WO2011105396A1 - 補修用セメント混和材、それを用いた補修用セメント組成物、及び補修用セメントモルタル材料 - Google Patents
補修用セメント混和材、それを用いた補修用セメント組成物、及び補修用セメントモルタル材料 Download PDFInfo
- Publication number
- WO2011105396A1 WO2011105396A1 PCT/JP2011/053908 JP2011053908W WO2011105396A1 WO 2011105396 A1 WO2011105396 A1 WO 2011105396A1 JP 2011053908 W JP2011053908 W JP 2011053908W WO 2011105396 A1 WO2011105396 A1 WO 2011105396A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- repair
- cement
- aluminum sulfate
- parts
- cement mortar
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0039—Premixtures of ingredients
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/60—Flooring materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/72—Repairing or restoring existing buildings or building materials
Definitions
- the present invention relates to a repair cement admixture used in the construction field, a repair cement composition using the same, and a repair cement mortar material.
- repair materials are generally used for the foundation of new floor coverings in construction work.
- floor coverings include PVC tiles and long sheets.
- ⁇ Floor coverings may be replaced by repairs that cannot be thickened.
- resin or cement mortar material is used.
- the cement mortar material is, for example, a quick-setting mortar material composed of a quick-hardening material mainly composed of calcium aluminate glass and gypsum, and a mixer is used, or the mortar material is kneaded by hand kneading, The ground is smoothed by using a ground spatula (see Patent Documents 1 to 6).
- Patent Document 1 includes 11CaO ⁇ 7Al 2 O 3 ⁇ CaX 2 (X: halogen) haloaluminate calcium 5 to 30%, anhydrous gypsum 5 to 30%, aluminum hydroxide compound and / or aluminum sulfate compound 0.5 to 10%.
- the balance is calcium silicate and / or siliceous mixed powder, and the reactive component in these raw materials has a (CaO-3Al 2 O 3 —SO 3 ) / SiO 2 molar ratio of 1.7 or less.
- Hard cement is described, but there is no description of calcium aluminosilicate glass, and there is description of aluminum sulfate compound, but there is no description that aluminum sulfate is hydrate, and aluminum sulfate hydrate is mixed. It is not shown to prevent cure delay due to long-term storage.
- Patent Document 2 describes a cement admixture containing calcium aluminosilicate glass, gypsum, and a coagulant as an essential component, but using aluminum sulfate hydrate and mixing aluminum sulfate hydrate. It has not been shown to prevent cure delay due to long-term storage.
- Patent Document 3 a quick-hardening cement mainly composed of calcium aluminate, gypsum, an antifoaming agent, and a liquid mainly composed of a polycarboxylic acid-based polymer compound having a polyalkylene glycol chain are used as a reducing inorganic.
- a fast-cure self-leveling composition containing a powdered cement dispersant obtained by adding a compound or a reducing organic compound and then powdered into a dry powder, and further containing a thickener, a setting modifier, and a fine aggregate
- a powdered cement dispersant obtained by adding a compound or a reducing organic compound and then powdered into a dry powder, and further containing a thickener, a setting modifier, and a fine aggregate
- the binder in a cement composition for grout containing a binder, an accelerator, a polyether-based high-performance water reducing agent, and a setting modifier, is 3CaO ⁇ SiO 2 solid solution, 11CaO ⁇ 7Al 2. It consists of a hydraulic material containing O 3 ⁇ CaF 2 and anhydrous gypsum, and a quick hard material containing calcium aluminosilicate glass and anhydrous gypsum, and the accelerator contains sulfates other than calcium.
- Patent Document 4 is similar to the present invention in that calcium aluminosilicate glass and anhydrous gypsum are blended as a rapid hardening component, but as a cement, 3CaO ⁇ SiO 2 solid solution, 11CaO ⁇ 7Al 2 O 3 ⁇ CaF 2 is used. , And a hydraulic material containing anhydrous gypsum is fundamental, and is different in that Portland cement is not blended.
- Patent Document 4 has a description of blending aluminum sulfate, but there is no description that it is a hydrate, and mixing aluminum sulfate hydrate prevents mixing delay due to long-term storage. Not shown.
- Patent Document 5 contains cement, amorphous calcium aluminate having a CaO / Al 2 O 3 molar ratio of 1.25 to 1.75, anhydrous gypsum, alkali metal aluminate, a setting regulator, and a gas blowing agent.
- a super-hard cement composition is described, there is no description of using calcium aluminosilicate glass or aluminum sulfate hydrate, and calcium aluminosilicate glass, anhydrous gypsum, and aluminum sulfate hydrate are mixed and long-term storage is performed. It has not been shown to prevent cure delay.
- Patent Document 6 discloses a self-flowing hydraulic composition containing a hydraulic component made of alumina cement, Portland cement, and gypsum, and a setting accelerator made of aluminum sulfate and a lithium salt, and fine bone having a specific particle size distribution.
- a self-flowing hydraulic composition comprising a material is described, and the hydraulic composition further comprises a set retarder and a self-comprising one or more of a fluidizer, a thickener, and an antifoaming agent
- a flowable hydraulic composition is described.
- the termination time is greatly delayed, and there may be a case where the hardened body has no surface.
- aluminum sulfate has various water contents, but there is no specific description using aluminum sulfate hydrate, calcium aluminosilicate glass, anhydrous gypsum, and aluminum sulfate hydrate. Is not shown to prevent cure delay due to long-term storage.
- the coating floor has a coating thickness of several millimeters, so it hardens in a granular manner during the hydration process.
- unevenness is generated on the construction surface, which affects the replacement of the floor covering, and the finished surface may not be smooth. Since such a fast-curing cement mortar for repair is mixed with a setting modifier that adjusts the working time, the curing time may become longer when stored for a long period of time.
- JP-A 63-248751 Japanese Patent Laid-Open No. 04-097932 JP 2001-097758 A JP 2006-027937 A JP 2007-297250 A JP 2008-162837 A
- the present invention is intended to solve the problems not found in the prior art, a cement admixture for repair excellent in storage stability and workability without solidifying, and a cement composition for repair using the same, It is another object of the present invention to provide a cement mortar material for repair.
- the present inventor contains, for example, cement, calcium aluminosilicate glass, gypsum, a setting modifier, aluminum sulfate hydrate, and a water reducing agent.
- the present invention has been completed with the knowledge that the above problems can be solved by incorporating fine aggregate having a particle size into a cement mortar material for repairing and kneading with an appropriate amount of water.
- a cement admixture for repair comprising calcium aluminosilicate glass, gypsum, aluminum sulfate hydrate, and a setting modifier.
- the repair cement admixture according to (1) further comprising a water reducing agent.
- the repair cement admixture according to (1) or (2), wherein the amount of the plaster used is 40 to 200 parts with respect to 100 parts of calcium aluminosilicate glass.
- a repair cement composition comprising the repair cement admixture according to any one of (1) to (3) and cement.
- the amount of the aluminum sulfate hydrate used is 0.2 to 3.0 parts with respect to 100 parts of a binder made of cement, calcium aluminosilicate glass glass, and gypsum. It is a cement composition for repair.
- a repair cement mortar material comprising the repair cement composition according to (4) or (5) and a fine aggregate.
- the repair cement mortar material according to (6), wherein the fine aggregate has a maximum particle size of 0.3 mm or less.
- a repair cement mortar comprising the repair cement mortar material according to (6) or (7) and water.
- the repair cement mortar according to (8), wherein the amount of water used is 55 to 90% in terms of water / binder ratio.
- a cement mortar for repairing a mixture of cement, calcium aluminosilicate glass, gypsum, aluminum sulfate hydrate, setting modifier, fine aggregate, and water is placed on the floor surface. This is a floor repair method.
- cement admixture for repair of the present invention By using the cement admixture for repair of the present invention and kneading, there is no unevenness at the time of curing, for example, it is easy to extend cement mortar so that it is thin with a patevera etc. and smoothness can be obtained. It is possible to provide a cement mortar having excellent workability and excellent storage stability.
- the present invention includes, for example, a cement, calcium aluminosilicate glass and gypsum binder, a coagulation modifier, aluminum sulfate hydrate, and a water reducing agent contained as necessary.
- a repair mortar material containing an aggregate is kneaded to prepare a repair material.
- various portland cements such as normal, early strength, ultra-early strength, low heat, and moderate heat, and various portland cements mixed with blast furnace slag, fly ash, silica, limestone fine powder, etc.
- Examples include mixed cement, waste-use cement, so-called eco-cement, and the like.
- ordinary Portland cement or early-strength Portland cement is preferable in terms of kneading properties and strength development.
- the present invention uses a rapid hardening component containing calcium aluminosilicate glass (hereinafter referred to as CAS glass) and gypsum.
- CAS glass calcium aluminosilicate glass
- gypsum calcium aluminosilicate glass
- the CAS glass used in the present invention is used for imparting rapid hardening and reducing unevenness at the time of curing.
- a raw material containing calcia (CaO), a raw material containing alumina (Al 2 O 3 ), and It is obtained by mixing raw materials containing silicic acid (SiO 2 ), heat treatment such as baking in a kiln or melting in an electric furnace, and the main components are CaO, Al 2 O 3 and SiO 2 And a general term for substances having hydration activity.
- the proportion of CaO, Al 2 O 3 and SiO 2 in the CAS glass is not particularly limited, but CaO 30 to 60%, Al 2 O 3 20 to 60% and SiO 2 5 to 25% are preferable.
- CaO 30-55%, Al 2 O 3 30-60%, and SiO 2 10-20% are more preferred. If CaO is less than 30% or Al 2 O 3 exceeds 60%, the rapid hardening may be inferior. Conversely, CaO exceeds 60% or Al 2 O 3 is less than 20%. And a large amount of a coagulation adjusting agent are required, and there is a case where it instantaneously sets. If SiO 2 is less than 5%, long-term strength may not be expected. Conversely, if it exceeds 25%, initial strength may be reduced.
- CAS glass is a glassy material obtained by, for example, quenching a melt obtained by heat treatment with compressed air or high-pressure water.
- the vitrification rate in the CAS glass is preferably 80% or more in terms of good strength development.
- general industrial raw materials include impurities such as MgO, Fe 2 O 3 , TiO 2 , K 2 O, and Na 2 O. These impurities are CaO—Al 2 O 3 —SiO. Since the vitrification region of the 2 system is expanded, it may be present in less than 10%.
- the particle size of the CAS glass, Blaine specific surface area value (hereinafter, referred to as Blaine value) is preferably at least 4,000cm 2 / g, 5,000cm 2 / g or more is more preferable. If it is less than 4,000 cm 2 / g, rapid hardening and initial strength development may decrease.
- the gypsum used in the present invention any commercially available gypsum can be used.
- anhydrous gypsum is preferable in terms of strength development, and type II anhydrous gypsum and / or natural anhydrous gypsum are preferable.
- the particle size of the gypsum is preferably 4,000 cm 2 / g or more in Blaine value, more preferably 5,000 ⁇ 7,000cm 2 / g. If it is less than 4,000 cm 2 / g, the initial strength development may decrease.
- the amount of gypsum used is preferably 40 to 200 parts, more preferably 50 to 150 parts, per 100 parts of CAS glass. Outside these ranges, strength development may be reduced.
- the amount of the rapid hardening component made of CAS glass and gypsum is preferably 10 to 35 parts, more preferably 15 to 30 parts, in 100 parts of the binder made of cement and the rapid hardening component. If it is less than this range, the initial strength developability may be small, and if it is large, there will be no significant effect and the long-term strength may decrease.
- Aluminum sulfate can be obtained by, for example, concentrating and cooling a solution of aluminum hydroxide in sulfuric acid to obtain 18 hydrate, followed by gentle heating to 16 hydrate, 10 hydrate, 8 hydrate. An anhydrate is obtained at 350 ° C. through various hydrates such as hydrate and hexahydrate.
- the aluminum sulfate hydrate used in the present invention is a powder of these 6 to 18 hydrates, and a 14 hydrate powder is preferred from the viewpoint of lowering resistance at the start of kneading.
- As the aluminum sulfate hydrate a commercially available aqueous solution can be used as it is, but it is preferably used as a powder.
- the amount of aluminum sulfate hydrate used is preferably 0.2 to 3.0 parts, more preferably 1.0 to 2.0 parts, with respect to 100 parts of the binder composed of cement and a rapid hardening component. If it is less than this range, the storage stability may be inferior, and even if it is increased, the effect may not change.
- the water reducing agent used in the present invention is a general term for those having a dispersing action and air entraining action on cement and improving fluidity and increasing strength.
- the water reducing agent reduces resistance when cement mortar is mixed.
- Specific examples thereof include naphthalene sulfonic acid-based water reducing agents, melamine sulfonic acid-based water reducing agents, lignin sulfonic acid-based water reducing agents, and polycarboxylic acid-based water reducing agents.
- a lignin sulfonic acid-based water reducing agent is preferable.
- the use form of the water reducing agent can be either powder or liquid, but powder is preferred when used as a premix product.
- the amount of water reducing agent used is preferably 0.05 to 0.8 part, more preferably 0.2 to 0.6 part, based on 100 parts of the binder. The effect may not be obtained outside these ranges.
- the setting modifier used in the present invention makes it possible to ensure workability during construction, and is usually used in powder form.
- the setting modifier include oxycarboxylic acid or a salt thereof, a combination of these with an alkali metal carbonate, and a saccharide.
- oxycarboxylic acid and / or a salt thereof are preferable in that the curing time related to workability can be adjusted and the strength development after curing is good.
- Examples of the oxycarboxylic acid or a salt thereof include citric acid, gluconic acid, tartaric acid, malic acid, and the like, and sodium salts and potassium salts thereof.
- the amount of the setting modifier used varies depending on the application, the construction work time, the composition of the setting modifier, etc., and it is difficult to determine uniquely.
- the amount used is adjusted so that the repair cement mortar hardens in accordance with the working time of 15 to 30 minutes.
- the amount of the setting modifier used is preferably 0.05 to 0.5 part, more preferably 0.1 to 0.3 part with respect to 100 parts of the binder. Outside these ranges, working time cannot be secured, and curing may be delayed.
- a thickener in the repair cement composition of the present invention, can be used in combination in order to improve workability.
- the thickener include cellulose derivatives and polyacrylamide thickeners, but are not particularly limited.
- the fine aggregate used in the present invention is not particularly limited as long as moderate workability and strength development are obtained. Of these, silica sand is preferred.
- the maximum particle size of the fine aggregate is preferably 0.3 mm or less.
- the fine aggregate is preferably dry sand. As dry sand, sand in an absolutely dry state is preferable.
- the amount of fine aggregate used is preferably 50 to 200 parts, more preferably 100 to 150 parts, per 100 parts of the binder. If it is less than this range, the workability may be reduced, and if it is more, the strength may be reduced.
- the amount of kneading water used in the present invention is not particularly limited, but it is usually preferably 55 to 90%, more preferably 60 to 80% in terms of water / binder ratio. Outside these ranges, workability may be greatly reduced or the strength may be reduced.
- the kneading of the repairing cement mortar of the present invention is not particularly limited, but kneading is carried out by a Hobart type mortar mixer or hand kneading.
- a predetermined amount of water is put in a kneading container in advance, and then the cement mortar material in which the cement composition for repair and fine aggregate are mixed is added while rotating the mixer. Knead above.
- kneading by hand kneading, spread the center part of the cement mortar material spread on the construction surface, put in the prescribed water, and cover the cement mortar material on the water, with a pate vera or ground laver etc. For example, knead for 3 minutes or more. If the kneading time is shorter than that, it may be difficult to obtain an appropriate workability of the repairing cement mortar due to insufficient kneading.
- the method of placing the repair cement mortar is not particularly limited and can be performed by a normal method.
- the method of casting the repair cement mortar on the floor surface or the method of placing the repair cement mortar on the floor surface is possible.
- coating etc. are mentioned.
- a quick hardening component consisting of 100 parts of gypsum is prepared for 100 parts of CAS glass and CAS glass, and in 100 parts of a binder consisting of cement and a quick hardening component, the quick hardening component is 20 parts.
- Cement mortar material was prepared by mixing aluminum sulfate and a setting modifier shown in Table 1 with 150 parts of fine aggregate. Water was added to the prepared cement mortar material so that the water / binder ratio was 70%, and the mixture was kneaded for 3 minutes using a mortar mixer to prepare cement mortar (hereinafter simply referred to as mortar). Using the produced mortar, the unevenness state, setting time, and compressive strength at the time of curing were measured in a constant temperature and humidity chamber of 20 ° C.
- CA glass calcium aluminate glass
- Table 1 the same experiment was performed using a fine aggregate having a maximum particle size of 1.2 mm. However, in all cases, irregularities due to the fine aggregate particles occurred.
- Cement Ordinary Portland cement, commercially available CAS glass: calcium aluminosilicate glass, CaO 44.0%, Al 2 O 3 36.0%, SiO 2 13.0%, vitrification rate 100%, brane value 5,500cm 2 / g CA glass: Calcium aluminate glass, CaO 46.3%, Al 2 O 3 45.2%, Vitrification rate 100%, Blaine value 5,500cm 2 / g Gypsum: natural anhydrous gypsum, commercial product, brain value 5,500cm 2 / g
- Flowability Flow value was measured according to the flow test of JIS R 5201-1997 “Cement physical test method”. The measurement was performed as a stationary flow in which no falling motion was performed 15 times.
- Setting time Measured according to the setting test of JIS R 5201-1997 “Physical test method for cement”. Mortar was filled in the container, and the time required for the penetrating degree of the closing standard needle to be 5 mm or less was defined as the setting time. The setting time was measured immediately after mixing and after accelerated curing at 40 ° C. and 90% for 10 days.
- Compressive strength Measured according to the strength measurement test of JIS R 5201-1997 “Cement physical test method”. Measured at age 3 hours, 1 day, and 7 days.
- Table 1 shows the following.
- the mortar that does not contain CAS glass or CA glass does not have a rapid hardening component, delays due to gypsum, does not give agglomeration in a short time, and does not show any strength for a short time (Experiment No.1- 1).
- mortar that does not contain aluminum sulfate shows unevenness during curing, and further, the setting time after accelerated curing for 10 days greatly increases compared to immediately after, and the workability In addition, the storage stability is poor (Experiment No. 1-2), and the mortar containing aluminum sulfate has a smaller increase in the setting time after 10 days of accelerated curing, but it has unevenness during curing.
- Experimental example 2 A quick hardening component comprising CAS glass and gypsum shown in Table 2 with respect to 100 parts of CAS glass is prepared. In 100 parts of a binder comprising cement and a quick hardening component, 20 parts of the quick hardening component is prepared. The same procedure as in Experimental Example 1 was conducted except that 2.0 parts of aluminum sulfate C, a setting modifier shown in Table 2, and 150 parts of fine aggregate were mixed to prepare a cement mortar material. The results are also shown in Table 2.
- Table 2 shows the following. Mortar without gypsum requires a large amount of setting modifier to obtain moderate fluidity and setting time, no unevenness during curing, and setting time after 10 days of accelerated curing is immediately after Although it does not change, it shows a low value of short-term and long-term compressive strength (Experiment No.2-1). In contrast, mortar containing 40 to 200 parts of gypsum with 100 parts of CAS glass and CAS glass has no unevenness during curing, and the setting time of accelerated curing for 10 days is almost immediately after. There was no change, and the compressive strength was larger than that of mortar without gypsum (Experiment No. 1-12, Experiment No. 2-2 to Experiment No. 2-8).
- Experimental example 3 A quick hardening component consisting of 100 parts of gypsum with CAS glass and 100 parts of CAS glass is prepared, and in 100 parts of a binder made of cement and a quick hardening component, the quick hardening component is 20 parts, and the binding material is 100 parts.
- Setting agent b citric acid, commercial product
- Table 3 shows the following.
- the mortar that does not contain a setting modifier hardens during kneading of the mortar, the fluidity and setting time cannot be obtained, and the compression strength cannot be measured (Experiment No. 3-1).
- mortar containing a coagulation modifier gives moderate fluidity, the coagulation time after 10 days of accelerated curing is almost the same as that immediately afterwards, there is no unevenness during curing, and moderate compressive strength (Experiment No. 1-12, Experiment No. 3-2 to Experiment No. 3-7) were also obtained.
- Experimental Example 4 A quick hardening component consisting of 100 parts of gypsum with CAS glass and 100 parts of CAS glass is prepared, and in 100 parts of a binder made of cement and a quick hardening component, the quick hardening component is 20 parts, and the binding material is 100 parts.
- Experimental Example 1 except that 2.0 parts of aluminum sulfate C, 0.15 parts of the coagulant adjusting agent (a), the water reducing agent shown in Table 4 and 150 parts of fine aggregate were mixed to prepare a cement mortar material. The same was done. The results are also shown in Table 4.
- Water reducing agent a Naphthalenesulfonic acid type water reducing agent, powder, commercial product water reducing agent b: Melamine sulfonic acid type water reducing agent, powder, commercial product water reducing agent c: Lignin sulfonic acid type water reducing agent, powder, commercial product water reducing agent d: Poly Carboxylic acid water reducing agent, powder, commercial product
- the mortar containing water reducing agent (Experiment No.4- 1 to Experiment No.4-10) is the same as the mortar not containing water reducing agent (Experiment No.1-12) after 10 days of accelerated curing.
- the setting time is almost the same as immediately after that, and good storage stability is obtained.There is no unevenness at the time of curing, and better fluidity is obtained compared to the case where no water reducing agent is blended, and the workability is improved. It can be seen that it is preferable to use a water reducing agent in the cement mortar of the present invention.
- Experimental Example 5 A quick hardening component consisting of 100 parts of gypsum with CAS glass and 100 parts of CAS glass is prepared, and in 100 parts of a binder made of cement and a quick hardening component, the quick hardening component is 20 parts, and the binding material is 100 parts.
- a cement mortar material was prepared by mixing 2.0 parts of aluminum sulfate C, 0.15 parts of the coagulant adjusting agent A, and 150 parts of fine aggregate.
- the same procedure as in Experimental Example 1 was conducted, except that water having a water / binder ratio shown in Table 5 was added to the prepared cement mortar material, and the mixture was kneaded for 3 minutes using a mortar mixer to produce a cement mortar. The results are also shown in Table 5.
- the repair cement mortar using the repair cement admixture of the present invention has no unevenness at the time of curing, and is good, for example, it is easy to extend the cement mortar so that it is thin and smooth with a patevera etc. Has excellent workability and excellent storage stability.
- the repair cement mortar of the present invention can be used as a repair material, particularly a floor repair material for buildings.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Floor Finish (AREA)
Abstract
Description
(1)アルミノケイ酸カルシウムガラス、石膏、硫酸アルミニウム水和物、及び凝結調整剤を含有してなることを特徴とする補修用セメント混和材である。
(2)さらに、減水剤を含有してなることを特徴とする前記(1)の補修用セメント混和材である。
(3)前記石膏の使用量が、アルミノケイ酸カルシウムガラス100部に対して、40~200部であることを特徴とする前記(1)又は(2)の補修用セメント混和材である。
(4)前記(1)から(3)のうちのいずれか1項に記載の補修用セメント混和材と、セメントとを含有してなることを特徴とする補修用セメント組成物である。
(5)前記硫酸アルミニウム水和物の使用量が、セメント、アルミノケイ酸カルシウムガラスガラス、及び石膏からなる結合材100部に対して、0.2~3.0部であることを特徴とする前記(4)の補修用セメント組成物である。
(6)前記(4)又は(5)に記載の補修用セメント組成物と細骨材とを含有してなることを特徴とする補修用セメントモルタル材料である。
(7)前記細骨材の最大粒径が0.3mm以下であることを特徴とする前記(6)の補修用セメントモルタル材料である。
(8)前記(6)又は(7)の補修用セメントモルタル材料と水とを混合してなることを特徴とする補修用セメントモルタルである。
(9)前記水の使用量が、水/結合材比で55~90%であることを特徴とする前記(8)の補修用セメントモルタルである。
(10)セメント、アルミノケイ酸カルシウムガラス、石膏、硫酸アルミニウム水和物、凝結調整剤、細骨材、及び水を混合してなる補修用セメントモルタルを、床面に打設することを特徴とする床面の補修工法である。
(11)さらに、減水剤を混合してなることを特徴とする前記(10)の補修工法である。
CASガラス中のCaO、Al2O3、及びSiO2の割合は特に限定されるものではないが、CaO 30~60%、Al2O3 20~60%、及びSiO25~25%が好ましく、CaO 30~55%、Al2O3 30~60%、及びSiO2 10~20%がより好ましい。CaOが30%未満、あるいは、Al2O3が60%を超えると、急硬性が劣る場合があり、逆に、CaOが60%を超えるか、あるいは、Al2O3が20%未満であると凝結調整剤を多量必要とし、瞬結する場合がある。SiO2が5%未満であると長期の強度が期待できない場合があり、逆に25%を超えると初期の強度が小さくなる場合がある。
石膏の粒度は、ブレーン値で4,000cm2/g以上が好ましく、5,000~7,000cm2/gがより好ましい。4,000cm2/g未満では初期強度発現性が低下する場合がある。
本発明で使用する硫酸アルミニウム水和物は、これら6~18水和物の粉末であり、14水和物の粉末が、練り混ぜ開始時の抵抗性低下の面から好ましい。硫酸アルミニウム水和物は、市販の水溶液をそのままでも使用可能であるが、粉末として使用することが好ましい。また、硫酸アルミニウム水和物は、セメント、CASガラス、及び石膏とプレミックスして使用することが好ましい。硫酸アルミニウム無水和物を使用すると貯蔵安定性が劣る。
凝結調整剤としては、オキシカルボン酸又はその塩、あるいは、これらとアルカリ金属炭酸塩類を併用したもの、並びに、糖類等が挙げられる。これらのなかでは、作業性に係わる硬化時間が調整でき、硬化後の強度発現性が良好な点で、オキシカルボン酸及び/又はその塩が好ましい。
増粘剤の種類としては、セルロース誘導体やポリアクリルアミド系増粘剤等が挙げられるが、特に限定されるものではない。
細骨材の最大粒径は、0.3mm以下が好ましい。細骨材は、乾燥砂が好ましい。乾燥砂としては、絶乾状態の砂が好ましい。
CASガラスと、CASガラス100部に対して、100部の石膏とからなる急硬成分を調製し、セメントと急硬成分からなる結合材100部中、急硬成分を20部とし、結合材100部に対して、表1に示す硫酸アルミニウムと凝結調整剤と、150部の細骨材を混合してセメントモルタル材料を調製した。調製したセメントモルタル材料に、水/結合材比が70%となるように水を添加し、モルタルミキサを用いて3分間練り混ぜし、セメントモルタル(以下、単にモルタルという)を作製した。作製したモルタルを使用して、20℃、80%RHの恒温恒湿室にて、その硬化時の凹凸状況、凝結時間、及び圧縮強度を測定した。
また、作製したセメントモルタル材料を500g計量し、ポリエチレン袋に封入し、熱シールをして、試料台の天板の上に置いた。試料台は、金網からなる天板と脚部から構成されている。試料台を、水を張ったポリ容器に入れて蓋を閉めた。試料台の脚部の下部のみ、水の中に浸した。その後、ポリ容器を、温度40℃、湿度90%に調整した恒温箱内にて10日間促進養生し、凝結時間を測定した。この10日間の促進養生は、標準養生の40~50日に相当すると考えられる。結果を表1に併記する。
比較例として、CASガラスの代わりにカルシウムアルミネートガラス(以下、CAガラスという)を使用して、同様に実験を行った。結果を表1に併記する。
なお、比較のため、最大粒径1.2mmの細骨材を使用して同様に実験を行ったが、いずれも、細骨材の粒による凹凸が発生した。
セメント :普通ポルトランドセメント、市販品
CASガラス:アルミノケイ酸カルシウムガラス、CaO 44.0%、Al2O3 36.0%、SiO2 13.0%、ガラス化率100%、ブレーン値5,500cm2/g
CAガラス:カルシウムアルミネートガラス、CaO 46.3%、Al2O3 45.2%、ガラス化率100%、ブレーン値5,500cm2/g
石膏 :天然無水石膏、市販品、ブレーン値5,500cm2/g
硫酸アルミニウムA:粉末無水硫酸アルミニウム、市販品
硫酸アルミニウムB:粉末硫酸アルミニウム8水和物、市販品
硫酸アルミニウムC:粉末硫酸アルミニウム14水和物、市販品
硫酸アルミニウムD:粉末硫酸アルミニウム18水和物、市販品
凝結調整剤イ:クエン酸ナトリウム、市販品
細骨材 :珪砂、最大粒径0.3mm、絶乾状態、市販品
流動性 :フロー値、JIS R 5201-1997「セメントの物理試験方法」のフロー試験に準じてフロー値を測定した。測定は、15回の落下運動を行わない静置フローとした。
凝結時間 :JIS R 5201-1997「セメントの物理試験方法」の凝結試験に準じて測定した。モルタルを容器に充填して、終結用標準針の侵入度が5mm以下となる時間を凝結時間とした。凝結時間の測定は、混合直後と10日間40℃90%の促進養生後行った。
圧縮強度 :JIS R 5201-1997「セメントの物理試験方法」の強さの測定試験に準じて測定した。材齢3時間、1日、及び7日で測定。材齢1日以後、20℃水中養生した。
最大粒径 :粒度分布をJIS A 1102に準じて測定することにより得られた累積積算粒度分布において、累積100%に達した粒径を最大粒径とした。
凹凸観察 :JIS R 5201-1997「セメントの物理試験方法」の強さの測定試験に準じて作製した圧縮強度測定用(材齢7日)の供試体の表面を目視した。
ガラス化率:CASガラス(又はCAガラス)を1,000℃で、2時間加熱後、5℃/分の冷却速度で徐冷し、粉末X線回折法により結晶鉱物のメインピークの面積S0を求め、アルミノケイ酸カルシウム(又はカルシウムアルミネート)の結晶のメインピーク面積Sから、X(%)=100×(1-S/S0)の式によりガラス化率Xを求めた。
ブレーン値:JIS R 5201-1997「セメントの物理試験方法」に準じて測定した。
CASガラスやCAガラスを配合しないモルタルは、急硬成分がなく、石膏による遅延もあわさって、短時間での凝結は得られず、また、短時間強度の発現もみられない(実験No.1- 1)。
CASガラスの代わりにCAガラスを配合すると、硫酸アルミニウムを配合しないモルタルは、硬化時の凹凸発生が認められ、さらに、10日間の促進養生後の凝結時間が、直後に比べ大きく伸びて、施工性、貯蔵安定性ともに不良であり(実験No.1- 2)、硫酸アルミニウムを配合したモルタルは、10日間の促進養生後の凝結時間の伸びが直後に比べ小さくなるが、硬化時の凹凸発生が認められ、施工性が不良であった(実験No.1- 3)。
CASガラスと石膏を配合し、硫酸アルミニウムを配合しなかったモルタルでは、硬化時の凹凸発生は見られなかったが、10日間の促進養生後の凝結時間の伸びは直後に比べ大きく、貯蔵安定性は良くなかった(実験No.1-4)。
また、CASガラスと石膏を配合し、硫酸アルミニウム水和物の代わりに無水の硫酸アルミニウムを配合したモルタルでは、硬化時の凹凸発生は見られなかったが、10日間の促進養生後の凝結時間の伸びは直後に比べ大きく、貯蔵安定性は良くなかった(実験No.1-5と実験No.1- 6)。
これに対して、CASガラスと石膏に、硫酸アルミニウム水和物を0.2~3.0部配合したモルタルは、硬化時の凹凸発生が見られず、10日間の促進養生後の凝結時間が直後とほとんど変わらず、良好な施工性、貯蔵安定性を示した(実験No.1- 7~実験No.1-17)。
CASガラスと、CASガラス100部に対して表2に示す石膏とからなる急硬成分を調製し、セメントと急硬成分からなる結合材100部中、急硬成分を20部とし、結合材100部に対して、2.0部の硫酸アルミニウムC、表2に示す凝結調整剤、及び150部の細骨材を混合してセメントモルタル材料を調製したこと以外は実験例1と同様に行った。結果を表2に併記する。
石膏を配合しないモルタルは、適度な、流動性と凝結時間を得るためには凝結調整剤の量を多く必要とし、硬化時の凹凸は発生せず、10日間の促進養生後の凝結時間は直後と変わらないものの、短時間や長期の圧縮強度が低い値を示す(実験No.2- 1)。
これに対して、CASガラスと、CASガラス100部に対して、40~200部の石膏を配合したモルタルは、硬化時の凹凸の発生はなく、10日間の促進養生の凝結時間は直後とほとんど変わらず、また、圧縮強度も石膏を配合しないモルタルに比べ大きい値を示した(実験No.1-12、実験No.2- 2~実験No.2- 8)。
CASガラスと、CASガラス100部に対して100部の石膏とからなる急硬成分を調製し、セメントと急硬成分からなる結合材100部中、急硬成分を20部とし、結合材100部に対して、2.0部の硫酸アルミニウムC、表3に示す凝結調整剤、及び150部の細骨材を混合してセメントモルタル材料を調製したこと以外は実験例1と同様に行った。結果を表3に併記する。
凝結調整剤ロ:クエン酸、市販品
凝結調整剤を配合しないモルタルは、モルタルの練り混ぜ中に硬化し、流動性、凝結時間が得られず、圧縮強度の測定も不可であった(実験No.3- 1)。これに対して凝結調整剤を配合したモルタルは、適度な流動性が得られ、10日間の促進養生後の凝結時間も直後とほとんど変わらず、硬化時の凹凸の発生もなく、適度な圧縮強度も得られた(実験No.1-12、実験No.3- 2~実験No.3- 7)。
CASガラスと、CASガラス100部に対して100部の石膏とからなる急硬成分を調製し、セメントと急硬成分からなる結合材100部中、急硬成分を20部とし、結合材100部に対して、2.0部の硫酸アルミニウムC、0.15部の凝結調整剤イ、表4に示す減水剤、及び150部の細骨材を混合してセメントモルタル材料を調製したこと以外は実験例1と同様に行った。結果を表4に併記する。
減水剤a :ナフタレンスルホン酸系減水剤、粉末、市販品
減水剤b :メラミンスルホン酸系減水剤、粉末、市販品
減水剤c :リグニンスルホン酸系減水剤、粉末、市販品
減水剤d :ポリカルボン酸系減水剤、粉末、市販品
CASガラスと、CASガラス100部に対して100部の石膏とからなる急硬成分を調製し、セメントと急硬成分からなる結合材100部中、急硬成分を20部とし、結合材100部に対して、2.0部の硫酸アルミニウムC、0.15部の凝結調整剤イ、及び150部の細骨材を混合してセメントモルタル材料を調製した。調製したセメントモルタル材料に、表5に示す水/結合材比の水を添加し、モルタルミキサを用いて3分間練り混ぜし、セメントモルタルを作製したこと以外は実験例1と同様に行った。結果を表5に併記する。
Claims (11)
- アルミノケイ酸カルシウムガラス、石膏、硫酸アルミニウム水和物、及び凝結調整剤を含有してなることを特徴とする補修用セメント混和材。
- さらに、減水剤を含有してなることを特徴とする請求項1に記載の補修用セメント混和材。
- 前記石膏の使用量が、アルミノケイ酸カルシウムガラス100部に対して、40~200部であることを特徴とする請求項1に記載の補修用セメント混和材。
- 請求項1~3のうちのいずれか1項に記載の補修用セメント混和材と、セメントとを含有してなることを特徴とする補修用セメント組成物。
- 前記硫酸アルミニウム水和物の使用量が、セメント、アルミノケイ酸カルシウムガラスガラス、及び石膏からなる結合材100部に対して、0.2~3.0部であることを特徴とする請求項4に記載の補修用セメント組成物。
- 請求項4に記載の補修用セメント組成物と細骨材とを含有してなることを特徴とする補修用セメントモルタル材料。
- 前記細骨材の最大粒径が0.3mm以下であることを特徴とする請求項6に記載の補修用セメントモルタル材料。
- 請求項6に記載の補修用セメントモルタル材料と水とを混合してなることを特徴とする補修用セメントモルタル。
- 前記水の使用量が、水/結合材比で55~90%であることを特徴とする請求項8に記載の補修用セメントモルタル。
- セメント、アルミノケイ酸カルシウムガラス、石膏、硫酸アルミニウム水和物、凝結調整剤、細骨材、及び水を混合してなる補修用セメントモルタルを、床面に打設することを特徴とする床面の補修工法。
- さらに、減水剤を混合してなることを特徴とする請求項10に記載の補修工法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180011051.9A CN102770388B (zh) | 2010-02-26 | 2011-02-23 | 修补用水泥混合材、使用该修补用水泥混合材的修补用水泥组合物及修补用水泥砂浆材料 |
JP2012501803A JP5784002B2 (ja) | 2010-02-26 | 2011-02-23 | 補修用セメント組成物、それを用いた補修用セメントモルタル材料、及び補修用セメントモルタル |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010041231 | 2010-02-26 | ||
JP2010-041231 | 2010-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011105396A1 true WO2011105396A1 (ja) | 2011-09-01 |
Family
ID=44506802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/053908 WO2011105396A1 (ja) | 2010-02-26 | 2011-02-23 | 補修用セメント混和材、それを用いた補修用セメント組成物、及び補修用セメントモルタル材料 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5784002B2 (ja) |
CN (1) | CN102770388B (ja) |
TW (1) | TWI534117B (ja) |
WO (1) | WO2011105396A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014037330A (ja) * | 2012-08-15 | 2014-02-27 | Yoshino Gypsum Co Ltd | 石膏組成物、石膏系固化材及び石膏系建材 |
JP2014105151A (ja) * | 2012-11-29 | 2014-06-09 | Taiheiyo Material Kk | 速硬剤および速硬性混和材 |
JP2014152056A (ja) * | 2013-02-06 | 2014-08-25 | Denki Kagaku Kogyo Kk | 液体急結剤、急結性セメントコンクリート、及びそれを用いた吹付け工法 |
JP2014201462A (ja) * | 2013-04-02 | 2014-10-27 | 電気化学工業株式会社 | 超速硬性クリンカー粉砕物、それを用いたセメント組成物、及びその製造方法 |
WO2015059315A1 (es) * | 2013-10-21 | 2015-04-30 | Envirocem, S.L. | Hormigones y morteros aligerados |
US9901101B2 (en) | 2012-08-15 | 2018-02-27 | Yoshino Gypsum Co., Ltd. | Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material |
JP2019043806A (ja) * | 2017-08-31 | 2019-03-22 | デンカ株式会社 | 急硬材及び急硬性セメント組成物 |
JP2019043805A (ja) * | 2017-08-31 | 2019-03-22 | デンカ株式会社 | セメント混和剤及び水硬性組成物 |
WO2020044708A1 (ja) * | 2018-08-31 | 2020-03-05 | デンカ株式会社 | コンクリート組成物用養生剤、及びコンクリート組成物の養生方法 |
CN112279599A (zh) * | 2020-11-18 | 2021-01-29 | 上海卫吉节能科技有限公司 | 一种聚合物增强纤维改性修补砂浆及其制备方法 |
US20220298077A1 (en) * | 2019-07-12 | 2022-09-22 | Denka Company Limited | Floor patching composition |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9321681B2 (en) | 2012-04-27 | 2016-04-26 | United States Gypsum Company | Dimensionally stable geopolymer compositions and method |
US9890082B2 (en) | 2012-04-27 | 2018-02-13 | United States Gypsum Company | Dimensionally stable geopolymer composition and method |
US9624131B1 (en) | 2015-10-22 | 2017-04-18 | United States Gypsum Company | Freeze-thaw durable geopolymer compositions and methods for making same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11199284A (ja) * | 1998-01-13 | 1999-07-27 | Denki Kagaku Kogyo Kk | 急結材、吹付材料、及びそれを用いた吹付工法 |
JPH11324587A (ja) * | 1998-05-18 | 1999-11-26 | Denki Kagaku Kogyo Kk | 薄吹付工法 |
JP2006027937A (ja) * | 2004-07-14 | 2006-02-02 | Denki Kagaku Kogyo Kk | グラウト用セメント組成物及びグラウト材料 |
JP2007290912A (ja) * | 2006-04-25 | 2007-11-08 | Denki Kagaku Kogyo Kk | 水硬性材料およびそれを用いた補修方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248751A (ja) * | 1987-04-02 | 1988-10-17 | 太平洋セメント株式会社 | 水硬性セメントおよびその製造方法 |
-
2011
- 2011-02-23 CN CN201180011051.9A patent/CN102770388B/zh active Active
- 2011-02-23 WO PCT/JP2011/053908 patent/WO2011105396A1/ja active Application Filing
- 2011-02-23 JP JP2012501803A patent/JP5784002B2/ja active Active
- 2011-02-25 TW TW100106378A patent/TWI534117B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11199284A (ja) * | 1998-01-13 | 1999-07-27 | Denki Kagaku Kogyo Kk | 急結材、吹付材料、及びそれを用いた吹付工法 |
JPH11324587A (ja) * | 1998-05-18 | 1999-11-26 | Denki Kagaku Kogyo Kk | 薄吹付工法 |
JP2006027937A (ja) * | 2004-07-14 | 2006-02-02 | Denki Kagaku Kogyo Kk | グラウト用セメント組成物及びグラウト材料 |
JP2007290912A (ja) * | 2006-04-25 | 2007-11-08 | Denki Kagaku Kogyo Kk | 水硬性材料およびそれを用いた補修方法 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9901101B2 (en) | 2012-08-15 | 2018-02-27 | Yoshino Gypsum Co., Ltd. | Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material |
JP2014037330A (ja) * | 2012-08-15 | 2014-02-27 | Yoshino Gypsum Co Ltd | 石膏組成物、石膏系固化材及び石膏系建材 |
JP2014105151A (ja) * | 2012-11-29 | 2014-06-09 | Taiheiyo Material Kk | 速硬剤および速硬性混和材 |
JP2014152056A (ja) * | 2013-02-06 | 2014-08-25 | Denki Kagaku Kogyo Kk | 液体急結剤、急結性セメントコンクリート、及びそれを用いた吹付け工法 |
JP2014201462A (ja) * | 2013-04-02 | 2014-10-27 | 電気化学工業株式会社 | 超速硬性クリンカー粉砕物、それを用いたセメント組成物、及びその製造方法 |
AU2013403634B2 (en) * | 2013-10-21 | 2016-09-08 | Envirocem, S.L. | Lightweight concretes and mortars |
WO2015059315A1 (es) * | 2013-10-21 | 2015-04-30 | Envirocem, S.L. | Hormigones y morteros aligerados |
JP2019043806A (ja) * | 2017-08-31 | 2019-03-22 | デンカ株式会社 | 急硬材及び急硬性セメント組成物 |
JP2019043805A (ja) * | 2017-08-31 | 2019-03-22 | デンカ株式会社 | セメント混和剤及び水硬性組成物 |
WO2020044708A1 (ja) * | 2018-08-31 | 2020-03-05 | デンカ株式会社 | コンクリート組成物用養生剤、及びコンクリート組成物の養生方法 |
JPWO2020044708A1 (ja) * | 2018-08-31 | 2021-08-10 | デンカ株式会社 | コンクリート組成物用養生剤、及びコンクリート組成物の養生方法 |
JP7209001B2 (ja) | 2018-08-31 | 2023-01-19 | デンカ株式会社 | コンクリート組成物用養生剤、及びコンクリート組成物の養生方法 |
US20220298077A1 (en) * | 2019-07-12 | 2022-09-22 | Denka Company Limited | Floor patching composition |
CN112279599A (zh) * | 2020-11-18 | 2021-01-29 | 上海卫吉节能科技有限公司 | 一种聚合物增强纤维改性修补砂浆及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102770388B (zh) | 2016-06-15 |
JP5784002B2 (ja) | 2015-09-24 |
TWI534117B (zh) | 2016-05-21 |
JPWO2011105396A1 (ja) | 2013-06-20 |
TW201139322A (en) | 2011-11-16 |
CN102770388A (zh) | 2012-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5784002B2 (ja) | 補修用セメント組成物、それを用いた補修用セメントモルタル材料、及び補修用セメントモルタル | |
JP6586417B2 (ja) | 急結用混和材 | |
JP2011136885A (ja) | 低温用速硬材及びこれを含むセメント含有材料 | |
JP7034573B2 (ja) | 速硬性ポリマーセメント組成物及び速硬性ポリマーセメントモルタル | |
JP2012140294A (ja) | 低温用急硬性高流動セメント組成物 | |
WO2021106876A1 (ja) | 粉体急結剤 | |
JP5783625B2 (ja) | 低温用急硬性セメント混和材及び低温用急硬性セメント組成物 | |
JP7037879B2 (ja) | 二次製品用早強混和材および二次製品用早強コンクリート | |
JP2013095624A (ja) | 速硬剤および速硬性セメント組成物 | |
JP6300368B2 (ja) | 吹付材用急結材 | |
JP6026799B2 (ja) | セメント組成物、及びそれを用いたセメントモルタル | |
JP2015124140A (ja) | 速硬化促進材 | |
JP2018083719A (ja) | 急硬材及びそれを用いた急硬性セメント組成物 | |
JP7083637B2 (ja) | コンクリートおよびその製造方法 | |
JP3950641B2 (ja) | 急硬性セメント用急結剤の製造方法、および急硬性セメント組成物の製造方法 | |
JP2020152610A (ja) | 膨張混和材、セメント組成物、及び、コンクリート | |
JP2014185040A (ja) | セメント組成物 | |
JP2014129203A (ja) | カルシウムアルミネート系超速硬剤 | |
JP2006062888A (ja) | 急硬性混和材及び急硬性セメント組成物 | |
JP7037877B2 (ja) | 二次製品用早強混和材および二次製品用早強コンクリート | |
JP6071483B2 (ja) | 速硬剤および速硬性混和材 | |
JP7037878B2 (ja) | 二次製品用早強混和材および二次製品用早強コンクリート | |
JP3367576B2 (ja) | セメントの水和熱発生時間調整材及びセメント組成物 | |
JP2024142905A (ja) | 速硬性水硬性組成物及びモルタル組成物 | |
JP2018172252A (ja) | セメント用混和材並びにセメント組成物および水硬性組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180011051.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11747357 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012501803 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11747357 Country of ref document: EP Kind code of ref document: A1 |