WO2011102122A1 - 真空処理装置 - Google Patents

真空処理装置 Download PDF

Info

Publication number
WO2011102122A1
WO2011102122A1 PCT/JP2011/000846 JP2011000846W WO2011102122A1 WO 2011102122 A1 WO2011102122 A1 WO 2011102122A1 JP 2011000846 W JP2011000846 W JP 2011000846W WO 2011102122 A1 WO2011102122 A1 WO 2011102122A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
vacuum
focusing
coil
electron
Prior art date
Application number
PCT/JP2011/000846
Other languages
English (en)
French (fr)
Inventor
飯島 栄一
裕人 池田
佳樹 磯
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201180010394.3A priority Critical patent/CN102762762B/zh
Priority to EP11744413.3A priority patent/EP2540859B1/en
Priority to JP2012500506A priority patent/JP5616426B2/ja
Priority to KR1020127021285A priority patent/KR101371940B1/ko
Publication of WO2011102122A1 publication Critical patent/WO2011102122A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/21Focus adjustment
    • H01J2237/216Automatic focusing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3132Evaporating

Definitions

  • the present invention relates to a vacuum processing apparatus using an electron gun.
  • the electron beam has an energy source of electrons and can be easily oscillated, deflected, and densified.
  • the electron beam is widely used as a heating source such as a vacuum deposition apparatus, a surface treatment apparatus, a vacuum heat treatment apparatus, a vacuum melting furnace, and a vacuum purification furnace (for example, non-patent) Reference 1).
  • An electron beam evaporation apparatus using an electron gun for example, a piercing electron gun, includes a piercing electron gun that is a beam generation source, and a vacuum evaporation chamber in which an evaporation source and an evaporation target member are installed (for example, Patent Documents). 1).
  • the evaporation material accommodated in the evaporation source is heated by the irradiation of the electron beam emitted from the electron gun, and is evaporated on the deposition target member, thereby forming an evaporation film.
  • JP 2004-315971 A paragraphs [0018], [0019], figure)
  • an object of the present invention is to provide a vacuum processing apparatus capable of suppressing the divergence of an electron beam even in a high vacuum region and performing a stable process at an optimal electron beam density. It is in.
  • a vacuum processing apparatus includes a processing chamber, an electron gun, and an electron beam focusing mechanism.
  • the processing chamber is provided with a processing object and can maintain a vacuum atmosphere.
  • the electron gun is installed adjacent to the processing chamber and emits an electron beam for heating the processing object.
  • the electron beam focusing mechanism is provided in the processing chamber and focuses the electron beam emitted from the electron gun.
  • FIG. 1 is a schematic partial perspective view of an in-line electron beam evaporation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view cut along AA ′ in FIG. 1.
  • It is a schematic sectional drawing of the Pierce type electron gun which comprises a two-stage focusing coil. This shows the relationship between the vacuum deposition chamber pressure and the film formation rate. The relationship between process chamber pressure and electron beam diameter is shown. This shows the state of beam expansion when there is no neutralization effect. It is a figure which shows the state of the electron beam emitted from the electron gun.
  • FIG. 1 is a schematic partial perspective view of an in-line electron beam evaporation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view cut along AA ′ in FIG. 1.
  • It is a schematic sectional drawing of the Pierce type electron gun which comprises a two-stage focusing coil. This shows the relationship between the vacuum deposition chamber pressure and the film formation rate. The relationship between process chamber
  • FIG. 3 shows a magnetic flux density distribution when a predetermined value of current is passed through a first focusing coil installed in an electron gun and a second focusing coil installed in an electron beam focusing mechanism in the configuration shown in FIG.
  • a current of a predetermined value is passed through the first focusing coil installed in the electron gun and the current value passed through the second focusing coil installed in the electron beam focusing mechanism is changed, It shows the state.
  • the relationship between the electric current value supplied to the 2nd focusing coil installed in the electron beam focusing mechanism, and the temperature measured with the thermocouple is shown.
  • a current of a predetermined value is passed through the first focusing coil installed in the electron gun and the second focusing coil installed in the electron beam focusing mechanism, respectively, and a third current is installed in the electron beam focusing mechanism. It shows the state of the electron beam when the value of the current flowing through the focusing coil is changed. The relationship between the electric current value supplied to the 3rd focusing coil installed in the electron beam focusing mechanism, and the temperature measured with the thermocouple is shown. It is a figure which shows the state of an electron beam when a predetermined electric current is sent through each of the focusing coil of an electron gun, the 2nd focusing coil installed in the electron beam focusing mechanism, and the 3rd focusing coil.
  • a vacuum processing apparatus includes a processing chamber, an electron gun, and an electron beam focusing mechanism.
  • the processing chamber is provided with a processing object and can maintain a vacuum atmosphere.
  • the electron gun is installed adjacent to the processing chamber and emits an electron beam for heating the processing object.
  • the electron beam focusing mechanism is provided in the processing chamber and focuses the electron beam emitted from the electron gun.
  • the electron beam emitted from the electron gun is focused by the electron beam focusing mechanism provided in the processing chamber and then irradiated to the processing object, so that it passes through the processing chamber in a vacuum atmosphere. Therefore, the divergence of the electron beam is suppressed. Therefore, an optimal electron beam density can be ensured, and a stable treatment for the object to be treated can be ensured.
  • the electron beam focusing mechanism has a focusing coil. With this configuration, the electron beam can be focused by the focusing coil.
  • the electron beam focusing mechanism may further include a thermocouple and a control unit.
  • the thermocouple measures the temperature at the passing point of the electron beam.
  • the control unit controls a current value supplied to the focusing coil based on a measurement result by the thermocouple. In the above configuration, the current value supplied to the focusing coil is controlled based on the temperature at the passing point of the electron beam measured by the thermocouple. Therefore, a desired electron beam shape can be obtained by controlling the focusing coil current.
  • the electron beam focusing mechanism may have a plurality of focusing coils.
  • a plurality of the thermocouples may be arranged corresponding to the respective focusing coils.
  • the electron beam focusing mechanism may further include a thermocouple and a control unit.
  • the thermocouple measures the temperature at one pass point of the electron beam.
  • the control unit controls the pressure in the electron beam focusing mechanism based on the measurement result by the thermocouple. According to the above configuration, the pressure in the electron beam focusing mechanism is controlled based on the temperature at the passing point of the electron beam measured by the thermocouple. Therefore, since the expansion and contraction of the electron beam change depending on the pressure, a desired electron beam shape can be obtained by pressure control.
  • the electron gun may have a first oscillating coil
  • the electron beam focusing mechanism may have a second oscillating coil.
  • the electron beam is deflected by the first oscillating coil and the second oscillating coil and applied to the object to be processed.
  • a deflecting means for deflecting the electron beam is unnecessary in addition to the electron gun and the electron beam focusing mechanism. Therefore, the controllability of the electron beam applied to the evaporation material is excellent.
  • the processing object may be an evaporating material.
  • the electron gun constitutes a heating source for heating the evaporation material by the electron beam.
  • the vapor deposition apparatus which can ensure sufficient power density on evaporation material and can prevent the fall of an evaporation rate can be provided.
  • the evaporating material can be a metal or a metal oxide. According to the above-described vacuum processing apparatus, even when a metal film having a remarkable divergence of an electron beam under high vacuum is formed, the divergence of the electron beam is focused by the electron beam focusing mechanism. Therefore, a sufficient power density can be secured at the evaporation source, and a decrease in evaporation rate can be prevented.
  • FIG. 1 is a schematic partial perspective view of an in-line electron beam evaporation apparatus 1 as a vacuum processing apparatus according to an embodiment of the present invention.
  • FIG. 1 the positional relationship between the transport direction of the glass substrate as the member to be processed in the vacuum deposition chamber, the electron gun 20 as the electron beam generator, and the electron beam focusing mechanism 150 is shown.
  • FIG. 2 is a schematic cross-sectional view taken along the line AA ′ of FIG.
  • the electron beam emitted from the pierce-type electron gun is deflected by a deflection coil (not shown) as a deflecting means in the vacuum deposition chamber and irradiated to the evaporation source.
  • a deflection coil not shown
  • FIG. It is shown that the evaporation material (target) 31 is irradiated linearly without being deflected.
  • the in-line type electron beam vapor deposition apparatus 1 includes a vacuum vapor deposition chamber 50 as a processing chamber in which a glass substrate 10 is transported and accommodated, and an electron gun 20 disposed adjacent to the vacuum vapor deposition chamber 50. And an electron beam focusing mechanism 150 provided in the vacuum deposition chamber 50.
  • the evaporation material 31 is heated and evaporated by the electron beam 40 irradiated from the electron gun 20, and is formed on the glass substrate 10 as an evaporation film.
  • the vacuum deposition chamber 50 includes a vacuum chamber 51 having a rectangular cross-section in a direction perpendicular to the conveyance direction of the glass substrate 10, and a rotary ring hearth 30 (evaporation) in which an evaporation material 31 disposed on the bottom surface of the vacuum chamber 51 is accommodated. Source).
  • the glass substrate 10 is designed to be transported in the horizontal direction above the vacuum chamber 51.
  • the inside of the vacuum deposition chamber 50 is designed so that a vacuum can be maintained.
  • a plurality of electron guns 20 are fixed by mounting flanges 70 on the outer wall surfaces on both sides of the vacuum chamber 51 as viewed from the conveying direction of the glass substrate 10.
  • the inside of the electron gun 20 communicates with the inside of the vacuum vapor deposition chamber 50.
  • the electron gun 20 includes a housing 21, a cathode chamber 120 provided inside the housing 21, and a vacuum exhaust system that evacuates the cathode chamber 120 as indicated by an arrow 71.
  • the electron gun 20 includes an ion collector 22, a filament 23, a cathode 25, a Wehnelt 24, an anode 26, a flow register 27, a first focusing coil 28, and a first oscillating coil 29. .
  • the filament 23 is heated by Joule heat when an alternating current is passed, and emits thermoelectrons.
  • the cathode 25 is generated by applying a positive voltage to the filament 23, heated by receiving accelerated electrons, and emits thermoelectrons.
  • the Wehnelt 24 is also called a focus electrode, and forms an electric field between the anode 26 and the anode 26 at the same potential as the cathode 25 so that electrons are directed toward the center of the anode 26, and efficiently generates an electron beam.
  • the anode 26 is at a positive potential with respect to the cathode 25, and accelerates the thermoelectrons generated at the cathode 25.
  • the anode 26 is placed at the ground potential 74, and a negative voltage is applied to the cathode 25.
  • the electron beam passes through a hole in the center of the anode 26.
  • Ions generated by collision between the electron beam and the residual gas in the atmosphere are accelerated by the voltage of the anode 26 and the cathode 25, and the cathode 25 is sputtered to form holes.
  • An ion collector 22 is provided so as to receive an ion beam and not damage the casing 21 when a hole penetrating the cathode 25 is formed by long-term use.
  • the flow register 27 reduces conductance and keeps the pressure in the cathode chamber 20 low.
  • the first focusing coil 28 focuses the beam that has passed through the anode 26 on the evaporation material 31 accommodated in the ring hearth 30 by the generated magnetic field.
  • the focusing coil 28 is a coil of, for example, 520 turns, and is installed at a position, for example, 100 mm away from the surface of the cathode 25.
  • the first oscillating coil 29 scans or sweeps the electron beam on the evaporation material 31 accommodated in the ring hearth 30.
  • the filament 23 is connected to a filament power source 70, and the filament 23 and the cathode 25 are connected to a cathode power source 72.
  • the filament 23 is heated to generate thermoelectrons.
  • a voltage is applied between the filament 23 and the cathode 25 by the cathode power source 72.
  • the cathode 25 is heated by the collision of the thermoelectrons and the radiant heat from the filament 23, and the thermoelectrons are emitted from the surface of the cathode 25.
  • the cathode 25 and Wehnelt 24 and the anode 26 are connected to an acceleration power source 73.
  • thermoelectrons emitted from the surface of the cathode 25 are focused toward the anode 26 due to the potential gradient between the Wehnelt 24 and the anode 26.
  • a plurality of electron beam focusing mechanisms 150 are installed on the inner wall surfaces on both sides of the vacuum chamber 51 in correspondence with the electron guns 20 as viewed from the transport direction of the glass substrate 10.
  • the electron beam focusing mechanism 150 includes a casing 60 having a cylindrical outer shape, a beam transport pipe 55 provided in the casing 60, and a second provided in the casing 60 and around the beam transport pipe 55. Focusing coil 52 (first focusing coil of electron beam focusing mechanism), third focusing coil 53 (second focusing coil of electron beam focusing mechanism), second oscillating coil 54, and beam transport tube 55. And provided thermocouples 56-59.
  • the beam transport tube 55 has a cylindrical structure made of Cu, for example, and can be cooled by a cooling means (not shown).
  • the second focusing coil 52 and the third focusing coil 53 are, for example, 500-turn coils and have a structure that allows a current of up to 3 A to flow.
  • the second focusing coil 52 and the third focusing coil 53 are installed at positions separated from the surface of the cathode 25 by 300 mm and 500 mm, respectively.
  • the first focusing coil 28, the second focusing coil 52, and the third focusing coil 53 are provided correspondingly when the electron beam 40 is in a diverging state, and the diverging electron beam is focused by each focusing coil.
  • a focusing coil is then provided.
  • thermocouples 56 to 59 are arranged along the beam path of the electron beam 40.
  • the thermocouples 56 to 59 are sensors that detect the temperature of the electron beam 40 at its passing point.
  • the thermocouple 56 is arranged corresponding to the second focusing coil 52, and the thermocouple 57 is arranged corresponding to the third focusing coil 53.
  • the thermocouple 58 is disposed correspondingly between the second focusing coil 52 and the third focusing coil 53, and the thermocouple 59 is disposed near the end of the electron beam focusing mechanism 150 on the side from which the electron beam is emitted.
  • thermocouples are provided, but the thermocouples may be arranged at least at positions corresponding to the focusing coils.
  • the thermocouples may be provided when two focusing coils are provided.
  • the number of focusing coils is not limited, and a number larger than the number of focusing coils may be provided along the beam path of the electron beam 40. The more thermocouples, the more accurate the electron beam shape can be grasped. it can.
  • the measurement results from the thermocouples 56 to 59 are input to the control unit 61, and based on the result, the control unit 61 performs the first focusing coil 28, the second focusing coil 52 and the third focusing coil 53, or the second focusing coil 53. Currents to be supplied to the focusing coil 52 and the third focusing coil 53 are set.
  • the controller 61 is installed outside the vacuum chamber 51.
  • the current supplied to the focusing coil is set based on the temperature measurement result of the thermocouple, so that a sufficient power density can be secured at the irradiation point of the electron beam 40 in the evaporation material 31.
  • the focusing state is controlled, the present invention is not limited to this.
  • the pressure in the beam transport tube 55 may be adjusted and set by a control unit (not shown) based on the temperature measurement results of the thermocouples 56 to 59. That is, how the electron beam expands and contracts changes depending on the degree of vacuum, so that the focusing state of the electron beam 40 can be controlled by adjusting the degree of vacuum.
  • an evacuation system is provided between the second focusing coil 52 and the third focusing coil 53, and a mechanism for supplying an inert gas such as Ar for pressure adjustment is provided. From the temperature measurement result, it is conceivable to adjust the degree of vacuum using the vacuum exhaust system and the inert gas supply mechanism.
  • An evacuation system may be provided between the two.
  • the electron beam 40 irradiated from the cathode chamber 120 passes through the electron beam focusing mechanism 150 and is then irradiated to the evaporation material 31. .
  • the electron beam focusing mechanism 150 since the divergence of the electron beam 40 in the vacuum deposition chamber 50 in a high vacuum is focused by the electron beam focusing mechanism 150, a sufficient power density can be secured by the evaporation material 31 that is the irradiation point of the electron beam 40. It is possible to prevent a decrease in evaporation rate due to divergence.
  • the vapor deposition apparatus 1 provided with the electron beam focusing mechanism 150 as in the present embodiment is particularly effective when depositing a metal film.
  • the configuration in which one focusing coil is provided as the electron gun 20 is shown.
  • an electron gun 220 having two focusing coils may be used.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the vacuum deposition chamber 50 and the electron beam focusing mechanism 150 are not shown.
  • the pierce-type electron gun 220 in FIG. 3 is a first flow register 227, a second flow register 228, focusing coils 221 and 222, an oscillating coil 223, and an exhaust for evacuating an intermediate chamber as indicated by an arrow 271.
  • a system is further provided.
  • a two-stage exhaust system is used to ensure a differential pressure from the vacuum deposition chamber.
  • an indirect heating type tungsten cathode is used as an electron emission source of a piercing electron gun. The amount of thermionic emission per unit area from the cathode surface is determined by temperature as shown by the Richardson-Dashman equation.
  • the second oscillating coil 54 is provided in the electron beam focusing mechanism 150, but may be omitted depending on the positional relationship among the electron gun 20, the electron beam focusing mechanism 150, and the beam irradiation point. Further, the second oscillating coil 54 may be disposed between the focusing coil 52 and the focusing coil 53.
  • the focusing coil of the electron beam focusing mechanism 150 has two stages, but is not limited to this, depending on the transport distance of the electron beam, the power density of the electron beam 40, and the atmosphere of the vacuum deposition chamber 50, There may be one stage, or three or more stages.
  • a metal such as Al, Cu, or Mo, or a metal oxide such as MgO is applicable.
  • Al since the problem of divergence of the electron beam is significant because the electron film is transported under high vacuum in the formation of the metal film, Al, in order to form an electrode on a large area substrate,
  • an electron beam focusing mechanism 150 As shown in the deposition apparatus 1 of the present embodiment.
  • FIG. 4 is a diagram showing the relationship between the vacuum deposition chamber pressure and the magnesium oxide film forming rate when the input power of the electron gun in the conventional deposition apparatus is 12.8 kW.
  • FIG. 5 shows a process chamber pressure and an electron beam diameter when a Pierce electron gun with an acceleration voltage of 30 kV is used and an electron beam with a beam current of 400 mA is applied to a W target surface installed at a distance of 750 mm from the cathode surface. It is a figure which shows the relationship.
  • the electrons emitted from the piercing electron gun collide with the residual gas in the vacuum deposition chamber, and the positive ions generated by the collision are electrons.
  • the beam is neutralized, the repulsion between the negative charges of the electrons is neutralized, and the electron beam remains focused.
  • the amount of residual gas in the vacuum deposition chamber is small, electrons are diffused by repulsion between negative charges, the power density is lowered, and the film formation rate is lowered.
  • FIG. 6 shows the result of simulating the beam spreading state when there is no neutralization effect when the acceleration voltage is 30 kW and the beam current is 1A and 2A.
  • the beam current is 1 A
  • the beam diameter is about 120 mm at a distance of 750 mm from the cathode surface.
  • the focusing state of the electron beam changes depending on the pressure in the vacuum deposition chamber, the current value of the electron beam (electron density), the impedance of the atmosphere (type of residual gas), etc.
  • the rate fluctuates significantly. For this reason, it is difficult to perform stable film formation.
  • the first focusing coil 28 of the electron gun 20, the second focusing coil 52 and the third focusing coil 53 of the electron beam focusing mechanism 150 are each 100 mm from the surface of the cathode 25. , 300 mm and 500 mm apart.
  • FIG. 8 shows the magnetic flux density distribution when a current of 2.5 A is passed through the first focusing coil 28 and a current of 2.0 A is passed through the second focusing coil 52. Further, when a current of 2.0 A is passed through the third focusing coil 53, the magnetic flux density distribution shown in FIG. 8 has a magnetic flux density distribution in which a peak of about 230 Gauss appears at a distance of 500 mm from the cathode. A focused magnetic field can be generated.
  • FIG. 9 shows a configuration of the vapor deposition apparatus 1 described above, in which the pressure in the vacuum vapor deposition chamber 50 is 1.5 ⁇ 10 ⁇ 5 Pa, a current of 2.5 A is passed through the first focusing coil 28, and the third This is a result of simulating the state of the electron beam when no current flows through the focusing coil 53 and the value of the current flowing through the second focusing coil 52 is changed.
  • FIG. 10 shows the temperature measurement result by the thermocouple 57 arranged corresponding to the third focusing coil 53 under the same conditions.
  • the radius r of the vertical axis is the radius r of a circular electron beam in a plane perpendicular to the traveling direction of the electron beam.
  • FIG. 11 shows a configuration of the vapor deposition apparatus 1 described above, in which the pressure in the vacuum vapor deposition chamber 50 is 1.5 ⁇ 10 ⁇ 5 Pa, a current of 2.5 A is passed through the first focusing coil 28, and the second This is a result of simulating the state of the electron beam when a current of 2.0 A is passed through the focusing coil 52 and the value of the current passed through the third focusing coil 53 is changed.
  • FIG. 12 shows the temperature measurement result by the thermocouple 59 under the same conditions.
  • the current value that flows through the third focusing coil 53 when the electron beam is most focused on the evaporating material 31 is 2.0A.
  • thermocouple As shown in FIGS. 10 and 12, it was confirmed that the spread state of the electron beam 40 can be grasped by the temperature by the thermocouple. That is, when the diameter of the electron beam 40 is large, the temperature measured by the thermocouple increases. Further, since an abnormal temperature that damages the Cu beam transport tube 55 can be detected by measuring the temperature with a thermocouple, it can be controlled to prevent the Cu beam transport tube from being perforated.
  • FIG. 13 shows the state of the electron beam in this case.
  • the electron beam 40 is focused by disposing the focusing coil corresponding to the state where the electron beam 40 diverges (r increases).
  • the first focusing coil 28, the second focusing coil 52, and the third focusing coil 53 are installed at positions 100 mm, 300 mm, and 500 mm away from the cathode 25, respectively, and evaporate from the cathode 25.
  • the distance to the material 31 was 750 mm, Mo was used as the evaporation material, and a Mo film was formed.
  • FIG. 14 shows the relationship between the input power and the static rate. The static rate was measured with a CRTM (quartz crystal unit) installed 650 mm above the evaporation material 31.
  • a vacuum deposition chamber is formed without passing an electric current through the second focusing coil 52 and the third focusing coil 53 of the electron beam focusing mechanism 150.
  • the film was formed with a pressure of 50 set to 1.0 ⁇ 10 ⁇ 2 Pa.
  • the electron beam is focused due to neutralization by positive ions, so that the static rate was 135.8 ⁇ / sec at 14 kW and 135.8 ⁇ / sec at an input power of 10.3 kW. .
  • the pressure in the vacuum deposition chamber 50 is set to 1.5 ⁇ 10 ⁇ 5 Pa, and no current is passed through the second focusing coil 52 and the third focusing coil 53 of the electron beam focusing mechanism 150.
  • the electron beam 40 was irradiated. Since there is little neutralization effect by positive ions, Mo hardly evaporated even when 24 kW was added.
  • the inside of the vacuum deposition chamber 50 is set to a high vacuum atmosphere of 1.5 ⁇ 10 ⁇ 5 Pa, and 2.0 A is applied to the second focusing coil 52 of the electron beam focusing mechanism 150 and 2.0 A is applied to the third focusing coil 53.
  • the film was formed while the current of the current was applied and the focused state of the electron beam was monitored with a thermocouple.
  • preferable film formation rates of 71 angstrom / sec at an input power of 10 kW and 157.9 angstrom / sec at 15 kW were obtained. That is, even in a high vacuum atmosphere, the electron beam focusing mechanism 150 is provided, and the electron beam is focused by the mechanism 150, so that the pressure in the vacuum deposition chamber 50 can be obtained without the electron beam focusing mechanism 150.
  • a film formation rate substantially equivalent to that at 1.0 ⁇ 10 ⁇ 2 Pa was achieved.
  • the diameter of the electron beam 40 on the evaporation material 31 was about 20 mm, and it was confirmed that the electron beam 40 was sufficiently focused.
  • the focusing state of the electron beam is monitored with a thermocouple at an input power of 15 kW, and the current values of the second focusing coil 52 and the third focusing coil 53 are set so that the temperature measured by the thermocouple falls within a set range.
  • the film was formed for 220 hours while adjusting. As a result, as shown in FIG. 15, a stable film formation rate was obtained in a long continuous operation.
  • FIG. 16 is a schematic cross-sectional view showing the positional relationship among the electron gun 20, the electron beam focusing mechanism 150, the deflection coil 80, and the evaporation material 31 in the vapor deposition apparatus according to the present invention.
  • FIG. 16A is a schematic cross-sectional view of the vapor deposition apparatus 1 in the embodiment shown in FIGS. 1 and 2 described above, and FIGS. 16B to 16E are modified examples.
  • the deflection coil 80 is disposed in the vicinity of the evaporation material 31.
  • the electron beam emitted from the electron gun 20 by the deflection coil 80 and passed through the electron beam focusing mechanism 150 is deflected by the deflection coil 80 and irradiated onto the evaporation material 31.
  • a permanent magnet can be used.
  • FIG. 16B shows a first modification.
  • the second oscillating coil 54 installed in the electron beam focusing mechanism 150 ' is also used to deflect the electron beam. It can be used in an atmosphere where neutralization by positive ions can be expected to some extent.
  • FIG. 16C shows a second modification.
  • the first oscillating coil 29 installed in the electron gun 20 ′ is also used for deflection.
  • deposition on the inside of the electron beam focusing mechanism 150 ′ becomes a problem, since the control of the electron beam shape becomes easy, it can be used for a process with a small amount of evaporation and a process with a short continuous operation time.
  • FIG. 16D shows a third modification.
  • the electron gun 20 (20 ′) is arranged so that the longitudinal direction is horizontal.
  • the electron gun 20 ′ and the electron beam focusing mechanism 150 ′ are installed obliquely toward the evaporating material 31. Since the electron beam shape can be easily controlled, it can be used for a process with a small amount of evaporation and a process with a short continuous operation time.
  • FIG. 16E shows a fourth modification.
  • the second oscillating coil 54 installed in the electron beam focusing mechanism 150 ′ and the first oscillating coil 29 installed in the electron gun 20 ′ are used for deflection, and the deflection coil 80 is used.
  • the deflection coil 80 is not used, the electron beam diameter is considerably reduced, and the beam controllability with the evaporating material 31 is excellent. It can also be applied to a ferromagnetic film forming process.
  • the installation positions of the second focusing coil 52 and the third focusing coil 53 are set to the distances as described above.
  • these conditions are merely examples, and the output of the electron beam and the desired It can be changed as appropriate according to the beam diameter and the installation location of the evaporation material 31.
  • the embodiment according to the present invention has been described with reference to FIG. 1 using an in-line type vapor deposition apparatus, the present invention is applied to a vapor deposition apparatus that forms a film while the substrate is stationary, and a vapor deposition apparatus that forms a film by rotating the substrate. Also good.
  • the electron beam evaporation apparatus has been described as an example of the vacuum processing apparatus.
  • the present invention is not limited to this, and various processing apparatuses using an electron beam such as a surface processing apparatus, a vacuum heat treatment apparatus, and a vacuum
  • the present invention can also be applied to a melting furnace, a vacuum refining furnace, and the like.

Abstract

高真空領域においても電子ビームの発散を抑え、蒸発レートの低下を防止し、安定した成膜を行うことができる真空処理装置を提供する。 【課題】 【解決手段】真空処理装置(蒸着装置)1は、真空蒸着室50と、電子銃20と、電子ビーム集束機構150とを有する。上記真空蒸着室50は、蒸発材料31を収容する蒸発源及び該蒸発材料31が加熱されて蒸着膜として蒸着される被処理部材10が設けられている。上記電子銃は、上記真空蒸着室50に隣接して配置され、上記蒸発材料31を加熱する電子ビームを出射する。上記電子ビーム集束機構150は、上記真空蒸着室50内に設けられ、電子銃20から出射した上記電子ビームを集束する。

Description

真空処理装置
 本発明は、電子銃を用いた真空処理装置に関する。
 電子ビームは、エネルギー源が電子であり、容易に揺動、偏向、及び高密度化が可能である。また、加熱対象物へのコンタミネーションが少ないため、電子ビームは、真空蒸着装置、表面処理装置、真空熱処理装置、真空溶解炉、真空精製炉などの加熱源として幅広く利用されている(例えば非特許文献1参照)。
 電子銃、例えばピアス式電子銃を用いた電子ビーム蒸着装置は、ビーム発生源であるピアス式電子銃と、蒸発源及び被蒸着対象部材が設置される真空蒸着室とを具備する(例えば特許文献1参照)。電子ビーム蒸着装置では、蒸発源に収容された蒸発材料が、電子銃から発せられる電子ビームの照射によって加熱され、被蒸着対象部材に蒸着されることにより、蒸着膜が形成される。
特開2004-315971号公報(段落[0018]、[0019]、図 )
「真空ハンドブック 141ページ 4・5・1 電子ビームによる加熱、4・5・2 電子ビームによる金属の溶解」 平成4年11月30日 株式会社オーム社発行 日本真空技術株式会社編
 電子ビーム蒸着装置において、ピアス式電子銃から発射される高密度な電子は、高真空中を通過する間に空間電荷効果によりビームが発散する傾向がある。このため、電子ビーム照射点となる蒸発源で十分なパワー密度を確保できず、蒸発材料の蒸発レートが大幅に低下する場合があるという問題がある。特に、フラットパネルディスプレイを構成する大型基板上に金属配線膜等を成膜する場合、高真空雰囲気で大面積の成膜となり、また装置設計上、蒸発源とピアス式電子銃との距離を長くする必要がある。このため、ピアス式電子銃から蒸発源に到達するまでの間に電子ビームが発散し、蒸発レートが低下してしまうため、大面積の成膜を実現することが困難であった。更に、電子ビームの集束状態はビームの出力(電流値)、真空蒸着室の圧力や雰囲気のインピーダンス等によって変化するため、蒸発レートが変動し、安定した成膜を行うことができないという問題がある。
 これらの問題を解決するために、電子の加速電圧を高くして、ビームの発散を抑えることも可能である。しかしながら、電子銃の高電圧印加部の絶縁強化、電子銃電源から電子銃までの高電圧配線の絶縁強化、電子銃電源の高電圧発生部の絶縁強化、電子ビームと雰囲気中の気体及び被照射物との衝突によるX線の発生、また被照射物及び生成物へのダメージなど新たな問題が発生する可能性がある。
 以上のような事情に鑑み、本発明の目的は、高真空領域においても電子ビームの発散を抑え、最適な電子ビームの密度で、安定した処理を行うことができる真空処理装置装置を提供することにある。
 本発明の一形態に係る真空処理装置は、処理室と、電子銃と、電子ビーム集束機構とを有する。上記処理室は、処理対象物が設置され、真空雰囲気を維持可能である。上記電子銃は、上記処理室に隣接して設置され、上記処理対象物を加熱する電子ビームを出射する。上記電子ビーム集束機構は、上記処理室内に設けられ、上記電子銃から出射した上記電子ビームを集束する。
本発明に係る一実施形態のインライン式電子ビーム蒸着装置の概略部分斜視図である。 図1のA-A´で切断した概略断面図である。 2段集束コイルを具備するピアス式電子銃の概略断面図である。 真空蒸着室内圧力と成膜レートとの関係を示すものである。 プロセス室圧力と電子ビームの直径との関係を示すものである。 中和作用の効果が全くない場合のビームの拡がり状態を示すものである。 電子銃から発射された電子ビームの状態を示す図である。 図2に示す構成において電子銃に設置した第1の集束コイルと電子ビーム集束機構に設置した第2の集束コイルに所定の値の電流を流したときの磁束密度分布を示すものである。 図2に示す構成において電子銃に設置した第1の集束コイルに所定の値の電流を流し、電子ビーム集束機構に設置した第2の集束コイルに流す電流値を変化させたときの電子ビームの状態を示すものである。 電子ビーム集束機構に設置した第2の集束コイルに供給される電流値と熱電対で測定した温度との関係を示すものである。 図2に示す構成において、電子銃に設置した第1の集束コイル及び電子ビーム集束機構に設置した第2の集束コイルにそれぞれ所定の値の電流を流し、電子ビーム集束機構に設置した第3の集束コイルに流す電流値を変化させたときの電子ビームの状態を示すものである。 電子ビーム集束機構に設置した第3の集束コイルに供給される電流値と熱電対で測定した温度との関係を示すものである。 電子銃の集束コイル、電子ビーム集束機構に設置した第2の集束コイル及び第3の集束コイルそれぞれに所定の電流を流したときの電子ビームの状態を示す図である。 本発明による蒸着装置における投入パワーとスタティックレートとの関係を示すものである。 本発明による蒸着装置における成膜レートと成膜時間との関係を示すものである。 本発明の一実施形態及び変形例における蒸着装置の概略断面図である。
 本発明の一形態に係る真空処理装置は、処理室と、電子銃と、電子ビーム集束機構とを有する。上記処理室は、処理対象物が設置され、真空雰囲気を維持可能である。上記電子銃は、上記処理室に隣接して設置され、上記処理対象物を加熱する電子ビームを出射する。上記電子ビーム集束機構は、上記処理室内に設けられ、上記電子銃から出射した上記電子ビームを集束する。
 この真空処理装置によれば、電子銃から出射される電子ビームは、処理室内に設けられる電子ビーム集束機構によって集束された後、処理対象物に照射されるので、真空雰囲気の処理室内を通過することによる電子ビームの発散は抑制される。従って、最適な電子ビーム密度を確保でき、処理対象物に対する安定した処理を確保することができる。
 上記電子ビーム集束機構は、集束コイルを有する。この構成により、集束コイルによって電子ビームを集束することができる。
 上記電子ビーム集束機構は、熱電対と、制御部とを更に有してもよい。上記熱電対は、上記電子ビームの通過点における温度を測定する。上記制御部は、上記熱電対による測定結果を基に上記集束コイルに供給する電流値を制御する。
 上記構成においては、熱電対により測定された電子ビームの通過点における温度を基に集束コイルに供給する電流値が制御される。従って、集束コイル電流の制御により所望の電子ビーム形状が得られる。
 上記電子ビーム集束機構は、複数の集束コイルを有していてもよい。上記熱電対は、上記各集束コイルに対応して複数配置されてもよい。
 熱電対を少なくとも集束コイルに対応して設けることにより、電子ビームを所望の形状に制御することができる。
 上記電子ビーム集束機構は、熱電対と、制御部とを更に有していても良い。上記熱電対は、上記電子ビームの一通過点における温度を測定する。上記制御部は、上記熱電対による測定結果を基に上記電子ビーム集束機構内の圧力を制御する。
 上記構成によれば、熱電対により測定された電子ビームの通過点における温度を基に電子ビーム集束機構内の圧力が制御される。従って、電子ビームの拡がり及び縮みは圧力によって変化するので、圧力制御により所望の電子ビーム形状が得られる。
 上記電子銃は第1の揺動コイルを有し、上記電子ビーム集束機構は第2の揺動コイルを有してもよい。上記電子ビームは、上記第1の揺動コイル及び上記の第2揺動コイルによって偏向され上記処理対象物に照射される。
 これにより、第1の揺動コイル及び第2の揺動コイルを用いて電子ビームを偏向するため、電子銃及び電子ビーム集束機構以外に、電子ビームを偏向する偏向手段が不要となる。従って、蒸発材料に照射される電子ビームの制御性に優れる。
 上記処理対象物は、蒸発材料であってもよい。この場合、上記電子銃は、上記電子ビームにより上記蒸発材料を加熱する加熱源を構成する。これにより、蒸発材料上で十分なパワー密度を確保でき、蒸発レートの低下を防止できる蒸着装置を提供することができる。
 上記蒸発材料は、金属または金属酸化物とすることができる。
 上記真空処理装置によれば、高真空下における電子ビームの発散が著しい金属膜の成膜であっても、電子ビーム集束機構によって電子ビームの発散は集束される。従って、蒸発源で十分なパワー密度を確保でき、蒸発レートの低下を防止することができる。
 以下、本発明の実施の形態を図面に基づき説明する。
 [蒸着装置の構成]
 図1は、本発明の一実施形態に係る真空処理装置としてのインライン式電子ビーム蒸着装置1の概略部分斜視図である。図1では、真空蒸着室における被処理部材としてのガラス基板の搬送方向と、電子ビーム発生装置としての電子銃20と、電子ビーム集束機構150との位置関係を示す。
 図2は、図1のA-A´で切断した概略断面図である。ピアス式電子銃から発せられる電子ビームは、真空蒸着室内で偏向手段としての偏向コイル(図示しない)により偏向し蒸発源に照射されるが、図2においては、図面をわかりやすくするため、電子ビームを偏向させず直線的に蒸発材料(ターゲット)31に照射されるように示している。
 図1に示すように、インライン式電子ビーム蒸着装置1は、ガラス基板10が搬送、収容される処理室としての真空蒸着室50と、真空蒸着室50と隣接して配置される電子銃20と、真空蒸着室50内に設けられた電子ビーム集束機構150とを具備する。インライン式電子ビーム蒸着装置1では、電子銃20から照射された電子ビーム40によって、蒸発材料31が加熱され、蒸発して、ガラス基板10に蒸着膜として形成される。
 真空蒸着室50は、ガラス基板10の搬送方向と垂直な方向の断面が矩形状の真空チャンバ51と、真空チャンバ51の底面に配置された蒸発材料31が収容された回転式リングハース30(蒸発源)とを備える。ガラス基板10は、真空チャンバ51の上方で水平方向に搬送可能に設計されている。真空蒸着室50内は真空維持可能に設計されている。
 電子銃20は、ガラス基板10の搬送方向からみて真空チャンバ51の両側外壁面それぞれに取付フランジ70により複数固設されている。電子銃20の内部と真空蒸着室50の内部とは連通している。
 図2に示すように、電子銃20は、筐体21と、筐体21の内部に設けられたカソード室120と、矢印71のようにカソード室120内を真空排気する真空排気系を具備する。電子銃20は、イオンコレクタ22と、フィラメント23と、カソード25と、ウェネルト24と、アノード26と、フローレジスタ27と、第1の集束コイル28と、第1の揺動コイル29とを具備する。
 フィラメント23は、交流電流が流されることにより、ジュール熱で発熱され、熱電子を放出するものである。
 カソード25は、フィラメント23に対して正の電圧を印加することによりフィラメント23で発生し、加速された電子を受けることで加熱され、熱電子を放出するものである。
 ウェネルト24は、フォーカス電極とも呼ばれ、カソード25と同電位で、アノード26との間に、電子がアノード26の中心に向かうような電界を形成し、効率よく電子ビームを発生させるものである。
 アノード26は、カソード25に対し正の電位にあり、カソード25で発生した熱電子を加速するものである。アノード26はグランド電位74に置かれており、カソード25には負の電圧を印加している。アノード26の中心部にある孔を電子ビームが通過する。
 電子ビームと雰囲気中の残留気体との衝突等で発生したイオンはアノード26とカソード25の電圧で加速され、カソード25をスパッタして孔を形成する。長時間の使用によりカソード25を貫通する孔が形成されたときに、イオンビームを受け、筐体21にダメージを与えないように、イオンコレクタ22が設けられている。
 フローレジスタ27は、コンダクタンスを小さくし、カソード室20内の圧力を低く保つものである。
 第1の集束コイル28は、発生する磁場により、アノード26を通過したビームをリングハース30に収容される蒸発材料31上で集束させるものである。集束コイル28は、例えば520ターンのコイルであり、カソード25の表面から例えば100mm離れた位置に設置されている。
 第1の揺動コイル29は、リングハース30に収容される蒸発材料31上で電子ビームをスキャン又はスイープさせるものである。
 フィラメント23はフィラメント電源70に接続され、フィラメント23及びカソード25はカソード電源72に接続されている。フィラメント電源70からフィラメント23に通電すると、フィラメント23が加熱されて熱電子を発生させる。また、カソード電源72によりフィラメント23とカソード25との間には電圧が印加される。この熱電子の衝突及びフィラメント23からの輻射熱により、カソード25が加熱されて、カソード25の表面から熱電子を放出するようになっている。カソード25及びウェネルト24とアノード26とは、加速電源73に接続されている。この加速電源73によりカソード25とアノード26との間に電圧を印加し、カソード25の表面から放出された熱電子をアノード26に向かって加速することにより電子ビームが形成される。なお、ウェネルト24とアノード26との間の電位勾配により、カソード25の表面から放出された熱電子はアノード26に向かって集束するようになっている。
 電子ビーム集束機構150は、ガラス基板10の搬送方向からみて真空チャンバ51の両側内壁面それぞれに、各電子銃20と対応して複数設置されている。
 電子ビーム集束機構150は、外形が円筒型の筐体60と、筐体60内に設けられたビーム輸送管55と、筐体60内に設けられビーム輸送管55の周りに設けられた第2の集束コイル52(電子ビーム集束機構の第1集束コイル)と、第3の集束コイル53(電子ビーム集束機構の第2集束コイル)と、第2の揺動コイル54と、ビーム輸送管55に設けられた熱電対56~59とを具備する。
 ビーム輸送管55は例えばCu製の円筒構造を有し、図示しない冷却手段により冷却可能となっている。
 第2の集束コイル52、第3の集束コイル53は、例えば500ターンのコイルであり、3Aまでの電流が流せる構造となっている。本実施形態においては、第2の集束コイル52及び第3の集束コイル53は、カソード25の表面から、それぞれ300mm、500mm離れた位置に設置されている。
 第1の集束コイル28、第2の集束コイル52及び第3集束コイル53は、それぞれ電子ビーム40が発散状態にあるときに対応して設けられ、各集束コイルにより発散状態の電子ビームは集束される。電子ビームの進行方向をy軸とし、電子ビームの広がり方向をz軸としたときに、電子ビームのdz/dyの値が小さく、電子ビームの直径が所定の値以下となるような位置に対応して集束コイルが設けられる。
 第2の揺動コイル54は、第1の揺動コイル29と同一の構成とすることができる。例えば、電子銃20から見たx軸の揺動周波数は500Hz、y軸の揺動周波数は222Hz、ポジションの移動周波数はそれぞれ50Hz~100Hzである。
 熱電対56~59は電子ビーム40のビームパスに沿って複数配置される。熱電対56~59は、電子ビーム40のその通過点における温度を検知するセンサである。熱電対56は第2の集束コイル52に対応して、熱電対57は第3の集束コイル53に対応して配置されている。熱電対58は第2の集束コイル52と第3の集束コイル53の間に対応して配置され、熱電対59は電子ビーム集束機構150の電子ビームが出射される側の端部付近に配置される。
 本実施形態においては熱電対を4つ設けたが、熱電対を少なくとも集束コイルに対応した位置に配置すればよく、例えば2つの集束コイルを設ける場合には熱電対を2つ設ければよい。また、集束コイルの数に限定されずに電子ビーム40のビームパスに沿って、集束コイルの数より多い数を設けてもよく、熱電対が多いほど、より正確な電子ビーム形状を把握することができる。
 熱電対56~59による測定結果は制御部61に入力され、その結果を基に制御部61によって、第1の集束コイル28、第2の集束コイル52及び第3の集束コイル53、または第2の集束コイル52及び第3の集束コイル53に供給する電流がそれぞれ設定される。制御部61は、真空チャンバ51の外部に設置されている。
 本実施形態においては、熱電対の温度測定結果を基に集束コイルに供給する電流を設定して、蒸発材料31における電子ビーム40の照射点で十分なパワー密度が確保できるように電子ビーム40の集束状態を制御しているが、これに限定されるものではない。例えば、熱電対56~59の温度測定結果を基に、制御部(図示せず)によって、ビーム輸送管55内の圧力を調整、設定してもよい。すなわち、電子ビームの拡がり方及び縮み方は真空度によって変化するため、真空度を調整することによって、電子ビーム40の集束状態を制御することができる。具体的には、第2の集束コイル52と第3の集束コイル53との間に真空排気系を設け、更に圧力調整のためにAr等の不活性ガスを供給する機構を設け、熱電対の温度測定結果から、これら真空排気系及び不活性ガス供給機構を用いて真空度を調整することが考えられる。あるいは、第1の集束コイル28と第2の集束コイル52との間、または第1の集束コイル28と第2の集束コイル52との間及び第2の集束コイル52と第3の集束コイル53との間の両方に真空排気系を設けてもよい。
 本実施形態において、真空蒸着室50内に電子ビーム集束機構150を設けることにより、カソード室120から照射された電子ビーム40は、電子ビーム集束機構150を通過した後、蒸発材料31に照射される。これにより、高真空中の真空蒸着室50内での電子ビーム40の発散は電子ビーム集束機構150により集束されるので、電子ビーム40の照射点となる蒸発材料31で十分なパワー密度を確保でき、発散による蒸発レートの低下を防止することができる。また、フラットパネルディスプレイを構成する大型基板上に例えばAlからなる配線を形成するためAlの金属膜を成膜する場合、大面積の成膜となるため、設計上、蒸発源とピアス式電子銃との距離を長くする必要がある。しかし、このような場合においても、電子ビーム集束機構150を設けることにより、蒸発レートの低下が防止されるので、大面積での蒸着成膜を実現することが可能となる。
 ここで、酸化物の成膜ではプロセスガスを導入するため電子ビームの発散の問題が著しくないが、金属膜の成膜では電子ビームの発散の問題が著しい。そのため、本実施形態のような電子ビーム集束機構150を備えた蒸着装置1は、金属膜の蒸着の際、特に有効である。
 上述の実施形態において、電子銃20として集束コイルを1つ設けた構成を示したが、図3に示すように、集束コイルを2つ設けた電子銃220を用いてもよい。図3において、上述の実施形態と同様の構成については同様の符号を付し、その説明を省略する。また、図3においては、真空蒸着室50及び電子ビーム集束機構150等の図示を省略している。
 図3におけるピアス式電子銃220は、第1のフローレジスタ227、第2のフローレジスタ228、集束コイル221及び222、揺動コイル223、及び矢印271で示されるように中間室を真空排気する排気系を更に具備する。図3においては、2段排気系となっているが、これは真空蒸着室との差圧を確保するためである。一般的にピアス式電子銃の電子放出源には間接加熱式のタングステン製カソードを使用する。カソード表面からの単位面積あたりの熱電子放出量は、リチャードソン-ダッシュマンの式で示されるように温度により決まる。大きなビーム電流値を得るためには大きな直径のカソードが必要になるので、アノードの孔の直径及びフローレジスタの孔の直径は大きくなる。このため、コンダクタンスが大きくなり、真空蒸着室との差圧を確保するために2段排気系が必要になる。
 また、上述の実施形態において、電子ビーム集束機構150に第2の揺動コイル54を設けたが、電子銃20、電子ビーム集束機構150及びビーム照射点の位置関係により省略してもよい。また、集束コイル52と集束コイル53との間に第2の揺動コイル54を配置してもよい。
 上述の実施形態において、電子ビーム集束機構150の集束コイルを2段としたが、これに限定されるものではなく、電子ビームの輸送距離、電子ビーム40のパワー密度及び真空蒸着室50雰囲気により、1段にしてもよく、また3段以上としてもよい。
 蒸着材料31としては、Al、Cu、Moなどの金属や、MgOなどの金属酸化物が適用可能である。特に、上述したように、金属膜の成膜では高真空下で電子ビームを輸送するために、電子ビームの発散の問題が著しいため、大面積の基板上に電極を形成するために、Al、Cu、Moなどの金属膜を蒸着する際、本実施形態の蒸着装置1に示すような電子ビーム集束機構150を使用することは特に有効である。
 [比較例に係る蒸着装置]
 ここで、比較例として、電子ビーム集束機構150を具備しない従来の蒸着装置について説明する。
 図4は、従来の蒸着装置における電子銃の投入パワーを12.8kWとした場合の、真空蒸着室圧力と酸化マグネシウムの成膜レートとの関係を示す図である。図5は、加速電圧30kVのピアス式電子銃を使用し、ビーム電流400mAの電子ビームを、カソード表面から750mmの距離に設置したW製ターゲット表面へ照射したときの、プロセス室圧力と電子ビーム直径との関係を示す図である。
 図4に示すように、1.0×10-2Pa前後の圧力領域では、ピアス式電子銃から発射された電子は、真空蒸着室の残留気体と衝突し、衝突により発生した正イオンが電子ビームを中和し、電子の負電荷同士の反発を中和し、電子ビームは集束状態を維持する。3×10-3Pa以下の圧力では、真空蒸着室の残留気体の量が少なく、負電荷同士の反発により電子が発散し、パワー密度が低下し成膜レートは低くなる。一方、3×10-2Pa以上の圧力では、真空蒸着室の残留気体の量が多いため、電子はこの残留気体との衝突による損失で蒸発源に到達する電子電流が減少し、成膜レートは低くなる。
 図5に示すように、プロセス圧力が1.0×10-2Paより低くなると、残留気体による負電荷同士の反発に対する中和作用の効果が減少し、電子ビームが発散していることが確認できる。
 図6に、加速電圧30kW、ビーム電流を1A及び2Aとしたときの中和作用の効果が全くない場合のビームの拡がり状態をシミュレーションした結果を示す。ビーム電流1Aのときカソード表面から750mmの距離ではビーム直径は約120mmになる。これらから、加速電圧30kVの電子銃ではプロセス圧力が約5×10-3Pa~5×10-2Paの領域では、電子銃から発射された電子は、図7(a)に示すように集束した状態でターゲットに照射され、1×10-3Paより低い圧力領域では電子は図7(b)に示すように発散し、パワー密度が低下し蒸発レートは大幅に低下する。
 このように、従来の蒸着装置においては、真空蒸着室の圧力、電子ビームの電流値(電子の密度)及び雰囲気のインピーダンス(残留気体の種類)等によって電子ビームの集束状態が変化し、成膜レートが大幅に変動する。このため、安定した成膜を行うことが困難である。
 [本実施形態における蒸着装置の評価]
 次に、上述した本発明の一実施形態における、電子ビーム集束機構150を備えた蒸着装置1について説明する。
 上述したように、蒸着装置1では、電子銃20の第1の集束コイル28、電子ビーム集束機構150の第2の集束コイル52及び第3の集束コイル53は、カソード25の表面から、それぞれ100mm、300mm、500mm離れた位置に設置されている。図8は、第1の集束コイル28に2.5A,第2の集束コイル52に2.0Aの電流を流した場合の磁束密度分布である。更に、第3の集束コイル53に2.0Aの電流を流した場合、図8に示す磁束密度分布に、更にカソードからの距離500mmの位置に約230ガウスのピークが現れた磁束密度分布を持つ集束磁場を発生させることができる。
 図9は、上述に示す蒸着装置1の構成において、真空蒸着室50内の圧力を1.5×10-5Paとし、第1の集束コイル28に2.5Aの電流を流し、第3の集束コイル53には電流を流さず、第2の集束コイル52に流す電流値を変化させたときの電子ビームの状態をシミュレーションした結果である。図10は、同じ条件下での、第3の集束コイル53に対応して配置された熱電対57による温度測定結果を示す。図9において、縦軸の半径rとは、電子ビームの進行方向と垂直な平面における円形状の電子ビームの半径rである。
 図10に示すように、第2の集束コイル52に流す電流値が2.5Aのときに、温度は最小値を示した。
 図11は、上述に示す蒸着装置1の構成において、真空蒸着室50内の圧力を1.5×10-5Paとし、第1の集束コイル28に2.5Aの電流を流し、第2の集束コイル52に2.0Aの電流を流し、第3の集束コイル53に流す電流値を変化させたときの電子ビームの状態をシミュレーションした結果である。図12は、同じ条件下での、熱電対59による温度測定結果を示す。
 図11に示すように、電子銃20のカソード25から750mmの位置に蒸発材料31を配置する場合、蒸発材料31上で最も電子ビームが絞れた時の第3の集束コイル53に流す電流値は2.0Aであった。
 また、図10及び図12に示すように、電子ビーム40の拡がり状態は、熱電対による温度で把握できることが確認された。すなわち、電子ビーム40の直径が大きいと、熱電対で測定される温度が高くなる。また、熱電対による温度測定により、Cu製のビーム輸送管55を損傷させるような異常温度を検出できるため、Cu製のビーム輸送管に孔があくのを防止するように制御することができる。
 以上のシミュレーション結果から、第1の集束コイル28に流す電流を2.5A、第2の集束コイル52に流す電流を2.0A、第3の集束コイル53に流す電流を2.0Aとし、この場合における電子ビームの状態を図13に示す。
 図13に示すように、電子ビーム40が発散(rが増加)する状態部分に対応して集束コイルを配置することにより電子ビーム40は集束される。
 上述した蒸着装置1において、第1の集束コイル28、第2の集束コイル52及び第3の集束コイル53を、カソード25から、それぞれ100mm、300mm、500mm離れた位置に設置し、カソード25から蒸発材料31までの距離を750mmとし、蒸発材料としてMoを用い、Mo膜を成膜した。図14に、投入パワーとスタティックレートとの関係を示す。スタティックレートは、蒸発材料31から650mmの真上に設置したCRTM(水晶振動子)で測定した。
 まず、従来の蒸着装置と同様に電子ビーム集束機構150がない状態を想定して、電子ビーム集束機構150の第2の集束コイル52及び第3の集束コイル53に電流を流さずに真空蒸着室50の圧力を1.0×10-2Paに設定して成膜した。1.0×10-2Paでは正イオンによる中和作用により電子ビームは集束するため、投入パワー10.3kWで65.8オングストローム/sec、14kWで137.9オングストローム/secのスタティックレートになった。
 次に、真空蒸着室50の圧力を1.5×10-5Paとし、電子ビーム集束機構150の第2の集束コイル52及び第3の集束コイル53に電流を流さずに、蒸発材料31に電子ビーム40を照射した。正イオンによる中和作用が少ないため、24kWを投入してもMoはほとんど蒸発しなかった。
 そこで、真空蒸着室50内を圧力1.5×10-5Paという高真空雰囲気とし、電子ビーム集束機構150の第2の集束コイル52に2.0A、第3の集束コイル53に2.0Aの電流を流し、かつ、電子ビームの集束状態を熱電対でモニタしながら成膜した。その結果、投入パワー10kWで71オングストローム/sec、15kWで157.9オングストローム/secのスタティックレートという、好ましい成膜レートが得られた。すなわち、高真空雰囲気下であっても、電子ビーム集束機構150を設け、該機構150で電子ビームの集束を行うことにより、電子ビーム集束機構150がない状態であって真空蒸着室50内の圧力が1.0×10-2Paの時とほぼ同等の成膜レートを達成することができた。
 また、蒸発材料31上の電子ビーム40の直径が約20mmとなっていることを目視で確認でき、充分集束していることが確認された。
 更に、投入パワー15kWで電子ビームの集束状態を熱電対でモニタし、且つ熱電対で測定した温度が、設定した範囲になるように第2の集束コイル52、第3の集束コイル53の電流値を調整しながら220時間の成膜を行った。その結果、図15に示すように、長時間の連続運転において安定した成膜レートが得られた。
 [変形例]
 以上、本発明の実施形態について説明したが、勿論、本発明はこれに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。
 図16は、本発明における蒸着装置における電子銃20、電子ビーム集束機構150、偏向コイル80及び蒸発材料31との位置関係を示す概略断面図である。図16(a)は、上述した図1及び図2に示す一実施形態における蒸着装置1に係る概略断面図であり、図16(b)~(e)は変形例である。
 図1及び図2においては図示を省略したが、図16(a)に示すように、上述の実施形態における蒸着装置1では、偏向コイル80を蒸発材料31の近傍に配置している。偏向コイル80により、電子銃20から出射し、電子ビーム集束機構150を通過した電子ビームは、偏向コイル80により偏向され、蒸発材料31に照射される。なお、偏向コイル80の他に、永久磁石を用いることもできる。
 図16(b)は変形例1を示す。変形例1では、偏向コイル80に加え、電子ビーム集束機構150´に設置した第2の揺動コイル54も使用して電子ビームを偏向させている。正イオンによる中和作用が多少見込める雰囲気で使用できる。
 図16(c)は変形例2を示す。変形例2では、変形例1の構成に加え、電子銃20´に設置した第1の揺動コイル29も偏向に使用した。電子ビーム集束機構150´内部への着膜が課題となるが、電子ビーム形状の制御が容易になるため、蒸発量の少ないプロセスや連続運転時間が短いプロセスに使用できる。
 図16(d)は変形例3を示す。上述の実施形態では、電子銃20(20´)は、長手方向が水平となるように配置されている。これに対し、変形例3では、電子銃20´及び電子ビーム集束機構150´を蒸発材料31に向けて斜めに傾けて設置している。電子ビーム形状の制御が容易になるため、蒸発量の少ないプロセスや連続運転時間が短いプロセスに使用できる。
 図16(e)は変形例4を示す。変形例4では、電子ビーム集束機構150´に設置した第2の揺動コイル54と、電子銃20´に設置した第1の揺動コイル29とを偏向に使用し、偏向コイル80を使用していない。偏向コイル80を使用しないため、電子ビーム直径がかなり絞れ、蒸発材料31でのビーム制御性に優れる。また、強磁性体の成膜プロセスに適用できる。
 また、以上の実施形態では、第2の集束コイル52、第3の集束コイル53の設置位置を上述したような距離に設定したが、これらの条件はあくまでも一例であり、電子ビームの出力や所望とするビーム径、蒸発材料31の設置場所等に応じて、適宜変更可能である。図1ではインライン式蒸着装置を使用して本発明に係る実施形態を説明したが、基板を静止させて成膜する蒸着装置、基板を回転して成膜する蒸着装置に本発明を適用してもよい。また、インライン式に限らず、ロードロック式蒸着装置やバッチ式蒸着装置に本発明を適用してもよい。
 さらに、以上の実施形態では、真空処理装置として電子ビーム蒸着装置を例に挙げて説明したが、これに限られず、電子ビームを用いた各種処理装置、例えば、表面処理装置、真空熱処理装置、真空溶解炉、真空精製炉などにも本発明は適用可能である。
 1…蒸着装置
 20…電子銃
 50…真空蒸着室
 28…第1の集束コイル
 29…第1の揺動コイル
 54…第2の揺動コイル
 31…蒸発材料
 40…電子ビーム
 52…第2の集束コイル
 53…第3の集束コイル
 56~59…熱電対
 61…制御部
 150…電子ビーム集束機構

Claims (9)

  1.  処理対象物が設置され、真空雰囲気を維持可能な処理室と、
     前記処理室に隣接して設置され、前記処理対象物を加熱する電子ビームを出射する電子銃と、
     前記処理室内に設けられ、前記電子銃から出射した前記電子ビームを集束する電子ビーム集束機構と
     を具備する真空処理装置。
  2.  請求項1に記載の真空処理装置であって、
     前記電子ビーム集束機構は、少なくとも1つの集束コイルを有する
     真空処理装置。
  3.  請求項2に記載の真空処理装置であって、
     前記電子ビーム集束機構は、
     前記電子ビームの通過点における温度を測定する少なくとも1つの熱電対と、
     前記熱電対による測定結果を基に前記集束コイルに供給する電流値を制御する制御部と、
     を更に具備する真空処理装置。
  4.  請求項3に記載の真空処理装置であって、
     前記電子ビーム集束機構は、複数の集束コイルを有し、
     前記熱電対は、前記複数の集束コイルの各々に対応して配置された複数の熱電対を含む
     真空処理装置。
  5.  請求項2に記載の真空処理装置であって、
     前記電子ビーム集束機構は、
     前記電子ビームの一通過点における温度を測定する熱電対と、
     前記熱電対による測定結果を基に前記電子ビーム集束機構内の圧力を制御する制御部と、
     を更に有する真空処理装置。
  6.  請求項1に記載の真空処理装置であって、
     前記電子銃はピアス式電子銃である
     真空処理装置。
  7.  請求項1に記載の真空処理装置であって、
     前記電子銃は第1の揺動コイルを有し、
     前記電子ビーム集束機構は第2の揺動コイルを有し、
     前記電子ビームは、前記第1の揺動コイル及び前記第2の揺動コイルによって偏向され前記処理対象物に照射される
     真空処理装置。
  8.  請求項1から請求項7のいずれか一項に記載の真空処理装置であって、
     前記処理対象物は蒸発材料であり、
     前記電子銃は、前記電子ビームにより前記蒸発材料を加熱する加熱源である
     真空処理装置。
  9.  請求項8に記載の真空処理装置であって、
     前記蒸発材料は、金属または金属酸化物である
     真空処理装置。
PCT/JP2011/000846 2010-02-22 2011-02-16 真空処理装置 WO2011102122A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180010394.3A CN102762762B (zh) 2010-02-22 2011-02-16 真空处理装置
EP11744413.3A EP2540859B1 (en) 2010-02-22 2011-02-16 Electron beam vacuum processing device
JP2012500506A JP5616426B2 (ja) 2010-02-22 2011-02-16 真空処理装置
KR1020127021285A KR101371940B1 (ko) 2010-02-22 2011-02-16 진공 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-035669 2010-02-22
JP2010035669 2010-02-22

Publications (1)

Publication Number Publication Date
WO2011102122A1 true WO2011102122A1 (ja) 2011-08-25

Family

ID=44482727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000846 WO2011102122A1 (ja) 2010-02-22 2011-02-16 真空処理装置

Country Status (6)

Country Link
EP (1) EP2540859B1 (ja)
JP (1) JP5616426B2 (ja)
KR (1) KR101371940B1 (ja)
CN (1) CN102762762B (ja)
TW (1) TWI498934B (ja)
WO (1) WO2011102122A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112894A (ja) * 2011-12-01 2013-06-10 Ulvac Japan Ltd 真空蒸着装置、電子銃及び真空蒸着方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104233200B (zh) * 2013-06-19 2016-07-06 嘉兴市华正光电科技有限公司 消偏振分光膜的制备方法
US9064669B2 (en) 2013-07-15 2015-06-23 National Defense University Field emission cathode and field emission light using the same
CN104611672A (zh) * 2014-11-28 2015-05-13 中国电子科技集团公司第四十八研究所 一种聚焦电子束蒸发源及蒸发镀膜装置
EP3341504A1 (en) * 2015-08-26 2018-07-04 Energy Sciences Inc. Electron beam apparatus with adjustable air gap
KR102005555B1 (ko) * 2017-12-20 2019-07-30 한국세라믹기술원 복수의 타겟 구조체를 이용한 진공증착장치
US10340114B1 (en) * 2018-01-19 2019-07-02 Kla-Tencor Corporation Method of eliminating thermally induced beam drift in an electron beam separator
DE102018108726B4 (de) * 2018-04-12 2019-11-07 VON ARDENNE Asset GmbH & Co. KG Elektronenstrahlverdampfer und Verfahren zum Verdampfen eines Verdampfungsguts mittels eines Elektronenstrahls
KR102180979B1 (ko) * 2019-08-19 2020-11-19 참엔지니어링(주) 처리 장치 및 방법
JPWO2021074952A1 (ja) * 2019-10-15 2021-11-04 学校法人東海大学 真空蒸着方法及び真空蒸着装置
CN110863179A (zh) * 2019-11-27 2020-03-06 中国航空制造技术研究院 一种大面积均匀沉积热障涂层的电子束物理气相沉积方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125868A (ja) * 1988-11-01 1990-05-14 Mitsubishi Electric Corp 電子ビーム蒸着装置
JPH07258832A (ja) * 1994-03-25 1995-10-09 Toppan Printing Co Ltd 真空蒸着装置用電子銃およびそれを備えた真空蒸着装置
JP2004315971A (ja) 2003-04-03 2004-11-11 Nec Plasma Display Corp 蒸着システム、プラズマディスプレイパネルの製造方法、及び、プラズマ表示装置の製造方法
JP2006045581A (ja) * 2004-07-30 2006-02-16 Nec Kansai Ltd 真空蒸着装置およびその装置を用いた真空蒸着方法
JP2009275244A (ja) * 2008-05-13 2009-11-26 Ulvac Japan Ltd 金属酸化膜の蒸着方法及びプラズマディスプレイパネルの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1539035A1 (de) * 1965-07-05 1969-09-18 VEB Lokomotivbau Elektrotechnische Werke,Hans Beimler, Hennigsdorf, Oranienburg Verfahren und Vorrichtung zur Regelung der Fokussierung eines Elektronenstrahles
JP2854660B2 (ja) * 1990-03-20 1999-02-03 富士通株式会社 電子ビーム露光装置
JP4888793B2 (ja) * 2006-10-23 2012-02-29 株式会社アルバック ピアス式電子銃の電子ビーム集束の制御方法及び制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125868A (ja) * 1988-11-01 1990-05-14 Mitsubishi Electric Corp 電子ビーム蒸着装置
JPH07258832A (ja) * 1994-03-25 1995-10-09 Toppan Printing Co Ltd 真空蒸着装置用電子銃およびそれを備えた真空蒸着装置
JP2004315971A (ja) 2003-04-03 2004-11-11 Nec Plasma Display Corp 蒸着システム、プラズマディスプレイパネルの製造方法、及び、プラズマ表示装置の製造方法
JP2006045581A (ja) * 2004-07-30 2006-02-16 Nec Kansai Ltd 真空蒸着装置およびその装置を用いた真空蒸着方法
JP2009275244A (ja) * 2008-05-13 2009-11-26 Ulvac Japan Ltd 金属酸化膜の蒸着方法及びプラズマディスプレイパネルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Shinkuu Handbook", 30 November 1992, OHMSHA, article "Heating by electron beam and 4.5.2 metal melting by electron beam", pages: 141

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112894A (ja) * 2011-12-01 2013-06-10 Ulvac Japan Ltd 真空蒸着装置、電子銃及び真空蒸着方法

Also Published As

Publication number Publication date
TW201133533A (en) 2011-10-01
TWI498934B (zh) 2015-09-01
CN102762762A (zh) 2012-10-31
KR101371940B1 (ko) 2014-03-07
JPWO2011102122A1 (ja) 2013-06-17
EP2540859A4 (en) 2014-06-18
JP5616426B2 (ja) 2014-10-29
EP2540859A1 (en) 2013-01-02
KR20120102163A (ko) 2012-09-17
CN102762762B (zh) 2014-06-25
EP2540859B1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP5616426B2 (ja) 真空処理装置
KR101112692B1 (ko) 피어스식 전자총의 전자빔 집속 제어방법 및 제어장치
JP5808417B2 (ja) 電子ビームを形成するための装置
KR101064567B1 (ko) 빔폭 제어 가능한 전자빔 제공 장치
JP4856571B2 (ja) プラズマ発生装置
JP2017031501A (ja) 遠隔アーク放電プラズマ支援プロセス
JP2019525386A (ja) イオン化ツールを有するx線源
RU2016117814A (ru) Процессы с использованием удаленной плазмы дугового разряда
JP2011503801A (ja) イオンビーム注入装置用のプラズマ電子フラッドシステム
JPH04235276A (ja) 基板をコーティングするための装置
JP2017043799A (ja) ロールトゥロール方式の真空蒸着装置および真空蒸着方法
WO2008035587A1 (fr) Système de traitement sous vide
JP4307304B2 (ja) ピアス式電子銃、これを備えた真空蒸着装置およびピアス式電子銃の異常放電防止方法
Iqbal et al. Optimal welding parameters with 10 keV point source electron gun
Masood et al. Emission characteristics of the thermionic electron beam sources developed at EBSDL
JP4065725B2 (ja) ピアス式電子銃およびこれを備える真空蒸着装置
JP4440304B2 (ja) 固体イオン源
KR101989847B1 (ko) 플라즈마를 이용한 라인 형태의 전자빔 방출 장치
JP4997596B2 (ja) イオンプレーティグ方法
Chayahara et al. Metal plasma source for PBII using arc-like discharge with hot cathode
JP2023132162A (ja) イオン源
Denbnovetsky et al. High voltage glow discharge electron sources and possibilities of its technological application
JP2019139990A (ja) イオン源及びイオン注入装置
JP2021505776A (ja) 金属およびセラミック材料の付着のための付加製造のためのシステムおよび方法
Tiron et al. Control of the thermionic vacuum arc plasma

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010394.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127021285

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012500506

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011744413

Country of ref document: EP