cresyl group (each isomer), xylyl group (each isomer), naphthyl group, and the like.
  • a preferable Ar group are a phenyl group and a cresyl group (each isomer), and more preferably a group composed of 6 or 7 integer carbon atoms.
  • a preferable R group is preferably a group having a small number of carbon atoms because it is easy to remove.
  • a preferable carbon number is an R group consisting of an integer of 1 to 6, and more preferably an alkyl group having 3 to 6 carbon atoms in consideration of the fluidity of the organic oxytitanium having an R—O— group. More preferably, they are a propyl group (each isomer), a butyl group (each isomer), a pentyl group (each isomer), and a hexyl group (each isomer).
  • phenol and cresol can be preferably used as the aromatic hydroxy compound.
  • the R group is an R group selected from n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group and isopentyl group, Is a phenyl group.
  • the amount of the alkyloxytitanium composition to be used and the aromatic monohydroxy compound will be described.
  • the amount of the aromatic monohydroxy compound used is preferably 1 to 50 mole equivalents, more preferably 5 to 30 mole equivalents relative to the total number of moles of alkoxy groups contained in the alkyloxytitanium composition. Yes, it may be determined by the size of the reactor. If the aromatic monohydroxy compound contains a large amount of polyvalent hydroxy compounds (eg, catechol, trihydroxyphenol, salicylic acid, etc.), these polyvalent hydroxy compounds react with alkyloxytitanium, and the desired aryloxytitanium The production amount decreases. Therefore, the content of these polyvalent hydroxy compounds is preferably 0.01 or less, more preferably 0.001 or less, as a molar ratio to titanium atoms.
  • polyvalent hydroxy compounds eg, catechol, trihydroxyphenol, salicylic acid, etc.
  • the above-described alkyloxytitanium composition is first charged in a reactor under a nitrogen atmosphere, and then an aromatic monohydroxy compound is charged.
  • a method of heating and reacting the mixture in the reactor at normal pressure to obtain an aryloxy titanium composition can be mentioned.
  • the heating temperature is preferably 0 to 300 ° C., more preferably 20 to 250 ° C., and further preferably 50 to 200 ° C.
  • the heating time is preferably 0.01 to 500 hr, more preferably 0.1 to 300 hr, and further preferably 0.5 to 200 hr.
  • the alcohol generated by the reaction is recovered as necessary.
  • the titanium-containing catalyst composition used in the present embodiment can be obtained, for example, by the following method.
  • the heating temperature is preferably 100 to 300 ° C., more preferably 120 to 270 ° C., and further preferably 150 to 250 ° C.
  • the heating time is preferably 0.1 to 500 hr, more preferably 0.2 to 300 hr, and further preferably 0.5 to 200 hr.
  • the content of titanium atoms constituting the aryloxytitanium composition is preferably 0.1 to 20% by mass and preferably 1 to 15% by mass with respect to 100% by mass of the titanium-containing catalyst composition. Is more preferably 1 to 12% by mass, particularly preferably 1 to 10% by mass.
  • the titanium concentration in the titanium-containing catalyst composition can be adjusted to be in the above range.
  • alkyloxytitanium composition that is a raw material for obtaining the aryloxytitanium composition
  • titanium tetramethoxide titanium tetraisopropoxide
  • titanium tetrabutoxide titanium tetrabutoxide
  • titanium-containing compounds can also be suitably used in the form of partial titration and polytitanoxane as described above.
  • Composition A used in the present embodiment is a composition containing the above-described diaryl carbonate, aryloxytitanium composition, and a compound represented by the following formula (X) and / or formula (Y).
  • the composition A is preferably formed using a diaryl carbonate and an aryloxytitanium composition. Specifically, for example, it can be obtained by heating the titanium-containing catalyst composition described above.
  • a product having a higher boiling point than the diaryl carbonate (hereinafter, also referred to as “high-boiling product”) is generated, and a composition A containing the high-boiling product is obtained.
  • the high boiling point product include compounds represented by the formula (X) described below. The present inventors presume that the formation of such a high-boiling product increases the stability of the above-described titanium-containing catalyst composition.
  • the step (1) and / or the step (2) are preferably performed in the presence of the composition A.
  • a diaryl carbonate can be produced stably and efficiently for a long period of time without clogging.
  • the manufacturing method of the diaryl carbonate which concerns on this Embodiment starts the manufacturing of a diaryl carbonate by supplying the said composition A in the said process (1) and / or the said process (2). .
  • Ratio of the total number of moles of the compound represented by formula (X) and formula (Y) described later and the number of moles of titanium atom in the composition A (compound represented by formula (X) and formula (Y)) (Total / titanium atom) is 0.005 to 4, preferably 0.005 to 3, and more preferably 0.005 to 2.
  • the ratio of the total number of moles of the compounds represented by formula (X) and formula (Y) to the number of moles of titanium atoms (sum of the compounds represented by formula (X) and formula (Y) / titanium atoms) is: It can be controlled by appropriately setting the type and concentration of the titanium-containing catalyst composition and the conditions for heating the titanium-containing catalyst composition. Specifically, it can be controlled by using the above-described titanium-containing catalyst composition to produce a high-boiling product within the range of the heating temperature and heating time described below.
  • the content of titanium constituting the aryloxy titanium composition is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass with respect to 100% by mass of the composition A. It is preferably 1 to 12% by mass, more preferably 1 to 10% by mass.
  • the titanium content in the composition can be adjusted to be in the above range.
  • the titanium constituting the aryloxytitanium composition is preferably tetravalent titanium.
  • the aryloxy titanium composition preferably has an integer of 1 to 4 aryloxy groups per titanium atom.
  • composition A used in the present embodiment contains a compound represented by the following formula (X) and / or the following formula (Y).
  • the compounds represented by the following formula (X) and the following formula (Y) are produced by heating the titanium-containing catalyst composition described above, and are products having a higher boiling point than diaryl carbonate (hereinafter referred to as “high boiling product”). 1 type).
  • Ar 21 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms
  • Ar 22 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms
  • Ar The two substituents in 21 are located ortho to each other.
  • Ar 23 represents an unsubstituted or substituted arylene group having 6 to 20 carbon atoms
  • Ar 24 and Ar 25 each independently represents an unsubstituted or substituted carbon group having 6 to 20 carbon atoms.
  • the two substituents in Ar 23 are located in the ortho positions relative to each other.
  • Ar 21 and Ar 23 examples include phenylene, methylphenylene (each isomer), dimethylphenylene (each isomer), trimethylphenylene (each isomer), tetramethylphenylene, ethylphenylene (each isomer), and diethyl.
  • Phenylene groups and various alkylphenylene groups such as phenylene (each isomer), methylethylphenylene (each isomer), pentylphenylene (each isomer), hexylphenylene (each isomer), cyclohexylphenylene (each isomer), etc.
  • alkoxyphenylene groups such as methoxyphenylene (each isomer), ethoxyphenylene (each isomer), butoxyphenylene (each isomer); fluorophenylene (each isomer), chlorophenylene (each isomer), bromophenylene (Each isomer), chloro (methyl) phenyle (Each isomer), various halogenated phenylene groups such as dichlorophenylene (each isomer); various substituted phenylene groups represented by the following formula (Za); naphthylene (each isomer), methylnaphthylene (each isomer) ), Dimethylnaphthylene (each isomer), chloronaphthylene (each isomer), methoxynaphthylene (each isomer), cyanonaphthylene (each isomer), and other substituted naphthylene groups.
  • Za
  • Ar 22 , Ar 24 and Ar 25 correspond to Ar 13 of the diaryl carbonate described above.
  • A represents a single bond, —O—, —S—, —CO—, —SO 2 —, an alkylene group or a substituted alkylene group represented by the following formula (Za-1), and a formula (Za-2) Represents any one divalent group selected from the group consisting of cycloalkylene groups, and the aromatic ring is a lower alkyl group, lower alkoxy group, ester group, hydroxy group, nitro group, halogen, cyano group, etc. It may be substituted with a substituent.
  • R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, a lower alkyl group, a cycloalkyl group, an aryl group or an aralkyl group, which is substituted with a halogen atom or an alkoxy group. Also good.
  • k is an integer of 3 to 11, and the hydrogen atom may be substituted with a lower alkyl group or an aryl group halogen atom.
  • the compound represented by the above formula (X) is by-produced by the Fries transition reaction in the presence of the titanium-containing catalyst composition.
  • the compounds represented by the above formulas (X) and (Y) may be prepared and contained in advance.
  • the titanium-containing catalyst composition has a function of greatly improving the reaction rate of the transesterification reaction and the disproportionation reaction, thereby improving the productivity of diaryl carbonate.
  • Ar and Ar ′ represent an aryl group
  • Ar ′′ represents an arylene group
  • the salicylic acid ester produced by the above formula (c) is generally a compound represented by the above formula (X).
  • salicylic acid ester by the side reaction described above increases as the temperature is increased. Further, since salicylic acid ester has a high boiling point, it is not separated from a titanium-containing catalyst composition having a high boiling point by distillation separation. As a result, it becomes easy to coexist with the titanium-containing catalyst composition.
  • Such a salicylic acid ester reacts with carbonate as shown in the following formula (d) to produce a salicylic acid carbonate ester corresponding to the formula (Y).
  • Ar represents an arylene group having a substituent at the ortho position
  • R and R ′ represent an alkyl group or an aryl group
  • Ar ′ represents an aryl group.
  • the compound represented by the above formula (X) can be obtained, for example, by a reaction between a corresponding diaryl carbonate and an aryloxytitanium composition.
  • the reaction temperature varies depending on the type and concentration of the titanium-containing catalyst composition, but is preferably 100 ° C. or higher and 300 ° C. or lower, more preferably 150 ° C. or higher and 250 ° C. or lower, and 180 ° C. or higher and 250 ° C. or lower. More preferably it is.
  • the reaction pressure is preferably from 0.1 to 2.0 ⁇ 10 7 Pa, more preferably from 0.2 to 1.0 ⁇ 10 7 Pa, and more preferably from 0.5 to 5.0 ⁇ More preferably, it is 10 6 Pa or less.
  • reaction time changes with reaction temperature and the kind of titanium containing catalyst composition
  • they are 0.1 hours or more and 500 hours or less
  • they are 0.2 hours or more and 300 hours or less. More preferably, it is 5 hours or more and 250 hours or less.
  • the total number of moles of the compounds represented by the above formula (X) and the above formula (Y) and titanium atoms in the composition A The ratio to the number of moles (total of compounds represented by formula (X) and formula (Y) / titanium atom) can be adjusted to 0.005 to 4. As a result, the stability of the above titanium-containing catalyst composition is increased.
  • the reaction catalyst when the titanium-containing catalyst composition prepared as described above is used as a reaction catalyst, the reaction catalyst may be insolubilized at the time of supply or may adhere to the pipe wall surface. There is no problem of blockage.
  • the by-product compound represented by the above formula (X) and the above formula (Y) forms a stable complex with the metal component contained in the catalyst. There is. And the quantitative analysis of the compound represented by the above formula (X) and the above formula (Y) in the composition is made inaccurate, and as a result, the total moles of the compounds represented by the above formula (X) and the above formula (Y). This causes a problem that the ratio of the number of atoms to the number of moles of titanium atoms (total of compounds represented by formula (X) and formula (Y) / titanium atoms) cannot be obtained accurately.
  • the mixture containing the compound represented by the above formula (X) and the above formula (Y) and the titanium-containing catalyst composition is accurately quantitatively analyzed, and expressed by the above formula (X) and the above formula (Y). It is important to accurately determine the ratio between the total number of moles of the compound to be converted and the number of moles of the titanium atom (the total number of compounds represented by formula (X) and formula (Y) / titanium atom).
  • the additive is selected according to the type of aryloxytitanium composition constituting the catalyst.
  • Examples thereof include water, polyvalent hydroxy compounds, nitrogen-containing heterocyclic compounds, sulfur-containing heterocyclic compounds, fluorine-substituted alcohols, and fluorine-substituted organic acids.
  • water, catechol, phenanthroline, hexafluoroisopropanol, and trifluoroacetic acid are used.
  • the amount of the additive to the compound represented by the above formula (X) and the above formula (Y) varies depending on the metal constituting the catalyst, but usually 1 equivalent or more is added and preferably 3 equivalents or more are added. .
  • the reaction apparatus for carrying out the method for producing diaryl carbonate in the present embodiment is not particularly limited.
  • a stirring tank system, a multistage stirring tank system, a system using a multistage distillation column, a system combining these, and the like Various known reactors are used.
  • the reaction in the step (1) and the step (2) includes a stirring tank, a multistage stirring tank, a packed tower, a distillation tower, a multistage distillation tower, a continuous multistage distillation tower, It is preferably carried out using a reaction apparatus comprising at least one selected from the group consisting of a reactor having a support inside and a forced circulation reactor.
  • reactors may be either batch type or continuous type. From the viewpoint of efficiently shifting the equilibrium to the production system side, a method using a multistage distillation column is preferable, and a continuous method using a multistage distillation column is particularly preferable.
  • the multi-stage distillation column is a distillation column having a multi-stage of two or more theoretical distillation stages, and any column can be used as long as continuous distillation is possible.
  • Examples of such a multi-stage distillation column include a tower column type using a tray such as an Oldershaw type distillation column, a foam cake tray, a perforated plate tray, a valve tray, a chimney tray, a countercurrent tray, a Raschig ring, and a lessening.
  • a tray such as an Oldershaw type distillation column, a foam cake tray, a perforated plate tray, a valve tray, a chimney tray, a countercurrent tray, a Raschig ring, and a lessening.
  • Any type that is normally used as a multi-stage distillation column such as a packed tower type packed with various packings such as rings, pole rings, Berle saddles, interlock saddles, Dixon packing, McMahon packing, helipak, sulzer packing, melapack, etc. Good.
  • a shelf-packed mixing type having both a shelf portion and a portion filled with a packing is also preferably used.
  • the dialkyl carbonate and the aromatic monohydroxy compound are continuously supplied to the reaction apparatus in the step (1), and the reaction product obtained in the step (2) is obtained. Is preferably continuously removed from the reactor.
  • a dialkyl carbonate and an aromatic monohydroxy compound are continuously fed into the continuous multistage distillation column, and the above reaction catalyst is present in the distillation column. It is preferable to carry out the reaction between both substances in the liquid phase or in the gas-liquid phase. And simultaneously with the said reaction, it is preferable to extract the high boiling point product containing the diaryl carbonate or diaryl carbonate mixture produced
  • diaryl carbonate is obtained by continuously extracting a low-boiling product containing by-produced alcohol or dialkyl carbonate from the upper part of the distillation column by distillation.
  • the amount of the reaction product produced usually depends on the amount of hold-up liquid in the distillation column. That is, in the case of using a distillation column having the same column height and the same column diameter, a distillation column having a large amount of hold-up liquid is preferable in the sense that the residence time of the reaction solution, that is, the reaction time can be made relatively long.
  • the amount of holdup liquid in the distillation column may vary depending on the distillation conditions and the type of distillation column, but when expressed in terms of the volume ratio of the amount of holdup liquid to the empty column volume of the multistage distillation column, 0.005 to 0.75. It is preferable that
  • the reflux ratio is preferably 0 to 20, more preferably 0 to 10. That is, when carrying out the transesterification represented by the above reaction formula (a), the dialkyl carbonate, the aromatic monohydroxy compound and the catalyst are fed to the multistage distillation column after mixing or from different places, respectively.
  • the product, alkylaryl carbonate and / or diaryl carbonate, is continuously extracted in liquid form from the bottom of the distillation column, and low-boiling components such as by-produced alcohol are continuously removed from the top of the distillation column in the form of gas by distillation. It is preferable to extract.
  • the reaction catalyst may be supplied from any part of the multistage distillation column, but is preferably supplied to a position above the bottom of the distillation column, and is supplied to a position above the middle of the distillation column. More preferably.
  • the raw material or reaction liquid in which the reaction catalyst is dissolved may be supplied to the distillation tower, or the reaction catalyst and the raw material or reaction liquid may be supplied separately to the distillation tower.
  • the disproportionation reaction typically represented by the above formula (b) the alkylaryl carbonate and the catalyst are fed to a multistage distillation column, and the product diaryl carbonate is continuously in a liquid state. It is preferable to extract continuously from the upper part of the distillation column by distilling low boiling components such as dialkyl carbonate produced as a by-product from the bottom of the distillation column.
  • Instrumentation equipment such as flow meters and thermometers attached to the reactor, valves, pipe fittings, pumps, heat sources, etc. can be used in a known range, and raw materials such as heat recovery and dialkyl carbonate can be used. May be recycled.
  • a reaction solvent is not essential, but an inert solvent is applied for the purpose of improving the fluidity of the reaction raw materials and products and facilitating the transfer operation and reaction operation. May be.
  • Examples of such an inert solvent include ethers composed of chained and cyclic hydrocarbons having 5 to 16 carbon atoms and chained and cyclic hydrocarbons having 4 to 16 carbon atoms.
  • pentane (each isomer), hexane (each isomer), heptane (each isomer), octane (each isomer), nonane (each isomer), decane (each isomer), tetradecane (each Isomer), hexadecane (each isomer), cyclohexane, cycloheptane, cyclooctane, benzene, toluene, xylene (each isomer), ethylbenzene, etc., a chain, cyclic hydrocarbon having 6 to 16 carbon atoms; diethyl Examples include ethers selected from ether, dipropyl ether (each isomer), dibutyl ether (each isomer), dihexyl ether (each isomer), dioctyl ether (each isomer), diphenyl ether, and the like.
  • Analyzing apparatus JY-138 ULTRACE high frequency inductively coupled plasma emission spectrometer (ICP) system manufactured by Rigaku Corporation [Analyzing method for compounds represented by the above (i) to (iii) and formula (Y) other than salicylic acid ester] [1]
  • ICP inductively coupled plasma emission spectrometer
  • Preparation of sample for analysis Weigh 1 g of the sample solution, add 5 mL of trifluoroacetic acid / acetonitrile (20 g / 1 L) solution to dissolve, then filter using a propylsulfonic acid filter, and use the filtrate for analysis. A sample was used.
  • the average degree of multimerization is determined by ICP analysis to determine the titanium concentration of the titanium-containing compound in the same manner as in the method for analyzing the metal concentration in the titanium-containing composition, and further the alkoxy group (for example, butoxy) is analyzed by gas chromatography. Obtained by quantitative analysis.
  • Example 1 Preparation of titanium-containing composition 7 kg of tetrabutoxy titanium (manufactured by DuPont, product name: Tyzor TnBT) was charged in a 60 L batch reactor equipped with a stirrer, a heater and a distillation column under a nitrogen atmosphere, and then 14 kg of phenol that had been purified by distillation in advance was charged. .
  • the mixture in the batch reactor was heated to 180 ° C. with a heater and reacted. N-Butanol generated by the reaction was recovered from the top of the distillation column. Further, the batch reactor was depressurized to about 53 kPa, and n-butanol was recovered.
  • the batch reactor was returned to normal pressure, about 18 kg of diphenyl carbonate was charged, and the mixture in the reactor was heated to about 190 ° C.
  • the batch reactor was depressurized to about 1.3 kPa, and diphenyl carbonate containing a low boiling point component was distilled off to obtain a titanium-containing composition.
  • Diphenyl carbonate was added so that the titanium concentration of the obtained titanium-containing composition was 5% by mass.
  • the titanium-containing composition was heated at 200 ° C. for about 48 hours and then used as a reaction catalyst in the production of the next diaryl carbonate.
  • FIG. 1 the schematic block diagram of the manufacturing apparatus used in Example 1 is shown.
  • the manufacturing apparatus includes continuous multistage distillation columns 110 and 120, a distillation column 130, and a distillation purification column 140.
  • lines 1 and 12 are supply lines for supplying raw material compounds, titanium-containing compositions, and the like, and lines 3 and 9 are recovery lines for recovering generated compounds and other materials.
  • Lines 2, 4, 5, 6, 7, 8, and 10 are transfer lines, and line 11 is an extraction line.
  • Symbols 111, 121, 131, and 141 indicate reboilers, and symbols 112, 122, 132, and 142 indicate capacitors.
  • Reference numeral 113 denotes a preheater for setting the supply material to a predetermined temperature.
  • the distillation column 110 has an inner diameter of 150 mm and a length of 2.3 m, packed with a 4.8 m concentrating portion with an inner diameter of 150 mm and a Melapak CY (manufactured by Sulzer Chemtech Ltd, Switzerland) filled with 25 sieve plates.
  • a concentration unit was provided below the stage where the mixed solution was continuously supplied, and a recovery unit was provided above.
  • the amount of heat required for the reaction and distillation was controlled by providing an external heater or circulating the column bottom liquid via the reboiler 111.
  • the multistage distillation column 110 was controlled so that the temperature at the bottom of the column was about 230 ° C. and the pressure at the top of the column was about 140 kPa.
  • the reaction liquid was continuously extracted from the bottom of the continuous multistage distillation column 110 via the transfer line 2 at about 1700 g / Hr.
  • reaction liquid extracted from the transfer line 2 as described above was supplied to the continuous multistage distillation column 120.
  • This continuous multi-stage distillation column 120 includes a reboiler 121, a concentration section of a distillation column (inner diameter 150 mm, length of about 6 m) packed with a five-stage chimney tray, and a recovery section of inner diameter 150 mm and length 3.8 m packed with Melapak CY.
  • the reaction solution was supplied at the top of the concentration section, and the reaction solution was supplied at a rate of about 1700 g / Hr.
  • the temperature at the bottom of the column was controlled to 200 ° C., and the pressure at the top of the column was about 3 kPa, and the disproportionation reaction was performed under these conditions.
  • a low boiling point component containing phenol and bis (3-methylbutyl) carbonate was circulated from the top of the distillation column 120 to the distillation column 110 via the condenser 122, the transfer line 5 and the supply line 1.
  • the reaction liquid containing diphenyl carbonate was supplied to the distillation column 130 via the transfer line 4 and subjected to distillation separation.
  • the distillation tower 130 was a distillation tower having an inner diameter of 150 mm and a length of 4 m filled with Melapak CY, and was equipped with a reboiler 131 and a condenser 132.
  • the distillation column 130 was controlled at a column bottom temperature of about 180 ° C. and a column top pressure of about 0.5 kPa.
  • a low boiling point component containing diphenyl carbonate was taken out from the top of the column and supplied to the distillation purification column 140 through the condenser 132 and the transfer line 7.
  • the high boiling point component including the reaction catalyst was circulated to the distillation column 110 via the transfer line 6 and the supply line 1.
  • the distillation purification tower 140 was a distillation tower having an inner diameter of 150 mm and a length of 5 m filled with Melapak CY, and was equipped with a reboiler 141 and a condenser 142.
  • the reaction liquid containing diphenyl carbonate supplied from the distillation tower 130 to the distillation purification tower 140 via the transfer line 7 was purified by the distillation purification tower 140.
  • This purification about 100% by mass of diphenyl carbonate (diaryl carbonate) was obtained from the recovery line 9.
  • the position of the recovery line 9 was the lower part of the distillation tower above the tower bottom.
  • a low boiling point component containing 3-methylbutylphenyl carbonate was extracted from the top of the distillation purification tower 140 and circulated to the distillation tower 120 through the recovery line 10 and the transfer line 2.
  • the composition of the liquid was about 15% by mass of phenol, about 67% by mass of bis (3-methylbutyl) carbonate, about 17% by mass of 3-methylbutylphenyl carbonate, and about 0.3% by mass of diphenyl carbonate.
  • 3-methyl-1-butanol was about 0.2% by mass, and the flow rate was about 11402 g / Hr.
  • the residence time of the reaction liquid in the steady state in the distillation column 110 and the distillation column 120 was about 1 Hr and about 2.5 Hr, respectively.
  • the composition of the liquid was about 100% by mass of 3-methyl-1-butanol, and the flow rate was about 823 g / Hr.
  • the composition of the liquid is about 0.2% by mass of bis (3-methylbutyl) carbonate, about 18% by mass of 3-methylbutylphenyl carbonate, about 80% by mass of diphenyl carbonate, and the flow rate is about 1238 g / Hr. Met.
  • the composition of the liquid is about 0.2% by mass of 3-methyl-1-butanol, about 17% by mass of phenol, about 82% by mass of bis (3-methylbutyl) carbonate, and the flow rate is about 10300 g / Hr. Met.
  • the composition of the liquid is about 88% by mass of diphenyl carbonate, about 12% by mass of 3-methylbutylphenyl carbonate, about 0.2% by mass of bis (3-methylbutyl) carbonate, and the flow rate is about 1140 g / Hr. Met.
  • the ratio of the total number of moles of phenyl salicylate and salicylic acid (3-methylbutyl) ester to the number of moles of titanium atoms was about 0.7. .
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 1000 g / Hr.
  • the ratio of the titanium-containing high boiling point component extracted from the extraction line 11 is about 9 g / Hr (titanium atom concentration is about 1% by mass), and the ratio of the reaction catalyst supplied from the supply line 12 is about 1.8 g / Hr (titanium).
  • the atomic concentration was adjusted to about 5% by mass), and about 200 Hr continuous operation was similarly performed.
  • the ratio of the total number of moles of salicylic acid phenyls and salicylic acid (3-methylbutyl) esters to the number of moles of titanium atoms was about 1.1.
  • the ratio of the number of moles of salicylic acid phenyl carbonate to the number of moles of titanium atoms was about 0.2.
  • the ratio of the number of moles of catechol to the number of moles of titanium atoms was about 0.01.
  • the component having a boiling point higher than that of diphenyl carbonate was included in the high boiling component taken out from the bottom of the column.
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 1200 g / Hr.
  • Example 2 A diphenyl carbonate (diaryl carbonate) was produced in the same manner as in Example 1 except that dialkyl carbonate of the type shown in Table 2 below was used instead of bis (3-methylbutyl) carbonate. About control operation, flow volume and pressure were controlled according to the kind of each dialkyl carbonate.
  • the components having higher boiling points than the diphenyl carbonate in the high boiling point components taken out from the bottom of the column are about 7% by mass, about 10% by mass, about 8% by mass in the order of Examples 2 to 6. %, About 9% by mass, and about 8% by mass.
  • Table 1 shows the results of analyzing the titanium-containing high boiling point component obtained from the extraction line 11. In all the examples, the conditions (iv) to (vi) were satisfied, and the diaryl carbonate could be produced stably.
  • Example 7 Preparation of titanium-containing composition
  • polytitanoxan butoxide manufactured by DuPont, product name: Tyzor BTP
  • the mixture in the batch reactor was heated to 180 ° C. with a heater and reacted. N-Butanol generated by the reaction was recovered from the top of the distillation column. Further, the batch reactor was depressurized to about 53 kPa, and n-butanol was recovered.
  • the batch reactor was returned to normal pressure, about 18 kg of diphenyl carbonate was charged, and the mixture in the reactor was heated to about 190 ° C.
  • the batch reactor was depressurized to about 1.3 kPa, and diphenyl carbonate containing a low boiling point component was distilled off to obtain a titanium-containing composition. Diphenyl carbonate was added so that the titanium concentration of the obtained titanium-containing composition was 5% by mass.
  • FIG. 2 the schematic block diagram of the manufacturing apparatus used in Example 7 is shown.
  • the manufacturing apparatus includes continuous multistage distillation columns 110 and 120, a distillation column 130, and a distillation purification column 140.
  • the lines 1, 1 ′, 12, and 13 are supply lines that supply raw material compounds, titanium-containing compositions, and the like, and the lines 3 and 9 are recovery lines that recover the generated compounds and other materials.
  • Lines 2, 4, 5, 6, 7, 8, and 10 are transfer lines, and line 11 is an extraction line.
  • Symbols 111, 121, 131, and 141 indicate reboilers, and symbols 112, 122, 132, and 142 indicate capacitors.
  • Reference numeral 113 denotes a preheater for setting the supply material to a predetermined temperature.
  • reaction catalyst In the distillation tower 130, a high boiling point product was produced from diphenyl carbonate as follows to prepare a reaction catalyst.
  • the distillation tower 130 was a distillation tower having an inner diameter of 150 mm and a length of 4 m filled with Melapak CY, and was equipped with a reboiler 131 and a condenser 132.
  • composition A A mixture (hereinafter also referred to as “composition A”) of the high-boiling product and the titanium-containing composition produced in the distillation tower 130 was used as a reaction catalyst for the production of the next diaryl carbonate.
  • a mixed liquid (a) comprising about 30% by mass of dimethyl carbonate and about 70% by mass of phenol was added to the 50th level sieve tray. It was continuously supplied from the supply line 1 through the preheater 113 at about 41 kg / Hr.
  • a mixed liquid (b) composed of about 70% by mass of dimethyl carbonate and about 30% by mass of phenol was continuously supplied to the lower part of the distillation column 110 at a rate of about 41 kg / Hr from the supply line 1 ′.
  • a concentration part was provided below the stage where the mixed liquids (a) and (b) were continuously supplied, and a recovery part was provided above.
  • the amount of heat necessary for the reaction and distillation was controlled by providing an external heater or circulating the liquid at the bottom of the tower through a reboiler.
  • the multistage distillation column 110 was controlled so that the temperature at the bottom of the column was about 230 ° C. and the pressure at the top of the column was about 0.55 MPa-G.
  • the reaction catalyst (composition A) prepared above is gradually supplied from the lower part of the distillation column 130 to the 45th stage of the distillation column 110 using the transfer line 6, and titanium atoms in the reaction solution of the distillation column 110 are supplied.
  • the concentration was adjusted to about 300 ppm.
  • the reaction liquid was continuously withdrawn from the bottom of the continuous multistage distillation column 110 through the transfer line 2 at about 21 kg / Hr.
  • the low boiling point component containing byproduct methanol was extracted from the top of the distillation column 110. Thereafter, the low boiling point component was condensed by the condenser 112 and recovered from the recovery line 3.
  • reaction liquid extracted from the transfer line 2 as described above was supplied to the continuous multistage distillation column 120.
  • This continuous multi-stage distillation column 120 was equipped with a reboiler 121, a concentrating portion of a 16-stage sieve tray type distillation column (inner diameter: 150 mm, length: about 4 m), and a recovery section having an inner diameter of 150 mm and a length of 4 m filled with Melapak CY. .
  • the supply position of the reaction liquid was set to the upper part of the concentration section, and the supply speed of the reaction liquid was about 21 kg / Hr.
  • the temperature at the bottom of the column was controlled to be about 210 ° C. and the pressure at the top of the column was about 13.3 kPa, and the disproportionation reaction was performed under these conditions.
  • low boiling point components including phenol and dimethyl carbonate were circulated from the top of the distillation column 120 to the distillation column 110 through the condenser 122, the transfer line 5 and the supply line 1.
  • the reaction liquid containing diphenyl carbonate was supplied to the distillation column 130 via the transfer line 4 and subjected to distillation separation.
  • the distillation tower 130 was a distillation tower having an inner diameter of 150 mm and a length of 4 m filled with Melapak CY, and was equipped with a reboiler 131 and a condenser 132.
  • the distillation tower 130 was controlled to have a tower bottom temperature of about 190 ° C. and a tower top pressure of about 1.7 kPa.
  • a low boiling point component containing diphenyl carbonate was taken out from the top of the column and supplied to the distillation purification column 140 through the condenser 132 and the transfer line 7.
  • the high boiling point component containing the reaction catalyst (Composition A) was circulated to the distillation column 110 through the transfer line 6 and the supply line 1.
  • the distillation purification tower 140 was a distillation tower having an inner diameter of 150 mm and a length of 5 m filled with Melapak CY, and was equipped with a reboiler 141 and a condenser 142.
  • the reaction liquid containing diphenyl carbonate supplied from the distillation tower 130 to the distillation purification tower 140 via the transfer line 7 was purified by the distillation purification tower 140.
  • 99.8% by mass of diphenyl carbonate (diaryl carbonate) was obtained from the recovery line 9.
  • the position of the recovery line 9 was the lower part of the distillation tower above the tower bottom.
  • a low boiling point component containing methylphenyl carbonate was extracted from the top of the distillation purification tower 140 and circulated to the distillation tower 120 through the recovery line 10 and the transfer line 2.
  • the composition of the liquid is about 55 mass% phenol, about 26 mass% dimethyl carbonate, about 17 mass% methylphenyl carbonate, about 2 mass% diphenyl carbonate, and about 0.09 mass% methanol.
  • the flow rate was about 40 kg / Hr.
  • the composition of the liquid is about 0.1% by weight of dimethyl carbonate, about 17% by weight of methyl phenyl carbonate, about 3% by weight of phenol, about 80% by weight of diphenyl carbonate, and the flow rate is about 6.2 kg / Hr. Met.
  • the composition of the liquid was about 78 mass% diphenyl carbonate, about 19 mass% methylphenyl carbonate, about 3 mass% phenol, and the flow rate was about 5 kg / Hr.
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 4 kg / Hr.
  • the ratio of the total number of moles of phenyl salicylate and salicylic acid methyl ester to the number of moles of titanium atoms was about 1.2.
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 4 kg / Hr.
  • the ratio of the titanium-containing high-boiling components extracted from the extraction line 11 is about 10 g / Hr (the concentration of titanium atoms is about 1% by mass), and the ratio of the reaction catalyst supplied from the supply line 12 is about 2.0 g. / Hr (the concentration of titanium atoms is about 5 mass%), and about 500 Hr continuous operation was performed in the same manner.
  • the ratio of the total number of moles of salicylic acid phenyls and salicylic acid methyl esters to the number of moles of titanium atoms in the salicylic acid esters was about 1.9.
  • the ratio of moles to moles of titanium atoms was about 0.5.
  • the ratio of the number of moles of catechol to the number of moles of titanium atoms was about 0.02. Further, in the distillation separation in the distillation column 130, the component having a boiling point higher than that of the diphenyl carbonate was contained in the high boiling point component taken out from the bottom of the column.
  • the diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 4 kg / Hr.
  • the reaction solution was analyzed with a trace moisture analyzer over time, and it was confirmed that the added water was consumed in the hydrolysis reaction and the analysis value became constant.
  • the obtained reaction solution was heated with stirring, and after reaching 150 ° C., n-butanol was distilled off using a distillation tower.
  • the composition of the distillate was analyzed by gas chromatography, and it was confirmed that the amount of the distillate had almost disappeared.
  • the colorless transparent liquid remaining in the reactor was analyzed, and the Ti content and the alkoxy group content were measured.
  • the polytitanoxane having a butoxy group having an average multimerization degree of 2 (hereinafter often referred to as “polytitanoxane butoxide”). ) was obtained.
  • Example 8 to 12 In the preparation of the titanium-containing composition, instead of polytitanoxane butoxide (manufactured by DuPont, product name: Tyzor BTP), tetrabutoxytitanium (manufactured by DuPont, Tyzor TnBT) and the polymers obtained from Production Examples 1 to 4 were used. Diphenyl carbonate (diaryl carbonate) was produced in the same manner as in Example 7 except that titanoxane alkoxide was used.
  • the components having a boiling point higher than that of diphenyl carbonate in the high-boiling components taken out from the bottom of the column are about 16% by mass, about 15% by mass, and about 17% by mass in the order of Examples 8-12. %, About 16% by mass, and about 18% by mass. Further, when the titanium-containing high boiling point component obtained from the extraction line 11 was analyzed, all the examples (iv) to (vi) were satisfied, and the diaryl carbonate could be stably produced. The results are shown in Table 3.
  • the ratio of the titanium-containing high boiling point component extracted from the extraction line 11 is about 2 g / Hr (the concentration of titanium atoms is about 1 mass%), and the ratio of the reaction catalyst supplied from the supply line 12 is about 0.4 g. / Hr (a titanium atom concentration of about 5 mass%) was gradually adjusted, and continuous operation was performed with the same liquid circulation rate as in Example 1.
  • diphenyl carbonate recovered from the recovery line 9 gradually decreased, the raw material liquid supplied from the supply line 1 was adjusted accordingly.
  • the diphenyl carbonate recovered from the recovery line 9 was about 150 g / Hr in a steady state at a continuous operation of about 100 Hr.
  • the ratio of the total number of moles of phenyl salicylate and salicylic acid (3-methylbutyl) ester to the number of moles of titanium atoms was about 4.0.
  • the ratio of the titanium-containing high boiling point component extracted from the extraction line 11 is about 1.5 g / Hr (concentration of titanium atom is about 1% by mass), and the ratio of the titanium tetraphenoxide-containing phenol solution supplied from the supply line 12 is Adjustment was made so that the concentration was about 0.3 g / Hr (the concentration of titanium atoms was about 5% by mass), and continuous operation was similarly performed.
  • diphenyl carbonate recovered from the recovery line 9 was about 80 g / Hr.
  • the bottom temperature of the distillation column 130 is controlled to be about 250 ° C. and the top pressure is about 20 kPa, and the proportion of the titanium-containing high boiling point component extracted from the extraction line 11 is about 4.7 g / Hr (titanium The concentration of the atoms is about 1.5% by mass), and the rate of the reaction catalyst supplied from the supply line 12 is gradually adjusted to about 1.4 g / Hr (the concentration of titanium atoms is about 5% by mass), Continuous operation was performed with the same liquid circulation rate as in Example 1 described above. However, since diphenyl carbonate recovered from the recovery line 9 gradually decreased, the raw material liquid supplied from the supply line 1 was adjusted accordingly.
  • diphenyl carbonate recovered from the recovery line 9 was about 350 g / Hr.
  • the ratio of the total number of moles of phenyl salicylate and salicylic acid (3-methylbutyl) ester to the number of moles of titanium atoms was about 2.8.
  • the ratio of the titanium-containing high boiling point component extracted from the extraction line 11 is about 2 g / Hr (concentration of titanium atom is about 1.5% by mass), and the ratio of the reaction catalyst supplied from the supply line 12 is about 0.6 g. It adjusted so that it might become / Hr (concentration of a titanium atom is about 5 mass%), and the continuous operation was performed similarly.
  • the diphenyl carbonate recovered from the recovery line 9 was about 100 g / Hr in a steady state with a continuous operation of about 100 Hr.
  • the ratio of the titanium-containing high boiling point component extracted from the extraction line 11 is about 5 g / Hr (the concentration of titanium atoms is about 1% by mass), and the ratio of the titanium tetraphenoxide-containing phenol solution supplied from the supply line 12 is about
  • the mixture was gradually adjusted to 1 g / Hr (the concentration of titanium atoms was about 5% by mass; salicylic acid ester was not included), and the continuous operation was performed with the same liquid circulation rate as in Example 1. However, since diphenyl carbonate recovered from the recovery line 9 gradually decreased, the raw material liquid supplied from the supply line 1 was adjusted accordingly.
  • the diphenyl carbonate recovered from the recovery line 9 in a steady state with a continuous operation of approximately 100 hours was approximately 250 g / hr.
  • the titanium-containing high boiling point component obtained from the extraction line 11 was analyzed. As a result, catechol, phenyl salicylate and salicylic acid (3-methylbutyl) ester were contained, and the ratio of the total number of moles to the number of moles of titanium atoms was about 2.2.
  • the ratio of the titanium-containing high boiling point component extracted from the extraction line 11 is about 4 g / Hr (the concentration of titanium atoms is about 1% by mass), and the ratio of the titanium tetraphenoxide-containing phenol solution supplied from the supply line 12 is about
  • the mixture was adjusted to 0.8 g / Hr (concentration of titanium atom: about 5% by mass; not including salicylic acid ester), and the continuous operation was similarly performed.
  • the diphenyl carbonate recovered from the recovery line 9 was about 90 g / Hr in a steady state with a continuous operation of about 100 Hr.
  • the ratio of the total number of moles of phenyl salicylate and salicylic acid (3-methylbutyl) ester to the number of moles of titanium atoms was about 4.1.
  • the value was larger than 4 times the number of moles.
  • the ratio of the number of moles of catechol to the number of moles of titanium atoms was about 2.1, which was a value larger than twice the titanium atoms of the titanium-containing composition. Therefore, none of the above requirements (v) and (vi) were satisfied.
  • Diphenyl carbonate (diaryl carbonate) was produced in the same manner as in Example 7 except that the heating condition in preparing the composition A was changed from 200 ° C. to 230 ° C., and the heating and holding time was changed from 72 Hr to 200 Hr. The results are shown in Table 5. Due to unstable production of diphenyl carbonate (diaryl carbonate), continuous operation was about 8 to 30 hours.
  • Diphenyl carbonate (diaryl carbonate) was produced in the same manner as in Example 7 except that the heating condition for preparing the composition A was changed from 200 ° C. to 250 ° C. and the heating and holding time was changed from 72 Hr to 300 Hr. The results are shown in Table 6. Due to unstable production of diphenyl carbonate (diaryl carbonate), continuous operation was about 9 to 20 hours. In the distillation separation in the distillation column 130, the components having a boiling point higher than that of diphenyl carbonate in the high boiling point components taken out from the bottom of the column are approximately 72% by mass, approximately 70% by mass, approximately 71% by mass in the order of Comparative Examples 14-18. %, About 72% by mass, and about 74% by mass.
  • Example 13 Preparation of titanium-containing composition
  • polytitanoxan butoxide manufactured by DuPont, product name: Tyzor BTP
  • the mixture in the batch reactor was heated to 180 ° C. with a heater and reacted. N-Butanol generated by the reaction was recovered from the top of the distillation column. Further, the batch reactor was depressurized to about 53 kPa, and n-butanol was recovered.
  • the batch reactor was returned to normal pressure, about 18 kg of diphenyl carbonate was charged, and the mixture in the reactor was heated to about 190 ° C.
  • the batch reactor was depressurized to about 1.3 kPa, and diphenyl carbonate containing a low boiling point component was distilled off to obtain a titanium-containing composition. Diphenyl carbonate was added so that the titanium concentration of the obtained titanium-containing composition was 5% by mass.
  • FIG. 2 the schematic block diagram of the manufacturing apparatus used in Example 13 is shown.
  • the manufacturing apparatus includes continuous multistage distillation columns 110 and 120, a distillation column 130, and a distillation purification column 140.
  • the lines 1, 1 ′, 12, and 13 are supply lines that supply raw material compounds, titanium-containing compositions, and the like, and the lines 3 and 9 are recovery lines that recover the generated compounds and other materials.
  • Lines 2, 4, 5, 6, 7, 8, and 10 are transfer lines, and line 11 is an extraction line.
  • Symbols 111, 121, 131, and 141 indicate reboilers, and symbols 112, 122, 132, and 142 indicate capacitors.
  • Reference numeral 113 denotes a preheater for setting the supply material to a predetermined temperature.
  • composition A (Preparation of composition A) In the distillation tower 130, a high-boiling product was produced from diphenyl carbonate as follows to prepare a composition A.
  • the distillation tower 130 was a distillation tower having an inner diameter of 150 mm and a length of 4 m filled with Melapak CY, and was equipped with a reboiler 131 and a condenser 132.
  • composition A A mixture (hereinafter also referred to as “composition A”) of the high-boiling product and the titanium-containing composition produced in the distillation tower 130 was used as a reaction catalyst for the production of the next diaryl carbonate.
  • a mixed liquid (a) comprising about 30% by mass of dimethyl carbonate and about 70% by mass of phenol was added to the 50th level sieve tray. It was continuously supplied from the supply line 1 through the preheater 113 at about 41 kg / Hr.
  • a mixed liquid (b) composed of about 70% by mass of dimethyl carbonate and about 30% by mass of phenol was continuously supplied to the lower part of the distillation column 110 at a rate of about 41 kg / Hr from the supply line 1 ′.
  • a concentration part was provided below the stage where the mixed liquids (a) and (b) were continuously supplied, and a recovery part was provided above.
  • the amount of heat necessary for the reaction and distillation was controlled by providing an external heater or circulating the liquid at the bottom of the tower through a reboiler.
  • the multistage distillation column 110 was controlled so that the temperature at the bottom of the column was about 230 ° C. and the pressure at the top of the column was about 0.55 MPa-G.
  • the composition A prepared above is gradually supplied from the lower part of the distillation column 130 to the 45th stage of the distillation column 110 using the transfer line 6, and the titanium atom concentration at the bottom of the distillation column 110 is about 300 ppm. It was adjusted to become.
  • the reaction liquid was continuously withdrawn from the bottom of the continuous multistage distillation column 110 through the transfer line 2 at about 21 kg / Hr.
  • the low boiling point component containing byproduct methanol was extracted from the top of the distillation column 110. Thereafter, the low boiling point component was condensed by the condenser 112 and recovered from the recovery line 3.
  • reaction liquid extracted from the transfer line 2 as described above was supplied to the continuous multistage distillation column 120.
  • This continuous multi-stage distillation column 120 was equipped with a reboiler 121, a concentrating portion of a 16-stage sieve tray type distillation column (inner diameter: 150 mm, length: about 4 m), and a recovery section having an inner diameter of 150 mm and a length of 4 m filled with Melapak CY. .
  • the supply position of the reaction liquid was set to the upper part of the concentration section, and the supply speed of the reaction liquid was about 21 kg / Hr.
  • the temperature at the bottom of the column was controlled to be about 210 ° C. and the pressure at the top of the column was about 13.3 kPa, and the disproportionation reaction was performed under these conditions.
  • low boiling point components including phenol and dimethyl carbonate were circulated from the top of the distillation column 120 to the distillation column 110 through the condenser 122, the transfer line 5 and the supply line 1.
  • the reaction liquid containing diphenyl carbonate was supplied to the distillation column 130 via the transfer line 4 and subjected to distillation separation.
  • the distillation tower 130 was a distillation tower having an inner diameter of 150 mm and a length of 4 m filled with Melapak CY, and was equipped with a reboiler 131 and a condenser 132.
  • the distillation tower 130 was controlled to have a tower bottom temperature of about 190 ° C. and a tower top pressure of about 1.7 kPa.
  • a low boiling point component containing diphenyl carbonate was taken out from the top of the column and supplied to the distillation purification column 140 through the condenser 132 and the transfer line 7.
  • the high boiling point component containing the composition A was circulated to the distillation column 110 through the transfer line 6 and the supply line 1.
  • the distillation purification tower 140 was a distillation tower having an inner diameter of 150 mm and a length of 5 m filled with Melapak CY, and was equipped with a reboiler 141 and a condenser 142.
  • the reaction liquid containing diphenyl carbonate supplied from the distillation tower 130 to the distillation purification tower 140 via the transfer line 7 was purified by the distillation purification tower 140.
  • 99.8% by mass of diphenyl carbonate (diaryl carbonate) was obtained from the recovery line 9.
  • the position of the recovery line 9 was the lower part of the distillation tower above the tower bottom.
  • a low boiling point component containing methylphenyl carbonate was extracted from the top of the distillation purification tower 140 and circulated to the distillation tower 120 through the recovery line 10 and the transfer line 2.
  • the composition of the liquid is about 55 mass% phenol, about 26 mass% dimethyl carbonate, about 17 mass% methylphenyl carbonate, about 2 mass% diphenyl carbonate, and about 0.09 mass% methanol.
  • the flow rate was about 40 kg / Hr.
  • the composition of the liquid is about 0.1% by weight of dimethyl carbonate, about 17% by weight of methyl phenyl carbonate, about 3% by weight of phenol, about 80% by weight of diphenyl carbonate, and the flow rate is about 6.2 kg / Hr. Met.
  • the composition of the liquid was about 78 mass% diphenyl carbonate, about 19 mass% methylphenyl carbonate, about 3 mass% phenol, and the flow rate was about 5 kg / Hr.
  • diphenyl carbonate recovered from the recovery line 9 could be stably produced at about 4 kg / Hr.
  • the ratio of the total number of moles of salicylic acid phenyls and methyl salicylates to the number of moles of titanium atoms in the salicylic acid esters was about 1.3.
  • the ratio of moles to moles of titanium atoms was about 0.08.
  • the ratio of the number of moles of catechol to the number of moles of titanium atoms was about 0.008.
  • the high boiling point component taken out from the bottom of the column contained about 11% by mass of a component having a higher boiling point than the diphenyl carbonate.
  • Example 14 Preparation of composition A by using tetrabutoxy titanium (manufactured by DuPont, product name: Tyzor TnBT) instead of polytitanoxan butoxide (manufactured by DuPont, product name: Tyzor BTP) in preparation of the titanium-containing composition
  • Tyzor TnBT tetrabutoxy titanium
  • Tyzor BTP polytitanoxan butoxide
  • a low boiling point component containing methylphenyl carbonate was extracted from the top of the distillation purification tower 140 and circulated to the distillation tower 120 through the recovery line 10 and the transfer line 2.
  • the composition of the liquid is about 53 mass% phenol, about 26 mass% dimethyl carbonate, about 17 mass% methyl phenyl carbonate, about 2 mass% diphenyl carbonate, and about 0.09 mass% methanol.
  • the flow rate was about 40 kg / Hr.
  • the composition of the liquid is about 0.1% by weight of dimethyl carbonate, about 17% by weight of methyl phenyl carbonate, about 3% by weight of phenol, about 80% by weight of diphenyl carbonate, and the flow rate is about 6.2 kg / Hr. Met.
  • the composition of the liquid was about 78 mass% diphenyl carbonate, about 19 mass% methylphenyl carbonate, about 3 mass% phenol, and the flow rate was about 5 kg / Hr.
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 4 kg / Hr.
  • the ratio of the total number of moles of salicylic acid phenyls and methyl salicylates to the number of moles of titanium atoms in the salicylic acid esters was about 1.6.
  • the ratio of moles to moles of titanium atoms was about 0.4.
  • the ratio of the number of moles of catechol to the number of moles of titanium atoms was about 0.01.
  • the high boiling point component taken out from the bottom of the column contained about 12% by mass of a component having a higher boiling point than the diphenyl carbonate.
  • Examples 15 to 30 In the preparation of the titanium-containing composition, as shown in Table 7 below, the polytitanoxane butoxide obtained from Production Examples 1 to 4 having different average multimerization degrees was used, and in the preparation of the composition A, the phenyl salicylate in the composition A was used. And diphenyl carbonate (diaryl carbonate) in the same manner as in Example 13 except that the molar ratio of (total salicylic acid + phenyl salicylate) / titanium atom) was changed as shown in Table 7 below. Manufactured. The results are shown in Table 7.
  • the components having a boiling point higher than the diphenyl carbonate in the high boiling point components taken out from the bottom of the column are about 9% by mass, about 9% by mass, about 8% by mass in the order of Examples 15 to 30. %, About 8%, about 18%, about 36%, about 32%, about 13%, about 12%, about 22%, about 38%, about 33%, about 23% %, About 27% by mass, about 31% by mass, and about 39% by mass.
  • Example 31 Preparation of titanium-containing composition
  • polytitanoxan butoxide manufactured by DuPont, product name: Tyzor BTP
  • the mixture in the batch reactor was heated to 180 ° C. with a heater and reacted. N-Butanol generated by the reaction was recovered from the top of the distillation column. Further, the batch reactor was depressurized to about 53 kPa, and n-butanol was recovered.
  • the batch reactor was returned to normal pressure, about 18 kg of diphenyl carbonate was charged, and the mixture in the reactor was heated to about 190 ° C.
  • the batch reactor was decompressed to about 1.3 kPa, and diphenyl carbonate containing a low boiling point component was distilled off to obtain a titanium-containing composition. Diphenyl carbonate was added so that the titanium concentration of the obtained titanium-containing composition was 5% by mass.
  • composition A (Preparation of composition A) Next, the titanium-containing composition was heated to 200 ° C. and maintained for about 120 hours to obtain composition A. When a part of the composition A was sampled and analyzed, phenyl salicylate and phenyl salicylate having higher boiling points than diphenyl carbonate were detected. The molar ratio of the sum of the phenyl salicylate and phenyl salicylate to the titanium atom (the sum of phenyl salicylate and phenyl salicylate / titanium atom) was 2.3. The composition A produced here was used as a reaction catalyst for the production of the following diaryl carbonate.
  • FIG. 1 the schematic block diagram of the manufacturing apparatus used in Example 31 is shown.
  • the manufacturing apparatus includes continuous multistage distillation columns 110 and 120, a distillation column 130, and a distillation purification column 140.
  • lines 1 and 12 are supply lines for supplying raw material compounds, titanium-containing compositions, and the like, and lines 3 and 9 are recovery lines for recovering generated compounds and other materials.
  • Lines 2, 4, 5, 6, 7, 8, and 10 are transfer lines, and line 11 is an extraction line.
  • Symbols 111, 121, 131, and 141 indicate reboilers, and symbols 112, 122, 132, and 142 indicate capacitors.
  • Reference numeral 113 denotes a preheater for setting the supply material to a predetermined temperature.
  • the distillation column 110 is provided with a concentrating portion having an inner diameter of 150 mm and a length of 4.8 m filled with 25 tray sieve trays and a recovery portion having an inner diameter of 150 mm and a length of 2.3 m filled with Melapak CY (manufactured by Sulzer Chemtech Ltd., Switzerland). A continuous multistage distillation column was used.
  • bis (3-methylbutyl) carbonate, phenol, and the composition A prepared above are continuously supplied from the supply line 1 through the preheater 113 at a rate of about 1830 g / Hr from the 25 th sieve tray.
  • the ester exchange reaction was carried out.
  • the supply ratio of each raw material liquid mixture was adjusted so that the mass ratio of bis (3-methylbutyl) carbonate to phenol in the liquid mixture was about 1.08 and the titanium atom concentration was about 500 ppm.
  • a concentration unit was provided below the stage where the mixed solution was continuously supplied, and a recovery unit was provided above.
  • the amount of heat required for the reaction and distillation was controlled by providing an external heater or circulating the column bottom liquid via the reboiler 111.
  • the multistage distillation column 110 was controlled so that the temperature at the bottom of the column was about 230 ° C. and the pressure at the top of the column was about 140 kPa.
  • the reaction liquid was continuously extracted from the bottom of the continuous multistage distillation column 110 via the transfer line 2 at about 1700 g / Hr.
  • reaction liquid extracted from the transfer line 2 as described above was supplied to the continuous multistage distillation column 120.
  • the continuous multistage distillation column 120 includes a reboiler 121, a concentration unit of a five-stage chimney-type distillation column (inner diameter: 150 mm, length: about 6 m), and a recovery unit having an inner diameter of 150 mm and a length of 3.8 m filled with Melapak CY.
  • the reaction solution was supplied at the upper part of the concentration unit, and the reaction solution was supplied at a rate of about 1700 g / Hr.
  • the temperature at the bottom of the column was controlled to 200 ° C., and the pressure at the top of the column was about 3 kPa, and the disproportionation reaction was performed under these conditions.
  • a low boiling point component containing phenol and bis (3-methylbutyl) carbonate was circulated from the top of the distillation column 120 to the distillation column 110 via the condenser 122, the transfer line 5 and the supply line 1.
  • the reaction liquid containing diphenyl carbonate was supplied to the distillation column 130 via the transfer line 4 and subjected to distillation separation.
  • the distillation tower 130 was a distillation tower having an inner diameter of 150 mm and a length of 4 m filled with Melapak CY, and was equipped with a reboiler 131 and a condenser 132.
  • the distillation column 130 was controlled at a column bottom temperature of about 180 ° C. and a column top pressure of about 0.5 kPa.
  • a low boiling point component containing diphenyl carbonate was taken out from the top of the column and supplied to the distillation purification column 140 through the condenser 132 and the transfer line 7.
  • the high boiling point component containing the composition A was circulated to the distillation column 110 through the transfer line 6 and the supply line 1.
  • the distillation purification tower 140 was a distillation tower having an inner diameter of 150 mm and a length of 5 m filled with Melapak CY, and was equipped with a reboiler 141 and a condenser 142.
  • the reaction liquid containing diphenyl carbonate supplied from the distillation tower 130 to the distillation purification tower 140 via the transfer line 7 was purified by the distillation purification tower 140.
  • This purification about 100% by mass of diphenyl carbonate (diaryl carbonate) was obtained from the recovery line 9.
  • the position of the recovery line 9 was the lower part of the distillation tower above the tower bottom.
  • a low boiling point component containing 3-methylbutylphenyl carbonate was extracted from the top of the distillation purification tower 140 and circulated to the distillation tower 120 through the recovery line 10 and the transfer line 2.
  • the ratio of the titanium-containing high boiling point component extracted from the extraction line 11 is about 7.7 g / Hr (titanium atom concentration is about 1.5 mass%), and the ratio of the composition A supplied from the supply line 12 is about 2.
  • the composition A was adjusted to 3 g / Hr (titanium atom concentration was about 5 mass%), and the supply of the composition A from the supply line 1 was stopped.
  • the composition of the liquid was about 15% by mass of phenol, about 67% by mass of bis (3-methylbutyl) carbonate, about 17% by mass of 3-methylbutylphenyl carbonate, and about 0.3% by mass of diphenyl carbonate.
  • 3-methyl-1-butanol was about 0.2% by mass, and the flow rate was about 11402 g / Hr.
  • the residence time of the reaction liquid in the steady state in the distillation column 110 and the distillation column 120 was about 1 Hr and about 2.5 Hr, respectively.
  • the composition of the liquid was about 100% by mass of 3-methyl-1-butanol, and the flow rate was about 823 g / Hr.
  • the composition of the liquid is about 0.2% by mass of bis (3-methylbutyl) carbonate, about 11% by mass of 3-methylbutylphenyl carbonate, about 84% by mass of diphenyl carbonate, and the flow rate is about 1238 g / Hr. Met.
  • the composition of the liquid is about 0.2% by mass of 3-methyl-1-butanol, about 17% by mass of phenol, about 83% by mass of bis (3-methylbutyl) carbonate, and the flow rate is about 10300 g / Hr. Met.
  • the composition of the liquid is about 88% by mass of diphenyl carbonate, about 12% by mass of 3-methylbutylphenyl carbonate, about 0.2% by mass of bis (3-methylbutyl) carbonate, and the flow rate is about 1140 g / Hr. Met.
  • the ratio of the total number of moles of phenyl salicylate and salicylic acid (3-methylbutyl) ester to the number of moles of titanium atoms was about 2.6. .
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 1000 g / Hr.
  • the ratio of the titanium-containing high boiling point component extracted from the extraction line 11 is about 6 g / Hr (the titanium atom concentration is about 1.5% by mass), and the ratio of the composition A supplied from the supply line 12 is about 1.8 g / hr. Adjustment was made so that the concentration of Hr (titanium atom concentration was about 5 mass%), and about 300 Hr continuous operation was performed in the same manner.
  • the diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 1000 g / Hr.
  • the ratio of the total number of moles of salicylic acid phenyls and salicylic acid (3-methylbutyl) esters to the number of moles of titanium atoms was about 3.0
  • the ratio of the number of moles of salicylic acid phenyl carbonate to the number of moles of titanium atoms was about 1.1.
  • the ratio of the number of moles of catechol to the number of moles of titanium atoms was about 0.04.
  • the high boiling point component taken out from the bottom of the column contained about 62% by mass of a component having a higher boiling point than the diphenyl carbonate.
  • Examples 32 to 35 In place of bis (3-methylbutyl) carbonate, dialkyl carbonates of the type shown in Table 9 below were used, and in the preparation of Composition A, the molar ratio of the sum of phenyl salicylate and phenyl salicylate in Composition A to titanium atoms. Diphenyl carbonate (diaryl carbonate) was produced in the same manner as in Example 31 except that (total of phenyl salicylate and phenyl salicylate / titanium atom) was changed as shown in Table 9 below. The flow rate in each transfer line and the pressure in the distillation tower were adjusted according to the type of dialkyl carbonate. The results are shown in Table 9. From these results, in any of Examples 31 to 35, no clogging occurred and stable continuous operation for a long time was possible.
  • the components having a boiling point higher than that of diphenyl carbonate in the high boiling point components taken out from the bottom of the column are about 28% by mass, about 30% by mass, and about 32% by mass in the order of Examples 32-35. %, About 38% by mass.
  • the titanium-containing high boiling point component obtained from the extraction line 11 was analyzed, all the examples (iv) to (vi) were satisfied, and the diaryl carbonate could be stably produced. The results are shown in Table 10.
  • Diphenyl carbonate (diaryl carbonate) was produced in the same manner as in Example 13 except that the prepared titanium-containing composition was used as the reaction catalyst for diaryl carbonate without using composition A as it was. The results are shown in Tables 11 and 12. In any case, when the titanium-containing composition was supplied for several hours (3 to 6 hours), the supply line 13 was blocked and operation was impossible.
  • Diphenyl carbonate (diaryl carbonate) was produced in the same manner as in Example 13 except that the heating condition for preparing the composition A was changed from 200 ° C. to 230 ° C., and the heating and holding time was changed from 72 Hr to 200 Hr. The results are shown in Tables 13 and 14. No clogging problem occurred when the composition A was supplied, but continuous operation was about 8 to 30 hours due to unstable production of diphenyl carbonate (diaryl carbonate).
  • Example 36 Preparation of titanium-containing composition
  • polytitanoxane butoxide manufactured by DuPont, product name: Tyzor BTP
  • the mixture in the batch reactor was heated to 180 ° C. with a heater and reacted. N-Butanol generated by the reaction was recovered from the top of the distillation column. Further, the batch reactor was depressurized to about 53 kPa, and n-butanol was recovered.
  • the batch reactor was returned to normal pressure, about 450 kg of diphenyl carbonate was charged, and the mixture in the reactor was heated to about 190 ° C.
  • the batch reactor was depressurized to about 1.3 kPa, and diphenyl carbonate containing a low boiling point component was distilled off to obtain a titanium-containing composition. Diphenyl carbonate was added so that the titanium concentration of the obtained titanium-containing composition was 5% by mass.
  • FIG. 2 the schematic block diagram of the manufacturing apparatus used in Example 36 is shown.
  • the manufacturing apparatus includes continuous multistage distillation columns 110 and 120, a distillation column 130, and a distillation purification column 140.
  • the lines 1, 1 ′, 12, and 13 are supply lines that supply raw material compounds, titanium-containing compositions, and the like, and the lines 3 and 9 are recovery lines that recover the generated compounds and other materials.
  • Lines 2, 4, 5, 6, 7, 8, and 10 are transfer lines, and line 11 is an extraction line.
  • Symbols 111, 121, 131, and 141 indicate reboilers, and symbols 112, 122, 132, and 142 indicate capacitors.
  • Reference numeral 113 denotes a preheater for setting the supply material to a predetermined temperature.
  • reaction catalyst In the distillation tower 130, a high boiling point product was produced from diphenyl carbonate as follows to prepare a reaction catalyst.
  • the distillation tower 130 was a distillation tower having an inner diameter of 3.4 m and a length of 17 m filled with Melapak CY, and was equipped with a reboiler 131 and a condenser 132.
  • composition A A mixture (hereinafter also referred to as “composition A”) of the high-boiling product and the titanium-containing composition produced in the distillation tower 130 was used as a reaction catalyst for the production of the next diaryl carbonate.
  • a mixed line (a) comprising about 30% by mass of dimethyl carbonate and about 70% by mass of phenol is supplied through a preheater 113. 1 to about 57 tons / Hr was continuously fed to the top of the distillation column 110.
  • a mixed liquid (b) consisting of about 70% by mass of dimethyl carbonate and about 30% by mass of phenol was continuously supplied to the lower part of the distillation column 110 from the supply line 1 ′ at about 57 tons / Hr.
  • a concentration part was provided below the stage where the mixed liquids (a) and (b) were continuously supplied, and a recovery part was provided above.
  • the amount of heat necessary for the reaction and distillation was controlled by providing an external heater or circulating the liquid at the bottom of the tower through a reboiler.
  • the multistage distillation column 110 was controlled so that the temperature at the bottom of the column was about 230 ° C. and the pressure at the top of the column was about 0.55 MPa-G.
  • reaction catalyst (composition A) prepared above is gradually supplied from the lower part of the distillation column 130 to the upper part of the distillation column 110 using the transfer line 6, and the titanium atom concentration in the reaction liquid of the distillation column 110. was adjusted to about 300 ppm.
  • the reaction solution was continuously withdrawn from the bottom of the continuous multistage distillation column 110 through the transfer line 2 at about 60 tons / Hr.
  • the low boiling point component containing byproduct methanol was continuously extracted from the top of the distillation column 110.
  • reaction liquid extracted from the transfer line 2 as described above was supplied to the continuous multistage distillation column 120.
  • This continuous multi-stage distillation column 120 had an inner diameter of 5 m and a length of 31 m, and was equipped with a sheave tray type concentrating section with 30 stages, a collecting section filled with Melapak CY, a condenser 122 and a reboiler 121.
  • the supply position of the reaction liquid was set to the upper part of the concentration part, and the supply speed of the reaction liquid was set to about 60 tons / Hr.
  • the temperature at the bottom of the column was controlled to be about 210 ° C. and the pressure at the top of the column was about 13.3 kPa, and the disproportionation reaction was performed under these conditions.
  • low boiling point components including phenol and dimethyl carbonate were circulated from the top of the distillation column 120 to the distillation column 110 through the condenser 122, the transfer line 5 and the supply line 1.
  • the distillation tower 130 was a distillation tower having an inner diameter of 3.4 m and a length of 17 m filled with Melapak CY, and was equipped with a reboiler 131 and a condenser 132.
  • the distillation tower 130 was controlled to have a tower bottom temperature of about 190 ° C. and a tower top pressure of about 1.7 kPa.
  • a low boiling point component containing diphenyl carbonate was taken out from the top of the column and supplied to the distillation purification column 140 through the condenser 132 and the transfer line 7.
  • the high boiling point component containing the reaction catalyst (Composition A) was circulated to the distillation column 110 through the transfer line 6 and the supply line 1.
  • the distillation purification tower 140 was a distillation tower having an inner diameter of 2.8 m and a length of 22 m filled with Melapak CY, and was equipped with a reboiler 141 and a condenser 142.
  • the reaction liquid containing diphenyl carbonate supplied from the distillation tower 130 to the distillation purification tower 140 via the transfer line 7 was purified by the distillation purification tower 140.
  • 99.8% by mass of diphenyl carbonate (diaryl carbonate) was obtained from the recovery line 9.
  • the position of the recovery line 9 was the lower part of the distillation tower above the tower bottom.
  • a low boiling point component containing methylphenyl carbonate was extracted from the top of the distillation purification tower 140 and circulated to the distillation tower 120 through the recovery line 10 and the transfer line 2.
  • the composition of the liquid is about 55 mass% phenol, about 26 mass% dimethyl carbonate, about 17 mass% methylphenyl carbonate, about 2 mass% diphenyl carbonate, and about 0.09 mass% methanol.
  • the flow rate was about 60 tons / Hr.
  • the composition of the liquid is about 0.1% by weight of dimethyl carbonate, about 27% by weight of methyl phenyl carbonate, about 3% by weight of phenol, about 70% by weight of diphenyl carbonate, and the flow rate is about 14 tons / Hr. there were.
  • the composition of the liquid was about 65% by weight of diphenyl carbonate, about 33% by weight of methyl phenyl carbonate, about 2% by weight of phenol, and the flow rate was about 13 tons / Hr.
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 7.5 tons / Hr.
  • the ratio of the total number of moles of phenyl salicylate and methyl salicylate to the number of moles of titanium atoms was about 1.3.
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 7.6 tons / Hr.
  • the ratio of the titanium-containing high boiling point component extracted from the extraction line 11 is about 2.0 kg / Hr (concentration of titanium atoms is about 1% by mass), and the ratio of the reaction catalyst supplied from the supply line 12 is about 4.
  • the pressure was adjusted to 0.0 kg / Hr (the concentration of titanium atoms was about 5% by mass), and a continuous operation of about 500 Hr was similarly performed.
  • the ratio of the total number of moles of salicylic acid phenyl and salicylic acid methyl ester to the number of moles of titanium atoms in the salicylic acid ester was about 1.9.
  • the ratio of moles to moles of titanium atoms was about 0.8.
  • the ratio of the number of moles of catechol to the number of moles of titanium atoms was about 0.03. Further, in the distillation separation in the distillation column 130, the component having a higher boiling point than the diphenyl carbonate was contained in the high boiling point component taken out from the bottom of the column.
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 7.6 tons / Hr.
  • Example 37 (Preparation of titanium-containing composition) A titanium-containing composition was prepared in the same manner as in Example 7. (Diaryl carbonate production equipment) FIG. 3 shows a schematic configuration diagram of the manufacturing apparatus used in Example 37.
  • This production apparatus includes tank reactors 210 and 220, a distillation tower 330, and a distillation purification tower 340.
  • lines 1 and 12 are supply lines for supplying raw material compounds, titanium-containing compositions, and the like, and lines 3 and 9 are recovery lines for recovering generated compounds and other materials.
  • Lines 2, 4, 5, 6, 7, 8, and 10 are transfer lines, and line 11 is an extraction line.
  • Reference numerals 331 and 341 indicate reboilers, and reference numerals 312, 322, 332, and 342 indicate capacitors.
  • Reference numeral 211 denotes a preheater for setting the supply material to a predetermined temperature.
  • reaction catalyst In the distillation tower 330, a high boiling point product was produced from diphenyl carbonate as follows to prepare a reaction catalyst.
  • the distillation tower 330 was a distillation tower having an inner diameter of 150 mm and a length of 4 m filled with Melapak CY, and was equipped with a reboiler 331 and a condenser 332.
  • composition A A mixture of the high-boiling product and the titanium-containing composition produced in the distillation column 330 (hereinafter also referred to as “composition A”) was used as a reaction catalyst for the subsequent production of diaryl carbonate.
  • the amount of heat required for the reaction and distillation was controlled by providing an external heater.
  • the temperature of the reaction solution was controlled to be about 230 ° C.
  • the top pressure of the distillation column 310 was controlled to be about 0.55 MPa-G.
  • the reaction catalyst (composition A) prepared above is gradually supplied from the lower part of the distillation column 330 to the tank reactor 210 using the transfer line 6 so that the titanium atom concentration in the reaction solution is about 1000 ppm.
  • the transesterification reaction was carried out.
  • the reaction liquid containing methylphenyl carbonate was continuously extracted from the tank reactor 210 through the transfer line 2 at about 21 kg / Hr.
  • the low boiling point component containing byproduct methanol was extracted from the top of the distillation column 310. Thereafter, the low boiling point component was condensed by the condenser 312 and recovered from the recovery line 3.
  • the reaction liquid extracted from the transfer line 2 as described above was supplied to the tank reactor 220.
  • This tank reactor 220 was provided with a stirring device and a distillation column 320 having an inner diameter of 150 mm and a length of 1.5 m and filled with Melapak CY.
  • the supply rate of the reaction solution was about 21 kg / Hr.
  • the temperature of the reaction solution is controlled to be about 210 ° C., and the top pressure is about 13.3 kPa. Under these conditions, the transesterification reaction or the disproportionation reaction of methylphenyl carbonate is carried out. Carbonate was produced.
  • low boiling point components including phenol and dimethyl carbonate were circulated from the top of the distillation column 320 to the tank reactor 210 through the condenser 322, the transfer line 5 and the supply line 1.
  • the reaction liquid containing diphenyl carbonate was supplied to the distillation tower 330 via the transfer line 4 and subjected to distillation separation.
  • the distillation tower 330 was a distillation tower having an inner diameter of 150 mm and a length of 4 m filled with Melapak CY, and was equipped with a reboiler 331 and a condenser 332.
  • the distillation tower 330 was controlled at a tower bottom temperature of about 190 ° C. and a tower top pressure of about 1.7 kPa.
  • a low-boiling component containing diphenyl carbonate was taken out from the top of the column and supplied to the distillation purification column 340 through the condenser 332 and the transfer line 7.
  • the high boiling point component containing the reaction catalyst (Composition A) was circulated to the distillation column 110 through the transfer line 6 and the supply line 1.
  • the distillation purification tower 340 was a distillation tower having an inner diameter of 150 mm and a length of 5 m filled with Melapak CY, and was equipped with a reboiler 341 and a condenser 342.
  • the reaction liquid containing diphenyl carbonate supplied from the distillation tower 330 to the distillation purification tower 340 via the transfer line 7 was purified by the distillation purification tower 340.
  • 99.8% by mass of diphenyl carbonate (diaryl carbonate) was obtained from the recovery line 9.
  • the position of the recovery line 9 was the lower part of the distillation tower above the tower bottom.
  • a low boiling point component containing methylphenyl carbonate was extracted from the top of the distillation purification tower 340 and circulated through the recovery line 10 to the tank reactor 220.
  • the composition of the liquid is about 60% by mass of phenol, about 28% by mass of dimethyl carbonate, about 10% by mass of methyl phenyl carbonate, about 1% by mass of diphenyl carbonate, and about 0.09% by mass of methanol.
  • the flow rate was about 40 kg / Hr.
  • the composition of the liquid is about 0.1% by weight of dimethyl carbonate, about 37% by weight of methyl phenyl carbonate, about 3% by weight of phenol, about 60% by weight of diphenyl carbonate, and the flow rate is about 6.2 kg / Hr. Met.
  • the composition of the liquid was about 78 mass% diphenyl carbonate, about 19 mass% methylphenyl carbonate, about 3 mass% phenol, and the flow rate was about 5 kg / Hr.
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 2.7 kg / Hr.
  • the ratio of the total number of moles of phenyl salicylate and salicylic acid methyl ester to the number of moles of titanium atoms was about 1.2.
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 2.7 kg / Hr.
  • the ratio of the titanium-containing high-boiling component extracted from the extraction line 11 is about 5.0 g / Hr (the concentration of titanium atoms is about 2 mass%), and the ratio of the reaction catalyst supplied from the supply line 12 is about 2. It was adjusted to 0.0 g / Hr (the concentration of titanium atoms was about 5% by mass), and a continuous operation of about 500 Hr was similarly performed.
  • the ratio of the total number of moles of salicylic acid phenyl and salicylic acid methyl ester to the number of moles of titanium atoms in the salicylic acid ester was about 1.9.
  • the ratio of moles to moles of titanium atoms was about 0.8.
  • the ratio of the number of moles of catechol to the number of moles of titanium atoms was about 0.04.
  • the high boiling point component taken out from the bottom of the column contained about 35% by mass of a component having a higher boiling point than the diphenyl carbonate.
  • diphenyl carbonate (diaryl carbonate) recovered from the recovery line 9 could be stably produced at about 2.7 kg / Hr.
  • the hydrous n-butanol was added to the reactor with stirring.
  • the addition time was 1.5 hours, and the amount of water added was 0.5 molar equivalent (relative to the number of moles of Ti atoms in the reactor).
  • the reaction solution was analyzed with a trace moisture analyzer over time, and it was confirmed that the added water was consumed in the hydrolysis reaction and the analysis value became constant.
  • the obtained reaction solution was heated with stirring, and after reaching 150 ° C., n-butanol was distilled off using a distillation tower.
  • the composition of the distillate was analyzed by gas chromatography, and it was confirmed that the amount of the distillate had almost disappeared.
  • the colorless transparent liquid remaining in the reactor was analyzed, and the Ti content and the alkoxy group content were measured. As a result, it was found that polytitanoxane butoxide having an average multimerization degree of 2 was obtained.
  • Examples 38 to 42 In the preparation of the titanium-containing composition, instead of polytitanoxane butoxide (manufactured by DuPont, product name: Tyzor BTP), tetrabutoxy titanium (manufactured by DuPont, Tyzor TnBT) and the polymers obtained from Production Examples 5 to 8 were used.
  • Diphenyl carbonate diaryl carbonate was produced in the same manner as in Example 36 except that titanoxane alkoxide was used.
  • the components having a boiling point higher than that of diphenyl carbonate in the high boiling point components taken out from the bottom of the column are approximately 41% by mass, approximately 45% by mass, approximately 39% by mass in the order of Examples 38 to 42. %, About 50% by mass, and about 45% by mass. Further, when the titanium-containing high boiling point component obtained from the extraction line 11 was analyzed, all the examples (iv) to (vi) were satisfied, and the diaryl carbonate could be stably produced. The results are shown in Table 16.
  • a titanium-containing composition was prepared in the same manner as in Example 13. Then, without using composition A, phenyl salicylate (manufactured by Aldrich) was added to the titanium-containing composition, and the mixture was heated to about 170 ° C. to make a uniform liquid. The ratio of the phenyl salicylate to the number of moles of titanium atoms was adjusted as shown in Table 17 below.
  • Example 43 to 45 Diphenyl carbonate (diaryl carbonate) was produced in the same manner as in Example 13 except that the titanium-containing compositions obtained from Production Examples 9 to 11 were used. In the distillation separation in the distillation column 130, the components having a boiling point higher than that of diphenyl carbonate in the high boiling point components taken out from the bottom of the column are about 14% by mass, about 10% by mass, about 23% by mass in the order of Examples 43 to 45. % Was included. Further, when the titanium-containing high boiling point component obtained from the extraction line 11 was analyzed, all the examples (iv) to (vi) were satisfied, and the diaryl carbonate could be stably produced. The results are shown in Table 18.
  • Diphenyl carbonate (diaryl carbonate) was produced in the same manner as in Example 13, except that the titanium-containing compositions obtained from Production Examples 12 to 14 were used. When supplying the titanium-containing composition, the problem of clogging did not occur, but the production amount of diphenyl carbonate was unstable and the continuous operation was about 8 to 12 hours. Further, in Comparative Example 29 using the titanium-containing composition obtained from Production Example 14, almost no diphenyl carbonate was generated. The results are shown in Table 19 below.
  • Tetrabutoxytitanium manufactured by DuPont, product name: Tyzor TnBT
  • polytitanoxane butoxide manufactured by DuPont, product name: Tyzor BTP
  • polytitanoxane butoxide obtained from Production Examples 1 to 4 was used as a titanium-containing catalyst.
  • the composition was used as a reaction catalyst for diaryl carbonate. A start-up operation was performed in the same manner as in Example 1 to produce diaryl carbonate.
  • the components having a boiling point higher than that of diphenyl carbonate in the high-boiling components taken out from the bottom of the column are about 5% by mass, about 6% by mass, about 5% by mass in the order of Examples 46 to 51. %, About 7% by mass, about 6% by mass, and about 6% by mass.
  • Table 20 shows the results of analyzing the titanium-containing high-boiling components obtained from the extraction line 11. In all the examples, the conditions (iv) to (vi) were satisfied, and the diaryl carbonate could be produced stably.
  • Example 52 Using the diaryl carbonate production apparatus shown in FIG. 1 described in Example 1, diaryl carbonate was produced as follows.
  • a concentration unit was provided below the stage where the mixed solution was continuously supplied, and a recovery unit was provided above.
  • an external heater was provided, or the column bottom liquid was circulated through the reboiler 111 and supplied.
  • the temperature at the bottom of the multistage distillation column was controlled to about 230 ° C.
  • the pressure at the top of the column was controlled to about 140 kPa.
  • the reaction solution was continuously extracted from the bottom of the continuous multistage distillation column 110 through the transfer line 2 at about 1650 g / Hr.
  • the continuous multi-stage distillation column 120 includes a reboiler 121, a concentration unit of a chimney-type distillation column having 5 plates (inner diameter 150 mm, length of about 6 m), and a recovery unit 150 mm in length and 3.8 m in length filled with Melapak CY.
  • the reaction solution was supplied to the upper part of the concentration unit at about 1700 g / Hr.
  • the temperature at the bottom of the distillation column 120 was controlled to 200 ° C. and the pressure at the top of the column was about 3 kPa, and the disproportionation reaction was performed under these conditions. Further, a low boiling point component containing phenol and bis (3-methylbutyl) carbonate was circulated from the top of the distillation column 120 to the distillation column 110 through the condenser 122, the transfer line 5 and the supply line 1.
  • the distillation column 130 is a distillation column having an inner diameter of 150 mm and a length of 4 m filled with Melapak CY, and includes a reboiler 131 and a condenser 132.
  • the distillation column 130 was controlled at a column bottom temperature of about 180 ° C. and a column top pressure of about 0.5 kPa.
  • a low boiling point component containing diphenyl carbonate was taken out from the top of the column and supplied to the distillation purification column 140 via the condenser 132 and the transfer line 7.
  • the high boiling component containing the catalyst was circulated to the distillation column 110 through the transfer line 6 and the supply line 1.
  • the distillation purification tower 140 is a distillation tower filled with Melapak CY and having an inner diameter of 150 mm and a length of 5 m, and includes a reboiler 141 and a condenser 142.
  • the reaction solution containing diphenyl carbonate supplied from the distillation tower 130 to the distillation purification tower 140 via the transfer line 7 is purified by the distillation purification tower 140.
  • about 99% by mass of diphenyl carbonate was obtained from the recovery line 9 positioned above the bottom of the column but positioned at the bottom of the distillation column.
  • a low-boiling component containing 3-methylbutylphenyl carbonate was circulated from the top of the distillation purification tower 140 to the distillation tower 120 through the recovery line 10 and the transfer line 2.
  • the tin-containing high-boiler extracted from the extraction line 11 is about 2.3 g / Hr (concentration of tin atom is about 5% by mass), and contains octyltin oxide phenoxide supplied from the supply line 12
  • the phenol solution was adjusted to about 2.3 g / Hr (concentration of tin atom was about 5 mass%), and the supply of octyltin oxide phenoxide from the supply line 1 was stopped.
  • the composition of the liquid was about 15% by mass of phenol, about 67% by mass of bis (3-methylbutyl) carbonate, about 17% by mass of 3-methylbutylphenyl carbonate, and about 0.3% by mass of diphenyl carbonate.
  • the amount of 3-methyl-1-butanol was about 0.2% by mass, and the flow rate was about 11402 g / Hr.
  • composition of the liquid in the recovery line 3 was about 100% by mass of 3-methyl-1-butanol, and the flow rate was about 825 g / Hr.
  • the composition of the liquid is about 0.2% by mass of bis (3-methylbutyl) carbonate, about 11% by mass of 3-methylbutylphenyl carbonate, about 84% by mass of diphenyl carbonate, and the flow rate is about 1230 g / Hr. Met.
  • the composition of the liquid is about 0.2% by mass of 3-methyl-1-butanol, about 15% by mass of phenol, about 84% by mass of bis (3-methylbutyl) carbonate, and the flow rate is about 10300 g / Hr. there were.
  • the composition of the liquid is about 86% by weight of diphenyl carbonate, about 13% by weight of 3-methylbutylphenyl carbonate, about 0.2% by weight of bis (3-methylbutyl) carbonate, and the flow rate is about 1120 g / Hr. there were.
  • the high-boiling components obtained from the extraction line 11 were analyzed, the ratio of the total number of moles of phenyl salicylate and salicylic acid (3-methylbutyl) ester to the number of moles of tin atoms was about 0.4.
  • diphenyl carbonate recovered from the recovery line 9 could be stably produced at about 1000 g / Hr.
  • the tin-containing high-boiler extracted from the extraction line 11 is about 1.8 g / Hr (concentration of tin atom is about 5% by mass), and the octyltin oxide phenoxide-containing phenol liquid supplied from the supply line 12 is about Adjustment was made so that the concentration was 1.8 g / Hr (concentration of tin atom was about 5 wt%), and about 100 Hr continuous operation was similarly performed.
  • the ratio of the total number of moles of salicylic acid esters of phenyl salicylate and salicylic acid (3-methylbutyl) ester to the number of moles of tin atoms was about 0.7.
  • the ratio of the number of moles of carbonate to the number of moles of tin atoms was about 0.05.
  • the ratio of the number of moles of catechol to the number of moles of tin atoms was about 0.02.
  • the component having a higher boiling point than diphenyl carbonate was about 23% by mass.
  • the diphenyl carbonate recovered from the recovery line 9 could be stably produced at about 1000 g / Hr as well.
  • Example 53 to 55 In Examples 53 to 55, as the metal-containing catalyst, triethoxy iron (manufactured by Strem Chemicals), tributoxyaluminum (manufactured by Wako Pure Chemical Industries, Ltd.), and tripropoxyzirconium (manufactured by Strem Chemicals) were used in this order. In the same manner as in Example 52, diaryl carbonate was produced.
  • the components having a boiling point higher than the diphenyl carbonate in the high boiling point components taken out from the bottom of the column are about 14% by mass, about 15% by mass, and about 17% by mass in the order of Examples 53 to 55. % Was included. Further, when the titanium-containing high boiling point component obtained from the extraction line 11 was analyzed, all the examples (iv) to (vi) were satisfied, and the diaryl carbonate could be stably produced. The results are shown in Table 21.
  • Diaryl carbonate was manufactured using the manufacturing apparatus shown in FIG.
  • monooctyltin phenoxide oxide, triethoxy iron (manufactured by Strem Chemicals), tributoxyaluminum (manufactured by Wako Pure Chemical Industries), and tripropoxyzirconium (manufactured by Strem Chemicals) were used as metal-containing catalysts, respectively.
  • the diaryl carbonate was produced in the same manner as in Example 52 except that the control operation was as follows.
  • Example 52 A start-up operation similar to that in Example 52 was performed, and the metal-containing high-boiler extracted from the extraction line 11 was about 2.4 g / Hr (the concentration of metal atoms was about 5 mass%), and the metal supplied from the supply line 12 The contained catalyst composition was adjusted so as to be about 2.4 g / Hr (concentration of metal atom was about 5% by mass), and at the same time, diphenyl carbonate recovered from the recovery line 9 was adjusted to about 1000 g / Hr. When the amount of liquid circulated through the distillation tower was gradually increased and continuous operation was performed for about 12 hours, a steady state was obtained.
  • the high boiling point component extracted from the extraction line 11 is about 0.4 g / Hr (metal atom concentration is about 5 mass%), and the metal-containing catalyst composition liquid supplied from the supply line 12 is about 0.4 g / hr.
  • the temperature was gradually adjusted to Hr (the concentration of metal atoms was about 5% by mass), and continuous operation was performed with the same liquid circulation rate as in Example 52.
  • diphenyl carbonate recovered from the recovery line 9 gradually decreased, the raw material liquid supplied from the supply line 1 was adjusted accordingly.
  • diphenyl carbonate recovered from the recovery line 9 in the steady state was about 150 g / Hr.
  • the tin-containing high boiler extracted from the extraction line 11 is about 0.3 g / Hr (concentration of metal atom is about 5% by mass), and the metal-containing catalyst composition supplied from the supply line 12 is about 0.3 g / hr.
  • the operation was adjusted to Hr (the concentration of metal atoms was about 5% by mass), and continuous operation was performed in the same manner.
  • the diaryl carbonate production method of the present invention has industrial applicability as a technique for producing diaryl carbonate stably and with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

【課題】ジアリールカーボネートを長時間安定的に、高生産性をもって連続的に製造する方法を提供する。 【解決手段】本発明のジアリールカーボネートの製造方法は、アルキルアリールカーボネートを得る工程(1)と、該アルキルアリールカーボネートから反応生成物を得る工程(2)と、該反応生成物からジアリールカーボネートと高沸点成分とを分離する工程(3)と、該高沸点成分を前記工程(1)および/または前記工程(2)にリサイクルする工程(4)とを含み、前記工程(4)でリサイクルする際の高沸点成分に含まれる特定の化合物が、特定の条件を満たすことを特徴とする。

Description

ジアリールカーボネートの製造方法
 本発明は、ジアリールカーボネート類の製造方法に関するものである。
 ジアリールカーボネートは、エンジニアリングプラスチックであるポリカーボネートの工業的な製造原料として有用である。そのため、ジアリールカーボネートを安定的に高い効率で製造する技術は重要である。
 ジアリールカーボネートの製造方法としては、ジアルキルカーボネートと芳香族モノヒドロキシ化合物(例えば、フェノール)とを、下記式(A)に示すエステル交換反応させることによりアルキルアリールカーボネートを得て、次に、このアルキルアリールカーボネートを用いて、下記式(B)に示す不均化反応を行うことによりジアリールカーボネートを得る方法が知られている。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 上記式(A)および式(B)中、Rは、直鎖状もしくは分岐状の炭素数1~12の脂肪族基、または炭素数5~12の脂環式脂肪族基を表す。
 しかしながら、上記式(A)に示すエステル交換反応、および上記式(B)に示す不均化反応のいずれも平衡反応であり、かつ反応速度が遅い。特に、エステル交換反応は平衡が原系に偏っているため、反応効率が悪いという問題がある。
 かかる問題に鑑みて、上記式(A)に示すエステル交換反応、および上記式(B)に示す不均化反応において、反応速度を向上させる触媒に関する研究が行われている。
 このような触媒として、例えば、チタン化合物(例えば、特許文献1および2、非特許文献1参照。)、有機スズ化合物(例えば、特許文献3、非特許文献2参照。)、含窒素塩基性化合物(例えば、特許文献4参照。)、サマリウム化合物(例えば、非特許文献3参照。)等が提案されている。
 さらには、ジアリールカーボネートの連続製造方法についての提案もなされている。例えば、触媒成分を有効に利用するために、触媒と生成物とを含む混合物から生成物を蒸留分離し、触媒成分を含む蒸留残渣を反応工程に循環させる連続製造方法が挙げられる(例えば、特許文献5および6参照。)。当該連続製造方法では、必要に応じて副生物の蓄積を防ぐ目的で循環させる触媒成分を含む蒸留残渣の一部を抜き出し、適宜新しい触媒成分を供給してもよい。
 上記式(A)に示すエステル交換反応、および上記式(B)に示す不均化反応において、目的とするジアリールカーボネートが生成される反応の他、副反応が起こることが知られている。当該副反応としては、例えば、下記式(C)に示すようなフリース転移反応が挙げられる。当該フリース転移反応によって生成するサリチル酸エステルを分離するため、最終目的とする生成物の精製が必須とされている。
Figure JPOXMLDOC01-appb-C000017
 また、副生成物と、目的とする主生成物と分離精製が困難な場合があり、これまで副生生物を分離するための精製技術についての提案がなされている(例えば、特許文献7参照。)。
 さらに、副生成物と主生成物との分離精製を高温条件下(例えば200℃以上)で行うと、熱分解等により触媒機能が低下する場合がある。このような触媒機能の低下を抑制する方法についての技術提案がなされている(例えば、特許文献8参照。)。
 上記式(A)および(B)に示した反応に用いる触媒は、固体または液体であるが、該触媒の供給方法に関する報告もある。
 例えば、原料に用いるジアルキルカーボネートにおけるアルキル部分と同様のアルキル部分を有する触媒(例えば、チタニウムテトラアルコキシド)を供給する方法が挙げられる(例えば、特許文献9参照。)。当該供給方法によれば、触媒から副生するアルキルアルコールによる副生物の混入を防ぐことができる。
 また、他の例として、ジアルキルカーボネート、芳香族ヒドロキシ化合物および触媒を反応器へ連続的に供給して、反応器に付設した蒸留塔より副生するアルコールを連続的に抜き出し、さらに反応器からアルキルアリールカーボネート、ジアリールカーボネートまたはこれらの混合物からなる芳香族カーボネート類を抜き出す方法が挙げられる(例えば、特許文献10参照)。また、ジアルキルカーボネートおよび芳香族ヒドロキシ化合物の供給位置と、触媒の供給位置とを分離する方法が挙げられる(例えば、特許文献11参照)。これらの方法によれば、長時間の運転により触媒が析出することを抑制し、閉塞を防ぐことができる。
 上記式(A)および(B)に示した反応に用いる触媒は、通常、反応条件下では反応液に溶解した状態である。また、当該触媒は、芳香族カーボネートよりも沸点が高いので、反応生成液から高純度の芳香族カーボネートを得るためには、まず反応生成液から低沸点成分を除去し、次いで高沸点成分のうちのジアリールカーボネートを該触媒と分離してジアリールカーボネートを精製する必要がある。この際に該触媒は高沸点成分として回収され、リサイクル使用されてよいし、また一部失活成分は除去されてよいことが知られている(例えば、特許文献8参照)。また、アルキルアミンなどの低い沸点を持つ触媒を用いることにより触媒の分離を行う方法も知られている(例えば、特許文献12参照)。
特開平8-259505号公報 特開2000-191596号公報 特開平8-259504号公報 特許3528997号公報 特開平9-59224号公報 特開平9-110805号公報 特開平9-194437号公報 特開平9-169704号公報 特開2000-72721号公報 特開平6-157410号公報 特開2004-307400号公報 特開2003-238487号公報
Catalysis Communications,8(2007),355-358 Journal of Molecular Catalysis A:Chemical,246(2006),200-205 Journal of Molecular Catalysis A:Chemical,259(2006),292-295
 しかしながら、触媒機能の低下については、一定の運転時間経過に伴い、生成物であるアルキルアリールカーボネートとジアリールカーボネートとの濃度を分析して、生成物濃度が低下することにより判断するに留まっている。そのため、運転条件の変動等により、原因は不明であったが、生産性低下が起こる場合がある。
 また、副反応によって生成した化合物の触媒への影響については、未だ充分には解明されていない。
 さらに、ジアリールカーボネートの工業的な生産において、触媒が反応装置内で閉塞することは非常に重大な問題である。触媒が反応装置内で閉塞すると、ジアリールカーボネートの生産を完全に停止し、反応器、蒸留塔、配管等の開放点検などが必要とする場合があり、多くの時間、労力および費用がかかるという問題がある。上述した従来技術の触媒の供給方法では、このような問題を充分に解決するには至っていない。
 このような状況下、長時間に亘って安定的に高い効率でジアリールカーボネートを製造する技術を開発することへの要望が高まっている。
 そこで本発明は、ジアリールカーボネートの製造において、生成する副生成物の触媒に対する影響を解明して、触媒機能の低下を抑制し、また、触媒が反応装置内で閉塞することなく安定的に供給され、安定的で効率の良いジアリールカーボネートの製造方法を提供することを課題とする。
 本発明者らは、上述した問題に鑑み、ジアリールカーボネートの製造方法について鋭意研究を行った。その結果、特定の副生成物が特定量で金属含有触媒組成物と共存している状態においては、ジアリールカーボネートの生産性が安定することを解明し、さらには特定の工程において、特定の組成物を用いることにより、反応装置内での触媒の閉塞を抑制できることを解明した。そして、金属含有触媒組成物の金属原子と特定の副生成物との比率を制御することによって、さらには特定の工程において、特定の組成物を用いることによって、長期間安定的に高い効率でジアリールカーボネートを製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、例えば以下に関する。
 [1]
 金属含有触媒組成物を反応触媒として用いるジアリールカーボネートの製造方法であって、
 ジアルキルカーボネートと芳香族モノヒドロキシ化合物とをエステル交換反応させることにより、アルキルアリールカーボネートを得るとともに、副生するアルコール類を反応系外に取り出す工程(1)と、
 該工程(1)で得られたアルキルアリールカーボネートをエステル交換反応または不均化反応させることにより、ジアリールカーボネートを含む反応生成物を得る工程(2)と、
 該工程(2)で得られた反応生成物を蒸留することにより、ジアリールカーボネートを含む低沸点成分と、反応触媒を含む高沸点成分とに分離する工程(3)と、
 該工程(3)で分離された高沸点成分を、前記工程(1)および/または前記工程(2)にリサイクルする工程(4)とを含み、
 前記工程(3)で分離された高沸点成分中に該ジアリールカーボネートより高沸点の成分が70質量%以下含まれており、
 前記工程(3)で分離された高沸点成分が下記式(1)で表される化合物を含み、
 前記工程(4)でリサイクルする際の高沸点成分に含まれる下記(i)~(iii)に示す化合物が、それぞれ下記(iv)~(vi)の条件を満たすことを特徴とするジアリールカーボネートの製造方法;
 (i)下記式(1)において、Xが下記式(2)または下記式(3)であり、Yが下記式(3)である化合物、
 (ii)下記式(1)において、Xがヒドロキシ基であり、Yが下記式(3)である化合物、および/または下記式(1)において、Xが下記式(3)であり、Yが水素である化合物、
 (iii)下記式(1)において、Xがヒドロキシ基であり、Yが水素である化合物、
 (iv)「上記(i)の化合物群の合計モル数/金属原子のモル数」が0.005~20であること、
 (v)「上記(ii)の化合物群の合計モル数/金属原子のモル数」が0.005~4であること、
 (vi)「上記(iii)の化合物のモル数/金属原子のモル数」が2未満であること。
Figure JPOXMLDOC01-appb-C000018
(式(1)中、Ar1は、無置換もしくは置換された炭素数6~20のアリレン基を表し、XとY-Oとはオルト位に位置し、Xは、ヒドロキシ基、下記式(2)または下記式(3)で表される置換基を表し、Yは、水素または下記式(3)で表される置換基を表す。)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(式(2)および式(3)中、R1は、直鎖状もしくは分岐状の炭素数1~12の脂肪族基、炭素数5~12の脂環式脂肪族基、または無置換もしくは置換された炭素数6~20のアリール基を表す。)
 [2]
 前記金属含有触媒組成物が、チタン含有触媒組成物であることを特徴とする[1]に記載のジアリールカーボネートの製造方法。
 [3]
 前記チタン含有触媒組成物が、ジアリールカーボネートおよびアリールオキシチタン組成物から形成されるチタン含有組成物であって、該チタン含有組成物100質量%に対して、前記アリールオキシチタン組成物を構成するチタンの含有率が0.1~20質量%であることを特徴とする[2]に記載のジアリールカーボネートの製造方法。
 [4]
 前記アリールオキシチタン組成物を構成するチタンが4価であることを特徴とする[3]に記載のジアリールカーボネートの製造方法。
 [5]
 前記アリールオキシチタン組成物が、チタン原子1個に対して、アリールオキシ基を1以上4以下の整数個有していることを特徴とする[3]または[4]に記載のジアリールカーボネートの製造方法。
 [6]
 前記工程(1)および/または前記工程(2)において反応溶媒を用い、
 前記金属含有触媒組成物が、前記反応溶媒に可溶であること、または前記反応溶媒と均一相となることを特徴とする[1]~[5]のいずれかに記載のジアリールカーボネートの製造方法。
 [7]
 前記式(1)で表される化合物が、下記式(4)~下記式(8)で表される化合物群より選択される少なくとも1種であることを特徴とする[1]~[6]のいずれかに記載のジアリールカーボネートの製造方法。
Figure JPOXMLDOC01-appb-C000021
(式(4)中、Ar2は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar3は無置換または置換基を有する炭素数6~20のアリール基を表し、Ar2における2つの置換基は互いにオルト位に位置する。)
Figure JPOXMLDOC01-appb-C000022
(式(5)中、Ar4は無置換または置換基を有する炭素数6~20のアリレン基を表し、R2は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表し、Ar4における2つの置換基は互いにオルト位に位置する。)
Figure JPOXMLDOC01-appb-C000023
(式(6)中、Ar5は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar5における2つのヒドロキシ基は互いにオルト位に位置する。)
Figure JPOXMLDOC01-appb-C000024
(式(7)中、Ar6は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar7およびAr8はそれぞれ独立して無置換または置換基を有する炭素数6~20のアリール基を表し、Ar6における2つの置換基は互いにオルト位に位置する。)
Figure JPOXMLDOC01-appb-C000025
(式(8)中、Ar9は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar10は無置換または置換基を有する炭素数6~20のアリール基を表し、R3は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表し、Ar9における2つの置換基は互いにオルト位に位置する。)
 [8]
 前記工程(4)でリサイクルする際の高沸点成分において、「前記式(1)で表される化合物の合計モル数/金属原子のモル数」が0.005~10であることを特徴とする[1]~[7]のいずれかに記載のジアリールカーボネートの製造方法。
 [9]
 前記工程(1)および/または前記工程(2)が、ジアリールカーボネート、アリールオキシチタン組成物ならびに下記式(X)および/または下記式(Y)で表される化合物を含む組成物Aの存在下で行われ、
 前記組成物Aにおける、下記式(X)および下記式(Y)で表される化合物の合計モル数とチタン原子のモル数の比率(下記式(X)および下記式(Y)で表される化合物の合計/チタン原子)が0.005~4であることを特徴とする[1]~[8]のいずれかに記載のジアリールカーボネートの製造方法。
Figure JPOXMLDOC01-appb-C000026
(式(X)中、Ar21は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar22は無置換または置換基を有する炭素数6~20のアリール基を表し、Ar21における2つの置換基は互いにオルト位に位置する。)
Figure JPOXMLDOC01-appb-C000027
(式(Y)中、Ar23は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar24およびAr25はそれぞれ独立して無置換または置換基を有する炭素数6~20のアリール基を表し、Ar23における2つの置換基は互いにオルト位に位置する。)
 [10]
 前記工程(4)でリサイクルする際の高沸点成分を採取して、
 前記採取した高沸点成分に、金属原子と配位結合する単座配位子または多座配位子を、高沸点成分中のチタン原子に対して1当量以上添加して分析用サンプルを調製し、
 該分析用サンプルを分析することにより、前記高沸点成分に含まれる前記(i)~(iii)に示す化合物の定量を行う工程をさらに含むことを特徴とする[1]~[9]のいずれかに記載のジアリールカーボネートの製造方法。
 [11]
 前記工程(4)でリサイクルする際の高沸点成分を採取して、
 前記採取した高沸点成分に、水、多価ヒドロキシ化合物、窒素含有ヘテロ環系化合物、硫黄含有ヘテロ環系化合物、フッ素置換アルコール、フッ素置換有機酸類からなる群より選択される少なくとも1種の添加物を、高沸点成分中の金属原子に対して1当量以上添加して分析用サンプルを調製し、
 該分析用サンプルを、ガスクロマトグラフィーまたは液体クロマトグラフィーで分析することにより、前記高沸点成分に含まれる前記(i)~(iii)に示す化合物の定量を行う工程をさらに含むことを特徴とする[1]~[10]のいずれかに記載のジアリールカーボネートの製造方法。
 [12]
 [10]または[11]に記載の前記(i)~(iii)に示す化合物の定量工程後、
 前記工程(4)でリサイクルする際の高沸点成分に含まれる前記(i)~(iii)に示す化合物が、それぞれ前記(iv)~(vi)の条件を満たすよう制御する工程をさらに含むことを特徴とする[10]または[11]に記載のジアリールカーボネートの製造方法。
 [13]
 前記工程(1)で用いるジアルキルカーボネートが下記式(9)で表される化合物であり、
 前記工程(1)で用いる芳香族モノヒドロキシ化合物が下記式(10)で表される化合物であり、
 前記工程(1)で得られるアルキルアリールカーボネートが下記式(11)で表される化合物であり、
 前記工程(2)で得られるジアリールカーボネートが下記式(12)で表される化合物であることを特徴とする[1]~[12]のいずれかに記載のジアリールカーボネートの製造方法。
Figure JPOXMLDOC01-appb-C000028
(式(9)中、R4は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表す。)
Figure JPOXMLDOC01-appb-C000029
(式(10)中、Ar11は無置換または置換された炭素数6~20のアリール基を表す。)
Figure JPOXMLDOC01-appb-C000030
(式(11)中、R5は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表し、Ar12は無置換または置換された炭素数6~20のアリール基を表す。)
Figure JPOXMLDOC01-appb-C000031
(式(12)中、Ar13は、無置換または置換された炭素数6~20のアリール基を表す。)。
 [14]
 前記工程(1)および/または前記工程(2)において、前記組成物Aを供給することにより、ジアリールカーボネートの製造を開始することを特徴とする[9]に記載のジアリールカーボネートの製造方法。
 [15]
 前記工程(1)および前記工程(2)の反応が、
 攪拌槽、多段攪拌槽、充填塔、蒸留塔、多段蒸留塔、連続多段蒸留塔、内部に支持体を備えた反応器および強制循環反応器からなる群より選択される少なくとも1種を具備する反応装置を用いて行われることを特徴とする[1]~[14]のいずれかに記載のジアリールカーボネートの製造方法。
 [16]
 工程(1)においてジアルキルカーボネートおよび芳香族モノヒドロキシ化合物を連続的に前記反応装置に供給し、
 工程(2)において得られた反応生成物を連続的に前記反応装置から取り出すことを特徴とする[15]に記載のジアリールカーボネートの製造方法。
 [17]
 前記工程(1)または前記工程(2)における金属含有触媒組成物中の金属原子の含有率が0.0001~20質量%であることを特徴とする[1]~[16]のいずれかに記載のジアリールカーボネートの製造方法。
 [18]
 前記式(9)におけるR4が炭素数1~8の脂肪族アルキル基であることを特徴とする[13]に記載のジアリールカーボネートの製造方法。
 [19]
 前記工程(1)および前記工程(2)において、反応温度が150~300℃であり、反応時間が0.05~50hrであることを特徴とする[1]~[18]のいずれかに記載のジアリールカーボネートの製造方法。
 [20]
 前記工程(3)における蒸留を蒸留塔により行い、
 該蒸留塔の塔底温度が150~300℃であり、
 該蒸留塔の塔底における滞留時間が0.02~100hrであることを特徴とする[1]~[19]のいずれかに記載のジアリールカーボネートの製造方法。
 [21]
 前記アリールオキシチタン組成物がフェノキシチタニウムであることを特徴とする[3]または[4]に記載のジアリールカーボネートの製造方法。
 [22]
 前記ジアリールカーボネートがジフェニルカーボネートであることを特徴とする[1]~[21]のいずれかに記載のジアリールカーボネートの製造方法。
 本発明のジアリールカーボネートの製造方法によれば、ジアリールカーボネートを長時間安定的にかつ高い生産性で製造できる。
本実施の形態におけるジアリールカーボネートの製造方法を実施する製造装置の一例の概略構成図を示す。 本実施の形態におけるジアリールカーボネートの製造方法を実施する製造装置の一例の概略構成図を示す。 本実施の形態におけるジアリールカーボネートの製造方法を実施する製造装置の一例の概略構成図を示す。
 以下、本発明を実施するための最良の形態(以下、「本実施の形態」という。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
 なお、図面中、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
 <ジアリールカーボネートの製造方法>
 本実施の形態に係るジアリールカーボネートの製造方法は、金属含有触媒組成物を反応触媒として用いるジアリールカーボネートの製造方法であって、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とをエステル交換反応させることにより、アルキルアリールカーボネートを得るとともに、副生するアルコール類を反応系外に取り出す工程(1)と、該工程(1)で得られたアルキルアリールカーボネートをエステル交換反応または不均化反応させることにより、ジアリールカーボネートを含む反応生成物を得る工程(2)と、該工程(2)で得られた反応生成物を蒸留することにより、ジアリールカーボネートを含む低沸点成分と、反応触媒を含む高沸点成分(以下「高沸点成分」とも記す。)とに分離する工程(3)と、該工程(3)で分離された高沸点成分を、前記工程(1)および/または前記工程(2)にリサイクルする工程(4)とを含み、前記工程(3)で分離された高沸点成分中に該ジアリールカーボネートより高沸点の成分が70質量%以下含まれており、前記工程(3)で分離された高沸点成分が下記式(1)で表される化合物を含み、前記工程(4)でリサイクルする際の高沸点成分に含まれる下記(i)~(iii)に示す化合物が、それぞれ下記(iv)~(vi)の条件を満たす。
(i)下記式(1)において、Xが下記式(2)または下記式(3)であり、Yが下記式(3)である化合物。
(ii)下記式(1)において、Xがヒドロキシ基であり、Yが下記式(3)である化合物、および/または下記式(1)において、Xが下記式(3)であり、Yが水素である化合物。
(iii)下記式(1)において、Xがヒドロキシ基であり、Yが水素である化合物。
(iv)「上記(i)の化合物群の合計モル数/金属原子のモル数」が0.005~20であること。
(v)「上記(ii)の化合物群の合計モル数/金属原子のモル数」が0.005~4であること。
(vi)「上記(iii)の化合物のモル数/金属原子のモル数」が2未満であること。
Figure JPOXMLDOC01-appb-C000032
 前記式(1)中、Ar1は、無置換もしくは置換された炭素数6~20のアリレン基を表し、XとY-Oとはオルト位に位置し、Xは、ヒドロキシ基、下記式(2)または下記式(3)で表される置換基を表し、Yは、水素または下記式(3)で表される置換基を表す。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 前記式(2)および前記式(3)中、R1は、直鎖状もしくは分岐状の炭素数1~12の脂肪族基、炭素数5~12の脂環式脂肪族基、または無置換もしくは置換された炭素数6~20のアリール基を表す。
 以下、上記工程(1)~上記工程(4)について詳細に説明する。
 〔工程(1)〕
 工程(1)は、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とをエステル交換反応させることにより、アルキルアリールカーボネートを得るとともに、副生するアルコール類を反応系外に取り出す工程である。当該エステル交換反応は、通常、後述する反応触媒の存在下で行う。
 (ジアルキルカーボネート)
 前記工程(1)で用いるジアルキルカーボネートが下記式(9)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000035
 前記式(9)中、R4は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表す。前記R4は、炭素数1~8の脂肪族アルキル基であることがより好ましい。
 前記ジアルキルカーボネートとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート(各異性体)、ジブテニルカーボネート(各異性体)、ジブチルカーボネート(各異性体)、ジペンチルカーボネート(各異性体)、ジヘキシルカーボネート(各異性体)、ジヘプチルカーボネート(各異性体)、ジオクチルカーボネート(各異性体)、ジノニルカーボネート(各異性体)、ジデシルカーボネート(各異性体)、ジシクロペンチルカーボネート、ジシクロヘキシルカーボネート、ジシクロヘプチルカーボネート等が挙げられる。
 特に、前記ジアルキルカーボネートとしては、前記式(9)におけるR4が直鎖状もしくは分岐状の炭素数1~6の脂肪族基であるジアルキルカーボネートが好ましい。このようなジアルキルカーボネートの具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート(各異性体)、ジブテニルカーボネート(各異性体)、ジブチルカーボネート(各異性体)、ジペンチルカーボネート(各異性体)、ジヘキシルカーボネート(各異性体)が挙げられる。
 このようなジアルキルカーボネートは、ジアリールカーボネートとの蒸留分離がしやすく、実用上の観点から好適である。
 (芳香族モノヒドロキシ化合物)
 前記工程(1)で用いる芳香族モノヒドロキシ化合物は下記式(10)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000036
 前記式(10)中、Ar11は無置換または置換された炭素数6~20のアリール基を表す。
 前記式(10)中のAr11としては、例えば、フェニル、トリル(各異性体)、キシリル(各異性体)、トリメチルフェニル(各異性体)、テトラメチルフェニル(各異性体)、エチルフェニル(各異性体)、プロピルフェニル(各異性体)、ブチルフェニル(各異性体)、ジエチルフェニル(各異性体)、メチルエチルフェニル(各異性体)、ペンチルフェニル(各異性体)、ヘキシルフェニル(各異性体)、シクロヘキシルフェニル(各異性体)等のフェニル基および各種アルキルフェニル基類;メトキシフェニル(各異性体)、エトキシフェニル(各異性体)、ブトキシフェニル(各異性体)等の各種アルコキシフェニル基類;フルオロフェニル(各異性体)、クロロフェニル(各異性体)、ブロモフェニル(各異性体)、クロロ(メチル)フェニル(各異性体)、ジクロロフェニル(各異性体)等の各種ハロゲン化フェニル基類;下記式(10a)で示される各種置換フェニル基類が挙げられる。
Figure JPOXMLDOC01-appb-C000037
 式(10a)中、Aは、単結合、-O-、-S-、-CO-、-SO2-、下記式(10a-1)に示されるアルキレン基、置換アルキレン基、下記(10a-2)に示されるシクロアルキレン基からなる群から選ばれるいずれかの2価の基を表す。
 また、式(10a)中の芳香環は、炭素数1~12の低級アルキル基、炭素数1~12の低級アルコキシ基、エステル基、ヒドロキシ基、ニトロ基、ハロゲン、シアノ基等の置換基によって置換されていてもよい。
Figure JPOXMLDOC01-appb-C000038
 前記式(10a-1)中、R6、R7、R8およびR9は、それぞれ独立して、水素原子、炭素数1~12の低級アルキル基、シクロアルキル基、アリール基およびアラルキル基よりなる群から選ばれるいずれかであり、ハロゲン原子、アルコキシ基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000039
 前記式(10a-2)中、kは3~11の整数であり、-CH2-における水素原子は、炭素数1~12の低級アルキル基、アリール基ハロゲン原子等で置換されていてもよい。
 また、前記式(10)中のAr11としては、例えば、ナフチル(各異性体)、メチルナフチル(各異性体)、ジメチルナフチル(各異性体)、クロロナフチル(各異性体)、メトキシナフチル(各異性体)、シアノナフチル(各異性体)等のナフチル基および各種置換ナフチル基類;ピリジン(各異性体)、クマリル(各異性体)、キノリル(各異性体)、メチルピリジル(各異性体)、クロルピリジル(各異性体)、メチルクマリル(各異性体)、メチルキノリル(各異性体)等の置換および無置換の各種ヘテロ芳香族基類等が挙げられる。
 前記式(10)に示す芳香族モノヒドロキシ化合物としては、例えば、フェノール、クレゾール(各異性体)、キシレノール(各異性体)、トリメチルフェノール(各異性体)、テトラメチルフェノール(各異性体)、エチルフェノール(各異性体)、プロピルフェノール(各異性体)、ブチルフェノール(各異性体)、ジエチルフェノール(各異性体)、メチルエチルフェノール(各異性体)、メチルプロピルフェノール(各異性体)、ジプロピルフェノール(各異性体)、メチルブチルフェノール(各異性体)、ペンチルフェノール(各異性体)、ヘキシルフェノール(各異性体)、シクロヘキシルフェノール(各異性体)等の各種アルキルフェノール類;メトキシフェノール(各異性体)、エトキシフェノール(各異性体)等の各種アルコキシフェノール類;下記式(10-1)で表される各種置換フェノール類が挙げられる。
Figure JPOXMLDOC01-appb-C000040
 前記式(10-1)中のAおよび芳香環は、式(10a)における場合と同義である。
 また、前記式(10)に示す芳香族モノヒドロキシ化合物としては、例えば、ナフトール(各異性体)および各種置換ナフトール類;ヒドロキシピリジン(各異性体)、ヒドロキシクマリン(各異性体)、ヒドロキシキノリン(各異性体)等のヘテロ芳香族モノヒドロキシ化合物類等も用いられる。
 前記芳香族モノヒドロキシ化合物は、前記式(10)におけるAr11が炭素数6~10の芳香族基である芳香族モノヒドロキシ化合物であることが好ましく、フェノールであることが特に好ましい。
 (エステル交換反応)
 上述したジアルキルカーボネートと芳香族モノヒドロキシ化合物とを用いて、後述する反応触媒の存在下で、下記式(a)に示すようなエステル交換反応を行い、アルキルアリールカーボネートを得ることができる。
Figure JPOXMLDOC01-appb-C000041
 前記式(a)中、Rはアルキル基を表し、Arはアリール基を示す。
 (アルキルアリールカーボネート)
 前記工程(1)で得られるアルキルアリールカーボネートが下記式(11)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000042
 前記式(11)中、R5は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表し、Ar12は無置換または置換された炭素数6~20のアリール基を表す。
 R5およびAr12は、それぞれ上述したジアルキルカーボネートにおけるR4および上述した芳香族モノヒドロキシ化合物におけるAr11に対応する。
 上述したようなアルキルアリールカーボネートとしては、例えば、メチルフェニルカーボネート、エチルフェニルカーボネート、プロピルフェニルカーボネート(各異性体)、ブチルフェニルカーボネート(各異性体)、ペンチルフェニルカーボネート(各異性体)、ヘキシルフェニルカーボネート(各異性体)、ヘプチルフェニルカーボネート(各異性体)、オクチルフェニルカーボネート(各異性体)、オクチルトリルカーボネート(各異性体)、ノニル(エチルフェニル)カーボネート(各異性体)、デシル(ブチルフェニル)カーボネート(各異性体)、メチルトリルカーボネート(各異性体)、エチルトリルカーボネート(各異性体)、プロピルトリルカーボネート(各異性体)、ブチルトリルカーボネート(各異性体)、アリルトリルカーボネート(各異性体)、メチルキシリルカーボネート(各異性体)、メチル(トリメチルフェニル)カーボネート(各異性体)、メチル(クロロフェニル)カーボネート(各異性体)、メチル(ニトロフェニル)カーボネート(各異性体)、メチル(メトキシフェニル)カーボネート(各異性体)、メチルクミルカーボネート(各異性体)、メチル(ナフチル)カーボネート(各異性体)、エチルクミルカーボネート(各異性体)、メチル(ベンゾイルフェニル)カーボネート(各異性体)、エチルキシリルカーボネート(各異性体)等が挙げられる。
 これらのアルキルアリールカーボネートの中で、前記式(11)におけるR5がメチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)等の炭素数1~6のアルキル基であり、前記式(11)におけるAr12が炭素数6~10の芳香族基であるものが、好ましい。
 前記工程(1)における前記金属含有触媒組成物中の金属原子の含有率は、0.0001~20質量%であることが好ましく、0.001~15質量%であることがより好ましく、0.01~10質量%であることがさらに好ましい。前記金属含有触媒組成物中の金属原子の含有率が前記範囲内であると、該組成物の流動性が良好となる傾向がある。なお、本実施の形態において、金属含有触媒組成物中の金属原子の含有率は、後述の実施例に記載の方法により求めることができる。
 前記工程(1)において、反応温度は、150~300℃であることが好ましく、160~270℃であることがより好ましく、180~250℃であることがさらに好ましい。反応圧力は、0.1~2.0×107Paであることが好ましく、0.5~1.0×107Paであることがより好ましく、1~5.0×106Paであることがさらに好ましい。反応時間は、0.05~50hrであることが好ましく、0.1~35hrであることがより好ましく、0.2~25hrであることがさらに好ましい。
 このような反応条件であると、工業的な生産における反応条件の制御の点で好ましい。
 〔工程(2)〕
 工程(2)は、上述した工程(1)で得られたアルキルアリールカーボネートをエステル交換反応または不均化反応させることにより、ジアリールカーボネートを含む反応生成物を得る工程である。当該エステル交換反応は、下記式(a’)に示すような反応であり、前記アルキルアリールカーボネートと芳香族モノヒドロキシ化合物とがさらに反応し、ジアリールカーボネートとアルコールとが生成する反応である。当該エステル交換反応は前述工程(1)のエステル交換反応と同様に、通常、後述する反応触媒の存在下で行う。
Figure JPOXMLDOC01-appb-C000043
 また、当該不均化反応は、下記式(b)に示すような反応であり、通常、後述する反応触媒の存在下で行う。
Figure JPOXMLDOC01-appb-C000044
 前記式(b)中、Rはアルキル基を示し、Arはアリール基を示す。
 上記式(a)および/または(a’)で示される反応により副生するアルコールは、リサイクルのために回収してもよく、ジアルキルカーボネートの合成のために使用することが好ましい。脂肪族カーボネートは、従来公知に方法により得られる。
 また、上記式(b)で示される反応により生成する脂肪族カーボネートは、リサイクルのために回収し、再循環させて上記式(a)で示される反応に再び用いることが化合物の有効利用という観点から好ましい。
 すなわち、例えば第1の反応器で、主に上記式(a)、(a’)で表されるエステル交換反応を行った後、第1の反応器から抜き出されるアルキルアリールカーボネートおよび/またはジアリールカーボネートを含む反応液を、そのまま、あるいは出発物質や反応物質を除去した後に、第2の反応器に供給して、主に上記式(b)で表される不均化反応を行って、有用なジアリールカーボネートを製造し、その際に副生するジアルキルカーボネートを、蒸留によってガス状で蒸留塔の上部から抜き出して、必要であれば精製した後に、上記式(a)の出発物質として再利用する工程を付加することが好ましい。
 (ジアリールカーボネート)
 工程(2)で得られるジアリールカーボネートは、下記式(12)で表される化合物であること好ましい。
Figure JPOXMLDOC01-appb-C000045
 前記式(12)中、Ar13は、無置換または置換された炭素数6~20のアリール基を表す。Ar13は、上述したアルキルアリールカーボネートのAr12に対応する。
 前記式(12)に示すジアリールカーボネートは、例えば、前述のR5およびAr12を有するアルキルアリールカーボネートにおけるR5を、前述のAr12に置換したジアリールカーボネートが挙げられる。
 前記ジアリールカーボネートの具体例としては、ジフェニルカーボネート、ジトリルカーボネート、ジ(エチルフェニル)カーボネート、ジ(ブチルフェニル)カーボネート、ジキシリルカーボネート、ジ(トリメチルフェニル)カーボネート、ジ(クロロフェニル)カーボネート、ジ(ニトロフェニル)カーボネート、ジ(メトキシフェニル)カーボネート、ジクミルカーボネート、ジナフチルカーボネート、ジベンゾイルフェニルカーボネート等が挙げられる。これらのジアリールカーボネートの中で、特に、Ar13が炭素数6~10の芳香族基であるものが好ましく、ジフェニルカーボネートがより好ましい。
 前記工程(2)における前記金属含有触媒組成物中の金属原子の含有率は、0.0001~20質量%であることが好ましく、0.001~15質量%であることがより好ましく、0.01~10質量%であることがさらに好ましい。前記金属含有触媒組成物中の金属原子の含有率が前記範囲内であると、該組成物の流動性が良好となる傾向がある。
 前記工程(2)において、反応温度は、150~300℃であることが好ましく、160~270℃であることがより好ましく、180~250℃であることがさらに好ましい。反応圧力は、0.1~2.0×107Paであることが好ましく、0.5~1.0×107Paであることがより好ましく、1~5.0×106Paであることがさらに好ましい。反応時間は、0.05~50hrであることが好ましく、0.1~35hrであることがより好ましく、0.2~25hrであることがさらに好ましい。
 このような反応条件であると、工業的な生産における反応条件の制御の点で好ましい。
 〔工程(3)〕
 工程(3)は、前記工程(2)で得られた反応生成物を蒸留することにより、ジアリールカーボネートを含む低沸点成分と、反応触媒を含む高沸点成分とに分離する工程である。
 工程(3)における蒸留は、蒸留塔により行うことが好ましい。また、当該蒸留塔の塔底温度は、150~300℃であることが好ましく、160~270℃であることがより好ましく、180~250℃であることがさらに好ましい。さらに、当該蒸留塔の塔底における滞留時間は、0.02~100hrであることが好ましく、0.05~80hrであることがより好ましく、0.1~50hrであることがさらに好ましい。
 前記工程(3)で分離された低沸点成分は、ジアリールカーボネート以外に、例えば未反応のアルキルアリールカーボネートを含む。
 前記工程(3)で分離された高沸点成分中には、通常ジアリールカーボネートより沸点の高い成分が含まれるが、分離できなかった残りのジアリールカーボネートが含まれる場合がある。
 前記工程(3)で分離された高沸点成分を100質量%とした場合、該ジアリールカーボネートより高沸点の成分は、70質量%以下含まれており、60質量%以下含まれていることが好ましく、50質量%以下含まれていることがより好ましい。該ジアリールカーボネートより高沸点の成分の含有量の下限は、特に限定されないが、例えば、0.1質量%以上である。
 該ジアリールカーボネートより高沸点の成分の含有量は、後述の(式(1)の化合物の定量分析)に記載の方法により求めることができる。
 前記工程(3)で分離された高沸点成分は、下記式(1)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000046
 前記式(1)中、Ar1は、無置換もしくは置換された炭素数6~20のアリレン基を表し、XとY-Oとはオルト位に位置し、Xは、ヒドロキシ基、下記式(2)または下記式(3)で表される置換基を表し、Yは、水素または下記式(3)で表される置換基を表す。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 前記式(2)および前記式(3)中、R1は、直鎖状もしくは分岐状の炭素数1~12の脂肪族基、炭素数5~12の脂環式脂肪族基、または無置換もしくは置換された炭素数6~20のアリール基を表す。
 前記Ar1としては、例えば、フェニレン、メチルフェニレン(各異性体)、ジメチルフェニレン(各異性体)、トリメチルフェニレン(各異性体)、テトラメチルフェニレン、エチルフェニレン(各異性体)、ジエチルフェニレン(各異性体)、メチルエチルフェニレン(各異性体)、ペンチルフェニレン(各異性体)、ヘキシルフェニレン(各異性体)、シクロヘキシルフェニレン(各異性体)等の、フェニレン基および各種アルキルフェニレン基類;メトキシフェニレン(各異性体)、エトキシフェニレン(各異性体)、ブトキシフェニレン(各異性体)等の各種アルコキシフェニレン基類;フルオロフェニレン(各異性体)、クロロフェニレン(各異性体)、ブロモフェニレン(各異性体)、クロロ(メチル)フェニレン(各異性体)、ジクロロフェニレン(各異性体)等の各種ハロゲン化フェニレン基類;下記式(1a)で示される各種置換フェニレン基類;ナフチレン(各異性体)、メチルナフチレン(各異性体)、ジメチルナフチレン(各異性体)、クロロナフチレン(各異性体)、メトキシナフチレン(各異性体)、シアノナフチレン(各異性体)等のナフチレン基および各種置換ナフチレン基類等が挙げられる。
 また、R1は、上述したアルキルアリールカーボネートのR5またはAr12に対応する。
Figure JPOXMLDOC01-appb-C000049
 ここで、Aは、単結合、-O-、-S-、-CO-、-SO2-、下記式(1a-1)に示されるアルキレン基または置換アルキレン基、下記式(1a-2)に示されるシクロアルキレン基からなる群から選ばれるいずれかの2価の基を表し、また、芳香環は低級アルキル基、低級アルコキシ基、エステル基、ヒドロキシ基、ニトロ基、ハロゲン、シアノ基等の置換基によって置換されていてもよい。
Figure JPOXMLDOC01-appb-C000050
 ここで、R10、R11、R12およびR13は、それぞれ独立して、水素原子、低級アルキル基、シクロアルキル基、アリール基、アラルキル基であり、ハロゲン原子、アルコキシ基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000051
 ここで、kは3~11の整数であり、水素原子は低級アルキル基、アリール基ハロゲン原子等で置換されていてもよい。
 前記式(1)で表される化合物は、下記式(4)~下記式(8)で表される化合物群より選択される少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000052
 前記式(4)中、Ar2は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar3は無置換または置換基を有する炭素数6~20のアリール基を表し、Ar2における2つの置換基は互いにオルト位に位置する。
Figure JPOXMLDOC01-appb-C000053
 前記式(5)中、Ar4は無置換または置換基を有する炭素数6~20のアリレン基を表し、R2は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表し、Ar4における2つの置換基は互いにオルト位に位置する。
Figure JPOXMLDOC01-appb-C000054
 前記式(6)中、Ar5は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar5における2つのヒドロキシ基は互いにオルト位に位置する。
Figure JPOXMLDOC01-appb-C000055
 前記式(7)中、Ar6は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar7およびAr8はそれぞれ独立して無置換または置換基を有する炭素数6~20のアリール基を表し、Ar6における2つの置換基は互いにオルト位に位置する。
Figure JPOXMLDOC01-appb-C000056
 前記式(8)中、Ar9は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar10は無置換または置換基を有する炭素数6~20のアリール基を表し、R3は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表し、Ar9における2つの置換基は互いにオルト位に位置する。
 上記式(1)に示す化合物は、原料と酸化性物質との反応によって生成する場合と、金属含有触媒組成物の存在下、フリース転移反応が起きて副生する場合とがある。
 (原料と酸化性物質との反応による生成)
 上記式(1)に示す化合物が、原料と酸化性物質との反応によって生成する場合について説明する。
 例えば、工程(1)の原料である芳香族モノヒドロキシ化合物は、酸素のような酸化性物質と共存すると、下記式(c)に示すように、芳香族ジヒドロキシ化合物に変化する。この芳香族ジヒドロキシ化合物は、前記式(1)で表される化合物において、Xがヒドロキシ基、Yが水素である場合に相当する。
Figure JPOXMLDOC01-appb-C000057
 前記式(c)中、Arは、無置換または置換基を有する炭素数6~20のアリール基を表し、Ar’は、オルト位に2つのヒドロキシ基を有し、無置換または置換基を有する炭素数6~20のアリレン基を表す。
 上述したように、酸素等の酸化性物質と共存することにより副生する芳香族ジヒドロキシ化合物は、更に、ジアルキルカーボネート、アルキルアリールカーボネート、またはジアリールカーボネートと反応し、下記式(d)および下記式(e)に示すように、芳香族カーボネート類に変化する。
 式(d)および式(e)により得られる化合物は、前記式(1)で表される化合物において、Xがヒドロキシ基または式(2)で表される置換基であり、かつYが水素または式(3)で表される置換基である場合に相当する。
Figure JPOXMLDOC01-appb-C000058
 ここで、式(d)中、Arは、オルト位に置換基を有するアリレン基を表し、RおよびR’は、アルキル基またはアリール基を表す。
Figure JPOXMLDOC01-appb-C000059
 ここで、式(e)中、Arは、オルト位に置換基を有するアリレン基を表し、RおよびR’は、アルキル基またはアリール基を表す。
 (フリース転移反応による生成)
 前記式(1)に示す化合物が、金属含有触媒組成物の存在下、フリース転移反応により副生する場合について説明する。
 後述する金属含有触媒組成物は、エステル交換反応および不均化反応の反応速度を大幅に向上させる機能を有しており、ジアリールカーボネートの生産性の向上が図られる。
 しかしながら、金属含有触媒組成物の存在下においては、下記式(f)および式(g)に示すフリース転移による副反応が起きる。
Figure JPOXMLDOC01-appb-C000060
 式(f)中、ArおよびAr’は、アリール基を表し、Ar”はアリレン基を表す。
 上記式(f)によって生成するサリチル酸エステルは、一般的に上述した式(4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000061
 式(g)中、Rは、アルキル基を表し、Arはアリール基を表し、Ar’はアリレン基を表す。
 式(g)の反応により生成するサリチル酸エステルは、一般的に上述した式(5)で表される化合物である。
 上述した副反応によるサリチル酸エステルの生成は、高温環境下であるほど増加し、さらに、サリチル酸エステルは沸点が高いため、同様に沸点の高い金属含有触媒組成物と蒸留分離では分離しない。結果として金属含有触媒組成物と共存しやすくなる。
 上述したサリチル酸エステルは、上記式(1)で表される化合物において、Xが上記式(3)であり、Yが水素である場合に相当する。
 このようなサリチル酸エステルは、下記式(h)に示すように、ジアルキルカーボネート、アルキルアリールカーボネート、ジアリールカーボネートと反応し、サリチル酸カーボネートエステルを生成する。
 このようにして生成されたサリチル酸カーボネートエステルは、上記式(1)で表される化合物において、Xが上記式(3)であり、Yが上記式(3)である場合に相当する。
Figure JPOXMLDOC01-appb-C000062
 上記式(h)中、Arは、オルト位に置換基を有するアリレン基を表し、RおよびR’は、アルキル基またはアリール基を表し、Ar’はアリール基を表す。
 上述したようにして生成する芳香族ジヒドロキシ化合物類および芳香族ジヒドロキシ化合物に由来する芳香族カーボネート類が多量に金属含有触媒組成物と共存すると、一般的に本来目的とするジアリールカーボネートの生産性が著しく低下する。
 更には上述のフリース転移反応によって生成するサリチル酸エステル類も、一般的に本来目的とするジアリールカーボネートの生産性を著しく低下させる原因となる。
 しかしながら、本実施の形態に係るジアリールカーボネートの製造方法は、芳香族ジヒドロキシ化合物類、該芳香族ジヒドロキシ化合物に由来する芳香族カーボネート類、およびサリチル酸エステル類などの後述する(i)~(iii)に示す化合物が、それぞれ後述する(iv)~(vi)の条件を満たすように制御することにより、高生産性を維持しながら目的生成物であるジアリールカーボネートを安定して生産することができる。
 すなわち、原料と酸化性物質との反応、あるいは工程中のフリース転移反応によって副生する特定の化合物の金属含有触媒組成物に対する比率が、ジアリールカーボネートの生産性に影響を及ぼすと、本発明者らは考えている。
 [工程(4)]
 工程(4)は、前記工程(3)で分離された高沸点成分を、前記工程(1)および/または前記工程(2)にリサイクルする工程である。
 前記工程(4)でリサイクルする際の高沸点成分に含まれる下記(i)~(iii)に示す化合物は、それぞれ下記(iv)~(vi)の条件を満たす。
 (i)上記式(1)において、Xが上記式(2)または上記式(3)であり、Yが上記式(3)である化合物。
 (ii)上記式(1)において、Xがヒドロキシ基であり、Yが上記式(3)である化合物、および/または上記式(1)において、Xが上記式(3)であり、Yが水素である化合物。
 (iii)。記式(1)において、Xがヒドロキシ基であり、Yが水素である化合物。
 (iv)「上記(i)の化合物群の合計モル数/金属原子のモル数」が0.005~20であること。
 (v)「上記(ii)の化合物群の合計モル数/金属原子のモル数」が0.005~4であること。
 (vi)「上記(iii)の化合物のモル数/金属原子のモル数」が2未満であること。
 前記(iv)の好ましい条件について説明する。
 「上記(i)の化合物群の合計モル数/金属原子のモル数」は、0.005~10であることが好ましく、0.005~5であることがより好ましい。
 前記(v)の好ましい条件について説明する。
 「上記(ii)の化合物群の合計モル数/金属原子のモル数」は、0.005~3であることが好ましく、0.005~2.5であることがより好ましい。
 前記(vi)の好ましい条件について説明する。
 「上記(iii)の化合物のモル数/金属原子のモル数」は、1.7未満であることが好ましく、1.5未満であることがより好ましい。「上記(iii)の化合物のモル数/金属原子のモル数」の下限は、特に限定されないが、例えば、0.001以上である。
 また、前記工程(4)でリサイクルする際の高沸点成分において、「前記式(1)で表される化合物の合計モル数/金属原子のモル数」は、0.005~10であることが好ましく、0.005~5であることがより好ましく、0.005~4であることがさらに好ましい。
 ジアリールカーボネートの連続製造工程においては、式(1)で表される化合物が副生して蓄積し、これによってジアリールカーボネートの生産性が低下する。そのため、ジアリールカーボネートの生産性を安定的に確保するためには、蒸留残渣に含まれる金属含有触媒組成物および式(1)で表される化合物類を循環しながら、その一部を抜き出し、金属含有触媒組成物または後述する組成物Aを製造工程に供給し、上述した条件(iv)~(vi)を満たすようにした環境下で製造を行うようにする。またジアリールカーボネートの連続製造においては、初期の段階では式(1)で表される化合物の蓄積量が少ない場合があるが、上述した条件(iv)~(vi)を満たすように予め該蒸留残渣に含まれる金属含有触媒組成物に式(1)で表される化合物類を添加し、ジアリールカーボネート製造工程に循環させることもできる。
 連続製造のスタート時においては、副生物がまだ蓄積されていないため、上述した条件(iv)~(vi)を満たすことになるが、長時間に亘る連続製造工程で安定的にジアリールカーボネートを製造するためには、継続して上述した条件(iv)~(vi)を満たす必要がある。
 以下、条件(iv)~(vi)の制御方法の具体例として、前記式(1)で表される化合物がサリチル酸エステルである場合について説明する。
 本実施の形態において、目的とするジアリールカーボネートや、中間工程で生成するアルキルアリールカーボネート(以下単に「生成物」とも記す。)が、高濃度の金属含有触媒組成物と共存したり、金属含有触媒組成物共存下において長時間、高温下に置かれたりした場合、サリチル酸エステルが多く生成する。
 生成物が高濃度の金属含有触媒組成物と共存する場合とは、例えば下記のような場合が考えられる。
 金属含有組触媒成物を用いるジアリールカーボネートの製造工程においては、生成物と金属含有触媒組成物との混合物を、蒸留等によって分離し、蒸留残渣に含まれる金属含有触媒組成物を循環させて再利用することが一般的に行われている。この際、蒸留塔の回収部では一部の生成物が高濃度の金属含有触媒組成物と共存することになる。
 このように、アルキルアリールカーボネートやジアリールカーボネートが高濃度の金属含有触媒組成物と共存した場合、サリチル酸エステルが多く発生しやすい環境となる。そのため、サリチル酸エステルの発生を抑制し、上記条件(iv)~(vi)を満たすために、各工程において、金属含有触媒組成物濃度、反応温度および滞留時間を制御することが必要となる。
 具体的には、生成物を分離し、蒸留残渣に含まれる金属含有触媒組成物を濃縮する工程において、金属含有触媒組成物の濃度を蒸留残渣液中、好ましくは20質量%以下、より好ましくは10質量%以下になるように調整する。当該金属含有触媒組成物の濃度の下限は、0.05質量%であることが好ましい。
 上記条件(iv)~(vi)の制御方法の他の具体例として、前記式(1)で表される化合物が芳香族ジヒドロキシ化合物である場合について説明する。
 芳香族ジヒドロキシ化合物は、特に空気中から原料中へ酸素が混入することにより発生すると考えられる。そこで例えば、酸素混入を防ぐために原料を予め蒸留精製した後、窒素雰囲気下において保存すれば芳香族ジヒドロキシ化合物の生成が抑制できる。製造工程において適用する全原料に含まれる酸素量は、好ましくは500ppm以下であり、より好ましくは50ppm以下である。
 (式(1)の化合物の定量分析)
 本実施の形態に係るジアリールカーボネートの製造方法において、副生する上記式(1)で表される化合物は、反応触媒に含まれる金属成分と安定な錯体を形成してしまう場合がある。そして、上記式(1)で表される化合物の定量分析を不正確にし、その結果、上記式(1)で表される化合物と金属原子とのモル比(式(1)で表される化合物/金属原子)正確に求められないという問題を生じる。
 上述したとおり、上記式(1)で表される化合物と金属含有触媒組成物とを含む混合物について正確に定量分析し、上記式(1)で表される化合物と金属原子とのモル比(式(1)で表される化合物/金属原子)を正確に求めることは重要である。
 上記式(1)で表される化合物と金属原子とのモル比(式(1)で表される化合物/金属原子)を正確に定量分析する方法として、具体的には、ジアリールカーボネートの製造方法において、生成された上記式(1)で表される化合物と金属含有触媒組成物とを含む混合物に、前記錯体類(上記式(1)で表される化合物)を解離させる添加物を加え、必要に応じてろ過等の処理を施し、一般的な分析装置であるガスクロマトグラフィーや高速液体クロマトグラフィーなどによって定量分析する方法が挙げられる。
 前記添加物は、反応触媒の種類によって選定する。例えば、金属原子と配位結合する単座配位子または多座配位子、具体的には、水、多価ヒドロキシ化合物、窒素含有ヘテロ環系化合物、硫黄含有ヘテロ環系化合物、フッ素置換アルコール、フッ素置換有機酸類等が挙げられる。好ましくは、水、カテコール、フェナントロリン、ヘキサフルオロイソプロパノール、トリフルオロ酢酸が挙げられる。
 本実施の形態に係るジアリールカーボネートの製造方法において、前記工程(4)でリサイクルする際の高沸点成分を採取して、前記採取した高沸点成分に、金属原子と配位結合する単座配位子または多座配位子、高沸点成分中の金属原子に対して1当量以上、好ましくは3当量以上添加して分析用サンプルを調製し、該分析用サンプルを分析することにより、前記高沸点成分に含まれる前記(i)~(iii)に示す化合物の定量を行う工程をさらに含むことが好ましい。具体的には、前記工程(4)でリサイクルする際の高沸点成分を採取して、前記採取した高沸点成分に、水、多価ヒドロキシ化合物、窒素含有ヘテロ環系化合物、硫黄含有ヘテロ環系化合物、フッ素置換アルコール、フッ素置換有機酸類からなる群より選択される少なくとも1種の添加物を、高沸点成分中の金属原子に対して1当量以上、好ましくは3当量以上添加して分析用サンプルを調製し、該分析用サンプルを、ガスクロマトグラフィーまたは液体クロマトグラフィーで分析することにより、前記高沸点成分に含まれる前記(i)~(iii)に示す化合物の定量を行う工程をさらに含むことが好ましい。
 本実施の形態のジアリールカーボネートの製造方法は、上述の(i)~(iii)に示す化合物の定量工程後、前記工程(4)でリサイクルする際の高沸点成分に含まれる前記(i)~(iii)に示す化合物が、それぞれ前記(iv)~(vi)の条件を満たすよう制御する工程をさらに含むことが好ましい。
 当該(iv)~(vi)の条件を満たすよう制御する工程としては、上述したとおり、例えば、金属含有触媒組成物濃度、反応温度および滞留時間を制御する工程等が挙げられ、特に式(1)で表される化合物が芳香族ジヒドロキシ化合物である場合、空気中から原料中へ酸素が混入することを防止する工程等が挙げられる。
 〔反応触媒〕
 本実施の形態に用いる反応触媒は、金属含有触媒組成物である。該金属含有触媒組成物は、反応液中に溶解するか、あるいは液状で存在する金属含有触媒組成物であることが好ましく、少なくとも1つの金属-酸素-炭素の結合を有する金属含有触媒組成物であることが好ましい。
 本実施の形態に用いる金属含有触媒組成物は、金属部分が周期律表第4族、第5族、第8族、第13族または第14族の金属であることが好ましく、Ti,V,Zr,Fe,AlおよびSnからなる群より選ばれる少なくとも1種の金属がより好ましい。これらは触媒活性が高く、実用上の観点から好適である。
 当該金属含有触媒組成物はアルコキシ基を有するアルキルオキシ金属組成物またはアリール基を有するアリールオキシ金属組成物が好ましい。当該金属含有触媒組成物はチタン含有触媒組成物であることが好ましい。チタン含有触媒組成物については詳細に後述する。
 本実施の形態に用いる金属含有触媒組成物は下記式(D1),(D2),(D3)で表される化合物から選ばれる少なくとも1つ含まれることが好ましい。
Figure JPOXMLDOC01-appb-C000063
式(D1)中、Mはジルコニウム、鉄またはアルミニウムを表し、Qはアルコキシ基またはアリールオキシ基を表し、nは金属Mの価数を表し、m,nは1以上の整数であり、m=nである。
Figure JPOXMLDOC01-appb-C000064
式(D2)中、Snはスズ、Zはアルキル基、Oは酸素原子、Tはアルコキシ基またはアリールオキシ基を表し、kは0,1の整数;j,lは1~4の整数;j+2k+l=4である。
Figure JPOXMLDOC01-appb-C000065
式(D3)中、Vはバナジウム、Oは酸素、Lはアルコキシ基またはアリールオキシ基を表し、sは0,1の整数;tは3~5の整数;2s+t=5である。
 上記式(D1)~(D3)中のアルコキシ基およびアリールオキシ基は後述のチタン含有触媒組成物のアルコキシ基およびアリールオキシ基と同じである。
 ジルコニウム含有触媒組成物の具体例としては、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラプロポキシジルコニウム(各異性体)、テトラブトキシジルコニウム(各異性体)、テトラフェノキシジルコニウムが挙げられる。
 鉄含有触媒組成物の具体例としては、トリメトキシ鉄、トリエトキシ鉄、トリプロポキシ鉄(各異性体)、トリブトキシ鉄(各異性体)、トリフェノキシ鉄が挙げられる。
 アルミニウム含有触媒組成物の具体例としては、トリメトキシアルミニウム、トリエトキシアルミニウム、トリプロポキシアルミニウム(各異性体)、トリブトキシアルミニウム(各異性体)、トリフェノキシアルミニウムが挙げられる。
 スズ含有触媒組成物の具体例としては、スズテトラメトキシド、スズテトラブトキシド、スズテトラフェノキシド、モノブチルスズオキシドメトキシド、モノブチルスズオキシドエトキシド、モノブチルスズオキシドプロポキシド(各異性体)、モノブチルスズブトキシド(各異性体)、モノブチルスズペントキシド(各異性体)、モノブチルスズフェノキシド、モノオクチルスズオキシドメトキシド、モノオクチルスズオキシドエトキシド、モノオクチルスズオキシドプロポキシド(各異性体)、モノオクチルスズブトキシド(各異性体)、モノオクチルスズペントキシド(各異性体)、モノオクチルスズフェノキシド、ジブチルスズジメトキシド、ジブチルスズジエトキシド、ジブチルスズジプロポキシド(各異性体)、ジブチルスズジブトキシド(各異性体)、ジブチルスズジペントキシド(各異性体)、ジブチルスズジフェノキシド(各異性体)、ジオクチルスズジメトキシド、ジオクチルスズジエトキシド、ジオクチルスズジプロポキシド(各異性体)、ジオクチルスズジブトキシド(各異性体)、ジオクチルスズジペントキシド(各異性体)、ジオクチルスズジフェノキシド(各異性体)等が挙げられる。
 バナジウム含有触媒組成物の具体例としては、バナジウムペンタメトキシド、バナジウムペンタエトキシド、バナジウムペンタプロポキシド(各異性体)、バナジウムペンタブトキシド(各異性体)、バナジウムオキシドトリメトキシド、バナジウムオキシドトリエトキシド、バナジウムオキシドトリプロポキシド(各異性体)、バナジウムオキシドトリブトキシド(各異性体)が挙げられる。
 上述した金属含有触媒は、二種類以上の金属を含有するものも適用できる。
 以下、本実施の形態に用いる金属含有触媒組成物のうち、チタン含有触媒組成物を例にとって詳細に説明する。
 チタン含有触媒組成物は、少なくとも1つのR-O-Ti結合(Rは、1~20の範囲で炭素原子を含む有機基を表す。)を有する有機オキシチタン組成物であることが好ましい。当該チタン含有触媒組成物は、反応液中に溶解するか、あるいは液状で存在することが好ましい。当該チタン含有触媒組成物は、後述するアルキルオキシチタン組成物および/またはアリールオキシチタン組成物が好ましい。さらに本実施の形態に用いるチタン含有触媒組成物は、ジアリールカーボネートとアリールオキシチタン組成物とから形成されるチタン含有組成物であることがより好ましい。上述したように前記工程(1)および/または前記工程(2)は、通常、反応触媒の存在下で行われる。
 本実施の形態におけるジアリールカーボネートの製造方法を実施するために用いるチタン含有触媒組成物の量は、反応触媒の種類、原料およびその量比、反応温度、反応圧力等の種々の条件によって異なるが、原料の合計質量に対する割合で、0.0001~50質量%であることが好ましく、0.001~30質量%であることがより好ましい。
 以下、当該チタン含有触媒組成物について詳細に説明する。
 (チタン含有触媒組成物)
 チタン含有触媒組成物は、通常、工程(1)のエステル交換反応および工程(2)のエステル交換反応または不均化反応を促進する。本実施の形態に用いるチタン含有触媒組成物は、少なくとも1つのR-O-Ti結合を有する有機オキシチタン組成物であることが好ましい。
 (R-O-Ti結合を有する有機オキシチタン組成物)
 R-O-Ti結合を有する有機オキシチタン組成物は、4価のTi原子で構成される有機オキシチタンであって、当該Ti原子が、R-O-基(Rは有機基を表す)で置換されてなる有機オキシチタンである。
 なお、ここで、「R-O-Ti結合を有する有機オキシチタン組成物」とは、「R-O-Ti結合を有する有機オキシチタン」が1種のみならず、複数種混合している場合もあることを意味する。これは、構造を厳密に特定することが困難であることに起因する。
 また、有機オキシチタン組成物は、単量体であってもよく、多量体(有機ポリチタノキサン)であってもよい。
 本明細書中、「ポリチタノキサン」とは、Ti-O-Tiの繰り返し構造と、R-O-Ti(Rは有機基を表す)結合と、を含む有機無機ハイブリッド化合物を言うものとする。該ポリチタノキサンを構成するTi原子は、4価であることが好ましい。
 ポリチタノキサンの構造については、構造を推定する報告(例えば工業化学雑誌、第64巻、885-888ページ(1961年)、Nature、273-274ページ(1961年))や、特定の結合(例えばTi-O-Ti)を検出したと言われる報告(例えば日本国特許出願公開2004-256719号公報など)はある。
 本実施の形態で用いるポリチタノキサンは、以下の一般式(1b)、(2b)、(3b)および(4b)からなる群より選ばれる構造単位からなるポリチタノキサンの、少なくとも1種を含むポリチタノキサンであることが好ましい。即ち、下記式に示す構造単位を組み合わせて、互いにTi-O-Ti結合を介して直鎖状、分岐鎖状、環状構造を形成した構造や、それらの組み合わせからなる構造であってもよい。
Figure JPOXMLDOC01-appb-C000066
 前記式(1b)~(4b)中、Rは有機基を表す。
 R基は、IUPAC(The International Union of Pure and Applied Chemistry)で定められた Nomenclature(IUPAC Nomenclature of Organic Chemistry)記載の有機基である。
 R基は、前記有機ポリチタノキサン中に複数個含まれるが、それぞれ同じであっても異なっていてもよい。
 分岐鎖状、環状構造を形成した構造については、例えば下記式(1c),(2c)に示すものが考えられる。
Figure JPOXMLDOC01-appb-C000067
 以下、本明細書におけるIUPAC規則、及びこれ以降にも示すIUPACで定められたNomenclature規則(特別に他年度のIUPAC勧告等を引用する場合を除いて、)を引用する場合は、Recommendations 1979を基にした1980年に“化学の領域”の別冊として刊行された有機化学と生化学の規則すべてと日本語への字訳規則を包含した版を元にしてその後のすべての改訂・勧告を加えた「有機化学・生化学命名法」(日本国 南江堂出版 1992年発行の改訂第2版)を引用している。
 “有機”とは、該書に開示されている命名法の対象とされる化合物群一般を指す。
 該対象(“有機”)は、1993年に出された勧告に記載された対象であっても構わない(上記した日本国で刊行された書籍が入手困難である場合、Recommendations 1979及びRecommendations 1993を参考にしても構わない)。
 ただし、上記した該Nomenclatureの対象とした“有機”化合物には、有機金属化合物や、金属錯体をも含有される。
 本明細書においては、“有機”及び/又は“有機基”及び/又は“置換基”等、また本実施形態で使用する化合物を以下に説明するが、特に説明のない場合、それらは金属原子及び/または半金属を含まない原子で構成される。
 さらに好ましくは、H(水素原子)、C(炭素原子)、N(窒素原子)、O(酸素原子)、S(硫黄原子)から選ばれる原子から構成される“有機化合物”“有機基”“置換基”を、本実施形態では使用する。
 本明細書中、“脂肪族”“芳香族”という限定を多用するが、IUPACの規則によれば、有機化合物は、脂肪族と芳香族に分類されることが記載されており、脂肪族化合物とは、1995年のIUPAC勧告に基づいた脂肪族化合物に沿った基の定義である。
 当該勧告には、脂肪族化合物を“Acyclic or cyclic,saturated or unsaturated carbon compounds,excluding aromatic compounds”と定義している。
 本明細書でしばしば用いる脂肪族基とは、前記脂肪族化合物からなる基である。
 基とは、例えば、RHという脂肪族化合物から水素原子を除いたR部分を1価の脂肪族基と定義される。
 また、脂肪族、脂肪族基は、飽和及び不飽和、鎖状及び環状のいずれも含有し、上記H(水素原子);C(炭素原子);N(窒素原子);O(酸素原子);S(硫黄原子);Si(ケイ素原子);Cl(塩素原子)、Br(臭素原子)及びI(ヨウ素原子)から選ばれるハロゲン原子、から選ばれる原子で構成される“有機化合物”“有機基”“置換基”を指す。
 また、アラルキル基等の芳香族基が脂肪族基に結合している場合は、そのように“芳香族基で置換された脂肪族基”又は“芳香族基が結合した脂肪族基からなる基”としばしば表記する。
 これは、本実施形態における反応性に基づくもので、アラルキル基のような基の反応に関する性質は、芳香族性ではなく脂肪族の反応性に極めて類似しているからである。
 また、アラルキル基、アルキル基等を包含した非芳香族反応性基を、しばしば“芳香族置換されてよい脂肪族基”“芳香族置換された脂肪族基”“芳香族基が結合した脂肪族基”等と表記する。
 なお、本明細書で使用する化合物の一般式を説明する際には、上記したIUPACで定められたNomenclature規則に沿った定義を使用するが、本実施形態で使用する化合物の説明では、構造の特徴を鮮明にするために、“有機ポリチタノキサン”、“アリールオキシチタン”のような造語を使用し、具体的な基の名称、例示する化合物名称は、しばしば慣用名を使用している。
 また、本明細書中に、原子の数、置換基の数、個数をしばしば記載するが、それらは全て、ゼロ又は正の整数(しばしばゼロを正の整数としている場合もある。)を表している。ただし、組成比式を表す場合は正の数を使用する。
 これは、無機化合物や有機無機ハイブリッド化合物の標記にしばしば使用される標記である。
 前記R基は、炭素原子、水素原子、酸素原子から構成される基であることが好ましく、脂肪族基、芳香族基、及び脂肪族基と芳香族基が結合してなる基のうちのいずれかであり、非環式炭化水素基、環式炭化水素基(例えば、単環式炭化水素基、縮合多環式炭化水素基、架橋環式炭化水素基、スピロ炭化水素基、環集合炭化水素基、側鎖のある環式炭化水素基、ヘテロ環基、ヘテロ環式スピロ基、ヘテロ架橋環基、複素環基)からなる基、前記非環式炭化水素基と前記環式炭化水素基から選ばれる基から1種以上結合した基、及びこれらの基が、特定の非金属原子(炭素、酸素)との共有結合を介して結合している基を表す。
 また、上記特定の非金属原子(炭素、酸素)との共有結合とは、例えば、下記式(1d)~(4d)で表される基と上記した基が共有結合で結合している状態を言う。
Figure JPOXMLDOC01-appb-C000068
 上述したようなR基のなかで、本実施形態において好ましく使用されるR基は、副反応の起こりにくさを考えれば、脂肪族基、芳香族基、及び脂肪族基と芳香族基とが結合してなる基、からなる群より選ばれ、非環式炭化水素基、環式炭化水素基(単環式炭化水素基、縮合多環式炭化水素基、架橋環式炭化水素基、スピロ炭化水素基、環集合炭化水素基、側鎖のある環式炭化水素基)からなる群の中から選ばれる基、及び当該群から選ばれる少なくとも1種の基が結合した基(互いに置換した基)であって、1~20の範囲で炭素原子を含む基が好ましい。
 前記R-O-Ti結合を有する有機オキシチタン組成物の流動性等を考慮すれば、好ましくは1~10の範囲で炭素原子を含む基である。より好ましくは1~7の範囲で炭素原子を含む基である。
 より好ましいR基としては、アルキル基、シクロアルキル基、アリール基からなる群から選ばれる少なくとも1種以上が互いに結合した基、及びアルキル基、シクロアルキル基、アリール基からなる群から選ばれる少なくとも1種以上が上記式(1d)~(4d)から選ばれる結合で介して構成される基から選ばれる基である。
 このようなR基としては、例えば、メチル基、エチル基、プロピル基(各異性体)、ブチル基(各異性体)、ペンチル基(各異性体)、ヘキシル基(各異性体)、ヘプチル基(各異性体)、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、シクロブチルメチル基、シクロペンチルメチル基、シクロヘキシルメチル基、フェニル基、フェニルメチル基、クレジル基(各異性体)、フェニルエチル基、フルフリル基、ピラジル基等が挙げられる。
 本実施形態において用いるR-O-Ti結合を有する有機オキシチタン組成物としては、(R-O-)4Ti構造を有する単量体構造だけでなく、上述した各種R-O-Ti結合を有するポリチタノキサンが好ましく使用できる。ポリチタノキサンを単離して構造を決定することはきわめて難しいため、本実施形態においては、R-O-Ti結合を有するポリチタノキサンを少なくとも1種類以上含有するものを、R-O-Ti結合を有するポリチタノキサン組成物とする。
 前記R-O-Ti結合を有するポリチタノキサン組成物は、当該組成物を構成する個々のR-O-Ti結合を有するポリチタノキサンに含有されるTi原子と、下記「モル比率」から、下記数式(1)で求められるモル平均多量化度が1.1個以上から12個以下となるような組成物であることが好ましい。
 なお、ポリチタノキサン組成物は、多量化度(分子中のTi原子の個数)の異なる少なくとも1種のポリチタノキサンを含む。
 上記「モル比率」とは、ポリチタノキサン組成物中のポリチタノキサンの合計モル数に対する個々の多量化度のポリチタノキサンのモル数である。
 上記「モル平均多量化度」とは、個々の多量化度のポリチタノキサンのモル比率とその多量化度との積を求め、全ての多量化度についての積算値を表す。すなわち、1個のポリチタノキサン分子にTi原子が何個含まれているかの平均値を表す。
Figure JPOXMLDOC01-appb-M000069
 上記数式(1)中、Pnは、モル平均多量化度を表す正の数である。
 zは、R-O-Ti結合を有するポリチタノキサン組成物中に含有される多量化度の異なるR-O-Ti結合を有するポリチタノキサンの種類数を表し、1以上の整数を表す。
 pwは、上記組成物に含有されるR-O-Ti結合を有するポリチタノキサン分子構造wに含有されるTi原子の個数を表す正の自然数である。
 mwは、該分子構造wの該組成物に対するモル分率であり、下記数式(2)を満たす。
Figure JPOXMLDOC01-appb-M000070
 上記数式(2)中、zは上記数式(1)で説明したzと同義であって、R-O-Ti結合を有するポリチタノキサン組成物中に含有される多量化度の異なるR-O-Ti結合を有するポリチタノキサンの種類数を表し、1以上の整数を表す。
 例えば、下記式(1e)で示すテトラアルキルオキシチタン1モルと、下記式(2e)で示すポリチタノキサン1モルからなる組成物の場合、モル平均多量化度1.5個である。
Figure JPOXMLDOC01-appb-C000071
 上述のポリチタノキサンは、ジアリールカーボネートを製造するための触媒として使用する場合、なるべく低分子量を含まず、モル平均多量化度の高いR-O-Ti結合を有するポリチタノキサンであることが好ましい。また、流動性を考慮した場合には、あまりモル平均多量化度は高くない方が好ましい。従って上記したモル平均多量化度は、1.1以上12以下が好ましい範囲であり、もっとも好ましくは2以上8以下の範囲である。
 <アルキルオキシチタン組成物>
 本実施形態においてチタン含有触媒組成物として用いるR-O-Ti結合を有する有機オキシチタン組成物の一例として、アルキルオキシチタン組成物が挙げられる。中でも、アルコキシ基を有するポリチタノキサン組成物が好ましい。
 アルキルオキシチタンは、上記R-O-Ti結合を有する有機オキシチタン組成物を構成する有機オキシチタンのうち、R基がアルキル基であって、R-O-Ti結合を形成する-O-が、アルキル基に結合した酸素である有機オキシチタンを表す。
 従って、アルキルオキシチタン組成物は、上述したR-O-Ti結合を有する有機オキシチタン組成物のうち、Rがアルキル基に限定したのみであり、一部のR基の例示(Rがアルキル基でない例示)を除くのみである。
 このようなR基の例としては、メチル基、エチル基、プロピル基(各異性体)、ブチル基(各異性体)、ペンチル基(各異性体)、ヘキシル基(各異性体)、ヘプチル基(各異性体)、オクチル基(各異性体)、ノニル基(各異性体)、デシル基(各異性体)が挙げられる。好ましいR基の例としては、メチル基、エチル基、プロピル基(各異性体)、ブチル基(各異性体)、ペンチル基(各異性体)である。
 <シクロアルキルオキシチタン組成物>
 本実施形態においてチタン含有触媒組成物として用いるR-O-Ti結合を有する有機オキシチタン組成物の一例として、シクロアルキルオキシチタン組成物が挙げられる。中でも、シクロアルコキシ基を有するポリチタノキサン組成物が好ましい。
 シクロアルキルオキシチタンは、上記R-O-Ti結合を有する有機オキシチタン組成物を構成する有機オキシチタンのうち、R基がシクロアルキル基であって、R-O-Ti結合を形成する-O-が、シクロアルキル基に結合した酸素である有機オキシチタンを表す。
 従って、シクロアルキルオキシチタン組成物は、上述したR-O-Ti結合を有する有機オキシチタンのうち、Rがシクロアルキル基に限定したのみであり、一部のR基の例示(Rがシクロアルキル基でない例示)を除くのみである。
 このようなR基の例としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基が挙げられる。好ましいR基の例としては、シクロペンチル基、シクロヘキシル基である。
 また、本実施形態において用いるR-O-Ti結合を有する有機オキシチタン組成物において、R基がアルキル基である場合と、シクロアルキル基である場合では、上記工程(1)、工程(2)において同様な挙動を示すので、上記したシクロアルキルオキシチタン組成物は、以下、アルキルオキシチタン組成物と同義として説明する(厳密には、アルキル基は分岐及び/又は直鎖状であり、シクロアルキル基は環状であるが、反応性等に差異がないため、本明細書では同義とする。同様にシクロアルキル基とアルキル基とが結合した基も同義とする。)。
 <アリールオキシチタン組成物>
 本実施形態においてチタン含有触媒組成物として用いるアリールオキシチタン組成物は、上記R-O-Ti結合を有する有機オキシチタン組成物のうち、R基が芳香族環を有する基であって、R-O-Ti結合を形成する-O-が、芳香族環を有する基に結合した酸素である有機オキシチタン組成物を表す。中でも、アリールオキシ基を有するポリチタノキサン組成物であることが好ましい。
 前記芳香族環を有する基を、Ar基(即ち、アリールオキシ基を有するポリチタノキサンを、Ar-O-Ti結合を有するポリチタノキサンと定義する)として表すと、アリールオキシ基を有するポリチタノキサンは、前記R-O-Ti結合を有するポリチタノキサン組成物の定義に準じて下記式で表すことができる。
 ポリチタノキサンの構造は、前記R-O-Ti結合を有するポリチタノキサンで説明したように、上記式(1b)~(4b)の組み合わせ(アリールオキシ基を有するポリチタノキサンでは、上記式(1b)~(4b)のR基がAr基である)、すなわち下記式(1f)~(4f)によって多岐にわたり、構造を特定することは現在の分析方法では困難であり、各種構造の混合物であると推定される。
Figure JPOXMLDOC01-appb-C000072
 上記式(1f)~(4f)中、Arは、芳香族環を有する基であって、当該Ar基がAr-O-Ti結合を形成し、当該結合中のArO基の酸素原子はAr基中の芳香族環に結合した基を表す。
 アリールオキシチタンを構成する上記アリールオキシ基は、下記式(ArO)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000073
 式(ArO)中、環Aは、芳香族性を保つ任意の位置に、Tiと結合する酸素が結合した芳香族基を含有する、6~20の範囲の整数個の炭素原子で構成される有機基を表し、単環でも複数環でも複素環であっても、他の置換基によって置換されていてもよい。
 本明細書では、環AをしばしばAr基と表記する。
 Ar基は、芳香族環を有する基であれば、特に限定されないが、例えば、炭素原子、水素原子、酸素原子から構成される基であって、芳香族基、及び脂肪族基と芳香族基とが結合してなる基等が挙げられる。より具体的には、芳香族環を有する基であって、非環式炭化水素基、環式炭化水素基(例えば、単環式炭化水素基、縮合多環式炭化水素基、架橋環式炭化水素基、スピロ炭化水素基、環集合炭化水素基、側鎖のある環式炭化水素基、ヘテロ環基、ヘテロ環式スピロ基、ヘテロ架橋環基、複素環基)からなる基、前記非環式炭化水素基と前記環式炭化水素基から選ばれる基から1種以上結合した基、及び前記基が、特定の非金属原子(炭素、酸素)との共有結合を介して結合している基等が挙げられる。
 また、上記の特定の非金属原子(炭素、酸素)との共有結合とは、例えば下記式(1d)~(4d)で表される基と上記した基が共有結合で結合している状態である。
Figure JPOXMLDOC01-appb-C000074
 このようなAr基のなかで、本実施形態で好ましく使用できるAr基は、副反応の起こりにくさを考えれば、芳香族基、及び脂肪族基と芳香族基とが結合してなる基から選ばれ、非環式炭化水素基、環式炭化水素基(単環式炭化水素基、縮合多環式炭化水素基、架橋環式炭化水素基、スピロ炭化水素基、環集合炭化水素基、側鎖のある環式炭化水素基)からなる群の中から選ばれる基、及びこれらの基の群より選ばれる少なくとも1種の基が結合した基(互いに置換した基)であって、6~20の範囲の整数個の炭素原子で構成される有機基であって、好ましくは6~10個の整数個の炭素原子で構成される基が挙げられる。
 より好ましいAr基としては、芳香族環を有する基であって、シクロアルキル基、アリール基からなる群から選ばれる少なくとも1種以上が互いに結合した基、及びアルキル基、シクロアルキル基、アリール基からなる群から選ばれる少なくとも1種以上が上記した式(1d)~(4d)から選ばれる結合で介して構成される基から選ばれる基である。
 さらに好ましくは、6又は7個の整数個の炭素原子で構成される基である。
 このようなAr基の例としては、フェニル基、クレジル基(各異性体)、キシリル基(各異性体)、ナフチル基等が挙げられる。
 好ましいAr基の例としては、フェニル基、クレジル基(各異性体)である。
 アリールオキシチタン組成物を、本実施形態のジアリールカーボネート製造に反応触媒として用いる際には、ジアリールカーボネートを構成するアリール基と、アリールオキシチタン組成物を構成する上記したアリール基が同種類のアリール基であることが好ましい(すなわち、アリールオキシチタン組成物を構成するアリールオキシ基が、ジアリールカーボネートを構成するアリールオキシ基と同じアリールオキシ基である)。
 本実施形態に用いるアリールオキシチタン組成物としては、(Ar-O-)4Ti構造を有する単量体構造だけでなく、上記Ar-O-Ti結合を有するポリチタノキサンが好ましく使用できる。先に説明したように、ポリチタノキサンを単離して構造を決定することはきわめて難しく、本実施形態において用いるAr-O-Ti結合を有するポリチタノキサンは、Ar-O-Ti結合を有するポリチタノキサンを少なくとも1種類以上含有するAr-O-Ti結合を有するポリチタノキサン組成物である。
 前記Ar-O-Ti結合を有するポリチタノキサン組成物は、当該組成物を構成する個々のAr-O-Ti結合を有するポリチタノキサンに含有されるTi原子と、下記「モル比率」から、下記数式(1)で求められるモル平均多量化度が1.1個以上から12個以下となるような組成物であることが好ましい。
 なお、ポリチタノキサン組成物は、多量化度(分子中のTi原子の個数)の異なる少なくとも1種のポリチタノキサンを含む。
 上記「モル比率」とは、ポリチタノキサン組成物中のポリチタノキサンの合計モル数に対する個々の多量化度のポリチタノキサンのモル数である。
 上記「モル平均多量化度」とは、個々の多量化度のポリチタノキサンのモル比率とその多量化度との積を求め、全ての多量化度についての積算値を表す。すなわち、1個のポリチタノキサン分子にTi原子が何個含まれているかの平均値を表す。
Figure JPOXMLDOC01-appb-M000075
 上記数式(1)中、Pnは、モル平均多量化度を表す正の数である。
 zは、Ar-O-Ti結合を有するポリチタノキサン組成物中に含有される多量化度の異なるAr-O-Ti結合を有するポリチタノキサンの種類数を表し、1以上の整数を表す。
 pwは、該組成物に含有されるAr-O-Ti結合を有するポリチタノキサン分子構造wに含有されるTi原子の個数を表す正の自然数である。
 mwは、前記分子構造wの該組成物に対するモル分率であり、下記数式(2)を満たす。
 モル分率の合計は1である(左辺)。
Figure JPOXMLDOC01-appb-M000076
 上記数式(2)中、zは上記数式(1)で説明したzと同義であって、Ar-O-Ti結合を有するポリチタノキサン組成物中に含有される多量化度の異なるAr-O-Ti結合を有するポリチタノキサンの種類数を表し、1以上の整数を表す。
 例えば、下記式(1g)で示すテトラアリールオキシチタン1モルと、下記式(2g)で示すポリチタノキサン1モルからなる組成物の場合、モル平均多量化度1.5個である。
Figure JPOXMLDOC01-appb-C000077
 本実施形態のジアリールカーボネート製造方法にアリールオキシチタン組成物を、反応触媒として使用する際には、なるべく低分子量を含まず、モル平均多量化度の高いAr-O-Ti結合を有するポリチタノキサンであることが好ましく、また、流動性を考慮した場合には、あまり多量化度は高くないほうが好ましい。
 従って上記したモル平均多量化度が1.1以上12以下の範囲が好ましく、より好ましくは2以上8以下の範囲である。
 また、本実施の形態に用いるチタン含有触媒組成物は、上述したアリールオキシチタン組成物とジアリールカーボネートとを含むチタン含有組成物であることがより好ましい。前記チタン含有組成物は、アリールオキシチタン組成物とジアリールカーボネートとを混合させ、後述する方法で得ることができる。また、前記アリールオキシチタン組成物は例えば前述したアルキルオキシチタン組成物と後述の芳香族モノヒドロキシ化合物とを反応させて、得ることができる。
 前記チタン含有触媒組成物を得る際の原料であるジアリールカーボネートは、上記工程(2)の段落で記載したものと同様である。
 前記アリールオキシチタン組成物を構成するチタンは、4価であることが好ましい。
 前記アリールオキシチタン組成物は、チタン原子1個に対して、アリールオキシ基を1以上4以下の整数個有していることが好ましい。
 (チタン含有触媒組成物の製造方法)
 本実施の形態に用いるチタン含有触媒組成物は、たとえば、以下の方法で製造することができる。まず前述したアルキルオキシチタン組成物と後述の芳香族モノヒドロキシ化合物とを反応させアリールオキシチタン組成物を得る。この際、アルキルオキシ基に相当するROHが生成するため、該ROHと芳香族モノヒドロキシ化合物の沸点を比較して、使用するアルキルオキシチタン組成物と芳香族モノヒドロキシ化合物とを選択する。
 <芳香族モノヒドロキシ化合物>
 使用する芳香族モノヒドロキシ化合物について説明する。
 芳香族モノヒドロキシ化合物は、下記式(1h)で表される芳香族モノヒドロキシ化合物である。
Figure JPOXMLDOC01-appb-C000078
 式(1h)中、Ar基は、下記式(2h)で表される環Aである。
Figure JPOXMLDOC01-appb-C000079
 前記式(2h)中、環Aは、芳香族性を保つ任意の位置にOH基を形成する酸素が結合した芳香族基を含有する、6~20の範囲の整数個の炭素原子で構成される有機基を表し、単環でも複数環でも複素環であっても、他の置換基によって置換されていてもよい。
 Ar基は、芳香族環を有する基であれば、特に限定されないが、例えば、炭素原子、水素原子、酸素原子から構成される基であって、芳香族基、及び脂肪族基と芳香族基が結合してなる基が挙げられる。より具体的には、芳香族環を有する基であって、非環式炭化水素基、環式炭化水素基(例えば、単環式炭化水素基、縮合多環式炭化水素基、架橋環式炭化水素基、スピロ炭化水素基、環集合炭化水素基、側鎖のある環式炭化水素基、ヘテロ環基、ヘテロ環式スピロ基、ヘテロ架橋環基、複素環基)からなる基、前記非環式炭化水素基と前記環式炭化水素基から選ばれる基から1種以上結合した基、及び前記基が、特定の非金属原子(炭素、酸素)との共有結合を介して結合している基等が挙げられる。
 また、上記の特定の非金属原子(炭素、酸素)との共有結合とは、例えば下記式(1d)~(4d)で表される基と上記した基とが共有結合で結合している状態である。
Figure JPOXMLDOC01-appb-C000080
 このようなAr基の中で、本実施形態で好ましく使用できるAr基は、副反応の起こりにくさを考えれば、芳香族基、及び脂肪族基と芳香族基とが結合してなる基から選ばれ、非環式炭化水素基、環式炭化水素基(単環式炭化水素基、縮合多環式炭化水素基、架橋環式炭化水素基、スピロ炭化水素基、環集合炭化水素基、側鎖のある環式炭化水素基)からなる群の中から選ばれる基、及び該群から選ばれる少なくとも1種の基が結合した基(互いに置換した基)であって、6~20の範囲の整数個の炭素原子で構成される有機基であって、好ましくは6~10個の整数個の炭素原子で構成される基等が挙げられる。さらに好ましいAr基としては、芳香族環を有する基であって、シクロアルキル基、アリール基からなる群から選ばれる少なくとも1種以上が互いに結合した基、及びアルキル基、シクロアルキル基、アリール基からなる群から選ばれる少なくとも1種以上が、上記式(1d)~(4d)から選ばれる結合で介して構成される基から選ばれる基である。
 このようなAr基の例としては、フェニル基、クレジル基(各異性体)、キシリル基(各異性体)、ナフチル基等が挙げられる。
 好ましいAr基の例としては、フェニル基、クレジル基(各異性体)であり、さらに好ましくは、6又は7個の整数個の炭素原子で構成される基である。
 ROHがArOHよりも沸点が低ければ、ROHを蒸留によって除去しやすいため、ROHがArOHよりも低沸点となるようなアルコキシ基(R-O-基)を有する有機オキシチタンと芳香族ヒドロキシ化合物(ArOH)を選択する。
 この場合、好ましいR基は、炭素数が少ない基であることが除去しやすいので好ましい。
 好ましい炭素数としては1~6の整数個からなるR基であり、より好ましくは、R-O-基を有する有機オキシチタンの流動性を考慮すれば、炭素数3~6のアルキル基であり、さらに好ましくは、プロピル基(各異性体)ブチル基(各異性体)ペンチル基(各異性体)、ヘキシル基(各異性体)である。
 芳香族ヒドロキシ化合物は、工業的な利用価値を考慮すれば、フェノール、クレゾール(各異性体)が好ましく使用できる。
 最も好ましいR基、Ar基の組み合わせとしては、R基が、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソペンチル基から選ばれるR基であって、Ar基がフェニル基の場合である。
 次に、使用するアルキルオキシチタン組成物と、芳香族モノヒドロキシ化合物との量について説明する。
 芳香族モノヒドロキシ化合物の使用量は、アルキルオキシチタン組成物に含有されるアルコキシ基の合計モル数に対して1から50モル等量とすることが好ましく、より好ましくは5~30モル等量であり、反応器の大きさ等で決定してよい。
 芳香族モノヒドロキシ化合物に多価ヒドロキシ化合物類(例えばカテコール、トリヒドロキシフェノール、サリチル酸等)が多量に含まれると、これら多価ヒドロキシ化合物類がアルキルオキシチタンと反応し、目的とするアリールオキシチタンの生成量が低下する。そのため、これら多価ヒドロキシ化合物類の含有量は、チタン原子に対するモル比として、0.01以下であることが好ましく、より好ましくは0.001以下である。
 アリールオキシチタン組成物を得る方法としては、例えば、まず上述したアルキルオキシチタン組成物を窒素雰囲気下で反応器に仕込み、次いで芳香族モノヒドロキシ化合物を仕込む。次に、常圧において、前記反応器中の混合物を加熱して反応させて、アリールオキシチタン組成物を得る方法が挙げられる。当該加熱温度は、0~300℃であることが好ましく、20~250℃であることがより好ましく、50~200℃であることがさらに好ましい。また、当該加熱時間は、0.01~500hrであることが好ましく、0.1~300hrであることがより好ましく、0.5~200hrであることがさらに好ましい。当該反応によって発生するアルコールを必要に応じて回収する。
 本実施の形態に用いるチタン含有触媒組成物は、例えば、以下のような方法で得ることができる。
 まず、上記の方法で得られたアリールオキシチタン組成物または前述したアリールオキシチタン組成物にジアリールカーボネートを仕込み、該反応器中の混合物を加熱する。当該加熱温度は、100~300℃であることが好ましく、120~270℃であることがより好ましく、150~250℃であることがさらに好ましい。また、当該加熱時間は、0.1~500hrであることが好ましく、0.2~300hrであることがより好ましく、0.5~200hrであることがさらに好ましい。
 次に前記反応器を減圧し、低沸点成分を含むジアリールカーボネートを留去することにより、チタン含有触媒組成物を得ることができる。前記チタン含有触媒組成物100質量%に対して、前記アリールオキシチタン組成物を構成するチタン原子の含有率は、0.1~20質量%であることが好ましく、1~15質量%であることがより好ましく、1~12質量%であることがさらに好ましく、1~10質量%であることが特に好ましい。ジアリールカーボネートを適宜加えることによりチタン含有触媒組成物におけるチタン濃度を前記範囲になるように調整できる。
 前記アリールオキシチタン組成物を得る際の原料であるアルキルオキシチタン組成物の具体例としては、チタンテトラメトキシド、チタンテトライソプロポキシド、チタンテトラブトキシド等が挙げられる。これらのチタン含有化合物は、部分的に加水分解を施し、前述したようなポリチタノキサンとした形態でも好適に使用できる。
 〔組成物A〕
 本実施の形態に用いる組成物Aは、上述したジアリールカーボネート、アリールオキシチタン組成物ならびに後述の式(X)および/または式(Y)で表される化合物を含む組成物である。
 前記組成物Aは、ジアリールカーボネートとアリールオキシチタン組成物とを用いて形成されることが好ましい。具体的には、たとえば、上述のチタン含有触媒組成物を加熱することにより得ることができる。
 上述のチタン含有触媒組成物を加熱すると、上記ジアリールカーボネートよりも高沸点の生成物(以下「高沸点生成物」とも記す。)が生成し、該高沸点生成物を含む組成物Aが得られる。該高沸点生成物としては、たとえば、後述の式(X)で表される化合物が挙げられる。本発明者らは、このような高沸点生成物が生成することにより、上述のチタン含有触媒組成物の安定性が高くなると推定している。
 前記工程(1)および/または前記工程(2)は、前記組成物Aの存在下で行われることが好ましい。前記工程(1)および/または前記工程(2)において、このように形成される組成物Aを用いることにより、閉塞することなく、長期間安定的に効率良くジアリールカーボネートを製造することができる。
 また、本実施の形態に係るジアリールカーボネートの製造方法は、前記工程(1)および/または前記工程(2)において、前記組成物Aを供給することにより、ジアリールカーボネートの製造を開始することが好ましい。
 前記組成物Aにおける、後述の式(X)および式(Y)で表される化合物の合計モル数とチタン原子のモル数との比率(式(X)および式(Y)で表される化合物の合計/チタン原子)は、0.005~4であり、0.005~3であることが好ましく、0.005~2であることがより好ましい。
 式(X)および式(Y)で表される化合物の合計モル数とチタン原子のモル数との比率(式(X)および式(Y)で表される化合物の合計/チタン原子)は、チタン含有触媒組成物の種類および濃度ならびにチタン含有触媒組成物を加熱する際の条件等を適宜設定することにより制御することができる。具体的には、上述のチタン含有触媒組成物を用いて、後述の加熱温度および加熱時間の範囲で高沸点生成物を生成させることにより制御することができる。
 このように式(X)および式(Y)で表される化合物の合計モル数とチタン原子のモル数との比率を制御することにより、触媒が反応装置内で閉塞することを抑制し、安定的に高い効率でジアリールカーボネートを製造できる。
 また、前記組成物A100質量%に対して、前記アリールオキシチタン組成物を構成するチタンの含有率は、0.1~20質量%であることが好ましく、1~15質量%であることがより好ましく、1~12質量%であることがさらに好ましく、1~10質量%であることが特に好ましい。ジアリールカーボネートを適宜加えることにより前記組成物におけるチタンの含有率を前記範囲になるように調整できる。
 前記アリールオキシチタン組成物を構成するチタンは、4価のチタンであることが好ましい。
 前記アリールオキシチタン組成物は、チタン原子1個に対して、アリールオキシ基を1以上4以下の整数個有していることが好ましい。
 (式(X)および式(Y)で表される化合物)
 本実施の形態に用いる組成物Aは、下記式(X)および/または下記式(Y)で表される化合物を含有している。
 下記式(X)および下記式(Y)で表される化合物は、上述のチタン含有触媒組成物を加熱することにより生成する、ジアリールカーボネートよりも高沸点の生成物(以下「高沸点生成物」とも記す。)の1種である。
Figure JPOXMLDOC01-appb-C000081
 前記式(X)中、Ar21は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar22は無置換または置換基を有する炭素数6~20のアリール基を表し、Ar21における2つの置換基は互いにオルト位に位置する。
Figure JPOXMLDOC01-appb-C000082
 前記式(Y)中、Ar23は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar24およびAr25はそれぞれ独立して無置換または置換基を有する炭素数6~20のアリール基を表し、Ar23における2つの置換基は互いにオルト位に位置する。
 前記Ar21およびAr23としては、例えば、フェニレン、メチルフェニレン(各異性体)、ジメチルフェニレン(各異性体)、トリメチルフェニレン(各異性体)、テトラメチルフェニレン、エチルフェニレン(各異性体)、ジエチルフェニレン(各異性体)、メチルエチルフェニレン(各異性体)、ペンチルフェニレン(各異性体)、ヘキシルフェニレン(各異性体)、シクロヘキシルフェニレン(各異性体)等の、フェニレン基および各種アルキルフェニレン基類;メトキシフェニレン(各異性体)、エトキシフェニレン(各異性体)、ブトキシフェニレン(各異性体)等の各種アルコキシフェニレン基類;フルオロフェニレン(各異性体)、クロロフェニレン(各異性体)、ブロモフェニレン(各異性体)、クロロ(メチル)フェニレン(各異性体)、ジクロロフェニレン(各異性体)等の各種ハロゲン化フェニレン基類;下記式(Za)で示される各種置換フェニレン基類;ナフチレン(各異性体)、メチルナフチレン(各異性体)、ジメチルナフチレン(各異性体)、クロロナフチレン(各異性体)、メトキシナフチレン(各異性体)、シアノナフチレン(各異性体)等のナフチレン基および各種置換ナフチレン基類等が挙げられる。
 また、Ar22、Ar24およびAr25は、上述したジアリールカーボネートのAr13に対応する。
Figure JPOXMLDOC01-appb-C000083
 ここで、Aは、単結合、-O-、-S-、-CO-、-SO2-、下記式(Za-1)に示されるアルキレン基または置換アルキレン基、下記式(Za-2)に示されるシクロアルキレン基からなる群から選ばれるいずれかの2価の基を表し、また、芳香環は低級アルキル基、低級アルコキシ基、エステル基、ヒドロキシ基、ニトロ基、ハロゲン、シアノ基等の置換基によって置換されていてもよい。
Figure JPOXMLDOC01-appb-C000084
 ここで、R7、R8、R9およびR10は、それぞれ独立して、水素原子、低級アルキル基、シクロアルキル基、アリール基、アラルキル基であり、ハロゲン原子、アルコキシ基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000085
 ここで、kは3~11の整数であり、水素原子は低級アルキル基、アリール基ハロゲン原子で置換されていてもよい。
 本実施の形態に係るジアリールカーボネートの製造方法において、上記式(X)に示す化合物は、チタン含有触媒組成物の存在下、フリース転移反応が起きて副生する。上記式(X)および(Y)に示す化合物は、予め調製し含有させてもよい。
 上記式(X)に示す化合物が、チタン含有触媒組成物の存在下、フリース転移反応により副生する場合について以下説明する。
 上記チタン含有触媒組成物は、エステル交換反応および不均化反応の反応速度を大幅に向上させる機能を有しており、ジアリールカーボネートの生産性の向上が図られる。
 しかしながら、チタン含有触媒組成物の存在下においては、下記式(c)に示すフリース転移による副反応が起きる。
Figure JPOXMLDOC01-appb-C000086
 式(c)中、ArおよびAr’は、アリール基を表し、Ar”はアリレン基を表す。
 上記式(c)によって生成するサリチル酸エステルは、一般的に上記式(X)で表される化合物である。
 上述した副反応によるサリチル酸エステルの生成は、高温環境下であるほど増加する。さらに、サリチル酸エステルは沸点が高いため、同様に沸点の高いチタン含有触媒組成物と蒸留分離では分離しない。結果としてチタン含有触媒組成物と共存しやすくなる。
 このようなサリチル酸エステルは、下記式(d)に示すように、カーボネートと反応し、式(Y)に相当するサリチル酸カーボネートエステルを生成する。
Figure JPOXMLDOC01-appb-C000087
 上記式(d)中、Arは、オルト位に置換基を有するアリレン基を表し、RおよびR’は、アルキル基またはアリール基を表し、Ar’はアリール基を表す。
 上記式(X)で示す化合物は、たとえば、対応するジアリールカーボネートとアリールオキシチタン組成物との反応より得ることができる。
 上記式(X)および上記式(Y)に示す化合物を得る際の反応の条件について以下詳細に説明する。
 当該反応温度は、チタン含有触媒組成物の種類や濃度によって異なるが、100℃以上300℃以下であることが好ましく、150℃以上250℃以下であることがより好ましく、180℃以上250℃以下であることがさらに好ましい。当該反応圧力は、0.1以上2.0×107Pa以下であることが好ましく、0.2以上1.0×107Pa以下であることがより好ましく、0.5以上5.0×106Pa以下であることがさらに好ましい。
 さらに反応時間は、反応温度やチタン含有触媒組成物の種類によって異なるが、0.1時間以上500時間以下であることが好ましく、0.2時間以上300時間以下であることがより好ましく、0.5時間以上250時間以下であることがさらに好ましい。
 上記反応条件で上記式(X)および上記式(Y)に示す化合物を生成させることにより、組成物Aにおける、上記式(X)および上記式(Y)で示す化合物の合計モル数とチタン原子のモル数との比率(式(X)および式(Y)で示す化合物の合計/チタン原子)が0.005~4となるように調整することができる。その結果、上述のチタン含有触媒組成物の安定性が高くなる。
 本実施の形態に係るジアリールカーボネートの製造方法において、このように調整したチタン含有触媒組成物を反応触媒として用いると、該反応触媒が供給の際に不溶化したり、配管壁面に付着したりすることなく、閉塞といった問題が生じない。
 本実施の形態に係るジアリールカーボネートの製造方法において、副生する上記式(X)および上記式(Y)で表される化合物は、触媒に含まれる金属成分と安定な錯体を形成してしまう場合がある。そして、組成物中の上記式(X)および上記式(Y)で表される化合物の定量分析を不正確にし、その結果、上記式(X)および上記式(Y)で示す化合物の合計モル数とチタン原子のモル数との比率(式(X)および式(Y)で示す化合物の合計/チタン原子)を正確に求められないという問題を生じる。
 上述したとおり、上記式(X)および上記式(Y)で表される化合物とチタン含有触媒組成物とを含む混合物について正確に定量分析し、上記式(X)および上記式(Y)で表される化合物の合計モル数とチタン原子のモル数との比率(式(X)および式(Y)で表される化合物の合計/チタン原子)を正確に求めることは重要である。
 上記式(X)および上記式(Y)で表される化合物とチタン含有触媒組成物とを含む混合物について正確に定量分析する方法として、具体的には、ジアリールカーボネートの製造方法において、生成された上記式(X)および上記式(Y)で表される化合物とチタン含有触媒組成物とを含む混合物に、前記錯体類を解離させる添加物を加え、必要に応じてろ過等の処理を施し、一般的な分析装置であるガスクロマトグラフィーや高速液体クロマトグラフィーによって定量分析する方法が挙げられる。
 前記添加物は、触媒を構成するアリールオキシチタン組成物の種類によって選定する。例えば、水、多価ヒドロキシ化合物、窒素含有ヘテロ環系化合物、硫黄含有ヘテロ環系化合物、フッ素置換アルコール、フッ素置換有機酸類等が挙げられる。好ましくは、水、カテコール、フェナントロリン、ヘキサフルオロイソプロパノール、トリフルオロ酢酸が挙げられる。上記式(X)および上記式(Y)で表される化合物に対する添加物の量は、触媒を構成する金属によって異なるが、通常1当量以上を添加するものとし、3当量以上添加することが好ましい。
 〔反応装置等〕
 本実施の形態におけるジアリールカーボネートの製造方法を実施する反応装置については特に制限されるものではなく、たとえば、攪拌槽方式、多段攪拌槽方式、多段蒸留塔を用いる方式、およびこれらを組み合わせた方式等、公知の種々の方式の反応装置が用いられる。
 本実施の形態に係るジアリールカーボネートの製造方法において、前記工程(1)および前記工程(2)の反応は、攪拌槽、多段攪拌槽、充填塔、蒸留塔、多段蒸留塔、連続多段蒸留塔、内部に支持体を備えた反応器および強制循環反応器からなる群より選択される少なくとも1種を具備する反応装置を用いて行われることが好ましい。
 これらの反応装置は、バッチ式、連続式のいずれでもよい。平衡を生成系側に効率的にずらすという観点からは、多段蒸留塔を用いる方法が好ましく、多段蒸留塔を用いた連続法が特に好ましい。多段蒸留塔とは、蒸留の理論段数が2段以上の多段を有する蒸留塔であって、連続蒸留が可能なものであるならばどのようなものであってもよい。
 このような多段蒸留塔としては、例えば、オルダーショー型蒸留塔、泡鍾トレイ、多孔板トレイ、バルブトレイ、チムニートレイ、向流トレイ等のトレイを使用した棚段塔方式のものや、ラシヒリング、レッシングリング、ポールリング、ベルルサドル、インタロックスサドル、ディクソンパッキング、マクマホンパッキング、ヘリパック、スルザーパッキング、メラパック等の各種充填物を充填した充填塔方式のもの等、通常多段蒸留塔として用いられるものならばいずれでもよい。さらに、棚段部分と充填物の充填された部分とをあわせもつ棚段-充填混合塔方式のものも好ましく用いられる。
 本実施の形態に係るジアリールカーボネートの製造方法は、上記工程(1)においてジアルキルカーボネートおよび芳香族モノヒドロキシ化合物を連続的に前記反応装置に供給し、上記工程(2)において得られた反応生成物を連続的に前記反応装置から取り出すことが好ましい。
 たとえば、多段蒸留塔を用いて連続法を実施する場合、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とを連続多段蒸留塔内に連続的に供給し、該蒸留塔内において上述の反応触媒の存在下に液相または気-液相で両物質間の反応を実施することが好ましい。そして、当該反応と同時に、生成されるジアリールカーボネートまたはジアリールカーボネート混合物を含む高沸点生成物を蒸留塔の下部から液状で抜き出すことが好ましい。一方、副生するアルコールまたはジアルキルカーボネートを含む低沸点生成物を蒸留によって蒸留塔の上部からガス状で連続的に抜き出すことによりジアリールカーボネートが得られる。
 上述したジアリールカーボネート製造工程において、反応が触媒の存在する多段蒸留塔内で起こる場合、生成する反応生成物の量は、通常、蒸留塔内のホールドアップ液量に依存する。つまり、同じ塔高、同じ塔径の蒸留塔を用いる場合にはホールドアップ液量の多い蒸留塔が反応液の滞留時間即ち反応時間を比較的長くすることができるという意味において好ましい。
 しかしながら、ホールドアップ液量があまりに多い場合には、滞留時間が長くなるために副反応が進行したり、フラッディングが起こりやすくなる。
 従って、蒸留塔のホールドアップ液量は、蒸留条件や蒸留塔の種類によっても変わりうるが、多段蒸留塔の空塔容積に対するホールドアップ液量の容積比で表現すると、0.005~0.75であることが好ましい。
 上述したジアリールカーボネート製造工程において、還流比を増加させるとエステル交換反応で副生するアルコールの蒸気相への蒸留効果が高くなるため、抜き出す蒸気中のアルコールの濃度を増加させることができる。しかしながら、あまりにも還流比を増加させると、必要な熱エネルギーが過大となり、好ましくない。またアルコールの濃縮は、蒸留塔からの抜き出し後に行えばよいので、必ずしも還流をおこなう必要はない。
 従って、還流比は、好ましくは0~20が用いられ、より好ましくは0~10が用いられる。
 すなわち、上述した反応式(a)で代表して表されるエステル交換反応の実施の際には、ジアルキルカーボネートおよび芳香族モノヒドロキシ化合物および触媒をそれぞれ混合後または別々の箇所から多段蒸留塔にフィードし、生成物であるアルキルアリールカーボネートおよび/またはジアリールカーボネートを液状で連続的に該蒸留塔底部から抜き出し、副生するアルコール等の低沸点成分を蒸留によってガス状で蒸留塔の上部から連続的に抜き出すことが好ましい。
 この際、反応触媒は、多段蒸留塔のいずれの箇所から供給してもよいが、蒸留塔の塔底部より上部の位置に供給することが好ましく、蒸留塔の中間部より上部の位置に供給することがさらに好ましい。この場合、反応触媒を溶解させた原料または反応液を蒸留塔に供給してもよいし、反応触媒と原料または反応液とは別々に蒸留塔に供給してもよい。
 また、上記式(b)で代表的に表される不均化反応実施の際には、アルキルアリールカーボネートおよび触媒を多段蒸留塔にフィードし、生成物であるジアリールカーボネートを液状で連続的に該蒸留塔底部から抜き出し、副生するジアルキルカーボネート等の低沸点成分を蒸留によってガス状で該蒸留塔の上部から連続的に抜き出すことが好ましい。
 反応装置に付帯する流量計、温度計等の計装機器類、バルブ類、配管継ぎ手類、ポンプ類、熱源類等は公知の範囲で使用することができ、熱回収、ジアルキルカーボネート等の原料をリサイクルしてもよい。
 本実施の形態における製造方法を実施するためには、反応溶媒は必須ではないが、反応原料および生成物の流動性を向上させ、移送操作や反応操作を容易にする目的により不活性溶媒を適用してもよい。
 このような不活性溶媒としては、例えば、炭素数5~16の鎖状、環状の炭化水素、炭素数4~16の鎖状、環状の炭化水素からなるエーテル類が挙げられる。
 具体的には、ペンタン(各異性体)、ヘキサン(各異性体)、ヘプタン(各異性体)、オクタン(各異性体)、ノナン(各異性体)、デカン(各異性体)、テトラデカン(各異性体)、ヘキサデカン(各異性体)、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン、トルエン、キシレン(各異性体)、エチルベンゼン等から選ばれる炭素数6~16の鎖状、環状の炭化水素;ジエチルエーテル、ジプロピルエーテル(各異性体),ジブチルエーテル(各異性体)、ジヘキシルエーテル(各異性体)、ジオクチルエーテル(各異性体)、ジフェニルエーテル等から選ばれるエーテル類が挙げられる。
 以下、具体的な実施例および比較例を挙げて本発明について説明するが、本発明は下記の例により何ら限定されるものではない。
 先ず、実施例および比較例に適用した分析方法を下記に説明する。
 〔金属含有触媒組成物中の金属濃度の分析方法〕
 試料溶液を採取し、王水による前処理を行い、その後、下記装置によりICP分析を実施し、金属含有触媒組成物中の金属濃度を求めた。
 分析装置:RIGAKU社製 JY-138ULTRACE高周波誘導結合型プラズマ発光分析計(ICP)システム
 〔サリチル酸エステル以外の上記(i)~(iii)および式(Y)に示す化合物の分析方法〕
 〔1〕分析用サンプルの作製
 試料溶液を1g計り取り、トリフルオロ酢酸/アセトニトリル(20g/1L)溶液5mLを加えて溶解させ、その後、プロピルスルホン酸フィルターを用いてろ過し、ろ液を分析用サンプルとした。
 〔2〕分析条件
  分析装置:島津製作所製高速液体クロマトグラフィーLC10-ATシステム
  カラム:ODS-3V(GL Science Inertsil)
  カラムオーブン:25℃
  溶離液:アセトニトリル/水
  溶離液グラジエント:アセトニトリル15%v/v(11min)→20%(31min)→100%(20min)
  流速:1mL/min
  注入量:10μL
  検出部:UV(254nm)
 〔3〕定量分析方法
 上記分析条件で、各標準物質の標準サンプルについて分析を実施し作成した検量線を基に、分析用サンプルの定量分析を実施し、サリチル酸エステル以外の上記(i)~(iii)および式(Y)に示す化合物を定量した。
 〔式(X)で表される化合物またはサリチル酸エステルの分析方法〕
 〔1〕分析サンプル溶液の作製
 試料溶液を0.06g計り取り、フェニルメチルエーテルを約1.4g加えた。さらに、内部標準としてトルエンまたはジフェニルエーテル約0.04g、チタン含有組成物処理剤としてカテコール約0.05gを加えて、よく混合した。その後、該混合物を0.45μmのメンブレンフィルターでろ過し、ろ液をガスクロマトグラフィー分析サンプル溶液とした。
 〔2〕ガスクロマトグラフィー分析条件
  分析装置:島津製作所製GC-2010システム
  カラム:DB-1(米国、J&W Scientific社製)
  液相:100%ジメチルポリシロキサン
  長さ:30m
  内径:0.25mm
  フィルム厚さ:1μm
  カラム温度:50℃(5min保持)→200℃(昇温速度10℃/min;200℃で5min保持)→300℃(15min保持)
  インジェクション温度:300℃
  検出器温度:300℃
  検出法:FID
 〔3〕定量分析法
 上記分析条件で、各標準物質の標準サンプルについて分析を実施し作成した検量線を基に、分析サンプル溶液の定量分析を実施し、式(X)で表される化合物またはサリチル酸エステルを定量した。
 〔式(1)で表される化合物以外の成分ならびに式(X)および式(Y)で表される化合物以外の成分の分析方法〕
 〔1〕分析サンプル溶液の作成
 試料溶液を0.15g計り取り、脱水アセトンを約2g加えた。さらに、内部標準としてトルエンまたはジフェニルエーテル約0.04gを加えて、ガスクロマトグラフィー分析サンプル溶液とした。
 〔2〕ガスクロマトグラフィー分析条件
  分析装置:島津製作所製GC-2010システム
  カラム:DB-1(米国、J&W Scientific社製)
  液相:100%ジメチルポリシロキサン
  長さ:30m
  内径:0.25mm
  フィルム厚さ:1μm
  カラム温度:50℃(5min保持)→200℃(昇温速度10℃/min;200℃で5min保持)→300℃(5min保持)
  インジェクション温度:300℃
  検出器温度:300℃
  検出法:FID
 〔3〕定量分析法
 上記分析条件で、各標準物質の標準サンプルについて分析を実施し作成した検量線を基に、分析サンプル溶液の定量分析を実施し、式(1)で表される化合物以外の成分ならびに式(X)および式(Y)で表される化合物以外の成分を定量した。
 〔平均多量化度の分析方法〕
 平均多量化度は、上記チタン含有組成物中の金属濃度の分析方法と同様にして、ICP分析によりチタン含有化合物のチタン濃度を定量し、さらにアルコキシ基(例えば、ブトキシ)をガスクロマトグラフィー法で定量分析して求めた。
 〔実施例1〕
 (チタン含有組成物の調製)
 攪拌機、ヒーターおよび蒸留塔を具備した容積60Lのバッチ型反応器に、テトラブトキシチタン(DuPont社製、製品名:Tyzor TnBT)を窒素雰囲気下で7kg仕込み、次いで予め蒸留精製したフェノールを14kg仕込んだ。
 次に、常圧において、前記バッチ型反応器中の混合物をヒーターによって180℃に加熱し、反応させた。当該反応によって発生したn-ブタノールを蒸留塔の塔頂から回収した。さらに前記バッチ型反応器を約53kPaに減圧し、n-ブタノールを回収した。
 その後、前記バッチ型反応器を常圧に戻し、ジフェニルカーボネートを約18kg仕込み、該反応器中の混合物を約190℃に加熱した。次に前記バッチ型反応器を約1.3kPaに減圧し、低沸点成分を含むジフェニルカーボネートを留去して、チタン含有組成物を得た。得られたチタン含有組成物のチタン濃度が5質量%になるようにジフェニルカーボネートを加えた。該チタン含有組成物を200℃,約48hr加熱した後、次のジアリールカーボネートの製造に反応触媒として用いた。
 (ジアリールカーボネートの製造装置)
 図1に、実施例1で用いた製造装置の概略構成図を示す。
 この製造装置は、連続多段構造の蒸留塔110、120、蒸留塔130、および蒸留精製塔140を具備している。
 これらは所定のラインにより連通している。
 具体的には、ライン1,12は、原料化合物やチタン含有組成物等を供給する供給ラインであり、ライン3,9は生成化合物やその他の材料を回収する回収ラインである。ライン2,4,5,6,7,8,10は移送ラインであり、ライン11は抜き出しラインである。
 符号111,121,131,141はリボイラーを示し、符号112,122,132,142はコンデンサーを示している。符号113は供給材料を所定の温度とするための予熱器である。
 (ジアリールカーボネートの製造)
 (1)スタートアップ操作
 蒸留塔110は、段数25のシーブトレイを充填した内径150mm長さ4.8mの濃縮部およびMelapak CY(スイス国、Sulzer Chemtech Ltd社製)を充填した内径150mm長さ2.3mの回収部を具備する連続多段構成の蒸留塔とした。
 当該蒸留塔110において、25段目のシーブトレイから、ビス(3-メチルブチル)カーボネート、フェノール、および上記で調製した反応触媒を、予熱器113を経て供給ライン1から約1830g/Hrで連続的に供給し、エステル交換反応を行った。なお、混合液中のビス(3-メチルブチル)カーボネートのフェノールに対する質量比が約1.08、チタン原子濃度が約500ppmとなるように、各原料混合液の供給割合を調整した。
 前記混合液を連続的に供給する段よりも下部に濃縮部を設け、上部に回収部を設けた。
 なお、反応および蒸留に必要な熱量に関しては、外部ヒーターを設けたり、塔下部液をリボイラー111を経て循環させたりすることにより制御した。当該方法により、多段蒸留塔110では、塔底の温度が約230℃であり、塔頂圧力が約140kPaになるように制御した。
 反応液は、連続多段蒸留塔110の塔底から移送ライン2を経て、約1700g/Hrで連続的に抜き出した。
 副生3-メチル-1-ブタノールを含む低沸点成分を塔頂から抜き出した。その後、当該低沸点成分をコンデンサー112で凝縮させ、還流比=2で回収ライン3から回収した。
 上記のようにして移送ライン2から抜き出した反応液を、連続多段蒸留塔120に供給した。
 この連続多段蒸留塔120は、リボイラー121、段数5のチムニートレイを充填した蒸留塔(内径150mm、長さ約6m)の濃縮部、およびMelapak CYを充填した内径150mm長さ3.8mの回収部を具備しており、反応液の供給位置は前記濃縮部の上部とし、反応液の供給速度は、約1700g/Hrとした。
 この蒸留塔120では、塔底の温度が200℃、塔頂圧力が約3kPaになるように制御し、この条件で不均化反応を行った。
 また、蒸留塔120の塔頂から、フェノールおよびビス(3-メチルブチル)カーボネートを含む低沸点成分を、コンデンサー122、移送ライン5および供給ライン1を経て蒸留塔110に循環させた。
 蒸留塔120の塔底から、ジフェニルカーボネートを含有する反応液を、移送ライン4を経て蒸留塔130に供給し、蒸留分離を行った。
 蒸留塔130は、Melapak CYを充填した内径150mm長さ4mからなる蒸留塔であり、リボイラー131とコンデンサー132とを備えていた。
 蒸留塔130は、塔底温度を約180℃、塔頂圧力を約0.5kPaに制御した。
 塔頂からジフェニルカーボネートを含有する低沸点成分を取り出し、コンデンサー132および移送ライン7を経て蒸留精製塔140に供給した。
 一方、反応触媒を含む高沸点成分を移送ライン6と供給ライン1とを経て、蒸留塔110に循環させた。
 蒸留精製塔140は、Melapak CYを充填した内径150mm、長さ5mの蒸留塔であり、リボイラー141とコンデンサー142とを具備していた。
 前記蒸留塔130から移送ライン7を経て蒸留精製塔140に供給されたジフェニルカーボネートを含有する反応液を、蒸留精製塔140で精製した。当該精製により、回収ライン9から約100質量%のジフェニルカーボネート(ジアリールカーボネート)を得た。なお、回収ライン9の位置は、塔底より上の蒸留塔下部とした。
 蒸留精製塔140の塔頂から、3-メチルブチルフェニルカーボネートを含有する低沸点成分を抜き出し、回収ライン10と移送ライン2とを経て蒸留塔120に循環させた。
 (2)制御操作
 抜き出しライン11から抜き出すチタン含有高沸点成分の割合を、約11g/Hr(チタン原子濃度が約1質量%)とし、供給ライン12から供給する反応触媒の割合を、約2.3g/Hr(チタン原子濃度が約5質量%)となるように調整し、供給ライン1からの反応触媒の供給を停止した。
 同時に、回収ライン9から回収されるジフェニルカーボネートの割合が、約1000g/Hrになるように、各蒸留塔に循環させる液量を徐々に増加させた。
 上述した連続運転を約12hr行ったところ、定常状態となった。
 このとき、移送ライン2において、液の組成は、フェノール約15質量%、ビス(3-メチルブチル)カーボネート約67質量%、3-メチルブチルフェニルカーボネート約17質量%、ジフェニルカーボネート約0.3質量%、3-メチル-1-ブタノール約0.2質量%であり、流量は約11402g/Hrであった。
 前記定常状態における反応液の、蒸留塔110および蒸留塔120での滞留時間は、それぞれ約1Hrおよび約2.5Hrであった。
 回収ライン3において、液の組成は、3-メチル-1-ブタノール約100質量%であり、流量は約823g/Hrであった。
 移送ライン4において、液の組成は、ビス(3-メチルブチル)カーボネート約0.2質量%、3-メチルブチルフェニルカーボネート約18質量%、ジフェニルカーボネート約80質量%であり、流量は約1238g/Hrであった。
 移送ライン5において、液の組成は、3-メチル-1-ブタノール約0.2質量%、フェノール約17質量%、ビス(3-メチルブチル)カーボネート約82質量%であり、流量は約10300g/Hrであった。
 移送ライン7において、液の組成は、ジフェニルカーボネート約88質量%、3-メチルブチルフェニルカーボネート約12質量%、ビス(3-メチルブチル)カーボネート約0.2質量%であり、流量は約1140g/Hrであった。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルとサリチル酸(3-メチルブチル)エステルとの合計モル数の、チタン原子のモル数に対する比率は約0.7であった。
 上述した連続運転を、さらに約100Hr継続したところ、回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は約1000g/Hrで安定的に製造できた。
 その後、抜き出しライン11から抜き出すチタン含有高沸点成分の割合を、約9g/Hr(チタン原子濃度が約1質量%)、供給ライン12から供給する反応触媒の割合を約1.8g/Hr(チタン原子の濃度が約5質量%)となるように調整し、同様に約200Hr連続運転を行った。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルおよびサリチル酸(3-メチルブチル)エステルのサリチル酸エステル類の合計モル数のチタン原子のモル数に対する比率は約1.1であり、サリチル酸フェニルカーボネートのモル数のチタン原子のモル数に対する比率は約0.2であった。さらにカテコールのモル数のチタン原子のモル数に対する比率は約0.01であった。
 また、蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は約8質量%含まれていた。
 回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は、同様に約1200g/Hrで安定的に製造できた。
 〔実施例2~6〕
 ビス(3-メチルブチル)カーボネートの代わりに、下表2に示す種類のジアルキルカーボネートを用いたこと以外は実施例1と同様にスタートアップ操作をおこないジフェニルカーボネート(ジアリールカーボネート)を製造した。制御操作については各々のジアルキルカーボネートの種類に応じて流量および圧力の制御を行った。
 蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は、実施例2~6の順に、約7質量%、約10質量%、約8質量%、約9質量%、約8質量%含まれていた。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析した結果を表1に示す。いずれの実施例においても上記(iv)~(vi)の条件を満たしており、安定的にジアリールカーボネートを製造することができた。
Figure JPOXMLDOC01-appb-T000088
 〔実施例7〕
 (チタン含有組成物の調製)
 攪拌機、ヒーターおよび蒸留塔を具備した容積60Lのバッチ型反応器に、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)を窒素雰囲気下で7kg仕込み、次いで予め蒸留精製したフェノールを14kg仕込んだ。
 次に、常圧において、前記バッチ型反応器中の混合物をヒーターによって180℃に加熱し、反応させた。当該反応によって発生したn-ブタノールを蒸留塔の塔頂から回収した。さらに前記バッチ型反応器を約53kPaに減圧し、n-ブタノールを回収した。
 その後、前記バッチ型反応器を常圧に戻し、ジフェニルカーボネートを約18kg仕込み、該反応器中の混合物を約190℃に加熱した。次に前記バッチ型反応器を約1.3kPaに減圧し、低沸点成分を含むジフェニルカーボネートを留去して、チタン含有組成物を得た。得られたチタン含有組成物のチタン濃度が5質量%になるようにジフェニルカーボネートを加えた。
 (ジアリールカーボネートの製造装置)
 図2に、実施例7で用いた製造装置の概略構成図を示す。
 この製造装置は、連続多段構造の蒸留塔110、120、蒸留塔130、および蒸留精製塔140を具備している。
 これらは所定のラインにより連通している。
 具体的には、ライン1,1’,12,13は、原料化合物やチタン含有組成物等を供給する供給ラインであり、ライン3,9は生成化合物やその他の材料を回収する回収ラインである。ライン2,4,5,6,7,8,10は移送ラインであり、ライン11は抜き出しラインである。
 符号111,121,131,141はリボイラーを示し、符号112,122,132,142はコンデンサーを示している。符号113は供給材料を所定の温度とするための予熱器である。
 (反応触媒の調製)
 蒸留塔130において、以下のとおりジフェニルカーボネートより高沸点生成物を生成させ、反応触媒を調製した。
 蒸留塔130は、Melapak CYを充填した内径150mm長さ4mからなる蒸留塔であり、リボイラー131とコンデンサー132とを備えていた。
 当該蒸留塔130の下部に、上記調製したチタン含有組成物(チタン濃度:約5質量%)を約10kg供給し、該チタン含有組成物の温度を約200℃に制御した。この状態を約72hr保持した。その後、該チタン含有組成物を一部サンプリングし分析したところ、ジフェニルカーボネートより沸点の高いサリチル酸フェニルが検出された。該サリチル酸フェニルとチタン原子とのモル比(サリチル酸フェニル/チタン原子)は約0.5であった。蒸留塔130において生成した高沸点生成物とチタン含有組成物との混合物(以下「組成物A」とも記す。)を、次のジアリールカーボネートの製造の反応触媒として用いた。
 (ジアリールカーボネートの製造)
 段数50のシーブトレイを充填した内径150mm長さ12mの連続多段構成の蒸留塔110において、50段目のシーブトレイに、ジメチルカーボネート約30質量%およびフェノール約70質量%よりなる混合液(a)を、予熱器113を経て供給ライン1から約41kg/Hrで連続的に供給した。一方で蒸留塔110の下部に、ジメチルカーボネート約70質量%およびフェノール約30質量%よりなる混合液(b)を、供給ライン1’から約41kg/Hrで連続的に供給した。
 前記混合液(a)および(b)を連続的に供給する段よりも下部に濃縮部を設け、上部に回収部を設けた。
 なお、反応および蒸留に必要な熱量に関しては、外部ヒーターを設けたり、塔下部液を、リボイラーを経て循環させたりすることにより制御した。当該方法により、多段蒸留塔110では、塔底の温度が約230℃であり、塔頂圧力が約0.55MPa-Gになるように制御した。
 次に、上記で調製した反応触媒(組成物A)を、蒸留塔130の下部から移送ライン6を用いて蒸留塔110の45段目に徐々に供給し、蒸留塔110の反応液におけるチタン原子濃度が約300ppmになるように調整した。反応液は、連続多段蒸留塔110の塔底から移送ライン2を経て、約21kg/Hrで連続的に抜き出した。
 副生メタノールを含む低沸点成分を蒸留塔110の塔頂から抜き出した。その後、当該低沸点成分をコンデンサー112で凝縮させ、回収ライン3から回収した。
 上記のようにして移送ライン2から抜き出した反応液を、連続多段蒸留塔120に供給した。
 この連続多段蒸留塔120は、リボイラー121、段数16のシーブトレイ型蒸留塔(内径150mm、長さ約4m)の濃縮部、およびMelapak CYを充填した内径150mm長さ4mの回収部を具備していた。反応液の供給位置は前記濃縮部の上部とし、反応液の供給速度は約21kg/Hrとした。
 この蒸留塔120では、塔底の温度が約210℃、塔頂圧力が約13.3kPaになるように制御し、この条件で不均化反応を行った。
 また、蒸留塔120の塔頂から、フェノールおよびジメチルカーボネートを含む低沸点成分を、コンデンサー122、移送ライン5および供給ライン1を経て蒸留塔110に循環させた。
 蒸留塔120の塔底から、ジフェニルカーボネートを含有する反応液を、移送ライン4を経て蒸留塔130に供給し、蒸留分離を行った。
 蒸留塔130は、Melapak CYを充填した内径150mm長さ4mからなる蒸留塔であり、リボイラー131とコンデンサー132とを備えていた。
 蒸留塔130は、塔底温度を約190℃、塔頂圧力を約1.7kPaに制御した。
 塔頂からジフェニルカーボネートを含有する低沸点成分を取り出し、コンデンサー132および移送ライン7を経て蒸留精製塔140に供給した。
 一方、反応触媒(組成物A)を含む高沸点成分を移送ライン6と供給ライン1とを経て、蒸留塔110に循環させた。
 蒸留精製塔140は、Melapak CYを充填した内径150mm、長さ5mの蒸留塔であり、リボイラー141とコンデンサー142とを具備していた。
 前記蒸留塔130から移送ライン7を経て蒸留精製塔140に供給されたジフェニルカーボネートを含有する反応液を、蒸留精製塔140で精製した。当該精製により、回収ライン9から99.8質量%のジフェニルカーボネート(ジアリールカーボネート)を得た。なお、回収ライン9の位置は、塔底より上の蒸留塔下部とした。
 蒸留精製塔140の塔頂から、メチルフェニルカーボネートを含有する低沸点成分を抜き出し、回収ライン10と移送ライン2とを経て蒸留塔120に循環させた。
 上述した連続運転を約12hr行ったところ、定常状態となった。
 このとき、移送ライン2において、液の組成は、フェノール約55質量%、ジメチルカーボネート約26質量%、メチルフェニルカーボネート約17質量%、ジフェニルカーボネート約2質量%、メタノール約0.09質量%であり、流量は約40kg/Hrであった。
 移送ライン4において、液の組成は、ジメチルカーボネート約0.1質量%、メチルフェニルカーボネート約17質量%、フェノール約3質量%、ジフェニルカーボネート約80質量%であり、流量は約6.2kg/Hrであった。
 移送ライン7において、液の組成はジフェニルカーボネート約78質量%、メチルフェニルカーボネート約19質量%、フェノール約3質量%であり、流量は約5kg/Hrであった。
 上述した連続運転を、さらに約100Hr継続したところ、回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は約4kg/Hrで安定的に製造できた。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルとサリチル酸メチルエステルとの合計モル数の、チタン原子のモル数に対する比率は約1.2であった。
 上述した連続運転を、さらに約500Hr継続したところ、回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は約4kg/Hrで安定的に製造できた。
 その後、抜き出しライン11から抜き出されるチタン含有高沸点成分の割合を、約10g/Hr(チタン原子の濃度が約1質量%)、供給ライン12から供給される反応触媒の割合を約2.0g/Hr(チタン原子の濃度が約5質量%)になるように調整し、同様に約500Hr連続運転を行った。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルとサリチル酸メチルエステルのサリチル酸エステル類の合計モル数のチタン原子のモル数に対する比率は約1.9であり、サリチル酸フェニルカーボネートのモル数のチタン原子のモル数に対する比率は約0.5であった。さらにカテコールのモル数のチタン原子のモル数に対する比率は約0.02であった。
 また、蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は約15質量%含まれていた。
 回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は、同様に約4kg/Hrで安定的に製造できた。
 〔製造例1〕
 (アルコキシ基を有するポリチタノキサン組成物(以下、しばしば「ポリチタノキサンアルコキシド」と記す)の製造)
 冷却コイル、加熱ジャケット、蒸留塔を具備した攪拌機付き反応器に、テトラブトキシチタン(デュポン社製、Tyzor TnBT)20kgを投入し、次いでn-ブタノール8kgを投入し、内部液温を0℃になるよう調整した。
 別の冷却コイル、加熱ジャケット、蒸留塔を具備した攪拌機付き反応器に、水濃度を2質量%とした含水n-ブタノールを0℃となるよう調整した。
 ラインを通じ、前記含水n-ブタノールを前記反応器へ攪拌下で添加した。
 添加時間は1時間とし、添加した水の量は、0.5モル等量(反応器内のTi原子モル数に対して)とした。
 反応液を微量水分測定装置で経時的に分析し、添加した水が加水分解反応で消費され、分析値が一定となったことを確認した。
 得られた反応液を攪拌下加熱し、150℃となってから蒸留塔を用いてn-ブタノールを留去した。
 留去液の組成をガスクロマトグラフィーで分析し、留去量が殆ど無くなったことを確認し、蒸留を終了した。
 反応器内に残留した無色透明液を分析し、Ti含有量及びアルコキシ基含有量を測定したところ、平均多量化度2のブトキシ基を有するポリチタノキサン(以下、しばしば「ポリチタノキサンブトキシド」と記す)が得られていたことが分かった。
 〔製造例2~4〕
 表2に示すとおり、添加する水分量を変更し、その他の条件は上記〔製造例1〕と同様としてポリチタノキサンアルコキシドの製造を実施した。水の添加が終了した後、製造例1と同様に得られた反応液を攪拌下加熱し、150℃となってから蒸留塔を用いてn-ブタノールを留去した。留去液の組成をガスクロマトグラフィーで分析し、留去量が殆ど無くなったことを確認し、蒸留を終了した。反応器内に残留した無色透明液を分析し、Ti含有量及びアルコキシ基含有量を測定したところ、表2に示すような平均多量化度の異なるポリチタノキサンブトキシドが得られていたことが分かった。
Figure JPOXMLDOC01-appb-T000089
 〔実施例8~12〕
 チタン含有組成物の調製において、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)に代えて、テトラブトキシチタン(デュポン社製、Tyzor TnBT)および製造例1~4から得られたポリチタノキサンアルコキシドを用いたこと以外は実施例7と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。
 蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は、実施例8~12の順に、約16質量%、約15質量%、約17質量%、約16質量%、約18質量%含まれていた。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析したところ、いずれの実施例においても上記(iv)~(vi)を満たしており、安定的にジアリールカーボネートを製造することができた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000090
 〔比較例1〕
 (1)スタートアップ操作
 スタートアップ操作までは実施例1と同様にした。
 (2)制御操作
 抜き出しライン11から抜き出されるチタン含有高沸点成分の割合を約12g/Hr(チタン原子の濃度が約1質量%)、供給ライン12から供給される反応触媒の割合を約2.4g/Hr(チタン原子の濃度が約5質量%)になるように調整した。同時に、回収ライン9から回収されるジフェニルカーボネートが約1000g/Hrになるように各蒸留塔に循環させる液量を徐々に増やしていき、連続運転を約12hr行ったところ、定常状態になった。
 その後、抜き出しライン11から抜き出されるチタン含有高沸点成分の割合を、約2g/Hr(チタン原子の濃度が約1質量%)、供給ライン12から供給される反応触媒の割合を約0.4g/Hr(チタン原子の濃度が約5質量%)になるように徐々に調整し、前記実施例1と同様の液の循環量で連続運転を行った。但し、回収ライン9から回収されたジフェニルカーボネートが徐々に減少するため、供給ライン1から供給する原料液をこれに合わせて調整した。約100Hrの連続運転で定常状態では回収ライン9から回収されたジフェニルカーボネートは約150g/Hrであった。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルおよびサリチル酸(3-メチルブチル)エステルの合計モル数のチタン原子のモル数に対する比率は約4.0であった。
 さらに抜き出しライン11から抜き出されるチタン含有高沸点成分の割合を約1.5g/Hr(チタン原子の濃度が約1質量%)、供給ライン12から供給されるチタンテトラフェノキシド含有フェノール液の割合を約0.3g/Hr(チタン原子の濃度が約5質量%)になるように調整し、同様に連続運転を行った。
 約100Hrの連続運転で定常状態においては、回収ライン9から回収されたジフェニルカーボネートは約80g/Hrであった。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルおよびサリチル酸(3-メチルブチル)エステルの合計モル数のチタン原子のモル数に対する比率は約4.2であった。よって、上記(v)の条件を満たさなかった。
 〔比較例2〕
 (1)スタートアップ操作
 スタートアップ操作までは実施例1と同様にした。
 (2)制御操作
 抜き出しライン11から抜き出されるチタン含有高沸成分の割合を約8g/Hr(チタン原子の濃度が約1.5質量%)、供給ライン12から供給される反応触媒の割合を約2.4g/Hr(チタン原子の濃度が約5質量%)になるように調整し、同時に、回収ライン9から回収されるジフェニルカーボネートが約1000g/Hrになるように各蒸留塔に循環させる液量を徐々に増やし、連続運転を約12hr行ったところ、定常状態になった。
 その後、蒸留塔130の塔底温度が約250℃、塔頂圧力が約20kPaになるように制御し、抜き出しライン11から抜き出されるチタン含有高沸点成分の割合を約4.7g/Hr(チタン原子の濃度が約1.5質量%)、供給ライン12から供給される反応触媒の割合を約1.4g/Hr(チタン原子の濃度が約5質量%)になるように徐々に調整し、上述した実施例1と同様の液の循環量で連続運転を行った。但し、回収ライン9から回収されたジフェニルカーボネートが徐々に減少するため、供給ライン1から供給する原料液をこれに合わせて調整した。
 約100Hrの連続運転で定常状態においては、回収ライン9から回収されたジフェニルカーボネートは約350g/Hrであった。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルおよびサリチル酸(3-メチルブチル)エステルの合計モル数の、チタン原子のモル数に対する比率は約2.8であった。
 さらに抜き出しライン11から抜き出されるチタン含有高沸点成分の割合を約2g/Hr(チタン原子の濃度が約1.5質量%)、供給ライン12から供給される反応触媒の割合を約0.6g/Hr(チタン原子の濃度が約5質量%)になるように調整し、同様に連続運転を行った。
 約100Hrの連続運転で定常状態においては、回収ライン9から回収されたジフェニルカーボネートは約100g/Hrであった。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルおよびサリチル酸(3-メチルブチル)エステルの合計モル数のチタン原子のモル数に対する比率は約4.2であった。よって、上記(v)の条件を満たさなかった。
 〔比較例3〕
 (1)スタートアップ操作
 原料であるビス(3-メチルブチル)カーボネートおよびフェノールとして、それぞれ圧縮空気の雰囲気下に保存したもの(溶存酸素濃度は、順に約60ppm、約80ppmであった)を用いた以外は実施例1と同様にしてスタートアップ操作まで行った。
 (2)制御操作
 抜き出しライン11から抜き出されるチタン含有高沸点成分の割合を約12g/Hr(チタン原子の濃度が約1質量%)、供給ライン12から供給されるチタンテトラフェノキシド含有フェノール液の割合を約2.4g/Hr(チタン原子の濃度が約5質量%)になるように調整した。同時に回収ライン9から回収されるジフェニルカーボネートが約1000g/Hrになるように各蒸留塔に循環させる液量を徐々に増やしていき、連続運転を約12hr行ったところ、定常状態となった。
 その後、抜き出しライン11から抜き出されるチタン含有高沸点成分の割合を約5g/Hr(チタン原子の濃度が約1質量%)、供給ライン12から供給されるチタンテトラフェノキシド含有フェノール液の割合を約1g/Hr(チタン原子の濃度が約5質量%;サリチル酸エステルを含まない)になるように徐々に調整し、実施例1と同様の液の循環量で連続運転を行った。但し、回収ライン9から回収されたジフェニルカーボネートが徐々に減少するため、供給ライン1から供給する原料液をこれに合わせて調整した。
 約100Hrの連続運転で定常状態では回収ライン9から回収されたジフェニルカーボネートは約250g/Hrであった。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、カテコールとサリチル酸フェニルとサリチル酸(3-メチルブチル)エステルとが含まれており、これらの合計モル数のチタン原子のモル数に対する比率は約2.2であった。
 さらに、抜き出しライン11から抜き出されるチタン含有高沸点成分の割合を約4g/Hr(チタン原子の濃度が約1質量%)、供給ライン12から供給されるチタンテトラフェノキシド含有フェノール液の割合を約0.8g/Hr(チタン原子の濃度が約5質量%;サリチル酸エステルを含まない)になるように調整させ、同様に連続運転を行った。
 約100Hrの連続運転で定常状態では回収ライン9から回収されたジフェニルカーボネートは約90g/Hrであった。
 抜き出しライン11から得たチタン含有高沸物を分析したところ、サリチル酸フェニルおよびサリチル酸(3-メチルブチル)エステルの合計モル数のチタン原子のモル数に対する比率は約4.1であり、チタン含有組成物のモル数の4倍よりも大きい値となった。また、カテコールのモル数のチタン原子のモル数に対する比率は約2.1であり、チタン含有組成物のチタン原子の2倍よりも大きい値となった。よって、いずれにおいても上記(v),(vi)の要件を満たさなかった。
 〔比較例4~8〕
 (反応触媒の調製)
 チタン含有組成物の調製において、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)に代えて、テトラブトキシチタン(デュポン社製、Tyzor TnBT)および製造例1~4から得られたポリチタノキサンアルコキシドを用いた以外は、実施例7と同様にしてチタン含有組成物を調整した。
 (ジアリールカーボネートの製造)
 上記調製したチタン含有組成物を組成物Aとすることなくそのままジアリールカーボネートの反応触媒として用い、蒸留塔130における高沸点成分を95質量%抜出ライン11から回収し、供給ライン13から反応触媒を供給することを以外は実施例7と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。結果を表4に示す。いずれについても反応触媒を数時間(3~5Hr)供給したところ、供給ライン13が閉塞し、運転不可能となった。
Figure JPOXMLDOC01-appb-T000091
 〔比較例9~13〕
 (反応触媒の調製)
 チタン含有組成物の調製において、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)に代えて、テトラブトキシチタン(デュポン社製、Tyzor TnBT)および製造例1~4から得られたポリチタノキサンアルコキシドを用いた以外は、実施例7と同様にしてチタン含有組成物を調整した。
 (ジアリールカーボネートの製造)
 組成物Aを調製する際の加熱条件を200℃から230℃に変更し、加熱保持時間を72Hrから200Hrに変更したこと以外は実施例7と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。結果を表5に示す。ジフェニルカーボネート(ジアリールカーボネート)の生産量が不安定のため連続運転が8~30時間程度であった。
Figure JPOXMLDOC01-appb-T000092
 〔比較例14~18〕
 (反応触媒の調製)
 チタン含有組成物の調製において、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)に代えて、テトラブトキシチタン(デュポン社製、Tyzor TnBT)および製造例1~4から得られたポリチタノキサンアルコキシドを用いた以外は、実施例7と同様にしてチタン含有組成物を調整した。得られたチタン含有組成物のチタン含有率を5質量%から約0.6質量%になるようにジフェニルカーボネートを加えた。
 (ジアリールカーボネートの製造)
 組成物Aを調製する際の加熱条件を200℃から250℃に変更し、加熱保持時間を72Hrから300Hrに変更したこと以外は実施例7と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。結果を表6に示す。ジフェニルカーボネート(ジアリールカーボネート)の生産量が不安定のため連続運転が9~20時間程度であった。蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は、比較例14~18の順に、約72質量%、約70質量%、約71質量%、約72質量%、約74質量%含まれていた。
Figure JPOXMLDOC01-appb-T000093
 〔実施例13〕
 (チタン含有組成物の調製)
 攪拌機、ヒーターおよび蒸留塔を具備した容積60Lのバッチ型反応器に、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)を窒素雰囲気下で7kg仕込み、次いで予め蒸留精製したフェノールを14kg仕込んだ。
 次に、常圧において、前記バッチ型反応器中の混合物をヒーターによって180℃に加熱し、反応させた。当該反応によって発生したn-ブタノールを蒸留塔の塔頂から回収した。さらに前記バッチ型反応器を約53kPaに減圧し、n-ブタノールを回収した。
 その後、前記バッチ型反応器を常圧に戻し、ジフェニルカーボネートを約18kg仕込み、該反応器中の混合物を約190℃に加熱した。次に前記バッチ型反応器を約1.3kPaに減圧し、低沸点成分を含むジフェニルカーボネートを留去して、チタン含有組成物を得た。得られたチタン含有組成物のチタン濃度が5質量%になるようにジフェニルカーボネートを加えた。
 (ジアリールカーボネートの製造装置)
 図2に、実施例13で用いた製造装置の概略構成図を示す。
 この製造装置は、連続多段構造の蒸留塔110、120、蒸留塔130、および蒸留精製塔140を具備している。
 これらは所定のラインにより連通している。
 具体的には、ライン1,1’,12,13は、原料化合物やチタン含有組成物等を供給する供給ラインであり、ライン3,9は生成化合物やその他の材料を回収する回収ラインである。ライン2,4,5,6,7,8,10は移送ラインであり、ライン11は抜き出しラインである。
 符号111,121,131,141はリボイラーを示し、符号112,122,132,142はコンデンサーを示している。符号113は供給材料を所定の温度とするための予熱器である。
 (組成物Aの調製)
 蒸留塔130において、以下のとおりジフェニルカーボネートより高沸点生成物を生成させ、組成物Aを調製した。
 蒸留塔130は、Melapak CYを充填した内径150mm長さ4mからなる蒸留塔であり、リボイラー131とコンデンサー132とを備えていた。
 当該蒸留塔130の下部に、上記調製したチタン含有組成物(チタン濃度:約5質量%)を約10kg供給し、該チタン含有組成物の温度を約200℃に制御した。この状態を約72hr保持した。その後、該チタン含有組成物を一部サンプリングし分析したところ、ジフェニルカーボネートより沸点の高いサリチル酸フェニルおよびサリチル酸フェニルカーボネートが検出された。該サリチル酸フェニルおよびサリチル酸フェニルカーボネートの合計とチタン原子とのモル比(サリチル酸フェニルおよびサリチル酸フェニルカーボネートの合計/チタン原子)は約0.5であった。蒸留塔130において生成した高沸点生成物とチタン含有組成物との混合物(以下「組成物A」とも記す。)を、次のジアリールカーボネートの製造の反応触媒として用いた。
 (ジアリールカーボネートの製造)
 段数50のシーブトレイを充填した内径150mm長さ12mの連続多段構成の蒸留塔110において、50段目のシーブトレイに、ジメチルカーボネート約30質量%およびフェノール約70質量%よりなる混合液(a)を、予熱器113を経て供給ライン1から約41kg/Hrで連続的に供給した。一方で蒸留塔110の下部に、ジメチルカーボネート約70質量%およびフェノール約30質量%よりなる混合液(b)を、供給ライン1’から約41kg/Hrで連続的に供給した。
 前記混合液(a)および(b)を連続的に供給する段よりも下部に濃縮部を設け、上部に回収部を設けた。
 なお、反応および蒸留に必要な熱量に関しては、外部ヒーターを設けたり、塔下部液を、リボイラーを経て循環させたりすることにより制御した。当該方法により、多段蒸留塔110では、塔底の温度が約230℃であり、塔頂圧力が約0.55MPa-Gになるように制御した。
 次に、上記で調製した組成物Aを、蒸留塔130の下部から移送ライン6を用いて蒸留塔110の45段目に徐々に供給し、蒸留塔110の塔底におけるチタン原子濃度が約300ppmになるように調整した。反応液は、連続多段蒸留塔110の塔底から移送ライン2を経て、約21kg/Hrで連続的に抜き出した。
 副生メタノールを含む低沸点成分を蒸留塔110の塔頂から抜き出した。その後、当該低沸点成分をコンデンサー112で凝縮させ、回収ライン3から回収した。
 上記のようにして移送ライン2から抜き出した反応液を、連続多段蒸留塔120に供給した。
 この連続多段蒸留塔120は、リボイラー121、段数16のシーブトレイ型蒸留塔(内径150mm、長さ約4m)の濃縮部、およびMelapak CYを充填した内径150mm長さ4mの回収部を具備していた。反応液の供給位置は前記濃縮部の上部とし、反応液の供給速度は約21kg/Hrとした。
 この蒸留塔120では、塔底の温度が約210℃、塔頂圧力が約13.3kPaになるように制御し、この条件で不均化反応を行った。
 また、蒸留塔120の塔頂から、フェノールおよびジメチルカーボネートを含む低沸点成分を、コンデンサー122、移送ライン5および供給ライン1を経て蒸留塔110に循環させた。
 蒸留塔120の塔底から、ジフェニルカーボネートを含有する反応液を、移送ライン4を経て蒸留塔130に供給し、蒸留分離を行った。
 蒸留塔130は、Melapak CYを充填した内径150mm長さ4mからなる蒸留塔であり、リボイラー131とコンデンサー132とを備えていた。
 蒸留塔130は、塔底温度を約190℃、塔頂圧力を約1.7kPaに制御した。
 塔頂からジフェニルカーボネートを含有する低沸点成分を取り出し、コンデンサー132および移送ライン7を経て蒸留精製塔140に供給した。
 一方、組成物Aを含む高沸点成分を移送ライン6と供給ライン1とを経て、蒸留塔110に循環させた。
 蒸留精製塔140は、Melapak CYを充填した内径150mm、長さ5mの蒸留塔であり、リボイラー141とコンデンサー142とを具備していた。
 前記蒸留塔130から移送ライン7を経て蒸留精製塔140に供給されたジフェニルカーボネートを含有する反応液を、蒸留精製塔140で精製した。当該精製により、回収ライン9から99.8質量%のジフェニルカーボネート(ジアリールカーボネート)を得た。なお、回収ライン9の位置は、塔底より上の蒸留塔下部とした。
 蒸留精製塔140の塔頂から、メチルフェニルカーボネートを含有する低沸点成分を抜き出し、回収ライン10と移送ライン2とを経て蒸留塔120に循環させた。
 上述した連続運転を約12hr行ったところ、定常状態となった。
 このとき、移送ライン2において、液の組成は、フェノール約55質量%、ジメチルカーボネート約26質量%、メチルフェニルカーボネート約17質量%、ジフェニルカーボネート約2質量%、メタノール約0.09質量%であり、流量は約40kg/Hrであった。
 移送ライン4において、液の組成は、ジメチルカーボネート約0.1質量%、メチルフェニルカーボネート約17質量%、フェノール約3質量%、ジフェニルカーボネート約80質量%であり、流量は約6.2kg/Hrであった。
 移送ライン7において、液の組成はジフェニルカーボネート約78質量%、メチルフェニルカーボネート約19質量%、フェノール約3質量%であり、流量は約5kg/Hrであった。
 上述した連続運転を、さらに約100Hr継続したところ、回収ライン9から回収したジフェニルカーボネートは約4kg/Hrで安定的に製造できた。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルおよびサリチル酸メチルエステルのサリチル酸エステル類の合計モル数のチタン原子のモル数に対する比率は約1.3であり、サリチル酸フェニルカーボネートのモル数のチタン原子のモル数に対する比率は約0.08であった。さらにカテコールのモル数のチタン原子のモル数に対する比率は約0.008であった。
 また、蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は約11質量%含まれていた。
 〔実施例14〕
 チタン含有組成物の調製において、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)に代えて、テトラブトキシチタン(DuPont社製、製品名:Tyzor TnBT)を用い、組成物Aの調製において、組成物A中のサリチル酸フェニルおよびサリチル酸フェニルカーボネートの合計とチタン原子とのモル比(サリチル酸フェニルおよびサリチル酸フェニルカーボネートの合計/チタン原子)を、約0.5から約1.1に変更したこと以外は実施例13と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。
 回収ライン9から99.8質量%のジフェニルカーボネート(ジアリールカーボネート)を得た。
 蒸留精製塔140の塔頂から、メチルフェニルカーボネートを含有する低沸点成分を抜き出し、回収ライン10と移送ライン2とを経て蒸留塔120に循環させた。
 上述した連続運転を約12hr行ったところ、定常状態となった。
 このとき、移送ライン2において、液の組成は、フェノール約53質量%、ジメチルカーボネート約26質量%、メチルフェニルカーボネート約17質量%、ジフェニルカーボネート約2質量%、メタノール約0.09質量%であり、流量は約40kg/Hrであった。
 移送ライン4において、液の組成は、ジメチルカーボネート約0.1質量%、メチルフェニルカーボネート約17質量%、フェノール約3質量%、ジフェニルカーボネート約80質量%であり、流量は約6.2kg/Hrであった。
 移送ライン7において、液の組成はジフェニルカーボネート約78質量%、メチルフェニルカーボネート約19質量%、フェノール約3質量%であり、流量は約5kg/Hrであった。
 上述した連続運転を、さらに約100Hr継続したところ、回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は約4kg/Hrで安定的に製造できた。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルおよびサリチル酸メチルエステルのサリチル酸エステル類の合計モル数のチタン原子のモル数に対する比率は約1.6であり、サリチル酸フェニルカーボネートのモル数のチタン原子のモル数に対する比率は約0.4であった。さらにカテコールのモル数のチタン原子のモル数に対する比率は約0.01であった。
 また、蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は約12質量%含まれていた。
 〔実施例15~30〕
 チタン含有組成物の調製において、下表7のとおり製造例1~4から得られた平均多量化度の異なるポリチタノキサンブトキシドを用い、組成物Aの調製において、組成物A中のサリチル酸フェニルとサリチル酸フェニルカーボネートの合計とチタン原子とのモル比((サリチル酸フェニル+サリチル酸フェニルカーボネート)/チタン原子)を下表7のとおり変更したこと以外は実施例13と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。結果を表7に示す。当該結果から、実施例15~30で調製した組成物Aを供給する際に、蒸留塔の閉塞が起こらず150~200時間の連続運転が可能であり、ジフェニルカーボネート(ジアリールカーボネート)を安定的に製造することができることがわかった。
 蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は、実施例15~30の順に、約9質量%、約9質量%、約8質量%、約8質量%、約18質量%、約36質量%、約32質量%、約13質量%、約12質量%、約22質量%、約38質量%、約33質量%、約23質量%、約27質量%、約31質量%、約39質量%含まれていた。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析したところ、いずれの実施例においても上記(iv)~(vi)を満たしており、安定的にジアリールカーボネートを製造することができた。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
 〔実施例31〕
 (チタン含有組成物の調製)
 攪拌機、ヒーターおよび蒸留塔を具備した容積60Lのバッチ型反応器に、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)を窒素雰囲気下で7kg仕込み、次いで予め蒸留精製したフェノールを14kg仕込んだ。
 次に、常圧において、前記バッチ型反応器中の混合物をヒーターによって180℃に加熱し、反応させた。当該反応によって発生したn-ブタノールを蒸留塔の塔頂から回収した。さらに前記バッチ型反応器を約53kPaに減圧し、n-ブタノールを回収した。
 その後、前記バッチ型反応器を常圧に戻し、ジフェニルカーボネートを約18kg仕込み、該反応器中の混合物を約190℃に加熱した。次に、前記バッチ型反応器を約1.3kPaに減圧し、低沸点成分を含むジフェニルカーボネートを留去して、チタン含有組成物を得た。得られたチタン含有組成物のチタン濃度が5質量%になるようにジフェニルカーボネートを加えた。
 (組成物Aの調製)
 次いで該チタン含有組成物を200℃に加熱し、約120Hr保持することにより組成物Aを得た。該組成物Aを一部サンプリングし分析したところ、ジフェニルカーボネートより沸点の高いサリチル酸フェニルおよびサリチル酸フェニルカーボネートが検出された。該サリチル酸フェニルおよびサリチル酸フェニルカーボネートの合計とチタン原子とのモル比(サリチル酸フェニルおよびサリチル酸フェニルカーボネートの合計/チタン原子)は2.3であった。ここで生成した組成物Aを、次のジアリールカーボネートの製造の反応触媒として用いた。
 (ジアリールカーボネートの製造装置)
 図1に、実施例31で用いた製造装置の概略構成図を示す。
 この製造装置は、連続多段構造の蒸留塔110、120、蒸留塔130、および蒸留精製塔140を具備している。
 これらは所定のラインにより連通している。
 具体的には、ライン1,12は、原料化合物やチタン含有組成物等を供給する供給ラインであり、ライン3,9は生成化合物やその他の材料を回収する回収ラインである。ライン2,4,5,6,7,8,10は移送ラインであり、ライン11は抜き出しラインである。
 符号111,121,131,141はリボイラーを示し、符号112,122,132,142はコンデンサーを示している。符号113は供給材料を所定の温度とするための予熱器である。
 (ジアリールカーボネートの製造)
 蒸留塔110は、段数25のシーブトレイを充填した内径150mm長さ4.8mの濃縮部およびMelapak CY(スイス国、Sulzer Chemtech Ltd社製)を充填した内径150mm長さ2.3mの回収部を具備する連続多段構成の蒸留塔とした。
 当該蒸留塔110において、25段目のシーブトレイから、ビス(3-メチルブチル)カーボネート、フェノール、および上記で調製した組成物Aを、予熱器113を経て供給ライン1から約1830g/Hrで連続的に供給し、エステル交換反応を行った。なお、混合液中のビス(3-メチルブチル)カーボネートのフェノールに対する質量比が約1.08、チタン原子濃度が約500ppmとなるように、各原料混合液の供給割合を調整した。
 前記混合液を連続的に供給する段よりも下部に濃縮部を設け、上部に回収部を設けた。
 なお、反応および蒸留に必要な熱量に関しては、外部ヒーターを設けたり、塔下部液をリボイラー111を経て循環させたりすることにより制御した。当該方法により、多段蒸留塔110では、塔底の温度が約230℃であり、塔頂圧力が約140kPaになるように制御した。
 反応液は、連続多段蒸留塔110の塔底から移送ライン2を経て、約1700g/Hrで連続的に抜き出した。
 副生3-メチル-1-ブタノールを含む低沸点成分を塔頂から抜き出した。その後、当該低沸点成分をコンデンサー112で凝縮させ、還流比=2で回収ライン3から回収した。
 上記のようにして移送ライン2から抜き出した反応液を、連続多段蒸留塔120に供給した。
 この連続多段蒸留塔120は、リボイラー121、段数5のチムニー型蒸留塔(内径150mm、長さ約6m)の濃縮部、およびMelapak CYを充填した内径150mm長さ3.8mの回収部を具備しており、反応液の供給位置は前記濃縮部の上部とし、反応液の供給速度は、約1700g/Hrとした。
 この蒸留塔120では、塔底の温度が200℃、塔頂圧力が約3kPaになるように制御し、この条件で不均化反応を行った。
 また、蒸留塔120の塔頂から、フェノールおよびビス(3-メチルブチル)カーボネートを含む低沸点成分を、コンデンサー122、移送ライン5および供給ライン1を経て蒸留塔110に循環させた。
 蒸留塔120の塔底から、ジフェニルカーボネートを含有する反応液を、移送ライン4を経て蒸留塔130に供給し、蒸留分離を行った。
 蒸留塔130は、Melapak CYを充填した内径150mm長さ4mからなる蒸留塔であり、リボイラー131とコンデンサー132とを備えていた。
 蒸留塔130は、塔底温度を約180℃、塔頂圧力を約0.5kPaに制御した。
 塔頂からジフェニルカーボネートを含有する低沸点成分を取り出し、コンデンサー132および移送ライン7を経て蒸留精製塔140に供給した。
 一方、組成物Aを含む高沸点成分を移送ライン6と供給ライン1とを経て、蒸留塔110に循環させた。
 蒸留精製塔140は、Melapak CYを充填した内径150mm、長さ5mの蒸留塔であり、リボイラー141とコンデンサー142とを具備していた。
 前記蒸留塔130から移送ライン7を経て蒸留精製塔140に供給されたジフェニルカーボネートを含有する反応液を、蒸留精製塔140で精製した。当該精製により、回収ライン9から約100質量%のジフェニルカーボネート(ジアリールカーボネート)を得た。なお、回収ライン9の位置は、塔底より上の蒸留塔下部とした。
 蒸留精製塔140の塔頂から、3-メチルブチルフェニルカーボネートを含有する低沸点成分を抜き出し、回収ライン10と移送ライン2とを経て蒸留塔120に循環させた。
 抜き出しライン11から抜き出すチタン含有高沸点成分の割合を、約7.7g/Hr(チタン原子濃度が約1.5質量%)とし、供給ライン12から供給する組成物Aの割合を、約2.3g/Hr(チタン原子濃度が約5質量%)となるように調整し、供給ライン1からの組成物Aの供給を停止した。
 同時に、回収ライン9から回収されるジフェニルカーボネートの割合が、約1000g/Hrになるように、各蒸留塔に循環させる液量を徐々に増加させた。
 上述した連続運転を約12hr行ったところ、定常状態となった。
 このとき、移送ライン2において、液の組成は、フェノール約15質量%、ビス(3-メチルブチル)カーボネート約67質量%、3-メチルブチルフェニルカーボネート約17質量%、ジフェニルカーボネート約0.3質量%、3-メチル-1-ブタノール約0.2質量%であり、流量は約11402g/Hrであった。
 前記定常状態における反応液の、蒸留塔110および蒸留塔120での滞留時間は、それぞれ約1Hrおよび約2.5Hrであった。
 回収ライン3において、液の組成は、3-メチル-1-ブタノール約100質量%であり、流量は約823g/Hrであった。
 移送ライン4において、液の組成は、ビス(3-メチルブチル)カーボネート約0.2質量%、3-メチルブチルフェニルカーボネート約11質量%、ジフェニルカーボネート約84質量%であり、流量は約1238g/Hrであった。
 移送ライン5において、液の組成は、3-メチル-1-ブタノール約0.2質量%、フェノール約17質量%、ビス(3-メチルブチル)カーボネート約83質量%であり、流量は約10300g/Hrであった。
 移送ライン7において、液の組成は、ジフェニルカーボネート約88質量%、3-メチルブチルフェニルカーボネート約12質量%、ビス(3-メチルブチル)カーボネート約0.2質量%であり、流量は約1140g/Hrであった。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルとサリチル酸(3-メチルブチル)エステルとの合計モル数の、チタン原子のモル数に対する比率は約2.6であった。
 上述した連続運転を、さらに約300Hr継続したところ、回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は約1000g/Hrで安定的に製造できた。
 その後、抜き出しライン11から抜き出すチタン含有高沸点成分の割合を、約6g/Hr(チタン原子濃度が約1.5質量%)、供給ライン12から供給する組成物Aの割合を約1.8g/Hr(チタン原子の濃度が約5質量%)となるように調整し、同様に約300Hr連続運転を行った。
 回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は、同様に約1000g/Hrで安定的に製造できた。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルおよびサリチル酸(3-メチルブチル)エステルのサリチル酸エステル類の合計モル数のチタン原子のモル数に対する比率は約3.0であり、サリチル酸フェニルカーボネートのモル数のチタン原子のモル数に対する比率は約1.1であった。さらにカテコールのモル数のチタン原子のモル数に対する比率は約0.04であった。
 また、蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は約62質量%含まれていた。
 〔実施例32~35〕
 ビス(3-メチルブチル)カーボネートの代わりに、下表9に示す種類のジアルキルカーボネートを用い、組成物Aの調製において、組成物A中のサリチル酸フェニルおよびサリチル酸フェニルカーボネートの合計とチタン原子とのモル比(サリチル酸フェニルおよびサリチル酸フェニルカーボネートの合計/チタン原子)を下表9のとおり変更したこと以外は実施例31と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。また、各移送ラインにおける流量や蒸留塔内の圧力はジアルキルカーボネートの種類に応じて調整した。結果を表9に示す。当該結果から、実施例31~35のいずれにおいても、閉塞が起こらず長時間の安定的な連続運転が可能であった。
 蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は、実施例32~35の順に、約28質量%、約30質量%、約32質量%、約38質量%含まれていた。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析したところ、いずれの実施例においても上記(iv)~(vi)を満たしており、安定的にジアリールカーボネートを製造することができた。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
 〔比較例19~22〕
 (反応触媒の調製)
 チタン含有組成物の調製において、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)に代えて、製造例1~4から得られた平均多量化度の異なるポリチタノキサンブトキシドを用いた以外は、実施例13と同様にしてチタン含有組成物を調整した。
 (ジアリールカーボネートの製造)
 上記調製したチタン含有組成物を、組成物Aとすることなくそのままジアリールカーボネートの反応触媒として用いた以外は実施例13と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。結果を表11および12に示す。いずれについてもチタン含有組成物を数時間(3~6Hr)供給したところ、供給ライン13が閉塞し、運転不可能となった。
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
 〔比較例23~26〕
 (反応触媒の調製)
 チタン含有組成物の調製において、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)に代えて、製造例1~4から得られた平均多量化度の異なるポリチタノキサンブトキシドを用いた以外は、実施例13と同様にしてチタン含有組成物を調整した。
 (ジアリールカーボネートの製造)
 組成物Aを調製する際の加熱条件を200℃から230℃に変更し、加熱保持時間を72Hrから200Hrに変更したこと以外は実施例13と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。結果を表13および14に示す。組成物Aを供給する際に閉塞の問題は起こらなかったが、ジフェニルカーボネート(ジアリールカーボネート)の生産量が不安定のため連続運転が8~30時間程度であった。
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
 〔実施例36〕
 (チタン含有組成物の調製)
 攪拌機、ヒーターおよび蒸留塔を具備した容積1800Lのバッチ型反応器に、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)を窒素雰囲気下で200kg仕込み、次いで予め蒸留精製したフェノールを485kg仕込んだ。
 次に、常圧において、前記バッチ型反応器中の混合物をヒーターによって180℃に加熱し、反応させた。当該反応によって発生したn-ブタノールを蒸留塔の塔頂から回収した。さらに前記バッチ型反応器を約53kPaに減圧し、n-ブタノールを回収した。
 その後、前記バッチ型反応器を常圧に戻し、ジフェニルカーボネートを約450kg仕込み、該反応器中の混合物を約190℃に加熱した。次に前記バッチ型反応器を約1.3kPaに減圧し、低沸点成分を含むジフェニルカーボネートを留去して、チタン含有組成物を得た。得られたチタン含有組成物のチタン濃度が5質量%になるようにジフェニルカーボネートを加えた。
 (ジアリールカーボネートの製造装置)
 図2に、実施例36で用いた製造装置の概略構成図を示す。
 この製造装置は、連続多段構造の蒸留塔110、120、蒸留塔130、および蒸留精製塔140を具備している。
 これらは所定のラインにより連通している。
 具体的には、ライン1,1’,12,13は、原料化合物やチタン含有組成物等を供給する供給ラインであり、ライン3,9は生成化合物やその他の材料を回収する回収ラインである。ライン2,4,5,6,7,8,10は移送ラインであり、ライン11は抜き出しラインである。
 符号111,121,131,141はリボイラーを示し、符号112,122,132,142はコンデンサーを示している。符号113は供給材料を所定の温度とするための予熱器である。
 (反応触媒の調製)
 蒸留塔130において、以下のとおりジフェニルカーボネートより高沸点生成物を生成させ、反応触媒を調製した。
 蒸留塔130は、Melapak CYを充填した内径3.4m長さ17mからなる蒸留塔であり、リボイラー131とコンデンサー132とを備えていた。
 当該蒸留塔130の下部に、上記調製したチタン含有組成物(チタン濃度:約5質量%)を約5200kg供給し、該チタン含有組成物の温度を約200℃に制御した。この状態を約60hr保持した。その後、該チタン含有組成物を一部サンプリングし分析したところ、ジフェニルカーボネートより沸点の高いサリチル酸フェニルが検出された。該サリチル酸フェニルとチタン原子とのモル比(サリチル酸フェニル/チタン原子)は約0.4であった。蒸留塔130において生成した高沸点生成物とチタン含有組成物との混合物(以下「組成物A」とも記す。)を、次のジアリールカーボネートの製造の反応触媒として用いた。
 (ジアリールカーボネートの製造)
 段数80のシーブトレイを充填した内径5m長さ33mの連続多段構成の蒸留塔110において、ジメチルカーボネート約30質量%およびフェノール約70質量%よりなる混合液(a)を、予熱器113を経て供給ライン1から約57トン/Hrで蒸留塔110上部に連続的に供給した。一方で蒸留塔110の下部に、ジメチルカーボネート約70質量%およびフェノール約30質量%よりなる混合液(b)を、供給ライン1’から約57トン/Hrで連続的に供給した。
 前記混合液(a)および(b)を連続的に供給する段よりも下部に濃縮部を設け、上部に回収部を設けた。
 なお、反応および蒸留に必要な熱量に関しては、外部ヒーターを設けたり、塔下部液を、リボイラーを経て循環させたりすることにより制御した。当該方法により、多段蒸留塔110では、塔底の温度が約230℃であり、塔頂圧力が約0.55MPa-Gになるように制御した。
 次に、上記で調製した反応触媒(組成物A)を、蒸留塔130の下部から移送ライン6を用いて蒸留塔110の上部に徐々に供給し、蒸留塔110の反応液中におけるチタン原子濃度が約300ppmになるように調整した。反応液は、連続多段蒸留塔110の塔底から移送ライン2を経て、約60トン/Hrで連続的に抜き出した。
 副生メタノールを含む低沸点成分を蒸留塔110の塔頂から連続的に抜き出した。
 上記のようにして移送ライン2から抜き出した反応液を、連続多段蒸留塔120に供給した。
 この連続多段蒸留塔120は、内径5m長さ31mであり、段数30のシーブトレイ型の濃縮部、Melapak CYを充填した回収部、コンデンサー122およびリボイラー121を具備していた。反応液の供給位置は前記濃縮部の上部とし、反応液の供給速度は約60トン/Hrとした。
 この蒸留塔120では、塔底の温度が約210℃、塔頂圧力が約13.3kPaになるように制御し、この条件で不均化反応を行った。
 また、蒸留塔120の塔頂から、フェノールおよびジメチルカーボネートを含む低沸点成分を、コンデンサー122、移送ライン5および供給ライン1を経て蒸留塔110に循環させた。
 蒸留塔120の塔底から、ジフェニルカーボネートを含有する反応液約14トン/Hrを、移送ライン4を経て蒸留塔130に供給し、蒸留分離を行った。
 蒸留塔130は、Melapak CYを充填した内径3.4m長さ17mからなる蒸留塔であり、リボイラー131とコンデンサー132とを備えていた。
 蒸留塔130は、塔底温度を約190℃、塔頂圧力を約1.7kPaに制御した。
 塔頂からジフェニルカーボネートを含有する低沸点成分を取り出し、コンデンサー132および移送ライン7を経て蒸留精製塔140に供給した。
 一方、反応触媒(組成物A)を含む高沸点成分を移送ライン6と供給ライン1とを経て、蒸留塔110に循環させた。
 蒸留精製塔140は、Melapak CYを充填した内径2.8m、長さ22mの蒸留塔であり、リボイラー141とコンデンサー142とを具備していた。
 前記蒸留塔130から移送ライン7を経て蒸留精製塔140に供給されたジフェニルカーボネートを含有する反応液を、蒸留精製塔140で精製した。当該精製により、回収ライン9から99.8質量%のジフェニルカーボネート(ジアリールカーボネート)を得た。なお、回収ライン9の位置は、塔底より上の蒸留塔下部とした。
 蒸留精製塔140の塔頂から、メチルフェニルカーボネートを含有する低沸点成分を抜き出し、回収ライン10と移送ライン2とを経て蒸留塔120に循環させた。
 上述した連続運転を約24hr行ったところ、定常状態となった。
 このとき、移送ライン2において、液の組成は、フェノール約55質量%、ジメチルカーボネート約26質量%、メチルフェニルカーボネート約17質量%、ジフェニルカーボネート約2質量%、メタノール約0.09質量%であり、流量は約60トン/Hrであった。
 移送ライン4において、液の組成は、ジメチルカーボネート約0.1質量%、メチルフェニルカーボネート約27質量%、フェノール約3質量%、ジフェニルカーボネート約70質量%であり、流量は約14トン/Hrであった。
 移送ライン7において、液の組成はジフェニルカーボネート約65質量%、メチルフェニルカーボネート約33質量%、フェノール約2質量%であり、流量は約13トン/Hrであった。
 上述した連続運転を、さらに約100Hr継続したところ、回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は約7.5トン/Hrで安定的に製造できた。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルとサリチル酸メチルエステルとの合計モル数の、チタン原子のモル数に対する比率は約1.3であった。
 上述した連続運転を、さらに約500Hr継続したところ、回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は約7.6トン/Hrで安定的に製造できた。
 その後、抜き出しライン11から抜き出されるチタン含有高沸点成分の割合を、約2.0kg/Hr(チタン原子の濃度が約1質量%)、供給ライン12から供給される反応触媒の割合を約4.0kg/Hr(チタン原子の濃度が約5質量%)になるように調整し、同様に約500Hr連続運転を行った。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルおよびサリチル酸メチルエステルのサリチル酸エステル類の合計モル数のチタン原子のモル数に対する比率は約1.9であり、サリチル酸フェニルカーボネートのモル数のチタン原子のモル数に対する比率は約0.8であった。さらにカテコールのモル数のチタン原子のモル数に対する比率は約0.03であった。
 また、蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は約40質量%含まれていた。
 回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は、同様に約7.6トン/Hrで安定的に製造できた。
 〔実施例37〕
 (チタン含有組成物の調製)
 実施例7と同じ方法でチタン含有組成物の調製をおこなった。
 (ジアリールカーボネートの製造装置)
 図3に、実施例37で用いた製造装置の概略構成図を示す。
 この製造装置は、槽型反応器210、220、蒸留塔330、および蒸留精製塔340を具備している。
 これらは所定のラインにより連通している。
 具体的には、ライン1,12は、原料化合物やチタン含有組成物等を供給する供給ラインであり、ライン3,9は生成化合物やその他の材料を回収する回収ラインである。ライン2,4,5,6,7,8,10は移送ラインであり、ライン11は抜き出しラインである。
 符号331,341はリボイラーを示し、符号312,322,332,342はコンデンサーを示している。符号211は供給材料を所定の温度とするための予熱器である。
 (反応触媒の調製)
 蒸留塔330において、以下のとおりジフェニルカーボネートより高沸点生成物を生成させ、反応触媒を調製した。
 蒸留塔330は、Melapak CYを充填した内径150mm長さ4mからなる蒸留塔であり、リボイラー331とコンデンサー332とを備えていた。
 当該蒸留塔330の下部に、上記調製したチタン含有組成物(チタン濃度:約5質量%)を約14kg供給し、該チタン含有組成物の温度を約200℃に制御した。この状態を約72hr保持した。その後、該チタン含有組成物を一部サンプリングし分析したところ、ジフェニルカーボネートより沸点の高いサリチル酸フェニルが検出された。該サリチル酸フェニルとチタン原子とのモル比(サリチル酸フェニル/チタン原子)は約0.5であった。蒸留塔330において生成した高沸点生成物とチタン含有組成物との混合物(以下「組成物A」とも記す。)を、次のジアリールカーボネートの製造の反応触媒として用いた。
 (ジアリールカーボネートの製造)
 攪拌装置を備えた槽型反応器210(容積300L)に、ジメチルカーボネート約50質量%およびフェノール約50質量%よりなる混合液を、予熱器211を経て供給ライン1から約80kg/Hrで連続的に供給した。
 なお、反応および蒸留に必要な熱量に関しては、外部ヒーターを設けたりすることにより制御した。当該方法により、槽型反応器210では、反応液の温度が約230℃であり、蒸留塔310塔頂圧力が約0.55MPa-Gになるように制御した。
 次に、上記で調製した反応触媒(組成物A)を、蒸留塔330の下部から移送ライン6を用いて槽型反応器210に徐々に供給し、反応液中のチタン原子濃度が約1000ppmになるように調整し、エステル交換反応をおこなった。メチルフェニルカーボネートを含む反応液は、槽型反応器210から移送ライン2を経て、約21kg/Hrで連続的に抜き出した。
 副生メタノールを含む低沸点成分を蒸留塔310の塔頂から抜き出した。その後、当該低沸点成分をコンデンサー312で凝縮させ、回収ライン3から回収した。
 上記のようにして移送ライン2から抜き出した反応液を、槽型反応器220に供給した。
 この槽型反応器220は、攪拌装置およびMelapak CYを充填した内径150mm長さ1.5mの蒸留塔320を具備していた。反応液の供給速度は約21kg/Hrとした。
 この槽型反応器220では、反応液の温度が約210℃、塔頂圧力が約13.3kPaになるように制御し、この条件でメチルフェニルカーボネートのエステル交換反応または不均化反応をおこないジフェニルカーボネートの製造をおこなった。
 また、蒸留塔320の塔頂から、フェノールおよびジメチルカーボネートを含む低沸点成分を、コンデンサー322、移送ライン5および供給ライン1を経て槽型反応器210に循環させた。
 槽型反応器220から、ジフェニルカーボネートを含有する反応液を、移送ライン4を経て蒸留塔330に供給し、蒸留分離を行った。
 蒸留塔330は、Melapak CYを充填した内径150mm長さ4mからなる蒸留塔であり、リボイラー331とコンデンサー332とを備えていた。
 蒸留塔330は、塔底温度を約190℃、塔頂圧力を約1.7kPaに制御した。
 塔頂からジフェニルカーボネートを含有する低沸点成分を取り出し、コンデンサー332および移送ライン7を経て蒸留精製塔340に供給した。
 一方、反応触媒(組成物A)を含む高沸点成分を移送ライン6と供給ライン1とを経て、蒸留塔110に循環させた。
 蒸留精製塔340は、Melapak CYを充填した内径150mm、長さ5mの蒸留塔であり、リボイラー341とコンデンサー342とを具備していた。
 前記蒸留塔330から移送ライン7を経て蒸留精製塔340に供給されたジフェニルカーボネートを含有する反応液を、蒸留精製塔340で精製した。当該精製により、回収ライン9から99.8質量%のジフェニルカーボネート(ジアリールカーボネート)を得た。なお、回収ライン9の位置は、塔底より上の蒸留塔下部とした。
 蒸留精製塔340の塔頂から、メチルフェニルカーボネートを含有する低沸点成分を抜き出し、回収ライン10を経て槽型反応器220に循環させた。
 上述した連続運転を約24hr行ったところ、定常状態となった。
 このとき、移送ライン2において、液の組成は、フェノール約60質量%、ジメチルカーボネート約28質量%、メチルフェニルカーボネート約10質量%、ジフェニルカーボネート約1質量%、メタノール約0.09質量%であり、流量は約40kg/Hrであった。
 移送ライン4において、液の組成は、ジメチルカーボネート約0.1質量%、メチルフェニルカーボネート約37質量%、フェノール約3質量%、ジフェニルカーボネート約60質量%であり、流量は約6.2kg/Hrであった。
 移送ライン7において、液の組成はジフェニルカーボネート約78質量%、メチルフェニルカーボネート約19質量%、フェノール約3質量%であり、流量は約5kg/Hrであった。
 上述した連続運転を、さらに約100Hr継続したところ、回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は約2.7kg/Hrで安定的に製造できた。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルとサリチル酸メチルエステルとの合計モル数の、チタン原子のモル数に対する比率は約1.2であった。
 上述した連続運転を、さらに約500Hr継続したところ、回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は約2.7kg/Hrで安定的に製造できた。
 その後、抜き出しライン11から抜き出されるチタン含有高沸点成分の割合を、約5.0g/Hr(チタン原子の濃度が約2質量%)、供給ライン12から供給される反応触媒の割合を約2.0g/Hr(チタン原子の濃度が約5質量%)になるように調整し、同様に約500Hr連続運転を行った。
 抜き出しライン11から得たチタン含有高沸点成分を分析したところ、サリチル酸フェニルおよびサリチル酸メチルエステルのサリチル酸エステル類の合計モル数のチタン原子のモル数に対する比率は約1.9であり、サリチル酸フェニルカーボネートのモル数のチタン原子のモル数に対する比率は約0.8であった。さらにカテコールのモル数のチタン原子のモル数に対する比率は約0.04であった。
 また、蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は約35質量%含まれていた。
 回収ライン9から回収したジフェニルカーボネート(ジアリールカーボネート)は、同様に約2.7kg/Hrで安定的に製造できた。
 〔製造例5〕
 (ポリチタノキサンアルコキシドの製造)
 冷却コイル、加熱ジャケット、蒸留塔を具備した攪拌機付き反応器に、テトラブトキシチタン(デュポン社製、Tyzor TnBT)340kgを投入し、次いでn-ブタノール150kgを投入し、内部液温を0℃になるよう調整した。
 別の冷却コイル、加熱ジャケット、蒸留塔を具備した攪拌機付き反応器に、水濃度を3質量%とした含水n-ブタノールを0℃となるよう調整した。
 ラインを通じ、前記含水n-ブタノールを前記反応器へ攪拌下で添加した。
 添加時間は1.5時間とし、添加した水の量は、0.5モル等量(反応器内のTi原子モル数に対して)とした。
 反応液を微量水分測定装置で経時的に分析し、添加した水が加水分解反応で消費され、分析値が一定となったことを確認した。
 得られた反応液を攪拌下加熱し、150℃となってから蒸留塔を用いてn-ブタノールを留去した。
 留去液の組成をガスクロマトグラフィーで分析し、留去量が殆ど無くなったことを確認し、蒸留を終了した。
 反応器内に残留した無色透明液を分析し、Ti含有量及びアルコキシ基含有量を測定したところ、平均多量化度2のポリチタノキサンブトキシドが得られていたことが分かった。
 〔製造例6~8〕
 表15に示すとおり、添加する水分量を変更し、その他の条件は上記〔製造例1〕と同様としてポリチタノキサンアルコキシドの製造を実施した。水の添加が終了した後、製造例5と同様に得られた反応液を攪拌下加熱し、150℃となってから蒸留塔を用いてn-ブタノールを留去した。留去液の組成をガスクロマトグラフィーで分析し、留去量が殆ど無くなったことを確認し、蒸留を終了した。反応器内に残留した無色透明液を分析し、Ti含有量及びアルコキシ基含有量を測定したところ、表15に示すような平均多量化度の異なるポリチタノキサンブトキシドが得られていたことが分かった。
Figure JPOXMLDOC01-appb-T000102
 〔実施例38~42〕
 チタン含有組成物の調製において、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)に代えて、テトラブトキシチタン(デュポン社製、Tyzor TnBT)および製造例5~8から得られたポリチタノキサンアルコキシドを用いたこと以外は実施例36と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。
 蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は、実施例38~42の順に、約41質量%、約45質量%、約39質量%、約50質量%、約45質量%含まれていた。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析したところ、いずれの実施例においても上記(iv)~(vi)を満たしており、安定的にジアリールカーボネートを製造することができた。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000103
 〔製造例9~14〕
 実施例13と同じ方法でチタン含有組成物の調製をおこなった。その後、組成物Aとせずに、該チタン含有組成物にサリチル酸フェニル(Aldrich社製)を添加し、混合物を約170℃に加熱し均一な液にした。該サリチル酸フェニルのチタン原子のモル数に対する比率が下表17に示すように調整した。
Figure JPOXMLDOC01-appb-T000104
 〔実施例43~45〕
 製造例9~11から得られたチタン含有組成物を用いたこと以外は実施例13と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。
 蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は、実施例43~45の順に、約14質量%、約10質量%、約23質量%含まれていた。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析したところ、いずれの実施例においても上記(iv)~(vi)を満たしており、安定的にジアリールカーボネートを製造することができた。結果を表18に示す。
Figure JPOXMLDOC01-appb-T000105
 〔比較例27~29〕
 製造例12~14から得られたチタン含有組成物を用いたこと以外は実施例13と同様にしてジフェニルカーボネート(ジアリールカーボネート)を製造した。
チタン含有組成物を供給する際には閉塞の問題は起こらなかったが、ジフェニルカーボネートの生産量が不安定で連続運転は8~12時間程度であった。また製造例14から得られたチタン含有組成物を用いた比較例29についてはジフェニルカーボネートがほとんど生成しなかった。結果を下表19に示す。
Figure JPOXMLDOC01-appb-T000106
 〔実施例46~51〕
 テトラブトキシチタン(DuPont社製、製品名:Tyzor TnBT)、ポリチタノキサンブトキシド(DuPont社製、製品名:Tyzor BTP)、製造例1~4から得られたポリチタノキサンブトキシドをチタン含有触媒組成物として、ジアリールカーボネートの反応触媒に用いた。実施例1と同様にスタートアップ操作をおこない、ジアリールカーボネートの製造を行った。
 蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は、実施例46~51の順に、約5質量%、約6質量%、約5質量%、約7質量%、約6質量%、約6質量%含まれていた。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析した結果を下表20に示す。いずれの実施例においても上記(iv)~(vi)の条件を満たしており、安定的にジアリールカーボネートを製造することができた。
Figure JPOXMLDOC01-appb-T000107
〔実施例52〕
 前記実施例1において説明した図1に示すジアリールカーボネートの製造装置を用いて以下のとおりジアリールカーボネートを製造した。
(1)スタートアップ操作
 段数25のシーブトレイを充填した内径150mm長さ4.8mの濃縮部及びMelapak CY(スイス国、Sulzer Chemtech Ltd社製)を充填した内径150mm長さ2.3mの回収部を具備する連続多段蒸留塔110において、25段目のシーブトレイから、ビス(3-メチルブチル)カーボネート、フェノール、及びモノオクチルスズフェノキシドオキシド(モノオクチルスズオキシドヒドロキシド(北興化学工業社製)とフェノールとの反応から合成したもの)からなる混合液(混合液中のビス(3-メチルブチル)カーボネートのフェノールに対する重量比が約1.08、原子としてのスズが全液量の約1500ppmとなるように調整した。)を、予熱器113を経て供給ライン1から約1800g/Hrで連続的に供給し、エステル交換反応を行った。
 前記混合液を連続的に供給する段よりも下部に濃縮部を設け、上部に回収部を設けた。
 反応及び蒸留に必要な熱量に関しては、外部ヒーターを設けたり、塔下部液をリボイラー111を経て循環させて供給したりするようにした。これにより、多段蒸留塔の塔底の温度が約230℃であり、塔頂圧力が約140kPaになるように制御した。
 反応液は、連続多段蒸留塔110の塔底から移送ライン2を経て、約1650g/Hrで連続的に抜き出した。
 副生3-メチル-1-ブタノールを含む低沸点成分を塔頂から抜出した。その後、これをコンデンサー112で凝縮させ、還流比=2で回収ライン3から回収した。
 上記のようにして移送ライン2から抜き出した反応液を、連続多段蒸留塔120に供給した。
 この連続多段蒸留塔120は、リボイラー121と段数5のチムニー型蒸留塔(内径150mm、長さ約6m)の濃縮部、及びMelapak CYを充填した内径150mm長さ3.8mの回収部とを具備しており、反応液は、前記濃縮部の上部に約1700g/Hrで供給した。
 この蒸留塔120の塔底の温度が200℃、塔頂圧力が約3kPaになるように制御し、この条件で不均化反応を行った。
 また、蒸留塔120の塔頂から、フェノール及びビス(3-メチルブチル)カーボネートを含む低沸点成分をコンデンサー122、移送ライン5及び供給ライン1を経て蒸留塔110に循環させた。
 蒸留塔120の塔底から、ジフェニルカーボネートを含有する反応液を、移送ライン4を経て蒸留塔130に供給し、蒸留分離を行った。
 蒸留塔130は、Melapak CYを充填した内径150mm長さ4mからなる蒸留塔であり、リボイラー131とコンデンサー132とを備えている。
 蒸留塔130は、塔底温度が約180℃、塔頂圧力が約0.5kPaに制御した。
 塔頂からジフェニルカーボネートを含有する低沸点成分を取り出し、コンデンサー132及び移送ライン7を経て蒸留精製塔140に供給した。
 一方、触媒を含む高沸成分を移送ライン6と供給ライン1とを経て、蒸留塔110に循環させた。
 蒸留精製塔140は、Melapak CYを充填した内径150mm、長さ5mの蒸留塔であり、リボイラー141とコンデンサー142とを具備している。
 前記蒸留塔130から移送ライン7を経て蒸留精製塔140に供給されたジフェニルカーボネートを含有する反応液は、蒸留精製塔140で精製される。これにより塔底よりも上に位置するが蒸留塔下部に位置している回収ライン9から約99質量%のジフェニルカーボネートを得た。
 蒸留精製塔140の塔頂から、3-メチルブチルフェニルカーボネートを含有する低沸成分を回収ライン10と移送ライン2とを経て蒸留塔120に循環させた。
(2)制御操作
 抜き出しライン11から抜き出されるスズ含有高沸物を、約2.3g/Hr(スズ原子の濃度が約5質量%)とし、供給ライン12から供給されるオクチルスズオキシドフェノキシド含有フェノール液を、約2.3g/Hr(スズ原子の濃度が約5質量%)になるように調整し、供給ライン1からのオクチルスズオキシドフェノキシドの供給を停止させた。
 同時に、回収ライン9から回収されるジフェニルカーボネートが、約1000g/Hrになるように、各蒸留塔に循環させる液量を徐々に増加させた。
 上述した連続運転を約12hr行ったところ、定常状態となった。
 このとき、移送ライン2において、液の組成は、フェノール約15質量%、ビス(3-メチルブチル)カーボネート約67質量%、3-メチルブチルフェニルカーボネート約17質量%、ジフェニルカーボネート約0.3質量%、3?メチル-1-ブタノール約0.2質量%であり、流量は約11402g/Hrであった。
 回収ライン3における液の組成は、3-メチル-1?ブタノール約100質量%であり、流量は約825g/Hrであった。
 移送ライン4において、液の組成は、ビス(3-メチルブチル)カーボネート約0.2質量%、3-メチルブチルフェニルカーボネート約11質量%、ジフェニルカーボネート約84質量%であり、流量は約1230g/Hrであった。
 移送ライン5において、液の組成は3-メチル-1-ブタノール約0.2質量%、フェノール約15質量%、ビス(3-メチルブチル)カーボネート約84質量%であり、流量は約10300g/Hrであった。
 移送ライン7において、液の組成はジフェニルカーボネート約86質量%、3-メチルブチルフェニルカーボネート約13質量%、ビス(3-メチルブチル)カーボネート約0.2質量%であり、流量は約1120g/Hrであった。
 また、抜き出しライン11から得た高沸点成分を分析したところ、サリチル酸フェニルとサリチル酸(3-メチルブチル)エステルとの合計モル数の、スズ原子のモル数に対する比率は約0.4であった。
 上述した連続運転を、さらに約100Hr継続したところ、回収ライン9から回収したジフェニルカーボネートは約1000g/Hrで安定的に製造できた。
 その後、抜き出しライン11から抜き出されるスズ含有高沸物が、約1.8g/Hr(スズ原子の濃度が約5質量%)、供給ライン12から供給されるオクチルスズオキシドフェノキシド含有フェノール液が約1.8g/Hr(スズ原子の濃度が約5wt%)になるように調整し、同様に約100Hr連続運転を行った。
 抜き出しライン11から得た高沸点成分を分析したところ、サリチル酸フェニルとサリチル酸(3-メチルブチル)エステルのサリチル酸エステル類の合計モル数のスズ原子のモル数に対する比率は約0.7であり、サリチル酸フェニルカーボネートのモル数のスズ原子のモル数に対する比率は約0.05であった。さらにカテコールのモル数のスズ原子のモル数に対する比率は約0.02であった。該高沸点成分中にジフェニルカーボネートより高沸点の成分は約23質量%であった。
 回収ライン9から回収したジフェニルカーボネートは、同様に約1000g/Hrで安定的に製造できた。
〔実施例53~55〕
 金属含有触媒として、実施例53~55においてそれぞれ、順に、トリエトキシ鉄(Strem Chemicals社製)、トリブトキシアルミニウム(和光純薬社製)、トリプロポキシジルコニウム(Strem Chemicals社製)を用いた以外は、実施例52と同様な方法でジアリールカーボネートの製造を行った。
 蒸留塔130における蒸留分離において、塔底から取り出された高沸点成分中に該ジフェニルカーボネートより高沸点の成分は、実施例53~55の順に、約14質量%、約15質量%、約17質量%含まれていた。
 また、抜き出しライン11から得たチタン含有高沸点成分を分析したところ、いずれの実施例においても上記(iv)~(vi)を満たしており、安定的にジアリールカーボネートを製造することができた。結果を表21に示す。
Figure JPOXMLDOC01-appb-T000108
〔比較例30~33〕
 図1に示す製造装置を用いてジアリールカーボネートを製造した。
 金属含有触媒として、比較例30~33においてそれぞれ、モノオクチルスズフェノキシドオキシド、トリエトキシ鉄(Strem Chemicals社製)、トリブトキシアルミニウム(和光純薬社製)、トリプロポキシジルコニウム(Strem Chemicals社製)を用い、制御操作を以下のとおりとした以外は、実施例52と同様な方法でジアリールカーボネートの製造を行った。
 (制御操作)
 実施例52と同様のスタートアップ操作を行い、抜き出しライン11から抜き出される金属含有高沸物を約2.4g/Hr(金属原子の濃度が約5質量%)、供給ライン12から供給される金属含有触媒組成物を約2.4g/Hr(金属原子の濃度が約5質量%)になるように調整し、同時に、回収ライン9から回収されるジフェニルカーボネートが約1000g/Hrになるように各蒸留塔に循環させる液量を徐々に増やし、連続運転を約12hr行ったところ、定常状態になった。
 その後、抜き出しライン11から抜き出される高沸点成分が約0.4g/Hr(金属原子の濃度が約5質量%)、供給ライン12から供給される金属含有触媒組成物液が約0.4g/Hr(金属原子の濃度が約5質量%)になるように徐々に調整し、実施例52と同様の液の循環量で連続運転を行った。
 但し、回収ライン9から回収されたジフェニルカーボネートが徐々に減少するため、供給ライン1から供給する原料液をこれに合わせて調整した。
 約100Hrの連続運転を行ったところ、定常状態においては、回収ライン9から回収されたジフェニルカーボネートは約150g/Hrであった。
 さらに抜き出しライン11から抜き出されるスズ含有高沸物が約0.3g/Hr(金属原子の濃度が約5質量%)、供給ライン12から供給される金属含有触媒組成物が約0.3g/Hr(金属原子の濃度が約5質量%)になるように調整し、同様に連続運転を行った。
 約100Hrの連続運転を行ったところ、定常状態では回収ライン9から回収されたジフェニルカーボネートは20g~90g/Hrであった。抜き出しライン11から得た高沸点成分を分析した結果を表22に示す。
Figure JPOXMLDOC01-appb-T000109
 本出願は、2010年2月23日出願の日本特許出願(特願2010-37928号)および2010年2月23日出願の日本特許出願(特願2010-37930号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のジアリールカーボネートの製造方法は、ジアリールカーボネートを安定的に高い生産性をもって製造する技術として産業上の利用可能性がある。
  1,1’,12,13 供給ライン
  3,9 回収ライン
  2,4,5,6,7,8,10 移送ライン
  11 抜き出しライン
  110,120,130,310,320,330 蒸留塔
  140,340 蒸留精製塔
  111,121,131,141,331,341 リボイラー
  112,122,132,142,312,322,332,342 コンデンサー
  113,114,211 予熱器
  210,220 槽型反応器

Claims (22)

  1.  金属含有触媒組成物を反応触媒として用いるジアリールカーボネートの製造方法であって、
     ジアルキルカーボネートと芳香族モノヒドロキシ化合物とをエステル交換反応させることにより、アルキルアリールカーボネートを得るとともに、副生するアルコール類を反応系外に取り出す工程(1)と、
     該工程(1)で得られたアルキルアリールカーボネートをエステル交換反応または不均化反応させることにより、ジアリールカーボネートを含む反応生成物を得る工程(2)と、
     該工程(2)で得られた反応生成物を蒸留することにより、ジアリールカーボネートを含む低沸点成分と、反応触媒を含む高沸点成分とに分離する工程(3)と、
     該工程(3)で分離された高沸点成分を、前記工程(1)および/または前記工程(2)にリサイクルする工程(4)とを含み、
     前記工程(3)で分離された高沸点成分中に該ジアリールカーボネートより高沸点の成分が70質量%以下含まれており、
     前記工程(3)で分離された高沸点成分が下記式(1)で表される化合物を含み、
     前記工程(4)でリサイクルする際の高沸点成分に含まれる下記(i)~(iii)に示す化合物が、それぞれ下記(iv)~(vi)の条件を満たすことを特徴とするジアリールカーボネートの製造方法;
     (i)下記式(1)において、Xが下記式(2)または下記式(3)であり、Yが下記式(3)である化合物、
     (ii)下記式(1)において、Xがヒドロキシ基であり、Yが下記式(3)である化合物、および/または下記式(1)において、Xが下記式(3)であり、Yが水素である化合物、
     (iii)下記式(1)において、Xがヒドロキシ基であり、Yが水素である化合物、
     (iv)「上記(i)の化合物群の合計モル数/金属原子のモル数」が0.005~20であること、
     (v)「上記(ii)の化合物群の合計モル数/金属原子のモル数」が0.005~4であること、
     (vi)「上記(iii)の化合物のモル数/金属原子のモル数」が2未満であること。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Ar1は、無置換もしくは置換された炭素数6~20のアリレン基を表し、XとY-Oとはオルト位に位置し、Xは、ヒドロキシ基、下記式(2)または下記式(3)で表される置換基を表し、Yは、水素または下記式(3)で表される置換基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(2)および式(3)中、R1は、直鎖状もしくは分岐状の炭素数1~12の脂肪族基、炭素数5~12の脂環式脂肪族基、または無置換もしくは置換された炭素数6~20のアリール基を表す。)
  2.  前記金属含有触媒組成物が、チタン含有触媒組成物であることを特徴とする請求項1に記載のジアリールカーボネートの製造方法。
  3.  前記チタン含有触媒組成物が、ジアリールカーボネートおよびアリールオキシチタン組成物から形成されるチタン含有組成物であって、該チタン含有組成物100質量%に対して、前記アリールオキシチタン組成物を構成するチタンの含有率が0.1~20質量%であることを特徴とする請求項2に記載のジアリールカーボネートの製造方法。
  4.  前記アリールオキシチタン組成物を構成するチタンが4価であることを特徴とする請求項3に記載のジアリールカーボネートの製造方法。
  5.  前記アリールオキシチタン組成物が、チタン原子1個に対して、アリールオキシ基を1以上4以下の整数個有していることを特徴とする請求項3または4に記載のジアリールカーボネートの製造方法。
  6.  前記工程(1)および/または前記工程(2)において反応溶媒を用い、
     前記金属含有触媒組成物が、前記反応溶媒に可溶であること、または前記反応溶媒と均一相となることを特徴とする請求項1~5のいずれか一項に記載のジアリールカーボネートの製造方法。
  7.  前記式(1)で表される化合物が、下記式(4)~下記式(8)で表される化合物群より選択される少なくとも1種であることを特徴とする請求項1~6のいずれか一項に記載のジアリールカーボネートの製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、Ar2は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar3は無置換または置換基を有する炭素数6~20のアリール基を表し、Ar2における2つの置換基は互いにオルト位に位置する。)
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、Ar4は無置換または置換基を有する炭素数6~20のアリレン基を表し、R2は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表し、Ar4における2つの置換基は互いにオルト位に位置する。)
    Figure JPOXMLDOC01-appb-C000006
    (式(6)中、Ar5は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar5における2つのヒドロキシ基は互いにオルト位に位置する。)
    Figure JPOXMLDOC01-appb-C000007
    (式(7)中、Ar6は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar7およびAr8はそれぞれ独立して無置換または置換基を有する炭素数6~20のアリール基を表し、Ar6における2つの置換基は互いにオルト位に位置する。)
    Figure JPOXMLDOC01-appb-C000008
    (式(8)中、Ar9は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar10は無置換または置換基を有する炭素数6~20のアリール基を表し、R3は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表し、Ar9における2つの置換基は互いにオルト位に位置する。)
  8.  前記工程(4)でリサイクルする際の高沸点成分において、「前記式(1)で表される化合物の合計モル数/金属原子のモル数」が0.005~10であることを特徴とする請求項1~7のいずれか一項に記載のジアリールカーボネートの製造方法。
  9.  前記工程(1)および/または前記工程(2)が、ジアリールカーボネート、アリールオキシチタン組成物ならびに下記式(X)および/または下記式(Y)で表される化合物を含む組成物Aの存在下で行われ、
     前記組成物Aにおける、下記式(X)および下記式(Y)で表される化合物の合計モル数とチタン原子のモル数の比率(下記式(X)および下記式(Y)で表される化合物の合計/チタン原子)が0.005~4であることを特徴とする請求項1~8のいずれか一項に記載のジアリールカーボネートの製造方法。
    Figure JPOXMLDOC01-appb-C000009
    (式(X)中、Ar21は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar22は無置換または置換基を有する炭素数6~20のアリール基を表し、Ar21における2つの置換基は互いにオルト位に位置する。)
    Figure JPOXMLDOC01-appb-C000010
    (式(Y)中、Ar23は無置換または置換基を有する炭素数6~20のアリレン基を表し、Ar24およびAr25はそれぞれ独立して無置換または置換基を有する炭素数6~20のアリール基を表し、Ar23における2つの置換基は互いにオルト位に位置する。)
  10.  前記工程(4)でリサイクルする際の高沸点成分を採取して、
     前記採取した高沸点成分に、金属原子と配位結合する単座配位子または多座配位子を、高沸点成分中のチタン原子に対して1当量以上添加して分析用サンプルを調製し、
     該分析用サンプルを分析することにより、前記高沸点成分に含まれる前記(i)~(iii)に示す化合物の定量を行う工程をさらに含むことを特徴とする請求項1~9のいずれか一項に記載のジアリールカーボネートの製造方法。
  11.  前記工程(4)でリサイクルする際の高沸点成分を採取して、
     前記採取した高沸点成分に、水、多価ヒドロキシ化合物、窒素含有ヘテロ環系化合物、硫黄含有ヘテロ環系化合物、フッ素置換アルコール、フッ素置換有機酸類からなる群より選択される少なくとも1種の添加物を、高沸点成分中の金属原子に対して1当量以上添加して分析用サンプルを調製し、
     該分析用サンプルを、ガスクロマトグラフィーまたは液体クロマトグラフィーで分析することにより、前記高沸点成分に含まれる前記(i)~(iii)に示す化合物の定量を行う工程をさらに含むことを特徴とする請求項1~10のいずれか一項に記載のジアリールカーボネートの製造方法。
  12.  請求項10または11に記載の前記(i)~(iii)に示す化合物の定量工程後、
     前記工程(4)でリサイクルする際の高沸点成分に含まれる前記(i)~(iii)に示す化合物が、それぞれ前記(iv)~(vi)の条件を満たすよう制御する工程をさらに含むことを特徴とする請求項10または11に記載のジアリールカーボネートの製造方法。
  13.  前記工程(1)で用いるジアルキルカーボネートが下記式(9)で表される化合物であり、
     前記工程(1)で用いる芳香族モノヒドロキシ化合物が下記式(10)で表される化合物であり、
     前記工程(1)で得られるアルキルアリールカーボネートが下記式(11)で表される化合物であり、
     前記工程(2)で得られるジアリールカーボネートが下記式(12)で表される化合物であることを特徴とする請求項1~12のいずれか一項に記載のジアリールカーボネートの製造方法。
    Figure JPOXMLDOC01-appb-C000011
    (式(9)中、R4は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表す。)
    Figure JPOXMLDOC01-appb-C000012
    (式(10)中、Ar11は無置換または置換された炭素数6~20のアリール基を表す。)
    Figure JPOXMLDOC01-appb-C000013
    (式(11)中、R5は直鎖状もしくは分岐状の炭素数1~12の脂肪族基または炭素数5~12の脂環式脂肪族基を表し、Ar12は無置換または置換された炭素数6~20のアリール基を表す。)
    Figure JPOXMLDOC01-appb-C000014
    (式(12)中、Ar13は、無置換または置換された炭素数6~20のアリール基を表す。)。
  14.  前記工程(1)および/または前記工程(2)において、前記組成物Aを供給することにより、ジアリールカーボネートの製造を開始することを特徴とする請求項9に記載のジアリールカーボネートの製造方法。
  15.  前記工程(1)および前記工程(2)の反応が、
     攪拌槽、多段攪拌槽、充填塔、蒸留塔、多段蒸留塔、連続多段蒸留塔、内部に支持体を備えた反応器および強制循環反応器からなる群より選択される少なくとも1種を具備する反応装置を用いて行われることを特徴とする請求項1~14いずれか一項に記載のジアリールカーボネートの製造方法。
  16.  工程(1)においてジアルキルカーボネートおよび芳香族モノヒドロキシ化合物を連続的に前記反応装置に供給し、
     工程(2)において得られた反応生成物を連続的に前記反応装置から取り出すことを特徴とする請求項15に記載のジアリールカーボネートの製造方法。
  17.  前記工程(1)または前記工程(2)における金属含有触媒組成物中の金属原子の含有率が0.0001~20質量%であることを特徴とする請求項1~16のいずれか一項に記載のジアリールカーボネートの製造方法。
  18.  前記式(9)におけるR4が炭素数1~8の脂肪族アルキル基であることを特徴とする請求項13に記載のジアリールカーボネートの製造方法。
  19.  前記工程(1)および前記工程(2)において、反応温度が150~300℃であり、反応時間が0.05~50hrであることを特徴とする請求項1~18のいずれか一項に記載のジアリールカーボネートの製造方法。
  20.  前記工程(3)における蒸留を蒸留塔により行い、
     該蒸留塔の塔底温度が150~300℃であり、
     該蒸留塔の塔底における滞留時間が0.02~100hrであることを特徴とする請求項1~19のいずれか一項に記載のジアリールカーボネートの製造方法。
  21.  前記アリールオキシチタン組成物がフェノキシチタニウムであることを特徴とする請求項3または4に記載のジアリールカーボネートの製造方法。
  22.  前記ジアリールカーボネートがジフェニルカーボネートであることを特徴とする請求項1~21のいずれか一項に記載のジアリールカーボネートの製造方法。
PCT/JP2011/054018 2010-02-23 2011-02-23 ジアリールカーボネートの製造方法 WO2011105442A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012501828A JP5652965B2 (ja) 2010-02-23 2011-02-23 ジアリールカーボネートの製造方法
US13/579,649 US9079170B2 (en) 2010-02-23 2011-02-23 Method for producing diaryl carbonate
SG2012051728A SG183102A1 (en) 2010-02-23 2011-02-23 Method for producing diaryl carbonate
BR112012019338-4A BR112012019338B1 (pt) 2010-02-23 2011-02-23 Método para produzir um carbonato de diarila.
ES11747402T ES2916720T3 (es) 2010-02-23 2011-02-23 Método para producir carbonato de diarilo
EA201290685A EA025536B1 (ru) 2010-02-23 2011-02-23 Способ получения диарилкарбоната
CN201180009107.7A CN102753516B (zh) 2010-02-23 2011-02-23 碳酸二芳基酯的制造方法
EP11747402.3A EP2540697B1 (en) 2010-02-23 2011-02-23 Method for producing diaryl carbonate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010037930 2010-02-23
JP2010-037928 2010-02-23
JP2010037928 2010-02-23
JP2010-037930 2010-02-23

Publications (1)

Publication Number Publication Date
WO2011105442A1 true WO2011105442A1 (ja) 2011-09-01

Family

ID=44506844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054018 WO2011105442A1 (ja) 2010-02-23 2011-02-23 ジアリールカーボネートの製造方法

Country Status (12)

Country Link
US (1) US9079170B2 (ja)
EP (1) EP2540697B1 (ja)
JP (2) JP5652965B2 (ja)
KR (1) KR101560439B1 (ja)
CN (1) CN102753516B (ja)
BR (1) BR112012019338B1 (ja)
EA (1) EA025536B1 (ja)
ES (1) ES2916720T3 (ja)
MY (1) MY159973A (ja)
SG (1) SG183102A1 (ja)
TW (1) TWI445694B (ja)
WO (1) WO2011105442A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091897A (ja) * 2015-02-13 2015-05-14 旭化成ケミカルズ株式会社 ジアリールカーボネートの製造方法
US9284254B2 (en) 2012-09-20 2016-03-15 Sabic Global Technologies B.V. Process for the continuous manufacture of aryl alkyl carbonate and/or diaryl carbonate using vapor recompression
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法
WO2023068288A1 (ja) 2021-10-21 2023-04-27 旭化成株式会社 ジフェニルカーボネートの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411016B1 (ko) * 2011-12-27 2014-06-23 제일모직주식회사 촉매, 그 제조방법 및 이를 이용한 디알킬 카보네이트로부터 방향족 카보네이트의 제조방법
CN102936197A (zh) * 2012-11-13 2013-02-20 天津南开大学蓖麻工程科技有限公司 一种co2基润滑剂基础油的制备方法
TWI689527B (zh) 2015-01-15 2020-04-01 荷蘭商蜆殼國際研究所 包含鈦或鋯烷氧化物或芳氧化物之組合物於芳香族碳酸酯之製備方法中之用途
TWI721044B (zh) * 2015-11-26 2021-03-11 荷蘭商蜆殼國際研究所 製備碳酸二芳酯之方法
WO2017108672A1 (en) * 2015-12-21 2017-06-29 Shell Internationale Research Maatschappij B.V. Process for reactivating an aromatic carbonate catalyst
JP6347859B1 (ja) * 2017-02-06 2018-06-27 旭化成株式会社 ジアリールカーボネートの製法
WO2022230776A1 (ja) * 2021-04-28 2022-11-03 旭化成株式会社 ジアルキルカーボネートの製造方法、及びジアルキルカーボネートの製造装置

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157410A (ja) 1992-11-26 1994-06-03 Daicel Chem Ind Ltd 芳香族カ−ボネ−ト類の連続的製造方法
JPH08259505A (ja) 1995-03-24 1996-10-08 Idemitsu Kosan Co Ltd 芳香族炭酸エステルの製造方法
JPH08259504A (ja) 1995-03-22 1996-10-08 Idemitsu Kosan Co Ltd 芳香族炭酸エステルの製造方法
JPH0959224A (ja) 1995-08-17 1997-03-04 Mitsubishi Chem Corp アルキルアリールカーボネートの製造方法
WO1997011049A1 (fr) * 1995-09-22 1997-03-27 Asahi Kasei Kogyo Kabushiki Kaisha Procede de preparation de carbonate aromatique
JPH09110805A (ja) 1995-10-17 1997-04-28 Mitsubishi Chem Corp ジアリールカーボネート製造方法
JPH09165357A (ja) * 1995-12-18 1997-06-24 Jiemu P C Kk 芳香族カーボネートの製造方法
JPH09169704A (ja) 1995-12-19 1997-06-30 Idemitsu Kosan Co Ltd ジアリールカーボネートの製造方法
JPH09194437A (ja) 1996-01-10 1997-07-29 Bayer Ag 炭酸ジアリールエステルの精製法
JP2000072721A (ja) 1998-08-31 2000-03-07 Mitsubishi Gas Chem Co Inc 触媒の供給方法
JP2000191596A (ja) 1998-12-25 2000-07-11 Ge Plastics Japan Ltd 芳香族カ―ボネ―トの製造方法
JP2003238487A (ja) 2002-02-20 2003-08-27 Mitsubishi Chemicals Corp 炭酸エステルの製造方法
JP3528997B2 (ja) 1995-12-15 2004-05-24 日本ジーイープラスチックス株式会社 ポリカーボネートの製造方法
JP2004256719A (ja) 2003-02-27 2004-09-16 Toray Ind Inc ポリエステル重合用触媒及びそれを用いたポリエステルの製造方法
JP2004307400A (ja) 2003-04-07 2004-11-04 Mitsubishi Gas Chem Co Inc 芳香族カーボネート類の連続的製造方法
WO2006067982A1 (ja) * 2004-12-24 2006-06-29 Asahi Kasei Chemicals Corporation 芳香族カーボネートの製造方法
WO2006068053A1 (ja) * 2004-12-21 2006-06-29 Asahi Kasei Chemicals Corporation 芳香族カーボネートの製造方法
JP2010037928A (ja) 2008-08-07 2010-02-18 Hiroshi Kurisu パーライト封入建築用ブロック
JP2010037930A (ja) 2008-10-21 2010-02-18 Baba Shoten:Kk 多層防水シート、屋根用防水シート、棟用防水シート、棟用防水シートの設置方法、棟用防水シートを用いた棟施工ユニット

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2880221A (en) 1953-08-07 1959-03-31 Du Pont Production of titanium esters
JPS6452786A (en) 1987-05-21 1989-02-28 Nippon Soda Co Cyclic titanoxane, production thereof and surface-treating agent
JPH01129031A (ja) 1987-11-12 1989-05-22 Nippon Soda Co Ltd ラダー状ポリチタノキサン誘導体、その製造法および表面処理剤
JPH0365357A (ja) * 1989-08-02 1991-03-20 Nec Corp 熱記録装置
JPH0768182B2 (ja) 1990-02-21 1995-07-26 旭化成工業株式会社 ジアリールカーボネートの連続的製造法
DE69320580T2 (de) 1992-10-08 1999-02-11 Daicel Chemical Industries, Ltd., Sakai, Osaka Kontinuierliche Produktion von aromatischen Carbonaten
JPH1036299A (ja) 1996-07-25 1998-02-10 Wako Pure Chem Ind Ltd 金属アルコキシドの精製方法
JPH1045675A (ja) 1996-07-31 1998-02-17 Nippon Shokubai Co Ltd 炭酸エステルの製造方法
JPH1043606A (ja) 1996-08-01 1998-02-17 Nippon Shokubai Co Ltd 触媒の供給方法および供給装置
JP4112048B2 (ja) 1997-09-16 2008-07-02 旭化成ケミカルズ株式会社 芳香族カーボネート類の製法
JP2000063332A (ja) 1998-08-18 2000-02-29 Mitsubishi Gas Chem Co Inc ジアリールカーボネートの製造方法
JP2000086769A (ja) 1998-09-14 2000-03-28 Matsumoto Seiyaku Kogyo Kk 可溶性固体ポリチタノキサンおよびその誘導体の製造方法
WO2004069740A1 (ja) 2003-02-05 2004-08-19 Nippon Soda Co., Ltd. 金属アルコキシド加水分解生成物

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157410A (ja) 1992-11-26 1994-06-03 Daicel Chem Ind Ltd 芳香族カ−ボネ−ト類の連続的製造方法
JPH08259504A (ja) 1995-03-22 1996-10-08 Idemitsu Kosan Co Ltd 芳香族炭酸エステルの製造方法
JPH08259505A (ja) 1995-03-24 1996-10-08 Idemitsu Kosan Co Ltd 芳香族炭酸エステルの製造方法
JPH0959224A (ja) 1995-08-17 1997-03-04 Mitsubishi Chem Corp アルキルアリールカーボネートの製造方法
WO1997011049A1 (fr) * 1995-09-22 1997-03-27 Asahi Kasei Kogyo Kabushiki Kaisha Procede de preparation de carbonate aromatique
JPH09110805A (ja) 1995-10-17 1997-04-28 Mitsubishi Chem Corp ジアリールカーボネート製造方法
JP3528997B2 (ja) 1995-12-15 2004-05-24 日本ジーイープラスチックス株式会社 ポリカーボネートの製造方法
JPH09165357A (ja) * 1995-12-18 1997-06-24 Jiemu P C Kk 芳香族カーボネートの製造方法
JPH09169704A (ja) 1995-12-19 1997-06-30 Idemitsu Kosan Co Ltd ジアリールカーボネートの製造方法
JPH09194437A (ja) 1996-01-10 1997-07-29 Bayer Ag 炭酸ジアリールエステルの精製法
JP2000072721A (ja) 1998-08-31 2000-03-07 Mitsubishi Gas Chem Co Inc 触媒の供給方法
JP2000191596A (ja) 1998-12-25 2000-07-11 Ge Plastics Japan Ltd 芳香族カ―ボネ―トの製造方法
JP2003238487A (ja) 2002-02-20 2003-08-27 Mitsubishi Chemicals Corp 炭酸エステルの製造方法
JP2004256719A (ja) 2003-02-27 2004-09-16 Toray Ind Inc ポリエステル重合用触媒及びそれを用いたポリエステルの製造方法
JP2004307400A (ja) 2003-04-07 2004-11-04 Mitsubishi Gas Chem Co Inc 芳香族カーボネート類の連続的製造方法
WO2006068053A1 (ja) * 2004-12-21 2006-06-29 Asahi Kasei Chemicals Corporation 芳香族カーボネートの製造方法
WO2006067982A1 (ja) * 2004-12-24 2006-06-29 Asahi Kasei Chemicals Corporation 芳香族カーボネートの製造方法
JP2010037928A (ja) 2008-08-07 2010-02-18 Hiroshi Kurisu パーライト封入建築用ブロック
JP2010037930A (ja) 2008-10-21 2010-02-18 Baba Shoten:Kk 多層防水シート、屋根用防水シート、棟用防水シート、棟用防水シートの設置方法、棟用防水シートを用いた棟施工ユニット

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Japan, Recommendations", 1979
"Recommendations", 1993
"YukikagakuSeikagaku Meimeiho", 1992, NANKODO CO., LTD.
CATALYSIS COMMUNICATIONS, vol. 8, 2007, pages 355 - 358
JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 246, 2006, pages 200 - 205
JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 259, 2006, pages 292 - 295
KAGAKU NO RYOIKI, 1980
KOGYO KAGAKU ZASSHI, vol. 64, pages 885 - 888
NATURE, 1961, pages 273 - 274
RECOMMENDATIONS, 1993
See also references of EP2540697A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284254B2 (en) 2012-09-20 2016-03-15 Sabic Global Technologies B.V. Process for the continuous manufacture of aryl alkyl carbonate and/or diaryl carbonate using vapor recompression
JP2015091897A (ja) * 2015-02-13 2015-05-14 旭化成ケミカルズ株式会社 ジアリールカーボネートの製造方法
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法
WO2023068288A1 (ja) 2021-10-21 2023-04-27 旭化成株式会社 ジフェニルカーボネートの製造方法

Also Published As

Publication number Publication date
TWI445694B (zh) 2014-07-21
SG183102A1 (en) 2012-09-27
ES2916720T3 (es) 2022-07-05
EA201290685A1 (ru) 2013-01-30
JP2015007099A (ja) 2015-01-15
EP2540697A4 (en) 2013-11-13
BR112012019338A2 (pt) 2018-05-08
BR112012019338B1 (pt) 2019-06-11
JP5652965B2 (ja) 2015-01-14
US20120316357A1 (en) 2012-12-13
EA025536B1 (ru) 2017-01-30
KR20120103745A (ko) 2012-09-19
KR101560439B1 (ko) 2015-10-14
CN102753516B (zh) 2015-04-01
EP2540697B1 (en) 2022-04-20
MY159973A (en) 2017-02-15
JPWO2011105442A1 (ja) 2013-06-20
US9079170B2 (en) 2015-07-14
TW201141832A (en) 2011-12-01
EP2540697A1 (en) 2013-01-02
CN102753516A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5652965B2 (ja) ジアリールカーボネートの製造方法
JP4195717B2 (ja) 芳香族カーボネートの製造方法
JP4264124B2 (ja) ジアルキルスズジアルコキシドの分離回収方法
JPWO2005111049A1 (ja) アルキルスズアルコキシド類の製造方法
JP5014787B2 (ja) 芳香族カーボネートの製造方法
JP2001064235A (ja) ジアリールカーボネートの製造方法
JP5659218B2 (ja) アリールオキシチタン組成物の製造方法及びアリールオキシチタン組成物
JP2012140355A (ja) 炭酸エステルの製造方法
JP2007254311A (ja) 新規炭酸エステル
JP2007254309A (ja) 新規炭酸エステル
JP2012140356A (ja) 芳香族炭酸エステルの製造方法
JP2007254359A (ja) 新規炭酸エステル
JP2016020313A (ja) シュウ酸ジフェニルの製造方法、炭酸ジフェニルの製造方法およびポリカーボネートの製造方法
JP2007254361A (ja) 新規炭酸エステル
JP2007254360A (ja) 新規炭酸エステル
JP2007254362A (ja) 新規炭酸エステル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009107.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501828

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 5910/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127020932

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13579649

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011747402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201290685

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004215

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012019338

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012019338

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120802