WO2011104991A1 - 放射線画像撮影装置 - Google Patents
放射線画像撮影装置 Download PDFInfo
- Publication number
- WO2011104991A1 WO2011104991A1 PCT/JP2010/073495 JP2010073495W WO2011104991A1 WO 2011104991 A1 WO2011104991 A1 WO 2011104991A1 JP 2010073495 W JP2010073495 W JP 2010073495W WO 2011104991 A1 WO2011104991 A1 WO 2011104991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- radiation
- detection element
- radiation detection
- scanning
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 317
- 238000003384 imaging method Methods 0.000 title claims abstract description 77
- 238000001514 detection method Methods 0.000 claims abstract description 252
- 238000000034 method Methods 0.000 claims description 70
- 230000008569 process Effects 0.000 claims description 44
- 238000003672 processing method Methods 0.000 claims description 4
- 230000000717 retained effect Effects 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 abstract description 6
- 230000000875 corresponding effect Effects 0.000 description 39
- 239000000758 substrate Substances 0.000 description 22
- 230000002596 correlated effect Effects 0.000 description 8
- 238000005070 sampling Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000002161 passivation Methods 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910021476 group 6 element Inorganic materials 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/30—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14632—Wafer-level processed structures
Definitions
- the present invention relates to a radiographic imaging apparatus, and more particularly to a radiographic imaging apparatus capable of detecting radiation irradiation.
- a so-called direct type radiographic imaging device that generates electric charges by a detection element in accordance with the dose of irradiated radiation such as X-rays and converts it into an electrical signal, or other radiation such as visible light with a scintillator or the like.
- Various so-called indirect radiographic imaging devices have been developed that convert charges to electromagnetic waves after being converted into electrical signals by generating electric charges with photoelectric conversion elements such as photodiodes in accordance with the energy of the converted and irradiated electromagnetic waves. Yes.
- the detection element in the direct type radiographic imaging apparatus and the photoelectric conversion element in the indirect type radiographic imaging apparatus are collectively referred to as a radiation detection element.
- This type of radiographic imaging device is known as an FPD (Flat Panel Detector) and has been conventionally formed integrally with a support base (or a bucky apparatus) (see, for example, Patent Document 1).
- FPD Full Panel Detector
- a portable radiographic imaging device in which an element or the like is housed in a housing has been developed and put into practical use (see, for example, Patent Documents 2 and 3).
- radiographic imaging apparatus it may not always be easy to construct an interface between the radiographic imaging apparatus and a radiation generation apparatus that irradiates radiation. In some cases, it is convenient that the radiation imaging apparatus itself is configured to be able to detect the start and end of radiation irradiation without obtaining from the external device.
- each radiation detection element is changed to each radiation detection element. It has been proposed to detect the start of radiation irradiation based on the increase / decrease of the current value by utilizing the fact that electric charge flows out to the connected bias line and the current flowing through the bias line increases.
- JP-A-9-73144 JP 2006-58124 A Japanese Patent Laid-Open No. 6-342099 US Pat. No. 7,211,803 JP 2009-219538 A
- a charge (exactly an electron-hole pair) is generated inside the radiation detection element, and the charge amount of the generated charge changes according to the radiation dose.
- the radiation dose can be converted into an electrical signal (that is, image data) and read out.
- electron-hole pairs that is, so-called dark charges
- the radiation detection element even when the radiation imaging apparatus is not irradiated with radiation, electron-hole pairs (that is, so-called dark charges) are generated inside the radiation detection element itself due to thermal excitation by heat of the radiation detection element itself. It always occurs.
- each radiation detection element 7 is performed in each region partitioned by a plurality of scanning lines 5 and a plurality of signal lines 6 arranged so as to intersect each other, as shown in FIG. a plurality of radiation detection elements 7 arranged two-dimensionally in r, and provided with each of the radiation detection elements 7, for example, comprising a switch means formed of a thin film transistor (hereinafter referred to as TFT) 8.
- TFT thin film transistor
- each radiation detection element 7 When the reset processing of each radiation detection element 7 is performed in this way, from the hundreds connected to the scanning line 5 to which the ON voltage is applied from the gate driver 15b (see FIG. 7 and the like) through the TFTs 8 respectively.
- electrons out of electron-hole pairs as dark charges flow out from thousands of each radiation detection element 7 to each signal line 6 through each TFT 8, and each radiation detection element 7 to each bias line 9.
- holes flow out.
- each time the ON voltage is applied to the scanning line 5 from the gate driver 15b of the scanning driving unit 15 to the current detecting unit 43 formed on the connection 10 in which each bias 9 is converged Holes as dark charges flow into the current detection means 43 from hundreds to thousands of radiation detection elements 7 connected to the scanning line 5.
- the current detection unit 43 when the current detection unit 43 is configured to detect the current flowing through the bias line 9 or the connection 10 by converting the current value into, for example, the voltage value V, the current detection unit 43 during the reset process of each radiation detection element 7. For example, as shown in FIG. 23, the voltage value V corresponding to the current detected in is detected so as to repeatedly increase and decrease each time the scanning line 5 to which the on-voltage is applied is switched. Note that “ON” indicated by an arrow in FIG. 23 represents the timing at which the scanning line 5 to which the ON voltage is applied is switched.
- the voltage value V corresponding to the current flowing through the connection 10 detected by the current detection means 43 is a relatively large value as shown in FIG. At that time, detection is performed as shown in FIG. 25 together with the positive holes flowing out from the radiation detecting elements 7 as dark charges. Therefore, for example, by setting a threshold value Vth of an appropriate value in advance for the voltage value V corresponding to the current flowing in the connection 10, it is possible to detect that the voltage value V exceeds the threshold value Vth. Thus, it is possible to detect that radiation irradiation to the radiation image capturing apparatus has started.
- the voltage value V corresponding to the current flowing through the connection 10 detected by the current detection means 43 is set to a small value as shown in FIG.
- the voltage corresponding to the current flowing in the connection 10 detected by the current detection means 43 is obtained.
- the value V is detected in the state shown in FIG.
- the current caused by the dark charge flowing out to the bias line 9 and the connection line 10 every time an on-voltage is applied from the gate driver 15b of the scanning drive unit 15 to the scanning line 5 is not always the same value. Usually, the value varies. Therefore, as can be seen from the graph shown in FIG. 27, it is difficult to set an appropriate threshold in advance for the voltage value V, for example, when the dose of radiation irradiated to the radiographic imaging device is small. As shown in FIG. 25, it is impossible to detect that the radiation imaging apparatus has started irradiation with radiation based on the threshold value.
- the radiographic imaging device when used for medical purposes, for example, for imaging a lesioned part of a patient, the radiation emitted from the radiation generating device is scattered or absorbed by the patient's body, etc. In some cases, only weak radiation reaches the imaging device. Therefore, even when the radiation image capturing apparatus is irradiated with weak radiation, that is, radiation with a small dose, the radiation image capturing apparatus itself starts radiation irradiation, etc. It is desirable to be able to detect accurately.
- the present invention has been made in view of the above-described problems, and is a radiographic image capable of accurately detecting that radiation irradiation has started at least even when radiation having a small dose is irradiated.
- An object is to provide a photographing apparatus.
- the radiographic imaging device of the present invention includes: A plurality of scanning lines and a plurality of signal lines arranged so as to intersect with each other; a plurality of radiation detecting elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines; , An off state and an on state are switched according to a voltage applied to the connected scanning line, arranged for each radiation detection element, and in the off state, the charge generated in the radiation detection element is retained, Switch means for releasing the charge from the radiation detection element in the ON state; Scan driving means comprising: a gate driver that switches a voltage applied to the switch means via the scanning line between an on voltage and an off voltage; and a power supply circuit that supplies the on voltage and the off voltage to the gate driver.
- the current detection unit flows through the bias line, the scanning line, and the like while the off-voltage is applied to all the scanning lines from the gate driver of the scanning driving unit.
- FIG. 2 is a cross-sectional view taken along line XX in FIG. It is a top view which shows the structure of a board
- FIG. 4 is an enlarged view showing a configuration of a radiation detection element, a TFT and the like formed in a region r on the substrate of FIG. 3.
- FIG. 5 is a cross-sectional view taken along line YY in FIG. It is a side view explaining the board
- FIG. 27 is a graph for explaining that when the currents of FIG. 23 and FIG. 26 are combined, a voltage value corresponding to a current generated by radiation irradiation is buried in a voltage value corresponding to a current caused by dark charges.
- the radiographic imaging device is a so-called indirect radiographic imaging device that includes a scintillator or the like and converts the irradiated radiation into electromagnetic waves of other wavelengths such as visible light to obtain an electrical signal.
- the present invention can also be applied to a direct radiographic imaging apparatus.
- the radiographic image capturing apparatus is portable will be described, the present invention is also applicable to a radiographic image capturing apparatus formed integrally with a support base or the like.
- FIG. 1 is an external perspective view of a radiographic imaging apparatus according to the first embodiment of the present invention
- FIG. 2 is a cross-sectional view taken along line XX of FIG.
- the radiographic imaging apparatus 1 according to the present embodiment is configured as a portable (cassette type) apparatus in which a scintillator 3, a substrate 4, and the like are housed in a housing 2. .
- the housing 2 is formed of a material such as a carbon plate or plastic that transmits radiation at least on a surface R (hereinafter referred to as a radiation incident surface R) that receives radiation.
- a radiation incident surface R a surface that receives radiation.
- 1 and 2 show a case in which the housing 2 is a so-called lunch box type formed by the frame plate 2A and the back plate 2B.
- the housing 2 is integrally formed in a rectangular tube shape. It is also possible to use a so-called monocoque type.
- the side surface of the housing 2 is opened and closed for replacement of a power switch 36, an indicator 37 composed of LEDs and the like, and a battery 41 (not shown) (see FIG. 7 described later).
- a possible lid member 38 and the like are arranged.
- the antenna device 39 is embedded in the side surface of the lid member 38.
- the installation position of the antenna device 39 is not limited to the side surface portion of the lid member 38, and the antenna device 39 can be installed at an arbitrary position of the radiographic image capturing apparatus 1.
- the number of antenna devices 39 to be installed is not limited to one, and a plurality of antenna devices 39 may be provided.
- a base 31 is disposed inside the housing 2 via a lead thin plate (not shown) on the lower side of the substrate 4, and electronic components 32 and the like are disposed on the base 31.
- the PCB substrate 33, the buffer member 34, and the like are attached.
- a glass substrate 35 for protecting the substrate 4 and the radiation incident surface R of the scintillator 3 is disposed.
- the scintillator 3 is affixed to a detection part P (described later) of the substrate 4.
- the scintillator 3 is, for example, a phosphor whose main component is converted into an electromagnetic wave having a wavelength of 300 to 800 nm, that is, an electromagnetic wave centered on visible light when it receives radiation, and that is output.
- the substrate 4 is formed of a glass substrate. As shown in FIG. 3, a plurality of scanning lines 5 and a plurality of signal lines are provided on a surface 4 a of the substrate 4 facing the scintillator 3. 6 are arranged so as to cross each other. In each region r defined by the plurality of scanning lines 5 and the plurality of signal lines 6 on the surface 4 a of the substrate 4, radiation detection elements 7 are respectively provided.
- a photodiode is used as the radiation detection element 7, but other than this, for example, a phototransistor or the like can also be used.
- Each radiation detection element 7 is connected to the source electrode 8s of the TFT 8 serving as a switch means, as shown in the enlarged views of FIGS.
- the drain electrode 8 d of the TFT 8 is connected to the signal line 6.
- the TFT 8 is turned on when a turn-on voltage is applied to the connected scanning line 5 by the scanning drive means 15 described later and applied to the gate electrode 8g, and is generated and accumulated in the radiation detection element 7. The charged electric charge is discharged to the signal line 6.
- the TFT 8 is turned off when the off voltage is applied to the connected scanning line 5 and the off voltage is applied to the gate electrode 8g, and the discharge of the charge from the radiation detecting element 7 to the signal line 6 is stopped. Electric charges generated in the radiation detection element 7 are held and accumulated in the radiation detection element 7.
- FIG. 5 is a sectional view taken along line YY in FIG.
- a gate electrode 8g of a TFT 8 made of Al, Cr or the like is formed on the surface 4a of the substrate 4 so as to be integrally laminated with the scanning line 5, and silicon nitride (laminated on the gate electrode 8g and the surface 4a).
- An upper portion of the gate electrode 8g on the gate insulating layer 81 made of SiN x ) or the like is connected to the first electrode 74 of the radiation detection element 7 via a semiconductor layer 82 made of hydrogenated amorphous silicon (a-Si) or the like.
- the formed source electrode 8s and the drain electrode 8d formed integrally with the signal line 6 are laminated.
- the source electrode 8s and the drain electrode 8d are divided by a first passivation layer 83 made of silicon nitride (SiN x ) or the like, and the first passivation layer 83 covers both electrodes 8s and 8d from above.
- ohmic contact layers 84a and 84b formed in an n-type by doping hydrogenated amorphous silicon with a group VI element are stacked between the semiconductor layer 82 and the source electrode 8s and the drain electrode 8d, respectively.
- the TFT 8 is formed as described above.
- an auxiliary electrode 72 is formed by laminating Al, Cr, or the like on the insulating layer 71 formed integrally with the gate insulating layer 81 on the surface 4 a of the substrate 4.
- a first electrode 74 made of Al, Cr, Mo or the like is laminated on the auxiliary electrode 72 with an insulating layer 73 formed integrally with the first passivation layer 83 interposed therebetween.
- the first electrode 74 is connected to the source electrode 8 s of the TFT 8 through the hole H formed in the first passivation layer 83.
- a p layer 77 formed by doping a group III element into silicon and forming a p-type layer is formed by laminating sequentially from below.
- the electromagnetic wave When radiation enters from the radiation incident surface R of the housing 2 of the radiographic imaging apparatus 1 and is converted into an electromagnetic wave such as visible light by the scintillator 3, and the converted electromagnetic wave is irradiated from above in the figure, the electromagnetic wave is detected by radiation.
- the electron hole pair is generated in the i layer 76 by reaching the i layer 76 of the element 7. In this way, the radiation detection element 7 converts the electromagnetic waves irradiated from the scintillator 3 into electric charges.
- a second electrode 78 made of a transparent electrode such as ITO is laminated and formed so that the irradiated electromagnetic wave reaches the i layer 76 and the like.
- the radiation detection element 7 is formed as described above.
- the order of stacking the p layer 77, the i layer 76, and the n layer 75 may be reversed. Further, in the present embodiment, a case where a so-called pin-type radiation detection element formed by sequentially stacking the p layer 77, the i layer 76, and the n layer 75 as described above is used as the radiation detection element 7. However, for example, it may be configured by other types of radiation detection elements such as a MIS (Metal-Insulator-Semiconductor) type, and is not limited.
- MIS Metal-Insulator-Semiconductor
- a bias line 9 for applying a bias voltage to the radiation detection element 7 is connected to the upper surface of the second electrode 78 of the radiation detection element 7 via the second electrode 78.
- the second electrode 78 and the bias line 9 of the radiation detection element 7, the first electrode 74 extended to the TFT 8 side, the first passivation layer 83 of the TFT 8, that is, the upper surfaces of the radiation detection element 7 and the TFT 8 are A second passivation layer 79 made of silicon nitride (SiN x ) or the like is covered from above.
- one bias line 9 is connected to a plurality of radiation detection elements 7 arranged in rows, and each bias line 9 is connected to a signal line 6. Are arranged in parallel with each other.
- each bias line 9 is bound to one connection 10 at a position outside the detection portion P of the substrate 4.
- each scanning line 5, each signal line 6, and connection 10 of the bias line 9 are input / output terminals (also referred to as pads) provided near the edge of the substrate 4. 11 is connected.
- each input / output terminal 11 has a COF (Chip On Film) 12 in which a chip such as a gate IC 12 a constituting a gate driver 15 b described later is incorporated on an anisotropic conductive adhesive film ( They are connected via an anisotropic conductive adhesive material 13 such as Anisotropic (Conductive Film) or anisotropic conductive paste (Anisotropic Conductive Paste).
- COF Chip On Film
- the COF 12 is routed to the back surface 4b side of the substrate 4 and connected to the PCB substrate 33 described above on the back surface 4b side.
- substrate 4 part of the radiographic imaging apparatus 1 is formed.
- illustration of the electronic component 32 and the like is omitted.
- FIG. 7 is a block diagram illustrating an equivalent circuit of the radiographic imaging apparatus 1 according to the present embodiment
- FIG. 8 is a block diagram illustrating an equivalent circuit for one pixel constituting the detection unit P.
- each radiation detection element 7 of the detection unit P of the substrate 4 has the bias line 9 connected to the second electrode 78, and each bias line 9 is bound to the connection 10 to the bias power supply 14. It is connected.
- the bias power supply 14 applies a bias voltage to the second electrode 78 of each radiation detection element 7 via the connection 10 and each bias line 9.
- the bias line 9 is connected to the p-layer 77 side (see FIG. 5) of the radiation detection element 7 via the second electrode 78
- a voltage lower than the voltage applied to the first electrode 74 side of the radiation detection element 7 (that is, a so-called reverse bias voltage) is applied to the second electrode 78 of the radiation detection element 7 as a bias voltage via the bias line 9. Yes.
- the bias power source 14 is connected to a control unit 22 described later, and the control unit varies the bias voltage applied from the bias power source 14 to each radiation detection element 7 as necessary. Yes.
- connection 10 of the bias line 9 is provided with a current detection means 43 that detects a current flowing through the connection 10 (bias line 9).
- each bias line 9 is bound to one connection 10.
- the current detection means 43 is connected to one connection 10.
- each bias line 9 is configured to be bound to a plurality of connections 10.
- the current detection means 43 can be provided in each connection 10, or the current detection means 43 can be provided in some of the plurality of connections 10. Is possible.
- the current detection means 43 is provided at a connection portion between the connection 10 of the bias line 9 and the bias power supply 14, and detects the current flowing through the connection 10 of the bias line 9 by converting it into a voltage value V. It is supposed to be.
- the current detection unit 43 is a resistor having a predetermined resistance value connected in series to the connection 10 of the bias line 9 that connects the bias power supply 14 and each radiation detection element 7. 43 a, a diode 43 b connected in parallel thereto, and a differential amplifier 43 c that measures the voltage V between both terminals of the resistor 43 a and outputs the voltage V to the control means 22.
- the current detection means 43 measures the voltage V between both terminals of the resistor 43a by the differential amplifier 43c, and converts the current flowing through the resistor 43a, that is, the current flowing through the connection 10 of the bias line 9 into a voltage value V. Then, it is detected and output to the control means 22.
- the resistor 43a provided in the current detection means 43 a resistor having a resistance value capable of converting the current flowing through the connection 10 into an appropriate voltage value V is used. Moreover, the detection accuracy in the case of a low dose is improved by connecting the diode 43b in parallel with the resistor 43a. It is also possible to connect only one of the resistor 43a and the diode 43b in series with the wiring and measure the voltage V between the two terminals with the differential amplifier 43c.
- the current detection unit 43 is provided with a switch 43d for short-circuiting both terminals of the resistor 43a when it is not necessary to detect the current flowing through the connection 10 of the bias line 9. ing.
- the current detection unit 43 is configured to detect the current flowing through the bias line 9 and the connection 10 by converting the current into the voltage value V as described above. It is also possible to configure so as to detect the current value itself, for example, by detecting the magnetism generated around the.
- each radiation detection element 7 is connected to the source electrode 8s (denoted as S in FIGS. 7 and 8) of the TFT 8, and each TFT 8
- the gate electrode 8g (denoted as G in FIGS. 7 and 8) is connected to each of the lines L1 to Lx of each scanning line 5 extending from a gate driver 15b of the scanning driving means 15 described later.
- the drain electrode 8 d (denoted as D in FIGS. 7 and 8) of each TFT 8 is connected to each signal line 6.
- the scanning drive unit 15 includes a power supply circuit 15a and a gate driver 15b, and an on-voltage applied to the gate electrode 8g of the TFT 8 via each scanning line 5 connected to the gate driver 15b.
- the off voltage is controlled.
- the power supply circuit 15a supplies an on voltage and an off voltage to be applied to the gate electrode 8g of the TFT 8 via each scanning line 5 to the gate driver 15b.
- the gate driver 15b is formed by juxtaposing a plurality of the gate ICs 12a described above, and can modulate the pulse width of the on-voltage applied to each scanning line 5 by pulse width modulation (PWM) or the like. It is like that. Further, the gate driver 15b switches the time interval for applying the ON voltage to each scanning line 5, that is, switching the voltage applied to each scanning line 5 from the OFF voltage to the ON voltage, and then switching to the OFF voltage again or next.
- the time interval ⁇ T (hereinafter referred to as “on timing ⁇ T”) until the scanning line 5 is switched to the on voltage can be varied.
- Each signal line 6 is connected to each readout circuit 17 formed in the readout IC 16.
- the read IC 16 is provided with a predetermined number of read circuits 17, and by providing a plurality of read ICs 16, the read circuits 17 corresponding to the number of signal lines 6 are provided. .
- the readout circuit 17 includes an amplification circuit 18, a correlated double sampling circuit 19, an analog multiplexer 21, and an A / D converter 20. 7 and 8, the correlated double sampling circuit 19 is represented as CDS. In FIG. 8, the analog multiplexer 21 is omitted.
- the amplifier circuit 18 is configured by a charge amplifier circuit, and is configured by connecting a capacitor 18b and a charge reset switch 18c in parallel to the operational amplifier 18a and the operational amplifier 18a. Further, the signal line 6 is connected to the inverting input terminal on the input side of the operational amplifier 18 a of the amplifier circuit 18, and the reference potential V 0 is applied to the non-inverting input terminal on the input side of the amplifier circuit 18. ing. Note that the reference potential V 0 is set to an appropriate value, and in this embodiment, for example, 0 [V] is applied.
- the charge reset switch 18c of the amplifier circuit 18 is connected to the control means 22, and is controlled to be turned on / off by the control means 22.
- the charge reset switch 18c is off and the TFT 8 of the radiation detection element 7 is turned on (that is, when an on-voltage is applied to the gate electrode 8g of the TFT 8 via the scanning line 5)
- the radiation The electric charge discharged from the detection element 7 flows into the capacitor 18b and is accumulated, and a voltage value corresponding to the accumulated electric charge is output from the output terminal of the operational amplifier 18a.
- the amplifying circuit 18 outputs a voltage in accordance with the amount of charge output from each radiation detection element 7 to perform charge voltage conversion and amplify the voltage. Further, by turning on the charge reset switch 18c, the input side and the output side of the amplifier circuit 18 can be short-circuited, and the charge accumulated in the capacitor 18b can be discharged to reset the amplifier circuit 18. It has become.
- the amplifier circuit 18 may be configured to output a current in accordance with the charge output from the radiation detection element 7. Further, as shown in FIG. 8, power is supplied to the amplifier circuit 18 from a power supply unit 18d. In FIG. 7, the power supply unit 18d is not shown.
- a correlated double sampling circuit (CDS) 19 is connected to the output side of the amplifier circuit 18.
- the correlated double sampling circuit 19 has a sample and hold function.
- the sample and hold function in the correlated double sampling circuit 19 is turned on / off by a pulse signal transmitted from the control means 22. To be controlled.
- the correlated double sampling circuit 19 is configured so that each TFT 8 is turned on after the amplifier circuit 18 is reset and the charge reset switch 18c is turned off.
- the first pulse signal is received from the control means 22 at a time before the signal is taken, the voltage value output from the amplifier circuit 18 at that time is held. Thereafter, the TFT 8 is turned on, and the electric charge discharged from the radiation detection element 7 through the TFT 8 and the signal line 6 flows into the capacitor 18b and is accumulated.
- the correlated double sampling circuit 19 has passed a predetermined time from the time when the first pulse signal is received from the control means 22, and when the charge discharged from the radiation detecting element 7 flows into the capacitor 18b and is accumulated.
- the second pulse signal is received from the control means 22, the voltage value output from the amplifier circuit 18 is held again at that time, and the difference value between these voltage values is output downstream as analog image data. It is supposed to be.
- the image data of each radiation detection element 7 output from the correlated double sampling circuit 19 is transmitted to the analog multiplexer 21 and sequentially transmitted from the analog multiplexer 21 to the A / D converter 20. Then, the A / D converter 20 sequentially converts the image data into digital values, which are output to the storage means 40 and sequentially stored.
- the control means 22 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a RAM (Random Access Memory), an input / output interface connected to the bus, an FPGA (Field Programmable Gate Array), etc. It is configured. It may be configured by a dedicated control circuit. And the control means 22 controls operation
- DRAM Dynamic RAM
- control unit 22 is connected to the antenna device 39 described above, and each function of the detection unit P, the scanning drive unit 15, the readout circuit 17, the storage unit 40, the bias power source 14, and the like.
- a battery 41 for supplying power to the unit is connected.
- the battery 41 is provided with a connection terminal 42 that connects the charging device and the battery 41 when the battery 41 is charged by supplying power from a charging device (not shown).
- the control means 22 activates the radiographic imaging apparatus 1 by pressing a power switch 36 (see FIG. 1) of the radiographic imaging apparatus 1 or transmitting an activation signal from an external computer or the like. Or when the radiographic imaging device 1 transitions from a so-called sleep state to an awake state, a trigger signal is transmitted to the scanning drive unit 15 and reset processing of each radiation detection element 7 is started in the scanning drive unit 15 It is supposed to let you.
- the scanning drive unit 15 performs reset processing of each radiation detection element 7 by sequentially switching the lines L1 to Lx of the scanning line 5 to which the ON voltage is applied from the gate driver 15b. It is like that.
- the reset process of each radiation detection element 7 performed while sequentially switching the lines L1 to Lx of the scanning line 5 to which the ON voltage is applied from the gate driver 15b of the scanning driving unit 15 will be described below. That's it.
- each radiation detection element 7 When the reset processing of each radiation detection element 7 is performed, at the time when the radiation imaging apparatus 1 is activated or transitioned to the awake state, each radiation detection element 7 has the radiation detection element 7 itself as described above. There may be a case where a relatively large amount of extra charges such as dark charges generated by thermal excitation due to heat, charges generated in each radiation detection element 7 in the previous radiographic imaging, that is, unread image data, etc. remain. is there.
- the scanning drive unit 15 performs scanning from the gate driver 15b at the initial stage where the reset processing of each radiation detection element 7 is started, as in the case of the normal reset processing shown in FIG. After applying the ON voltage to the line 5, the voltage applied to the scanning line 5 is switched from the ON voltage to the OFF voltage, and at the same time the voltage applied to the next scanning line 5 is switched from the OFF voltage to the ON voltage. While repeating the reset process Rm for the surface, the reset process of the sequential reset method as the initial reset process is performed.
- the time Ton (hereinafter referred to as the following) is applied to the lines L1 to Lx of the scanning line 5.
- the on-time Ton) and the above-described on-timing ⁇ T, that is, the time interval ⁇ T for applying the on-voltage to each scanning line 5 are set to be the same.
- the on time Ton for applying the on voltage to each of the lines L1 to Lx of the scanning line 5 is made as long as possible, Reset efficiency is improved by releasing as much extra charge as possible remaining in each radiation detection element 7.
- the scanning drive unit 15 performs a reset process Rm for one surface when a predetermined time has elapsed since the reset process of each radiation detection element 7 has started or when a preset number of times have been reset. At the time of completion, the method of reset processing of each radiation detection element 7 is switched. Note that the predetermined time set in advance and the number of reset processes Rm for one surface are set to the time and the number of times necessary for sufficiently discharging excess charges remaining in each radiation detection element 7. .
- the scanning drive means 15 changes the on-time Ton and / or the on-timing ⁇ T or both from the reset process as shown in FIG. 10 as shown in FIG.
- the ON voltage applied to the line Ln with the scanning line 5 from 15b is switched to the OFF voltage
- the state where the OFF voltage is once applied to all the lines L1 to Lx of the scanning line 5 is maintained,
- the method of resetting each radiation detection element 7 is switched by repeating the operation of switching the off voltage applied to the next line Ln + 1 to the on voltage.
- each radiation detection element 7 that provides a state in which the off voltage is applied to all the lines L1 to Lx of the scanning line 5 after the processing method has been switched in this way has all off periods. This is referred to as a sequential reset type reset process.
- FIG. 11 shows a case where both the on-time Ton and the on-timing ⁇ T are varied from the on-time Ton and the on-timing ⁇ T shown in FIG. 10, but the on-time Ton is varied so as to be shortened. Alternatively, it may be configured to vary only one of the on-time Ton and the on-timing ⁇ T by changing the on-timing ⁇ T to be long.
- each radiation detection element 7 when it is not necessary to perform the reset process of each radiation detection element 7 as shown in FIG. 10, from the first stage when the reset process of each radiation detection element 7 is started, as shown in FIG. It is also possible to perform a reset process for each radiation detection element 7, that is, a reset process of a sequential reset method having an all-off period.
- the control means 22 supplies power from the power supply means 44 of the current detection means 43 to the differential amplifier 43c when the scanning drive means 15 switches the reset processing method of each radiation detection element 7 as described above.
- the current detection means 43 is activated.
- the switch 43d is turned off to release the short circuit between both terminals of the resistor 43a.
- control means 22 corresponds to the current flowing through the connection 10 of the bias line 9 output from the current detection means 43 during the reset process of the sequential reset method having the all-off period as shown in FIG.
- the voltage value V to be monitored is monitored to detect whether or not the radiation imaging apparatus 1 has started irradiation with radiation.
- the control means 22 applies an off voltage to all the lines L1 to Lx of the scanning line 5 from the gate driver 15b of the scanning driving means 15 during the reset process of the sequential reset method having the all-off period.
- a period Toff from when the voltage applied to a certain line Ln of the scanning line 5 is switched from the ON voltage to the OFF voltage until the ON voltage is applied to the next line Ln + 1 of the scanning line 5 (FIG. 11).
- the current detected by the current detection means 43 that is, the voltage value V corresponding to the current
- the start of radiation irradiation is detected based on that value. ing.
- each TFT 8 is in the OFF state while the OFF voltage is applied to all the lines L1 to Lx of the scanning line 5 (between “OFF” and “ON” in the figure), and each radiation Since the dark charge is hardly leaked from the detection element 7, the amount of current flowing through the connection 10 (that is, the voltage value V) decreases.
- control unit 22 corresponds to the current detected by the current detection unit 43 only when the off voltage is applied to all the lines L1 to Lx of the scanning line 5 (that is, corresponding to the current).
- the control unit 22 corresponds to the current detected by the current detection unit 43 only when the off voltage is applied to all the lines L1 to Lx of the scanning line 5 (that is, corresponding to the current).
- the voltage value V As shown in FIG. 12B, only the current in which the amount of current (or the corresponding voltage value V) has decreased is monitored.
- the control means 22 monitors and detects whether or not the radiation imaging apparatus 1 has started irradiation with radiation.
- the radiation incident on the radiographic imaging device 1 is converted into electromagnetic waves such as visible light by the scintillator 3, and converted electromagnetic waves. Reaches the i layer 76 (see FIG. 5) of the radiation detection element 7 immediately below, and electron-hole pairs are generated in the i layer 76 of the radiation detection element 7. Therefore, in the radiation detection element 7, the potential of the first electrode 74 with respect to the second electrode 78 (see FIG. 8 and the like) changes.
- a predetermined negative bias voltage is applied to the second electrode 78 from the bias power source 14 via the bias line 9, and the potential of the second electrode 78 is fixed, and the i-layer 76 has a fixed potential.
- the electron-hole pairs generated in step 1 holes move to the second electrode 78 side and electrons move to the first electrode 74 side, so that the potential on the first electrode 74 side decreases.
- the potential on the first electrode 74 side of the radiation detection element 7 is lowered, the potential on the source electrode 8s (denoted as S in FIG. 8) side of the TFT 8 shown in FIG. 8 is lowered accordingly.
- a kind of capacitor is formed by the gate electrode 8g, the source electrode 8s, and the insulating layer 71 (see FIG. 5) between them, and there is a parasitic capacitance between the gate electrode 8g and the source electrode 8s. Existing. Then, when the potential on the source electrode 8s side of the TFT 8 is lowered with respect to the gate electrode 8g of the TFT 8 to which the predetermined off voltage is applied and the potential does not change, the potential difference between the gate electrode 8g and the source electrode 8s of the TFT 8 changes. To do.
- the charge corresponding to the changed potential difference is supplied from the power supply circuit 15a of the scanning drive means 15 to the gate electrode 8g of the TFT 8 through the gate driver 15b and each scanning line 5. That is, a current flows through each scanning line 5. Also, an equal amount of current flows between the TFT 8 and the radiation detection element 7, and an equal amount of current flows between the radiation detection element 7 and the bias power source 14, that is, the bias line 9 and the connection 10 thereof.
- the bias line 9 Since the amount of current flowing through the connection 10 increases and the increased current flows to the current detection means 43, the voltage value V corresponding to the current detected by the current detection means 43 is shown in FIG. Ascend as shown.
- the voltage value V corresponds to the current flowing in the connection 10 of the bias line 9 in a state where the off voltage is applied to all the lines L1 to Lx of the scanning line 5.
- the threshold value Vth is set in advance, and the control unit 22 detects when the voltage value V monitored while the off voltage is applied to all the lines L1 to Lx of the scanning line 5 exceeds the threshold value Vth. Thus, it is determined that radiation irradiation to the radiation image capturing apparatus 1 has started.
- the bias line 9 is applied in a state where the off-voltage is applied to all the lines L1 to Lx of the scanning line 5.
- the voltage value V corresponding to the current flowing through the connection 10 is described as having a significant value that is not 0, in practice, the amount of dark charge that leaks through the TFT 8 is very small.
- the voltage value V corresponding to the current flowing through the connection 10 of the bias line 9 is substantially equal to zero.
- the radiation imaging apparatus 1 is irradiated with relatively strong radiation (that is, radiation with a large dose), but also weak radiation (that is, radiation with a small dose) as shown in FIG. ),
- the threshold value Vth is set to an appropriate value in advance, the radiation imaging apparatus 1 itself can accurately detect the start of radiation irradiation.
- the control means 22 does not monitor the current detected by the current detection means 43 (that is, the voltage value V corresponding to the current) from “ON” to “OFF”.
- each TFT 8 connected to the scanning line 5 to which the on-voltage is applied is turned on, and reset processing is performed to release extra charges such as dark charges from the radiation detection elements 7. .
- the control unit 22 is configured to short-circuit both terminals of the resistor 43a by turning on the switch 43d (see FIG. 9) of the current detection unit 43. It is possible. With such a configuration, the current can easily flow through the connection 10 and the signal line 6 of the bias line 9 by short-circuiting both terminals of the resistor 43a, so that the reset efficiency is improved.
- the current flowing in the connection 10 of the bias line 9 output from the current detection means 43 immediately after that when the off-voltage is applied to all the lines L1 to Lx of the scanning line 5. Since the voltage value V corresponding to is detected as a value exceeding the threshold value Vth, it is possible to accurately detect that radiation irradiation has started at that time (see time t2 in the figure).
- the scanning drive means A trigger signal is transmitted to 15 to stop the reset processing of each radiation detection element.
- the scanning drive unit 15 stops the reset process of each radiation detection element of the sequential reset method having the all-off period and scans from the gate driver 15b as shown in FIG.
- the state in which the off voltage is applied to all the lines L1 to Lx of the line 5 is maintained. Since each TFT 8 is in an OFF state, charges (that is, image data) generated in each radiation detection element 7 due to radiation irradiation are accumulated in each radiation detection element 7 as they are, and a radiographic image is obtained.
- the photographing apparatus 1 shifts to a charge accumulation state.
- the charges generated in each radiation detection element 7 due to radiation irradiation are applied to each TFT 8 via the scanning line 5 in order to reliably accumulate the charges in each radiation detection element 7 without leaking.
- the off voltage to be applied is normally set to a negative voltage value having a large absolute value such as ⁇ 10 [V].
- the current flowing in the connection 10 of the bias line 9 while the off-voltage is applied to all the lines L1 to Lx of the scanning line 5.
- the off voltage applied to each TFT 8 via each line L1 to Lx of the scanning line 5 is less than 0 [V] and has a smaller absolute value due to radiation irradiation.
- the amount of current flowing from each radiation detection element 7 to the bias line 9 and the connection 10 increases.
- the voltage value V output from the electric current detection means 43 becomes larger, and it becomes easier for the control means 22 to detect the start of radiation irradiation.
- the off voltage (hereinafter referred to as Voff2) applied to all the lines L1 to Lx of the scanning line 5 when the reset processing of each radiation detection element 7 is performed as described above is, for example, in the charge accumulation state. It may be configured to be set to a value not higher than 0 [V] (for example, -1 [V], etc.), higher than the value of the off voltage (hereinafter referred to as Voff1) set to -10 [V] or the like. Is possible.
- a value set to ⁇ 1 [V] or the like for all the lines L1 to Lx of the scanning line 5, for example. Applies a high off-voltage Voff2.
- the scan driving unit 15 stops the reset processing of each radiation detection element, and the gate.
- the value of the off voltage applied from the driver 15b to all the lines L1 to Lx of the scanning line is lowered from Voff2 to a lower value Voff1.
- Von in FIG. 17 represents the value of the on-voltage.
- FIG. 17 shows a case where the off-voltage is reduced from Voff2 to Voff1 at a time when the control means 22 detects that radiation irradiation has been started, but the off-voltage is changed from Voff2 to Voff1. It is also possible to configure to decrease continuously or stepwise over a certain amount of time.
- the increased voltage value V output from the current detection means 43 as shown in FIG. 13 to FIG. can be configured to detect that radiation irradiation to the radiation image capturing apparatus 1 has been completed.
- it may be configured to determine that the irradiation of the radiation image capturing apparatus 1 has been completed when a predetermined time has elapsed since the start of the irradiation of the radiation image capturing apparatus 1 being detected. Is possible.
- the readout circuit 17 When the radiation irradiation to the radiation image capturing apparatus 1 is finished, the readout circuit 17 performs readout processing of image data from each radiation detection element 7 as described above.
- an on-voltage is applied to the scanning line 5 to turn on the TFT 8 and the extra radiation detection element 7.
- an operation of applying an off voltage to all the lines L1 to Lx of the scanning line 5 is repeated to perform a reset process of a sequential reset method having all off periods.
- each radiation detection element 7 while the on-voltage is applied to each line L of the scanning line 5, detection of the start of radiation irradiation is not performed, and all the lines L1 to L1 of the scanning line 5 are detected. While the off voltage is applied to Lx, the current flowing through the connection 10 of the bias line 9 is detected to detect the start of radiation irradiation.
- the bias line 9 is applied while an on-voltage is applied to each line L of the scanning line 5 and excess charges are discharged from the radiation detection elements 7 to the bias line 9 and the connection 10. If the current flowing through the wire connection 10 is detected, the voltage value V corresponding to the current caused by the charge generated by the radiation irradiation is caused by the extra charge when the dose of the irradiated radiation is small. In other words, it is buried in the voltage value V corresponding to the current to be performed, and it becomes difficult to detect that the irradiation of radiation has started (see FIG. 27).
- the current flowing in the connection 10 of the bias line 9 is detected while the off-voltage is applied to all the lines L1 to Lx of the scanning line 5, it will be unnecessary.
- the amount of current flowing through the bias line 9 and the connection 10 due to the electric charge is very small, and the corresponding voltage value V is substantially equal to zero.
- the on-voltage is applied to one line L of the scanning line 5 from the gate driver 15b of the scanning driving means 15 (Ton in FIG. 11).
- the control means 22 does not monitor the voltage value V corresponding to the current output from the current detection means 43, so to speak, it is ignored. The case where it is configured is described.
- control means 22 instead of configuring the control means 22 to monitor or not monitor the voltage value V in this way, for example, the control means 22 always uses the voltage value V output from the current detection means 43. And the off-voltage is applied to all the lines L1 to Lx of the scanning line 5 so that the current detection means 43 is in a mode for detecting the current flowing through the bias line 9 and the connection 10. Is configured to output a voltage value V corresponding to the current detected from the current detection means 43.
- the current detection unit 43 When the ON voltage is applied to one line L of the scanning line 5 and the current detection unit 43 is in a mode in which the current flowing through the bias line 9 or the connection 10 is not detected, the current detection unit 43 For example, the voltage value V may be configured to output 0 [V].
- the method of resetting each radiation detection element 7 is not limited to the sequential reset method resetting process having this all-off period, and an on-voltage is applied to the scanning line 5 from the gate driver 15b of the scanning driving means 15. While repeating the operation of releasing the charges from each radiation detection element 7 and resetting each TFT 8 in the ON state, a period for applying the OFF voltage to all the scanning lines 5 (that is, the aforementioned all OFF period) is provided between them. If so, other various types of reset processing can be employed.
- an ON voltage is applied to all the scanning lines 5 from the gate driver 15 b of the scanning drive unit 15 at the same time.
- the on-voltage applied to all the scanning lines 5 is simultaneously switched to the off-voltage to provide the above-described all-off period, and the reset processing of each radiation detection element 7 is performed by repeating this operation. Will be described.
- each radiation detection element 7 by this method is referred to as a reset process of a collective reset method having all off periods.
- the voltages applied to all the lines L1 to Lx of the scanning line 5 from the gate driver 15b of the scanning driving means 15 are simultaneously turned on from the off voltage.
- the voltage is switched to maintain the on-voltage applied state for a predetermined on-time Ton.
- Ton a predetermined on-time Ton
- the voltages applied to all the lines L1 to Lx of the scanning line 5 are switched from the on-voltage to the off-voltage all at once, and during a predetermined period Toff (that is, all off periods), The state in which the off voltage is applied is maintained.
- the reset process of each radiation detection element 7 is performed by repeating this operation
- the on-voltage is applied to all the lines L1 to Lx of the scanning line 5 from the gate driver 15b of the scanning driving means 15, and the state in which excess charges are simultaneously discharged from the radiation detecting elements 7 is continued. It is also possible to configure so as to perform a normal batch reset type reset process.
- the scanning drive unit 15 causes each radiation when a predetermined time elapses from the start of the reset process of each radiation detection element 7.
- the method of resetting the detection element 7 is switched from the normal batch reset type reset process to the batch reset type reset process having the above-mentioned all-off period.
- control means 22 is used to detect the current only while the off voltage is applied to all the lines L 1 to Lx of the scanning line 5.
- the voltage value V corresponding to the current flowing through the bias line 9 and the connection 10 output from the terminal 43 is monitored.
- the radiographic imaging apparatus 1 according to the present embodiment can also exhibit the same effective effect as the radiographic imaging apparatus 1 according to the first embodiment.
- the off voltage at the time of the collective reset process having the all off period is expressed as a normal absolute value It is configured to set a negative value (for example, Voff2 in FIG. 17) higher than a large negative voltage value (for example, Voff1 in FIG. 17) so that the control means 22 can easily detect the start of radiation irradiation and control.
- Voff2 negative value
- Voff1 large negative voltage value
- the control unit 22 While the ON voltage is applied from the gate driver 15 b of the scanning drive unit 15 to one line L of the scanning line 5, the control unit 22 sets the voltage value V corresponding to the current output from the current detection unit 43. It is also possible to configure so that it is ignored without being monitored, and the control means 22 constantly monitors the voltage value V output from the current detection means 43, and the current detection means 43 detects the bias line 9 or the connection 10. For example, 0 [V] may be output as the voltage value V from the current detection unit 43 when the mode in which the current flowing therethrough is not detected is set.
- the current detection means 43 instead of providing the current detection means 43 on the bias line 9 or its connection 10 as shown in FIGS. 7 and 8, for example, as shown in FIG. It is possible to connect them to the binding wire 24 that binds them, and the current detection means 43 can be configured to detect the value of the current flowing in the scanning line 5 or the binding wire 24.
- the current detection means 43 can be configured in the same manner as in the first embodiment shown in FIG. 9, but at this time, one end side of the resistor 43a or the like is not the bias power supply 14. The other end side of the resistor 43 a is connected to the scanning line 5 and the binding line 24 thereof.
- the control means 22 is connected from the current detection means 43 only while the off-voltage is applied to all the lines L1 to Lx of the scanning line 5.
- the radiation image capturing apparatus 1 is exactly as effective. It is possible to achieve a great effect.
- each scanning line 5 is connected to the gate driver 15 b of the scanning driving means 15.
- the on-voltage and the off-voltage are supplied separately from the power supply circuit 15a to the gate driver 15b via the wiring 15con and the wiring 15coff, respectively. It has become.
- a switching element 15d is provided in each gate terminal 15b for each terminal to which each scanning line 5 is connected, and is applied to each scanning line 5 by switching the connection of the switching element 15d.
- the voltage is configured to be switched between an on voltage and an off voltage.
- the scanning line 5 is in a state where the off-voltage is applied to all the lines L1 to Lx of the scanning line 5 from the gate driver 15b of the scanning drive unit 15 as described above.
- the current flowing in the inside eventually flows in the wiring 15coff connecting the power supply circuit 15a and the gate driver 15b.
- the current detection unit 43 is provided on the wiring 15coff connecting the power supply circuit 15a of the scanning drive unit 15 and the gate driver 15b, and the current detection unit 43 detects the current flowing in the wiring 15coff. It can also be configured to detect the value.
- one line L of the scanning line 5 from the gate driver 15b in the case of the above-described sequential reset type reset process having all off periods
- all the lines L1 to Lx of the scanning line 5 all the above off periods are In the state where the on-voltage is applied to the reset process of the collective reset method, the current flowing in each scanning line 5 flows in the wiring 15con connecting the power supply circuit 15a of the scanning driving means 15 and the gate driver 15b.
- the current detection means 43 does not detect it.
- control unit 22 is configured to constantly monitor the voltage value V corresponding to the current detected and output by the current detection unit 43, all the scanning lines 5 are automatically detected. It is possible to monitor the voltage value V corresponding to the current only while the off voltage is applied to the lines L1 to Lx.
- control means 22 applies the off voltage to all the lines L1 to Lx of the scanning line 5. It is desirable that the voltage value V corresponding to the current flowing in the wiring 15coff output from the current detection means 43 is monitored only while is applied.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Measurement Of Radiation (AREA)
Abstract
線量が小さな放射線が照射された場合であっても放射線の照射が開始されたことを的確に検出することが可能な放射線画像撮影装置を提供することを目的とし、放射線画像撮影装置1は、装置内を流れる電流を検出する電流検出手段43を備え、走査駆動手段15は、ゲートドライバ15bから走査線5にオン電圧Vonを印加して放射線検出素子7から電荷を放出させた後、全ての走査線5にオフ電圧Voffを印加する動作を繰り返して各放射線検出素子7のリセット処理を行い、制御手段22は、ゲートドライバ15bから全ての走査線5にオフ電圧Voffが印加されている間に電流検出手段43が検出した電流の値に基づいて放射線の照射の開始を検出すると、各放射線検出素子7のリセット処理を停止させて、全ての走査線5にオフ電圧Voffが印加されている状態で、各放射線検出素子7内で発生した電荷を各放射線検出素子7内に蓄積させる。
Description
本発明は、放射線画像撮影装置に係り、特に、放射線の照射を検出可能な放射線画像撮影装置に関する。
照射されたX線等の放射線の線量に応じて検出素子で電荷を発生させて電気信号に変換するいわゆる直接型の放射線画像撮影装置や、照射された放射線をシンチレータ等で可視光等の他の波長の電磁波に変換した後、変換され照射された電磁波のエネルギに応じてフォトダイオード等の光電変換素子で電荷を発生させて電気信号に変換するいわゆる間接型の放射線画像撮影装置が種々開発されている。なお、本発明では、直接型の放射線画像撮影装置における検出素子や、間接型の放射線画像撮影装置における光電変換素子を、あわせて放射線検出素子という。
このタイプの放射線画像撮影装置はFPD(Flat Panel Detector)として知られており、従来は支持台(或いはブッキー装置)と一体的に形成されていたが(例えば特許文献1参照)、近年、放射線検出素子等をハウジングに収納した可搬型の放射線画像撮影装置が開発され、実用化されている(例えば特許文献2、3参照)。
このような放射線画像撮影装置では、放射線画像撮影装置に対して放射線を照射する放射線発生装置との間のインターフェースの構築が必ずしも容易でない場合があり、放射線を照射した旨の信号を放射線発生装置等の外部装置から入手せず、放射線画像撮影装置自体で放射線の照射開始や照射終了を検出できるように構成されていると便利である場合がある。
そこで、例えば特許文献4や特許文献5に記載の発明では、放射線画像撮影装置に対する放射線の照射が開始されて各放射線検出素子内に電荷が発生すると、各放射線検出素子から、各放射線検出素子に接続されているバイアス線に電荷が流れ出してバイアス線を流れる電流が増加することを利用して、その電流値の増減に基づいて放射線の照射の開始等を検出することが提案されている。
ところで、放射線検出素子は、放射線の照射を受けると、その内部で電荷(正確には電子正孔対)が発生し、その発生する電荷の電荷量が放射線の線量に応じて変わるため、照射された放射線の線量を電気信号(すなわち画像データ)に変換して読み出すことができる。しかし、その一方で、放射線検出素子では、放射線画像撮影装置に放射線が照射されていない状態でも、放射線検出素子自体の熱による熱励起等によりその内部で電子正孔対(すなわちいわゆる暗電荷)が常時発生している。
そして、この暗電荷等の余分な電荷が放射線検出素子内に溜まった状態で放射線が照射されると、放射線の照射により放射線検出素子内で発生した電荷(すなわち画像データとしての電荷)に比べて暗電荷の割合が大きくなり、いわゆるS/N比の悪い画像データしか得られなくなる。そこで、放射線画像撮影装置に放射線を照射して行われる放射線画像撮影の前には、通常、各放射線検出素子に蓄積された暗電荷等の余分な電荷を各放射線検出素子内から除去するためのリセット処理が行われる。そして、放射線検出素子内の余分な電荷をできるだけ排除するために、各放射線検出素子のリセット処理は、放射線画像撮影装置に対する放射線の照射が開始される直前まで行われることが望ましい。
一方、各放射線検出素子7のリセット処理は、例えば後述する図7等に示すように、互いに交差するように配設された複数の走査線5と複数の信号線6とにより区画された各領域rに二次元状に配列された複数の放射線検出素子7と、放射線検出素子7ごとに設けられ、例えば薄膜トランジスタ(Thin Film Transistor。以下TFTという。)8で形成されたスイッチ手段を備えて構成された放射線画像撮影装置においては、例えば図22に示すように、走査駆動手段15のゲートドライバ15bからオン電圧を印加する走査線5のラインL1~Lxを順次切り替えるようにして、オン状態とするTFT8を順次切り替えながら行われる場合が多い。
このようにして各放射線検出素子7のリセット処理が行われると、ゲートドライバ15b(図7等参照)からオン電圧が印加された走査線5に各TFT8を介してそれぞれ接続されている数百から数千の各放射線検出素子7から各TFT8を介して各信号線6に、暗電荷としての電子正孔対のうち例えば電子がそれぞれ流出し、また、各放射線検出素子7から各バイアス線9に例えば正孔が流出する。
そのため、例えば各バイアス9が収束された結線10上に形成されている電流検出手段43には、走査駆動手段15のゲートドライバ15bから走査線5にオン電圧が印加されるたびに、1本の走査線5に接続された数百から数千個分の各放射線検出素子7から暗電荷としての正孔が電流検出手段43に流れ込む。
そのため、電流検出手段43がバイアス線9や結線10中を流れる電流を例えば電圧値Vに変換して検出するように構成されている場合、各放射線検出素子7のリセット処理中に電流検出手段43で検出される電流に相当する電圧値Vは、例えば図23に示すように、オン電圧が印加される走査線5が切り替わるごとに増減を繰り返すように検出される。なお、図23で矢印を付して示される「ON」は、オン電圧が印加される走査線5が切り替えられるタイミングを表す。
このような状態で、放射線画像撮影装置に放射線が照射されると、照射された放射線の線量が比較的大きい場合には、各放射線検出素子7内で線量に応じて比較的大きな電荷量の電荷(電子正孔対)が発生し、その瞬間にオン電圧が印加されている走査線5に各TFT8を介して接続されている各放射線検出素子7から各信号線6に比較的大きな電荷量の電子がそれぞれ流出し、また、各バイアス線9には比較的大きな電荷量の正孔が流出して結線10に集まる。
そのため、電流検出手段43で検出される結線10中を流れる電流に相当する電圧値Vは、図24に示すように比較的大きな値となる。そして、その際に各放射線検出素子7から流出する暗電荷としての正孔分と合わさって図25に示すように検出される。そのため、例えば、結線10中を流れる電流に相当する電圧値Vに対して予め適切な値の閾値Vthを設定しておくことにより、電圧値Vがこの閾値Vthを越えたことを検出することで、放射線画像撮影装置に対する放射線の照射が開始されたことを検出することが可能となる。
しかしながら、放射線画像撮影装置に対して照射される放射線の線量が小さいと、電流検出手段43で検出される結線10中を流れる電流に相当する電圧値Vは、図26に示すように小さな値にしかならず、その際に各放射線検出素子7から流出する図23に示したような暗電荷に相当する電圧値Vと合わさると、電流検出手段43で検出される結線10中を流れる電流に相当する電圧値Vは図27に示すような状態で検出される。
このように、放射線画像撮影装置に照射される放射線の線量が小さいと、放射線の照射により各放射線検出素子7内では小さい電荷量の電荷しか発生せず、それによってバイアス線9や結線10中を流れる電流は小さくなる。そして、放射線の照射により発生した電荷に起因して結線10中を流れる電流に相当する電圧値Vが、暗電荷に起因する電流に相当する電圧値Vにいわば埋もれてしまう。
また、走査駆動手段15のゲートドライバ15bからある走査線5にオン電圧が印加されるたびにバイアス線9や結線10に流出する暗電荷に起因する電流は、いつも同じ値であるとは限らず、ばらつく値になるのが通常である。そのため、図27に示したグラフからも分かるように、放射線画像撮影装置に照射された放射線の線量が小さい場合には、例えば電圧値Vに対して予め適切な閾値を設定することが困難であり、図25に示したように閾値に基づいて放射線画像撮影装置に対する放射線の照射が開始されたことを検出することができない。
しかし、放射線画像撮影装置を例えば患者の病変部を撮影するための医療用に用いる場合などには、放射線発生装置から照射された放射線が患者の身体等で散乱されたり吸収されたりして、放射線画像撮影装置に弱い放射線しか到達しないような場合もある。従って、放射線画像撮影装置には、このように放射線画像撮影装置に対して弱い放射線すなわち線量が小さい放射線が照射されるような場合であっても、放射線画像撮影装置自体で放射線の照射の開始等を的確に検出することができることが望まれる。
本発明は、上記の問題点を鑑みてなされたものであり、線量が小さな放射線が照射された場合であっても少なくとも放射線の照射が開始されたことを的確に検出することが可能な放射線画像撮影装置を提供することを目的とする。
前記の問題を解決するために、本発明の放射線画像撮影装置は、
互いに交差するように配設された複数の走査線および複数の信号線と、前記複数の走査線および複数の信号線により区画された各領域に二次元状に配列された複数の放射線検出素子と、
前記放射線検出素子ごとに配置され、接続された前記走査線に印加される電圧に応じてオフ状態とオン状態とが切り替えられ、前記オフ状態では前記放射線検出素子内で発生した電荷を保持し、前記オン状態では前記放射線検出素子から前記電荷を放出させるスイッチ手段と、
前記走査線を介して前記スイッチ手段に印加する電圧をオン電圧とオフ電圧との間で切り替えるゲートドライバと、前記ゲートドライバに前記オン電圧および前記オフ電圧を供給する電源回路とを備える走査駆動手段と、
装置内を流れる電流を検出する電流検出手段と、
電流検出手段が検出した前記電流の値に基づいて、少なくとも放射線の照射の開始を検出する制御手段と、
を備え、
前記走査駆動手段は、前記ゲートドライバから前記走査線にオン電圧を印加して前記スイッチ手段をオン状態として当該スイッチ手段に接続された前記放射線検出素子から前記電荷を放出させた後、全ての前記走査線にオフ電圧を印加する動作を繰り返して、前記各放射線検出素子のリセット処理を行い、
前記制御手段は、前記走査駆動手段の前記ゲートドライバから全ての前記走査線にオフ電圧が印加されている間に前記電流検出手段が検出した前記電流の値に基づいて放射線の照射の開始を検出すると、前記各放射線検出素子のリセット処理を停止させて、全ての前記走査線にオフ電圧が印加されている状態で、前記各放射線検出素子内で発生した電荷を前記各放射線検出素子内に蓄積させることを特徴とする。
互いに交差するように配設された複数の走査線および複数の信号線と、前記複数の走査線および複数の信号線により区画された各領域に二次元状に配列された複数の放射線検出素子と、
前記放射線検出素子ごとに配置され、接続された前記走査線に印加される電圧に応じてオフ状態とオン状態とが切り替えられ、前記オフ状態では前記放射線検出素子内で発生した電荷を保持し、前記オン状態では前記放射線検出素子から前記電荷を放出させるスイッチ手段と、
前記走査線を介して前記スイッチ手段に印加する電圧をオン電圧とオフ電圧との間で切り替えるゲートドライバと、前記ゲートドライバに前記オン電圧および前記オフ電圧を供給する電源回路とを備える走査駆動手段と、
装置内を流れる電流を検出する電流検出手段と、
電流検出手段が検出した前記電流の値に基づいて、少なくとも放射線の照射の開始を検出する制御手段と、
を備え、
前記走査駆動手段は、前記ゲートドライバから前記走査線にオン電圧を印加して前記スイッチ手段をオン状態として当該スイッチ手段に接続された前記放射線検出素子から前記電荷を放出させた後、全ての前記走査線にオフ電圧を印加する動作を繰り返して、前記各放射線検出素子のリセット処理を行い、
前記制御手段は、前記走査駆動手段の前記ゲートドライバから全ての前記走査線にオフ電圧が印加されている間に前記電流検出手段が検出した前記電流の値に基づいて放射線の照射の開始を検出すると、前記各放射線検出素子のリセット処理を停止させて、全ての前記走査線にオフ電圧が印加されている状態で、前記各放射線検出素子内で発生した電荷を前記各放射線検出素子内に蓄積させることを特徴とする。
本発明のような方式の放射線画像撮影装置によれば、走査駆動手段のゲートドライバから全ての走査線にオフ電圧が印加されている間に、電流検出手段で、バイアス線や走査線等を流れる電流等の装置内を流れる電流を検出するように構成することで、放射線画像撮影装置に照射された放射線の線量が小さいような場合であっても、放射線の照射により発生した電荷に起因して増加するバイアス線や走査線等を流れる電流を的確に検出することが可能となり、放射線の照射が開始されたことを的確に検出することが可能となる。
以下、本発明に係る放射線画像撮影装置の実施の形態について、図面を参照して説明する。
なお、以下では、放射線画像撮影装置が、シンチレータ等を備え、照射された放射線を可視光等の他の波長の電磁波に変換して電気信号を得るいわゆる間接型の放射線画像撮影装置である場合について説明するが、本発明は、直接型の放射線画像撮影装置に対しても適用することが可能である。また、放射線画像撮影装置が可搬型である場合について説明するが、支持台等と一体的に形成された放射線画像撮影装置に対しても適用される。
[第1の実施の形態]
図1は、本発明の第1の実施形態に係る放射線画像撮影装置の外観斜視図であり、図2は、図1のX-X線に沿う断面図である。本実施形態に係る放射線画像撮影装置1は、図1や図2に示すように、筐体2内にシンチレータ3や基板4等が収納された可搬型(カセッテ型)の装置として構成されている。
図1は、本発明の第1の実施形態に係る放射線画像撮影装置の外観斜視図であり、図2は、図1のX-X線に沿う断面図である。本実施形態に係る放射線画像撮影装置1は、図1や図2に示すように、筐体2内にシンチレータ3や基板4等が収納された可搬型(カセッテ型)の装置として構成されている。
筐体2は、少なくとも放射線の照射を受ける側の面R(以下、放射線入射面Rという。)が放射線を透過するカーボン板やプラスチック等の材料で形成されている。なお、図1や図2では、筐体2がフレーム板2Aとバック板2Bとで形成された、いわゆる弁当箱型である場合が示されているが、筐体2を一体的に角筒状に形成した、いわゆるモノコック型とすることも可能である。
また、図1に示すように、筐体2の側面部分には、電源スイッチ36や、LED等で構成されたインジケータ37、図示しないバッテリ41(後述する図7参照)の交換等のために開閉可能とされた蓋部材38等が配置されている。また、本実施形態では、蓋部材38の側面部には、アンテナ装置39が埋め込まれている。
なお、アンテナ装置39の設置位置は蓋部材38の側面部に限らず、放射線画像撮影装置1の任意の位置にアンテナ装置39を設置することが可能である。また、設置するアンテナ装置39は1個に限らず、複数設けることも可能である。さらに、データや信号等を外部装置との間で有線方式で送受信するように構成することも可能であり、その場合は、例えばケーブル等を差し込むなどして接続するための接続端子等が放射線画像撮影装置1の側面部等に設けられる。
筐体2の内部には、図2に示すように、基板4の下方側に図示しない鉛の薄板等を介して基台31が配置され、基台31には、電子部品32等が配設されたPCB基板33や緩衝部材34等が取り付けられている。なお、本実施形態では、基板4やシンチレータ3の放射線入射面Rには、それらを保護するためのガラス基板35が配設されている。
シンチレータ3は、基板4の後述する検出部Pに貼り合わされるようになっている。シンチレータ3は、例えば、蛍光体を主成分とし、放射線の入射を受けると300~800nmの波長の電磁波、すなわち可視光を中心とした電磁波に変換して出力するものが用いられる。
基板4は、本実施形態では、ガラス基板で構成されており、図3に示すように、基板4のシンチレータ3に対向する側の面4a上には、複数の走査線5と複数の信号線6とが互いに交差するように配設されている。基板4の面4a上の複数の走査線5と複数の信号線6により区画された各領域rには、それぞれ放射線検出素子7がそれぞれ設けられている。
このように、走査線5と信号線6で区画された各領域rに二次元状に配列された複数の放射線検出素子7が設けられた領域r全体、すなわち図3に一点鎖線で示される領域が検出部Pとされている。
本実施形態では、放射線検出素子7としてフォトダイオードが用いられているが、この他にも例えばフォトトランジスタ等を用いることも可能である。各放射線検出素子7は、図3や図4の拡大図に示すように、スイッチ手段であるTFT8のソース電極8sに接続されている。また、TFT8のドレイン電極8dは信号線6に接続されている。
そして、TFT8は、後述する走査駆動手段15により、接続された走査線5にオン電圧が印加され、ゲート電極8gにオン電圧が印加されるとオン状態となり、放射線検出素子7内で発生し蓄積されている電荷を信号線6に放出させるようになっている。また、TFT8は、接続された走査線5にオフ電圧が印加され、ゲート電極8gにオフ電圧が印加されるとオフ状態となり、放射線検出素子7から信号線6への電荷の放出を停止し、放射線検出素子7内で発生した電荷を保持して、放射線検出素子7内に蓄積させるようになっている。
ここで、本実施形態における放射線検出素子7やTFT8の構造について、図5に示す断面図を用いて簡単に説明する。図5は、図4におけるY-Y線に沿う断面図である。
基板4の面4a上に、AlやCr等からなるTFT8のゲート電極8gが走査線5と一体的に積層されて形成されており、ゲート電極8g上および面4a上に積層された窒化シリコン(SiNx)等からなるゲート絶縁層81上のゲート電極8gの上方部分に、水素化アモルファスシリコン(a-Si)等からなる半導体層82を介して、放射線検出素子7の第1電極74と接続されたソース電極8sと、信号線6と一体的に形成されるドレイン電極8dとが積層されて形成されている。
ソース電極8sとドレイン電極8dとは、窒化シリコン(SiNx)等からなる第1パッシベーション層83によって分割されており、さらに第1パッシベーション層83は両電極8s、8dを上側から被覆している。また、半導体層82とソース電極8sやドレイン電極8dとの間には、水素化アモルファスシリコンにVI族元素をドープしてn型に形成されたオーミックコンタクト層84a、84bがそれぞれ積層されている。以上のようにしてTFT8が形成されている。
また、放射線検出素子7の部分では、基板4の面4a上に前記ゲート絶縁層81と一体的に形成される絶縁層71の上にAlやCr等が積層されて補助電極72が形成されており、補助電極72上に前記第1パッシベーション層83と一体的に形成される絶縁層73を挟んでAlやCr、Mo等からなる第1電極74が積層されている。第1電極74は、第1パッシベーション層83に形成されたホールHを介してTFT8のソース電極8sに接続されている。
第1電極74の上には、水素化アモルファスシリコンにVI族元素をドープしてn型に形成されたn層75、水素化アモルファスシリコンで形成された変換層であるi層76、水素化アモルファスシリコンにIII族元素をドープしてp型に形成されたp層77が下方から順に積層されて形成されている。
放射線画像撮影装置1の筐体2の放射線入射面Rから放射線が入射し、シンチレータ3で可視光等の電磁波に変換され、変換された電磁波が図中上方から照射されると、電磁波は放射線検出素子7のi層76に到達して、i層76内で電子正孔対が発生する。放射線検出素子7は、このようにして、シンチレータ3から照射された電磁波を電荷に変換するようになっている。
また、p層77の上には、ITO等の透明電極とされた第2電極78が積層されて形成されており、照射された電磁波がi層76等に到達するように構成されている。本実施形態では、以上のようにして放射線検出素子7が形成されている。
なお、p層77、i層76、n層75の積層の順番は上下逆であってもよい。また、本実施形態では、放射線検出素子7として、上記のようにp層77、i層76、n層75の順に積層されて形成されたいわゆるpin型の放射線検出素子を用いる場合が説明されているが、例えばMIS(Metal-Insulator-Semiconductor)型等の他の形式の放射線検出素子で構成することも可能であり、限定されない。
放射線検出素子7の第2電極78の上面には、第2電極78を介して放射線検出素子7にバイアス電圧を印加するバイアス線9が接続されている。なお、放射線検出素子7の第2電極78やバイアス線9、TFT8側に延出された第1電極74、TFT8の第1パッシベーション層83等、すなわち放射線検出素子7とTFT8の上面部分は、その上方側から窒化シリコン(SiNx)等からなる第2パッシベーション層79で被覆されている。
図3や図4に示すように、本実施形態では、それぞれ列状に配置された複数の放射線検出素子7に1本のバイアス線9が接続されており、各バイアス線9はそれぞれ信号線6に平行に配設されている。また、各バイアス線9は、基板4の検出部Pの外側の位置で1本の結線10に結束されている。
本実施形態では、図3に示すように、各走査線5や各信号線6、バイアス線9の結線10は、それぞれ基板4の端縁部付近に設けられた入出力端子(パッドともいう)11に接続されている。各入出力端子11には、図6に示すように、後述するゲートドライバ15bを構成するゲートIC12a等のチップがフィルム上に組み込まれたCOF(Chip On Film)12が異方性導電接着フィルム(Anisotropic Conductive Film)や異方性導電ペースト(Anisotropic Conductive Paste)等の異方性導電性接着材料13を介して接続されている。
また、COF12は、基板4の裏面4b側に引き回され、裏面4b側で前述したPCB基板33に接続されるようになっている。このようにして、放射線画像撮影装置1の基板4部分が形成されている。なお、図6では、電子部品32等の図示が省略されている。
ここで、放射線画像撮影装置1の回路構成について説明する。図7は本実施形態に係る放射線画像撮影装置1の等価回路を表すブロック図であり、図8は検出部Pを構成する1画素分についての等価回路を表すブロック図である。
前述したように、基板4の検出部Pの各放射線検出素子7は、その第2電極78にそれぞれバイアス線9が接続されており、各バイアス線9は結線10に結束されてバイアス電源14に接続されている。バイアス電源14は、結線10および各バイアス線9を介して各放射線検出素子7の第2電極78にそれぞれバイアス電圧を印加するようになっている。
また、本実施形態では、放射線検出素子7のp層77側(図5参照)に第2電極78を介してバイアス線9が接続されていることからも分かるように、バイアス電源14からは、放射線検出素子7の第2電極78にバイアス線9を介してバイアス電圧として放射線検出素子7の第1電極74側にかかる電圧以下の電圧(すなわちいわゆる逆バイアス電圧)が印加されるようになっている。
本実施形態では、バイアス電源14は、後述する制御手段22に接続されており、制御手段は、バイアス電源14から各放射線検出素子7に印加するバイアス電圧を必要に応じて可変させるようになっている。
本実施形態では、バイアス線9の結線10には、結線10(バイアス線9)を流れる電流を検出する電流検出手段43が設けられている。
なお、図7や図8および前述した図3等では、各バイアス線9が1本の結線10に結束される場合が示されており、その場合は、電流検出手段43は1本の結線10に1つだけ設けるように構成することが可能であるが、各バイアス線9が複数の結線10に結束されるように構成される場合もある。その場合には、電流検出手段43を各結線10に設けるように構成することも可能であり、また、複数の結線10のうちの何本かに電流検出手段43を設けるように構成することも可能である。
ここで、電流検出手段43の構成について説明する。本実施形態では、電流検出手段43は、バイアス線9の結線10とバイアス電源14との接続部分に設けられており、バイアス線9の結線10中を流れる電流を電圧値Vに変換して検出するようになっている。
具体的には、電流検出手段43は、図9に示すように、バイアス電源14と各放射線検出素子7とを結ぶバイアス線9の結線10に直列に接続される所定の抵抗値を有する抵抗器43aと、それに並列に接続されたダイオード43bと、抵抗器43aの両端子間の電圧Vを測定して制御手段22に出力する差動アンプ43cとを備えて構成されている。
そして、電流検出手段43は、差動アンプ43cで抵抗器43aの両端子間の電圧Vを測定し、抵抗器43aを流れる電流、すなわちバイアス線9の結線10を流れる電流を電圧値Vに変換して検出して、制御手段22に出力するようになっている。
なお、電流検出手段43に備えられる抵抗器43aとしては、結線10中を流れる電流を適切な電圧値Vに変換可能な抵抗値を有する抵抗器が用いられる。また、抵抗器43aに並列にダイオード43bを接続することで低線量の場合の検出精度が向上される。なお、抵抗器43aやダイオード43bのいずれかのみを配線に直列に接続して、その両端子間の電圧Vを差動アンプ43cで測定するように構成することも可能である。
また、本実施形態では、電流検出手段43には、バイアス線9の結線10中を流れる電流を検出する必要がない場合に、抵抗器43aの両端子間を短絡するためのスイッチ43dが設けられている。
また、差動アンプ43cには電源供給手段44から電力が供給されるようになっており、電流検出手段43で電流を検出する際には、電源供給手段44から差動アンプ43cに電力が供給され、スイッチ43dの短絡が解除されて電流検出手段43が起動状態とされ、電流を検出しない場合には、スイッチ43dで抵抗器43aの両端子間が短絡されるとともに、電源供給手段44から差動アンプ43cへの電力の供給が停止されて電流検出手段43の起動が停止されるようになっている。
なお、本実施形態では、電流検出手段43は、上記のように、バイアス線9や結線10中を流れる電流を電圧値Vに変換して検出するように構成されているが、電流により結線10の周囲に発生する磁気を検出する等して、電流値そのものを検出するように構成することも可能である。
図7や図8に示すように、各放射線検出素子7の第1電極74はTFT8のソース電極8s(図7、図8中ではSと表記されている。)に接続されており、各TFT8のゲート電極8g(図7、図8中ではGと表記されている。)は、後述する走査駆動手段15のゲートドライバ15bから延びる各走査線5の各ラインL1~Lxにそれぞれ接続されている。また、各TFT8のドレイン電極8d(図7、図8中ではDと表記されている。)は各信号線6にそれぞれ接続されている。
走査駆動手段15は、本実施形態では、電源回路15aとゲートドライバ15bとを備えており、ゲートドライバ15bに接続されている各走査線5を介してTFT8のゲート電極8gに印加するオン電圧およびオフ電圧を制御するようになっている。本実施形態では、電源回路15aは、ゲートドライバ15bに対して各走査線5を介してTFT8のゲート電極8gに印加するオン電圧およびオフ電圧を供給するようになっている。
また、ゲートドライバ15bは、前述したゲートIC12aが複数並設されて形成されており、パルス幅変調(Pulse Width Modulation:PWM)等により各走査線5に印加するオン電圧のパルス幅等を変調できるようになっている。また、ゲートドライバ15bは、各走査線5にオン電圧を印加する時間間隔、すなわち各走査線5に印加する電圧をオフ電圧からオン電圧に切り替えてから、オフ電圧に切り替えた後で再度或いは次の走査線5にオン電圧に切り替えるまでの時間間隔ΔT(以下、オンタイミングΔTという。)を可変させることができるようになっている。
各信号線6は、読み出しIC16内に形成された各読み出し回路17にそれぞれ接続されている。なお、本実施形態では、読み出しIC16には所定個数の読み出し回路17が設けられており、読み出しIC16が複数設けられることにより、信号線6の本数分の読み出し回路17が設けられるようになっている。
読み出し回路17は、増幅回路18と、相関二重サンプリング(Correlated Double Sampling)回路19と、アナログマルチプレクサ21と、A/D変換器20とで構成されている。なお、図7や図8中では、相関二重サンプリング回路19はCDSと表記されている。また、図8中では、アナログマルチプレクサ21は省略されている。
本実施形態では、増幅回路18はチャージアンプ回路で構成されており、オペアンプ18aと、オペアンプ18aにそれぞれ並列にコンデンサ18bおよび電荷リセット用スイッチ18cが接続されて構成されている。また、増幅回路18のオペアンプ18aの入力側の反転入力端子には信号線6が接続されており、増幅回路18の入力側の非反転入力端子には基準電位V0が印加されるようになっている。なお、基準電位V0は適宜の値に設定され、本実施形態では、例えば0[V]が印加されるようになっている。
また、増幅回路18の電荷リセット用スイッチ18cは、制御手段22に接続されており、制御手段22によりオン/オフが制御されるようになっている。電荷リセット用スイッチ18cがオフの状態で、放射線検出素子7のTFT8がオン状態とされると(すなわち、TFT8のゲート電極8gに走査線5を介してオン電圧が印加されると)、当該放射線検出素子7から放出された電荷がコンデンサ18bに流入して蓄積され、蓄積された電荷量に応じた電圧値がオペアンプ18aの出力端子から出力されるようになっている。
増幅回路18は、このようにして、各放射線検出素子7から出力された電荷量に応じて電圧を出力して電荷電圧変換して増幅するようになっている。また、電荷リセット用スイッチ18cをオン状態とすることで、増幅回路18の入力側と出力側とを短絡し、コンデンサ18bに蓄積された電荷を放電して増幅回路18をリセットすることができるようになっている。
なお、増幅回路18を、放射線検出素子7から出力された電荷に応じて電流を出力するように構成することも可能である。また、図8に示すように、増幅回路18には、電源供給部18dから電力が供給されるようになっている。なお、図7では、電源供給部18dの図示が省略されている。
増幅回路18の出力側には、相関二重サンプリング回路(CDS)19が接続されている。相関二重サンプリング回路19は、本実施形態では、サンプルホールド機能を有しており、この相関二重サンプリング回路19におけるサンプルホールド機能は、制御手段22から送信されるパルス信号によりそのオン/オフが制御されるようになっている。
すなわち、各放射線検出素子7からの画像データの読み出しの際に、相関二重サンプリング回路19は、増幅回路18がリセットされ、電荷リセット用スイッチ18cがオフ状態とされた後、各TFT8がオン状態とされる前の時点で制御手段22から1回目のパルス信号を受信すると、その時点で増幅回路18から出力されている電圧値を保持する。その後、TFT8がオン状態とされ、TFT8や信号線6を介して放射線検出素子7から放出された電荷がコンデンサ18bに流入して蓄積される。
そして、相関二重サンプリング回路19は、制御手段22から1回目のパルス信号を受信した時点から所定時間経過し、放射線検出素子7から放出された電荷がコンデンサ18bに流入して蓄積された時点で制御手段22から2回目のパルス信号を受信すると、その時点で再び増幅回路18から出力されている電圧値を保持して、それらの電圧値の差分値を下流側にアナログ値の画像データとして出力するようになっている。
相関二重サンプリング回路19から出力された各放射線検出素子7の画像データは、アナログマルチプレクサ21に送信され、アナログマルチプレクサ21から順次A/D変換器20に送信される。そして、A/D変換器20で順次デジタル値の画像データに変換されて記憶手段40に出力されて順次保存されるようになっている。
制御手段22は、図示しないCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)、入出力インターフェース等がバスに接続されたコンピュータや、FPGA(Field Programmable Gate Array)等により構成されている。専用の制御回路で構成されていてもよい。そして、制御手段22は、放射線画像撮影装置1の各部材の動作等を制御するようになっている。また、図7等に示すように、制御手段22には、DRAM(Dynamic RAM)等で構成される記憶手段40が接続されている。
また、本実施形態では、制御手段22には、前述したアンテナ装置39が接続されており、さらに、検出部Pや走査駆動手段15、読み出し回路17、記憶手段40、バイアス電源14等の各機能部に電力を供給するためのバッテリ41が接続されている。また、バッテリ41には、図示しない充電装置から電力を供給してバッテリ41を充電する際に充電装置とバッテリ41とを接続する接続端子42が取り付けられている。
以下、各放射線検出素子7のリセット処理や、放射線画像撮影装置1に対する放射線の照射開始の検出等における制御手段22の制御構成等について説明するとともに、本実施形態に係る放射線画像撮影装置1の作用についてもあわせて説明する。
制御手段22は、放射線画像撮影前に、放射線画像撮影装置1の電源スイッチ36(図1参照)が押下されたり外部のコンピュータ等から起動信号が送信される等して放射線画像撮影装置1が起動されたり、放射線画像撮影装置1がいわゆるスリープ状態から覚醒状態に遷移されたりした時点で、走査駆動手段15にトリガ信号を送信して、走査駆動手段15に各放射線検出素子7のリセット処理を開始させるようになっている。
本実施形態では、走査駆動手段15(図7参照)は、ゲートドライバ15bからオン電圧を印加する走査線5のラインL1~Lxを順次切り替えるようにして、各放射線検出素子7のリセット処理を行うようになっている。以下、このように、走査駆動手段15のゲートドライバ15bからオン電圧を印加する走査線5のラインL1~Lxを順次切り替えながら行われる各放射線検出素子7のリセット処理を、順次リセット方式のリセット処理という。
各放射線検出素子7のリセット処理を行う場合、放射線画像撮影装置1が起動したり覚醒状態に遷移されたりした時点では、各放射線検出素子7内には、前述したような放射線検出素子7自体の熱による熱励起等により発生した暗電荷や、前回の放射線画像撮影で各放射線検出素子7内で発生した電荷すなわち画像データの読み残し分等の余分な電荷が比較的多く残存している場合がある。
そこで、本実施形態では、走査駆動手段15は、各放射線検出素子7のリセット処理を開始した最初の段階では、図22に示した通常のリセット処理の場合と同様に、ゲートドライバ15bからある走査線5にオン電圧を印加した後、当該走査線5に印加する電圧をオン電圧からオフ電圧に切り替えると同時に次の走査線5に印加する電圧をオフ電圧からオン電圧に切り替えるようにして、1面分のリセット処理Rmを繰り返しながら、初期の前記リセット処理としての順次リセット方式のリセット処理を行うようになっている。
すなわち、本実施形態では、図10に示すように、各放射線検出素子7のリセット処理を開始した最初の段階では、走査線5の各ラインL1~Lxにオン電圧を印加する時間Ton(以下、オン時間Tonという。)と、前述したオンタイミングΔTすなわち各走査線5にオン電圧を印加する時間間隔ΔTとが同じになるように設定されている。
このように、本実施形態では、各放射線検出素子7のリセット処理が開始された最初の段階では、走査線5の各ラインL1~Lxにオン電圧を印加するオン時間Tonをできるだけ長くして、各放射線検出素子7内に残存する余分な電荷をできるだけ多く放出させることで、リセット効率を高めるようになっている。
なお、この各放射線検出素子7のリセット処理が開始された最初の段階では、バイアス線9の結線10中を流れる電流の検出を行う必要がないため、電流検出手段43(図9参照)の電源供給手段44から差動アンプ43cへの電力の供給は停止されていて電流検出手段43の起動が停止されており、スイッチ43dがオン状態とされて抵抗器43aの両端子間が短絡された状態とされている。このように、抵抗器43aの両端子間を短絡させることでバイアス線9の結線10中を電流が流れ易くなるため、リセット効率がさらに向上される。
走査駆動手段15は、本実施形態では、各放射線検出素子7のリセット処理を開始してから予め設定された所定時間が経過した時点や、予め設定された回数の1面分のリセット処理Rmが終了した時点で、各放射線検出素子7のリセット処理の仕方を切り替えるようになっている。なお、この予め設定される所定時間や1面分のリセット処理Rmの回数は、各放射線検出素子7内に残存する余分な電荷が十分に放出されるために必要な時間や回数に設定される。
本実施形態では、走査駆動手段15は、上記の時点で、図10に示したようなリセット処理からオン時間TonやオンタイミングΔT或いはその両方を例えば図11に示すように可変させて、ゲートドライバ15bから走査線5のあるラインLnに印加したオン電圧をオフ電圧に切り替えた後、一旦走査線5の全てのラインL1~Lxにオフ電圧を印加した状態を維持した後で、走査線5の次のラインLn+1に印加したオフ電圧をオン電圧に切り替える動作を繰り返すようにして、各放射線検出素子7のリセット処理の仕方を切り替えるようになっている。
以下、このように、処理の仕方が切り替えられた後の、走査線5の全てのラインL1~Lxにオフ電圧を印加した状態を設ける各放射線検出素子7のリセット処理を、全オフ期を有する順次リセット方式のリセット処理という。
なお、図11では、図10に示したオン時間TonやオンタイミングΔTからオン時間TonとオンタイミングΔTの両方を可変させた場合が示されているが、オン時間Tonが短くなるように可変させたり、オンタイミングΔTが長くなるように可変させる等して、オン時間TonとオンタイミングΔTのうちいずれか一方のみを可変させるように構成することも可能である。
また、図10に示したような各放射線検出素子7のリセット処理を行う必要がない場合には、各放射線検出素子7のリセット処理が開始された最初の段階から、図11に示したような各放射線検出素子7のリセット処理、すなわち全オフ期を有する順次リセット方式のリセット処理を行うように構成することも可能である。
制御手段22は、走査駆動手段15が上記のようにして各放射線検出素子7のリセット処理の仕方を切り替えた時点で、電流検出手段43の電源供給手段44から差動アンプ43cに電力を供給させて電流検出手段43を起動させるようになっている。そして、スイッチ43dをオフ状態として抵抗器43aの両端子間の短絡を解除させる。
そして、図11に示したような全オフ期を有する順次リセット方式のリセット処理の際に、制御手段22は、電流検出手段43から出力される、バイアス線9の結線10中を流れる電流に相当する電圧値Vを監視して、放射線画像撮影装置1に対して放射線の照射が開始されたか否かを検出するようになっている。
そして、制御手段22は、全オフ期を有する順次リセット方式のリセット処理の際、走査駆動手段15のゲートドライバ15bから走査線5の全てのラインL1~Lxに対してオフ電圧が印加されている間に、すなわち走査線5のあるラインLnに印加される電圧がオン電圧からオフ電圧に切り替わってから走査線5の次のラインLn+1にオン電圧が印加されるまでの期間Toff(図11参照)の間(つまり全オフ期)に、電流検出手段43が検出した電流(すなわち電流に相当する電圧値V)を監視し、その値に基づいて放射線の照射の開始を検出するようになっている。
図23等に示したように、走査線5にオン電圧が印加され、TFT8がオン状態とされて各放射線検出素子7内に蓄積された暗電荷等の余分な電荷がバイアス線9に放出されると、電流検出手段43により検出される、バイアス線9の結線10中を流れる電流に相当する電圧値Vが増加する。
そのため、図11に示したような全オフ期を有する順次リセット方式のリセット処理を行う場合、仮に電流検出手段43が検出した電流に相当する電圧値Vを常時監視したとすると、図12(A)に示すように、走査線5のあるラインLにオン電圧を印加している間(図中の「ON」から「OFF」までの間)は結線10中を流れる電流の電流量(すなわち電圧値V)が上昇する。
しかし、走査線5の全てのラインL1~Lxにオフ電圧を印加している間(図中の「OFF」から「ON」までの間)は、各TFT8がオフ状態となっており、各放射線検出素子7からは暗電荷がほとんど漏出されないため、結線10中を流れる電流の電流量(すなわち電圧値V)が低下する。
そして、本発明では、上記のように、制御手段22は、走査線5の全てのラインL1~Lxにオフ電圧が印加されている間だけ電流検出手段43が検出した電流(すなわち電流に相当する電圧値V)を監視するため、図12(B)に示すように、この電流量(或いはそれに相当する電圧値V)が低下した電流のみを監視する状態となる。
このように、本発明では、走査線5の全てのラインL1~Lxにオフ電圧が印加されて各TFT8がオフ状態とされているため、各放射線検出素子7から暗電荷がほとんど漏出せず、バイアス線9の結線10中を流れる電流の電流量(すなわちそれに相当する電圧値V)が低下している間だけ、電流検出手段43が検出した結線10中を流れる電流(すなわち電圧値V)を制御手段22が監視して、放射線画像撮影装置1に対して放射線の照射が開始されたか否かを検出するようになっている。
本実施形態の放射線画像撮影装置1では、上記のように全TFT8がオフ状態とされていても、放射線画像撮影装置1に対する放射線の照射が開始されると、図13に示すように、バイアス線9の結線10中を流れる電流の電流値(すなわちそれに相当する電圧値V)が上昇する。以下、このような現象が生じる理由について説明する。
放射線画像撮影装置1に放射線の照射が開始されると、前述したように、本実施形態では放射線画像撮影装置1に入射した放射線がシンチレータ3で可視光等の電磁波に変換され、変換された電磁波が直下の放射線検出素子7のi層76(図5参照)に到達して、放射線検出素子7のi層76内で電子正孔対が発生する。そのため、放射線検出素子7内では、第2電極78(図8等参照)に対する第1電極74の電位が変化する。
本実施形態では、第2電極78にはバイアス電源14からバイアス線9を介して所定の負の値のバイアス電圧が印加されていて第2電極78の電位が固定されており、i層76内で発生した電子正孔対のうち、正孔が第2電極78側に移動し、電子が第1電極74側に移動するため、第1電極74側の電位が下がる。そして、放射線検出素子7の第1電極74側の電位が下がると、図8に示したTFT8のソース電極8s(図8中ではSと表記されている。)側の電位がそれに伴って下がる。
また、TFT8では、ゲート電極8gとソース電極8sとそれらの間の絶縁層71(図5参照)とで一種のコンデンサが形成されており、ゲート電極8gとソース電極8sとの間に寄生容量が存在している。そして、所定のオフ電圧が印加されていて電位が変わらないTFT8のゲート電極8gに対して、TFT8のソース電極8s側の電位が下がると、TFT8のゲート電極8gとソース電極8sとの電位差が変化する。
そのため、変化した電位差に対応する電荷が、走査駆動手段15の電源回路15aからゲートドライバ15bや各走査線5を通ってTFT8のゲート電極8gに供給される。すなわち各走査線5中を電流が流れる。また、それと等量の電流がTFT8-放射線検出素子7間に流れ、等量の電流が放射線検出素子7-バイアス電源14間、すなわちバイアス線9やその結線10中を流れる。
このように、放射線画像撮影装置1に対する放射線の照射が開始されると、走査線5の全てのラインL1~Lxにオフ電圧が印加されて全TFT8がオフ状態とされていても、バイアス線9やその結線10中を流れる電流の電流量が増加して、電流量が増加した電流が電流検出手段43に流れるため、電流検出手段43で検出される電流に相当する電圧値Vが図13に示したように上昇する。
そのため、本実施形態では、図14に示すように、走査線5の全てのラインL1~Lxにオフ電圧が印加された状態でバイアス線9の結線10中を流れる電流に相当する電圧値Vに対して、予め閾値Vthが設定されており、制御手段22は、走査線5の全てのラインL1~Lxにオフ電圧が印加されている間に監視した電圧値Vがこの閾値Vthを越えた時点で、放射線画像撮影装置1に対する放射線の照射が開始されたと判断するようになっている。
図12(A)、(B)や図13、図14および後述する図15では、グラフを見やすくするため、走査線5の全てのラインL1~Lxにオフ電圧が印加された状態でバイアス線9の結線10中を流れる電流に相当する電圧値Vが0ではない有意の値を有するように記載されているが、実際には、TFT8を介してリークする暗電荷の量はごく僅かであり、バイアス線9の結線10中を流れる電流に相当する電圧値Vはほぼ0に等しい値になる。
そのため、図13に示したように放射線画像撮影装置1に対して比較的強い放射線(すなわち線量が大きい放射線)が照射された場合は勿論、図14に示すように弱い放射線(すなわち線量が小さい放射線)が照射された場合であっても、予め閾値Vthを適切な値に設定しておくことによって、放射線画像撮影装置1自体で放射線の照射の開始を的確に検出することが可能となる。
なお、全オフ期を有する順次リセット方式のリセット処理の際、走査駆動手段15のゲートドライバ15bから走査線5の1本のラインLにオン電圧が印加されている間(図11のTonの期間、図12~図14では「ON」から「OFF」の間)は、制御手段22は、電流検出手段43が検出した電流(すなわち電流に相当する電圧値V)を監視しない。
また、この間は、オン電圧が印加された走査線5に接続されている各TFT8はオン状態とされて各放射線検出素子7から暗電荷等の余分な電荷を放出させるリセット処理が行われている。
そのため、走査線5にオン電圧が印加されている間は、制御手段22が電流検出手段43のスイッチ43d(図9参照)をオン状態として抵抗器43aの両端子間を短絡させるように構成することが可能である。このように構成すれば、抵抗器43aの両端子間を短絡させることでバイアス線9の結線10中や信号線6中を電流が流れ易くなるため、リセット効率が向上される。
また、本実施形態では、走査線5の全てのラインL1~Lxにオフ電圧が印加されている間にのみ放射線の照射の開始が検出されるため、図15に示すように、走査線の1本のラインLにオン電圧が印加されている間に放射線の照射が開始されると、その時点(図中の時刻t1参照)では放射線の照射開始を検出することができない。
しかし、図15に示すように、その直後に走査線5の全てのラインL1~Lxにオフ電圧が印加された時点で、電流検出手段43から出力されるバイアス線9の結線10中を流れる電流に相当する電圧値Vが閾値Vthを越えた値として検出されるため、その時点(図中の時刻t2参照)で放射線の照射が開始されたことを的確に検出することが可能となる。
制御手段22は、上記のようにして電流検出手段43が検出した結線10中を流れる電流に相当する電圧値Vに基づいて放射線画像撮影装置1に対する放射線の照射の開始を検出すると、走査駆動手段15にトリガ信号を送信して、各放射線検出素子のリセット処理を停止させるようになっている。
走査駆動手段15は、制御手段22からのトリガ信号を受信すると、図16に示すように、全オフ期を有する順次リセット方式の各放射線検出素子のリセット処理を停止して、ゲートドライバ15bから走査線5の全てのラインL1~Lxにオフ電圧を印加した状態を維持するようになっている。そして、各TFT8がオフ状態とされているため、放射線の照射により各放射線検出素子7内で発生した電荷(すなわち画像データ)がそのまま各放射線検出素子7内に蓄積されるようになり、放射線画像撮影装置1は電荷蓄積状態に移行する。
なお、電荷蓄積状態では、放射線の照射により各放射線検出素子7内で発生した電荷を漏出させずに各放射線検出素子7内に確実に蓄積させるために、走査線5を介して各TFT8に印加されるオフ電圧は、通常、例えば-10[V]等の絶対値が大きな負の電圧値に設定される。
しかし、図11に示した全オフ期を有する順次リセット方式のリセット処理において、走査線5の全てのラインL1~Lxにオフ電圧が印加されている間にバイアス線9の結線10中を流れる電流を監視する場合、走査線5の各ラインL1~Lxを介して各TFT8に印加されるオフ電圧は、0[V]以下の、絶対値が小さな負の値である方が、放射線の照射により各放射線検出素子7からバイアス線9や結線10に流れる電流の電流量が多くなる。そして、その方が電流検出手段43から出力される電圧値Vが大きくなり、制御手段22が放射線の照射の開始を検出し易くなる。
そこで、上記のようにして各放射線検出素子7のリセット処理を行う際に走査線5の全てのラインL1~Lxに印加するオフ電圧(以下、Voff2という。)の値が、電荷蓄積状態における例えば-10[V]等に設定されるオフ電圧(以下、Voff1という。)の値よりも高い、0[V]以下の値(例えば-1[V]等)に設定するように構成することが可能である。
このように構成する場合、図17に示すように、各放射線検出素子7のリセット処理の際には、走査線5の全てのラインL1~Lxに例えば-1[V]等に設定された値が高いオフ電圧Voff2を印加する。そして、前述したように、走査駆動手段15は、制御手段22が放射線の照射が開始されたことを検出して送信したトリガ信号を受信すると、各放射線検出素子のリセット処理を停止させるとともに、ゲートドライバ15bから走査線の全てのラインL1~Lxに印加するオフ電圧の値をVoff2からより低い値のVoff1に低下させる。
このように構成すれば、各放射線検出素子7のリセット処理時には放射線の照射の開始を検出し易くなるとともに、放射線の照射が開始された後は、放射線の照射により各放射線検出素子7内で発生した電荷(すなわち画像データ)が各放射線検出素子7内から漏出することを的確に防止することが可能となる。
なお、図17におけるVonは、オン電圧の値を表す。また、図17では、制御手段22が放射線の照射が開始されたことを検出した時点で、オフ電圧をVoff2からVoff1に一気に低下させる場合が示されているが、オフ電圧を、Voff2からVoff1にある程度の時間をかけて連続的に或いは段階的に低下させるように構成することも可能である。
また、放射線画像撮影装置1が電荷蓄積状態に移行した後、図13~図15等に示したように増加した電流検出手段43から出力される電圧値Vが、例えば閾値Vth以下に低下した段階で、放射線画像撮影装置1に対する放射線の照射が終了したことを検出するように構成することが可能である。また、放射線画像撮影装置1に対する放射線の照射が開始されたことを検出した時点から所定の時間が経過した時点で放射線画像撮影装置1に対する放射線の照射が終了したと判断するように構成することも可能である。
放射線画像撮影装置1に対する放射線の照射が終了すると、前述したように読み出し回路17により各放射線検出素子7からの画像データの読み出し処理が行われる。
以上のように、本実施形態に係る放射線画像撮影装置1によれば、各放射線検出素子7のリセット処理として、走査線5にオン電圧を印加してTFT8をオン状態として放射線検出素子7から余分な電荷を放出させた後、走査線5の全てのラインL1~Lxにオフ電圧を印加する動作を繰り返して全オフ期を有する順次リセット方式のリセット処理を行う。
そして、各放射線検出素子7のリセット処理において、走査線5の各ラインLにオン電圧が印加されている間は、放射線の照射開始等の検出を行わず、走査線5の全てのラインL1~Lxにオフ電圧が印加されている間にバイアス線9の結線10中を流れる電流を検出して、放射線の照射が開始されたことを検出する。
前述した従来の場合のように、走査線5の各ラインLにオン電圧が印加されて各放射線検出素子7から余分な電荷がバイアス線9や結線10に放出されている最中にバイアス線9や結線10を流れる電流を検出するように構成すると、照射された放射線の線量が小さい場合には、放射線の照射により発生した電荷に起因する電流に相当する電圧値Vが、余分な電荷に起因する電流に相当する電圧値Vにいわば埋もれてしまい、放射線の照射が開始されたことを検出することが困難になる(図27参照)。
しかし、本実施形態のように、走査線5の全てのラインL1~Lxにオフ電圧が印加されている間にバイアス線9の結線10中を流れる電流を検出するように構成すれば、余分な電荷に起因してバイアス線9や結線10中を流れる電流の電流量はごく僅かであり、それに相当する電圧値Vはほぼ0に等しい値になる。
そのため、図14に示したように、放射線画像撮影装置1に照射された放射線の線量が小さいような場合であっても、放射線の照射により発生した電荷に起因して増加するバイアス線9や結線10中を流れる電流を的確に検出することが可能となり、放射線の照射が開始されたことを的確に検出することが可能となる。
なお、上記の説明(図12(B)~図15参照)では、走査駆動手段15のゲートドライバ15bから走査線5の1本のラインLにオン電圧が印加されている間(図11のTonの期間、図12~図14では「ON」から「OFF」の間)は、制御手段22は、電流検出手段43から出力される電流に相当する電圧値Vを監視せず、いわば無視するように構成されている場合について説明した。
しかし、このように制御手段22側で電圧値Vを監視し或いは監視しないように制御するように構成する代わりに、例えば、制御手段22では、常時、電流検出手段43から出力される電圧値Vを監視するように構成し、走査線5の全てのラインL1~Lxにオフ電圧が印加されて電流検出手段43がバイアス線9や結線10中を流れる電流を検出するモードとされている場合には、電流検出手段43から検出した電流に相当する電圧値Vを出力するように構成する。
そして、走査線5の1本のラインLにオン電圧が印加されて電流検出手段43がバイアス線9や結線10中を流れる電流を検出しないモードとされている場合には、電流検出手段43から例えば電圧値Vとして0[V]を出力するように構成することも可能である。
このように構成すれば、走査線5の1本のラインLにオン電圧が印加されて、電流検出手段43がバイアス線9や結線10中を流れる電流を検出しないモードとされている場合には、電流検出手段43から出力される電圧値Vが閾値Vthを越えることがないため、制御手段22が、走査線5の1本のラインLにオン電圧が印加されている最中に放射線の照射の開始を検出することはない。
従って、このように構成しても、走査線5の全てのラインL1~Lxにオフ電圧が印加されている間だけ電流検出手段43が検出した電流に相当する電圧値Vを監視する上記の本実施形態の場合と全く同様にして、放射線画像撮影装置1に対する放射線の照射の開始を的確に検出することが可能となる。
[第2の実施の形態]
上記の第1の実施形態では、各放射線検出素子7のリセット処理として、図11に示したような全オフ期を有する順次リセット方式のリセット処理を行う場合、或いは図10に示した通常の順次リセット方式のリセット処理から図11に示した全オフ期を有する順次リセット方式のリセット処理に各放射線検出素子7のリセット処理の仕方を切り替える場合について説明した。
上記の第1の実施形態では、各放射線検出素子7のリセット処理として、図11に示したような全オフ期を有する順次リセット方式のリセット処理を行う場合、或いは図10に示した通常の順次リセット方式のリセット処理から図11に示した全オフ期を有する順次リセット方式のリセット処理に各放射線検出素子7のリセット処理の仕方を切り替える場合について説明した。
しかし、各放射線検出素子7のリセット処理の仕方は、この全オフ期を有する順次リセット方式のリセット処理に限定されず、走査駆動手段15のゲートドライバ15bから走査線5にオン電圧を印加して各TFT8をオン状態として各放射線検出素子7から電荷を放出させてリセットする動作を繰り返しながら、その間に全ての走査線5にオフ電圧を印加する期間(すなわち前述した全オフ期)を設ける仕方であれば、他の種々の方式のリセット処理を採用することができる。
本発明の第2の実施形態では、この各放射線検出素子7のリセット処理の仕方として、走査駆動手段15のゲートドライバ15bから全ての走査線5に一斉にオン電圧を印加して各放射線検出素子7をリセットした後、全ての走査線5に印加したオン電圧を一斉にオフ電圧に切り替えて前述した全オフ期を設け、この動作を繰り返すようにして各放射線検出素子7のリセット処理を行う場合について説明する。
なお、以下、この方式による各放射線検出素子7のリセット処理を、全オフ期を有する一括リセット方式のリセット処理という。
全オフ期を有する一括リセット方式のリセット処理では、図18に示すように、走査駆動手段15のゲートドライバ15bから走査線5の全てのラインL1~Lxに印加する電圧をオフ電圧から一斉にオン電圧に切り替えて、所定のオン時間Tonの間、オン電圧を印加した状態を維持する。そして、所定のオン時間Tonが経過すると、走査線5の全てのラインL1~Lxに印加する電圧をオン電圧から一斉にオフ電圧に切り替えて、所定の期間Toff(すなわち全オフ期)の間、オフ電圧を印加した状態を維持する。そして、この動作を繰り返させることにより、各放射線検出素子7のリセット処理が行われる。
なお、この場合も、各放射線検出素子7のリセット処理を開始した最初の段階では、各放射線検出素子7内に残存する余分な電荷をできるだけ多く放出させてリセット効率を高めるために、図19の左側に示すように、走査駆動手段15のゲートドライバ15bから走査線5の全てのラインL1~Lxにオン電圧を印加して、各放射線検出素子7から一斉に余分な電荷を放出させる状態を継続する通常の一括リセット方式のリセット処理を行うように構成することも可能である。
また、このように構成する場合は、走査駆動手段15は、図19に示すように、各放射線検出素子7のリセット処理を開始してから予め設定された所定時間が経過した時点で、各放射線検出素子7のリセット処理の仕方を、通常の一括リセット方式のリセット処理から、上記の全オフ期を有する一括リセット方式のリセット処理に切り替える。
そして、本実施形態においても、図12(B)~図15に示したように、制御手段22を、走査線5の全てのラインL1~Lxにオフ電圧が印加されている間だけ電流検出手段43から出力されるバイアス線9や結線10中を流れる電流に相当する電圧値Vを監視するように構成される。
以上のように、本実施形態に係る放射線画像撮影装置1においても、上記の第1の実施形態に係る放射線画像撮影装置1と全く同等の有効な効果を奏することが可能となる。
すなわち、図13や図15に示したように放射線画像撮影装置1に対して比較的強い放射線(すなわち線量が大きい放射線)が照射された場合は勿論、図14に示したように弱い放射線(すなわち線量が小さい放射線)が照射された場合であっても、例えば予め閾値Vthを適切な値に設定しておくことによって、放射線の照射により発生した電荷に起因して増加するバイアス線9や結線10中を流れる電流を的確に検出することが可能となり、放射線画像撮影装置1自体で放射線の照射が開始されたことを的確に検出することが可能となる。
なお、図示を省略するが、本実施形態においても、例えば第1の実施形態で図17に示した手法と同様に、全オフ期を有する一括リセット処理時のオフ電圧を、通常の絶対値が大きな負の電圧値(例えば図17におけるVoff1)よりも高い負の値(例えば図17におけるVoff2)に設定するように構成して、制御手段22が放射線の照射の開始を検出し易くし、制御手段22が放射線の照射が開始されたことを検出した時点で、各放射線検出素子のリセット処理を停止させるとともに、走査線の全てのラインL1~Lxに印加するオフ電圧の値を通常の低い値(Voff1)に低下させるように構成することが可能である。
その際、オフ電圧をVoff2からVoff1に一気に低下させるように構成することも可能であり、また、オフ電圧をVoff2からVoff1にある程度の時間をかけて連続的に或いは段階的に低下させるように構成することも可能であることは前述した通りである。
また、走査駆動手段15のゲートドライバ15bから走査線5の1本のラインLにオン電圧が印加されている間、制御手段22は電流検出手段43から出力される電流に相当する電圧値Vを監視せず、いわば無視するように構成することも可能であり、また、制御手段22で電流検出手段43から出力される電圧値Vを常時監視し、電流検出手段43がバイアス線9や結線10中を流れる電流を検出しないモードとされている場合に電流検出手段43から例えば電圧値Vとして0[V]を出力するように構成することも可能である。
[第3の実施の形態]
上記の第1の実施形態や第2の実施形態では、電流検出手段43でバイアス線9やその結線10中を流れる電流を検出するように構成されている場合について説明したが、前述したように、走査駆動手段15のゲートドライバ15bから走査線5の全てのラインL1~Lxにオフ電圧が印加されている状態で放射線画像撮影装置1に放射線が照射されると、バイアス線9や結線10中のみならず、走査線5中でも電流が流れる。
上記の第1の実施形態や第2の実施形態では、電流検出手段43でバイアス線9やその結線10中を流れる電流を検出するように構成されている場合について説明したが、前述したように、走査駆動手段15のゲートドライバ15bから走査線5の全てのラインL1~Lxにオフ電圧が印加されている状態で放射線画像撮影装置1に放射線が照射されると、バイアス線9や結線10中のみならず、走査線5中でも電流が流れる。
そこで、図7や図8に示したように、電流検出手段43をバイアス線9やその結線10上に設ける代わりに、例えば図20に示すように、電流検出手段43を、各走査線5或いはそれらを結束した結束線24に接続して設け、電流検出手段43で、走査線5やその結束線24中を流れる電流の値を検出するように構成することが可能である。
この場合、電流検出手段43は、図9に示した第1の実施形態の場合と同様に構成することが可能であるが、その際、抵抗器43a等の一端側は、バイアス電源14ではなく、走査駆動手段15の電源回路15a等の他の電源回路に接続され、抵抗器43aの他端側が走査線5やその結束線24に接続される。
このように構成した場合でも、第1、第2の実施形態と同様に、制御手段22を、走査線5の全てのラインL1~Lxにオフ電圧が印加されている間だけ電流検出手段43から出力される走査線5や結束線24中を流れる電流に相当する電圧値Vを監視するように構成することで、第1、第2の実施形態に係る放射線画像撮影装置1と全く同等の有効な効果を奏することが可能となる。
また、図7等に示したように、各走査線5は走査駆動手段15のゲートドライバ15bに接続されている。そして、走査駆動手段15では、図21に簡略化して示すように、オン電圧とオフ電圧が電源回路15aからそれぞれ配線15conと配線15coffとを介してそれぞれ別個にゲートドライバ15bに供給されるようになっている。
また、ゲートドライバ15bの内部には、スイッチ素子15dが、各走査線5がそれぞれ接続された端子ごとに設けられていて、スイッチ素子15dの接続をそれぞれ切り替えることにより、各走査線5に印加する電圧をオン電圧とオフ電圧との間で切り替えるように構成されている。
走査駆動手段15がこのように構成されている場合、上記のように走査駆動手段15のゲートドライバ15bから走査線5の全てのラインL1~Lxにオフ電圧が印加されている状態で走査線5中を流れる電流は、結局、電源回路15aとゲートドライバ15bとを結ぶ配線15coff中を流れることになる。
そこで、例えば図21に示すように、電流検出手段43を、走査駆動手段15の電源回路15aとゲートドライバ15bとを結ぶ配線15coff上に設け、電流検出手段43で、配線15coff中を流れる電流の値を検出するように構成することも可能である。
このように構成した場合、ゲートドライバ15bから走査線5の全てのラインL1~Lxにオフ電圧が印加されている状態では、各走査線5中を流れる電流は、走査駆動手段15の電源回路15aとゲートドライバ15bとを結ぶ配線15coff中を流れるため、電流検出手段43で検出される。
しかし、ゲートドライバ15bから走査線5の1本のラインL(上記の全オフ期を有する順次リセット方式のリセット処理の場合)或いは走査線5の全てのラインL1~Lx(上記の全オフ期を有する一括リセット方式のリセット処理)にオン電圧が印加されている状態では、各走査線5中を流れる電流は、走査駆動手段15の電源回路15aとゲートドライバ15bとを結ぶ配線15con中を流れるため、電流検出手段43では検出されない。
そのため、この場合、理論的には、電流検出手段43で検出され出力される電流に相当する電圧値Vを制御手段22が常時監視するように構成すれば、自動的に、走査線5の全てのラインL1~Lxにオフ電圧が印加されている間だけの電流に相当する電圧値Vを監視することができる。
しかし、実際には、ゲートドライバ15bでスイッチ素子15dを切り替える際にスイッチ素子15dで電流の貫通現象が生じたり、スイッチ素子15dの切り替え自体でノイズが生じたりするため、放射線画像撮影装置1に対して放射線が照射されていないにもかかわらず、電流検出手段43から出力される電圧値Vが閾値Vthを越えてしまう場合がある。
そこで、この場合も、前述した第1、第2の実施形態や第3の実施形態における上記の形態の場合と同様に、制御手段22を、走査線5の全てのラインL1~Lxにオフ電圧が印加されている間だけ電流検出手段43から出力される配線15coff中を流れる電流に相当する電圧値Vを監視するように構成することが望ましい。
そして、このように構成した場合でも、第1、第2の実施形態や第3の実施形態における上記の形態に係る放射線画像撮影装置1と全く同等の有効な効果を奏することが可能となる。
すなわち、図13や図15に示したように放射線画像撮影装置1に対して比較的強い放射線(すなわち線量が大きい放射線)が照射された場合は勿論、図14に示したように弱い放射線(すなわち線量が小さい放射線)が照射された場合であっても、例えば予め閾値Vthを適切な値に設定しておくことによって、放射線の照射により発生した電荷に起因して増加するバイアス線9や結線10中を流れる電流を的確に検出することが可能となり、放射線画像撮影装置1自体で放射線の照射が開始されたことを的確に検出することが可能となる。
なお、その他、本発明が上記の各実の形態に限定されず、適宜変更可能であることはいうまでもない。
1 放射線画像撮影装置
5、L、L1~Lx 走査線
6 信号線
7 放射線検出素子
8 TFT(スイッチ手段)
9 バイアス線
10 結線(バイアス線)
14 バイアス電源
15 走査駆動手段
15a 電源回路
15b ゲートドライバ
15coff 配線
22 制御手段
43 電流検出手段
43a 抵抗器
r 領域
Ton オン時間(オン電圧を印加する時間)
V 電流に相当する電圧値(電流の値)
Voff オフ電圧
Voff1 低いオフ電圧
Voff2 高いオフ電圧
Von オン電圧
ΔT オンタイミング(オン電圧を印加する時間間隔)
5、L、L1~Lx 走査線
6 信号線
7 放射線検出素子
8 TFT(スイッチ手段)
9 バイアス線
10 結線(バイアス線)
14 バイアス電源
15 走査駆動手段
15a 電源回路
15b ゲートドライバ
15coff 配線
22 制御手段
43 電流検出手段
43a 抵抗器
r 領域
Ton オン時間(オン電圧を印加する時間)
V 電流に相当する電圧値(電流の値)
Voff オフ電圧
Voff1 低いオフ電圧
Voff2 高いオフ電圧
Von オン電圧
ΔT オンタイミング(オン電圧を印加する時間間隔)
Claims (12)
- 互いに交差するように配設された複数の走査線および複数の信号線と、前記複数の走査線および複数の信号線により区画された各領域に二次元状に配列された複数の放射線検出素子と、
前記放射線検出素子ごとに配置され、接続された前記走査線に印加される電圧に応じてオフ状態とオン状態とが切り替えられ、前記オフ状態では前記放射線検出素子内で発生した電荷を保持し、前記オン状態では前記放射線検出素子から前記電荷を放出させるスイッチ手段と、
前記走査線を介して前記スイッチ手段に印加する電圧をオン電圧とオフ電圧との間で切り替えるゲートドライバと、前記ゲートドライバに前記オン電圧および前記オフ電圧を供給する電源回路とを備える走査駆動手段と、
装置内を流れる電流を検出する電流検出手段と、
電流検出手段が検出した前記電流の値に基づいて、少なくとも放射線の照射の開始を検出する制御手段と、
を備え、
前記走査駆動手段は、前記ゲートドライバから前記走査線にオン電圧を印加して前記スイッチ手段をオン状態として当該スイッチ手段に接続された前記放射線検出素子から前記電荷を放出させた後、全ての前記走査線にオフ電圧を印加する動作を繰り返して、前記各放射線検出素子のリセット処理を行い、
前記制御手段は、前記走査駆動手段の前記ゲートドライバから全ての前記走査線にオフ電圧が印加されている間に前記電流検出手段が検出した前記電流の値に基づいて放射線の照射の開始を検出すると、前記各放射線検出素子のリセット処理を停止させて、全ての前記走査線にオフ電圧が印加されている状態で、前記各放射線検出素子内で発生した電荷を前記各放射線検出素子内に蓄積させることを特徴とする放射線画像撮影装置。 - 前記走査駆動手段は、前記ゲートドライバからオン電圧を印加する前記走査線を順次切り替えるとともに、前記ゲートドライバから前記走査線に印加したオン電圧をオフ電圧に切り替えた後、一旦全ての前記走査線にオフ電圧を印加した状態を維持した後で次の前記走査線に印加したオフ電圧をオン電圧に切り替えるようにして、前記各放射線検出素子のリセット処理を行うことを特徴とする請求項1に記載の放射線画像撮影装置。
- 前記走査駆動手段は、前記各放射線検出素子のリセット処理を開始した時点では、前記ゲートドライバから前記走査線に印加する電圧をオン電圧からオフ電圧に切り替えると同時に次の前記走査線に印加する電圧をオフ電圧からオン電圧に切り替えるようにして初期の前記リセット処理を行った後、前記ゲートドライバから前記走査線にオン電圧を印加した後で全ての前記走査線にオフ電圧を印加する動作を繰り返す前記各放射線検出素子のリセット処理の仕方に切り替えることを特徴とする請求項2に記載の放射線画像撮影装置。
- 前記走査駆動手段は、前記ゲートドライバから前記走査線にオン電圧を印加する時間を可変させることで、前記各放射線検出素子のリセット処理の仕方を切り替えることを特徴とする請求項3に記載の放射線画像撮影装置。
- 前記走査駆動手段は、前記ゲートドライバから一の前記走査線にオン電圧を印加した後、次の前記走査線にオン電圧を印加するまでの時間間隔を可変させることで、前記各放射線検出素子のリセット処理の仕方を切り替えることを特徴とする請求項3または請求項4に記載の放射線画像撮影装置。
- 前記走査駆動手段は、前記ゲートドライバから全ての前記走査線に一斉にオン電圧を印加した後、全ての前記走査線に印加したオン電圧を一斉にオフ電圧に切り替える動作を繰り返すようにして、前記各放射線検出素子のリセット処理を行うことを特徴とする請求項1に記載の放射線画像撮影装置。
- 前記走査駆動手段は、前記各放射線検出素子のリセット処理を開始した時点では、前記ゲートドライバから全ての前記走査線に一斉にオン電圧を印加した状態を維持し、所定時間が経過した時点で全ての前記走査線に一斉にオフ電圧を印加し、その後、前記ゲートドライバから全ての前記走査線に一斉にオン電圧を印加した後で前記所定時間よりも短い時間が経過した時点で全ての前記走査線にオフ電圧を一斉に印加する動作を繰り返す前記各放射線検出素子のリセット処理の仕方に切り替えることを特徴とする請求項6に記載の放射線画像撮影装置。
- 前記電流検出手段は、抵抗器を備え、装置内を流れる前記電流を電圧値に変換して検出するように構成されており、
前記制御手段は、前記走査駆動手段の前記ゲートドライバから前記走査線にオン電圧が印加されている間は、前記電流検出手段の前記抵抗器の両端子間を短絡させるように制御することを特徴とする請求項1から請求項7のいずれか一項に記載の放射線画像撮影装置。 - 前記走査駆動手段の前記ゲートドライバから前記走査線にオン電圧を印加して前記スイッチ手段をオン状態とした後に全ての前記走査線にオフ電圧を印加する動作を繰り返して前記各放射線検出素子のリセット処理を行う際の前記オフ電圧の値が、前記各放射線検出素子内で発生した電荷を前記各放射線検出素子内に蓄積させる際に前記走査線に印加する前記オフ電圧の値よりも高い0[V]以下の値に設定されていることを特徴とする請求項1から請求項8のいずれか一項に記載の放射線画像撮影装置。
- 前記各放射線検出素子に接続されたバイアス線と、
前記バイアス線を介して前記各放射線検出素子にバイアス電圧を印加するバイアス電源と、
をさらに備え、
前記電流検出手段は、前記バイアス線を流れる電流の値を検出することを特徴とする請求項1から請求項9のいずれか一項に記載の放射線画像撮影装置。 - 前記電流検出手段は、前記走査線を流れる電流の値を検出することを特徴とする請求項1から請求項9のいずれか一項に記載の放射線画像撮影装置。
- 前記電流検出手段は、前記走査駆動手段の前記電源回路と前記ゲートドライバとを結ぶ配線を流れる電流の値を検出することを特徴とする請求項1から請求項9のいずれか一項に記載の放射線画像撮影装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012501656A JP5617913B2 (ja) | 2010-02-25 | 2010-12-27 | 放射線画像撮影装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010039871 | 2010-02-25 | ||
JP2010-039871 | 2010-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011104991A1 true WO2011104991A1 (ja) | 2011-09-01 |
Family
ID=44506426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/073495 WO2011104991A1 (ja) | 2010-02-25 | 2010-12-27 | 放射線画像撮影装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5617913B2 (ja) |
WO (1) | WO2011104991A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120097860A1 (en) * | 2009-07-01 | 2012-04-26 | Konica Minolta Medical & Graphic, Inc. | Radiographic imaging apparatus |
WO2013038815A1 (ja) * | 2011-09-13 | 2013-03-21 | コニカミノルタホールディングス株式会社 | イメージセンサーおよび放射線画像撮影装置 |
JP2013094182A (ja) * | 2011-10-28 | 2013-05-20 | Konica Minolta Medical & Graphic Inc | 放射線画像撮影装置 |
JP2013094183A (ja) * | 2011-10-28 | 2013-05-20 | Konica Minolta Medical & Graphic Inc | 放射線画像撮影システムおよび放射線画像撮影装置 |
JP2013108974A (ja) * | 2011-10-25 | 2013-06-06 | Konica Minolta Medical & Graphic Inc | 放射線画像撮影装置 |
KR20140108124A (ko) * | 2013-02-28 | 2014-09-05 | 캐논 가부시끼가이샤 | 방사선 촬상 장치 및 방사선 촬상 시스템 |
US9423512B2 (en) | 2013-02-28 | 2016-08-23 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
US9541653B2 (en) | 2013-02-28 | 2017-01-10 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
JP2017225126A (ja) * | 2017-06-23 | 2017-12-21 | キヤノン株式会社 | 放射線撮像装置及び放射線撮像システム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11155847A (ja) * | 1997-11-28 | 1999-06-15 | Canon Inc | 放射線撮影装置及び駆動方法 |
JP2007151761A (ja) * | 2005-12-02 | 2007-06-21 | Canon Inc | 放射線撮像装置、システム及び方法、並びにプログラム |
JP2009219538A (ja) * | 2008-03-13 | 2009-10-01 | Konica Minolta Medical & Graphic Inc | 放射線画像検出装置および放射線画像撮影システム |
-
2010
- 2010-12-27 WO PCT/JP2010/073495 patent/WO2011104991A1/ja active Application Filing
- 2010-12-27 JP JP2012501656A patent/JP5617913B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11155847A (ja) * | 1997-11-28 | 1999-06-15 | Canon Inc | 放射線撮影装置及び駆動方法 |
JP2007151761A (ja) * | 2005-12-02 | 2007-06-21 | Canon Inc | 放射線撮像装置、システム及び方法、並びにプログラム |
JP2009219538A (ja) * | 2008-03-13 | 2009-10-01 | Konica Minolta Medical & Graphic Inc | 放射線画像検出装置および放射線画像撮影システム |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8866095B2 (en) * | 2009-07-01 | 2014-10-21 | Konica Minolta Medical & Graphic, Inc. | Radiographic imaging apparatus |
US20120097860A1 (en) * | 2009-07-01 | 2012-04-26 | Konica Minolta Medical & Graphic, Inc. | Radiographic imaging apparatus |
WO2013038815A1 (ja) * | 2011-09-13 | 2013-03-21 | コニカミノルタホールディングス株式会社 | イメージセンサーおよび放射線画像撮影装置 |
JP2013108974A (ja) * | 2011-10-25 | 2013-06-06 | Konica Minolta Medical & Graphic Inc | 放射線画像撮影装置 |
JP2013094182A (ja) * | 2011-10-28 | 2013-05-20 | Konica Minolta Medical & Graphic Inc | 放射線画像撮影装置 |
JP2013094183A (ja) * | 2011-10-28 | 2013-05-20 | Konica Minolta Medical & Graphic Inc | 放射線画像撮影システムおよび放射線画像撮影装置 |
EP2773103A3 (en) * | 2013-02-28 | 2015-06-10 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
JP2014168203A (ja) * | 2013-02-28 | 2014-09-11 | Canon Inc | 放射線撮像装置及び放射線撮像システム |
KR20140108124A (ko) * | 2013-02-28 | 2014-09-05 | 캐논 가부시끼가이샤 | 방사선 촬상 장치 및 방사선 촬상 시스템 |
US9423512B2 (en) | 2013-02-28 | 2016-08-23 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
US9470800B2 (en) | 2013-02-28 | 2016-10-18 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
KR101690364B1 (ko) * | 2013-02-28 | 2016-12-27 | 캐논 가부시끼가이샤 | 방사선 촬상 장치 및 방사선 촬상 시스템 |
US9541653B2 (en) | 2013-02-28 | 2017-01-10 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
EP3349434A1 (en) * | 2013-02-28 | 2018-07-18 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
USRE49401E1 (en) | 2013-02-28 | 2023-01-31 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging system |
JP2017225126A (ja) * | 2017-06-23 | 2017-12-21 | キヤノン株式会社 | 放射線撮像装置及び放射線撮像システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011104991A1 (ja) | 2013-06-17 |
JP5617913B2 (ja) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5617913B2 (ja) | 放射線画像撮影装置 | |
JP5505416B2 (ja) | 放射線画像撮影装置 | |
JP2011185622A (ja) | 放射線画像撮影装置 | |
JP5459066B2 (ja) | 放射線画像撮影装置 | |
JP5447519B2 (ja) | 放射線画像撮影装置 | |
JP2009219538A (ja) | 放射線画像検出装置および放射線画像撮影システム | |
JP2010264085A (ja) | 放射線画像撮影装置 | |
WO2010131506A1 (ja) | 放射線画像撮影装置 | |
JP2010264181A (ja) | 放射線画像撮影装置 | |
JP5332619B2 (ja) | 可搬型放射線画像撮影装置および放射線画像撮影システム | |
JP5617541B2 (ja) | 放射線画像撮影装置 | |
JP5099000B2 (ja) | 可搬型放射線画像撮影装置および放射線画像撮影システム | |
JP5673558B2 (ja) | 放射線画像撮影装置 | |
JP2010263517A (ja) | 放射線画像撮影装置 | |
JP5556367B2 (ja) | 放射線画像撮影装置および放射線画像撮影システム | |
JP2012182346A (ja) | 放射線画像撮影装置 | |
JP2011177356A (ja) | 放射線画像撮影装置 | |
WO2010073838A1 (ja) | 可搬型放射線画像撮影装置および放射線画像撮影システム | |
JP5672064B2 (ja) | 放射線画像撮影装置 | |
JP2011153876A (ja) | 放射線画像撮影装置および放射線画像撮影システム | |
JP2012085021A (ja) | 放射線画像撮影装置 | |
JP2011041075A (ja) | 放射線画像撮影装置 | |
JP2013205136A (ja) | 放射線画像撮影装置 | |
JP2013243319A (ja) | 放射線画像撮影装置 | |
JP2011196689A (ja) | 放射線画像撮影装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10846654 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012501656 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10846654 Country of ref document: EP Kind code of ref document: A1 |