JP4440304B2 - 固体イオン源 - Google Patents

固体イオン源 Download PDF

Info

Publication number
JP4440304B2
JP4440304B2 JP2007514648A JP2007514648A JP4440304B2 JP 4440304 B2 JP4440304 B2 JP 4440304B2 JP 2007514648 A JP2007514648 A JP 2007514648A JP 2007514648 A JP2007514648 A JP 2007514648A JP 4440304 B2 JP4440304 B2 JP 4440304B2
Authority
JP
Japan
Prior art keywords
ion
cathode
source
plasma
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007514648A
Other languages
English (en)
Other versions
JPWO2006115172A1 (ja
Inventor
昌伸 布垣
Original Assignee
昌伸 布垣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昌伸 布垣 filed Critical 昌伸 布垣
Publication of JPWO2006115172A1 publication Critical patent/JPWO2006115172A1/ja
Application granted granted Critical
Publication of JP4440304B2 publication Critical patent/JP4440304B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns

Description

本発明は、金属その他の常温で固体の物質を蒸発させ、それを電離し、イオンビームを生成する固体イオン源に関する。
従来から、イオン注入装置、イオンビームエッチング装置、薄膜製造装置等においては、イオン源が使用される。このイオン源のうち、特に金属その他の常温で固体の物質を蒸発させ、それを電離し、イオンビームを生成する装置を通常「金属イオン源」と呼称している。従来の金属イオン源の代表例として、蒸発源に抵抗加熱式坩堝を用い、ソースプラズマ生成にアーク放電を用いたものが知られている。
特開平4−202767号公報 特開平4−306540号公報 特公平8−9777号公報
上記のイオン源では、以下の点が問題となる。
(1)アーク放電に必要なガス圧、例えば0.8×10−1Paを得るため、融点が660℃のアルミニュウムでは坩堝の温度を約1600℃に昇温する必要がある。従って、これよりも融点が高い原料では、坩堝の耐久性を考慮すると、必要なガス圧を得ることが難しくなる。
(2)放電ガス圧が高いため、イオン引き出し穴を経てビームドリフト部へ漏洩した原料ガスがイオン被注入物の表面で固化して被覆膜となるおそれがある。この被覆膜が、ビームイオンのターゲット表面層への到達を阻害する。
そこで、本発明は、高融点の原料でもイオンビームを生成でき、さらにイオン被注入物の表面での原料ガスの固化による被膜形成を防止できる固体イオン源を提供することを目的とする。
上記目的を達成するため、本発明の固体イオン源は、内部が排気された真空容器と、真空容器内に設けられ、固体原料を装荷した電子ビーム蒸発源を有する原料蒸発室と、真空容器内に設けられ、熱陰極、対陰極、および陽極からなる3電極を備え、これら3電極が直流電源に接続され、原料蒸発室で発生させた原料ガスを導入し、3電極間で高周波放電を起こしてプラズマを生成するプラズマ室と、真空容器内に設けられたイオン引き出し電極部とを具備し、原料蒸発室とプラズマ室とを、蒸気導入口を有する隔壁で区画すると共に、原料蒸発室に排気口を設け、排気口から排気することで原料蒸発室のガス圧をプラズマ室のガス圧よりも低くした固体イオン源。
原料蒸発室内に配置される電子ビーム(EB)蒸発源は、電磁界などで容易に位置制御、走査制御を行なう事ができるため、加熱材料面を最適な電子ビーム電流密度での制御ができる、電子ビームの電力密度を大きくできるのでタングステン、モリブデン、タンタル等の高融点金属からSiO、ALO等の誘電体まであらゆる材料を蒸発させることができる、1台の蒸発源を用いて複数の固体原料からのイオン種を含む混合イオンビームを生成できる、複数の固体原料の切り換えが簡単かつ迅速に行える、等の利点を有する。
特に偏向型電子ビーム蒸発源は、電子銃部での放電を防止するため、高真空下(例えば4×10−1Pa以下、望ましくは7×10−2Pa以下)でなければ作動させることができない。一方、アーク放電は、高真空下では着火、または、安定して放電を持続することができず、通常は10Pa程度の圧力下で用いられる。従って、単に従来装置の抵抗過熱式坩堝を電子ビーム蒸発源に置き換えただけでは、アーク放電は発生せず、従ってイオンビームは得られない。
この点に鑑み、本発明では、熱陰極、対陰極、および陽極からなる3電極を使用し、3電極間で高周波放電を生じさせるようにしている。この電極系は、各電極を同軸に配置すると共に、熱陰極と対陰極との間に陽極を配置した構成を有する。この電極間では、熱電子が3電極間を高速でタンデム運動を行い、高周波放電を起こすことにより、スワムと呼ばれるプラズマが生成される。このプラズマは、アーク放電によるプラズマと異なり、電子ビーム蒸発源の作動に必要となる10−1Paを下回る高真空下でも安定して発生し持続することができる。
通常のPIG放電は、熱陰極と対陰極を同電位にして使用するが、本発明のように高真空下に配置した場合、スワムが熱陰極と対陰極との間の空間に閉じ込められ、イオン引き出し電極部に到達するイオン量が減る。その対策として、本発明では、対陰極に熱陰極よりも高い正電位を印加(例えば熱陰極よりも数十ボルト程度高くする)し、陽極に対陰極よりも高い正電位を印加(例えば対陰極よりも例えば数百ボルト程度高くする)している。この電位配位であれば、スワムが双極性拡散によりイオン引き出し電極部側に膨張して、イオン引き出し電極部の電界領域に達する。(以下、この放電形態を、「変形PIG放電」と呼ぶ。)これによりイオン加速電極にイオン加速電圧が印加されると、イオンがソースプラズマから引き出され、イオンビームが形成される。この変形PIG放電では、アーク放電の約1/100程度の低ガス圧(10−2Pa程度)でも十分に着火可能であるので、電子ビーム蒸発源の作動に必要とされる高真空下でも安定な放電を持続することができる。
プラズマ室内に、上記3電極と、RF電極またはマイクロウェーブ入力部の何れか一方とを併設することにより、二種類の放電を重畳させると、ソースプラズマの電離度が上がるので、イオンビームの電流密度を増加させることが可能となる。
一般にイオンビームの電流密度は、ソースプラズマのイオン密度に比例する。従って、電離度一定であればビーム電流を増すためにプラズマ室内のガス圧は高いことが望ましい。その一方で、ガス圧が高すぎると、既述のとおり電子ビーム蒸発源の電子銃で放電が生じるので、電子ビーム蒸発源周辺は、ガス圧をできるだけ低くすることが望まれる。
この要請に応えるべく、本発明では、原料蒸発室とプラズマ室とを、蒸気導入口を有する隔壁で区画すると共に、原料蒸発室に排気口を設けることにした。排気口から排気することにより、プラズマ室のガス圧を高くする一方で、原料蒸発室を低ガス圧に保持することが可能となる。原料蒸発室で発生した蒸発ガスは、蒸気導入口を通ってプラズマ室に移動する。原料蒸発室とプラズマ室は、蒸気導入口を介して連通しているが、蒸気導入口の排気抵抗を高めることで、原料蒸発室をプラズマ生成室の1/10程度のガス圧に保持することが可能となる。
また、プラズマ室内に、対陰極のイオン引き出し電極部側で対陰極と対向し、かつ対陰極よりも高い(例えば数10〜200V程度高い)正電位を有する第2陽極を設ける放電形式によっても同様の効果が得られる。この場合、変形PIG放電が第一段階の放電となり、この放電で生成されたプラズマが対陰極のポテンシャル障壁を超えて拡散したものをシードプラズマとして用い、第2陽極の正電位を上げると対陰極との間で第二段階の放電であるアーク放電が誘発される。第一段階の放電で電離されなかった励起状態の中性ガス原子も容易に電離され、放電電流を急増させる。定常状態ではこれらの放電現象が重畳して行われるため、電離度の高いソースプラズマが形成可能となる。第2陽極は、熱陰極の原料蒸発室側で熱陰極と対向させてもよい。
また、プラズマ室の外周に磁場を形成すれば、半径方向でプラズマの閉じ込めを行なうことができる。また、イオンと電子がラーマー運動をするようになり衝突電離の頻度が上がる結果、プラズマ中のイオン密度が上がりイオンビームの密度を大きくすることになる。この種の磁場としては、空芯コイルで形成した磁場の他、永久磁石を用いたマルチカスプ磁場やミラー磁場を採用することができる。
イオン引き出し電極部を経たイオンビームには、未電離あるいは再結合した中性原料ガスが混入している。この中性原料ガスがイオンビームの被注入物の表面に漂着して付着すると、固化して薄膜を形成する。エネルギーが数10keVのイオンは、薄膜の厚さがサブミクロンでも膜内で停止し、被注入物の表面に達しない。そこで、本発明では、イオン引き出し電極部の後方に、中性ガスを吸着するガス吸着部材を配した。このガス吸着部材としては、例えば液体窒素などの冷媒で冷却した金属材料を使用することができる。
蒸気圧の低いタングステンやタンタル等のビーム原料を放電によりプラズマにするため、これら高融点原料を低Z(原子番号)の元素との化合物にしたり、あるいは低Zの放電支援ガスを混入したりして、ガス圧を上げて放電を起こりやすくする手法がある。この手法を本発明のイオン源に適用した場合、イオンビームに低Zの不純物元素が混入する。これを解消するため、本発明では、イオン引き出し電極部の後方に、イオン偏向磁石と低Zイオン消滅部材を設けた。イオン偏向磁石が形成するビームに直交する磁力線により、低Zイオンはタングステン等などの高Zイオンに比べて質量の平行根に逆比例してラーマー半径が小さくなるので結果として磁力線とビーム軸に直交する方向に向かってビーム軸から外れていく。そこで、低Zイオン消滅部材を、例えば液体窒素などの冷媒で冷却した金属材料で形成しておけば、不純物である低Zイオンを低Zイオン消滅部材に吸着させ、高融点原料のイオンビームは少々偏向しながらもドリフトさせることができる。ビーム偏向の補正はイオンビームドリフト部にベローを入れる、又は、被イオン注入物を可動とするなどにより実施できる。
なお、変形PIG放電電極系の熱陰極は棒状、円筒状あるいは円錐状に形成することができる。この場合、熱陰極の先端部は陽極の内側に挿入するのがよい。変形PIG放電電極系の各電極は、タングステン、タンタル、あるいはレニュウム製の線条あるいは薄板で形成し、それらを通電過熱により昇温させるのが望ましい。
本発明により高融点の固体原料のイオンビームも生成可能となると、常温で固体もしくは気体を問わず、あらゆる元素のイオンビームを形成することが可能となる。また、化合物原料や放電支援ガスを用いる場合を除くと、イオン種偏向磁石を用いる必要がないため、大面積イオンビームの形成やイオン種混合イオンビームの形成も可能なイオン源を構成することができる。
また、未電離の原料ガスが被イオン注入物に付着して被膜を生成する事態を防止できるので、イオン注入の物理的化学的応用の途が格段に広がった。あらゆる元素のイオン種を任意の含有比で含む高密度大面積イオンビームの有用性は、イオン注入の非熱平衡処理の特色と相俟って、工学的方法論や分子動力学、ナノテクの進展につれ益々広い分野で認識されはじめている。具体的な課題としては、次世代半導体不揮発性メモリー開発、スピトロニクスの研究、バイオ絡みの有機無機重合処理、触媒製造などの化学合成、非熱平衡材料表面ドライプロセス、マイクロマシンなどナノテクでの新規な活用が予想される。
図1に、本発明にかかる固体イオン源の概略構成を示す。
図示のように、この固体イオン源は、真空容器8の内部に、原料蒸発室3、プラズマ室4、イオン引き出し電極部5、およびイオンビームドリフト部6を各々配置し、かつ各々順に上方へと重ねた構成を有する。原料蒸発室3以外は横置きとすることもできる。真空容器8全体は、主排気口21から排気することで、装置稼動前に概ね10−4Pa台にまで排気する。また、真空容器8は接地される。
原料蒸発室3には電子ビーム蒸発源1が配置される。図示例の電子ビーム蒸発源1は、偏向型を例示しており、電子ビームをローレンツ力でハース(原料皿)に載せた固体原料2に誘導し、蒸発させる。電子ビーム発生部とハース部とを独立して排気できる大型の電子ビーム蒸発源を使用することもでき、その場合、原料蒸発室3に電子ビーム発生室を付帯させる。
電子ビーム蒸発源1は、電子銃での放電を防止するため、低ガス圧下でなければ安定して作動させることができない。例えば、加速電圧10kV、最大電力注入量が3kWの蒸発源では、雰囲気ガス圧を3×10−1Pa以下にする必要がある。この高真空度を実現するため、原料蒸発室3には、主排気口21とは別に、原料蒸発室排気口22が設けられ、かつ原料蒸発室3とプラズマ室4とは、蒸気導入口11aを有する隔壁11bで区画されている。稼動中に原料蒸発部排気口22から排気することで、原料蒸発室3の雰囲気ガス圧をプラズマ室4のガス圧よりも低くすることができる。なお、蒸気導入口11aは極力排気抵抗を高めた構造にするのが望ましい。また、蒸気導入口11aは、蒸発ガスの付着固化を防止するため、適当な加熱源に接続して昇温させておく方がよい。
電子ビーム蒸発源1は、ヒーター加熱式坩堝に比べ、あらゆる物質を蒸発できる、加熱時間が短い、ハースが水冷されるのでハース材料の蒸発ガスへの混入が少ない、複数回転式ハースや複数同時稼動形式のものがあり、複数種類の原料2の切り換えが迅速に行なえる、原料ガスの混合比を選択的に変えることが出来る、などの利点を有する。電子ビーム蒸発源1を固体原料2の蒸発に採用することにより、固体の高融点原料から気体の原料まで全ての元素のイオンビーム生成を行なうことができる。
電子ビーム蒸発源1で発生した原料ガスは、蒸気導入口11aを経てプラズマ室4に入る。プラズマ室4内には、変形PIG電極系7が配置される。この電極系7は、熱陰極7aと、熱陰極7aよりも例えば数十V高い正のバイアス電位を印加した対陰極7cと、両陰極7a、7c間に配置され、熱陰極7aよりも例えば数100V高い正電位を印加した陽極7bとからなり、これら3電極は同軸上に配置されている。各電極7a〜7cは真空容器8の外部の加熱用電源に接続されていて通電加熱が可能である。各電極7a〜7cは、高温に加熱したイオン反射板9で覆われている。プラズマ室4の外周の真空容器8の外側には、各電極7a〜7c間の電界に対して直交成分を持つ磁場を発生する空心コイル10a、10bが配置され、これら空心コイルが発生する磁界でプラズマ室4の内部に磁場が形成される。この磁場によりプラズマが半径方向に閉じ込められるので、イオン密度をより一層高めることができる。なお、図1では、プラズマ室4の外周に二つの空芯コイル10a、10bを配置した場合を例示しているが、この空芯コイルの何れか一方または双方は、必要なければ省略することもできる。
熱陰極7aを加熱して熱電子を発生させると、熱電子が3電極間を高速でタンデム運動して高周波放電が行われ、スワムと呼ばれるプラズマが発生する。特に対陰極7cの電位を熱陰極7aよりも数10V高くした電位配位(以下、「変形PIG電位」と呼ぶ)にすると、スワムが双極性拡散によりイオン引き出し電極部5の方向へ膨張する。この膨張により、静電電極系のイオン引き出し電極部5によってイオンがプラズマから引き出される。イオン引き出し電極5は、プラズマ電極12、イオン加速電極13およびイオン減速電極14からなる。イオン引き出し電極で加速されたイオンは、ビームとなってイオンビームドリフト部6に導入され、後述のガス吸着部材15および低Zイオン消滅部材17の近傍を通過して図示しない被イオン注入物に注入される。
この変形PIG電極は、アーク放電の約1/100程度の低ガス圧(10−2Pa程度)でも十分に着火可能であるので、電子ビーム蒸発源の作動に必要とされる高真空下でも活発な放電を行い、ソースプラズマを生成することができる。
図示例において、陽極7bおよび対陰極7cは何れも図2aに示すように、円筒形をなし、例えば陽極7bとして直径×長さ60mm×20mmのものが、対陰極7cとして45mm×10mmのものが使用される。熱陰極7aは、1mmφのタングステン線で円錐螺旋形に形成されている。陽極7bと熱陰極7aおよび対陰極7cとの間の電極隙間は、それぞれ15mmとする。熱陰極7a、陽極7b、および対陰極7cとしては、図2bに示すように、電気抵抗値を大きくする目的で円筒状で且つ軸方向に交互に変位させた形状、図2cに示すような螺旋円筒状に形成することもできる。熱陰極7aは、図2dに示すような丸棒状に形成することもできる。
この電極構成で原料ガスをプラズマ室4に2〜5×10−2Paの範囲のガス圧で導入し、熱陰極7aを2000℃程度に加熱したところ、これ以外の電極7b、7cを通電加熱せず、かつ空心コイル10aに通電しない状態でも容易に放電が開始された。もちろん熱陰極7a以外の電極7b、7cを通電加熱し、あるいは空心コイル10a、10bに通電して磁場を形成した状態で放電させれば、さらにイオン密度を上げることができる。なお、上記のガス圧は例示にすぎず、放電ガス圧は、ガスの種類、電極の幾何形状と寸法、各電極への印加電圧、磁場の強さなどにより変動する。
なお、原料ガスが常温で気体の元素の場合は、プラズマ室4に気体供給口18aを設け、この供給口18aから直接気体原料をプラズマ室4に供給して電離させることもできる。図1中の符号18bは、プラズマ室4のガス圧を測定するためのプラズマ室真空測定口である。
プラズマ室4でのイオン密度を増加させるには、ガス圧を上げる他、タンデム運動をする熱電子密度を増大させて電離率そのものを増加させてもよい。例えば、プラズマ室4の熱陰極7aを、タングステン、タンタル、チタン合金、或いは、トリエテッドタングステン、レニュウム、チタン合金などの材料を、0.1〜0.2mm厚さの薄板、又は、図2dに示したような直径2mm程度の丸棒などとし、真空容器の外部に備えた低電圧高電流電源、例えば、10V/300A、ACに接続して通電加熱すると、陽極7b電圧の増加とともにプラズマ室4のイオン密度は陽極(放電)電流の顕著且つ単純な増大として現れ、イオンビーム電流も収束性が損なわれることなく極めて効果的に単調増大することが判明した。陽極電圧を上げ過ぎるとイオン温度が上昇し、イオンビームの収束性が悪化する場合があった。
イオン密度の増加は、プラズマ室4の周囲を空心コイル10a、10bで発生した磁場で囲う他、プラズマ室4を、永久磁石を用いたマルチカスプ磁場、或いは、ミラー磁場で囲むことによっても行なうことができる。
なお、磁場の強さには最適値があり、これが強すぎるとプラズマの空間分布が不均一となり、イオンビームの収束性に影響を与える。上記の電極寸法の実施例では、電極中心部での磁場の強さの最適値は約100〜300Oeであった。イオンビームの収束性を損なわないようにしながら、ガス圧、イオン種、イオン加速電圧、外部磁場の強さ、放電電圧など、稼動条件に応じた調整を行なうことにより、ビーム電流の増大を図ることができる。
ところで固体原料2の蒸気圧によっては、プラズマ室4のガス圧を高く取れる場合がある。この場合、図1に示す変形PIG放電と低ガス圧アーク放電とを併用した2段階放電を行なうことにより、ソースプラズマの電離度を増加させることができる。図3は、その一例を示すもので、図1に示すイオン源と異なる点は、プラズマ室4内に、対陰極7cと対峙し、かつ対陰極7cよりも例えば数10〜200V程度高い正電位を有する第2陽極7dを設けた点にある。第2陽極7dの電位は陽極7bよりも低くする。
この構成においては、3電極7a〜7cによる変形PIG放電が第一段階の放電となる。この放電で生成されたプラズマが対陰極7cを超えてイオン引き出し領域に拡散すると、これをシードプラズマとして第2陽極7dと対陰極との間でアーク放電(第二段階の放電)を起こすことができる。これにより、電子ビーム蒸発源1の電子銃の内部で放電が発生しない程度の低ガス圧下でも電離度の非常に高い高密度のソースプラズマが形成できた。第2陽極7dは熱陰極7aの下方に設けても良い。
図4は、図3に示す電極構成において、第一段階放電と第二段階放電における放電電圧対放電電流特性を測定したものである。陽極7bの印加電圧のみを徐々に上げた時の同電極電圧即ち放電電圧を横軸に、同電極電流即ち放電電流を縦軸にとったものが図4のA曲線であり第一段階放電の電圧電流特性を示している。第一放電電流が飽和した状態で、第2陽極7dの電圧を徐々に上げると、第二段階放電が着火すると同時に同図の点線Bが示すように陽極7bの電圧が急降下し同電極電流即ち第二段階放電電流が流れはじめ、電圧とともにC曲線に示すように放電電流は急上昇する。このように放電電圧が低く高電離度のプラズマは収束性のよいイオンビームを得るためのソースプラズマとしての条件を充足するものであり、新規の放電形式が出来たことになる。
プラズマ電極12とイオン加速電極13との間隙には最適値がある。例えば、多孔式イオン引き出し電極の単位孔として、プラズマ電極12とイオン加速電極13に同軸状に各直径5.0mmと4.5mmのイオン引き出し孔をそれぞれ設け、イオン減速電極14のビーム通過孔を5mm、前2電極の間隙を3mm、イオン加速電極13とイオン減速電極14との間隙を2mm、イオン減速電圧を1.5kv一定にした場合、イオン引き出し電圧約6kVで5mAcm−2のイオンビームを形成することができた。引き出し電圧の増加とともにビームは収束性を増したが、25kVで過収束状態となった。また、最大加速電圧約35kVでイオン引き出し電極間の放電が起こった。
この際、イオン加速電極13とプラズマ電極12の間隙はイオンビームの収束性及び収束距離に強い影響を及ぼすことが明らかになった。そこで、本発明では、イオン加速電極13とプラズマ電極12との間に、両電極間の間隙調整を行なう調整機構20を設けた。この調整機構20は、ベロー20a等で電極間の空間を密閉しかつ伸縮可能に構成すると共に、シリンダやボールねじ等の電極間隙調整器20bで電極間の間隙を外部から調整可能としたものである。
以上の説明では、プラズマ室4の3電極7a、7b、7cの断面幾何形状を軸対称の円形としたが、各電極7a、7b、7cを、例えば短辺50mm程度、長辺1m程度の矩形状とし、その表面を軸方向に沿って配置しても、同様に電子のタンデム運動による放電を行なうことができる。この場合、それに対応してプラズマ室4を囲む磁場も大きな矩形とし、電子ビーム蒸発源1も3〜5台と増設し、さらに、イオン引き出し電極部5の各イオン引き出し口の寸法も対応する大きさにする。これにより、シート状イオンビームの形成が可能な大面積金属イオン源が構成される。真空容器を大容量の作動排気により排気する構成とすると、長尺の金属や高分子材料への連続イオン注入などの工業利用に供することが可能となる。
イオン引き出し電極部5のイオン引き出し口からイオンビームドリフト部6へ拡散した未電離、或いは再結合した中性原料ガス23は、イオンビームドリフト部6に配置したガス吸着部材15に吸着される。ガス吸着部材15は、液体窒素などの冷却媒体で冷却された例えば金属板で形成される。中性原料ガス23がガス吸着部材15に吸着されることにより、イオンビーム被注入物の表面に中性原料ガス23の被膜が形成されることはなく、イオンビームを確実にターゲット表面に注入することができる。
蒸気圧の低い原料をソースプラズマにする際、プラズマを発生させやすくするため、プラズマ室4に放電支援ガスを混入してガス圧を上げる場合がある。この場合、イオンビームにも支援ガスが混入することになる。そこで、放電支援ガスを水素やヘリウムなどの低原子番号元素に限定し、図1に示したように、イオンビームドリフト部6にイオン偏向磁石16とその下流に低Zイオン消滅部材17を設け、イオンビームに直交する磁場を発生させると低Z原料イオン24は高Zイオンよりも偏向の度合いが強いためビーム軸から容易に外れる。その低Zイオンを低Zイオン消滅部材17に吸着させ、固体原料のイオンビーム25は少々偏向しつつも被注入物に注入させることができる。なお、イオン偏向磁場の強さをゆっくりと変化させると、原料イオンの注入線量の均一化効果もある。
複数の固体原料を複数のハースで同時に蒸発させる型式の電子ビーム蒸発源、又は、複数の電子ビーム蒸発源を原料蒸発室3に併設し、電極構造を上記のように大きくすると、複数固体原料イオン種から成る大面積イオンビームが形成できる。
図5は、固体イオン源の他の構成例を示している。
この構成のイオン源では、プラズマ室4内に上記3電極7a〜7cに加えて、RF電極27が配置されている。真空容器8内に設置した電子ビーム蒸発源1により固体原料2を気化し、その原料ガスをRF電極27での高周波放電により電離してソースプラズマを生成し、イオン引き出し電極5によりイオンビームを引き出すようにしている。
特に図示例では、RF放電により生成したプラズマ領域内に、上記の変形PIG放電用電極系7が配置されている。すなわち、真空容器8内に設置した電子ビーム蒸発源1の直ぐ上部にRF出力コイル27と変形PIG放電電極系7の熟陰極7aを配置する。その上部に陽極7bを、更にその上部に対陰極7cを配置した構成である。各電極の幾何形状はイオンビームの断面形状に対応して定められ、円形、或いは矩形などにする。また、熱陰極をタングステンやタンタルなどの細線でソレノイド、或いは円錐状とし、その先端部を陽極7bの中心部に配置する。一方、変形PIG電極系7の外周に空心コイル10a、10bを配置する。その結果、RF放電や変形PIG放電中の電子がマグネトロン運動を行い、電難度を増大させる。また、変形PIG放電電極系7の上部空間に拡散したソースプラズマに対して多条式、或いは、多孔式のイオン引き出し電極部5を設け、ビームの大面積化を図る。電子ビーム蒸発源1を真空度10−3Pa程度で作動させるとイオン引き出し電圧を10〜25kVdc程度印加でき、イオン種弁別磁場なしで高純度の直流イオンビームが得られる。なお、図中の符号26はシャッターであり、符号19はのぞき窓である。
この構成においても、複数のハーネス内の固体を同時に蒸発させる型式の電子ビーム蒸発源を用いると、複数イオン種を含むイオンビーム源を形成することができる。また、室温で気体の元素のイオンビームを得るには、イオン源の外部よりイオン化原料ガスを放電部に直接微量導入すればよい。固体原料と気体原料の混合イオン種ビームを生成することもできる。上述のRF電極27に代えて、プラズマ室4のプラズマ領域内にMW(マイクロウェーブ)入力部を設置してもよい。このMW入力部は、導波管の他、アンテナで構成することもできる。また、変形PIG放電電極系7を省略し、RF電場、またはMW場のみの構成でもイオン源として利用できる。以上の構成により課題は解決できる。
ビーム断面積の拡大は、円形断面なら直径30cm程度のイオンビームが形成可能である。矩形断面の場合は、電子ビーム蒸発源1を複数個用い、変形PIG放電電極系の各電極7a〜7c、及び磁場コイルを矩形にすると1m超え幅のシ−ト状イオンビームも形成できる。
図5に示す構成においては、RF電極27に代えて、アーク放電電極を設置することもできる。因みに、RF放電、または、アーク放電はガス圧が100Paより高い領域で放電が容易となるが、電子ビーム発生部とハース部及びプラズマ室とを差動排気できる構造の直進型電子銃を用いた電子ビーム蒸発源1を使用すると、電子銃の放電を避けながらプラズマ室4の蒸発ガス圧を増加させることができる。
以上の構成から、各種材料表面にあらゆる元素のイオン注入を行うことができる。従って、多種多様の表面直接改質、各種被覆加工(例えばPVD、CVD、湿・乾メッキ、溶射等)、界面物性制御を目的とする前処理(例えば炭化、窒化、酸化等)等を通じて、材料表面と作用原子との親和性改善、接着性向上、界面の熱的・電気的・機械的諸物性改善、傾斜機能性付与、加工時間短縮等の効果を図ることが可能となる。
本発明にかかる固体イオン源の概略構成を示す断面図である。 電極の構成例を示す斜視図である。 電極の構成例を示す斜視図である。 電極の構成例を示す斜視図である。 電極の構成例を示す斜視図である。 本発明の他の構成例を示す断面図である。 プラズマ室における放電電圧Vと放電電流Iの測定結果を示す図である。 本発明にかかるイオン源の他の構成例を示す断面図である。
符号の説明
1 電子ビーム蒸発源
2 固体原料
3 原料蒸発室
4 プラズマ室
5 イオン引き出し電極部
6 イオンビームドリフト部
7 変形PIG電極系
7a 熱陰極
7b 陽極
7c 対陰極
7d 第2陽極
8 真空容器
9 イオン反射板
10a 空心コイル
10b 空心コイル
11a 蒸気導入口
11b 隔壁
12 プラズマ電極
13 イオン加速電極
14 イオン減速電極
15 ガス吸着部材
16 イオン偏向磁石
17 低Zイオン消滅部材
18a 気体供給口
18b 放電室真空測定口
19 覗き窓
20a ベロー、
20b 電極間隙調整器
21 主排気口
22 原料蒸発室排気口
23 拡散ガス粒子
24 放電維持低Zガスイオン
25 高速金属イオンビーム
26 シャッター
27 RF電極

Claims (7)

  1. 内部が排気された真空容器と、
    真空容器内に設けられ、固体原料を装荷した電子ビーム蒸発源を有する原料蒸発室と、
    真空容器内に設けられ、熱陰極、対陰極、および陽極からなる3電極を備え、これら3電極が直流電源に接続され、原料蒸発室で発生させた原料ガスを導入し、3電極間で高周波放電を起こしてプラズマを生成するプラズマ室と、
    真空容器内に設けられたイオン引き出し電極部と
    を具備し、原料蒸発室とプラズマ室とを、蒸気導入口を有する隔壁で区画すると共に、原料蒸発室に排気口を設け、排気口から排気することで原料蒸発室のガス圧をプラズマ室のガス圧よりも低くした固体イオン源。
  2. プラズマ室内に、上記3電極と、RF電極、または、マイクロウェーブ入力部の何れか一方とを併設した請求項1記載の固体イオン源。
  3. 対陰極に熱陰極よりも高い正電位を印加し、陽極に対陰極よりも高い正電位を印加した請求項1記載の固体イオン源。
  4. プラズマ室内に、対陰極のイオン引き出し電極部側で対陰極と対向し、あるいは熱陰極の原料蒸発室側で熱陰極と対向し、かつ対陰極よりも高い正電位を有する第2陽極を配置した請求項記載の固体イオン源。
  5. プラズマ室の外周に磁場を形成した請求項記載の固体イオン源。
  6. イオン引き出し電極部の後方に、中性ガスを吸着するガス吸着部材を配した請求項記載の固体イオン源。
  7. イオン引き出し電極部の後方に、イオン偏向磁石と低Zイオン消滅部材を設けた請求項記載の固体イオン源。
JP2007514648A 2005-04-22 2006-04-20 固体イオン源 Expired - Fee Related JP4440304B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005153062 2005-04-22
JP2005153062 2005-04-22
PCT/JP2006/308321 WO2006115172A1 (ja) 2005-04-22 2006-04-20 固体イオン源

Publications (2)

Publication Number Publication Date
JPWO2006115172A1 JPWO2006115172A1 (ja) 2008-12-18
JP4440304B2 true JP4440304B2 (ja) 2010-03-24

Family

ID=37214790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007514648A Expired - Fee Related JP4440304B2 (ja) 2005-04-22 2006-04-20 固体イオン源

Country Status (2)

Country Link
JP (1) JP4440304B2 (ja)
WO (1) WO2006115172A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178526B1 (ja) * 2017-01-17 2017-08-09 イオンラボ株式会社 金属イオン源

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111230A (ja) * 1982-12-15 1984-06-27 Toshiba Corp イオン発生装置
DE3708716C2 (de) * 1987-03-18 1993-11-04 Hans Prof Dr Rer Nat Oechsner Hochfrequenz-ionenquelle
JPH06124672A (ja) * 1991-03-08 1994-05-06 Sanko:Kk 物質の気化装置
JPH04306540A (ja) * 1991-04-02 1992-10-29 Hitachi Ltd プラズマ源およびそれを用いたイオンビーム源
US5162699A (en) * 1991-10-11 1992-11-10 Genus, Inc. Ion source
JPH1064475A (ja) * 1996-08-26 1998-03-06 Advanced Display:Kk イオンドーピング装置
JP2004139913A (ja) * 2002-10-21 2004-05-13 National Institute Of Advanced Industrial & Technology イオンビーム発生装置、イオンビーム発生方法、イオン処理装置およびイオン処理方法

Also Published As

Publication number Publication date
WO2006115172A1 (ja) 2006-11-02
JPWO2006115172A1 (ja) 2008-12-18

Similar Documents

Publication Publication Date Title
Burdovitsin et al. Fore-vacuum plasma-cathode electron sources
JP5160730B2 (ja) ビーム状プラズマ源
KR101112692B1 (ko) 피어스식 전자총의 전자빔 집속 제어방법 및 제어장치
US6768120B2 (en) Focused electron and ion beam systems
US4980610A (en) Plasma generators
JPH04264346A (ja) イオン注入用のプラズマソース装置
US7038389B2 (en) Magnetron plasma source
JP4440304B2 (ja) 固体イオン源
JP3080945B1 (ja) 高効率プラズマガス中凝縮クラスター堆積装置
JP2009283459A (ja) マルチモードイオン源
JP2871675B2 (ja) 圧力勾配型電子ビーム励起プラズマ発生装置
JP3186777B2 (ja) プラズマ源
JPH08190995A (ja) 高速原子線源
US11942311B2 (en) Magnet arrangement for a plasma source for performing plasma treatments
JP4997596B2 (ja) イオンプレーティグ方法
JP2620474B2 (ja) イオンプレーティング装置
JPH024979B2 (ja)
US20220051879A1 (en) Electrode arrangement for a plasma source for performing plasma treatments
WO2013153865A1 (ja) プラズマ発生装置および蒸着装置並びにプラズマ発生方法
AU602109B2 (en) Improvements in plasma generators
Bugaev et al. Producing of gas and metal ion beams with vacuum arc ion sources
Dunford et al. Ion source for production of metastable He+ (2 S 1/2) ions
JPH05239631A (ja) プラズマ生成装置
JPH04221065A (ja) 薄膜形成装置
JPWO2008099579A1 (ja) プラズマ成膜装置

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090313

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160115

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees