WO2011105374A1 - ピストン冷却装置 - Google Patents

ピストン冷却装置 Download PDF

Info

Publication number
WO2011105374A1
WO2011105374A1 PCT/JP2011/053852 JP2011053852W WO2011105374A1 WO 2011105374 A1 WO2011105374 A1 WO 2011105374A1 JP 2011053852 W JP2011053852 W JP 2011053852W WO 2011105374 A1 WO2011105374 A1 WO 2011105374A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
oil
piston
passages
cooling
Prior art date
Application number
PCT/JP2011/053852
Other languages
English (en)
French (fr)
Inventor
重直 圓山
敦樹 小宮
修一 守谷
守正 長田
誠二 小坂
康宏 河村
潤也 根岸
能人 塚本
Original Assignee
国立大学法人東北大学
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 本田技研工業株式会社 filed Critical 国立大学法人東北大学
Priority to JP2012501790A priority Critical patent/JP5692870B2/ja
Priority to CN201180010525.8A priority patent/CN102782264B/zh
Priority to EP11747335.5A priority patent/EP2541004B1/en
Priority to US13/580,905 priority patent/US8511261B2/en
Publication of WO2011105374A1 publication Critical patent/WO2011105374A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/10Cooling by flow of coolant through pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means

Definitions

  • the present invention relates to a piston cooling device that supplies oil injected from an oil jet to a cooling passage provided in a piston of an internal combustion engine, and cools the piston with oil flowing through the cooling passage.
  • Piston cooling devices that supply cooling oil are known.
  • a guide portion that guides oil injected from an oil jet to a circumferential passage of a piston cooling passage is provided to improve cooling efficiency.
  • a piston cooling device that changes the oil injection speed of oil injected from an oil jet in order to prevent occurrence of a period in which oil is not supplied to the cooling passage (see, for example, Patent Document 2).
  • the present invention has been made in view of such circumstances, and by using the reciprocating motion of the piston, at least during the maximum output operation of the internal combustion engine, the cooling passage provided in the piston is injected from the oil jet.
  • An object is to improve the cooling efficiency of the piston by the supplied oil and to reduce the amount of oil for cooling the piston in a high-speed rotation region including at least the maximum output operation.
  • Another object of the present invention is to improve the cooling efficiency of the piston by oil and reduce the amount of oil for cooling the piston by devising the shape of the cooling passage of the piston.
  • the invention according to claim 1 of the present invention includes a circumferential passage (50) extending in the circumferential direction, an inlet passage (30) and an outlet passage (40) communicating with the circumferential passage (50), respectively.
  • a piston (20) for an internal combustion engine provided with a cooling passage (C) having the following, and downwardly with respect to the inlet passage (30) that opens downward when the piston (20) reciprocates vertically
  • An oil jet (90) for injecting oil from the arranged injection port (94), and the oil injected from the injection port (94) flows in from the inlet passage (30) and enters the circumferential passage ( 50)
  • a gas-liquid two-phase plug flow of gas and oil is formed in the cooling passage (C) at least during the maximum output operation of the internal combustion engine (E).
  • the oil jet (90) injects oil in each stroke of the piston (20), and the oil injection speed at the injection port (94) is the speed of the piston (20) during the maximum output operation.
  • It is a piston cooling device that is set to a maximum speed or less. According to this, in the piston cooling passage, at least during the maximum output operation, in each stroke of the reciprocating piston, the oil supplied by being injected from the oil jet at an injection speed equal to or less than the maximum speed of the piston during the maximum output operation
  • a gas-liquid two-phase plug flow of gas and oil is formed, and heat transfer from the piston to the oil in the cooling passage is promoted by this plug flow, and the cooling efficiency of the piston by the oil can be improved.
  • the cooling efficiency it is possible to reduce the oil injection flow rate from the oil jet while obtaining the required cooling performance of the piston. Further, since the gas-liquid two-phase plug flow moves up and down the wall surface of the circumferential passage due to acceleration generated by the vertical movement of the piston, the cooling efficiency is further improved.
  • the invention according to claim 2 of the present invention is the piston cooling device according to claim 1, wherein the circumferential passage (50) is the most upstream portion (61a, 62a) at the inlet passage (30). ) And the main passage (61, 62; 161, 162; 261, 262) connected to the introduction passage (61, 62; 161, 162; 261, 262) at the most upstream part (71a, 72a). 71, 72), and the introduction passage (61, 62; 161, 162; 261, 262) is curved in the circumferential direction toward the upper side and continues to the main passage (71, 72). It is a diffuser passage whose area continuously increases toward the downstream.
  • the introduction passage is a diffuser passage whose passage area continuously increases, the passage area of the inlet passage connected to the introduction passage can be reduced compared to the introduction passage that is not a diffuser passage. Formation of the plug flow in the inlet passage can be facilitated.
  • the introduction passage that guides the oil that has been injected from the oil jet and flows into the main passage to the main passage is a curved passage that is curved in the circumferential direction and continues to the main passage so that the oil that has passed through the inlet passage is introduced. The occurrence of backflow and stagnation that occurs when colliding with the passage wall of the passage is suppressed, and the oil can be guided to the main passage while maintaining the energy of the oil in the introduction passage.
  • the introduction passage forms a diffuser passage that expands continuously, the kinetic energy of oil from the inlet passage can be smoothly converted into pressure energy, so pressure loss due to vortices and separation can be reduced.
  • the required cooling performance of the piston can be obtained with oil having a low injection speed and a low injection flow rate from the oil jet.
  • the invention according to claim 3 of the present invention is the piston cooling device according to claim 2, wherein the passage center line (Ld) of the introduction passage (61, 62; 161, 162; 261, 262).
  • S (m) the distance from the uppermost stream part (61a, 62a) above
  • a (m 2 ) the passage area on the plane orthogonal to the passage center line (Ld)
  • the enlargement ratio R defined by the formula is 0.06 ⁇ R ⁇ 0.8.
  • the enlargement ratio R is set to a value in the range of 0.06 ⁇ R ⁇ 0.8, which is caused by an increase in passage resistance when the enlargement ratio is less than 0.06 in the introduction passage.
  • the cooling effect is reduced, and the deterioration of the cooling effect due to the disturbance of the plug flow due to the separation of the oil flow when the enlargement ratio exceeds 0.8 is suppressed.
  • the cooling effect of the piston by the oil flowing through the cooling passage having the introduction passage which is the curved diffuser passage can be enhanced while reducing the flow rate of the oil jet from the oil jet.
  • the invention according to claim 4 of the present invention is the piston cooling device according to any one of claims 1 to 3, wherein the introduction passage (61, 62; 161, 162) is The first and second branch introduction passages (61, 62; 161, 162) branch in opposite directions in the circumferential direction at the branch portion (63), and the main passage (71, 72) is the first passage. 1 and second branch passages (61, 62; 161, 162) respectively connected to the first and second main passages (71, 72). It is located closer to the piston top surface (21a) than the lowermost part (71c, 72c) of the second main passage (71, 72). According to this, since the oil reflected by colliding with the passage wall forming the branch portion is prevented from flowing back toward the inlet passage, the required cooling performance of the piston can be obtained with a small amount of the oil flow. .
  • the invention according to claim 5 of the present invention is the piston cooling device according to claim 4, wherein the branch portion (63) is on the passage center line (Li) of the inlet passage (30). It is what is located. According to this, since variation in the amount of oil flowing into the first and second branch introduction passages can be suppressed, the cooling of the piston can be equalized in the circumferential direction, which can contribute to a reduction in the injection flow rate from the oil jet.
  • the invention according to claim 6 of the present invention is the piston cooling device according to claim 4, wherein the most upstream of each of the first and second branch introduction passages (61, 62; 161, 162).
  • the section of the passage (61a, 62a) and the section of the most downstream section (32) of the inlet passage (30) are the same and at the same position. According to this, since the first and second branch introduction passages overlap in the circumferential direction, the formation area of both branch introduction passages formed in the piston can be reduced. The rigidity of the piston can be increased while securing the properties.
  • the invention according to claim 7 of the present invention is the piston cooling device according to any one of claims 1 to 3, 5, and 6, wherein the oil jet (90) is provided. Is provided with an oil passage (93) through which oil discharged from an oil pump (96) is guided through an oil supply passage (97) and having the injection port (94). The oil decompressed by the orifice (92) is introduced from the oil supply passage (97), and the opening area of the injection port (94) is larger than the throttle passage area of the orifice (92).
  • the injection speed can be reduced, so that the oil injected from the injection port is scattered.
  • ⁇ Diffusion can be suppressed, oil can be efficiently supplied to the cooling passage, and the oil pressure in the oil supply passage that guides oil from the oil pump to the oil jet can be maintained high, so the oil pump is compact. Can be realized.
  • the cooling efficiency of the piston is improved by the oil injected from the oil jet and supplied to the cooling passage provided in the piston at least during the maximum output operation of the internal combustion engine. It becomes possible to reduce the amount of oil for cooling the piston in the high-speed rotation region including at least the maximum output operation. Furthermore, by devising the shape of the cooling passage of the piston, it is possible to improve the cooling efficiency of the piston by oil and to reduce the amount of oil for cooling the piston.
  • FIG. 1 is a cross-sectional view of a main part in a plane including a central axis of a piston in an internal combustion engine including a piston cooling device to which the present invention is applied, showing a first embodiment of the present invention, and is generally a cross-sectional view taken along a line II in FIG. FIG. It is a principal part bottom view of the piston of FIG. (A) is the principal part perspective view which visualized the cooling channel
  • FIG. 2 is a graph showing the relationship between the top surface temperature T of the piston of FIG. 1 and the expansion rate R of the introduction passage of the cooling passage during the maximum output operation of the internal combustion engine. It is a figure which shows 2nd Embodiment of this invention and corresponds to Fig.4 (a). It is a figure which shows 3rd Embodiment of this invention and corresponds to Fig.4 (a).
  • an internal combustion engine E including a piston cooling device to which the present invention is applied is a four-stroke internal combustion engine.
  • the internal combustion engine E includes a cylinder block 1 provided with a cylinder bore 1a into which a piston 20 for an internal combustion engine is reciprocally fitted, a cylinder head 2 coupled to an upper end portion of the cylinder block 1, and a lower end of the cylinder block 1.
  • An engine main body comprising an oil pan (not shown) coupled to the part via a lower block (not shown) is provided.
  • crankcase 3 As an upper crankcase together with a lower crankcase composed of the lower block and the oil pan.
  • crankshaft 6 that is connected to the piston 20 via the connecting rod 5 and is rotatably supported by the crankcase 3 is disposed.
  • the vertical direction is a direction parallel to the central axis Lp of the piston 20 and is not necessarily the vertical direction
  • the upward direction is the vertical direction.
  • the piston top surface 21a is located in the direction.
  • the direction and the plane orthogonal to the central axis Lp are the horizontal direction and the horizontal plane, respectively.
  • the circumferential direction and the radial direction are when the center axis Lp is the center.
  • the plan view means viewing from the up and down direction.
  • the cylinder head 2 is provided with an intake port 11 and an exhaust port 12 that open to the combustion chamber 10, and an intake valve 13 and an exhaust valve 14 that open and close the intake port 11 and the exhaust port 12, respectively.
  • the intake air guided by the intake device (not shown) is sucked into the combustion chamber 10 from the intake port 11 through the intake valve 13 which is opened during the intake stroke in which the piston 20 descends, and is mixed with the fuel.
  • the piston 20 is compressed during the ascending compression stroke.
  • the air-fuel mixture is ignited and burned at the end of the compression stroke, and the piston 20 reciprocatingly driven by the pressure of the combustion gas in the expansion stroke in which the piston 20 descends rotates the crankshaft 6.
  • Combustion gas passes through an exhaust valve 14 that is opened in the exhaust stroke in which the piston 20 rises as exhaust gas, through an exhaust port 12 and an exhaust device (not shown) connected to the exhaust port 12. It is discharged outside the internal combustion engine E.
  • each of the intake stroke and the expansion stroke is a downward stroke of the piston 20, and each of the compression stroke and the exhaust stroke is an upward stroke of the piston 20.
  • the fuel supplied to the intake air is injected from a fuel injection valve (not shown) in the combustion chamber 10 or in an intake passage including the intake port 11.
  • a fuel injection valve not shown
  • the piston 20 at the top dead center position is indicated by a solid line
  • the piston 20 at the bottom dead center position is indicated by a two-dot chain line.
  • the metal piston 20 includes a columnar piston head 21 having a piston top surface 21 a that receives the pressure of combustion gas in the combustion chamber 10, and a vertical direction from the piston head 21. It has a pair of piston skirts 22 that extend downward, and a pair of first and second pin bosses 23 and 24 that support a piston pin 25 to which the small end portion 5a of the connecting rod 5 is rotatably connected.
  • the piston top surface 21a is provided with a recess 21b.
  • the outer circumferential surface of the piston head 21 is provided with ring grooves in which the first to third piston rings 26a, 26b, and 26c are respectively attached.
  • the pin bosses 23 and 24 are provided with insertion holes 23a and 24a (see FIG. 3) into which the piston pins 25 are press-fitted.
  • the piston head 21 of the piston 20 has an annular circumferential passage 50 extending in the circumferential direction, and communicates with the circumferential passage 50 and linearly along the vertical direction.
  • a cooling passage C having an extending inlet passage 30 and outlet passage 40 is provided.
  • the inlet 31 of the inlet passage 30 and the outlet 41 of the outlet passage 40 are adjacent to the first and second pin bosses 23 and 24 in the circumferential direction, respectively, on the piston back surface 27 constituted by the lower surface and the inner peripheral surface of the piston 20. Among them, the lower surface opens downward.
  • the passage center line Li of the inlet passage 30 and the passage center line Lo of the outlet passage 40 are substantially point-symmetric with respect to the central axis Lp.
  • the annular circumferential passage 50 includes semicircular first and second circumferential passages 51 and 52 extending in the circumferential direction between the inlet passage 30 and the outlet passage 40.
  • the circumferential passages 51 and 52 are connected to the most upstream portions 61a and 62a at the most downstream portions 32 of the inlet passage 30, and the most downstream portions 81b and 82b are connected to the most upstream portion 42 of the outlet passage 40.
  • the derivation passages 81 and 82 and the most upstream portions 71a and 72a are connected to the most downstream portions 61b and 62b of the introduction passages 61 and 62, and the most downstream portions 71b and 72b are connected to the most upstream portions 81a and 82a of the derivation passages 81 and 82.
  • Each of the main passages 71 and 72 is at a position that intersects the horizontal plane as a whole.
  • upstream and downstream are related to the flow of cooling oil as the coolant in the cooling passage C.
  • the inlet 31 is the most upstream and the outlet 41 is the most downstream.
  • the first and second circumferential passages 51 and 52 and therefore the first and second introduction passages 61 and 62, the first and second main passages 71 and 72, and the first and second lead-out passages 81 and 82,
  • One of the planes including the central axis Lp is set as a plane of symmetry, and the planes are arranged substantially plane-symmetrically.
  • the whole of the inlet passage 30, the outlet passage 40, and the first and second circumferential passages 51 and 52 is located within a range of an annular ring centered on the central axis Lp in plan view. .
  • the radial width of the annular zone is equal to the maximum radial width of the introduction passages 61 and 62, the main passages 71 and 72, and the outlet passages 81 and 82.
  • the first and second introduction passages 61 and 62 having the passage center line Ld extend upward (or downstream) from the most downstream portion 32 of the inlet passage 30.
  • This is a curved passage that curves in the opposite direction so as to be away from each other in the circumferential direction from the branching portion 63 located above the downstream portion 32.
  • the branching portion 63 is formed by a branching wall 28d formed of a protruding portion protruding downward in the passage wall 28 of the cooling passage C.
  • first and second lead-out passages 81 and 82 having the passage center line Le are the most downstream portions 71b in the circumferential direction as they go downward (or downstream) from the most downstream portions 71b and 72b of the main passages 71 and 72.
  • 72b are curved passages that curve in opposite directions so as to approach each other.
  • the first and second main passages 71 and 72 of the first and second circumferential passages 51 and 52 are positioned substantially parallel to the horizontal plane as a whole.
  • the main passages 71 and 72 have a substantially uniform passage area as a whole, and the oil flow rate in the main passages 71 and 72 is maintained substantially constant.
  • the first and second introduction passages 61 and 62 constitute first and second branch introduction passages branched by the branch portion 63, respectively.
  • the branch part 63 is located on the passage center line Li of the entrance passage 30.
  • the first and second introduction passages 61 and 62 have the same and the same position in the cross section of the most upstream portions 61a and 62a and the cross section of the most downstream portion 32 of the inlet passage 30.
  • the passage center line Li and the passage center line Ld coincide.
  • the introduction passages 61 and 62 are passages having overlapping shapes immediately above the inlet passage 30.
  • the virtual extension passages of the introduction passages 61 and 62 are indicated by two-dot chain lines.
  • the first and second introduction passages 61 and 62 branch in opposite directions in the circumferential direction at the branch portion 63, and the first and second main passages 71 and 72 are connected to the introduction passages 61 and 62, respectively. Since the portion 63 is positioned closer to the piston top surface 21a (see FIG. 1) than the lowermost portions 71c and 72c of the main passages 71 and 72 in the vertical direction, it collides with the branch wall 28d forming the branch portion 63 and is reflected. Therefore, it is possible to prevent the piston 20 from flowing backward toward the inlet passage 30, so that the required cooling performance of the piston 20 can be obtained with a small amount of oil.
  • each introduction passage 61, 62 In the passage area of each introduction passage 61, 62, the most upstream passage area of the most upstream portions 61a, 62a is smaller than the most downstream passage area of the most downstream portions 61b, 62b, and the passage area of each introduction passage 61, 62 is The entire introduction passages 61 and 62 continuously increase from upstream to downstream. In this embodiment, the introduction passages 61 and 62 increase at a substantially constant enlargement ratio R described later. Therefore, the introduction passages 61 and 62 are diffuser passages whose passage area gradually increases along the oil flow direction.
  • the minute change of 1/2 of the passage area A (square meter) 61, 62 is an enlargement ratio R defined by the following equation.
  • R d (A 1/2 ) / dS
  • the enlargement ratio R is a value representing the degree of spread of the introduction passages 61 and 62 (or the degree of increase in the passage area A of the introduction passages 61 and 62) when going downstream from the most upstream portions 61a and 62a.
  • the enlargement ratio R is 0, it means that the passage area A of the introduction passages 61 and 62 does not change with respect to the distance S, and therefore the introduction passages 61 and 62 are diffuser passages. Needs to have an enlargement ratio R greater than zero.
  • the expansion ratio R becomes large enough to cause the flow to separate from the passage wall 28 in the introduction passages 61 and 62, the oil flow in the introduction passages 61 and 62 and the main passages 71 and 72 downstream from the separation position. Therefore, it becomes difficult to maintain the plug flow described later in the first and second circumferential passages 51 and 52, and the cooling effect by the plug flow is reduced.
  • the passage areas of the outlet passages 81 and 82 are substantially constant from the upstream side to the downstream side of the outlet passages 81 and 82, and are larger than the passage areas at the most upstream portions 61a and 62a of the introduction passages 61 and 62.
  • the lead-out passages 81 and 82 constitute first and second branch lead-out passages branched by a branch portion 83 formed by a branch wall 28e formed of a protruding portion projecting downward in the passage wall 28 of the cooling passage C, respectively.
  • the branch portion 83 (or the branch wall 28 e) is substantially located on the most upstream portion 42 and is substantially located on the passage center line Lo of the outlet passage 40. For this reason, the oil flow in the most downstream portions 81b and 82b is substantially parallel to the vertical direction and goes downward.
  • the passage areas of the outlet passages 81 and 82 are larger than the passage area of the introduction passages 61 and 62, the passage resistance in the outlet passages 81 and 82 is reduced, and the outlet passages 81 and 82 continue smoothly. Since it is a curved passage and the most downstream portions 81b and 82b face downward, the oil flowing into the outlet passages 81 and 82 from the first and second main passages 71 and 72 is prevented from colliding in the circumferential direction by the branch wall 28e. In this state, the oil is deflected downward, so that the oil is smoothly discharged from the outlet 41 of the cooling passage C.
  • a portion below the inlet 31 of the inlet passage 30 is disposed below the piston 20 that reciprocates in the vertical direction in the cylinder block 1.
  • An oil jet 90 is provided as a coolant injection member that injects cooling oil toward the inlet 31 of the inlet passage 30.
  • the oil injected from the oil jet 90 and flowing in from the inlet passage 30 cools the piston 20 while flowing through the circumferential passages 51 and 52 and flowing out from the outlet passage 40. Therefore, the piston 20 and the oil jet 90 provided with the cooling passage C constitute a piston cooling device that is provided in the internal combustion engine E and cools the piston 20.
  • the oil jet 90 includes a main body 91 and an orifice 92 as a decompression member provided in the attachment portion 91a.
  • the main body 91 includes an attachment portion 91 a that is attached and fixed to the cylinder block 1, an injection pipe 91 b as an injection portion provided with an injection port 94, and a columnar positioning portion 91 c that positions the oil jet 90 on the cylinder block 1. And have.
  • Oil supplied from an oil pump 96 as an oil supply source is guided to the main body 91 through a main gallery 97 as an oil supply passage provided in the cylinder block 1 and an oil introduction passage 97 communicating with the main gallery 97.
  • An oil passage 93 for injection is provided.
  • the oil passage 93 has an injection port 94 that is provided in the injection pipe 91 b and opens into the crank chamber 4.
  • the injection port 94 is directed to the inlet 31 substantially parallel to the central axis Lp, and the entire inlet passage 30 including the inlet 31 is in a position overlapping the entire injection port 94 in plan view.
  • the oil pump 96 is a positive displacement rotary pump driven by the power of the crankshaft 6, and the supply oil flow rate increases in proportion to the increase in the engine rotational speed.
  • the orifice 92 disposed between the main gallery 97 and the oil passage 93 reduces the oil pressure of the oil in the main gallery 97. Therefore, the oil reduced in pressure by the orifice 92 is guided to the oil passage 93.
  • the orifice 92 may be provided in the oil introduction passage 97 that allows the main gallery 97 and the oil jet 90 to communicate with each other and guides the oil in the main gallery 97 to the oil jet 90.
  • the opening area of the injection port 94 is larger than the throttle passage area of the orifice 92.
  • By increasing the opening area of the injection port 94 it is possible to increase the diameter of the oil-cone-shaped injection flow, thereby reducing variation in distribution due to branching.
  • the orifice passage area of the orifice 92 is smaller than the opening area of the injection port 94, a decrease in the oil pressure in the main gallery 97 is suppressed, the injection speed can be reduced, and the injection flow rate can be reduced.
  • the oil jet 90 has a gas-liquid two-phase plug flow (or slag flow) between the oil and the air in the crank chamber 4 in the cooling passage C during operation of the internal combustion engine E, at least during the maximum output operation.
  • the oil injection speed (hereinafter simply referred to as “injection speed”) depends on the oil pressure in the oil passage 93, and the oil pressure in the oil passage 93 depends on the rotation speed of the oil pump 96, that is, the engine rotation speed. It increases in proportion to the increase in engine speed.
  • the injection speed is an injection speed at the injection port 94.
  • the injection speed is set to be equal to or lower than the maximum speed of the piston 20 (hereinafter referred to as “piston maximum speed”) during the maximum output operation, and is preferably set in a range of 30% to 90% of the maximum piston speed. Is done.
  • the injection speed is less than 30% of the maximum piston speed, or exceeds 90% of the maximum piston speed, the certainty that the plug flow is formed in the cooling passage C during the maximum output operation decreases, and the cooling passage C
  • the cooling effect of the piston 20 at the time of the maximum output operation by the oil of the oil decreases.
  • gas plug in a passage through which a gas and a liquid flow, a large bubble (hereinafter referred to as “gas plug”) over which the gas crosses the entire cross section of the passage, and a liquid portion (hereinafter referred to as the gas cross section) that is divided into the gas plug and over the entire cross section of the passage.
  • gas plug a large bubble
  • the gas cross section a liquid portion
  • the gas flow rate when the gas flow rate is lower than the predetermined flow rate range, a bubble flow in which small bubbles are dispersed in the liquid over the entire cross section of the passage is formed.
  • the liquid passes through the passage wall. It flows in the form of a film and becomes an annular flow in which the gas flows through the center of the passage.
  • the plug flow heat circulation between the passage wall and the liquid is promoted by the circulating flow of the liquid generated inside the liquid plug, and the cooling effect by the oil is improved.
  • injection flow rate an injection speed and an injection flow rate of oil injected from the oil jet 90 (hereinafter simply referred to as “injection flow rate”) are set so that a plug flow is formed in the circumferential passages 51 and 52.
  • the injection speed and the injection flow rate are set on the condition that the injection speed is not more than the maximum piston speed at the time of maximum output operation, and is preferably set in the range of not less than 30% and not more than 90% of the maximum piston speed.
  • the oil injected from the oil jet 90 is decelerated due to air resistance until it reaches the inlet 31, so that the injection speed is the maximum piston speed at the maximum output operation.
  • the oil is not supplied, and the oil injected from the oil jet 90 is accompanied by the air in the crank chamber 4 and flows into the inlet passage 30 together with the accompanying air. Is determined based on experiments and simulations.
  • the injection flow rate although there is an upper limit value, the cooling effect is improved as the injection flow rate increases until the upper limit value is reached.
  • the later-described plug flow formed in the inlet passage 30 is divided into two in the circumferential direction by the branch wall 28d.
  • a plug flow in the introduction passages 61 and 62 is formed.
  • the introduction passages 61 and 62 are diffuser passages whose passage areas continuously increase (that is, the enlargement ratio R is R> 0), so that the introduction passages 61 and 62 are introduced as compared with introduction passages that are not diffuser passages.
  • the introduction passages 61 and 62 are curved passages that are continuously and smoothly curved without a step, so that the main passages 71 and 72 that extend in the horizontal direction from the inlet passage 30 that extends in the vertical direction are formed.
  • the plug flow formed in the inlet passage 30 is divided and smoothly guided by the branch wall 28d.
  • FIG. 5 it can be seen that the cooling effect of the piston 20 by the plug flow changes according to the enlargement ratio R of the introduction passages 61 and 62.
  • the injection speed and the injection flow rate are within the range of the injection speed and the injection flow rate that can form the plug flow in the cooling passage C.
  • the correlation shown in FIG. 5 is almost similar to that shown in FIG.
  • the reason why the cooling effect due to the plug flow changes in accordance with the expansion ratio R is that the passage resistance in the introduction passages 61 and 62 increases as the expansion ratio R decreases with respect to the optimum expansion ratio Ro that maximizes the cooling effect.
  • the cooling effect decreases and the enlargement ratio R increases with respect to the optimum enlargement ratio Ro, the oil flow in the introduction passages 61 and 62 is more easily separated from the passage wall. It is thought that the contact with the passage wall becomes unstable and the cooling effect is lowered.
  • the cooling effect of the piston 20 is higher than that of the comparison target piston under the condition that the injection speed and the injection flow rate of the oil injected from the oil jet 90 are the same during the maximum output operation of the internal combustion engine E (see FIG. 1).
  • the enlargement ratio R is 0.06 ⁇ R ⁇ 0.8 as the enlargement ratio R at which the top surface temperature T of the piston 20 becomes lower than the top surface temperature Ta of the comparison target piston.
  • the comparison target piston is that the cooling passage provided in the piston does not have passage portions corresponding to the introduction passages 61 and 62 (see FIGS. 3 and 4), and the main passage 71 is connected to the inlet passage 30.
  • 72 (see FIGS. 3 and 4) is a piston having a shape (T-shaped cooling passage in the figure corresponding to FIG. 3B) that is directly connected.
  • the enlargement ratio R is more preferably set to a value in a range of 0.5Ro ⁇ R ⁇ 2Ro including the optimum enlargement ratio Ro so that a higher cooling effect can be obtained compared to the comparison target piston.
  • the oil pressure in the oil passage 93 is such that the temperature of the piston 20 is changed when the oil pressure in the main gallery 97 changes according to the engine rotation speed and when the engine rotation speed is lower than the engine rotation speed during the maximum output operation. Since the temperature is lower than the temperature during the maximum output operation, when the internal combustion engine E is operated at the low engine speed, the injection speed at which the bubble flow is formed in the cooling passage C without the plug flow being formed, or It may be an injection flow rate.
  • the piston cooling device injects oil from the injection port 94 disposed below the piston 20 provided with the cooling passage C and the inlet passage 30 opening downward when the piston 20 reciprocates in the vertical direction.
  • the oil jet 90 is provided in each stroke of the piston 20 so that a gas-liquid two-phase plug flow of gas and oil is formed in the cooling passage C at least during the maximum output operation of the internal combustion engine E. Oil is injected and the oil injection speed at the injection port 94 is set to be equal to or lower than the maximum speed of the piston 20 during the maximum output operation.
  • the cooling passage C has an injection speed equal to or lower than the maximum speed of the piston 20 during the maximum output operation in each stroke of the piston 20 that reciprocates at least during the maximum output operation.
  • the oil supplied from the oil jet 90 forms a gas-liquid two-phase plug flow of gas and oil, and this plug flow promotes heat transfer from the piston 20 to the oil in the cooling passage C.
  • the cooling efficiency of the piston 20 with oil can be improved.
  • the oil injection flow rate from the oil jet 90 can be reduced while obtaining the required cooling performance of the piston 20, and the amount of oil for cooling the piston can be reduced.
  • the cooling efficiency is further improved.
  • the oil pump 96 that supplies oil to the oil jet 90 can be reduced in size, power loss for driving the oil pump 96 is reduced, and fuel efficiency is improved.
  • the circumferential passages 51 and 52 include introduction passages 61 and 62 that are continuous with the inlet passage 30 at the most upstream portions 61a and 62a, and main passages 71 and 72 that are continuous with the introduction passages 61 and 62 at the most upstream portions 71a and 72a.
  • the introduction passages 61 and 62 are curved in the circumferential direction toward the upper side and continue to the main passages 71 and 72, and the diffuser passage has a passage area that continuously increases toward the downstream and increases at a substantially constant expansion rate R. It is.
  • the introduction passages 61 and 62 that lead the oil injected from the oil jet 90 and flowing into the main passages 71 and 72 to the main passages 71 and 72 are curved in the circumferential direction as they go upward, and are curved to the main passages 71 and 72.
  • the generation of backflow and stagnation that occurs when oil that has passed through the inlet passage 30 collides with the passage wall 28 of the introduction passages 61 and 62 is suppressed, and the energy of the oil in the introduction passages 61 and 62 is maintained.
  • the oil can be guided to the main passages 71 and 72.
  • each introduction passage 61, 62 constitutes a diffuser passage that continuously expands at an expansion ratio R, the kinetic energy of oil from the inlet passage 30 can be smoothly converted into pressure energy.
  • the pressure loss due to the separation can be reduced, and the required cooling performance of the piston 20 can be obtained with the oil with a low injection speed and a low injection flow rate from the oil jet 90.
  • the introduction passages 61 and 62 are diffuser passages in which the enlargement ratio R is R> 0, that is, the passage area continuously increases, so that the introduction passage 61 is compared with the introduction passage that is not a diffuser passage. 62, the passage area of the inlet passage 30 connected to the most upstream portions 61a, 62a can be reduced, so that the formation of the plug flow in the inlet passage 30 can be facilitated. Then, by setting the enlargement ratio R to a value in the range of 0.06 ⁇ R ⁇ 0.8, the introduction passages 61 and 62 are caused by an increase in passage resistance when the enlargement ratio is less than 0.06.
  • the cooling effect is reduced, and the deterioration of the cooling effect due to the disturbance of the plug flow due to the separation of the oil flow when the enlargement ratio exceeds 0.8 is suppressed.
  • the cooling effect of the piston 20 by the oil flowing through the cooling passage C having the introduction passages 61 and 62 that are curved diffuser passages can be enhanced while reducing the oil injection flow rate from the oil jet 90.
  • the enlargement ratio R to a value in the range of 0.5Ro ⁇ R ⁇ 2Ro including the optimal enlargement ratio Ro, a higher cooling effect can be obtained.
  • branch part 63 is located on the passage center line Li of the inlet passage 30, it is possible to suppress variation in the amount of oil flowing into the first and second branch introduction passages 61 and 62. Can contribute to the reduction of the injection flow rate from the oil jet 90.
  • the passage center line Li coincides with the passage center line Ld in the most downstream portion 32 and the most upstream portions 61a and 62a.
  • the oil jet 90 is provided with an oil passage 93 that is guided by the oil discharged from the oil pump 96 through the main gallery 97 and has an injection port 94.
  • the oil passage 93 is decompressed by the orifice 92 from the main gallery 97. Therefore, the opening area of the injection port 94 is larger than the throttle passage area of the orifice 92.
  • the oil pressure of the oil discharged from the oil pump 96 is reduced by the orifice 92 and then guided to the oil passage 93 of the oil jet 90, so that the injection speed can be reduced.
  • the oil can be efficiently supplied to the cooling passage C, and the oil pressure in the oil supply passage leading the oil from the oil pump 96 to the oil jet 90 can be kept high. Therefore, the oil pump 96 can be downsized.
  • the shape of the cooling passage C of the piston 20 it is possible to improve the cooling efficiency of the piston P by oil and to reduce the amount of oil for cooling the piston.
  • the first and second introduction passages 161 and 162 in the second embodiment are the same as the introduction passages 61 and 62 except that the enlargement ratio R is smaller than that of the introduction passages 61 and 62 in the first embodiment. is there.
  • the enlargement ratio R of the introduction passages 261 and 262 in the third embodiment is the same as that in the second embodiment.
  • the first and second introduction passages 261 and 262 are curved in directions opposite to each other so as to move away from the most downstream portion 32 in the circumferential direction as they go upward (or downstream) from the most downstream portion 32 of the inlet passage 30. It is a curved passage.
  • the branch portion 63 (or the branch wall 28 d) is substantially located on the most downstream portion 32 and is substantially located on the passage center line Li of the inlet passage 30. Therefore, the introduction passages 261 and 262 are a pair of independently shaped passages that are connected to the main passages 71 and 72 almost independently of each other from the inlet passage 30.
  • the piston cooling device may include an air supply device for mixing air into the oil passage 93 of the oil jet 90 (for example, an air injection valve or a venturi to which pressurized air is supplied).
  • the range of the injection speed or the range of the injection flow rate that can form the plug flow in the cooling passage C can be expanded.
  • the circumferential passage may be one passage that does not branch with respect to the inlet passage and the outlet passage. Although the enlargement ratio is constant in the entire introduction passage in the embodiment, it may be continuously increased from the most upstream portion to the most downstream portion of the introduction passage.
  • the target provided with the internal combustion engine may be a device other than a vehicle, for example, a ship propulsion device such as an outboard motor, or a power generation device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

 内燃機関の最大出力運転時に、オイルジェットから噴射されてピストンに設けられた冷却通路に供給されたオイルによるピストンの冷却効率の向上および冷却用オイル量の削減を図る。 本発明のピストン冷却装置は、周方向通路(50)と入口通路(30)および出口通路(40)とを有する冷却通路(C)が設けられた内燃機関用ピストン(20)と、入口通路(30)に噴射口(94)からオイルを噴射するオイルジェット(90)とを備える。冷却通路(C)に気体とオイルとの気液2相プラグ流が、少なくとも内燃機関(E)の最大出力運転時に形成されるように、オイルジェット(90)はピストン(20)の各行程においてオイルを噴射し、かつ噴射口(94)でのオイルの噴射速度は最大出力運転時のピストン(20)の最高速度以下とされる。

Description

ピストン冷却装置
 本発明は、内燃機関のピストンに設けられた冷却通路にオイルジェットから噴射されたオイルを供給し、冷却通路を流れるオイルによりピストンを冷却するピストン冷却装置に関する。
 内燃機関の高出力化に伴い、ピストンにおいては、燃焼ガスに接触するピストン頂面を有するピストンヘッドを冷却するために、ピストンの内部に設けられた環状の冷却通路に、オイルジェットから噴射された冷却用オイルを供給するピストン冷却装置が知られている。
 例えば、特許文献1に開示されたピストン冷却装置では、オイルジェットから噴射されたオイルをピストンの冷却通路の周方向通路に案内する案内部が設けられて、冷却効率の向上が図られている。
 また、内燃機関の高速回転時に、往復運動するピストンの速度がオイルジェットから噴射されるオイルの速度よりも大きくなると、ピストンの冷却通路にオイルが供給されない期間が生じる。そこで、冷却通路にオイルが供給されない期間の発生を防止するために、オイルジェットから噴射されるオイルのオイル噴射速度を変更するピストン冷却装置が知られている(例えば、特許文献2参照)。
実開平5-61423号公報 特開2007-224774号公報
 オイルによるピストンの冷却効率を高めるために、ピストンの冷却通路での圧力損失の低減のみでは、冷却効率の向上や、オイルジェットから噴射されるオイル量の削減にも限界がある。
 また、オイルジェットからのオイルの噴射速度を変更する場合には、噴射速度を変更する装置が必要になるため、ピストン冷却装置が大型化し、またコスト増を招来する。
 さらに、内燃機関の運転領域においてピストンの温度が最も高くなる最大出力運転時には、ピストンの速度も大きくなるため、所要の冷却効果が得られるようにするには、オイルジェットから供給されるオイル量を増加させることが通常であるため、冷却用オイルのオイル量削減の点で改善の余地がある。
 本発明は、このような事情に鑑みてなされたものであり、ピストンの往復運動を利用することにより、少なくとも内燃機関の最大出力運転時に、オイルジェットから噴射されてピストンに設けられた冷却通路に供給されたオイルによるピストンの冷却効率の向上を図ると共に、少なくとも最大出力運転時を含む高速回転領域でのピストン冷却用オイル量の削減を図ることを目的とする。
 さらに、本発明は、ピストンの冷却通路の形状を工夫することにより、オイルによるピストンの冷却効率の向上およびピストン冷却用オイル量の削減を図ることを目的とする。
 本発明の請求の範囲第1項記載の発明は、周方向に延びている周方向通路(50)と前記周方向通路(50)にそれぞれ連通する入口通路(30)および出口通路(40)とを有する冷却通路(C)が設けられた内燃機関用ピストン(20)と、前記ピストン(20)が上下方向に往復運動するとき下方に向かって開口する前記入口通路(30)に対して下方に配置された噴射口(94)からオイルを噴射するオイルジェット(90)とを備え、前記噴射口(94)から噴射されたオイルが、前記入口通路(30)から流入して前記周方向通路(50)を経て前記出口通路(40)から流出するピストン冷却装置において、前記冷却通路(C)に気体とオイルとの気液2相プラグ流が、少なくとも内燃機関(E)の最大出力運転時に形成されるように、前記オイルジェット(90)は前記ピストン(20)の各行程においてオイルを噴射し、かつ前記噴射口(94)でのオイルの噴射速度は前記最大出力運転時の前記ピストン(20)の最高速度以下とされるピストン冷却装置である。
 これによれば、ピストンの冷却通路には、少なくとも最大出力運転時に、往復運動するピストンの各行程において最大出力運転時のピストンの最高速度以下の噴射速度でオイルジェットから噴射されて供給されたオイルにより、気体とオイルとの気液2相プラグ流が形成されるので、このプラグ流によりピストンから冷却通路のオイルへの熱伝達が促進されて、オイルによるピストンの冷却効率を向上できる。そして、冷却効率の向上により、ピストンの所要の冷却性を得ながら、オイルジェットからのオイルの噴射流量を削減できる。
 また、前記気液2相プラグ流は、ピストンの上下運動によって生じる加速度のため前記周方向通路の壁面を上下に移動するために、冷却効率の一層の向上がなされる。
 本発明の請求の範囲第2項記載の発明は、請求の範囲第1項記載のピストン冷却装置において、前記周方向通路(50)は、最上流部(61a,62a)で前記入口通路(30)に連なる導入通路(61,62;161,162;261,262)と、最上流部(71a,72a)で前記導入通路(61,62;161,162;261,262)に連なる主通路(71,72)とを有し、前記導入通路(61,62;161,162;261,262)は、上方に向かうにつれて周方向に湾曲して前記主通路(71,72)に連なると共に、通路面積が下流に向かって連続的に増加するディフューザ通路であるものである。
 これによれば、導入通路は、その通路面積が連続的に増加するディフューザ通路であることにより、ディフューザ通路になっていない導入通路に比べて導入通路に連なる入口通路の通路面積を小さくできるので、入口通路でのプラグ流の形成を容易化できる。
 また、オイルジェットから噴射されて入口通路から流入したオイルを主通路に導く導入通路が上方に向かうにつれて周方向に湾曲して主通路に連なる湾曲通路であることで、入口通路を経たオイルが導入通路の通路壁に衝突した際に生じる逆流や澱みの発生が抑制され、導入通路でのオイルのエネルギを維持しながら該オイルを主通路に案内することができる。
 また、導入通路は連続的に拡大するディフューザ通路を構成することから、入口通路からのオイルの運動エネルギを圧力エネルギに円滑に変換することができるので、渦や剥離に起因する圧力損失を低減できて、オイルジェットからの低い噴射速度および少ない噴射流量のオイルで、ピストンの所要の冷却性を得ることができる。
 本発明の請求の範囲第3項記載の発明は、請求の範囲第2項記載のピストン冷却装置において、前記導入通路(61,62;161,162;261,262)の通路中心線(Ld)上での最上流部(61a,62a)からの距離をS(m)とし、前記通路中心線(Ld)に直交する平面上での通路面積をA(m)としたとき、次式
          R=d(A1/2)/dS
で定義される前記拡大率Rが0.06≦R≦0.8であるものである。
 これによれば、拡大率Rが0.06≦R≦0.8の範囲の値に設定されることにより、導入通路において、拡大率が0.06未満であるときの通路抵抗の増大に起因する冷却効果の低下、および拡大率が0.8を超えるときのオイルの流れの剥離によるプラグ流の乱れに起因する冷却効果の低下が抑制される。この結果、オイルジェットからのオイルの噴射流量を削減しながら、湾曲したディフューザ通路である導入通路を有する冷却通路を流れるオイルによるピストンの冷却効果を高めることができる。
 本発明の請求の範囲第4項記載の発明は、請求の範囲第1項から第3項のいずれか1項記載のピストン冷却装置において、前記導入通路(61,62;161,162)は、分岐部(63)において周方向で互いに反対方向に向かって分岐する第1,第2分岐導入通路(61,62;161,162)から構成され、前記主通路(71,72)は、前記第1,第2分岐導入通路(61,62;161,162)にそれぞれ連なる第1,第2主通路(71,72)から構成され、前記分岐部(63)は、上下方向で前記第1,前記第2主通路(71,72)の最下部(71c,72c)よりもピストン頂面(21a)寄りに位置するものである。
 これによれば、分岐部を形成する通路壁に衝突して反射したオイルが入口通路に向かって逆流することが抑制されるので、少ない噴射流量のオイルで、ピストンの所要の冷却性が得られる。
 本発明の請求の範囲第5項記載の発明は、請求の範囲第4項記載のピストン冷却装置において、前記分岐部(63)は、前記入口通路(30)の通路中心線(Li)上に位置するものである。
 これによれば、第1,第2分岐導入通路に流入するオイル量のバラツキを抑制できるので、ピストンの冷却を周方向で均等化できて、オイルジェットからの噴射流量の減少に寄与できる。
 本発明の請求の範囲第6項記載の発明は、請求の範囲第4項記載のピストン冷却装置において、前記第1,第2分岐導入通路(61,62;161,162)のそれぞれの最上流部(61a,62a)の通路断面と、前記入口通路(30)の最下流部(32)の通路断面とが、同一で、かつ同じ位置にあるものである。
 これによれば、第1,第2分岐導入通路が周方向でオーバーラップするために、ピストンに形成される両分岐導入通路の形成領域を小さくすることができるので、オイルによるピストンの所要の冷却性を確保しながら、ピストンの剛性を高めることができる。
 本発明の請求の範囲第7項記載の発明は、請求の範囲第1項から第3項、第5項、第6項のいずれか1項記載のピストン冷却装置において、前記オイルジェット(90)には、オイルポンプ(96)から吐出されたオイルがオイル供給通路(97)を経て導かれると共に前記噴射口(94)を有するオイル通路(93)が設けられ、前記オイル通路(93)には、前記オイル供給通路(97)からオリフィス(92)により減圧されたオイルが導かれ、前記噴射口(94)の開口面積は、前記オリフィス(92)の絞り通路面積よりも大きいものである。
 これによれば、オイルポンプから吐出されたオイルのオイル圧が、オリフィスで減圧された後、オイルジェットのオイル通路に導かれるので、噴射速度を小さくできるため、噴射口から噴射されたオイルの飛散・拡散を抑えることができて、効率よく冷却通路にオイルを供給することができ、しかもオイルポンプからのオイルをオイルジェットに導くオイル供給通路でのオイル圧を高く維持できるので、オイルポンプの小型化が可能になる。
 本発明によれば、ピストンの往復運動を利用することにより、少なくとも内燃機関の最大出力運転時に、オイルジェットから噴射されてピストンに設けられた冷却通路に供給されたオイルによるピストンの冷却効率の向上が可能になり、少なくとも最大出力運転時を含む高速回転領域でのピストン冷却用のオイル量の削減が可能になる。
 さらに、ピストンの冷却通路の形状を工夫することにより、オイルによるピストンの冷却効率の向上およびピストン冷却用オイル量の削減が可能になる。
本発明の第1実施形態を示し、本発明が適用されたピストン冷却装置を備える内燃機関において、ピストンの中心軸線を含む平面での要部断面図であり、概ね図2のI-I線断面図である。 図1のピストンの要部下面図である。 (a)は、図1のピストンの冷却通路を可視化した要部斜視図であり、(b)は、(a)において、図2のIIIb矢視に相当する図である。 (a)は、図2のIVa-IVa線での冷却通路の断面図であり、(b)は、(a)において、図2のIVb-IVb線での冷却通路の断面図である。 内燃機関の最大出力運転時における図1のピストンの頂面温度Tと冷却通路の導入通路の拡大率Rとの関係を示すグラフである。 本発明の第2実施形態を示し、図4(a)に対応する図である。 本発明の第3実施形態を示し、図4(a)に対応する図である。
 以下、本発明の実施形態を図1~図7を参照して説明する。
 図1~図5は、本発明の第1実施形態を説明するための図である。
 図1を参照すると、本発明が適用されたピストン冷却装置を備える内燃機関Eは、4ストローク内燃機関である。内燃機関Eは、内燃機関用ピストン20が往復運動可能に嵌合するシリンダボア1aが設けられたシリンダブロック1と、該シリンダブロック1の上端部に結合されるシリンダヘッド2と、シリンダブロック1の下端部にロアブロック(図示されず)を介して結合されるオイルパン(図示されず)とから構成される機関本体を備える。
 シリンダブロック1においてシリンダボア1aよりも下方の部分1bは、上部クランクケースとして、前記ロアブロックおよび前記オイルパンから構成される下部クランクケースと共にクランクケース3を構成する。そして、クランクケース3により形成されるクランク室4内には、ピストン20にコンロッド5を介して連結されると共にクランクケース3に回転可能に支持されるクランク軸6が配置される。
 なお、この明細書および請求の範囲において、上下方向は、ピストン20の中心軸線Lpに平行な方向であって、必ずしも鉛直方向である必要はないものとし、上方向は、上下方向で、ピストン20においてピストン頂面21aが位置する方向であるとする。また、中心軸線Lpに直交する方向および平面は、便宜上、それぞれ水平方向および水平面であるとする。さらに、周方向および径方向とは、中心軸線Lpを中心としたときのものである。さらに、平面視とは、上下方向から見ることを意味する。
 シリンダブロック1、ピストン20およびシリンダヘッド2により、中心軸線Lpに平行な方向(シリンダボア1aの中心軸線であるシリンダ軸線に平行な方向でもある。)でのピストン20とシリンダヘッド2との間に燃焼室10が形成される。シリンダヘッド2には、燃焼室10に開口する吸気ポート11および排気ポート12と、吸気ポート11および排気ポート12をそれぞれ開閉する吸気弁13および排気弁14とが設けられる。
 そして、吸気装置(図示されず)により導かれた吸入空気は、ピストン20が下降する吸気行程において、開弁した吸気弁13を経て吸気ポート11から燃焼室10に吸入され、燃料と混合して混合気となった状態で、ピストン20が上昇する圧縮行程において圧縮される。前記混合気は圧縮行程の終期に点火されて燃焼し、ピストン20が下降する膨張行程において燃焼ガスの圧力により駆動されて往復運動するピストン20がクランク軸6を回転駆動する。燃焼ガスは、排気ガスとして、ピストン20が上昇する排気行程において、開弁した排気弁14を経て燃焼室10から排気ポート12および該排気ポート12に接続される排気装置(図示されず)を経て内燃機関Eの外部に排出される。
 ここで、吸気行程および膨張行程は、それぞれピストン20の下降行程であり、圧縮行程および排気行程は、それぞれピストン20の上昇行程である。また、吸入空気に供給される前記燃料は、燃焼室10において、または吸気ポート11を含む吸気通路において、燃料噴射弁(図示されず)から噴射される。
 また、図1には、上死点位置のピストン20が実線で示され、下死点位置のピストン20が二点鎖線で示されている。
 図1,図2を参照すると、金属製のピストン20は、燃焼室10内の燃焼ガスの圧力を受けるピストン頂面21aを有する円柱状のピストンヘッド21と、ピストンヘッド21から上下方向に沿って下方に延びる1対のピストンスカート22と、コンロッド5の小端部5aが回動可能に連結されるピストンピン25を支持する1対の第1,第2ピンボス23,24とを有する。
 ピストン頂面21aには凹部21bが設けられる。ピストンヘッド21の外周面には第1~第3ピストンリング26a,26b,26cがそれぞれ装着されるリング溝が設けられる。各ピンボス23,24には、ピストンピン25が圧入される挿入孔23a,24a(図3参照)が設けられる。
 図1~図4を参照すると、ピストン20のピストンヘッド21内には、周方向に延びている環状の周方向通路50と、周方向通路50にそれぞれ連通すると共に上下方向に沿って直線状に延びている入口通路30および出口通路40とを有する冷却通路Cが設けられる。
 入口通路30の入口31および出口通路40の出口41は、第1,第2ピンボス23,24にそれぞれ周方向で隣接する位置で、ピストン20の下面および内周面から構成されるピストン裏面27のうちで、下面において下方に向かって開口する。
 入口通路30の通路中心線Liおよび出口通路40の通路中心線Loは、中心軸線Lpに対してほぼ点対称の位置にある。
 なお、「ほぼ」との表現は、「ほぼ」との修飾語がない場合を含むと共に、「ほぼ」との修飾語がない場合とは厳密には一致しないものの、「ほぼ」との修飾語がない場合と比べて作用効果に関して有意の差異がない範囲を意味する。
 円環状の周方向通路50は、入口通路30および出口通路40との間で周方向に延びている半円環状の第1,第2周方向通路51,52から構成される。各周方向通路51,52は、最上流部61a,62aで入口通路30の最下流部32に連なる導入通路61,62と、最下流部81b,82bで出口通路40の最上流部42に連なる導出通路81,82と、最上流部71a,72aで導入通路61,62の最下流部61b,62bに連なると共に最下流部71b,72bで導出通路81,82の最上流部81a,82aに連なる主通路71,72とを有する。各主通路71,72は、その全体で水平面と交わる位置にある。
 ここで、上流および下流とは、冷却通路Cでの冷却液としての冷却用オイルの流れに関するもので、冷却通路Cにおいて、入口31が最上流であり、出口41が最下流である。
 第1,第2周方向通路51,52、したがって第1,第2導入通路61,62同士、第1,第2主通路71,72同士および第1,第2導出通路81,82同士は、中心軸線Lpを含む平面の1つを対称面として、ほぼ面対称に配置される。そして、入口通路30、出口通路40および第1,第2周方向通路51,52のそれぞれの全体は、平面視で、中心軸線Lpを中心とする円環状の円環帯の範囲内に位置する。該円環帯の径方向幅は、各導入通路61,62、各主通路71,72および導出通路81,82のうちの径方向幅の最大幅に等しい。
 図3,図4を参照すると、通路中心線Ldを有する第1,第2導入通路61,62は、入口通路30の最下流部32から上方(または、下流)に向かって延びていて、最下流部32よりも上方に位置する分岐部63から周方向で互いに遠ざかるように反対方向に湾曲する湾曲通路である。分岐部63は、冷却通路Cの通路壁28において下方へ突出する突出部からなる分岐壁28dにより形成される。
 また、通路中心線Leを有する第1,第2導出通路81,82は、主通路71,72の最下流部71b,72bから下方(または、下流)に向かうにつれて、周方向で最下流部71b,72bから近づくように互いに反対方向に湾曲する湾曲通路である。
 第1,第2周方向通路51,52のそれぞれの第1,第2主通路71,72は、その全体において水平面にほぼ平行に位置する。主通路71,72は、全体でほぼ均一の通路面積を有し、主通路71,72でのオイルの流速はほぼ一定に維持される。
 第1,第2導入通路61,62は、それぞれ、分岐部63により分岐する第1,第2分岐導入通路を構成する。分岐部63は、入口通路30の通路中心線Li上に位置する。
 そして、第1,第2導入通路61,62は、それぞれの最上流部61a,62aの通路断面と、入口通路30の最下流部32の通路断面とが、同一で、かつ同じ位置にあり、最下流部32および最上流部61a,62aにおいて、通路中心線Liと通路中心線Ldとが一致する。このため、導入通路61,62は、入口通路30の真上においてオーバーラップした形状の通路になっている。なお、図4(a)には、導入通路61,62のそれぞれの仮想延長通路が二点鎖線で示されている。
 第1,第2導入通路61,62は、分岐部63において周方向で互いに反対方向に向かって分岐し、第1,第2主通路71,72は、導入通路61,62にそれぞれ連なり、分岐部63は、上下方向で主通路71,72の最下部71c,72cよりもピストン頂面21a(図1参照)寄りに位置することにより、分岐部63を形成する分岐壁28dに衝突して反射したオイルが入口通路30に向かって逆流することが抑制されるので、少ない噴射流量のオイルで、ピストン20の所要の冷却性が得られる。
 各導入通路61,62の通路面積において、最上流部61a,62aの最上流通路面積は、最下流部61b,62bの最下流通路面積よりも小さく、各導入通路61,62の通路面積は、導入通路61,62の全体で上流から下流に向かって連続的に増加、この実施形態では、後記するほぼ一定の拡大率Rで増加している。このため、導入通路61,62は通路面積がオイルの流れ方向に沿って漸増するディフューザ通路である。
 そして、導入通路61,62の通路中心線Ld上での最上流部61a,62aから下流に向かっての距離S(メートル)の微小変化に対する、通路中心線Ldに直交する平面上での導入通路61,62の通路面積A(平方メートル)の1/2乗の微小変化を、次式で定義される拡大率Rであるとする。
          R=d(A1/2)/dS
 この拡大率Rは、最上流部61a,62aから下流に向かうときの導入通路61,62の広がり度合い(または、導入通路61,62の通路面積Aの増加度合い)を表す値である。
 拡大率Rが0であるときは、導入通路61,62の通路面積Aが距離Sに対して変化することなく一定値を保つことを意味するので、導入通路61,62がディフューザ通路であるためには、拡大率Rが0よりも大きい必要がある。
 一方、拡大率Rが、導入通路61,62において通路壁28から流れが剥離するほどの大きさになると、その剥離位置から下流の導入通路61,62および主通路71,72内でオイルの流れの乱れが大きくなって、第1,第2周方向通路51,52での後記プラグ流の維持が困難になり、該プラグ流による冷却効果が低下する。
 導出通路81,82の通路面積は、導出通路81,82の全体で上流から下流に向かってほぼ一定であり、しかも導入通路61,62の最上流部61a,62aでの通路面積よりも大きい。
 また、導出通路81,82は、それぞれ、冷却通路Cの通路壁28において下方へ突出する突出部からなる分岐壁28eにより形成される分岐部83により分岐する第1,第2分岐導出通路を構成する。そして、分岐部83(または分岐壁28e)は、最上流部42上にほぼ位置し、また出口通路40の通路中心線Lo上にほぼ位置する。このため、最下流部81b,82bでのオイルの流れは、上下方向にほぼ平行で、下方に向かう。
 そして、導出通路81,82の通路面積が導入通路61,62の通路面積よりも大きいので、導出通路81,82での通路抵抗が小さくなること、および、導出通路81,82が滑らかに連続する湾曲通路であると共に最下流部81b,82bが下方に向いているので、第1,第2主通路71,72から導出通路81,82に流入するオイルが分岐壁28eにより周方向で衝突が抑制された状態で下方に向かって偏向されることから、冷却通路Cの出口41からのオイルの排出が円滑に行われる。
 図1,図2を参照すると、シリンダブロック1において、入口通路30の入口31よりも下方の部位には、シリンダブロック1内で上下方向に平行に往復運動するピストン20に対して下方に配置されて入口通路30の入口31に向けて冷却用オイルを噴射する冷却液噴射部材としてのオイルジェット90が設けられる。
 オイルジェット90から噴射されて入口通路30から流入したオイルは、周方向通路51,52を流通して出口通路40から流出する間にピストン20を冷却する。それゆえ、冷却通路Cが設けられたピストン20およびオイルジェット90は、内燃機関Eに備えられてピストン20を冷却するためのピストン冷却装置を構成する。
 オイルジェット90は、本体91と、取付部91aに設けられた減圧部材としてオリフィス92とを備える。本体91は、シリンダブロック1に取り付けられて固定される取付部91aと、噴射口94が設けられた噴射部としての噴射管91bと、オイルジェット90をシリンダブロック1に位置決めする柱状の位置決め部91cとを有する。
 本体91には、オイル供給源としてのオイルポンプ96から供給されたオイルがシリンダブロック1に設けられたオイル供給通路としてのメインギャラリ97と該メインギャラリ97に連通するオイル導入通路97とを経て導かれる噴射用オイル通路93が設けられる。オイル通路93は、噴射管91bに設けられてクランク室4に開口する噴射口94を有する。噴射口94は中心軸線Lpにほぼ平行に入口31を指向し、入口31を含めて入口通路30の全体は、平面視で噴射口94の全体と重なる位置にある。
 オイルポンプ96は、前記クランク軸6の動力により駆動される容積型の回転ポンプであり、機関回転速度の増加に比例して供給オイル流量が増加する。
 メインギャラリ97とオイル通路93との間に配置されるオリフィス92は、メインギャラリ97のオイルのオイル圧を減圧する。したがって、オイル通路93には、オリフィス92により減圧されたオイルが導かれる。別の例として、オリフィス92は、メインギャラリ97とオイルジェット90とを連通させてメインギャラリ97のオイルをオイルジェット90に導くオイル導入通路97に設けられてもよい。
 噴射口94の開口面積は、オリフィス92の絞り通路面積よりも大きい。噴射口94の開口面積を大きくすることにより、オイルの円錐形状の噴射流の径を大きくできるので、分岐による分配のバラツキを低減できる。また、オリフィス92の絞り通路面積が噴射口94の開口面積よりも小さいことにより、メインギャラリ97でのオイル圧の低下が抑制され、噴射速度も小さくすることができて、噴射流量を低減できる。
 オイルジェット90は、内燃機関Eの運転時、冷却通路Cにおいて、オイルとクランク室4内の気体である空気との気液2相プラグ流(または、スラグ流)が、少なくとも最大出力運転時において形成されるように、吸入行程および膨張行程でのピストン20の下降行程および圧縮行程および排気行程での上昇行程の各行程において、各行程の全範囲に渡って連続してオイルを入口31に向けて噴射する。
 オイルの噴射速度(以下、単に「噴射速度」という。)は、オイル通路93のオイル圧に依存し、オイル通路93のオイル圧はオイルポンプ96の回転速度、すなわち機関回転速度に依存し、該機関回転速度の増加に比例して増加する。ここで、噴射速度は、噴射口94での噴射速度である。
 そして、噴射速度は、最大出力運転時のピストン20の最高速度(以下、「ピストン最高速度」という。)以下に設定され、好ましくは、ピストン最高速度の30%以上で90%以下の範囲に設定される。
 噴射速度が、ピストン最高速度の30%未満であるとき、またはピストン最高速度の90%を超えるときは、最大出力運転時に冷却通路Cでプラグ流が形成される確実性が低下し、冷却通路Cのオイルによる最大出力運転時でのピストン20の冷却効果が低下する。
 以下、このプラグ流について詳述する。
 一般に、気体と液体とが流れる通路において、気体が通路断面全体に渡る大きな気泡(以下、「気体プラグ」という。)と、該気体プラグに分断されると共に通路断面全体に亘る液体部分(以下、「液体プラグ」という。)とが交互に流れる気液2相プラグ流は、液体の流量に対して気体の流量が所定流量範囲にある場合に形成される一方、該所定流量範囲外では、プラグ流以外の気液2相流が形成されることが知られている。例えば、前記所定流量範囲よりも気体の流量が少ないときには、通路断面全体に亘る液体中に小さな気泡が分散した気泡流となり、前記所定流量範囲よりも気体の流量が多いときには、液体が通路壁を膜状になって流れ、気体が通路の中心部を流れる環状流となる。
 そして、プラグ流においては、液体プラグの内部で発生する液体の循環流により、通路壁と液体との間での熱伝達が促進されて、オイルによる冷却効果が向上する。
 そこで、内燃機関Eの運転領域において、ピストン20の温度が最も高くなるのは最大出力運転時であることから、少なくとも最大出力運転時に、冷却通路Cを流れるオイルによるピストン20の冷却効果を高めるために、周方向通路51,52にプラグ流が形成されるように、オイルジェット90から噴射されるオイルの噴射速度および噴射流量(以下、単に「噴射流量」という。)が設定される。
 噴射速度および噴射流量は、噴射速度が、最大出力運転時のピストン最高速度以下であること、好ましくはピストン最高速度の30%以上で90%以下の範囲に設定されることを条件として、ピストン20の下降行程および上昇行程で構成される1往復行程中に、オイルジェット90から噴射されたオイルが入口31に達するまでに空気抵抗により減速するために、最大出力運転時において噴射速度がピストン最高速度に等しい場合にもオイルが供給されない時期が確保されること、および、オイルジェット90から噴射されたオイルがクランク室4内の空気を随伴して、該随伴空気と共に入口通路30に流入することなどが考慮されて、実験やシミュレーション等に基づいて決められる。そして、噴射流量については、上限値が存在するものの、該上限値に達するまでは噴射流量が多いほど冷却効果が向上する。
 図4(a)を参照すると、第1,第2導入通路61,62とプラグ流との関係では、入口通路30で形成された後記プラグ流は、分岐壁28dにより周方向に二分割されて、導入通路61,62でのプラグ流が形成される。
 そして、導入通路61,62は、その通路面積が連続的に増加するディフューザ通路である(すなわち、拡大率RがR>0である)ことにより、ディフューザ通路になっていない導入通路に比べて導入通路61,62の最上流部61a,62aに連なる入口通路30の通路面積を小さくできるので、入口通路30でのプラグ流の形成を容易化できる。しかも、導入通路61,62が段差なく連続的に、したがって滑らかに湾曲している湾曲通路であることにより、上下方向に延びている入口通路30から水平方向に延びている主通路71,72に、入口通路30で形成されたプラグ流が分岐壁28dにより分割されて円滑に導かれる。
 また、図5を参照すると、導入通路61,62の拡大率Rに応じてプラグ流によるピストン20の冷却効果が変わることが分かる。なお、内燃機関Eの最大出力運転時における拡大率Rと冷却効果との関係については、冷却通路Cにプラグ流を形成することが可能な噴射速度および噴射流量の範囲で、噴射速度および噴射流量に殆ど依存することなく、図5に示される相関関係とほぼ同様の相関関係を有する。
 このように拡大率Rに応じてプラグ流による冷却効果が変わる原因は、冷却効果が最大となる最適拡大率Roに対して拡大率Rが小さくなるほど、導入通路61,62での通路抵抗が増大して、冷却効果が低下し、最適拡大率Roに対して拡大率Rが大きくなるほど、導入通路61,62でのオイルの流れが通路壁から剥離し易くなるために、プラグ流の液体プラグと通路壁との接触が不安定化して、冷却効果が低下するためと考えられる。
 そこで、内燃機関E(図1参照)の最大出力運転時にオイルジェット90から噴射されるオイルの噴射速度および噴射流量が同一である条件下での比較対象ピストンに比べて、ピストン20の高い冷却効果が得られる、換言すれば、図5において、ピストン20の頂面温度Tが比較対象ピストンの頂面温度Taよりも低くなる拡大率Rとして、拡大率Rは0.06≦R≦0.8の範囲の値に設定される。
 ここで、比較対象ピストンとは、ピストンに設けられた冷却通路が、導入通路61,62(図3,図4参照)に相当する通路部分を有しておらず、入口通路30に主通路71,72(図3,図4参照)が直接連なる形状(図3(b)に相当する図での冷却通路の形状がT字状)の通路であるピストンである。
 そして、拡大率Rは、より好ましくは、前記比較対象ピストンに比べて一層高い冷却効果が得られるように、最適拡大率Roを含む0.5Ro≦R≦2Roの範囲の値に設定される。
 なお、オイル通路93のオイル圧は、メインギャラリ97のオイル圧が機関回転速度に応じて変化すること、および最大出力運転時の機関回転速度よりも低い機関回転速度の運転時にはピストン20の温度が最大出力運転時の温度よりも低くなることから、前記低い機関回転速度での内燃機関Eの運転時には、冷却通路Cにおいて、プラグ流が形成されることなく、気泡流が形成される噴射速度または噴射流量であってもよい。
 次に、前述のように構成された実施形態の作用および効果について説明する。
 ピストン冷却装置は、冷却通路Cが設けられたピストン20と、ピストン20が上下方向に往復運動するとき下方に向かって開口する入口通路30に対して下方に配置された噴射口94からオイルを噴射するオイルジェット90とを備え、冷却通路Cに気体とオイルとの気液2相プラグ流が、少なくとも内燃機関Eの最大出力運転時に形成されるように、オイルジェット90はピストン20の各行程においてオイルを噴射し、かつ噴射口94でのオイルの噴射速度は最大出力運転時のピストン20の最高速度以下とされる。
 この構造により、ピストン20の往復運動を利用することにより、冷却通路Cには、少なくとも最大出力運転時に、往復運動するピストン20の各行程において最大出力運転時のピストン20の最高速度以下の噴射速度でオイルジェット90から噴射されて供給されたオイルにより、気体とオイルとの気液2相プラグ流が形成されるので、このプラグ流によりピストン20から冷却通路C内のオイルへの熱伝達が促進されて、オイルによるピストン20の冷却効率を向上できる。そして、冷却効率の向上により、ピストン20の所要の冷却性を得ながら、オイルジェット90からのオイルの噴射流量を削減でき、ピストン冷却用のオイル量の削減ができる。また、前記気液2相プラグ流は、ピストン20の上下運動によって生じる加速度のため周方向通路50の壁面を上下に移動するために、冷却効率の一層の向上がなされる。さらにはオイルジェット90にオイルを供給するオイルポンプ96の小型化ができ、オイルポンプ96を駆動するための動力損失が減少して、燃費性能が向上する。
 周方向通路51,52は、最上流部61a,62aで入口通路30に連なる導入通路61,62と、最上流部71a,72aで導入通路61,62に連なる主通路71,72とを有し、導入通路61,62は、上方に向かうにつれて周方向に湾曲して主通路71,72に連なると共に、通路面積が下流に向かって連続的に、かつほぼ一定の拡大率Rで増加するディフューザ通路である。
 この構造により、オイルジェット90から噴射されて入口通路30から流入したオイルを主通路71,72に導く導入通路61,62が上方に向かうにつれて周方向に湾曲して主通路71,72に連なる湾曲通路であることで、入口通路30を経たオイルが導入通路61,62の通路壁28に衝突した際に生じる逆流や澱みの発生が抑制され、導入通路61,62でのオイルのエネルギを維持しながら該オイルを主通路71,72に案内することができる。
 また、各導入通路61,62は拡大率Rで連続的に拡大するディフューザ通路を構成することから、入口通路30からのオイルの運動エネルギを圧力エネルギに円滑に変換することができるので、渦や剥離に起因する圧力損失を低減できて、オイルジェット90からの低い噴射速度および少ない噴射流量のオイルで、ピストン20の所要の冷却性を得ることができる。
 さらに、導入通路61,62は、拡大率RがR>0である、すなわちその通路面積が連続的に増加するディフューザ通路であることにより、ディフューザ通路になっていない導入通路に比べて導入通路61,62の最上流部61a,62aに連なる入口通路30の通路面積を小さくできるので、入口通路30でのプラグ流の形成を容易化できる。
 そして、拡大率Rが0.06≦R≦0.8の範囲の値に設定されることにより、導入通路61,62において、拡大率が0.06未満であるときの通路抵抗の増大に起因する冷却効果の低下、および拡大率が0.8を超えるときのオイルの流れの剥離によるプラグ流の乱れに起因する冷却効果の低下が抑制される。この結果、オイルジェット90からのオイルの噴射流量を削減しながら、湾曲したディフューザ通路である導入通路61,62を有する冷却通路Cを流れるオイルによるピストン20の冷却効果を高めることができる。さらに、拡大率Rが、最適拡大率Roを含む0.5Ro≦R≦2Roの範囲の値に設定されることで、一層高い冷却効果を得ることができる。
 分岐部63は、入口通路30の通路中心線Li上に位置することにより、第1,第2分岐導入通路61,62に流入するオイル量のバラツキを抑制できるので、ピストン20の冷却を周方向で均等化できて、オイルジェット90からの噴射流量の減少に寄与できる。
 第1,第2分岐導入通路であると共にいずれもディフューザ通路を構成する第1,第2導入通路61,62のそれぞれの最上流部61a,62aの通路断面と、入口通路30の最下流部32の通路断面とが、同一で、かつ同じ位置にあり、最下流部32および最上流部61a,62aにおいて、通路中心線Liと通路中心線Ldとが一致する。
 この構造により、導入通路61,62が周方向でオーバーラップするために、ピストン20に形成される両導入通路61,62の形成領域を小さくすることができるので、オイルによるピストン20の所要の冷却性を確保しながら、ピストン20の剛性を高めることができる。
 オイルジェット90には、オイルポンプ96から吐出されたオイルがメインギャラリ97を経て導かれると共に噴射口94を有するオイル通路93が設けられ、オイル通路93には、メインギャラリ97からオリフィス92により減圧されたオイルが導かれ、噴射口94の開口面積は、オリフィス92の絞り通路面積よりも大きい。
 この構造により、オイルポンプ96から吐出されたオイルのオイル圧が、オリフィス92で減圧された後、オイルジェット90のオイル通路93に導かれるので、噴射速度を小さくできるため、噴射口94から噴射されたオイルの飛散・拡散を抑えることができて、効率よく冷却通路Cにオイルを供給することができ、しかもオイルポンプ96からのオイルをオイルジェット90に導くオイル供給通路でのオイル圧を高く維持できるので、オイルポンプ96の小型化が可能になる。
 このように、ピストン20の冷却通路Cの形状を工夫することにより、オイルによるピストンPの冷却効率の向上およびピストン冷却用オイル量の削減が可能になる。
 次に、図6を参照して本発明の第2実施形態を、図7を参照して本発明の第3実施形態を説明する。第1実施形態とは、導入通路61,62のみが相違し、その他は基本的に同一の構成を有するものである。そのため、同一の部分についての説明は省略または簡略にし、異なる点を中心に説明する。なお、実施形態の部材と同一の部材または対応する部材については、必要に応じて同一の符号が使用されている。
 第2実施形態での第1,第2導入通路161,162は、その拡大率Rが第1実施形態の導入通路61,62よりも小さい点を除いて、該導入通路61,62と同じである。
 第3実施形態での導入通路261,262の拡大率Rは、第2実施形態と同じである
 図7において、第1,第2導入通路261,262は入口通路30の最下流部32から上方(または、下流)に向かうにつれて、周方向で最下流部32から遠ざかるように互いに反対方向に湾曲する湾曲通路である。そして、分岐部63(または分岐壁28d)は、最下流部32上にほぼ位置し、入口通路30の通路中心線Li上にほぼ位置する。したがって、導入通路261,262は、入口通路30から互いにほぼ独立して主通路71,72にそれぞれ連なる1対の独立した形状の通路になっている。
 以下、前述した実施形態の一部の構成を変更した実施形態について、変更した構成に関して説明する。
 ピストン冷却装置は、オイルジェット90のオイル通路93に空気を混入するための空気供給装置(例えば、空気噴射弁や加圧空気が供給されるベンチュリ)を備えていてもよく、その場合には、冷却通路Cにプラグ流を形成可能な噴射速度の範囲または噴射流量の範囲を拡大できる。
 周方向通路は、入口通路および出口通路に対して分岐しない1つの通路であってもよい。
 拡大率は、前記実施形態では導入通路全体において一定であったが、導入通路の最上流部から最下流部に向かって連続的に増加してもよい。
 内燃機関が備えられる対象は、車両以外の装置、例えば、船外機等の船舶推進装置、または発電装置であってもよい。
20    ピストン
30    入口通路、
40    出口通路
51,52 周方向通路、
61,62 導入通路
71,72 主通路、
81,82 導出通路、
90    オイルジェット
92    オリフィス
93    オイル通路
94    噴射口、
96    オイルポンプ
97    メインギャラリ
E     内燃機関
C     冷却通路

Claims (7)

  1.  周方向に延びている周方向通路と前記周方向通路にそれぞれ連通する入口通路および出口通路とを有する冷却通路が設けられた内燃機関用ピストンと、前記ピストンが上下方向に往復運動するとき下方に向かって開口する前記入口通路に対して下方に配置された噴射口からオイルを噴射するオイルジェットとを備え、前記噴射口から噴射されたオイルが、前記入口通路から流入して前記周方向通路を経て前記出口通路から流出するピストン冷却装置において、
     前記冷却通路に気体とオイルとの気液2相プラグ流が、少なくとも内燃機関の最大出力運転時に形成されるように、前記オイルジェットは前記ピストンの各行程においてオイルを噴射し、かつ前記噴射口でのオイルの噴射速度は前記最大出力運転時の前記ピストンの最高速度以下とされることを特徴とするピストン冷却装置。
  2.  前記周方向通路は、最上流部で前記入口通路に連なる導入通路と、最上流部で前記導入通路に連なる主通路とを有し、
     前記導入通路は、上方に向かうにつれて周方向に湾曲して前記主通路に連なると共に、通路面積が下流に向かって連続的に増加するディフューザ通路であることを特徴とする請求の範囲第1項記載のピストン冷却装置。
  3.  前記導入通路の通路中心線上での最上流部からの距離をS(m)とし、前記通路中心線に直交する平面上での通路面積をA(m)としたとき、
     次式
              R=d(A1/2)/dS
     で定義される拡大率Rが0.06≦R≦0.8であることを特徴とする請求の範囲第2項記載のピストン冷却装置。
  4.  前記導入通路は、分岐部において周方向で互いに反対方向に向かって分岐する第1,第2分岐導入通路から構成され、
     前記主通路は、前記第1,第2分岐導入通路にそれぞれ連なる第1,第2主通路から構成され、
     前記分岐部は、上下方向で前記第1,前記第2主通路の最下部よりもピストン頂面寄りに位置することを特徴とする請求の範囲第1項から第3項のいずれか1項記載のピストン冷却装置。
  5.  前記分岐部は、前記入口通路の通路中心線上に位置することを特徴とする請求の範囲第4項記載のピストン冷却装置。
  6.  前記第1,第2分岐導入通路のそれぞれの最上流部の通路断面と、前記入口通路の最下流部の通路断面とが、同一で、かつ同じ位置にあることを特徴とする請求の範囲第4項記載のピストン冷却装置。
  7.  前記オイルジェットには、オイルポンプから吐出されたオイルがオイル供給通路を経て導かれると共に前記噴射口を有するオイル通路が設けられ、
     前記オイル通路には、前記オイル供給通路からオリフィスにより減圧されたオイルが導かれ、
     前記噴射口の開口面積は、前記オリフィスの絞り通路面積よりも大きいことを特徴とする請求の範囲第1項から第3項、第5項、第6項のいずれか1項記載のピストン冷却装置。
PCT/JP2011/053852 2010-02-23 2011-02-22 ピストン冷却装置 WO2011105374A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012501790A JP5692870B2 (ja) 2010-02-23 2011-02-22 ピストン冷却装置
CN201180010525.8A CN102782264B (zh) 2010-02-23 2011-02-22 活塞冷却装置
EP11747335.5A EP2541004B1 (en) 2010-02-23 2011-02-22 Piston cooling device
US13/580,905 US8511261B2 (en) 2010-02-23 2011-02-22 Piston cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010037701 2010-02-23
JP2010-037701 2010-02-23

Publications (1)

Publication Number Publication Date
WO2011105374A1 true WO2011105374A1 (ja) 2011-09-01

Family

ID=44506780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053852 WO2011105374A1 (ja) 2010-02-23 2011-02-22 ピストン冷却装置

Country Status (5)

Country Link
US (1) US8511261B2 (ja)
EP (1) EP2541004B1 (ja)
JP (1) JP5692870B2 (ja)
CN (1) CN102782264B (ja)
WO (1) WO2011105374A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013013962A1 (de) * 2013-08-23 2015-02-26 Mahle International Gmbh Baueinheit aus einem Kolben und einer Anspritzdüse für einen Verbrennungsmotor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114105A1 (de) * 2010-12-18 2012-06-21 Mahle International Gmbh Kolben für einen Verbrennungsmotor und Verfahren zu seiner Herstellung
DE102012213558A1 (de) * 2012-08-01 2014-02-06 Mahle International Gmbh Kolben
US9784151B2 (en) 2013-02-06 2017-10-10 Briggs & Stratton Corporation Spray cooled oil system for an internal combustion engine
JP6007151B2 (ja) * 2013-06-12 2016-10-12 本田技研工業株式会社 内燃機関におけるピストン冷却用オイル噴射装置の取付構造
JP6030585B2 (ja) * 2014-01-17 2016-11-24 トヨタ自動車株式会社 オイルジェットバルブの取付方法
DE102015203135A1 (de) * 2014-02-21 2015-08-27 Ks Kolbenschmidt Gmbh Kolben mit einem strömungsgünstige Ölführungsflächen aufweisenden offenem Kühlraum sowie ein Verfahren zur Kühlung dieses Kolbens
DE102016201628A1 (de) * 2016-02-03 2017-08-03 Federal-Mogul Nürnberg GmbH Kolben aus Stahl- oder Grauguss für einen Verbrennungsmotor und Verfahren zur Herstellung eines Kolbens durch Stahl- oder Grauguss
JP2019052604A (ja) * 2017-09-15 2019-04-04 スズキ株式会社 内燃機関
JP2020012389A (ja) * 2018-07-13 2020-01-23 アイシン精機株式会社 オイル供給装置
DE102018218497A1 (de) * 2018-10-29 2020-04-30 Mahle International Gmbh Kolben einer Brennkraftmaschine
GB2587663B (en) * 2019-10-04 2021-11-03 Ernest H Hill Ltd Improvements to pumps and compressors
US11326549B2 (en) * 2020-01-21 2022-05-10 Ford Global Technologies, Llc 218-0266 volcano-shaped inlet of piston oil-cooling gallery
KR20230002964A (ko) * 2020-04-22 2023-01-05 한스 옌젠 루브리케이터스 에이/에스 대형 저속 선박용 디젤 엔진을 윤활하기 위한 방법
US11959412B2 (en) 2021-05-04 2024-04-16 Cummins Inc. Pistons and piston assemblies for internal combustion engines
DE102021211034A1 (de) 2021-09-30 2023-03-30 Mahle International Gmbh Kolben
DE102022124169A1 (de) 2022-09-21 2024-03-21 Bayerische Motoren Werke Aktiengesellschaft Ölversorgungsvorrichtung für eine Kraftfahrzeugkomponente eines Kraftfahrzeugs, Kraftfahrzeugkomponente für ein Kraftfahrzeug und Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561423U (ja) 1992-01-29 1993-08-13 株式会社豊田自動織機製作所 ピストンの冷却装置
JPH08165924A (ja) * 1994-12-14 1996-06-25 Isuzu Motors Ltd オイルジェット及びその製造方法
JP2006090159A (ja) * 2004-09-21 2006-04-06 Toyota Industries Corp 内燃機関用ピストン
JP2006090158A (ja) * 2004-09-21 2006-04-06 Toyota Industries Corp 内燃機関用ピストン
JP2007224774A (ja) 2006-02-22 2007-09-06 Toyota Motor Corp 内燃機関のピストン冷却装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1018796B (it) * 1973-08-30 1977-10-20 Motoren Turbinen Union Ugello a getto libero
DE2428451A1 (de) * 1974-06-12 1976-01-02 Motoren Turbinen Union Spritzdueseneinstellung fuer brennkraftmaschinen mit kolbenkuehlung
US4206726A (en) * 1977-07-18 1980-06-10 Caterpillar Tractor Co. Double orifice piston cooling nozzle for reciprocating engines
JPS5943944A (ja) * 1982-09-07 1984-03-12 Toyota Motor Corp オイル冷却ピストン
JPH01273821A (ja) * 1988-04-23 1989-11-01 Toyota Autom Loom Works Ltd 内燃機関のピストン冷却装置
US5595145A (en) * 1995-05-31 1997-01-21 Kabushiki Kaisha Komatsu Seisakusho Cooling structure of diesel engine piston
JPH10176599A (ja) * 1996-12-18 1998-06-30 Aisin Seiki Co Ltd 内燃機関用ピストン
GB9909034D0 (en) * 1999-04-19 1999-06-16 Seneca Tech Ltd Piston coolant path
DE19933363A1 (de) * 1999-07-20 2001-02-01 Daimler Chrysler Ag Vorrichtung zur Kühlung und/oder Schmierung einer Hubkolbenbrennkraftmaschine
DE102004043720A1 (de) * 2004-09-09 2006-03-30 Federal-Mogul Nürnberg GmbH Kolben für einen Verbrennungsmotor sowie Verbrennungsmotor
DE102004057626B4 (de) * 2004-11-30 2014-02-06 Mahle International Gmbh Kolbenspritzdüse

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561423U (ja) 1992-01-29 1993-08-13 株式会社豊田自動織機製作所 ピストンの冷却装置
JPH08165924A (ja) * 1994-12-14 1996-06-25 Isuzu Motors Ltd オイルジェット及びその製造方法
JP2006090159A (ja) * 2004-09-21 2006-04-06 Toyota Industries Corp 内燃機関用ピストン
JP2006090158A (ja) * 2004-09-21 2006-04-06 Toyota Industries Corp 内燃機関用ピストン
JP2007224774A (ja) 2006-02-22 2007-09-06 Toyota Motor Corp 内燃機関のピストン冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2541004A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013013962A1 (de) * 2013-08-23 2015-02-26 Mahle International Gmbh Baueinheit aus einem Kolben und einer Anspritzdüse für einen Verbrennungsmotor
US9951715B2 (en) 2013-08-23 2018-04-24 Mahle International Gmbh Sub-assembly consisting of a piston and an injection nozzle for an internal combustion engine

Also Published As

Publication number Publication date
CN102782264B (zh) 2014-12-24
CN102782264A (zh) 2012-11-14
EP2541004A1 (en) 2013-01-02
JPWO2011105374A1 (ja) 2013-06-20
JP5692870B2 (ja) 2015-04-01
EP2541004B1 (en) 2014-05-14
US8511261B2 (en) 2013-08-20
EP2541004A4 (en) 2013-07-24
US20130000572A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
JP5692870B2 (ja) ピストン冷却装置
US8875670B2 (en) Engine with cylinder head cooling
US8967129B2 (en) Ducted combustion chamber for direct injection engines and method
US9840961B2 (en) Cylinder head of an internal combustion engine
KR20100044575A (ko) 피스톤 냉각 장치
US9915190B2 (en) Ducted combustion systems utilizing Venturi ducts
KR102355836B1 (ko) 엔진 장치
JP2010014067A (ja) 内燃機関のシリンダブロック
CN100462541C (zh) 气缸盖结构
JP2000220451A (ja) 内燃機関のシリンダヘッド冷却構造
JP2014098346A (ja) ユニフロー式ディーゼル機関
JP3210638U (ja) 内燃機関のピストン
US20200256279A1 (en) Water cooled engine
JP4869121B2 (ja) 内燃機関用ピストン
JP2013181447A (ja) ピストンの潤滑装置
US8826881B2 (en) Engine and cylinder with gas exchange through the cylinder wall
US20200018199A1 (en) Oil supply device
US10267272B2 (en) Intake apparatus and intake flow control valve of internal combustion engine
CN109989824A (zh) 内燃机的进气结构
JP6402997B2 (ja) 内燃機関
JP2023061153A (ja) エンジンの燃焼室構造
US9850847B2 (en) Piston for internal combustion engine
JP5162688B2 (ja) ピストン
JP2006090158A (ja) 内燃機関用ピストン
KR100411105B1 (ko) 내연기관의 배기가스 재순환장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010525.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501790

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13580905

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011747335

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8171/CHENP/2012

Country of ref document: IN