WO2021106876A1 - 粉体急結剤 - Google Patents

粉体急結剤 Download PDF

Info

Publication number
WO2021106876A1
WO2021106876A1 PCT/JP2020/043678 JP2020043678W WO2021106876A1 WO 2021106876 A1 WO2021106876 A1 WO 2021106876A1 JP 2020043678 W JP2020043678 W JP 2020043678W WO 2021106876 A1 WO2021106876 A1 WO 2021106876A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium aluminate
mass
setting admixture
powder quick
quick
Prior art date
Application number
PCT/JP2020/043678
Other languages
English (en)
French (fr)
Inventor
貴光 室川
孝記 榊原
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to EP20894686.3A priority Critical patent/EP4049986A4/en
Publication of WO2021106876A1 publication Critical patent/WO2021106876A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/12Set accelerators

Definitions

  • the present invention relates to a powder quick-setting admixture, and particularly to a powder quick-setting admixture containing no sodium aluminate.
  • Sodium aluminate promotes the reaction of calcium aluminate and gels itself to give the very initial stiffness, and has been considered to be an indispensable component for cement quick-setting admixtures. ..
  • sodium aluminate is not used as a quick-setting agent containing calcium aluminate as a main component, the quick-setting performance will deteriorate.
  • the present inventors have set the SiO 2 content in the calcium aluminate compound used for the quick-setting admixture to 7% by mass or less, and AlO observed by FT-IR.
  • the intensity ratio of the absorption peak based on 6- unit expansion and contraction vibration and the absorption peak based on AlO 4- unit expansion and contraction vibration is within a predetermined range, it is as good as or better than the quick-setting admixture containing sodium aluminate and containing calcium aluminate as the main component.
  • the present invention is as follows.
  • the powder quick-setting admixture according to [1] which contains 60% by mass or more of the calcium aluminate compound.
  • the powder quick-setting admixture according to [3], which contains the alkali metal sulfates and the alkali metal sulfates are sodium sulfate.
  • the powder quick-setting admixture according to [3], which contains the alkaline earth metal sulfates and the alkaline earth metal sulfates are calcium sulfate.
  • the powder quick-setting agent in the present invention is in a powder state at least in the operating temperature range, and has a quick-setting performance (increase in setting speed) with respect to cement compositions such as cement paste, cement mortar, and cement concrete. It is defined as being able to improve performance (performance such as imparting loss of fluidity).
  • a powder quick-setting agent containing sodium aluminate and having calcium aluminate as a main component which exhibits good quick-setting performance equal to or higher than that of the quick-setting agent.
  • the powder quick-setting admixture according to the present embodiment is a powder quick-setting admixture containing a calcium aluminate compound and not containing sodium aluminate. Since it does not contain sodium aluminate, it is possible to eliminate the complexity of handling that may occur when this is used.
  • the calcium aluminate compound according to the present embodiment has a SiO 2 content of 7% by mass or less, preferably 6.5% by mass or less, and more preferably 6% by mass or less. If the SiO 2 content exceeds 7% by mass, the strength development from the very early stage is lowered as a quick-setting agent.
  • the SiO 2 content can be measured, for example, by the total amount of pure silicon dioxide and soluble silicon dioxide according to JIS R5202 “Cement Chemical Analysis Method”.
  • the ratio (I AlO6 / I AlO4 ) of the absorption peak intensity I AlO6 based on the expansion and contraction vibration of 6 AlO groups by FT-IR of the calcium aluminate compound to the intensity I AlO4 of the absorption peak based on the expansion and contraction vibration of 4 AlO groups is 0. It is .53 to 0.75, preferably 0.60 to 0.75, and more preferably 0.64 to 0.75.
  • the absorption peak based on the AlO 6 expansion and contraction vibration is a peak belonging to the AlO 6 octahedron
  • the absorption peak based on the AlO 4 expansion and contraction vibration is a peak belonging to the AlO 4 tetrahedron. If the strength ratio of these, I AlO6 / I AlO4, is less than 0.53, the very initial strength is lowered, the adhesive properties and the strength development are lowered, and the long-term strength also tends to be lowered. Further, when I AlO6 / I AlO4 exceeds 0.75, the very initial strength is lowered.
  • the FT-IR measurement of the calcium aluminate compound can be carried out by the method described in Examples.
  • the absorption peak based on the AlO 4 expansion and contraction vibration is observed, for example, in the vicinity of the wave number of 690 to 770 cm -1
  • the absorption peak based on the AlO 6 expansion and contraction vibration is observed, for example, in the vicinity of the wave number of 550 to 610 cm -1. ..
  • solid-state NMR or the like may be used.
  • a calcium aluminate compound (hereinafter sometimes referred to as CA compound) and is mainly composed of CaO and Al 2 O 3, is a generic term of compounds having a hydrated activity and quick-setting property is excellent Therefore, an amorphous calcium aluminate compound is preferable.
  • a "principal component" means that the ratio to the whole exceeds 50% by mass.
  • the amorphous calcium aluminate compound can be obtained by mixing a raw material containing calcia, a raw material containing alumina, etc., heating and melting the compound, and quenching the mixture, and obtain the above-mentioned strength ratio (I AlO6 / I AlO4 ). Considering that the range is set to a predetermined range, it is preferable to apply a production method as described later.
  • the molar ratio of CaO with respect to Al 2 O 3 amorphous calcium aluminate compound is not particularly limited, hydrated active, in view of strength development, 1.6-2. It is preferably 3, and more preferably 1.75 to 2.2.
  • the vitrification rate of the amorphous calcium aluminate compound is not particularly limited, but is preferably 60% or more, more preferably 90% or more, from the viewpoint of good quick-setting performance, initial strength development, and the like. preferable.
  • Crystalline portion of the amorphous calcium aluminate compound is not particularly limited, for example, 3CaO ⁇ Al 2 O 3, calcium aluminate such as 12CaO ⁇ 7Al 2 O 3, due to subcomponent or inevitable impurities derived from the raw material Examples thereof include gerenite, calcium aluminoferrite, and calcium ferrite.
  • the vitrification rate of the amorphous calcium aluminate compound can be determined by powder X-ray diffraction / Rietveld analysis. Specifically, a predetermined amount of an internal standard substance such as aluminum oxide or magnesium oxide is added to the measurement sample, and the mixture is sufficiently mixed in a dairy pot or the like, and then powder X-ray diffraction measurement is performed. After that, the measurement result is analyzed with quantitative software to determine the amount of minerals produced, and the balance is used as the vitrification rate. As the quantification software, "SIROQUANT" manufactured by Sieronics can be used.
  • Fineness of amorphous calcium aluminate compound is not particularly limited, with the Blaine specific surface area (JIS R 5201-compliant), preferably from 4000 ⁇ 8000cm 2 / g, to be 5000 ⁇ 6000cm 2 / g More preferred.
  • the brain specific surface area is 4000 to 8000 cm 2 / g, quick-setting performance, initial strength development, and the like tend to be good. It is also preferable from the viewpoint of workability.
  • the content of the calcium aluminate compound in the powder quick-setting admixture of the present embodiment is preferably 60% or more, more preferably 65% or more in the powder quick-setting admixture. When it is 60% or more, good coagulation properties and long-term strength development can be easily obtained.
  • the powder quick-setting admixture of the present embodiment contains at least one selected from the group consisting of alkali metal sulfates and alkaline earth metal sulfates from the viewpoint of improving the strength development of concrete after spraying. Is preferable. These may be added and mixed with the above-mentioned calcium aluminate compound.
  • alkali metal sulfate examples include lithium, sodium, and potassium sulfates, and among these, lithium and Natrim sulfates (lithium sulfate, sodium sulfate) are preferable as the strength-enhancing effect.
  • lithium sulfate is preferable, and among them, sodium sulfate anhydride also has a role as a desiccant that absorbs moisture in the air, and is more preferable in that it also contributes to stability during storage. ..
  • Blaine specific surface area of the alkali metal sulfate is preferably 100 ⁇ 1000cm 2 / g, more preferably 300 ⁇ 800cm 2 / g. When it is 100 to 1000 cm 2 / g, it is easy to obtain strength development up to 24 hours, and it is possible to improve the handleability of mortar and / or concrete at the time of spraying.
  • the alkali metal sulfate (sodium sulfate, etc.) is preferably contained in an amount of 1 to 40 parts by mass, more preferably 1 to 35 parts by mass, based on 100 parts by mass of the calcium aluminate compound of the powder quick-setting admixture. By including 1 to 40 parts by mass, the effect of increasing the compressive strength up to 24 hours later can be more easily imparted.
  • alkaline earth metal sulfate As the alkaline earth metal sulfate, calcium sulfate is preferable, and examples thereof include anhydrous gypsum (anhydrous calcium sulfate), hemihydrate gypsum (calcium sulfate hemihydrate), and dihydrate gypsum (calcium sulfate dihydrate). .. Of these, anhydrous gypsum is preferred.
  • Blaine specific surface area of the alkaline earth metal sulfate in view of a good quick-performance and initial strength development, preferably at least 3,500cm 2 / g, 4,000cm 2 / g or more is more preferable.
  • the alkaline earth metal sulfate (calcium sulfate, etc.) is preferably contained in an amount of 2 to 45 parts by mass, more preferably 3 to 40 parts by mass, based on 100 parts by mass of the calcium aluminate compound of the powder quick-setting admixture. .. By containing 2 to 45 parts by mass, long-term strength can be easily obtained while exhibiting good quick-setting property.
  • the powder quick-setting admixture of the present embodiment can contain components other than the above as long as the effects of the present invention are not substantially lost.
  • components include, but are not limited to, aluminum sulfate, calcium carbonate, calcium hydroxide, aluminum hydroxide and the like.
  • raw materials are prepared so that the SiO 2 content is 7% by mass or less, and the prepared raw materials are put into an arc-type electric furnace (for example, a heating chamber volume of 150 liters) to generate electricity.
  • the inside of the furnace is heated to 1500 to 2000 ° C. and held for 1 to 2 hours to melt.
  • the melt is taken out from the furnace and rapidly cooled to 700 to 1000 ° C. at 1,100 to 7,000 K / sec using compressed air containing water by a cooling facility.
  • the calcium aluminate compound of the present embodiment is obtained by allowing it to cool under a normal atmosphere without supplying compressed air containing water.
  • the powder quick-setting agent of the present embodiment as described above exhibits good quick-setting performance equal to or better than that of the quick-setting agent containing sodium aluminate and containing calcium aluminate as a main component. Therefore, by using the powder quick-setting admixture, it is possible to prepare a cement composition having good initial cohesiveness, initial strength development and workability. That is, the cement composition of the present embodiment contains the above-mentioned powder quick-setting admixture of the present invention and cement.
  • the powder quick-setting admixture of the present invention in the cement composition is preferably blended in an amount of 5 to 30 parts by mass, more preferably 10 to 20 parts by mass, based on 100 parts by mass of the cement. Further, together with cement, other admixtures and aggregates that can be used for mortar and concrete can be used in combination depending on the purpose of use.
  • the cement used here includes ordinary Portland cement, early-strength Portland cement, moderate-heat Portland cement, ultra-early-strength Portland cement and other Portland cement, and various types of these Portland cement mixed with components such as fly ash and blast furnace slag. Examples include mixed cement. Of these, ordinary Portland cement and early-strength Portland cement are more preferable.
  • the aggregate either fine aggregate or coarse aggregate can be used.
  • the fine aggregate include river sand, mountain sand, lime sand, silica sand and the like
  • examples of the coarse aggregate include river gravel, mountain gravel, lime gravel and the like.
  • the cooling rate was 5,000 K / sec
  • the water in the compressed air was 0.1% by volume
  • the pressure of the compressed air was 0.4 MPa.
  • the mixture was allowed to cool in a state where the supply of compressed air containing water was stopped (in an atmospheric atmosphere) to produce a calcium aluminate compound, which was used as a powder quick-setting admixture.
  • CaO / Al 2 O 3 molar ratio is 2.0
  • Blaine specific surface area was adjusted to 5,800cm 2 / g.
  • the obtained powder quick-setting admixture was subjected to FT-IR measurement using Frontier manufactured by PerkinElmer.
  • FT-IR measurement using Frontier manufactured by PerkinElmer.
  • a sample made of a powder quick-setting admixture was set, and the sample surface was measured with 16 scanning times.
  • the measurement results are output with the vertical axis (Y-axis) as the absorbance and the horizontal axis as the wave number, and the intensity of the absorption peak based on the AlO 6 expansion and contraction vibration I AlO6 and the intensity of the absorption peak based on the AlO 4 expansion and contraction vibration I AlO4 . It was calculated by analysis software (Spectrum manufactured by PerkinElmer), and these intensity ratios (I AlO6 / I AlO4 ) were determined. The results are shown in Table 1.
  • Condensation time According to ASTMC403, the cement composition was quickly packed in a mold and the proctor penetration resistance value was measured to measure the start and end of the settling time.
  • Compressive strength A test piece of a cement composition having a size of 4 ⁇ 4 ⁇ 16 cm was prepared according to JIS R5201 and demolded after 3 hours to measure the compressive strength.
  • Example 2 A calcium aluminate compound was produced in the same manner as in Example 1 except that the cooling rate was set to 3,000 K / sec, and this was used as a powder quick-setting admixture. The powder quick-setting admixture was subjected to FT-IR measurement in the same manner as in Example 1. The results are shown in Table 1. Further, a cement composition was prepared in the same manner as in Example 1, and the setting time and compressive strength were evaluated using the cement composition. These results are shown in Table 1.
  • Example 3 A calcium aluminate compound was produced in the same manner as in Example 1 except that the cooling rate was set to 7,000 K / sec, and this was used as a powder quick-setting admixture. The powder quick-setting admixture was subjected to FT-IR measurement in the same manner as in Example 1. The results are shown in Table 1. Further, a cement composition was prepared in the same manner as in Example 1, and the setting time and compressive strength were evaluated using the cement composition. These results are shown in Table 1.
  • Example 1 A calcium aluminate compound was produced in the same manner as in Example 1 except that the material was blended with a SiO 2 reagent (99%) as a SiO 2 source so that the SiO 2 content in the CA compound was 8%. Was used as a powder quick-setting admixture. The FTIR measurement was performed on the powder quick-setting admixture in the same manner as in Example 1. The results are shown in Table 1. Further, a cement composition was prepared in the same manner as in Example 1, and the setting time and compressive strength were evaluated using the cement composition. These results are shown in Table 1.
  • Example 2 A calcium aluminate compound was produced in the same manner as in Example 1 except that the cooling rate was set to 1,000 K / sec, and this was used as a powder quick-setting admixture. The powder quick-setting admixture was subjected to FT-IR measurement in the same manner as in Example 1. The results are shown in Table 1. Further, a cement composition was prepared in the same manner as in Example 1, and the setting time and compressive strength were evaluated using the cement composition. These results are shown in Table 1.
  • Example 3 A calcium aluminate compound was produced in the same manner as in Example 1 except that the cooling rate was 10,000 K / sec, and this was used as a powder quick-setting admixture. The powder quick-setting admixture was subjected to FT-IR measurement in the same manner as in Example 1. The results are shown in Table 1. Further, a cement composition was prepared in the same manner as in Example 1, and the setting time and compressive strength were evaluated using the cement composition. These results are shown in Table 1.
  • Examples 4 to 14 100 parts by mass of ordinary Portland cement (brain specific surface area 3200 cm 2 / g, specific gravity 3.15), 10 parts by mass of powder quick-setting admixture shown in Table 2, and 300 parts by mass of fine aggregate (JIS standard sand, commercially available product). And 60 parts by mass of water were kneaded to prepare a cement composition. The following setting time and compressive strength were evaluated using the cement composition. These results are shown in Table 2. As the calcium aluminate compound to be blended in the powder quick-setting admixture, Example 1 was used, and the following alkali metal sulfate and alkaline earth metal sulfate were used as 100 parts of the calcium aluminate compound. It is shown in Table 2. The compression strength was measured after 3 hours and 1 day, respectively.
  • -Alkali metal sulfate sodium sulfate, anhydrous product, neutral product, reagent, brain 500 cm 2 / g
  • Alkaline earth metal sulfate calcium sulfate, anhydrous product, reagent, brain 5000 cm 2 / g
  • the powder quick-setting admixture of the present invention can be suitably used in, for example, the fields of civil engineering and construction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

カルシウムアルミネート化合物を含有し、アルミン酸ナトリウムを含有しない粉体急結剤であって、前記カルシウムアルミネート化合物におけるSiO含有量が7質量%以下であり、前記カルシウムアルミネート化合物のFT-IRによるAlO基伸縮振動に基づく吸収ピークの強度IAlO4とAlO基伸縮振動に基づく吸収ピークの強度IAlO6との比(IAlO6/IAlO4)が0.53~0.75である粉体急結剤である。

Description

粉体急結剤
 本発明は、粉体急結剤に関し、特にアルミン酸ナトリウムを含有しない粉体急結剤に関する。
 従来、セメントを急結させる急結剤としては、カルシウムアルミネートを主成分とし、アルミン酸ナトリウム等を含有するものが古くから知られている(例えば、特許文献1参照)。
 アルミン酸ナトリウムはカルシウムアルミネートの反応を助長したり、それ自身がゲル化してごく初期のこわばりを与えたりするものであり、セメント急結剤には欠くことのできない成分であると考えられてきた。
特公平5-39899号公報
 しかしながら、アルミン酸ナトリウムの取り扱いには充分な注意が必要な場合があり、環境衛生上の観点からはアルミン酸ナトリウムの使用を控えた方がいいこともある。一方で、カルシウムアルミネートを主成分とした急結剤にアルミン酸ナトリウムを使用しないと、急結性能が低下してしまう。
 以上から、本発明は、アルミン酸ナトリウム含有しカルシウムアルミネートを主成分とした急結剤と同等以上の良好な急結性能を示す粉体急結剤を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、急結剤に使用するカルシウムアルミネート化合物中のSiO含有量を7質量%以下とし、FT-IRで観測されるAlO基伸縮振動に基づく吸収ピーク及びAlO基伸縮振動に基づく吸収ピークの強度比を所定の範囲とすると、アルミン酸ナトリウムを含有しカルシウムアルミネートを主成分とした急結剤と同等以上の良好な急結性能が得られること見出し、本発明を完成するに至った。すなわち本発明は下記のとおりである。
[1] カルシウムアルミネート化合物を含有し、アルミン酸ナトリウムを含有しない粉体急結剤であって、
 前記カルシウムアルミネート化合物におけるSiO含有量が7質量%以下であり、前記カルシウムアルミネート化合物のFT-IRによるAlO基伸縮振動に基づく吸収ピークの強度IAlO4とAlO基伸縮振動に基づく吸収ピークの強度IAlO6との比(IAlO6/IAlO4)が0.53~0.75である、粉体急結剤。
[2] 前記カルシウムアルミネート化合物を60質量%以上含有する[1]に記載の粉体急結剤。
[3] さらに、アルカリ金属硫酸塩類及びアルカリ土類金属硫酸塩類からなる群から選択される少なくとも1種を含む[1]又は[2]に記載の粉体急結剤。
[4] 前記アルカリ金属硫酸塩類を含有し、該アルカリ金属硫酸塩類が硫酸ナトリウムである[3]に記載の粉体急結剤。
[5] 前記アルカリ土類金属硫酸塩類を含有し、該アルカリ土類金属硫酸塩類が硫酸カルシウムである[3]に記載の粉体急結剤。
[6] 前記硫酸ナトリウムを、前記カルシウムアルミネート化合物100質量部に対して1~40質量部含有する[4]に記載の粉体急結剤。
[7] 前記硫酸カルシウムを、前記カルシウムアルミネート化合物100質量部に対して2~45質量部含有する[5]に記載の粉体急結剤。
[8] [1]~[7]のいずれかに記載の粉体急結剤とセメントとを含むセメント組成物。
 ここで、本発明における粉体急結剤とは、少なくとも使用温度域で粉末の状態であり、セメントペースト、セメントモルタル、セメントコンクリート等のセメント組成物に対して急結性能(凝結速度の増加や流動性消失の付与といった性能)を向上させることができるものとして定義する。
 本発明によれば、アルミン酸ナトリウム含有しカルシウムアルミネートを主成分とした急結剤と同等以上の良好な急結性能を示す粉体急結剤を提供することができる。
 以下、本発明の実施形態(本実施形態)について詳細に説明する。なお、本発明で使用する部や%は特に規定のない限り質量基準である。
 本実施形態に係る粉体急結剤は、カルシウムアルミネート化合物を含有し、アルミン酸ナトリウムを含有しない粉体急結剤である。アルミン酸ナトリウムを含有しないため、これを用いた場合に生じ得る取り扱いの煩雑性を解消できる。
 本実施形態に係るカルシウムアルミネート化合物は、SiO含有量が7質量%以下であり、6.5質量%以下であることが好ましく、6質量%以下であることがより好ましい。SiO含有量が7質量%を超えると、急結剤として、極初期からの強度発現性が低下してしまう。SiO含有量は例えば、JIS R5202「セメントの化学分析方法」に準じた純粋二酸化ケイ素及び可溶性二酸化ケイ素の含有率の合計量により測定することができる。
 また、カルシウムアルミネート化合物のFT-IRによるAlO基伸縮振動に基づく吸収ピークの強度IAlO6とAlO基伸縮振動に基づく吸収ピークの強度IAlO4との比(IAlO6/IAlO4)は0.53~0.75であり、0.60~0.75であることが好ましく、0.64~0.75であることがより好ましい。
 AlO基伸縮振動に基づく吸収ピークは、AlO八面体に帰属するピークであり、AlO基伸縮振動に基づく吸収ピークは、AlO四面体に帰属するピークである。そして、これらの強度比であるIAlO6/IAlO4が0.53未満では、極初期強度が低下し、付着性状や、強度発現性が低下してしまい、かつ、長期強度も低下傾向となる。また、IAlO6/IAlO4が0.75を超えると、極初期強度が低下してしまう。カルシウムアルミネート化合物のFT-IR測定は、実施例に記載の方法で行うことができる。
 なお、AlO基伸縮振動に基づく吸収ピークは、例えば、波数690~770cm-1付近で観察され、AlO基伸縮振動に基づく吸収ピークは、例えば、波数550~610cm-1付近で観察される。これらの同定(確認)には例えば、固体NMR等を用いてもよい。
 ここで、カルシウムアルミネート化合物(以下、CA化合物ということがある)とは、CaOとAlを主成分とし、水和活性を有する化合物の総称であり、急結性が良好であることから、非晶質のカルシウムアルミネート化合物が好ましい。
 なお、本明細書において「主成分」とは、全体に占める割合が50質量%を超えることを意味する。
 非晶質カルシウムアルミネート化合物は、カルシアを含む原料、アルミナを含む原料などを混合して加熱溶融し、これを急冷することによって得られるが、既述の強度比(IAlO6/IAlO4)を所定の範囲にすることを考慮すると、後述するような製造方法を適用することが好ましい。
 非晶質カルシウムアルミネート化合物のAlに対するCaOのモル比(CaO/Al)は、特に限定されないが、水和活性、強度発現性などの観点から、1.6~2.3であることが好ましく、1.75~2.2であることがより好ましい。
 非晶質カルシウムアルミネート化合物のガラス化率は、特に限定されないが、良好な急結性能、初期強度発現性等の観点から、60%以上であることが好ましく、90%以上であることがより好ましい。
 非晶質カルシウムアルミネート化合物の結晶質部分は、特に限定されないが、例えば、3CaO・Al、12CaO・7Al等のカルシウムアルミネート、原料由来の副成分又は不可避不純物に起因するゲーレナイト、カルシウムアルミノフェライト、カルシウムフェライト等が挙げられる。
 非晶質カルシウムアルミネート化合物のガラス化率は、粉末X線回折/リートベルト解析によって求めることができる。具体的には、酸化アルミニウム、酸化マグネシウム等の内部標準物質を測定試料に所定量添加し、めのう乳鉢などで充分混合した後、粉末X線回折測定を行う。その後、測定結果を定量ソフトで解析することで、鉱物の生成量を求め、残部をガラス化率とする。定量ソフトには、Sietronics社製の「SIROQUANT」等を用いることができる。
 非晶質カルシウムアルミネート化合物の粉末度は、特に限定されないが、ブレーン比表面積(JIS R 5201準拠)で、4000~8000cm/gであることが好ましく、5000~6000cm/gであることがより好ましい。ブレーン比表面積が4000~8000cm/gであることで、急結性能、初期強度発現性等が良好となりやすい。また、作業性の観点からも好ましい。
 本実施形態の粉体急結剤におけるカルシウムアルミネート化合物の含有量は、粉体急結剤中、60%以上であることが好ましく、65%以上であることがより好ましい。60%以上であると良好な凝結性状及び長期強度発現性が得られやすくなる。
 本実施形態の粉体急結剤は、吹付け後のコンクリートの強度発現性の向上の観点から、アルカリ金属硫酸塩類及びアルカリ土類金属硫酸塩類からなる群から選択される少なくとも1種を含むことが好ましい。これらは、既述のカルシウムアルミネート化合物に添加混合すればよい。
(アルカリ金属硫酸塩)
 アルカリ金属硫酸塩としては、リチウム、ナトリウム、カリウムの硫酸塩が挙げられ、これらの中で、強度増進効果としてリチウムやナトリムの硫酸塩(硫酸リチウム、硫酸ナトリウム)が好ましい。また、これらの中で、硫酸ナトリウムが好ましく、なかでも硫酸ナトリウムの無水物は、空気中の水分を吸湿する乾燥剤としての役割も有するので、貯蔵時の安定性にも寄与する点でより好ましい。
 アルカリ金属硫酸塩のブレーン比表面積は、100~1000cm/gであることが好ましく、300~800cm/gであることがより好ましい。100~1000cm/gであることで、24時間までの強度発現性が得られやすく、吹き付け時のモルタル及び/又はコンクリートの取扱い性を良好にすることができる。
 アルカリ金属硫酸塩(硫酸ナトリウム等)は、粉体急結剤のカルシウムアルミネート化合物100質量部に対して、1~40質量部含むことが好ましく、1~35質量部含むことがより好ましい。1~40質量部含むことで、24時間後までの圧縮強度の増進効果がより付与されやすくなる。
(アルカリ土類金属硫酸塩)
 アルカリ土類金属硫酸塩としては、硫酸カルシウムが好ましく、無水石膏(無水硫酸カルシウム)、半水石膏(硫酸カルシウム半水和物)、及び二水石膏(硫酸カルシウム二水和物)等が挙げられる。これらの中では無水石膏が好ましい。
 アルカリ土類金属硫酸塩のブレーン比表面積は、良好な急結性能や初期強度発現性の観点から、3,500cm/g以上が好ましく、4,000cm/g以上がより好ましい。
 アルカリ土類金属硫酸塩(硫酸カルシウム等)は、粉体急結剤のカルシウムアルミネート化合物100質量部に対して、2~45質量部含むことが好ましく、3~40質量部含むことがより好ましい。2~45質量部含むことで、良好な急結性を発揮しながら、長期強度が得られやすくなる。
 本実施形態の粉体急結剤は、本発明の効果を実質的に喪失させない範囲で上記以外の成分の含有させることができる。かかる成分としては、硫酸アルミニウム、炭酸カルシウム、水酸化カルシウム、水酸化アルミニウム等を例示できるが、これらに限定されるものではない。
 本実施形態のカルシウムアルミネート化合物は、SiO含有量が7質量%以下となるように原料を用意し、用意した原料をアーク式電気炉(例えば、加熱室容積150リットル)に投入し、電気炉内を1500~2000℃に加熱して1~2時間保持して溶融する。その後、炉内から溶融物を取り出し、冷却設備により水を含む圧縮空気を用いて700~1000℃に、1,100~7,000K/秒で急冷する。その後は水を含む圧縮空気の供給を行わず、通常の大気雰囲気下で放冷して、本実施形態のカルシウムアルミネート化合物が得られる。
 以上のような本実施形態の粉体急結剤はアルミン酸ナトリウム含有しカルシウムアルミネートを主成分とした急結剤と同等以上の良好な急結性能を示す。そのため、当該粉体急結剤を用いることで、初期凝結性、初期強度発現性及び施工性が良好なセメント組成物を調製することができる。すなわち、本実施形態のセメント組成物は、既述の本発明の粉体急結剤とセメントとを含む。
 当該セメント組成物における本発明の粉体急結剤は、セメント100質量部に対し、5~30質量部配合することが好ましく、10~20質量部配合することがより好ましい。
 また、セメントとともに、使用目的に応じてモルタルやコンクリートに使用できる他の混和材料や骨材を併用することができる。
 ここで用いられるセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、超早強ポルトランドセメント等のポルトランドセメント、及びこれらのポルトランドセメントにフライアッシュや高炉スラグ等の成分を配合した各種混合セメントが挙げられる。このうち、普通ポルトランドセメント、早強ポルトランドセメントがより好ましい。
 また、骨材としては、細骨材、粗骨材のいずれも用いることができる。細骨材としては川砂、山砂、石灰砂、珪砂等が挙げられ、粗骨材としては川砂利、山砂利、石灰砂利等が挙げられる。
 以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 カルシア源として石灰石(CaO含有率95.36質量%、Al含有率0.01質量%、MgO含有率0.81質量%、SiO含有率1.53質量%)、アルミナ源としてボーキサイト(CaO含有率3.5質量%、Al含有率84.31質量%、MgO含有率1.24質量%、SiO含有率6.3質量%)を材料として使用した。これらをアーク式電気炉に投入し、1650℃で2時間保持して溶融した。その後に炉内から溶融物を取り出し、水を含む圧縮空気を供給できる冷却設備により1,000℃まで急冷した。冷却速度は5,000K/秒とし、圧縮空気中の水は0.1体積%とし、圧縮空気の圧力は0.4MPaとした。その後、水を含む圧縮空気の供給を止めた状態(大気雰囲気下)で放冷して、カルシウムアルミネート化合物を製造し、これを粉体急結剤とした。
 CaO/Alモル比は2.0、ガラス化率は99%、ブレーン比表面積は5,800cm/gに調整した。
 得られた粉体急結剤について、パーキンエルマー社製のFrontierを用いてFT-IR測定を行った。測定は、1回反射型ATRを用いてバックグラウンド測定を行った後、粉体急結剤からなるサンプルをセットし、スキャニング回数16回でサンプル表面を測定した。測定結果は、縦軸(Y軸)を吸光度、横軸を波数として出力し、AlO基伸縮振動に基づく吸収ピークの強度IAlO6とAlO基伸縮振動に基づく吸収ピークの強度IAlO4とを解析ソフト(パーキンエルマー社製のSpectrum)によって算出し、これらの強度比(IAlO6/IAlO4)を求めた。結果を表1に示す。
 また、普通ポルトランドセメント(ブレーン比表面積3200cm/g、比重3.15)100質量部と、粉体急結剤10質量部と、細骨材(JIS標準砂、市販品)300質量部と、水60質量部とを混錬してセメント組成物を作製した。当該セメント組成物を用いて、下記の凝結時間及び圧縮強度の評価を行った。これらの結果について表1に示す。
(評価)
 凝結時間:ASTMC403に準じて、セメント組成物を迅速に型枠に詰めプロクター貫入抵抗値を測定して凝結時間の始発と終結を測定した。
 圧縮強度:JIS R5201に準じて4×4×16cmのセメント組成物の試験体を作製し、3時間後に脱型して圧縮強度を測定した。
[実施例2]
 冷却速度を3,000K/秒とした以外は実施例1と同様にしてカルシウムアルミネート化合物を製造し、これを粉体急結剤とした。当該粉体急結剤について実施例1と同様にしてFT-IR測定を行った。結果を表1に示す。
 また、実施例1と同様にしてセメント組成物を作製し、当該セメント組成物を用いて、凝結時間及び圧縮強度の評価を行った。これらの結果について表1に示す。
[実施例3]
 冷却速度を7,000K/秒とした以外は実施例1と同様にしてカルシウムアルミネート化合物を製造し、これを粉体急結剤とした。当該粉体急結剤について実施例1と同様にしてFT-IR測定を行った。結果を表1に示す。
 また、実施例1と同様にしてセメント組成物を作製し、当該セメント組成物を用いて、凝結時間及び圧縮強度の評価を行った。これらの結果について表1に示す。
[比較例1]
 材料にSiO源としてSiO試薬(99%)をCA化合物中のSiO含有量を8%となるように配合とした以外は実施例1と同様にしてカルシウムアルミネート化合物を製造し、これを粉体急結剤とした。当該粉体急結剤について実施例1と同様にしてFTIR測定を行った。結果を表1に示す。また、実施例1と同様にしてセメント組成物を作製し、当該セメント組成物を用いて、凝結時間及び圧縮強度の評価を行った。これらの結果について表1に示す。
[比較例2]
 冷却速度を1,000K/秒とした以外は実施例1と同様にしてカルシウムアルミネート化合物を製造し、これを粉体急結剤とした。当該粉体急結剤について実施例1と同様にしてFT-IR測定を行った。結果を表1に示す。
 また、実施例1と同様にしてセメント組成物を作製し、当該セメント組成物を用いて、凝結時間及び圧縮強度の評価を行った。これらの結果について表1に示す。
[比較例3]
 冷却速度を10,000K/秒とした以外は実施例1と同様にしてカルシウムアルミネート化合物を製造し、これを粉体急結剤とした。当該粉体急結剤について実施例1と同様にしてFT-IR測定を行った。結果を表1に示す。
 また、実施例1と同様にしてセメント組成物を作製し、当該セメント組成物を用いて、凝結時間及び圧縮強度の評価を行った。これらの結果について表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例4~14]
 普通ポルトランドセメント(ブレーン比表面積3200cm/g、比重3.15)100質量部と、表2に示す粉体急結剤10質量部と、細骨材(JIS標準砂、市販品)300質量部と、水60質量部とを混錬してセメント組成物を作製した。当該セメント組成物を用いて、下記の凝結時間及び圧縮強度の評価を行った。これらの結果について表2に示す。尚、該粉体急結剤に配合するカルシウムアルミネート化合物は実施例1を使用し、以下に示すアルカリ金属硫酸塩、アルカリ土類金属硫酸塩をカルシウムアルミネート化合物100部としたときの部として表2に示す。また、圧縮強度は3時間後、1日後のそれぞれについて測定した。
・アルカリ金属硫酸塩:硫酸ナトリウム、無水品、中性品、試薬、ブレーン500cm/g
・アルカリ土類金属硫酸塩:硫酸カルシウム、無水品、試薬、ブレーン5000cm/g
Figure JPOXMLDOC01-appb-T000002
 本発明の粉体急結剤は、例えば、土木、建築分野において好適に使用できる。

Claims (8)

  1.  カルシウムアルミネート化合物を含有し、アルミン酸ナトリウムを含有しない粉体急結剤であって、
     前記カルシウムアルミネート化合物におけるSiO含有量が7質量%以下であり、前記カルシウムアルミネート化合物のFT-IRによるAlO基伸縮振動に基づく吸収ピークの強度IAlO4とAlO基伸縮振動に基づく吸収ピークの強度IAlO6との比(IAlO6/IAlO4)が0.53~0.75である、粉体急結剤。
  2.  前記カルシウムアルミネート化合物を60質量%以上含有する請求項1に記載の粉体急結剤。
  3.  さらに、アルカリ金属硫酸塩類及びアルカリ土類金属硫酸塩類からなる群から選択される少なくとも1種を含む請求項1又は2に記載の粉体急結剤。
  4.  前記アルカリ金属硫酸塩類を含有し、該アルカリ金属硫酸塩類が硫酸ナトリウムである請求項3に記載の粉体急結剤。
  5.  前記アルカリ土類金属硫酸塩類を含有し、該アルカリ土類金属硫酸塩類が硫酸カルシウムである請求項3に記載の粉体急結剤。
  6.  前記硫酸ナトリウムを、前記カルシウムアルミネート化合物100質量部に対して1~40質量部含有する請求項4に記載の粉体急結剤。
  7.  前記硫酸カルシウムを、前記カルシウムアルミネート化合物100質量部に対して2~45質量部含有する請求項5に記載の粉体急結剤。
  8.  請求項1~7のいずれか1項に記載の粉体急結剤とセメントとを含むセメント組成物。
PCT/JP2020/043678 2019-11-26 2020-11-24 粉体急結剤 WO2021106876A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20894686.3A EP4049986A4 (en) 2019-11-26 2020-11-24 RAPID CURING AGENT IN POWDER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019213236A JP6718551B1 (ja) 2019-11-26 2019-11-26 粉体急結剤
JP2019-213236 2019-11-26

Publications (1)

Publication Number Publication Date
WO2021106876A1 true WO2021106876A1 (ja) 2021-06-03

Family

ID=71402449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043678 WO2021106876A1 (ja) 2019-11-26 2020-11-24 粉体急結剤

Country Status (3)

Country Link
EP (1) EP4049986A4 (ja)
JP (1) JP6718551B1 (ja)
WO (1) WO2021106876A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171770A1 (ja) * 2022-03-10 2023-09-14 デンカ株式会社 セメント組成物
WO2023182477A1 (ja) * 2022-03-25 2023-09-28 デンカ株式会社 粉体急結剤、スラリー急結剤、吹付け材、吹付け方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3220640A1 (en) 2021-05-19 2022-11-24 Surv Biopharma Inc. Therapeutic pharmaceutical composition for bone and soft tissue tumors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933924A (ja) * 1972-07-29 1974-03-28
JPH06321594A (ja) * 1993-05-17 1994-11-22 Nitto Chem Ind Co Ltd セメント混和材の製造方法
JPH06344314A (ja) * 1993-06-07 1994-12-20 Nippon Cement Co Ltd 複合化粧パネルの製造方法
JPH11180745A (ja) * 1997-12-18 1999-07-06 Denki Kagaku Kogyo Kk 急結材、急結性吹付セメントコンクリート、及び吹付工法
JP2000281407A (ja) * 1999-03-30 2000-10-10 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2012006815A (ja) * 2010-06-28 2012-01-12 Taiheiyo Materials Corp カルシウムアルミネートクリンカ及び速硬材並びに注入用速硬混和材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074258B1 (ko) * 2011-07-05 2011-10-17 주식회사 유니온 수냉법으로 제조한 비정질 칼슘알루미네이트 광물을 이용한 시멘트 광물계 급결제 및 그 제조방법
PL2803649T3 (pl) * 2013-05-15 2016-10-31 Biały cement glinowy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933924A (ja) * 1972-07-29 1974-03-28
JPH06321594A (ja) * 1993-05-17 1994-11-22 Nitto Chem Ind Co Ltd セメント混和材の製造方法
JPH06344314A (ja) * 1993-06-07 1994-12-20 Nippon Cement Co Ltd 複合化粧パネルの製造方法
JPH11180745A (ja) * 1997-12-18 1999-07-06 Denki Kagaku Kogyo Kk 急結材、急結性吹付セメントコンクリート、及び吹付工法
JP2000281407A (ja) * 1999-03-30 2000-10-10 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2012006815A (ja) * 2010-06-28 2012-01-12 Taiheiyo Materials Corp カルシウムアルミネートクリンカ及び速硬材並びに注入用速硬混和材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171770A1 (ja) * 2022-03-10 2023-09-14 デンカ株式会社 セメント組成物
WO2023182477A1 (ja) * 2022-03-25 2023-09-28 デンカ株式会社 粉体急結剤、スラリー急結剤、吹付け材、吹付け方法

Also Published As

Publication number Publication date
EP4049986A4 (en) 2022-12-28
JP2021084823A (ja) 2021-06-03
EP4049986A1 (en) 2022-08-31
JP6718551B1 (ja) 2020-07-08

Similar Documents

Publication Publication Date Title
WO2021106876A1 (ja) 粉体急結剤
JP5784002B2 (ja) 補修用セメント組成物、それを用いた補修用セメントモルタル材料、及び補修用セメントモルタル
JP2013512168A (ja) 化学的耐性を有する建築用化学製品の製造のための無機バインダー系
JP2011136885A (ja) 低温用速硬材及びこれを含むセメント含有材料
JP6586417B2 (ja) 急結用混和材
KR101322413B1 (ko) γ-C₂S 클링커를 활용한 친환경 저탄소 시멘트 조성물의 제조방법
TWI624445B (zh) 水泥組成物
JP2012140294A (ja) 低温用急硬性高流動セメント組成物
JP5783625B2 (ja) 低温用急硬性セメント混和材及び低温用急硬性セメント組成物
JP7037879B2 (ja) 二次製品用早強混和材および二次製品用早強コンクリート
JP4494743B2 (ja) セメント組成物の製造方法
JP2013095624A (ja) 速硬剤および速硬性セメント組成物
JP2007217261A (ja) 急硬性水硬組成物
JP7083637B2 (ja) コンクリートおよびその製造方法
JP6059982B2 (ja) カルシウムアルミネート系超速硬剤
JP2015124140A (ja) 速硬化促進材
JP2021151940A (ja) セメント組成物及びセメント組成物の製造方法
JP5501717B2 (ja) セメントクリンカーおよびセメント
JP2010052983A (ja) カルシウムアルミネート
JP6703446B2 (ja) 早強性混和材およびセメント組成物
JP3950641B2 (ja) 急硬性セメント用急結剤の製造方法、および急硬性セメント組成物の製造方法
JP6071483B2 (ja) 速硬剤および速硬性混和材
JP2014185040A (ja) セメント組成物
JP2014129212A (ja) 速硬性混和材及び速硬性グラウト組成物
DK2664597T3 (en) Binder blend and dry mortar composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020894686

Country of ref document: EP

Effective date: 20220523

NENP Non-entry into the national phase

Ref country code: DE