WO2011102244A1 - 耐疲労亀裂進展特性および耐食性に優れた鋼材並びにその製造方法 - Google Patents

耐疲労亀裂進展特性および耐食性に優れた鋼材並びにその製造方法 Download PDF

Info

Publication number
WO2011102244A1
WO2011102244A1 PCT/JP2011/052377 JP2011052377W WO2011102244A1 WO 2011102244 A1 WO2011102244 A1 WO 2011102244A1 JP 2011052377 W JP2011052377 W JP 2011052377W WO 2011102244 A1 WO2011102244 A1 WO 2011102244A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
corrosion resistance
crack growth
molten steel
Prior art date
Application number
PCT/JP2011/052377
Other languages
English (en)
French (fr)
Inventor
隆之 上村
和幸 鹿島
英昭 幸
知哉 藤原
登 誉田
秀治 岡口
和茂 有持
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44482833&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011102244(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP2011526323A priority Critical patent/JP4924774B2/ja
Priority to KR1020117017845A priority patent/KR101261744B1/ko
Priority to CN201180004587.8A priority patent/CN102639737B/zh
Publication of WO2011102244A1 publication Critical patent/WO2011102244A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to a steel material suitable for use in a hull, a civil engineering structure, a construction machine, a hydraulic iron pipe, an offshore structure, a line pipe, and other welded structures that require fatigue crack growth resistance and corrosion resistance, and a manufacturing method thereof. About.
  • Patent Document 1 proposes a technique for reducing the residual stress in the weld joint by reducing the high-temperature strength by utilizing a ferrite phase having a lower strength than the austenite phase at the same temperature.
  • a ferrite phase having a lower strength than the austenite phase at the same temperature.
  • welded steel structures are often used in environments where there is a large amount of incoming salt, such as beach areas and areas where snow melting salt is spread, and in the shipbuilding field, they are often used in seawater spray environments.
  • weathering steel is used for structures such as bridges as a minimum maintenance steel that can be used as it is without being painted.
  • a protective rust layer is formed on the surface of weathering steel not only in the beach area but also in inland areas where there is a large amount of incoming salt, such as areas where snowmelt salt and antifreeze are sprayed. Since it is hard to be done, the effect which suppresses corrosion is hard to be exhibited. Therefore, in these regions, it is not possible to use bare weatherproof steel, and ordinary steel is used by painting on ordinary steel. However, in the case of using such ordinary steel for coating, it is necessary to repaint every 10 years because of coating deterioration due to corrosion, and therefore the cost required for maintenance becomes enormous.
  • Ni-based high weathering steel to which about 1 to 3% of Ni is added has been developed.
  • the salt in an environment where snow melting salt or anti-freezing agent is sprayed on the road, the salt is wound up on the running car and adheres to the bridge that supports the road, resulting in a severe corrosive environment. Furthermore, the eaves under the eaves a little away from the coast are also exposed to severe salt damage environments, and in such areas, the amount of incoming salt becomes a severe corrosive environment with 1 mdd or more.
  • Patent Document 3 proposes a weather-resistant steel material having an increased chromium (Cr) content
  • Patent Document 4 proposes a weather-resistant steel material having an increased nickel (Ni) content.
  • the steel material having the effect of suppressing fatigue crack growth and the steel material having corrosion resistance as described above have the following problems.
  • Patent Document 1 requires high-concentration Al addition to make the ferrite phase exist in a wider temperature range.
  • Al contributes to the formation of a ferrite phase, but is an element that significantly reduces toughness, which is one of the basic characteristics required for structural steel materials.
  • the toughness itself against a static load is insufficient.
  • the design of the shape and dimensions of the structural material needs to be carried out not only from the viewpoint of fatigue strength but also from the viewpoint of preventing brittle fracture against static loads. With the technique proposed in Patent Document 1, the strength and soundness are improved. The balance cannot be improved.
  • the weathering steel material which increased chromium (Cr) content proposed by the said patent document 3 can improve a weather resistance in the area
  • paint peel resistance is a major problem in welded steel structures used in environments with a large amount of incoming salt. That is, as shown above, in a coastal environment where a large amount of chloride comes in or an environment where a snow melting agent or an antifreezing agent is sprayed, the coating peels off early and corrosion progresses. Therefore, it is necessary to repaint the paint every few to a few dozen years. In addition, when repainting is performed, it is necessary to assemble a scaffold on a once-corroded bridge and perform a reblasting process as a previous process, which is very expensive.
  • the paint peel resistance is largely due to the characteristics including the corrosion resistance of the steel material as the base.
  • the present invention has been made to solve such a problem, and does not contain a large amount of elements that inhibit toughness such as Al and B, and a steel material excellent in fatigue crack growth resistance and corrosion resistance and its
  • the object is to provide a manufacturing method.
  • the above-mentioned corrosion resistance refers to corrosion resistance in a high chloride environment (coating does not peel off, corrosion at the coating defect part is suppressed and corrosion resistance is maintained (paint peeling resistance), and weather resistance when no coating is applied. Means).
  • the present inventors first conducted a study focusing on the correlation between the fatigue characteristics of a welded joint and the cleanliness of inclusions present in the steel material. It was found that there was no correlation between the joint fatigue characteristics.
  • the joint fatigue characteristics greatly depend on the characteristics of the steel surface, and that improving the cleanliness improves the joint fatigue characteristics. did. More specifically, the inclusion analysis was limited to the region from the steel sheet surface to a depth of 2 mm in the thickness direction, the cleanliness was obtained for each steel sheet, and the correlation with the joint fatigue characteristics was examined. It was recognized that there was. The reason why such a correlation is recognized is that the steel surface has a large amount of displacement and is likely to start fatigue cracks.
  • inclusions do not deform even under high stress because of their high hardness.
  • the amount of displacement is large on the steel surface, it is considered that a crack occurs at the interface between the inclusion and the base structure, and the fatigue characteristics deteriorate. Therefore, the cleanliness of inclusions is usually a problem in the central part of the steel plate thickness, but the cleanliness of the steel surface is a problem with regard to fatigue characteristics.
  • the present inventors examined corrosion in an environment with a large amount of incoming salt. As a result, in such an environment, repeated drying and wetting of the FeCl 3 solution became an essential condition of corrosion, and due to hydrolysis of Fe 3+ It has been found that corrosion is accelerated by lowering the pH and by Fe 3+ acting as an oxidizing agent.
  • the corrosion reaction at this time is as shown below.
  • Fe 2+ generated by the reaction of the above formula (1) is oxidized to Fe 3+ by air oxidation, and the generated Fe 3+ acts again as an oxidant to accelerate corrosion.
  • the reaction rate of air oxidation of Fe 2+ is generally slow in a low pH environment, but is accelerated in a concentrated chloride solution, and Fe 3+ is easily generated. It has been found that due to such a cyclic reaction, in an environment where the amount of incoming salt is very large, Fe 3+ is always supplied, corrosion of steel is accelerated, and corrosion resistance is significantly deteriorated.
  • the present inventors examined the influence of various alloy elements on the weather resistance based on the corrosion mechanism in such a salt environment, and as a result, obtained the findings shown in the following (a) to (c).
  • Sn dissolves as Sn 2+, by lowering the concentration of Fe 3+ by 2Fe 3+ + Sn 2+ ⁇ 2Fe 2+ + Sn 4+ becomes reactions, (1) inhibit the reaction of formula. Sn also has an effect of suppressing anodic dissolution.
  • Cu is an element that has traditionally been the basis for improving corrosion resistance in an environment with a large amount of incoming salt, and the effect of improving corrosion resistance is seen in an environment with a relatively long wetting time.
  • a relatively dry environment in which salt is deposited and wet and dry are repeated due to changes in humidity and ⁇ -FeOOH is generated. Then, it was found that Cu rather promotes corrosion.
  • the present invention has been completed based on such findings, and the gist of the present invention is the steel materials having excellent fatigue crack growth characteristics and corrosion resistance shown in the following (1) to (6), and the following (7 ) And (8) are methods for producing a steel material excellent in fatigue crack growth resistance and corrosion resistance.
  • a steel material excellent in fatigue crack growth resistance and corrosion resistance characterized by being 4 or less.
  • each element symbol in the above formula means the content (% by mass) of each element. When the content of each element is at the impurity level, 0 (zero) is substituted.
  • a steel material excellent in fatigue crack growth resistance and corrosion resistance according to any one of the above (1) to (4), further comprising, by mass%, Ti: 0.05% or less.
  • a method for producing a steel material having excellent fatigue crack growth characteristics and corrosion resistance characterized by comprising the following steps A to D and having a recuperation temperature width of 70 ° C. or less after completion of cooling in step D .
  • Step A A step of blowing an inert gas into the molten steel under the conditions satisfying the following formula (3):
  • Step C A step of heating the obtained steel slab to 900 to 1180 ° C. and then hot rolling under a condition that the finishing temperature is 650 to 1000 ° C.
  • Step D The obtained hot-rolled material is acceleratedly cooled from the temperature range of 620 to 950 ° C. under the condition that the average cooling rate in the temperature range of 620 to 500 ° C. is 5 to 50 ° C./sec. The process of finishing cooling in the temperature range.
  • G 1 Inert gas flow rate (NL / min) blown into molten steel
  • H 1 Distance from the tip of the inert gas blowing nozzle to the molten steel surface (m)
  • t 1 inert gas blowing time (min)
  • S 1 Ladle molten steel amount (ton)
  • D 1 Ladle inner diameter (m)
  • a method for producing a steel material having excellent fatigue crack growth characteristics and corrosion resistance comprising the following steps A1 to D, and having a recuperation temperature width of 70 ° C. or less after completion of cooling in step D .
  • Step A1 A step of subjecting the molten steel to a vacuum refining treatment under the conditions satisfying the following formula (4):
  • Step B Continuously casting the obtained molten steel to obtain a steel piece having the chemical composition of any one of (1) to (6) above
  • Step C A step of heating the obtained steel slab to 900 to 1180 ° C. and then hot rolling under a condition that the finishing temperature is 650 to 1000 ° C.
  • Step D The obtained hot-rolled material is acceleratedly cooled from the temperature range of 620 to 950 ° C. under the condition that the average cooling rate in the temperature range of 620 to 500 ° C. is 5 to 50 ° C./sec. The process of finishing cooling in the temperature range.
  • G 2 Inert gas flow rate used for molten steel reflux (NL / min)
  • D 2 inner diameter of dip tube (m)
  • t 2 Vacuum processing time (min)
  • S 2 Ladle molten steel amount (ton)
  • the steel material of the present invention is excellent in fatigue crack growth resistance and corrosion resistance
  • a welded structure that requires fatigue crack growth resistance such as a hull, civil engineering structure, construction machine, hydraulic iron pipe, offshore structure, line pipe, etc. Suitable for use with things.
  • C 0.01 to 0.14% C is an element necessary for ensuring strength. If the content is less than 0.01%, the required strength cannot be ensured. However, if the content exceeds 0.14%, it becomes difficult to ensure toughness in both the heat affected zone (HAZ) and the base material when welding. Therefore, the C content is set to 0.01 to 0.14%.
  • the preferable lower limit of the C content is 0.03%, and the preferable upper limit is 0.10%.
  • Si 0.04 to 0.6%
  • Si has a deoxidizing action and contributes to an increase in the strength of the steel material. In order to obtain these effects, it is necessary to contain Si by 0.04% or more. However, if its content exceeds 0.6%, toughness is reduced. Therefore, the Si content is 0.04 to 0.6%.
  • Mn 0.5 to 2.0% Mn has an effect of enhancing the hardenability of steel and is an effective component for securing the strength. If the content is less than 0.5%, the hardenability is insufficient and the desired strength and toughness cannot be obtained. However, if Mn is contained in an amount exceeding 2.0%, segregation increases and hardenability increases too much, and the toughness of both the heat affected zone and the base metal decreases during welding. Therefore, the Mn content is 0.5 to 2.0%.
  • P 0.01% or less P is unavoidably present in steel as an impurity. If its content exceeds 0.01%, it not only segregates at the grain boundaries and lowers toughness, but also causes hot cracking during welding. Therefore, the content of P needs to be limited to 0.01% or less. The smaller the P, the better.
  • S 0.003% or less S is unavoidably present in steel as an impurity.
  • the S content needs to be limited to 0.003% or less. The smaller the S, the better.
  • Cu Less than 0.2% Cu is generally regarded as a basic element for improving weather resistance, and is added to all beach weather resistant steels and corrosion resistant steels, but in a relatively dry environment under high flying salt. Rather, it reduces the corrosion resistance. Further, if it coexists with Sn, cracking occurs during rolling. Therefore, it is necessary to reduce the Cu content. Even if contained as an impurity, the Cu content needs to be less than 0.2%. Preferably it is less than 0.1%.
  • B More than 0.0007% and 0.005% or less B is an element having an effect of improving hardenability and increasing strength. In order to acquire this effect, it is necessary to make it contain exceeding 0.0007%. However, if the content exceeds 0.005%, the fatigue characteristics deteriorate. Therefore, the B content is more than 0.0007% and not more than 0.005%.
  • Al less than 0.05%
  • Al is an element having a deoxidizing action.
  • toughness tends to deteriorate mainly in the weld heat affected zone. This is presumably because coarse cluster-like alumina inclusion particles are easily formed. Therefore, the Al content is less than 0.05%.
  • N 0.007% or less
  • N is an element unavoidably present in steel as an impurity. When present in a large amount, it causes deterioration of the toughness of the base metal and the weld heat affected zone. Therefore, the N content is 0.007% or less. The smaller N, the better.
  • O 0.003% or less
  • O (oxygen) is an element unavoidably present in steel as an impurity.
  • the content exceeds 0.003%, the base material toughness and ductility such as stretch drawing are adversely affected. Therefore, the O content is limited to 0.003% or less.
  • Sn 0.03 to 0.50% Sn dissolves as Sn 2+ and has an action of inhibiting corrosion by an inhibitor action in an acidic chloride solution. Further, rapidly to reduce the Fe 3+, by having an effect of reducing Fe 3+ concentration as oxidizing agent, since inhibit corrosion promoting effect of Fe 3+, thereby improving the weather resistance in high airborne salt environments. Moreover, Sn has the effect
  • Cu / Sn ratio 1 or less
  • the corrosion resistance is significantly reduced by the inclusion of Cu.
  • the steel material according to the present invention has the chemical composition described above, and the balance is made of Fe and impurities.
  • the impurities are components that are mixed due to various factors of the manufacturing process including raw materials such as ore and scrap when industrially manufacturing steel materials, and in a range that does not adversely affect the present invention. It means what is allowed.
  • the steel material of the present invention may contain one or more components selected from at least one of the following first group to fifth group, if necessary.
  • first group to fifth group if necessary.
  • Mo has an effect of improving the strength and toughness of the base material, and may be contained as necessary. However, if the content exceeds 1.0%, the hardness of the weld heat affected zone is mainly increased, and the toughness and SSC resistance are impaired. Therefore, when Mo is contained, the content is preferably 1.0% or less. In addition, in order to acquire this effect stably, it is preferable to make it contain 0.05% or more.
  • V 0.1% or less
  • V has an effect of improving the strength of the base material mainly by precipitation of carbonitride during tempering, and may be contained as necessary. However, if the content exceeds 0.1%, the performance improvement effect of the base material is saturated, leading to toughness deterioration. Therefore, when V is contained, the content is preferably 0.1% or less. In addition, in order to acquire this effect stably, it is preferable to make it contain 0.005% or more.
  • Nb 0.1% or less Since Nb has the effect of improving the strength and toughness of the base material by refining and precipitation of carbides, it may be contained as necessary. However, if the content exceeds 0.1%, the above effect is saturated, but the toughness of the weld heat affected zone is significantly impaired. Therefore, when Nb is contained, the content is preferably 0.1% or less. In addition, in order to acquire this effect stably, it is preferable to make it contain 0.005% or more.
  • Ni Ni 1.5% or less
  • Ni has an effect of increasing the toughness of a steel matrix (material) in a solid solution state, and may be contained as necessary.
  • the content is preferably 1.5% or less.
  • Group 3 Cr Cr: 1.2% or less Since Cr has the effect of enhancing the corrosion resistance of carbon dioxide gas and enhancing the hardenability, it may be contained if necessary. However, if the content exceeds 1.2%, even if other component conditions are satisfied, not only is it difficult to suppress the hardening of the weld heat-affected zone, but the carbon dioxide corrosion resistance improvement effect is saturated. Therefore, when Cr is contained, the content is preferably 1.2% or less. In addition, in order to acquire this effect stably, it is preferable to make it contain 0.05% or more.
  • Ti Ti acts as a deoxidizing element and forms an oxide phase composed of Ti and Mn, and in particular refines the structure in the heat-affected zone of high heat input welding, thereby improving fatigue characteristics. Therefore, it may be contained as necessary. However, if the content exceeds 0.05%, the oxide to be formed becomes Ti oxide or Ti-Al oxide and the dispersion density decreases, and the structure in the heat-affected zone of the high heat input weld zone becomes finer. Lost the ability to For this reason, when Ti is contained, the content is preferably 0.05% or less. More preferred is less than 0.02%. More preferably, it is 0.018% or less. In order to stably form this oxide phase in steel, it is preferable that the total amount of Ti in the steel is 0.003% or more.
  • Group 5 Ca, Mg Ca: 0.003% or less Ca reacts with S in steel to form oxysulfide (oxysulfide) in molten steel.
  • oxysulfide oxysulfide
  • this oxysulfide does not extend in the rolling direction during rolling and is spherical after rolling, so it suppresses weld cracks and hydrogen-induced cracks starting from cracks at the ends of stretched inclusions. Has the effect of Therefore, you may make it contain as needed. However, if its content exceeds 0.003%, toughness may be deteriorated. Therefore, when Ca is contained, the content is preferably 0.003% or less. In addition, in order to acquire this effect stably, it is preferable to make it contain 0.0005% or more.
  • Mg forms an Mg-containing oxide, serves as a generation nucleus of TiN, and has the effect of finely dispersing TiN. Therefore, Mg may be contained as necessary. However, when the content exceeds 0.003%, the amount of oxide becomes excessive and ductility is reduced. Therefore, when Mg is contained, the content is preferably 0.003% or less. In addition, in order to acquire this effect stably, it is preferable to make it contain 0.0005% or more.
  • the Bq value obtained from the following formula (1) needs to be 0.003 or less, and the Ceq value obtained from the following formula (2) is 0.15 to 0.35. It is necessary to be.
  • each element symbol in the above formula means the content (% by mass) of each element. When the content of each element is at the impurity level, 0 (zero) is substituted.
  • Bq 0.003 or less
  • the Bq value defined by the above equation (1) is 0.0001 or more. It is more preferably 0.0005 or more, and further preferably 0.001 or more.
  • Ceq 0.15-0.35 Ceq obtained from the above equation (2) is a so-called carbon equivalent, and is an index for evaluating the hardenability and weldability of a steel material and is generally used widely.
  • the inventors of the present invention improve the fatigue properties of welded joints, and have a tensile strength (TS) generally used as structural steel of 500 MPa or more, and a Charpy absorbed energy value vE 0 at 0 ° C. of 27 J or more.
  • TS tensile strength
  • vE 0 at 0 ° C. Charpy absorbed energy value
  • the Ceq value is set to 0.15 to 0.35%.
  • the preferable minimum of Ceq is 0.20%.
  • the preferable upper limit of Ceq is 0.30%.
  • the steel material of this invention requires that the oxide number of the area
  • the number of oxides is measured by the procedures shown in the following (i) to (iii).
  • the above specimen is set in a scanning electron microscope (SEM) equipped with an energy dispersive X-ray fluorescence spectrometer (EDX), and a 0.05 mm square area is used as one field of view, and an area within 2 mm from the surface layer Five fields of view are observed at a magnification of 2000, and the number of oxides in each field of view is measured. At this time, the oxide is distinguished from other inclusions by composition analysis by EDX. Further, the number of oxides is measured by changing the depth in a region from the surface layer to a depth of 2 mm in order to avoid variation in the visual field.
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray fluorescence spectrometer
  • the oxide in the surface layer can be reduced by devising an inert gas blowing process or a vacuum refining process. Specifically, in performing the inert gas blowing process, it is effective to blow the inert gas into the molten steel under the conditions satisfying the following expression (3).
  • the definitions of the symbols in the above formula (3) are as follows.
  • G 1 Inert gas flow rate (NL / min) blown into molten steel
  • H 1 Distance from the tip of the inert gas blowing nozzle to the molten steel surface
  • t 1 inert gas blowing time (min)
  • S 1 Ladle molten steel amount (ton)
  • D 1 Ladle inner diameter (m)
  • blowing can be performed while sufficiently stirring the bath. That is, at the beginning of blowing, the silicon in the hot metal is oxidized to become silica, which reacts with calcined lime and iron oxide added in the furnace and starts to form CaO—SiO 2 —FeO slag. At the same time, the furnace temperature rises and scrap melting begins to progress. In the initial stage of blowing, since the carbon concentration in the hot metal is high, the injected pure oxygen gas reacts efficiently with the carbon to become carbon monoxide and decarburization proceeds. At this stage, the supply rate of pure oxygen gas determines the decarburization. As the decarburization progresses, the temperature of the bath further increases.
  • the decarburization reaction is controlled by the movement of carbon in the molten steel. Insufficient carbon movement due to stirring of molten steel, the injected pure oxygen gas is used to oxidize iron rather than react with carbon, and iron oxide increases in the slag, reducing the iron yield. To do. To prevent this, gas blowing from the furnace bottom is activated.
  • the molten steel is placed in a decompressed vessel and the equilibrium partial pressure is lowered to remove the gas component in the molten steel as a condition that satisfies the above formula (4).
  • casting is preferably performed by continuous casting.
  • the segregation of the steel slab also adversely affects the toughness of the weld heat affected zone.
  • C is 0.29% or less
  • P is 0.30% or less
  • Mn is 3.5%. The following management should be performed.
  • electromagnetic brake is applied at 1000 to 5000 gauss for discharge flow rate control during casting
  • electromagnetic stirring treatment is applied to unsolidified molten steel at 250 to 1000 gauss, and the final solidified part is about 1 mm / m.
  • the steel sheet may be squeezed with a gradient and the concentrated segregated molten steel may be squeezed out from the final solidified portion.
  • the steel slab produced in this way is preferably heated to a temperature range of 900 to 1180 ° C. and hot rolled.
  • the steel slab once cooled to room temperature may be reheated, and maintained or heated to the above temperature through a soaking furnace without cooling to room temperature after continuous casting by a so-called direct feed rolling process.
  • the heating temperature is less than 900 ° C.
  • the reverse transformation to austenite becomes insufficient at the time of slab heating, and the subsequent characteristics deteriorate.
  • the heating temperature exceeds 1180 ° C., the austenite crystal grains become coarse during the heating of the steel slab, and the toughness of the entire base metal as well as the center portion of the plate thickness decreases.
  • the hot rolling finishing temperature is preferably 650 to 1000 ° C.
  • the finishing temperature is less than 650 ° C.
  • the deformation resistance of the steel increases, and it becomes difficult to finish the shape of the steel material after hot rolling to the target shape.
  • the finishing temperature is high, the effect of crystal grain refinement by controlled rolling cannot be obtained, and the toughness of the base material cannot be ensured. Therefore, the upper limit of the finishing temperature is limited to 1000 ° C.
  • the obtained hot-rolled material was accelerated and cooled from a temperature range of 620 to 950 ° C. under a condition that an average cooling rate in the temperature range of 620 to 500 ° C. was 5 to 50 ° C./second. Cooling should be terminated in the temperature range. Furthermore, the recuperation temperature range after the cooling is preferably 70 ° C. or less.
  • Fatigue characteristics can be improved by cooling under such conditions.
  • the average cooling rate in the temperature range of 620 to 500 ° C. is set to 5 to 50 ° C./sec.
  • the cooling stop temperature in this cooling exceeds 500 ° C., the strength cannot be ensured because the formation of martensite or lower bainite becomes insufficient not only in the central part of the steel material but also in the surface layer part. Therefore, the cooling stop temperature is set to 500 ° C. or lower. Such heat treatment makes it easier to obtain a martensite or bainite structure. In the case of a steel material having the chemical composition of the present invention, it mainly has a bainite structure.
  • a slab obtained by melting steel having a chemical composition shown in Table 1 in a converter and performing an inert gas blowing process or a vacuum refining process shown in Table 2 and then performing continuous casting is appropriately used.
  • the steel plate for test was obtained by hot rolling and cooling to the plate thickness under the conditions shown in Table 3.
  • the fatigue fracture life, the tensile strength and toughness of the weld heat affected zone, the number of oxides, the reduction in plate thickness, and the peeled area ratio were measured using the above test steel plates by the following methods.
  • ⁇ Fatigue test> Using the test steel plate, a load non-transmission type cross welded joint was produced under the welding conditions shown in Table 4 and subjected to a fatigue test. In addition, the shape and dimension of a joint test body are shown in FIG. The joint was manufactured by fillet welding. In FIG. 1, 1 and 2 are base metal steel plates, and 5 is a welded portion. A repeated axial load was applied to each joint specimen, and the fatigue crack initiation life at the weld toe, that is, fatigue fracture life, was measured. Table 5 shows the fatigue test conditions.
  • test pieces obtained from the obtained steel materials were evaluated by SAE (Society of Automotive Engineers) J2334 test.
  • SAE J2334 test is wet: 50 ° C., 100% RH, 6 hours, salt adhesion: 0.5% NaCl, 0.1% CaCl 2 , 0.075% NaHCO 3 aqueous solution, 0.25 hour, dry: 60
  • This test is a test that simulates a severe corrosive environment in which the amount of incoming salt exceeds 1 mdd.
  • the “plate thickness reduction amount” is an average plate thickness reduction amount of the test piece, and is calculated using the weight reduction before and after the test and the surface area of the test piece.
  • a test piece with a size of 150 x 70 mm was coated with a modified epoxy paint (Banno 200: made in China) by air spray to a dry film thickness of 150 ⁇ m, and the steel substrate After making a crosscut at a depth reaching, the SAE J2334 test was also evaluated.
  • a modified epoxy paint Banno 200: made in China
  • Table 6 shows the chemical composition and manufacturing method of the steel material and various test results.
  • the number of oxides in a region within 2 mm from the surface layer is 5 ⁇ 10 4 pieces / mm 2 or less.
  • the fatigue fracture life (number of repetitions) exceeded 5 ⁇ 10 6 times, and da / dn was 5 ⁇ 10 ⁇ 5 or less, so that it had sufficient fatigue crack propagation characteristics.
  • the chemical composition satisfies the range defined by the present invention, but the production methods deviate from the conditions of the present invention, and Comparative Examples 1 and 2 and the chemical composition deviates from the range defined by the present invention. In each case, the fatigue rupture life was extremely poor at 10 4 units.
  • Comparative Example 3 in which the Cu content was large and Cu / Sn exceeded 1, minute cracks occurred at the ends during rolling.
  • Comparative Example 4 with a small amount of Sn the corrosion resistance in an environment with a large amount of incoming salt was lowered, and the peeled area ratio was 80%.
  • the steel material of the present invention is excellent in fatigue crack growth resistance and corrosion resistance
  • a welded structure that requires fatigue crack growth resistance such as a hull, civil engineering structure, construction machine, hydraulic iron pipe, offshore structure, line pipe, etc. Suitable for use with things.
  • Base steel plate 2. 4. Base steel plate welded part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

 質量%で、C:0.01~0.14%、Si:0.04~0.6%、Mn:0.5~2.0%、P:0.01%以下、S:0.003%以下、Cu:0.2%未満、B:0.0007%を超え0.005%以下、Al:0.05%未満、N:0.007%以下、O:0.003%およびSn:0.03~0.50%以下を含有し、残部はFeおよび不純物からなり、かつ、Cu/Sn比が1以下である化学組成を有し、そして、Bq値が0.003以下、Ceq値が0.15~0.35であり、かつ、表層から2mm以内の領域における酸化物数が1平方mmあたり5×10個以下であることを特徴とする耐疲労亀裂進展特性および耐食性に優れた鋼材。さらに、Mo、V、Nb、Ni、Cr、Ti、CaおよびMgのうちの1種又は2種以上を含有させてもよい。

Description

耐疲労亀裂進展特性および耐食性に優れた鋼材並びにその製造方法
 本発明は、船体、土木建設物、建設機械、水圧鉄管、海洋構造物、ラインパイプその他の耐疲労亀裂進展特性および耐食性が要求される溶接構造物などに用いるのに適した鋼材並びにその製造方法に関する。
 近年、溶接構造物が大型化される傾向が顕著になってきており、高強度化および軽量化が望まれている。しかし、高強度鋼を使用する際には設計応力が上昇するため、溶接部から疲労破壊が発生しやすくなり、その改善が重要な問題となっている。構造用鋼材などの厚鋼板では、一般に溶接施工が施されるため、溶接部から疲労亀裂が発生する可能性がある。したがって、溶接部から発生、進展する疲労亀裂を鋼材で滞留させることができれば、構造物の疲労寿命の延長に有効である。このため、疲労亀裂進展抑制効果を有する鋼材が種々提案されている。
 例えば、特許文献1には、同じ温度であればオーステナイト相よりも強度が低いフェライト相を活用することで、高温強度を低下させて、溶接継手内の溶接残留応力を緩和する技術が提案されている。すなわち、溶接部では溶接後に急冷されるため、オーステナイト単相の温度域が広く、溶接金属の熱収縮に伴い、高いレベルの残留応力が発生する。そこで、特許文献1に記載の発明では、鋼中にフェライト生成元素としてAlを0.5~2.0%含有させておき、800~600℃の温度範囲でフェライトを生成させて、低強度のフェライトを塑性変形させることにより残留応力を緩和している。
 また、特許文献2には、引張強度490~780MPaの高張力鋼板の溶接熱影響部(HAZ)の組織をベイナイト主体とし、オーステナイト粒界から生成する粒界フェライトを抑制することにより疲労強度を向上させる技術が提案されている。この技術では、粒界フェライトの生成を抑制すべくBを0.0005~0.01%添加し、さらにベイナイトとマルテンサイトを含んだ組織全体を強化すべく、炭素当量(Ceq)の限定を設けている。
 一方で、溶接鋼構造物は海浜地域や融雪塩が散布される地域等、飛来塩分量が多い環境下で、さらに造船分野では海水飛沫環境下で使用される場合が多い。
 一般に、耐候性鋼材を大気腐食環境中に暴露すると、その表面に保護性のあるさび層が形成され、それ以降の鋼材腐食が抑制される。そのため、耐候性鋼材は、塗装せずに裸のまま使用できるミニマムメンテナンス鋼材として橋梁等の構造物に用いられている。
 ところが、海浜地域だけでなく、内陸部であっても融雪塩や凍結防止剤が散布される地域のように飛来塩分量が多い地域では、耐候性鋼材の表面に保護性のあるさび層が形成されにくいために、腐食を抑制する効果が発揮されにくい。そのため、これらの地域では、裸のままの耐候性鋼材を用いることができず、普通鋼に塗装を施して使用する普通鋼の塗装使用が一般的である。しかし、このような普通鋼の塗装使用の場合には、腐食による塗膜劣化のため約10年毎に再塗装する必要があり、そのため維持管理に要する費用は莫大なものとなる。
 近年、日本工業規格(JIS)で規格化された耐候性鋼(JIS G 3114:溶接構造用耐候性熱間圧延鋼材)は、飛来塩分量がNaClとして0.05mg/dm/day(0.05mdd)以上の地域、たとえば海浜地域では、ウロコ状錆や層状錆等の発生により腐食減量が大きいため、無塗装では使用できないことになっている(建設省土木研究所、(社)鋼材倶楽部、(社)日本橋梁建設協会:耐候性鋼の橋梁への適用に関する共同研究報告書(XX)-無塗耐候性橋梁の設計・施工要領(改訂版-1993.3)参照)。
 このように、海浜地域などの塩分の多い環境下では、通常普通鋼材に塗装を行って対処している。しかしながら、河口付近の海浜地域や融雪塩を撒く山間部等の道路に建設される橋梁は腐食が著しく、再塗装せざるを得ないのが現状である。これらの再塗装には多大な工数がかかることから、無塗装で使用できる鋼材への要望が強い。
 最近、Niを1~3%程度添加したNi系高耐候性鋼が開発された。しかしながら、飛来塩分量が0.3~0.4mddを越える地域では、このようなNi添加だけでは、無塗装で使用できる鋼材への適用が難しいことが判明してきた。
 鋼材の腐食は、飛来塩分量が多くなるにしたがって激しくなるため、耐食性と経済性の観点からは、飛来塩分量に応じた耐候性鋼材が必要になる。また、橋梁といっても、使用される場所や部位により鋼材の腐食環境は同じではない。例えば、桁外部では、降雨、結露水および日照に曝される。一方、桁内部では、結露水に曝されるが雨掛かりはない。一般に、飛来塩分量が多い環境では、桁外部より桁内部の方が腐食が激しいと言われている。
 また、融雪塩や凍結防止剤を道路に撒く環境では、その塩が走行中の車に巻き上げられ、道路を支える橋梁に付着するので、厳しい腐食環境となる。さらに、海岸から少し離れた軒下等も厳しい塩害環境に曝され、このような地域では、飛来塩分量が1mdd以上の厳しい腐食環境になる。
 このような問題に対応するため、飛来塩分量が多い環境での腐食を防止する鋼材の開発が従来から進められている。
 たとえば、特許文献3にはクロム(Cr)の含有量を増加させた耐候性鋼材が提案され、そして、特許文献4にはニッケル(Ni)含有量を増加させた耐候性鋼材が提案されている。
特開2004-211150号公報 特開2003-171731号公報 特開平9-176790号公報 特開平5-118011号公報
 しかしながら、上記の提案された疲労亀裂進展抑制効果を有する鋼材および耐食性を有する鋼材は、次のとおり、問題点を有する。
 特許文献1で提案された技術は、フェライト相をより広い温度範囲で存在させるため高濃度のAl添加を必須要件としている。しかしながら、Alは、フェライト相生成に寄与するが、構造用鋼材に求められる基本的特性のひとつである靭性を著しく低下させる元素である。このため、この技術によれば、溶接部の残留応力を抑制し、疲労強度の向上が期待できるとはいえ、静的負荷に対する靭性そのものが不足することになる。構造材料の形状・寸法の設計は、疲労強度の観点からだけではなく、静的負荷に対する脆性破壊防止の観点からも行われる必要があり、特許文献1で提案された技術では、強度健全性をバランスよく向上させることができない。
 特許文献2で提案された技術では、粒界において焼入性を高め、粒界フェライトを効率良く抑制することができるBを添加することによって、粒界フェライトの生成を抑制することとしている。しかしながら、Bは、溶接熱影響部の靭性を低下させる元素であるから、その使用には注意を要する。溶接継手部においては、繰返し荷重に対する疲労特性だけでなく、静的荷重による脆性破壊を防止するため、靭性の確保も重要である。特に、部材寸法の大部分は、後者の靭性で決定されており、必要な部分に対し、疲労破壊防止を確認する疲労調査が行われている現状の疲労設計体系においては、疲労特性と同様に靭性も重要である。この意味において、溶接条件、例えば溶接入熱が変動した場合をも考えると、粒界フェライトの生成と溶接熱影響部靭性とをBの添加という手法だけで両立させることは極めて困難であると言える。
 また、上記特許文献3で提案されたクロム(Cr)の含有量を増加させた耐候性鋼材は、ある程度以下の飛来塩分量の領域においては耐候性を改善することができるものの、それを超える厳しい塩分環境においては逆に耐候性を劣化させる。
 上記特許文献4で提案されたニッケル(Ni)含有量を増加させた耐候性鋼材の場合、耐候性はある程度改善されるが、鋼材自体のコストが高くなり、橋梁等の用途に使用される材料としては高価なものになる。これを避けるため、Ni含有量を少なくすると、耐候性はさほど改善されず、飛来塩分量が多い場合には、鋼材の表面に層状の剥離さびが生成し、腐食が著しく、長期間の使用に耐えられないという問題が生じる。
 さらに、飛来塩分量が多い環境下で使用される溶接鋼構造物では耐塗装剥離性が大きな問題となる。すなわち、上記に示したように、多量の塩化物が飛来する海岸環境や、融雪剤や凍結防止剤を散布する環境においては、塗装を施しても塗装が早期に剥離し、且つ腐食が進行するという問題があり、数年から十数年毎に塗装の塗り替えを実施する必要がある。また、塗装の塗り替えを実施する際にはその前工程として、一度腐食した橋梁に足場を組んで再ブラスト処理を施す必要があるので多大なコストがかかる。そして、再ブラスト処理を施してもさびを完全に除去することは困難であるところ、さびを完全には除去しきれていない鋼材上に再度、塗装しても、塗装寿命が著しく短くなる。耐塗装剥離性は下地である鋼材の耐食性を含めた特性によるところも大きい。
 したがって、塗装の寿命を延長し、補修塗装間隔を大きく延ばすことが強く望まれていた。すなわち、塗装が必要とされる船舶分野や橋梁分野においても、ライフサイクルコストのミニマム化の要求が高く、塗装寿命を延長することは橋梁のライフサイクルマネジメントを考える上で非常に重要となる。
 本発明は、このような問題を解決するためになされたものであり、Al、Bなどの靱性を阻害する元素を多量に含有させることなく、耐疲労亀裂進展特性および耐食性に優れた鋼材およびその製造方法を提供することを目的としている。
 ここで、上記の耐食性とは、高塩化物環境における耐食性(塗装が剥離せず且つ塗装欠陥部における腐食が抑制され耐食性が維持されること(耐塗装剥離性)および無塗装時の耐候性を含む)を意味する。
 本発明者らは、上記の目的を達成するべく、まず、溶接継手の疲労特性と鋼材中に存在する介在物の清浄度との相関に着目した研究を行ったが、鋼材断面全体の清浄度と継手疲労特性の間には何らの相関もないことが分かった。
 そこで、変位量の多い鋼材表面に着目し、さらに詳細に調査をしたところ、継手疲労特性は、鋼材表面の特性に大きく依存し、その清浄度を高めることで継手疲労特性が向上することが判明した。より具体的には、介在物分析を鋼板表面から板厚方向に2mmの深さまでの領域に限定して鋼板毎に清浄度を求め、継手疲労特性との相関を調べたところ、極めて強い相関のあることが認められたのである。このような相関が認められる理由としては、鋼材表面は、変位量が大きいとともに、疲労亀裂の発端になりやすいことが考えられる。
 ところで、介在物は、硬度が高いため、高応力下でも変形することがない。一方、鋼材表面は、変位量が大きいため、介在物と素地の組織の界面で亀裂が発生し、疲労特性が劣化することが考えられる。したがって、介在物の清浄度が問題とされるのは、通常、鋼材の板厚中心部であることが多いが、疲労特性に関しては、鋼材表面の清浄性が問題となるのである。
 一方、本発明者らは、飛来塩分量の多い環境での腐食について検討した結果、このような環境下では、FeCl溶液の乾湿繰り返しが腐食の本質的な条件となり、Fe3+の加水分解によりpHが低下した状態で、かつFe3+が酸化剤として作用することによって腐食が加速されることを見出した。
 このときの腐食反応は、以下に示すとおりである。
 カソード反応としては、主として、次の反応が起こる。
    Fe3++e→Fe2+ (Fe3+の還元反応)
 そして、この反応以外にも、次のカソード反応も併発する。
    2HO+O+2e→4OH
    2H+2e→H
 一方、上記のFe3+の還元反応に対して、次のアノード反応が起こる。
    アノード反応:Fe→Fe2++2e (Feの溶解反応)
 したがって、腐食の総括反応は、次の(1)式のとおりである。
    2Fe3++Fe→3Fe2+・・・・・・(1)式
 上記(1)式の反応により生成したFe2+は、空気酸化によってFe3+に酸化され、生成したFe3+は再び酸化剤として作用し、腐食を加速する。この際、Fe2+の空気酸化の反応速度は低pH環境では一般に遅いが、濃厚塩化物溶液中では加速され、Fe3+が生成され易くなる。このようなサイクリックな反応のため、飛来塩分量が非常に多い環境では、Fe3+が常に供給され続け、鋼の腐食が加速され、耐食性が著しく劣化することになることが判明した。
 本発明者らは、このような塩分環境における腐食のメカニズムを基に、種々の合金元素の耐候性への影響について検討した結果、下記の(a)~(c)に示す知見を得た。
 (a) Snは、Sn2+として溶解し、2Fe3++Sn2+→2Fe2++Sn4+なる反応によりFe3+の濃度を低下させることで、(1)式の反応を抑制する。Snには、さらにアノード溶解を抑制するという作用もある。
 (b) Cuは、従来から飛来塩分量の多い環境において耐食性改善効果の基本とされていた元素であり、比較的濡れ時間が長い環境において耐食性改善効果は見られる。しかしながら、塩化物濃度がさらに大きくなり、局部的にpHが下がるような環境、例えば塩分が付着し、湿度が変化することにより乾湿が繰り返され、β-FeOOHが生成するような比較的ドライな環境では、Cuはむしろ腐食を促進することが判明した。
 (c) このように、Snを積極的に含有させかつCuの含有量を抑制した鋼材は、高い耐食性が期待できる。さらに耐食性が高いことから、鋼材に塗装を行っても、鋼材の腐食に起因する塗装の剥離が少なく塗装欠陥部の腐食を抑制する一方、塗膜による防食効果も期待できるため、塗装をした場合には、より一層の耐食性の効果が期待できる。したがって、耐食性のほかに、塗装の寿命を延長化でき、補修塗装間隔を大きく延ばす作用をも有する。特に、船舶分野や橋梁分野における耐塗装剥離性の改善において、効果を発揮する。
 本発明は、このような知見に基づいて完成したものであり、その要旨は、下記の(1)~(6)に示す耐疲労亀裂進展特性および耐食性に優れた鋼材、ならびに、下記の(7)および(8)に示す耐疲労亀裂進展特性および耐食性に優れた鋼材の製造方法にある。
 (1) 質量%で、C:0.01~0.14%、Si:0.04~0.6%、Mn:0.5~2.0%、P:0.01%以下、S:0.003%以下、Cu:0.2%未満、B:0.0007%を超え0.005%以下、Al:0.05%未満、N:0.007%以下、O:0.003%およびSn:0.03~0.50%以下を含有し、残部はFeおよび不純物からなり、かつ、Cu/Sn比が1以下である化学組成を有し、そして、下記(1)式から求められるBq値が0.003以下、下記(2)式から求められるCeq値が0.15~0.35であり、かつ、表層から2mm以内の領域における酸化物数が1平方mmあたり5×10個以下であることを特徴とする耐疲労亀裂進展特性および耐食性に優れた鋼材。
Figure JPOXMLDOC01-appb-I000005
 ただし、上記式中の各元素記号は、各元素の含有量(質量%)を意味する。なお、各元素の含有量が不純物レベルの場合には0(ゼロ)を代入するものとする。
 (2) さらに、質量%で、Mo:1.0%以下、V:0.1%以下およびNb:0.1%以下から選択される1種以上の元素を含有することを特徴とする上記(1)の耐疲労亀裂進展特性および耐食性に優れた鋼材。
 (3) さらに、質量%で、Ni:1.5%以下を含有することを特徴とする上記(1)または(2)の耐疲労亀裂進展特性および耐食性に優れた鋼材。
 (4) さらに、質量%で、Cr:1.2%以下を含有することを特徴とする上記(1)~(3)のいずれかの耐疲労亀裂進展特性および耐食性に優れた鋼材。
 (5) さらに、質量%で、Ti:0.05%以下を含有することを特徴とする上記(1)~(4)のいずれかの耐疲労亀裂進展特性および耐食性に優れた鋼材。
 (6) さらに、質量%で、Ca:0.003%以下およびMg:0.003%以下の一方または両方を含有することを特徴とする上記(1)~(5)のいずれかの耐疲労亀裂進展特性および耐食性に優れた鋼材。
 (7) 下記の工程A~Dを備え、かつ、工程Dの冷却終了後の復熱温度幅を70℃以下とすることを特徴とする耐疲労亀裂進展特性および耐食性に優れた鋼材の製造方法。
  工程A:溶鋼に下記(3)式を満足する条件で不活性ガスを吹き込む工程、
  工程B:得られた溶鋼を連続鋳造し、上記(1)~(6)のいずれかの化学組成を有する鋼片を得る工程、
  工程C:得られた鋼片を900~1180℃に加熱した後、仕上げ温度が650~1000℃となる条件で熱間圧延を施して熱延材を得る工程、および、
  工程D:得られた熱延材を、620~950℃の温度域から、620~500℃の温度域における平均冷却速度が5~50℃/秒となる条件で加速冷却し、500℃以下の温度域で冷却を終了させる工程。
Figure JPOXMLDOC01-appb-I000006
  ただし、上記(3)式中の記号の定義は、下記のとおりである。
:溶鋼内に吹き込まれる不活性ガス流量(NL/min)
:不活性ガス吹き込みノズルの先端から溶鋼湯面までの距離(m)
:不活性ガス吹き込み時間(min)
:取鍋溶鋼量(ton)
:取鍋内径(m)
 (8) 下記の工程A1~Dを備え、かつ、工程Dの冷却終了後の復熱温度幅が70℃以下であることを特徴とする耐疲労亀裂進展特性および耐食性に優れた鋼材の製造方法。
  工程A1:溶鋼に下記(4)式を満足する条件で真空精錬処理を行う工程、
  工程B:得られた溶鋼を連続鋳造し、上記(1)~(6)のいずれかの化学組成を有する鋼片を得る工程、
  工程C:得られた鋼片を900~1180℃に加熱した後、仕上げ温度が650~1000℃となる条件で熱間圧延を施して熱延材を得る工程、および、
  工程D:得られた熱延材を、620~950℃の温度域から、620~500℃の温度域における平均冷却速度が5~50℃/秒となる条件で加速冷却し、500℃以下の温度域で冷却を終了させる工程。
Figure JPOXMLDOC01-appb-I000007
  ただし、上記(4)式中の記号の定義は、下記のとおりである。
:溶鋼環流に使用される不活性ガス流量(NL/min)
:浸漬管内径(m)
:真空処理時間(min)
:取鍋溶鋼量(ton)
 本発明の鋼材は、耐疲労亀裂進展特性および耐食性に優れているので、船体、土木建設物、建設機械、水圧鉄管、海洋構造物、ラインパイプその他の耐疲労亀裂進展特性が要求される溶接構造物などに用いるのに適している。
継手試験体の形状と寸法を示す図である。
 A.本発明の鋼材の化学組成その他について
 まず、本発明の鋼材の化学組成その他について説明する。以下の説明において、含有量についての「%」は、「質量%」を意味する。
 C:0.01~0.14%
 Cは、強度を確保するために必要な元素である。その含有量が0.01%未満では必要とする強度を確保することができない。しかし、その含有量が0.14%を超えると、溶接した場合に溶接熱影響部(HAZ)、母材ともに靱性を確保することが難しくなる。したがって、Cの含有量は、0.01~0.14%とする。C含有量の好ましい下限は0.03%、好ましい上限は0.10%である。
 Si:0.04~0.6%
 Siは、脱酸作用があるとともに、鋼材の強度上昇にも寄与する。これらの効果を得るためには、Siを0.04%以上含有させる必要がある。しかし、その含有量が0.6%を超えると、靭性の低下をもたらす。したがって、Siの含有量は、0.04~0.6%とする。
 Mn:0.5~2.0%
 Mnは、鋼の焼入性を高める効果があり、強度確保に有効な成分である。その含有量が0.5%未満では、焼入性が不足し、所望の強度および靱性が得られない。しかし、Mnは2.0%を超えて含有させると、偏析が増すとともに焼入性が高まりすぎて、溶接時に溶接熱影響部、母材ともに靱性が低下する。したがって、Mnの含有量は、0.5~2.0%とする。
 P:0.01%以下
 Pは、不純物として鋼中に不可避的に存在する。その含有量が0.01%を超えると、粒界に偏析して靭性を低下させるのみならず、溶接時に高温割れを招く。したがって、Pの含有量は、0.01%以下に制限する必要がある。Pは少ないほど好ましい。
 S:0.003%以下
 Sは、不純物として鋼中に不可避的に存在する。その含有量が多すぎると、中心偏析を助長したり、延伸したMnSが多量に生成したりして、母材および溶接熱影響部の機械的性質を劣化させる。したがって、Sの含有量は、0.003%以下に制限する必要がある。Sは少ないほど好ましい。
 Cu:0.2%未満
 Cuは、一般的に耐候性を向上させる基本元素とされ、全ての海浜耐候性鋼や耐食鋼に添加されているが、高飛来塩分下の比較的ドライな環境においては、むしろ耐食性を低下させる。またSnと共存すると圧延時に割れが生じる。したがって、Cuの含有は少なくする必要がある。不純物として含有されるとしても、Cu含有量は0.2%未満とする必要がある。好ましくは0.1%未満である。
 B:0.0007%を超え0.005%以下
 Bは、焼入性を向上させて強度を高める効果がある元素である。この効果を得るには、0.0007%を超えて含有させる必要がある。しかし、その含有量が0.005%を超えると、疲労特性が劣化する。したがって、Bの含有量は0.0007%を超え0.005%以下とする。
 Al:0.05%未満
 Alは、脱酸作用を有する元素である。しかし、その含有量が0.05%以上になると、主として溶接熱影響部において靱性が劣化しやすくなる。これは、粗大なクラスター状のアルミナ系介在物粒子が形成されやすくなるためと考えられる。したがって、Al含有量は、0.05%未満とする。ただし、脱酸作用があるSiにより脱酸を行う場合には、特に含有させなくてもよい。なお、Alによる脱酸作用を安定的に発揮させるためには、0.001%以上含有させることが好ましい。
 N:0.007%以下
 Nは、不純物として鋼中に不可避的に存在する元素である。多量に存在する場合には、母材および溶接熱影響部の靭性の悪化原因となる。したがって、N含有量は、0.007%以下とする。Nは少ないほど好ましい。
 O:0.003%以下
 O(酸素)は、不純物として鋼中に不可避的に存在する元素である。その含有量が0.003%を超えると、母材靭性及び伸び絞り等の延性に悪影響を及ぼす。したがって、O含有量は、0.003%以下に制限する。
 Sn:0.03~0.50%
 Snは、Sn2+となって溶解し、酸性塩化物溶液中でのインヒビター作用により腐食を抑制する作用を有する。また、Fe3+を速やかに還元させ、酸化剤としてのFe3+濃度を低減する作用を有することにより、Fe3+の腐食促進作用を抑制するので、高飛来塩分環境における耐候性を向上させる。また、Snには鋼のアノード溶解反応を抑制し耐食性を向上させる作用がある。さらに、Snを含有することにより、飛来塩分が多い環境においてもCrの耐候性を向上させる効果が発揮される。これらの作用は、Snを0.03%以上含有させることにより得られ、0.50%を超えると飽和する。したがって、Snの含有量は0.03~0.50%とする。Snの含有量の望ましい範囲は0.03~0.20%である。
 Cu/Sn比:1以下
 Snを含有する鋼の場合には、Cuの含有による耐食性の低下が著しい。また、鋼材を製造する際、Cuの含有による圧延割れの原因ともなる。このため、Cu/Sn比、すなわち、Sn含有量に対するCu含有量の比を1以下とする必要がある。
 本発明に係る鋼材は、上記の化学組成を有し、残部がFeおよび不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 本発明の鋼材には、必要に応じて、次の第1群から第5群までの少なくとも1群から選んだ成分の1種以上を含有させることができる。以下、これらの群に属する成分について述べる。
 第1群の成分:Mo、V、Nb
 Mo:1.0%以下
 Moは、母材の強度と靱性を向上させる効果があるため、必要に応じて含有させても良い。しかし、1.0%を超えて含有させると、主として溶接熱影響部の硬度が高まり、靱性および耐SSC性を損なう。したがって、Moを含有させる場合には、その含有量を1.0%以下とするのが好ましい。なお、この効果を安定的に得るためには、0.05%以上含有させるのが好ましい。
 V:0.1%以下
 Vは、主に焼戻し時の炭窒化物析出により母材の強度を向上させる効果があるため、必要に応じて含有させても良い。しかし、0.1%を超えて含有させると、母材の性能向上効果が飽和し、靱性劣化を招く。したがって、Vを含有させる場合には、その含有量を0.1%以下にするのが好ましい。なお、この効果を安定的に得るためには、0.005%以上含有させるのが好ましい。
 Nb:0.1%以下
 Nbは、細粒化と炭化物析出により母材の強度および靱性を向上させる効果があるため、必要に応じて含有させても良い。しかし、その含有量が0.1%を超えると、上記の効果が飽和する一方で、溶接熱影響部の靱性を著しく損なう。したがって、Nbを含有させる場合には、その含有量を0.1%以下とするのが好ましい。なお、この効果を安定的に得るためには、0.005%以上含有させるのが好ましい。
 第2群:Ni
 Ni:1.5%以下
 Niは、固溶状態において鋼のマトリックス(生地)の靭性を高める効果があるため、必要に応じて含有させても良い。しかし、1.5%を超えて含有させても合金コストの上昇に見合った特性の向上が得られない。さらに、SnとNiの共存により耐食性が劣化する場合がある。したがって、Niを含有させる場合には、その含有量を1.5%以下とすることが好ましい。なお、この効果を安定的に得るためには、0.05%以上含有させるのが好ましい。
 第3群:Cr
 Cr:1.2%以下
 Crは、耐炭酸ガス腐食性を高め、また焼入性を高める効果があるため、必要に応じて含有させても良い。しかし、1.2%を超えて含有させると、他の成分条件を満足させても、溶接熱影響部の硬化の抑制が難しくなるだけでなく、耐炭酸ガス腐食性向上効果も飽和する。したがって、Crを含有させる場合には、その含有量を1.2%以下とすることが好ましい。なお、この効果を安定的に得るためには、0.05%以上含有させるのが好ましい。
 第4群:Ti
 Ti:0.05%以下
 Tiは、脱酸元素として作用するとともに、Ti、Mnからなる酸化物相を形成し、特に大入熱溶接の熱影響部における組織を微細化し、疲労特性向上の効果が得られるため、必要に応じて含有させても良い。しかし、0.05%を超えて含有させると、形成される酸化物がTi酸化物あるいはTi-Al酸化物となって分散密度が低下し、大入熱溶接部の熱影響部における組織を微細化する能力が失われる。このため、Tiを含有させる場合には、その含有量を0.05%以下とするのが好ましい。より好ましいのは0.02%未満である。さらに好ましくは0.018%以下である。なお、この酸化物相を安定的に鋼中に形成させるためには、鋼中のTiの総量を0.003%以上とするのが好ましい。
 第5群:Ca、Mg
 Ca:0.003%以下
 Caは、鋼中のSと反応して溶鋼中で酸硫化物(オキシサルファイド)を形成する。この酸硫化物は、MnSなどと異なり、圧延加工で圧延方向に伸びることがなく圧延後も球状であるため、延伸した介在物の先端などを割れの起点とする溶接割れや水素誘起割れを抑制する作用がある。したがって、必要に応じて含有させても良い。しかし、その含有量が0.003%を超えると、靱性の劣化を招くことがある。したがって、Caを含有させる場合には、その含有量を0.003%以下とするのが好ましい。なお、この効果を安定的に得るためには、0.0005%以上含有させるのが好ましい。
 Mg:0.003%以下
 Mgは、Mg含有酸化物を生成し、TiNの発生核となり、TiNを微細分散させる効果を持つため、必要に応じて含有させても良い。しかし、その含有量が0.003%を超えると、酸化物が多くなりすぎて延性低下をもたらす。したがって、Mgを含有させる場合には、その含有量を0.003%以下とするのが好ましい。なお、この効果を安定的に得るためには、0.0005%以上含有させるのが好ましい。
 そして、本発明の鋼材は、下記(1)式から求められるBq値が0.003以下であることが必要であり、下記(2)式から求められるCeq値が0.15~0.35であることが必要である。
Figure JPOXMLDOC01-appb-I000008
 ただし、上記式中の各元素記号は、各元素の含有量(質量%)を意味する。なお、各元素の含有量が不純物レベルの場合には0(ゼロ)を代入するものとする。
 Bq:0.003以下
 Bによる焼入性向上効果を発揮させるには、鋼中のNの影響をなくす必要がある。Bは、Nと結合し易く、鋼中にフリーなNが存在すると、Nと結合してBNが生成しやすいからである。このため、N含有量に応じてTiを添加し、TiNとして固定することにより、Bを鋼中に存在させる。B含有量が大きくなればなるほど、Bによる焼入性が向上する。しかし、(1)式から求められるBq値が0.003を超えると、粗大な鉄炭硼化物が形成され、疲労特性の劣化に繋がる。したがって、Bq値は、0.003以下にする必要がある。
 なお、Bによる焼入性向上効果を安定的に得るためには、上記(1)式で規定されるBq値を0.0001以上とするのが好ましい。0.0005以上とするのがより好ましく、0.001以上とするのが更に好ましい。
 Ceq:0.15~0.35
 上記(2)式から求められるCeqは、いわゆる炭素当量であり、鋼材の焼入性や溶接性を評価する指標であり、一般に広く使われている。
 本発明者らは、溶接継手の疲労特性を向上させ、かつ構造用鋼として一般的な引張強さ(TS)が500MPa以上で、かつ0℃におけるシャルピー吸収エネルギー値vEが27J以上であるという要求を満たすための必要条件を探求した。その結果、Ceq値が0.15%未満では、強度が低下し、一方、Ceqが0.35%を超えると、鋼材の焼入性が高まり、継手の硬度分布が不均一となって継手疲労強度に悪影響を及ぼすことが判明した。また、Ceqが0.35を超えると、溶接性の劣化を引き起こし、溶接施工が困難になり、鋼材の用途が著しく制限されるというデメリットもある。したがって、Ceq値を0.15~0.35%とする。なお、Ceqの好ましい下限は、0.20%である。また、Ceqの好ましい上限は0.30%である。
 また、本発明の鋼材は、表層から2mm以内の領域の酸化物数が、1平方mmあたり5×10個以下であることを必要とする。これは、5×10個を超える酸化物が存在すると、疲労亀裂の発生源が増加し、疲労特性が低下するためである。
 ここで、酸化物数は、下記の(i)~(iii)に示す手順で測定する。
 (i) 製造した鋼材の圧延方向に垂直な断面を観察面として小片を切り出し、観察面をナイタル溶液で腐食して、試験片を作製する。
 (ii) 上記の試験片をエネルギー分散型蛍光X線分析装置(EDX)付きの走査型電子顕微鏡(SEM)にセットし、0.05mm角の領域を1視野とし、表層から2mm以内の領域の5視野について倍率2000倍で観察し、各視野における酸化物数を測定する。このとき、酸化物と他の介在物との区別は、EDXによる組成分析によって行う。また、酸化物数の測定は、視野のばらつきを避けるため、表層から深さ2mmまでの領域において深さを変えて行う。
 (iii) 各視野における酸化物数を平均し、表層から2mm以内の領域における酸化物数とする。
 B.本発明の鋼材の製造方法について
 本発明の耐疲労亀裂進展特性および耐食性に優れた鋼材を製造するにあたっては、精錬段階から調整をするのが好ましい。すなわち、精錬段階では、不活性ガス吹き込み処理または真空精錬処理を工夫することにより、表層部の酸化物を低減できる。具体的には、不活性ガス吹き込み処理を行うに当たっては、溶鋼に下記(3)式を満足する条件で不活性ガスを吹き込むのが有効である。
Figure JPOXMLDOC01-appb-I000009
 ただし、上記(3)式中の記号の定義は、下記のとおりである。
:溶鋼内に吹き込まれる不活性ガス流量(NL/min)
:不活性ガス吹き込みノズルの先端から溶鋼湯面までの距離(m)
:不活性ガス吹き込み時間(min)
:取鍋溶鋼量(ton)
:取鍋内径(m)
 上記(3)式を満足する条件で不活性ガス吹き込み処理を行えば、浴を十分に撹拌しつつ、吹錬を行うことができる。即ち、吹錬当初は、溶銑中の珪素が酸化されてシリカとなり、これが炉内に加えた焼石灰や酸化鉄と反応して、CaO-SiO-FeO系スラグを形成し始める。同時に炉内温度が上昇し、スクラップの溶解も進み始める。吹錬初期は、溶銑中の炭素濃度が高いので、吹き込まれた純酸素ガスは、炭素と効率よく反応し、一酸化炭素となって脱炭が進む。この段階では、純酸素ガスの供給速度が脱炭を律速する。脱炭の進行とともに浴の温度はさらに上昇する。脱炭が進み、炭素濃度が低下するにつれて、脱炭反応は、溶鋼中の炭素の移動が脱炭を律速する。溶鋼の撹拌による炭素の移動が不十分であると、吹き込まれた純酸素ガスは、炭素と反応するよりも鉄を酸化させることに使われ、スラグ中に酸化鉄が増え、鉄の歩留りが低下する。これを防ぐため、炉底からのガス吹き込みを活発にする。
 一方、真空精錬処理を行うに当たっては、溶鋼に下記(4)式を満足する条件で不活性ガスを吹き込むのが好ましい。
Figure JPOXMLDOC01-appb-I000010
 ただし、上記(4)式中の記号の定義は、下記のとおりである。
:溶鋼環流に使用される不活性ガス流量(NL/min)
:浸漬管内径(m)
:真空処理時間(min)
:取鍋溶鋼量(ton)
 真空精錬処理を行う場合には、上記(4)式を満足する条件として、減圧した容器の中に溶鋼を入れ、平衡分圧を下げて、溶鋼中のガス成分を除去するのが好ましい。
 さらに、鋼の清浄度を上げるためには、精錬にあたって、精錬初期にAl脱酸を大部分進行させることは避けるのが好ましい。Al以外の組成の調整をMn及びSi等とともに行い、さらにTi等により脱酸が進行した後、出鋼直前にAlを微量溶鋼中に投入し、得られた溶鋼を鋳造することが望ましい。
 インゴット鋳造の場合は、熱間圧延に先立って、分塊圧延により鋼片(スラブ)を製造する工程を余分に通さなければならず、歩留まりも低下する。よって、鋳造は連続鋳造で行うのが好ましい。連続鋳造の場合、鋼片の偏析も溶接熱影響部の靱性に悪影響を及ぼすので、好ましくは偏析部において、Cが0.29%以下、Pが0.30%以下、Mnが3.5%以下となるような管理を行うのがよい。
 なお、上記の条件以外に鋳込み時の吐出流量管理として1000~5000ガウスで電磁ブレーキをかけたり、250~1000ガウスで未凝固溶鋼に電磁攪拌処理をしたり、最終凝固部を1mm/m程度の勾配で圧下し、濃厚偏析の溶鋼を最終凝固部から搾り出してもよい。上記の管理項目を適度に組み合わせることにより、清浄度に優れ、かつ中心偏析の少ない鋼片が得られる。
 続いて、このようにして製造した鋼片を900~1180℃の温度域に加熱して、熱間圧延を行うのがよい。このとき、一旦室温にまで冷却した鋼片を再加熱してもよく、いわゆる直送圧延プロセスにより、連続鋳造後に室温にまで冷却することなく、そのまま均熱炉を経て上記温度に維持あるいは加熱してもよい。ここで、加熱温度が900℃未満の場合は、スラブ加熱時点でオーステナイトへの逆変態が不十分となり、後の特性が劣化する。一方、加熱温度が1180℃を超えると、鋼片の加熱時にオーステナイト結晶粒が粗大化し、板厚中心部だけでなく母材全体の靱性が低下する。 
 熱間圧延の条件は、熱間圧延の仕上げ温度を650~1000℃とするのがよい。仕上げ温度が650℃未満であると、鋼の変形抵抗が上昇するため、熱間圧延後の鋼材の形状を目標の形状に仕上げることが難しくなる。仕上げ温度が高いと制御圧延による結晶粒の微細化効果が得られず母材の靱性を確保することが出来ない。したがって、仕上げ温度の上限を1000℃に制限する。
 続いて、得られた熱延材を、620~950℃の温度域から、620~500℃の温度域における平均冷却速度が5~50℃/秒となる条件で加速冷却し、500℃以下の温度域で冷却を終了させるのがよい。さらに、冷却終了後の復熱温度幅は70℃以下とするのがよい。
 このような条件で冷却することにより、疲労特性を向上させることが可能となる。
 即ち、620~500℃の温度域における平均冷却速度が5℃/sec未満であると、粗大な炭化物を伴うベイナイト組織等が生成し易いので、特に鋼材の中心部の十分な降伏強さを確保することができない。一方、その温度域での冷却速度が50℃/secを超えると、鋼材の表層部近傍で焼きが入り易いために表層の靱性が低下することがある。そこで本発明では、620~500℃の温度域における平均冷却速度を5~50℃/secとする。
 この冷却における冷却停止温度が500℃を超えると、鋼材の中心部のみならず表層部においても、マルテンサイトあるいは下部ベイナイト等の生成が不十分になるので強度を確保することができない。したがって、冷却停止温度は500℃以下とする。このような熱処理によって、マルテンサイトあるいはベイナイト組織が得られやすくなる。本発明の化学組成を有する鋼材の場合、主としてベイナイト組織となる。
 表1に示す化学組成の鋼を転炉で溶製し、表2に示す不活性ガス吹き込み処理または真空精錬処理を実施し、その後、連続鋳造を実施することにより得た鋳片を、適当な板厚まで、表3に示す条件で、熱間圧延し、冷却して、試験用鋼板を得た。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 上記の試験用鋼板を用いて、下記の方法により、疲労破断寿命、溶接熱影響部の引張強度および靭性、酸化物数、板厚減少量ならびに剥離面積率を測定した。
 <疲労試験>
 上記の試験用鋼板を用いて、表4に示す溶接条件で、荷重非伝達型の十字溶接継手を作製し、疲労試験に供した。なお、継手試験体の形状と寸法を図1に示す。継手は隅肉溶接で製作した。図1において、1と2が母材鋼板、5が溶接部である。各継手試験体に対し、繰返し軸力負荷を与え、溶接余盛り止端における疲労亀裂の発生寿命、つまり疲労破断寿命を測定した。表5に疲労試験条件を示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 <溶接熱影響部の引張強度>
 上記の試験用鋼板において、圧延面に平行で、かつ圧延方向に垂直な方向に試験片を採取し、JIS Z 2241(1998)に規定される方法に従って、引張試験を実施し、引張強さ(TS)を求めた。
 <溶接熱影響部の靭性>
 上記の試験用鋼板(板厚(t))から、鋼板表面から(1/4)t厚部において、圧延面に平行で、圧延方向に垂直な方向に試験片を採取し、JIS Z 2242(1998)に規定される方法に従って、衝撃試験を実施し、0℃における吸収エネルギー(vE0)を求めた。
 <酸化物数>
 下記(i)~(iii)に示す手順により表層から2mm以内の領域における酸化物数を求めた。
 (i) 製造した鋼材の圧延方向に垂直な断面を観察面として小片を切り出し、観察面をナイタル溶液で腐食して、試験片を作製した。
 (ii) 上記の試験片をEDX付きSEMにセットし、0.05mm角の領域を1視野とし、表層から2mm以内の領域の5視野(ほぼ等間隔に5視野)について倍率2000倍で観察し、各視野における酸化物数を測定した。このとき、酸化物と他の介在物との区別は、EDXによる組成分析によって行った。また、酸化物数の測定は、視野のばらつきを避けるため、表層から深さ2mmまでの領域において深さを変えて行った。
 (iii) 各視野における酸化物数を平均し、表層から2mm以内の領域における酸化物数とした。
 <板厚減少量ならびに剥離面積率>
 耐食性に関しては、得られた鋼材から得た試験片をSAE(Society of Automotive Engineers)J2334試験により評価した。SAE J2334試験は、湿潤:50℃、100%RH、6時間、塩分付着:0.5%NaCl、0.1%CaCl、0.075%NaHCO水溶液浸漬、0.25時間、乾燥:60℃、50%RH、17.75時間を1サイクル(合計24時間)とした加速試験であり、腐食形態が大気暴露試験に類似しているとされている(長野博夫、山下正人、内田仁著:環境材料学、共立出版(2004)、p.74)。なお、本試験は、飛来塩分量が1mddを超えるような厳しい腐食環境を模擬する試験である。
 SAE J2334試験120サイクル終了後、各試験片の表面のさび層を除去し、板厚減少量を測定した。ここで、「板厚減少量」は、試験片の平均の板厚減少量であり、試験前後の重量減少と試験片の表面積を用いて算出したものである。
 また、耐塗装剥離性を調べるために、150×70mmの大きさの試験片にエアースプレーにより変性エポキシ塗料(バンノー200:中国塗料製)を乾燥膜厚で150μmになるように塗装し、鋼材素地に達する深さでクロスカットを入れてから、同じくSAE J2334試験により評価した。
 鋼材の化学組成および製造方法、ならびに各種試験結果を表6に示す。
Figure JPOXMLDOC01-appb-T000016
 表6に示すように、化学組成および製造方法ともに本発明の条件を満たす、本発明例1~10では、表層から2mm以内の領域における酸化物数が5×10個/mm以下となり、いずれの例でも、疲労破断寿命(繰り返し数)が5×10回を超え、また、da/dnが5×10-5以下であるため、十分な耐疲労亀裂進展特性を有していた。また、高い耐食性も有しており、塗装した場合のクロスカット部に腐食は見られたもののいずれの鋼板も剥離も少ないので塗装の補修間隔を延ばすことができることがわかる。
 一方、化学組成は、本発明で規定される範囲を満足するが、製造方法が本発明の条件を外れる比較例1および2、ならびに、化学組成が本発明で規定される範囲を外れる比較例3~6では、いずれも疲労破断寿命が10台と極めて悪くなった。
 特にCu含有量が多く、Cu/Snが1を超える比較例3では圧延時に端部に微小の割れが発生した。Snの少ない比較例4では飛来塩分量の多い環境下での耐食性が低下し、剥離面積率も80%となった。
 本発明の鋼材は、耐疲労亀裂進展特性および耐食性に優れているので、船体、土木建設物、建設機械、水圧鉄管、海洋構造物、ラインパイプその他の耐疲労亀裂進展特性が要求される溶接構造物などに用いるのに適している。
1.母材鋼板
2.母材鋼板
5.溶接部

Claims (8)

  1.  質量%で、C:0.01~0.14%、Si:0.04~0.6%、Mn:0.5~2.0%、P:0.01%以下、S:0.003%以下、Cu:0.2%未満、B:0.0007%を超え0.005%以下、Al:0.05%未満、N:0.007%以下、O:0.003%およびSn:0.03~0.50%以下を含有し、残部はFeおよび不純物からなり、かつ、Cu/Sn比が1以下である化学組成を有し、そして、下記(1)式から求められるBq値が0.003以下、下記(2)式から求められるCeq値が0.15~0.35であり、かつ、表層から2mm以内の領域における酸化物数が1平方mmあたり5×10個以下であることを特徴とする耐疲労亀裂進展特性および耐食性に優れた鋼材。

    Figure JPOXMLDOC01-appb-I000001

    Figure JPOXMLDOC01-appb-I000002

     ただし、上記式中の各元素記号は、各元素の含有量(質量%)を意味する。なお、各元素の含有量が不純物レベルの場合には0を代入するものとする。
  2.  さらに、質量%で、Mo:1.0%以下、V:0.1%以下およびNb:0.1%以下から選択される1種以上の元素を含有することを特徴とする請求項1に記載の耐疲労亀裂進展特性および耐食性に優れた鋼材。
  3.  さらに、質量%で、Ni:1.5%以下を含有することを特徴とする請求項1または2に記載の耐疲労亀裂進展特性および耐食性に優れた鋼材。
  4.  さらに、質量%で、Cr:1.2%以下を含有することを特徴とする請求項1から3までのいずれかに記載の耐疲労亀裂進展特性および耐食性に優れた鋼材。
  5.  さらに、質量%で、Ti:0.05%以下を含有することを特徴とする請求項1から4までのいずれかに記載の耐疲労亀裂進展特性および耐食性に優れた鋼材。
  6.  さらに、質量%で、Ca:0.003%以下およびMg:0.003%以下の一方または両方を含有することを特徴とする請求項1から5までのいずれかに記載の耐疲労亀裂進展特性および耐食性に優れた鋼材。
  7.  下記の工程A~Dを備え、かつ、工程Dの冷却終了後の復熱温度幅を70℃以下とすることを特徴とする耐疲労亀裂進展特性および耐食性に優れた鋼材の製造方法。
     工程A:溶鋼に下記(3)式を満足する条件で不活性ガスを吹き込む工程、
     工程B:得られた溶鋼を連続鋳造し、請求項1から6までのいずれかに記載の化学組成を有する鋼片を得る工程、
     工程C:得られた鋼片を900~1180℃に加熱した後、仕上げ温度が650~1000℃となる条件で熱間圧延を施して熱延材を得る工程、および、
     工程D:得られた熱延材を、620~950℃の温度域から、620~500℃の温度域における平均冷却速度が5~50℃/秒となる条件で加速冷却し、500℃以下の温度域で冷却を終了させる工程。
    Figure JPOXMLDOC01-appb-I000003
     ただし、上記(3)式中の記号の定義は、下記のとおりである。
    :溶鋼内に吹き込まれる不活性ガス流量(NL/min)
    :不活性ガス吹き込みノズルの先端から溶鋼湯面までの距離(m)
    :不活性ガス吹き込み時間(min)
    :取鍋溶鋼量(ton)
    :取鍋内径(m)
  8.  下記の工程A1~Dを備え、かつ、工程Dの冷却終了後の復熱温度幅が70℃以下であることを特徴とする耐疲労亀裂進展特性および耐食性に優れた鋼材の製造方法。
     工程A1:溶鋼に下記(4)式を満足する条件で真空精錬処理を行う工程、
     工程B:得られた溶鋼を連続鋳造し、請求項1から6までのいずれかに記載の化学組成を有する鋼片を得る工程、
     工程C:得られた鋼片を900~1180℃に加熱した後、仕上げ温度が650~1000℃となる条件で熱間圧延を施して熱延材を得る工程、および、
     工程D:得られた熱延材を、620~950℃の温度域から、620~500℃の温度域における平均冷却速度が5~50℃/秒となる条件で加速冷却し、500℃以下の温度域で冷却を終了させる工程。
    Figure JPOXMLDOC01-appb-I000004
     ただし、上記(4)式中の記号の定義は、下記のとおりである。
    :溶鋼環流に使用される不活性ガス流量(NL/min)
    :浸漬管内径(m)
    :真空処理時間(min)
    :取鍋溶鋼量(ton)
PCT/JP2011/052377 2010-02-18 2011-02-04 耐疲労亀裂進展特性および耐食性に優れた鋼材並びにその製造方法 WO2011102244A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011526323A JP4924774B2 (ja) 2010-02-18 2011-02-04 耐疲労亀裂進展特性および耐食性に優れた鋼材並びにその製造方法
KR1020117017845A KR101261744B1 (ko) 2010-02-18 2011-02-04 내피로 균열 진전 특성 및 내식성이 우수한 강재 및 그 제조 방법
CN201180004587.8A CN102639737B (zh) 2010-02-18 2011-02-04 耐疲劳龟裂扩展特性和耐腐蚀性优良的钢材及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010033835 2010-02-18
JP2010-033835 2010-02-18

Publications (1)

Publication Number Publication Date
WO2011102244A1 true WO2011102244A1 (ja) 2011-08-25

Family

ID=44482833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052377 WO2011102244A1 (ja) 2010-02-18 2011-02-04 耐疲労亀裂進展特性および耐食性に優れた鋼材並びにその製造方法

Country Status (4)

Country Link
JP (1) JP4924774B2 (ja)
KR (1) KR101261744B1 (ja)
CN (1) CN102639737B (ja)
WO (1) WO2011102244A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044020A (ja) * 2011-08-24 2013-03-04 Jfe Steel Corp 船舶バラストタンク用耐食鋼材
WO2016092756A1 (ja) * 2014-12-09 2016-06-16 Jfeスチール株式会社 耐候性に優れた構造用鋼材
JP5999196B2 (ja) * 2012-12-05 2016-09-28 Jfeスチール株式会社 耐アルコール孔食性および耐アルコールscc性に優れた鋼材
JP6394839B1 (ja) * 2017-12-14 2018-09-26 新日鐵住金株式会社 鋼材
CN115572893A (zh) * 2022-09-02 2023-01-06 武汉钢铁有限公司 一种耐大气腐蚀的高强度汽车轮辐用钢及其制造方法
US12000028B2 (en) * 2015-08-24 2024-06-04 Nippon Steel Corporation Rail vehicle axle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104424A1 (ko) 2012-12-24 2014-07-03 주식회사 포스코 내응축수 부식특성, 성형성 및 고온 내산화 특성이 우수한 자동차 배기계용 페라이트계 스테인리스강 및 그 제조방법
WO2019146749A1 (ja) * 2018-01-26 2019-08-01 日本製鉄株式会社 係留チェーン用鋼および係留チェーン

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255468A (ja) * 2007-03-09 2008-10-23 Jfe Steel Kk 疲労き裂伝播遅延鋼材およびその製造方法
JP2008255469A (ja) * 2007-03-09 2008-10-23 Jfe Steel Kk 疲労き裂進展抑制に優れる鋼材およびその製造方法
JP2008274367A (ja) * 2007-05-01 2008-11-13 Sumitomo Metal Ind Ltd ボルト用鋼およびそれを用いた橋梁
JP2010007109A (ja) * 2008-06-25 2010-01-14 Sumitomo Metal Ind Ltd 耐食性およびz方向の靭性に優れた鋼材の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851025A (zh) * 2006-05-26 2006-10-25 钢铁研究总院 一种具有优异抗疲劳性能的高强度弹簧钢

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255468A (ja) * 2007-03-09 2008-10-23 Jfe Steel Kk 疲労き裂伝播遅延鋼材およびその製造方法
JP2008255469A (ja) * 2007-03-09 2008-10-23 Jfe Steel Kk 疲労き裂進展抑制に優れる鋼材およびその製造方法
JP2008274367A (ja) * 2007-05-01 2008-11-13 Sumitomo Metal Ind Ltd ボルト用鋼およびそれを用いた橋梁
JP2010007109A (ja) * 2008-06-25 2010-01-14 Sumitomo Metal Ind Ltd 耐食性およびz方向の靭性に優れた鋼材の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044020A (ja) * 2011-08-24 2013-03-04 Jfe Steel Corp 船舶バラストタンク用耐食鋼材
JP5999196B2 (ja) * 2012-12-05 2016-09-28 Jfeスチール株式会社 耐アルコール孔食性および耐アルコールscc性に優れた鋼材
WO2016092756A1 (ja) * 2014-12-09 2016-06-16 Jfeスチール株式会社 耐候性に優れた構造用鋼材
JPWO2016092756A1 (ja) * 2014-12-09 2017-04-27 Jfeスチール株式会社 耐候性に優れた構造用鋼材
US12000028B2 (en) * 2015-08-24 2024-06-04 Nippon Steel Corporation Rail vehicle axle
JP6394839B1 (ja) * 2017-12-14 2018-09-26 新日鐵住金株式会社 鋼材
WO2019116520A1 (ja) * 2017-12-14 2019-06-20 新日鐵住金株式会社 鋼材
EP3524707A4 (en) * 2017-12-14 2019-12-04 Nippon Steel & Sumitomo Metal Corporation STEEL MATERIAL
CN115572893A (zh) * 2022-09-02 2023-01-06 武汉钢铁有限公司 一种耐大气腐蚀的高强度汽车轮辐用钢及其制造方法

Also Published As

Publication number Publication date
KR20110117669A (ko) 2011-10-27
CN102639737B (zh) 2014-02-12
CN102639737A (zh) 2012-08-15
JP4924774B2 (ja) 2012-04-25
KR101261744B1 (ko) 2013-05-07
JPWO2011102244A1 (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
JP4924774B2 (ja) 耐疲労亀裂進展特性および耐食性に優れた鋼材並びにその製造方法
JP5531937B2 (ja) 耐水素誘起割れ性、脆性亀裂伝播停止特性および耐食性に優れた厚鋼板
JP5163310B2 (ja) 耐食性およびz方向の靭性に優れた鋼材の製造方法
JP5447310B2 (ja) バラストタンク用鋼材
JP5879758B2 (ja) 耐食性に優れた鋼材
JP4924775B2 (ja) 溶接変形が小さく耐食性に優れた鋼板
JP5644522B2 (ja) 海洋構造物用厚鋼板およびその製造方法
JP2009046749A (ja) 高強度船舶用耐食鋼材およびその製造方法
JP2011058038A (ja) 耐食性に優れる船舶用熱間圧延形鋼およびその製造方法
JP5488395B2 (ja) アレスト特性および耐食性に優れた高強度厚肉鋼板
JP5556632B2 (ja) 耐食性に優れた低降伏比鋼材およびその製造方法
JP7322932B2 (ja) 厚鋼板およびその製造方法ならびに構造物
JP5862166B2 (ja) 船舶艤装用耐食鋼材
JP2009120878A (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101442366B1 (ko) 용접 변형이 작고 내식성이 우수한 강판
JP7548275B2 (ja) 厚鋼板、厚鋼板の製造方法、および構造物
JP7327444B2 (ja) 厚鋼板、厚鋼板の製造方法、および構造物
JP2023130323A (ja) 厚鋼板、構造物および厚鋼板の製造方法
JP7548148B2 (ja) 鋼板およびその製造方法
TWI808555B (zh) H形鋼
JP2008195983A (ja) 切断性に優れる鋼板
JP2023132089A (ja) 鋼材
JP2023119905A (ja) 鋼材
JP2020164897A (ja) 鋼材
JPH09209080A (ja) 耐食性に優れた高張力電縫鋼管およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004587.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011526323

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117017845

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744532

Country of ref document: EP

Kind code of ref document: A1