WO2011101992A1 - 非水電解液型二次電池及び非水電解液型二次電池用非水電解液 - Google Patents

非水電解液型二次電池及び非水電解液型二次電池用非水電解液 Download PDF

Info

Publication number
WO2011101992A1
WO2011101992A1 PCT/JP2010/052647 JP2010052647W WO2011101992A1 WO 2011101992 A1 WO2011101992 A1 WO 2011101992A1 JP 2010052647 W JP2010052647 W JP 2010052647W WO 2011101992 A1 WO2011101992 A1 WO 2011101992A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
secondary battery
anion
positive electrode
lithium
Prior art date
Application number
PCT/JP2010/052647
Other languages
English (en)
French (fr)
Inventor
史教 水野
博文 中本
健一 濱本
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to AU2010346157A priority Critical patent/AU2010346157B2/en
Priority to JP2012500443A priority patent/JP5397533B2/ja
Priority to EP10846128.6A priority patent/EP2541665B1/en
Priority to CN2010800644386A priority patent/CN102771000A/zh
Priority to US13/575,330 priority patent/US20120315553A1/en
Priority to PCT/JP2010/052647 priority patent/WO2011101992A1/ja
Priority to KR1020127021860A priority patent/KR101376366B1/ko
Publication of WO2011101992A1 publication Critical patent/WO2011101992A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery.
  • lithium-air batteries are attracting attention as lithium secondary batteries for electric vehicles and hybrid vehicles that require high energy density.
  • Lithium-air batteries use oxygen in the air as the positive electrode active material. Therefore, the capacity can be increased as compared with a conventional lithium secondary battery incorporating a transition metal oxide such as lithium cobalt oxide as a positive electrode active material.
  • the following reaction is known as a reaction of a lithium-air battery using metallic lithium as the negative electrode active material, although it varies depending on the electrolytic solution used.
  • Negative electrode Li ⁇ Li + + e ⁇ Positive electrode: 2Li + + O 2 + 2e ⁇ ⁇ Li 2 O 2 Or 4Li + + O 2 + 4e ⁇ ⁇ 2Li 2 O [When charging] Negative electrode: Li + + e ⁇ ⁇ Li Positive electrode: Li 2 O 2 ⁇ 2Li + + O 2 + 2e ⁇ Or 2Li 2 O ⁇ 4Li + + O 2 + 4e ⁇
  • lithium ions Li +
  • Oxygen O 2
  • Patent Document 1 discloses a negative electrode having the ability to release metal ions, a positive electrode containing a carbon material, and a [—O— (C ⁇ O) —O—] skeleton sandwiched between the negative electrode and the positive electrode.
  • a nonaqueous electrolyte battery comprising a nonaqueous electrolyte solution containing an organic carbonate compound and a storage case in which an air hole for taking in oxygen into the positive electrode is formed.
  • the carbon material surface of the positive electrode is decomposed and formed on the carbon material surface of the positive electrode
  • a non-aqueous electrolyte battery coated with an object film is disclosed.
  • the non-aqueous electrolyte battery of Patent Document 1 is intended to prevent the volatilization of the organic electrolyte from the air holes and improve the battery life and discharge capacity.
  • Patent Document 2 discloses a positive electrode, a negative electrode that absorbs and releases lithium ions, a non-aqueous electrolyte-containing layer disposed between the positive electrode and the negative electrode, and at least the positive electrode, the negative electrode, and the non-aqueous electrolyte.
  • a non-aqueous electrolyte air battery comprising a layer and a case having an air hole for supplying oxygen to the positive electrode, wherein the non-aqueous electrolyte in the non-aqueous electrolyte-containing layer has a specific chemical formula
  • a non-aqueous electrolyte air battery characterized by being a room temperature molten salt containing at least one of the represented cations and lithium ions is disclosed.
  • the decomposition product of the organic carbonate compound in the above-mentioned Patent Document 1 is such that the oxygen radical (O 2 ⁇ ) generated by the reduction of oxygen (O 2 ) on the positive electrode carbon and the catalyst is It was found to be produced by reacting with a carbonate compound. Furthermore, research by the present inventors has newly found that with the technique of Patent Document 1, the battery resistance after discharge is remarkably increased and full charge is difficult. Considering these disadvantages, it is considered that the merit obtained by the positive film formation in Patent Document 1 is low.
  • oxygen (O 2 ) is mixed into the organic solvent in the manufacturing process.
  • Oxygen mixed into an organic solvent in the manufacturing process (O 2) is reduced oxygen radicals in the positive electrode - to generate oxygen radicals (O 2) - cause side reactions due to (O 2).
  • oxygen radicals (O 2 ⁇ ) can be generated.
  • oxygen radicals As a side reaction by oxygen radicals (O 2 ⁇ ), there are a decomposition reaction of a solvent such as an organic carbonate compound as described above, and a decomposition reaction of other materials constituting the battery. In a secondary battery that is repeatedly charged and discharged and used for a long period of time, the side reaction due to oxygen radicals is one of the major factors that lower the durability of the battery.
  • the air battery which supplies oxygen which is a positive electrode active material to the positive electrode from air (outside air) like the battery of patent document 1 and 2 the water and carbon dioxide in air are also supplied with oxygen.
  • oxygen radicals (O 2 ⁇ ) generated from oxygen as the positive electrode active material react with water and carbon dioxide in addition to organic solvents such as organic carbonate compounds. Therefore, a chain radical reaction occurs in addition to the decomposition reaction of the organic solvent as described above.
  • a characteristic (inherent) reaction in which the oxygen radical (O 2 ⁇ ) generated from oxygen as the positive electrode active material decomposes the organic solvent easily occurs.
  • the present invention has been accomplished in view of the above circumstances, and aims to provide a non-aqueous electrolyte secondary battery that improves the resistance to oxygen radicals of a non-aqueous electrolyte and is excellent in durability and capacity characteristics.
  • the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode,
  • the positive electrode, the negative electrode, and the non-aqueous electrolyte, and at least carbon dioxide and water have a closed structure that is blocked,
  • the discharge voltage is 3 V or less with respect to the lithium electrode
  • the non-aqueous electrolyte contains two or more kinds of anions.
  • oxygen radical generation potential the potential at which oxygen radicals (O 2 ⁇ ) are generated from oxygen (O 2 ) in the nonaqueous electrolytic solution
  • oxygen radical generation potential the potential at which oxygen radicals (O 2 ⁇ ) are generated from oxygen (O 2 ) in the nonaqueous electrolytic solution
  • the battery of the present invention does not generate oxygen radicals (O 2 ⁇ ) of the non-aqueous electrolyte in a potential region of 3 V or less with reference to a lithium electrode (hereinafter sometimes referred to as “vs. Li / Li +”). Since the potential window is wide, the oxygen radical resistance of the electrolyte in the non-aqueous electrolyte secondary battery with a discharge potential of 3 V or less (vs. Li / Li +) can be improved.
  • non-aqueous electrolyte type secondary battery is a non-aqueous electrolyte type lithium secondary battery.
  • the non-aqueous electrolyte secondary battery is a lithium-air battery in which the positive electrode uses oxygen as an active material, the effect obtained by the present invention is particularly high. This is because a metal-air battery typified by a lithium-air battery has a high dissolved oxygen concentration in the non-aqueous electrolyte and is particularly susceptible to problems caused by oxygen radicals (O 2 ⁇ ).
  • a specific combination of anions contained in the non-aqueous electrolyte includes at least a combination of a first anion having a relatively high molecular weight and a second anion having a relatively low molecular weight.
  • the molar ratio of the first anion to the second anion [(first anion) :( second anion)] is preferably in the range of 95: 5 to 65:35.
  • Examples of the combination of the first anion and the second anion include a combination in which the first anion is at least bistrifluoromethanesulfonylimide and the second anion is at least trifluoromethanesulfonate. Can be mentioned.
  • the non-aqueous electrolyte includes acetonitrile, dimethyl sulfoxide, dimethoxyethane, N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide, and N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl). It is preferable that the electrolyte salt is dissolved in at least one non-aqueous solvent selected from imides. This is because the decomposition of the nonaqueous electrolytic solution by oxygen radicals (O 2 ⁇ ) can be more effectively suppressed.
  • oxygen radicals O 2 ⁇
  • the positive electrode, the negative electrode, and the non-aqueous electrolyte, and the closed structure in which at least carbon dioxide and water are blocked are the positive electrode, the negative electrode, and the non-aqueous battery.
  • a closed structure in which the electrolytic solution and the atmosphere are shut off can be given.
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte for a non-aqueous electrolyte type secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode, Containing two or more anions
  • the non-aqueous electrolyte type secondary battery has a closed structure in which the positive electrode, the negative electrode, the non-aqueous electrolyte, and at least carbon dioxide and water are blocked, and the discharge voltage is 3 V or less based on a lithium electrode. It is characterized by being.
  • non-aqueous electrolyte type secondary battery examples include a non-aqueous electrolyte type lithium secondary battery, and more specifically, a lithium-air battery in which the positive electrode uses oxygen as an active material. .
  • a specific combination of anions contained in the non-aqueous electrolyte includes at least a combination of a first anion having a relatively high molecular weight and a second anion having a relatively low molecular weight.
  • the molar ratio of the first anion to the second anion [(first anion) :( second anion)] is preferably in the range of 95: 5 to 65:35.
  • Examples of the combination of the first anion and the second anion include a combination in which the first anion is at least bistrifluoromethanesulfonylimide and the second anion is at least trifluoromethanesulfonate. Can be mentioned.
  • the non-aqueous electrolyte includes acetonitrile, dimethyl sulfoxide, dimethoxyethane, N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide, and N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl). It is preferable that the electrolyte salt is dissolved in at least one non-aqueous solvent selected from imides. This is because a metal-air battery typified by a lithium-air battery has a high dissolved oxygen concentration in the non-aqueous electrolyte and is particularly susceptible to problems caused by oxygen radicals (O 2 ⁇ ).
  • the positive electrode, the negative electrode, and the non-aqueous electrolyte, and the closed structure in which at least carbon dioxide and water are blocked are the positive electrode, the negative electrode, and the non-aqueous battery.
  • a closed structure in which the electrolytic solution and the atmosphere are blocked can be given.
  • oxygen radical (O 2 ⁇ ) resistance of an electrolytic solution Therefore, according to the present invention, it is possible to improve the durability and capacity characteristics of the nonaqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode,
  • the positive electrode, the negative electrode, and the non-aqueous electrolyte, and at least carbon dioxide and water have a closed structure that is blocked,
  • the discharge voltage is 3 V or less with respect to the lithium electrode
  • the non-aqueous electrolyte contains two or more kinds of anions.
  • non-aqueous electrolyte solution for the non-aqueous electrolyte type secondary battery hereinafter sometimes simply referred to as a secondary battery
  • a secondary battery the non-aqueous electrolyte type secondary battery of the present invention
  • the secondary battery of the present invention is characterized in that a non-aqueous electrolyte is used as an electrolyte that intervenes between a positive electrode and a negative electrode and conducts ions between these electrodes.
  • the secondary battery of the present invention is characterized in that the discharge voltage is 3 V or less (vs. Li / Li +).
  • oxygen (O 2) oxygen radical from (O 2 -) generated reaction occurs in the potential range of 2 ⁇ 3V (vs.Li/Li+).
  • the battery of the present invention if oxygen is present in the battery, oxygen radicals upon discharge from the oxygen (O 2) (O 2 - ) which is the reaction-prone environment generated by the.
  • the secondary battery of the present invention has a closed structure in which the positive electrode, the negative electrode, and the nonaqueous electrolytic solution interposed between these electrodes are blocked from at least carbon dioxide and water.
  • oxygen radicals (O 2 ⁇ ) are liable to cause a chain reaction with carbon dioxide and water. Therefore, in the battery of the present invention, a reaction in which oxygen (O 2 ) is reduced to generate oxygen radicals (O 2 ⁇ ) occurs more easily than a battery in which carbon dioxide and water are present together with oxygen.
  • oxygen (O 2) oxygen radical from (O 2 -) in the secondary battery reaction are aligned easily condition progresses to generate, in order to improve oxygen radical resistance of the nonaqueous electrolyte solution, the present invention
  • oxygen reduction peak potential the potential for oxygen radicals (O 2 ⁇ ) to be generated from oxygen (O 2 ) by incorporating two or more types of anions in the nonaqueous electrolyte
  • the oxygen radicals can be suppressed side reactions caused by the (O 2 - -) decomposition of an organic solvent of the nonaqueous electrolytic solution, oxygen radical (O 2). Therefore, according to the present invention, it is possible to selectively advance a target electrode reaction. As a result, battery performance such as capacity characteristics and durability characteristics can be improved.
  • the closed structure in which the positive electrode, the negative electrode, and the non-aqueous electrolyte are blocked from at least carbon dioxide and water prevents carbon dioxide and water from entering the battery from the outside.
  • the negative electrode and the non-aqueous electrolyte can avoid contact with carbon dioxide and water.
  • a sealed structure that does not have a communication structure with the outside, or a supply source or discharge port of the active material to the electrode, but there is no communication with the outside, and the supply source or discharge port Closed structure in which the intrusion of carbon dioxide and water from is prevented.
  • oxygen in the outside air can be supplied into the battery in communication with the outside, but intrusion of carbon dioxide and water from the outside air is possible.
  • examples thereof include a structure that is selectively blocked.
  • a method for selectively preventing the intrusion of carbon dioxide and water for example, a method of disposing a carbon dioxide-absorbing material and a water-absorbing material at a communication port with the outside can be cited.
  • a material having water absorbability for example, a material generally used as a desiccant, for example, a material having deliquescence such as calcium chloride, potassium peroxide, potassium carbonate, or water adsorbability such as silica gel
  • a material having deliquescence such as calcium chloride, potassium peroxide, potassium carbonate, or water adsorbability
  • the carbon dioxide-absorbing material include lithium silicate, zinc oxide, zeolite, activated carbon, and alumina.
  • the non-aqueous electrolyte contains at least a non-aqueous solvent containing an organic solvent and / or an ionic liquid and an electrolyte salt.
  • the nonaqueous electrolytic solution of the present invention is characterized by containing two or more types of anions, but the supply source (origin) of these anions is not particularly limited.
  • electrolyte salt and an ionic liquid are mentioned, for example.
  • As a specific configuration of the nonaqueous electrolytic solution of the present invention for example, (1) at least two kinds of electrolyte salts containing different anions are dissolved in an organic solvent, and (2) at least in an organic solvent.
  • the organic solvent is not particularly limited as long as the electrolyte salt to be used can be dissolved, and examples thereof include those that can be used for an electrolytic solution for a lithium secondary battery. Specifically, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, isopropiomethyl carbonate, ethyl propionate, methyl propionate, ⁇ -butyrolactone, ethyl acetate, methyl acetate , Tetrahydrofuran, 2-methyltetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol didiethyl ether, acetonitrile, dimethyl sulfoxide, diethoxyethane, dimethoxyethane and the like.
  • the ionic liquid is not particularly limited as long as the electrolyte salt to be used can be dissolved, and examples thereof include those that can be used for an electrolyte for a lithium secondary battery.
  • N, N, N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) imide [abbreviation: TMPA-TFSI], N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide
  • PP13-TFSI N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide
  • P13-TFSI N-methyl-N-butylpyrrolidinium bis (trifluoromethanesulfonyl) imide
  • P14-TFSI aliphatic quaternary ammonium salt; 1-methyl-3-ethylimida
  • organic solvents and ionic liquids since they are difficult to react with oxygen radicals (O 2 ⁇ ), organic solvents such as acetonitrile, dimethyl sulfoxide, and dimethoxyethane, and N-methyl-N-propylpiperidinium bis ( At least one selected from ionic liquids such as trifluoromethanesulfonyl) imide and N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide is preferred. From the viewpoint of becoming an anion source in the nonaqueous electrolytic solution, the ionic liquid is a preferable solvent. In addition, only 1 type may be used for the organic solvent and ionic liquid which are nonaqueous solvents, and it may use it in combination of 2 or more type.
  • the electrolyte salt is not particularly limited as long as it can conduct ions to be conducted between the positive electrode and the negative electrode, and can be appropriately selected according to the form of the secondary battery.
  • concentration of the electrolyte salt in the non-aqueous electrolyte depends on the electrolyte salt used, but is usually preferably in the range of 0.1 to 3.0 mol / L, particularly 0.5 to 1.5 mol. / L is preferable.
  • the anion contained in the electrolyte salt is not particularly limited.
  • perchlorate ion (ClO 4 over) [molecular weight of about 100
  • hexafluorophosphate ion (PF 6 chromatography) molecular weight of about 145
  • tetrafluoroborate ion (BF 4 over) molecular weight of about 87
  • m is 1 or more and 8 or less, preferably 1 or more and 4 or less.
  • Specific examples of the anion represented by the formula (1) include trifluoromethanesulfonate [abbreviation: TfO, molecular weight: about 149].
  • n and p are each 1 or more and 8 or less, preferably 1 or more and 4 or less, and may be the same or different from each other.
  • anion represented by the formula (2) include bistrifluoromethanesulfonylimide ([N (CF 3 SO 2 ) 2 )] ⁇ ) [abbreviation: TFSA, molecular weight: about 280], bispentafluoro Ethanesulfonylimide ([N (C 2 F 5 SO 2 ) 2 )] ⁇ ), trifluoromethanesulfonyl nonafluorobutanesulfonyl imide ([N (CF 3 SO 2 ) (C 4 F 9 SO 2 ))] ⁇ ) and the like Is mentioned.
  • the specific combination of two or more kinds of anions contained in the nonaqueous electrolytic solution is not particularly limited, and can be appropriately selected and combined.
  • combinations include combinations of two or more anions having different molecular weights. That is, at least a first anion having a relatively large molecular weight (hereinafter sometimes simply referred to as a first anion) and a second anion having a relatively small molecular weight (hereinafter simply referred to as a second anion).
  • a combination This is because it is presumed that the effect of suppressing the oxygen reduction reaction by the interaction as described above can be obtained by combining anions having different molecular weights, that is, different molecular sizes.
  • the anions having different molecular weights used in combination are not limited to two kinds of the first anion and the second anion, and three or more kinds of anions having different molecular weights may be used.
  • the ratio of each anion in the non-aqueous electrolyte is not particularly limited and can be determined as appropriate.
  • the molar ratio of the first anion to the second anion [(first anion) :( second anion)] is preferably in the range of 95: 5 to 65:35, particularly 92: The range is preferably 8 to 65:35, more preferably 92: 8 to 88:12, and most preferably 90:10.
  • the cation which is a counter ion of these anions is not particularly limited, and may be appropriately selected according to, for example, the ion conductive species required for the nonaqueous electrolytic solution.
  • the present invention relates to general non-aqueous electrolysis such as lithium secondary battery, sulfur battery, metal-air battery (eg, sodium-air battery, magnesium-air battery, calcium-air battery, potassium-air battery). It can be applied to a secondary battery using a liquid.
  • the present invention is preferably applied to a lithium secondary battery.
  • a lithium-air battery is a secondary battery that is particularly effective when the present invention is applied because oxygen dissolves in the non-aqueous electrolyte during discharge.
  • the lithium secondary battery operates as a secondary battery by moving lithium ions from the negative electrode to the positive electrode during discharging and moving from the positive electrode to the negative electrode during charging, and is made of metallic lithium.
  • Those using a negative electrode and those using a negative electrode made of a material capable of intercalating and deintercalating lithium ions such as graphite are also included.
  • lithium-air batteries are also included in lithium secondary batteries.
  • specific configurations of various secondary batteries for example, a positive electrode, a negative electrode, current collectors, a separator, a battery case, and the like are not particularly limited, and a general configuration can be adopted.
  • FIG. 1 is a cross-sectional view showing an embodiment of a non-aqueous electrolyte secondary battery (lithium-air battery) according to the present invention.
  • the secondary battery (lithium-air battery) 1 includes a positive electrode (air electrode) 2 containing oxygen as an active material, a negative electrode 3 containing a negative electrode active material, a non-aqueous battery that conducts lithium ions between the positive electrode 2 and the negative electrode 3.
  • Electrolyte 4 a separator 5 disposed between the positive electrode 2 and the negative electrode 3 to ensure electrical insulation between these electrodes, a positive electrode current collector 6 for collecting the positive electrode 2, and a collection of the negative electrode 3
  • a negative electrode current collector 7 for conducting electricity is accommodated in a battery case 8.
  • the separator 5 has a porous structure, and the nonaqueous electrolytic solution 4 is impregnated in the porous body. The nonaqueous electrolytic solution 4 is impregnated into the positive electrode 2 and further into the negative electrode 3 as necessary.
  • a positive electrode current collector 6 that collects current from the positive electrode 2 is electrically connected to the positive electrode 2.
  • the positive electrode current collector 6 has a porous structure capable of supplying oxygen to the positive electrode 2.
  • a negative electrode current collector 7 that collects current from the negative electrode 3 is electrically connected to the negative electrode 3.
  • One of the ends of the positive electrode current collector 6 and the negative electrode current collector 7 protrudes from the battery case 8 and functions as a positive electrode terminal 9 and a negative electrode terminal 10, respectively.
  • the secondary battery 1 has a structure in which water and carbon dioxide are prevented from entering the battery case 8 from the outside.
  • the positive electrode usually has a porous structure containing a conductive material, and contains a binder and a catalyst that promotes the positive electrode reaction as necessary.
  • the conductive material is not particularly limited as long as it has conductivity, and examples thereof include a carbon material. Specific examples of the carbon material include mesoporous carbon, graphite, acetylene black, carbon nanotube, and carbon fiber.
  • the content of the conductive material in the positive electrode is preferably in the range of 10 wt% to 99 wt%, for example, with respect to the total amount of the positive electrode constituent material.
  • the positive electrode preferably contains a binder. It is because a catalyst and an electroconductive material are fixed by containing a binder, and the positive electrode excellent in cycling characteristics can be obtained.
  • the binder include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyethylene, polypropylene, and styrene butadiene rubber.
  • the content of the binder in the positive electrode is, for example, preferably 40% by weight or less, particularly 1 to 10% by weight, based on the total amount of the positive electrode constituent materials.
  • the positive electrode preferably contains a catalyst in order to increase the reaction rate of the electrochemical reaction of oxygen.
  • a catalyst such as cobalt phthalocyanine, manganese phthalocyanine, nickel phthalocyanine, tin phthalocyanine oxide, titanyl phthalocyanine, dilithium phthalocyanine, and the like; cobalt naphthocyanine Naphthocyanine compounds such as iron porphyrin; MnO 2 , Co 3 O 4 , NiO, V 2 O 5 , Fe 2 O 3 , ZnO, CuO, LiMnO 2 , Li 2 MnO 3 , LiMn 2 O 4, Li 4 Ti 5 O 12 , Li 2 TiO 3, LiNi 1/3 Co 1/3 Mn 1/3 O 2, LiNiO 2, LiVO
  • the content of the catalyst in the positive electrode is preferably in the range of 1% by weight to 90% by weight, for example, with respect to the total amount of the positive electrode constituent materials. If the catalyst content is too low, sufficient catalytic function may not be achieved. On the other hand, if the catalyst content is too high, the content of the conductive material is relatively reduced, resulting in a decrease in the reaction field. This is because the battery capacity may be reduced.
  • the positive electrode composed of the above materials can be produced by the following method. For example, a method in which a positive electrode mixture in which a conductive material, a binder, and a catalyst are mixed is press-molded on the surface of a positive electrode current collector, or a paste in which the positive electrode mixture is dispersed in a solvent is prepared. The method of apply
  • the thickness of the positive electrode varies depending on the use of the lithium-air battery, but is preferably in the range of 2 ⁇ m to 500 ⁇ m, particularly preferably in the range of 5 ⁇ m to 300 ⁇ m.
  • the positive electrode current collector has a function of collecting the positive electrode current.
  • Examples of the material for the air electrode current collector include stainless steel, nickel, aluminum, iron, titanium, and carbon.
  • Examples of the shape of the positive electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape.
  • the shape of the positive electrode current collector is preferably a porous shape such as a mesh shape. This is because the oxygen supply efficiency to the positive electrode is excellent.
  • the current collection efficiency of the positive electrode can be increased by arranging the mesh air electrode current collector inside the positive electrode layer.
  • the electrical power collector edge part which functions as a positive electrode terminal may be made into foil shape, plate shape, etc. from a viewpoint of current collection efficiency.
  • the negative electrode contains at least a negative electrode active material.
  • a negative electrode active material the negative electrode active material of a general air battery can be used, and it is not specifically limited.
  • the negative electrode active material is usually capable of intercalating and deintercalating (occluding and releasing) lithium ions (metal ions).
  • Examples of negative electrode active materials for lithium-air batteries include: lithium metal; lithium alloys such as lithium aluminum alloy, lithium tin alloy, lithium lead alloy, lithium silicon alloy; tin oxide, silicon oxide, lithium titanium oxide, niobium oxide , Metal oxides such as tungsten oxide; metal sulfides such as tin sulfide and titanium sulfide; metal nitrides such as lithium cobalt nitride, lithium iron nitride and lithium manganese nitride; and carbon materials such as graphite Among them, metallic lithium and carbon materials are preferable, and metallic lithium is more preferable from the viewpoint of increasing capacity.
  • the negative electrode only needs to contain at least a negative electrode active material, but may contain a binder for immobilizing the negative electrode active material, if necessary.
  • a binder for immobilizing the negative electrode active material, if necessary.
  • the negative electrode current collector has a function of collecting current in the negative electrode layer.
  • the material of the negative electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include copper, stainless steel, nickel, and carbon.
  • Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape.
  • the separator is installed between the positive electrode and the negative electrode.
  • the separator is not particularly limited as long as it has a function of electrically insulating the positive electrode and the negative electrode and has a porous structure that can be impregnated with a nonaqueous electrolytic solution. Examples thereof include porous films such as polyethylene and polypropylene; nonwoven fabrics such as resin nonwoven fabrics and glass fiber nonwoven fabrics; and polymer materials used in lithium polymer batteries.
  • the electrolyte used in the lithium-air battery of the present invention is a non-aqueous electrolyte containing two or more types of anions, in which an electrolyte (lithium salt) is dissolved in a non-aqueous solvent. Since the organic solvent and ionic liquid which are non-aqueous solvents are the same as those described above, description thereof is omitted here.
  • the lithium salt include those containing the anion exemplified above as the anion contained in the electrolyte salt and lithium ion.
  • an inorganic lithium salt such as lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ) and LiAsF 6 ; and LiCF 3 SO 3
  • Organic lithium salts such as LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) Can be mentioned.
  • the shape of the battery case is not particularly limited as long as it can hold the positive electrode, the negative electrode, and the non-aqueous electrolyte described above. Specifically, a coin type, a flat plate type, a cylindrical type, a laminate type, etc. Can be mentioned.
  • Example 1 Preparation of non-aqueous electrolyte>
  • a first nonaqueous electrolytic solution TEATFSA concentration
  • TEATFSA tetraethylammonium bistrifluoromethanesulfonylimide
  • AN acetonitrile
  • TEATfO tetraethylammonium trifluoromethanesulfonate
  • the oxygen reduction peak potential (O 2 ⁇ generation potential) in the prepared nonaqueous electrolytic solution was measured as follows. That is, after a nonaqueous electrolyte was bubbled with pure oxygen (99.99%, 1 atm) for 30 minutes to saturate oxygen, cyclic voltammogram (CV) measurement was performed under the following scanning conditions using a triode cell having the following configuration. Went. The results are shown in Table 1. Table 1 shows the potential converted from the Ag electrode (Ag / Ag +) standard to the Li electrode (Li / Li +) standard.
  • Working electrode / counter electrode / reference electrode rod-shaped glassy carbon electrode (manufactured by BAS) / Ni ribbon (manufactured by Nilaco) / Ag / Ag + type (manufactured by BAS) Scanning conditions: The potential was scanned from a natural potential to -1.7 V (Ag electrode reference) and then to 0.3 V (Ag electrode reference) at a scanning speed of 100 mV / sec.
  • Example 2 In Example 1, a non-aqueous electrolyte containing two types of anions was prepared in the same manner except that the first non-aqueous electrolyte and the second non-aqueous electrolyte were mixed at a volume ratio of 92: 8. CV measurement was performed. The results are shown in Table 1.
  • Example 3 In Example 1, a non-aqueous electrolyte containing two types of anions was prepared in the same manner except that the first non-aqueous electrolyte and the second non-aqueous electrolyte were mixed at a volume ratio of 90:10. CV measurement was performed. The results are shown in Table 1 and FIG. As in Table 1, FIG. 2 shows the potential converted from the Ag electrode (Ag / Ag +) standard to the Li electrode (Li / Li +) standard.
  • Example 4 In Example 1, a nonaqueous electrolyte containing two types of anions was prepared in the same manner except that the first nonaqueous electrolyte and the second nonaqueous electrolyte were mixed at a volume ratio of 88:12. CV measurement was performed. The results are shown in Table 1.
  • Example 5 In Example 1, a non-aqueous electrolyte containing two types of anions was prepared in the same manner except that the first non-aqueous electrolyte and the second non-aqueous electrolyte were mixed at a volume ratio of 85:15. CV measurement was performed. The results are shown in Table 1.
  • Example 6 In Example 1, a non-aqueous electrolyte containing two types of anions was prepared in the same manner except that the first non-aqueous electrolyte and the second non-aqueous electrolyte were mixed at a volume ratio of 75:25. CV measurement was performed. The results are shown in Table 1.
  • Example 7 In Example 1, a non-aqueous electrolyte containing two types of anions was prepared in the same manner except that the first non-aqueous electrolyte and the second non-aqueous electrolyte were mixed at a volume ratio of 65:35. CV measurement was performed. The results are shown in Table 1.
  • Example 8 In Example 1, a non-aqueous electrolyte containing two types of anions was prepared in the same manner except that the first non-aqueous electrolyte and the second non-aqueous electrolyte were mixed at a volume ratio of 50:50. CV measurement was performed. The results are shown in Table 1.
  • Example 9 In Example 1, a nonaqueous electrolyte containing two types of anions was prepared in the same manner except that the first nonaqueous electrolyte and the second nonaqueous electrolyte were mixed at a volume ratio of 25:75. CV measurement was performed. The results are shown in Table 1.
  • Example 10 In Example 1, a non-aqueous electrolyte containing two types of anions was prepared in the same manner except that the first non-aqueous electrolyte and the second non-aqueous electrolyte were mixed at a volume ratio of 10:90. CV measurement was performed. The results are shown in Table 1.
  • Example 11 In Example 3, except that a second nonaqueous electrolytic solution (TEPF6 concentration 0.1 M) in which tetraethylammonium hexafluorophosphate (hereinafter sometimes abbreviated as TEAPF6) was dissolved in AN was prepared, Similarly, a nonaqueous electrolytic solution containing two types of anions was prepared and CV measurement was performed. The results are shown in Table 1.
  • TEPF6 concentration 0.1 M tetraethylammonium hexafluorophosphate
  • Example 12 In Example 3, except that a second nonaqueous electrolytic solution (TEABF4 concentration of 0.1 M) in which tetraethylammonium tetrafluoroborate (hereinafter sometimes abbreviated as TEABF4) was dissolved in AN was prepared, Similarly, a nonaqueous electrolytic solution containing two types of anions was prepared and CV measurement was performed. The results are shown in Table 1.
  • TEABF4 concentration of 0.1 M tetraethylammonium tetrafluoroborate
  • Example 3 The second non-aqueous electrolyte of Example 11 was used as an electrolyte without mixing, and CV measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 (Comparative Example 4) CV measurement was performed in the same manner as in Example 1 except that the second nonaqueous electrolytic solution of Example 12 was used as an electrolytic solution without mixing. The results are shown in Table 1.
  • the non-aqueous electrolytes of Examples 1 to 10 containing a plurality of anions are compared with the non-aqueous electrolytes of Comparative Examples 1 to 2 containing only one kind of anion.
  • the reduction peak potential of oxygen decreased.
  • the ratio (molar ratio) of a relatively high molecular weight anion (bis (trifluoromethanesulfonyl) imide) to a relatively low molecular weight anion (trimethanesulfonate) is in the range of 95: 5 to 65:35.
  • Examples 1 to 7 and particularly in Examples 2 to 4 in the range of 92: 8 to 88:12, and in Example 3 of 90:10 the oxygen reduction peak potential was greatly reduced.
  • Example 11 in comparison between Example 11 and Comparative Example 3, the nonaqueous electrolytic solution of Example 11 containing two types of anions is the same as the nonaqueous electrolytic solution of Comparative Example 3 containing only one type of anions. In comparison, the reduction peak potential of oxygen decreased.
  • Example 12 and Comparative Example 4 the nonaqueous electrolytic solution of Example 12 containing two kinds of anions is similar to the nonaqueous electrolytic solution of Comparative Example 4 containing only one kind of anions. In comparison, the reduction peak potential of oxygen decreased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解液の酸素ラジカル(O )耐性を向上させ、耐久性や容量特性に優れた非水電解液型二次電池を提供する。 正極、負極、及び前記正極と前記負極との間に介在する非水電解液を備える非水電解液型二次電池であって、前記正極、前記負極及び前記非水電解液と、少なくとも二酸化炭素及び水とが、遮断された閉鎖構造を有し、放電電圧がリチウム電極基準で3V以下であり、前記非水電解液が、2種以上のアニオンを含むことを特徴とする、非水電解液型二次電池、並びに、該非水電解液型二次電池用の非水電解液。

Description

非水電解液型二次電池及び非水電解液型二次電池用非水電解液
 本発明は、非水電解液型二次電池及び非水電解液型二次電池用非水電解液に関する。
 近年、パソコン、ビデオカメラ、携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界においても、電気自動車やハイブリッド自動車用の高出力、高容量の電池の開発が進められている。各種電池の中でも、エネルギー密度と出力が高いことから、リチウム二次電池が注目されている。
 高エネルギー密度が要求される電気自動車やハイブリッド自動車用のリチウム二次電池としては、特に、リチウム-空気電池が注目されている。リチウム-空気電池は、正極活物質として空気中の酸素を利用する。そのため、正極活物質としてコバルト酸リチウム等の遷移金属酸化物を内蔵する従来のリチウム二次電池と比較して、大容量化が可能である。
 使用する電解液等によっても異なるが、負極活物質として金属リチウムを用いたリチウム-空気電池の反応としては、下記反応が知られている。
 [放電時]
 負極 : Li → Li + e
 正極 : 2Li + O + 2e → Li
       又は
      4Li + O + 4e → 2Li
 [充電時]
 負極 : Li + e → Li
 正極 : Li → 2Li + O + 2e
       又は
      2LiO → 4Li + O + 4e
 放電時の正極での反応において、リチウムイオン(Li)は、負極から電気化学的酸化によって溶解し、非水電解液を経て、正極に移動してきたものである。また、酸素(O)は、正極に供給されたものである。
 従来のリチウム-空気電池として、例えば、特許文献1~2に記載されたものが挙げられる。
 例えば、特許文献1には、金属イオンを放出する能力を有する負極と、炭素材料を含有する正極と、前記負極及び正極に挟まれた[-O-(C=O)-O-]骨格を有する有機カーボネート化合物を含有する非水電解液と、前記正極に酸素を取り込む空気孔が形成された収納ケースを具備した非水電解質電池において、前記正極の炭素材料表面を前記有機カーボネート化合物の分解生成物の皮膜で被覆した非水電解液電池が開示されている。
 特許文献1の非水電解質電池は、空気孔からの有機電解液の揮発を防止し、電池寿命及び放電容量を向上させることを目的としている。
 また、特許文献2には、正極と、リチウムイオンを吸蔵・放出する負極と、前記正極と負極の間に配置される非水電解質含有層と、少なくとも前記正極と前記負極と前記非水電解質含有層が収納され、かつ前記正極に酸素を供給するための空気孔を備えるケースとを具備した非水電解液空気電池において、前記非水電解液含有層の非水電解液は、特定の化学式で表されるカチオンのうち少なくとも1種類と、リチウムイオンとを含有する常温溶融塩であることを特徴とする非水電解液空気電池が開示されている。
特開2003-100309号公報 特開2004-119278号公報
 本発明者らの研究によって、上記特許文献1における有機カーボネート化合物の分解生成物は、正極のカーボン及び触媒上で酸素(O)の還元により生成する酸素ラジカル(O )が、上記有機カーボネート化合物と反応することによって生成することがわかった。さらに、本発明者らの研究により、特許文献1の技術では、放電後の電池抵抗の増加が著しく、また、満充電が困難であることが新たにわかった。これらのデメリットを考えると、特許文献1における積極的な上記皮膜の形成によって得られるメリットは低いと考えられる。
 また、有機溶媒を含有する非水電解液を用いた二次電池において、製造工程で、該有機溶媒に酸素(O)が混入することは大いに起こり得ることである。製造工程で有機溶媒中に混入した酸素(O)は、正極において還元されて酸素ラジカル(O )を生成し、酸素ラジカル(O )による副反応の原因となる。また、正極活物質として酸素を用いる空気電池においては、上記のような混入量よりはるかに多い酸素が電解液中に溶解する。そのため、多くの酸素ラジカル(O )が生成しうる。
 酸素ラジカル(O )による副反応としては、上記したような有機カーボネート化合物等の溶媒の分解反応の他、電池を構成する他の材料の分解反応等がある。充電と放電を繰り返し、長期間使用される二次電池では、酸素ラジカルによる上記副反応は電池の耐久性を低下させる大きな要因の1つとなる。
 しかしながら、本発明者らの研究によると、酸素(O)が還元されて酸素ラジカル(O )が生成する反応は、2~3Vの電位範囲(金属リチウム電極基準)で起こる。これに対して、現在、一般的に採用されているリチウム二次電池は、放電電位が3Vを超えるような設計がされている。そのため、上記のような製造工程で混入した酸素(O)からの酸素ラジカル(O )の生成は、あまり問題視されていないが、今後の電池の多様化に伴い、放電電位が3V以下の電池が採用されるようになると、大きな問題とされるのは間違いない。その結果、このような副反応を抑制するために、二次電池の出荷前に、溶存酸素を取り除く調整工程(コンディショニング工程)を設ける必要がでてくる。
 また、特許文献1及び2に記載の電池のように、正極活物質である酸素を空気(外気)から正極に供給する空気電池においては、酸素と共に空気中の水や二酸化炭素も供給される。このような開放系の空気電池では、正極活物質である酸素から生成した酸素ラジカル(O )は、有機カーボネート化合物のような有機溶媒以外にも、水や二酸化炭素と連鎖的に反応するため、上記のような有機溶媒の分解反応以外に連鎖的なラジカル反応が起こる。これに対して、正極に酸素ガスを流通させて酸素を供給するような閉鎖系の空気電池においては、電池内への水や二酸化炭素の流入が抑えられている。そのため、このような閉鎖系の空気電池では、正極活物質である酸素から生成した酸素ラジカル(O )が有機溶媒を分解する特徴的な(固有の)反応が起こりやすい。
 本発明は、上記実情を鑑みて成し遂げられたものであり、非水電解液の酸素ラジカル耐性を向上させ、耐久性や容量特性に優れた非水電解液型二次電池を提供することを目的とする。
 本発明の非水電解液型二次電池は、正極、負極、及び前記正極と前記負極との間に介在する非水電解液を備える非水電解液型二次電池であって、
 前記正極、前記負極及び前記非水電解液と、少なくとも二酸化炭素及び水とが、遮断された閉鎖構造を有し、
 放電電圧がリチウム電極基準で3V以下であり、
 前記非水電解液が、2種以上のアニオンを含むことを特徴とする。
 本発明によれば、上記非水電解液において酸素(O)から酸素ラジカル(O )が生成する電位(以下、酸素ラジカル発生電位という)を低下させることができる。すなわち、本発明の電池は、リチウム電極基準(以下、「vs.Li/Li+」ということがある)で3V以下の電位領域において、上記非水電解液の酸素ラジカル(O )が生成しない電位窓が広いため、放電電位が3V以下(vs.Li/Li+)の非水電解液型二次電池における電解液の酸素ラジカル耐性を向上することができる。その結果、酸素ラジカル(O )が関与する副反応(例えば、非水電解液の溶媒の分解反応など)を抑制することができる。さらに、上記副反応による分解生成物に起因する電池抵抗の増加や充電性能の低下を抑制することができる。従って、本発明によれば、耐久性や容量特性等の電池特性を向上させることが可能である。
 前記非水電解液型二次電池の具体例としては、非水電解液型リチウム二次電池が挙げられる。また、前記非水電解液型二次電池が、前記正極が酸素を活物質とするリチウム-空気電池である場合、本発明により得られる効果は特に高い。リチウム-空気電池に代表される金属-空気電池は、非水電解液中の溶存酸素濃度が高く、酸素ラジカル(O )による問題が特に生じやすい電池だからである。
 前記非水電解液が含むアニオンの具体的な組み合わせとしては、少なくとも、相対的に分子量が大きい第1のアニオンと相対的に分子量が小さい第2のアニオンとの組み合わせが挙げられる。
 前記第1のアニオンと前記第2のアニオンとのモル比[(第1のアニオン):(第2のアニオン)は、95:5~65:35の範囲内であることが好ましい。
 前記第1のアニオンと前記第2のアニオンとの組合せとしては、例えば、前記第1のアニオンが、少なくともビストリフルオロメタンスルホニルイミドであり、前記第2のアニオンが、少なくともトリフルオロメタンスルホネートである組み合わせが挙げられる。
 前記非水電解液は、アセトニトリル、ジメチルスルホキシド、ジメトキシエタン、N-メチル-N-プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド、及びN-メチル-N-プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミドから選ばれる少なくとも1種の非水溶媒に、電解質塩を溶解したものであることが好ましい。酸素ラジカル(O )による非水電解液の分解を、より効果的に抑制することができるからである。
 本発明の非水電解液型二次電池において、前記正極、前記負極及び前記非水電解液と、少なくとも二酸化炭素及び水とが遮断された閉鎖構造としては、前記正極、前記負極及び前記非水電解液と、大気とが遮断される閉鎖構造が挙げられる。
 本発明の非水電解液は、正極、負極、及び前記正極と前記負極との間に介在する非水電解液を備える非水電解液型二次電池用の非水電解液であって、
 2種以上のアニオンを含み、
 前記非水電解液型二次電池は、前記正極、前記負極及び前記非水電解液と、少なくとも二酸化炭素及び水と、が遮断された閉鎖構造を有すると共に、放電電圧がリチウム電極基準で3V以下であることを特徴とする。
 前記非水電解液型二次電池の具体例としては、非水電解液型リチウム二次電池が挙げられ、より具体的には、前記正極が酸素を活物質とするリチウム-空気電池が挙げられる。
 前記非水電解液が含むアニオンの具体的な組み合わせとしては、少なくとも、相対的に分子量が大きい第1のアニオンと、相対的に分子量が小さい第2のアニオンと、の組み合わせが挙げられる。
 前記第1のアニオンと前記第2のアニオンとのモル比[(第1のアニオン):(第2のアニオン)は、95:5~65:35の範囲内であることが好ましい。
 前記第1のアニオンと前記第2のアニオンとの組合せとしては、例えば、前記第1のアニオンが、少なくともビストリフルオロメタンスルホニルイミドであり、前記第2のアニオンが、少なくともトリフルオロメタンスルホネートである組み合わせが挙げられる。
 前記非水電解液は、アセトニトリル、ジメチルスルホキシド、ジメトキシエタン、N-メチル-N-プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド、及びN-メチル-N-プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミドから選ばれる少なくとも1種の非水溶媒に、電解質塩を溶解したものであることが好ましい。リチウム-空気電池に代表される金属-空気電池は、非水電解液中の溶存酸素濃度が高く、酸素ラジカル(O )による問題が特に生じやすい電池だからである。
 本発明の非水電解液型二次電池において、前記正極、前記負極及び前記非水電解液と、少なくとも二酸化炭素及び水とが遮断された閉鎖構造としては、前記正極、前記負極及び前記非水電解液と、大気とが遮断された閉鎖構造が挙げられる。
 本発明によれば、電解液の酸素ラジカル(O )耐性を向上させることができる。従って、本発明によれば、非水電解液型二次電池の耐久性や容量特性を向上させることができる。
本発明の非水電解液型二次電池の一形態例を示す断面図である。 実施例及び比較例におけるCV測定の結果を示すものである。
 本発明の非水電解液型二次電池は、正極、負極、及び前記正極と前記負極との間に介在する非水電解液を備える非水電解液型二次電池であって、
 前記正極、前記負極及び前記非水電解液と、少なくとも二酸化炭素及び水とが、遮断された閉鎖構造を有し、
 放電電圧がリチウム電極基準で3V以下であり、
 前記非水電解液が、2種以上のアニオンを含むことを特徴とする。
 以下、本発明の非水電解液型二次電池(以下、単に二次電池ということがある)及び非水電解液型二次電池用の非水電解液について説明する。
 本発明の二次電池は、まず、正極と負極との間に介在し、これら電極間のイオン伝導を行う電解質として、非水電解液を用いることを特徴とする。
 また、本発明の二次電池は、放電電圧が3V以下(vs.Li/Li+)であることを特徴とする。上記したように、酸素(O)から酸素ラジカル(O )が生成する反応は、2~3V(vs.Li/Li+)の電位範囲で生じる。従って、本発明の電池は、電池内に酸素が存在すれば、放電時に酸素(O)から酸素ラジカル(O )が生成する反応が起こりやすい環境である。
 さらに、本発明の二次電池は、正極、負極及びこれら電極間に介在する非水電解液が、少なくとも二酸化炭素及び水と遮断された閉鎖構造を有している。上記したように、酸素ラジカル(O )は、二酸化炭素や水とも連鎖的な反応を起こしやすい。従って、本発明の電池は、酸素と共に二酸化炭素や水が存在する電池と比較して、酸素(O)が還元されて酸素ラジカル(O )を生成する反応が起こり易い。
 このように、酸素(O)から酸素ラジカル(O )が生成する反応が進行しやすい条件が揃った二次電池において、非水電解液の酸素ラジカル耐性を向上させるために、本発明者らが鋭意検討した結果、非水電解液に2種以上のアニオンを含有させることによって、酸素(O)から酸素ラジカル(O )が生成する電位(以下、酸素還元ピーク電位という)を低下させることができることを見出した。
 酸素還元ピーク電位が低下することは、非水電解液の酸素ラジカル(O )に対して安定な電位窓が広くなることを意味する。すなわち、本発明によれば、酸素ラジカル(O )による非水電解液中の有機溶媒の分解等、酸素ラジカル(O )に起因する副反応を抑制することができる。従って、本発明によれば、狙いの電極反応を選択的に進行させることが可能である。その結果、容量特性や耐久特性等の電池性能を向上させることができる。
 尚、非水電解液が2種以上のアニオン含むことによって酸素(溶存酸素)の還元ピーク電位が低下するメカニズムは、まだ明確には解明できていないが、次のように推測される。すなわち、種類の異なるアニオンは、通常、互いに大きさ(分子量)が異なる。このように複数種のアニオンを含有する非水電解液中において、酸素(O)には、これら大きさの異なるアニオンとの間に、大きさの異なる相互作用が生じることが推測される。これに対して、単一のアニオンを含有する非水電解液では、酸素(O)には、該アニオンとの間に単一の相互作用が生じることが推測される。このように、大きさの異なる相互作用が酸素(O)に作用することによって、単一の相互作用が作用する場合と比較して、酸素(O)の反応性が低下すると考えられる。
 また、複数種のアニオンを含有する非水電解液では、発生した酸素ラジカル(O )に対しても、複数のアニオン種との間には大きさの異なる反撥力が生じると推測される。このような酸素ラジカル(O )と複数種のアニオンとの間の反発力も、酸素ラジカル発生電位の低下に何らかの影響を与えていることが考えられる。
 尚、本発明において、正極、負極及び非水電解液と少なくとも二酸化炭素及び水とが遮断された閉鎖構造は、外部から電池内に二酸化炭素及び水が侵入することが防止されており、正極、負極及び非水電解液が、これら二酸化炭素及び水と接触することを回避できるような構造であれば、特に限定されない。例えば、外部との連通構造を有さない密閉された構造や、電極への活物質の供給源や排出口とは連通しているが、その他外部との連通はなく、該供給源や排出口からの二酸化炭素及び水の侵入が阻止された閉鎖された構造等が挙げられる。また、正極活物質として空気(外気)中の酸素を利用する空気電池の場合、外部と連通し外気中の酸素を電池内に供給することはできるが、外気からの二酸化炭素及び水の侵入が選択的に阻止されている構造等が挙げられる。
 ここで、二酸化炭素及び水の浸入を選択的に阻止する方法としては、例えば、二酸化炭素吸収性を有する材料及び水吸収性を有する材料を外部との連通口に配置する方法等が挙げられる。水吸収性を有する材料としては、例えば、乾燥剤として一般的に使用されている材料、例えば、塩化カルシウム、過酸化カリウム、炭酸カリウム等の潮解性を有する材料、或いは、シリカゲル等の水吸着性を有する材料が挙げられる。また、二酸化炭素吸収性を有する材料としては、例えば、リチウムシリケート、酸化亜鉛、ゼオライト、活性炭、アルミナ等が挙げられる。
 本発明において非水電解液とは、少なくとも、有機溶媒及び/又はイオン液体を含む非水溶媒と、電解質塩とを含有するものである。本発明の非水電解液は、2種以上のアニオンを含むことを特徴とするものであるが、これらアニオンの供給源(由来)は特に限定されない。アニオン供給源としては、例えば、電解質塩及びイオン液体が挙げられる。本発明の非水電解液の具体的な構成としては、例えば、(1)有機溶媒に、少なくとも、互いに異なるアニオンを含有する電解質塩を2種溶解させたもの、(2)有機溶媒に、少なくとも、2種以上のアニオンを含有する電解質塩を1種溶解させたもの、(3)1種のイオン液体に、少なくとも該イオン液体と異なるアニオンを含有する電解質塩を1種溶解させたもの、(4)2種以上のイオン液体に、1種以上の電解質塩を溶解させたもの、などが挙げられる。
 有機溶媒としては、使用する電解質塩を溶解することができれば特に限定されず、例えば、リチウム二次電池用電解液に使用できるものが挙げられる。具体的には、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、イソプロピオメチルカーボネート、プロピオン酸エチル、プロピオン酸メチル、γ-ブチロラクトン、酢酸エチル、酢酸メチル、テトラヒドロフラン、2-メチルテトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコージジエチルエーテル、アセトニトリル、ジメチルスルホキシド、ジエトキシエタン、ジメトキシエタン等が挙げられる。
 イオン液体もまた、使用する電解質塩を溶解することができれば特に限定されず、例えば、リチウム二次電池用電解液に使用できるものが挙げられる。具体的には、N,N,N-トリメチル-N-プロピルアンモニウムビス(トリフルオロメタンスルホニル)イミド[略称:TMPA-TFSI]、N-メチル-N-プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド[略称:PP13-TFSI]、N-メチル-N-プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミド[略称:P13-TFSI]、N-メチル-N-ブチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド[略称:P14-TFSI]、等の脂肪族4級アンモニウム塩;1-メチル-3-エチルイミダゾリウムテトラフルオロボレート[略称:EMIBF4]、1-メチル-3-エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド[略称:EMITFSI]、1-アリル-3-エチルイミダゾリウムブロマイド[略称:AEImBr]、1-アリル-3-エチルイミダゾリウムテトラフルオロボラート[略称:AEImBF4]、1-アリル-3-エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド[略称:AEImTFSI]、1,3-ジアリルイミダゾリウムブロマイド[略称:AAImBr]、1,3-ジアリルイミダゾリウムテトラフルオロボラート[略称:AAImBF4]、1,3-ジアリルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド[略称:AAImTFSI]等のアルキルイミダゾリウム4級塩等が挙げられる。
 これら有機溶媒及びイオン液体のうち、酸素ラジカル(O )と反応しにくいことから、アセトニトリル、ジメチルスルホキシド、及びジメトキシエタン等の有機溶媒、並びに、N-メチル-N-プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド、及びN-メチル-N-プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミド等のイオン液体から選ばれる少なくとも1種が好ましい。また、非水電解液中のアニオン源となる観点からは、イオン液体は好ましい溶媒である。尚、非水溶媒である有機溶媒及びイオン液体は、1種のみを用いてよいし、2種以上を組み合わせて用いてもよい。
 電解質塩としては、正極-負極間を伝導させたいイオンを伝導することができれば特に限定されず、二次電池の形態に応じて適宜選択することができる。
 非水電解液中の電解質塩の濃度は、使用する電解質塩にもよるが、通常、0.1~3.0モル/Lの範囲であることが好ましく、特に0.5~1.5モル/Lの範囲であることが好ましい。
 電解質塩が含有するアニオンは、特に限定されない。例えば、過塩素酸イオン(ClO )[分子量 約100]、六フッ化リン酸イオン(PF )[分子量 約145]、四フッ化ホウ酸イオン(BF )[分子量 約87]、下記式(1)~(2)で表されるアニオンが挙げられる。
 (SO2m+1 (1)
 式中、mは、1以上8以下であり、好ましくは1以上4以下である。
 (1)式で表される具体的なアニオンとしては、例えば、トリフルオロメタンスルホネート[略称:TfO、分子量:約149]等が挙げられる。
 [N(C2n+1SO)(C2p+1SO (2)
 式中、n及びpはそれぞれ1以上8以下、好ましくは1以上4以下であり、互いに同じであっても異なっていてもよい。
 式(2)で表される具体的なアニオンとしては、例えば、ビストリフルオロメタンスルホニルイミド([N(CFSO)])[略称:TFSA、分子量:約280]、ビスペンタフルオロエタンスルホニルイミド([N(CSO)])、トリフルオロメタンスルホニルノナフルオロブタンスルホニルイミド([N(CFSO)(CSO))])等が挙げられる。
 本発明において、非水電解液に含有される2種以上のアニオンの具体的な組み合わせは特に限定されるものではなく、適宜選択して組み合わせることができる。組み合わせの例としては、分子量の異なる、2種以上のアニオンの組み合わせが挙げられる。つまり、少なくとも、相対的に分子量が大きい第1のアニオン(以下、単に第1のアニオンということがある)と、相対的に分子量が小さい第2のアニオン(以下、単に第2のアニオンということがある)と、の組み合わせである。互いに分子量が異なる、すなわち、互いに分子の大きさが異なるアニオンを組み合わせることで、上記したような相互作用による酸素還元反応の抑制効果が得られると推測されるからである。
 尚、組み合わせて用いる、分子量の異なるアニオンは、第1のアニオン及び第2のアニオンの2種に限定されるものではなく、3種以上の分子量の異なるアニオンを用いてもよい。
 本発明において、第1のアニオンと第2のアニオンの具体的な組み合わせ、分子量の範囲、分子量の差等は、特に限定されない。酸素還元電位(=酸素ラジカル発生電位)の低下効果が特に高いことから、例えば、(1)第1のアニオンとして少なくともビストリフルオロメタンスルホニルイミド(TFSA)と、第2のアニオンとして少なくともトリメタンスルホネート(TfO)とを組み合わせて用いること、(2)第1のアニオンとして少なくともTFSAと、第2のアニオンとして少なくとも六フッ化リン酸イオン(PF )とを組み合わせて用いること、(3)第1のアニオンとして少なくともTFSAと、第2のアニオンとして少なくとも四フッ化ホウ酸イオン(BF )とを組み合わせて用いることが好ましい。中でも上記(1)の組み合わせが好ましい。
 また、非水電解液中における各アニオンの比率は、特に限定されず、適宜決定することができる。例えば、第1のアニオンと第2のアニオンとのモル比[(第1のアニオン):(第2のアニオン)]は、95:5~65:35の範囲であることが好ましく、特に92:8~65:35の範囲であることが好ましく、さらに92:8~88:12の範囲であることが好ましく、中でも90:10であることが好ましい。
 また、これらアニオンの対イオンであるカチオンとしては特に限定されず、例えば、非水電解液に要求されるイオン伝導種等に応じて適宜選択すればよい。
 以下、非水電解液以外の各構成部材を含めて、本発明についてさらに詳細に説明する。 本発明は、例えば、リチウム二次電池、硫黄電池、金属-空気電池(例えば、ナトリウム-空気電池、マグネシウム-空気電池、カルシウム-空気電池、カリウム-空気電池など)等の一般的な非水電解液を用いる二次電池に適用することができる。これら二次電池の中でも、エネルギー密度と出力が高いことから、本発明は、リチウム二次電池に適用することが好ましい。また、リチウム二次電池の中でも特に、リチウム-空気電池は、放電時に非水電解液中に酸素が溶解するため、本発明を適用することにより特に高い効果が得られる二次電池である。
 ここで、リチウム二次電池とは、放電時に負極から正極へリチウムイオンが移動し、充電時に正極から負極へリチウムイオンが移動することによって、二次電池として作動するものであり、金属リチウムからなる負極を用いるもの、グラファイト等のリチウムイオンのインターカレート及びデインターカレートが可能な材料からなる負極を用いるものも含む。さらには、リチウム-空気電池もリチウム二次電池に含まれる。
 尚、本発明において、各種二次電池の具体的な構成、例えば、正極、負極、各集電体、セパレータ、電池ケース等は、特に限定されず、一般的な構成を採用することができる。
 ここでは、リチウム-空気電池を例に、本発明の二次電池について、詳しく説明する。尚、本発明において、リチウム-空気電池の構成は、下記に示すものに限定されない。
 図1は、本発明の非水電解液型二次電池(リチウム-空気電池)の一形態例を示す断面図である。二次電池(リチウム-空気電池)1は、酸素を活物質とする正極(空気極)2、負極活物質を含有する負極3、正極2及び負極3の間でリチウムイオンの伝導を担う非水電解液4、正極2と負極3との間に配置され、これら電極間の電気的絶縁を確保するためのセパレータ5、正極2の集電を行う正極集電体6、並びに、負極3の集電を行う負極集電体7が、電池ケース8に収容されている。
 セパレータ5は、多孔質構造を有しており、非水電解液4がその多孔質内に含浸されている。非水電解液4は、正極2の内部、さらには必要に応じて負極3の内部にも含浸されている。
 正極2には、該正極2の集電を行う正極集電体6が電気的に接続されている。正極集電体6は、正極2への酸素供給が可能な多孔質構造を有している。負極3には、該負極3の集電を行う負極集電体7が電気的に接続されている。正極集電体6及び負極集電体7の端部のうち一方は、電池ケース8から突出しており、それぞれ、正極端子9、負極端子10として機能する。
 図1には図示していないが、二次電池1は、外部から電池ケース8内への水及び二酸化炭素の侵入が阻止された構造を有している。
 正極(空気極)は、通常、導電性材料を含む多孔質構造を有し、必要に応じて、結着材や、正極反応を促進する触媒を含有する。
 導電性材料としては、導電性を有するものであれば特に限定されるものではないが、例えば炭素材料等を挙げることができる。炭素材料として、具体的には、メソポーラスカーボン、グラファイト、アセチレンブラック、カーボンナノチューブ、カーボンファイバ等を挙げることができる。正極における導電性材料の含有量は、例えば、正極構成材料の合計量に対して、10重量%~99重量%の範囲内であることが好ましい。
 正極は、結着材を含有することが好ましい。結着材を含有することで、触媒や導電性材料が固定化され、サイクル特性に優れた正極を得ることができるからである。結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム等を挙げることができる。正極における結着材の含有量は、例えば、正極構成材料の合計量に対して40重量%以下、特に1重量%~10重量%の範囲内であることが好ましい。
 酸素の電気化学反応は、反応速度が遅いために過電圧が大きく、電池電圧が低下するという現象が見られる。そこで、正極は、酸素の電気化学反応の反応速度を増大させるために触媒を含有することが好ましい。
 触媒としては、リチウム-空気電池の正極(空気極)で使用可能なもの、例えば、コバルトフタロシアニン、マンガンフタロシアニン、ニッケルフタロシアニン、スズフタロシアニンオキサイド、チタニルフタロシアニン、ジリチウムフタロシアニン等のフタロシアニン系化合物;コバルトナフトシアニン等のナフトシアニン系化合物;鉄ポルフィリン等のポリフィリン系化合物;MnO、Co、NiO、V、Fe、ZnO、CuO、LiMnO、LiMnO、LiMn、LiTi12、LiTiO、LiNi1/3Co1/3Mn1/3、LiNiO、LiVO、LiFeO、LiFeO、LiCrO、LiCoO、LiCuO、LiZnO、LiMoO、LiNbO、LiTaO、LiWO、LiZrO、NaMnO、CaMnO、CaFeO、MgTiO、KMnO等の金属酸化物等が挙げられる。
 正極における触媒の含有量は、例えば、正極構成材料の合計量に対して、1重量%~90重量%の範囲内であることが好ましい。触媒の含有量が少なすぎると、充分な触媒機能が発揮されない可能性があり、一方、触媒の含有量が多すぎると、相対的に導電性材料の含有量が減り、その結果反応場が減少して電池容量の低下が生じる可能性があるからである。
 上記のような材料から構成される正極は、次のような方法によって作製することができる。例えば、導電性材料、結着材及び触媒を混合した正極合材を、正極集電体の表面にプレス成形する方法や、上記正極合材を溶媒に分散させたペーストを調製し、該ペーストを正極集電体の表面に塗布、乾燥する方法が挙げられる。
 正極の厚さは、リチウム-空気電池の用途等により異なるものであるが、例えば2μm~500μmの範囲内、特に5μm~300μmの範囲内であることが好ましい。
 正極集電体は、正極の集電を行う機能を有するものである。空気極集電体の材料としては、例えばステンレス、ニッケル、アルミニウム、鉄、チタン、カーボン等を挙げることができる。正極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。正極集電体の形状がメッシュ状等の多孔質形状であることが好ましい。正極への酸素供給効率に優れているからである。尚、メッシュ状の集電体を用いる場合、図1とは異なり、正極層の内部にメッシュ状の空気極集電体を配置することで、正極の集電効率を高めることもできる。また、メッシュ状の集電体を用いる場合、正極端子として機能する集電体端部は、集電効率の観点から箔状や板状等にしてもよい。
 負極は、少なくとも負極活物質を含有する。負極活物質としては、一般的な空気電池の負極活物質を用いることができ、特に限定されるものではない。負極活物質は、通常、リチウムイオン(金属イオン)をインターカレート・デインターカレート(吸蔵・放出)することができるものである。リチウム-空気電池の負極活物質としては、例えば金属リチウム;リチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等のリチウム合金;スズ酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物等の金属酸化物;スズ硫化物、チタン硫化物等の金属硫化物;リチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等の金属窒化物;並びにグラファイト等の炭素材料等を挙げることができ、中でも金属リチウム及び炭素材料が好ましく、高容量化の観点から金属リチウムがより好ましい。
 負極は、少なくとも負極活物質を含有してればよいが、必要に応じて、負極活物質を固定化する結着材を含有していてもよい。結着材の種類、使用量等については、上述した正極と同様であるため、ここでの説明は省略する。
 負極集電体は、負極層の集電を行う機能を有するものである。負極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えば銅、ステンレス、ニッケル、カーボン等を挙げることができる。上記負極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。
 セパレータは、正極及び負極の間に設置されるものである。セパレータとしては、正極と負極とを電気的に絶縁する機能を有し、且つ非水電解液を含浸可能な多孔質構造を有するものであれば特に限定されるものではない。例えば、ポリエチレン、ポリプロピレン等の多孔膜;樹脂不織布、ガラス繊維不織布等の不織布;及びリチウムポリマー電池において使用されているポリマー材料等を挙げることができる。
 本発明のリチウム-空気電池において使用される電解質は、2種以上のアニオンを含む非水電解液であって、非水溶媒に電解質(リチウム塩)を溶解したものである。非水溶媒である有機溶媒及びイオン液体としては、上述したものと同様であるため、ここでの説明は省略する。リチウム塩としては、例えば、上記にて電解質塩に含まれるアニオンとして例示したアニオンと、リチウムイオンとを含有するものが挙げられる。具体的には、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)及びLiAsF等の無機リチウム塩;並びにLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiN(CFSO)(CSO)等の有機リチウム塩等を挙げることができる。
 電池ケースの形状としては、上述した正極、負極、及び非水電解液を保持することができれば特に限定されるものではないが、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。
 (実施例1)
 <非水電解液の調製>
 まず、アセトニトリル(以下、ANと略する場合がある)に、テトラエチルアンモニウムビストリフルオロメタンスルホニルイミド(以下、TEATFSAと略する場合がある)を溶解させた第1の非水電解液(TEATFSAの濃度:0.1M)を調製した。
 一方、ANに、テトラエチルアンモニウムトリフルオロメタンスルホネート(以下、TEATfOと略する場合がある)を0.1M溶解させた第2の非水電解液を調製した。
 第1の非水電解液と第2の非水電解液とを、体積比95:5の割合で混合し、2種のアニオンを含む非水電解液を調製した。
 <非水電解液の評価>
 調製した非水電解液における酸素還元ピーク電位(O の発生電位)を、以下のようにして測定した。すなわち、非水電解液を純酸素(99.99%、1atm)で30分間バブリングして酸素を飽和させた後、下記構成の三極セルを用いて下記走査条件でサイクリックボルタモグラム(CV)測定を行った。結果を表1に示す。尚、表1には、Ag電極(Ag/Ag+)基準からLi電極(Li/Li+)基準に換算した電位を示す。
 ・三極セル : 作用極/対極/参照極 = 棒状グラッシーカーボン電極(BAS社製)/Niリボン(ニラコ社製)/Ag/Ag+型(BAS社製)
 ・走査条件 : 走査速度100mV/secで、自然電位から-1.7V(Ag電極基準)まで、その後0.3V(Ag電極基準)まで電位を走査した。
 (実施例2)
 実施例1において、第1の非水電解液と第2の非水電解液とを、体積比92:8で混合した以外は同様にして、2種のアニオンを含む非水電解液を調製し、CV測定を行った。結果を表1に示す。
 (実施例3)
 実施例1において、第1の非水電解液と第2の非水電解液とを、体積比90:10で混合した以外は同様にして、2種のアニオンを含む非水電解液を調製し、CV測定を行った。結果を表1及び図2に示す。尚、表1同様、図2には、Ag電極(Ag/Ag+)基準からLi電極(Li/Li+)基準に換算した電位を示す。
 (実施例4)
 実施例1において、第1の非水電解液と第2の非水電解液とを、体積比88:12で混合した以外は同様にして、2種のアニオンを含む非水電解液を調製し、CV測定を行った。結果を表1に示す。
 (実施例5)
 実施例1において、第1の非水電解液と第2の非水電解液とを、体積比85:15で混合した以外は同様にして、2種のアニオンを含む非水電解液を調製し、CV測定を行った。結果を表1に示す。
 (実施例6)
 実施例1において、第1の非水電解液と第2の非水電解液とを、体積比75:25で混合した以外は同様にして、2種のアニオンを含む非水電解液を調製し、CV測定を行った。結果を表1に示す。
 (実施例7)
 実施例1において、第1の非水電解液と第2の非水電解液とを、体積比65:35で混合した以外は同様にして、2種のアニオンを含む非水電解液を調製し、CV測定を行った。結果を表1に示す。
 (実施例8)
 実施例1において、第1の非水電解液と第2の非水電解液とを、体積比50:50で混合した以外は同様にして、2種のアニオンを含む非水電解液を調製し、CV測定を行った。結果を表1に示す。
 (実施例9)
 実施例1において、第1の非水電解液と第2の非水電解液とを、体積比25:75で混合した以外は同様にして、2種のアニオンを含む非水電解液を調製し、CV測定を行った。結果を表1に示す。
 (実施例10)
 実施例1において、第1の非水電解液と第2の非水電解液とを、体積比10:90で混合した以外は同様にして、2種のアニオンを含む非水電解液を調製し、CV測定を行った。結果を表1に示す。
 (実施例11)
 実施例3において、ANに、六フッ化リン酸テトラエチルアンモニウム(以下、TEAPF6と略する場合がある)を溶解させた第2の非水電解液(TEAPF6濃度0.1M)を調製した以外は、同様にして、2種のアニオンを含む非水電解液を調製し、CV測定を行った。結果を表1に示す。
 (実施例12)
 実施例3において、ANに、四フッ化ホウ酸テトラエチルアンモニウム(以下、TEABF4と略する場合がある)を溶解させた第2の非水電解液(TEABF4濃度0.1M)を調製した以外は、同様にして、2種のアニオンを含む非水電解液を調製し、CV測定を行った。結果を表1に示す。
 (比較例1)
 実施例1の第1の非水電解液を混合せずに電解液として用い、実施例1と同様にしてCV測定を行った。結果を表1及び図2に示す。
 (比較例2)
 実施例1の第2の非水電解液を混合せずに電解液として用い、実施例1と同様にしてCV測定を行った。結果を表1及び図2に示す。
 (比較例3)
 実施例11の第2の非水電解液を混合せずに電解液として用い、実施例1と同様にしてCV測定を行った。結果を表1に示す。
 (比較例4)
 実施例12の第2の非水電解液を混合せずに電解液として用い、実施例1と同様にしてCV測定を行った。結果を表1に示す。
 (評価結果)
Figure JPOXMLDOC01-appb-T000001
 表1及び図2に示すように、複数のアニオンを含有する実施例1~10の非水電解液は、1種のアニオンのみを含有する比較例1~2の非水電解液と比較して、酸素の還元ピーク電位が低下した。特に、相対的に分子量の大きなアニオン(ビス(トリフルオロメタンスルホニル)イミド)と相対的に分子量の小さなアニオン(トリメタンスルホネート)との比率(モル比)が、95:5~65:35の範囲内である実施例1~7、中でも92:8~88:12の範囲内である実施例2~4、さらに90:10である実施例3において、酸素還元ピーク電位が大きく低下した。
 また、実施例11と比較例3との対比においても同様に、2種のアニオンを含有する実施例11の非水電解液は、アニオンを1種のみ含有する比較例3の非水電解液と比較して、酸素の還元ピーク電位が低下した。
 また、実施例12と比較例4との対比においても同様に、2種のアニオンを含有する実施例12の非水電解液は、アニオンを1種のみ含有する比較例4の非水電解液と比較して、酸素の還元ピーク電位が低下した。
 1…二次電池
 2…正極
 3…負極
 4…非水電解液
 5…セパレータ
 6…正極集電体
 7…負極集電体
 8…電池ケース
 9…正極端子
 10…負極端子

Claims (16)

  1.  正極、負極、及び前記正極と前記負極との間に介在する非水電解液を備える非水電解液型二次電池であって、
     前記正極、前記負極及び前記非水電解液と、少なくとも二酸化炭素及び水とが、遮断された閉鎖構造を有し、
     放電電圧がリチウム電極基準で3V以下であり、
     前記非水電解液が、2種以上のアニオンを含むことを特徴とする、非水電解液型二次電池。
  2.  前記非水電解液型二次電池が、非水電解液型リチウム二次電池である、請求の範囲第1項に記載の非水電解液型リチウム二次電池。
  3.  前記正極が酸素を活物質とするリチウム-空気電池である、請求の範囲第2項に記載の非水電解液型二次電池。
  4.  前記非水電解液が、少なくとも、相対的に分子量が大きい第1のアニオンと、相対的に分子量が小さい第2のアニオンと、を含む、請求の範囲第1項乃至第3項のいずれかに記載の非水電解液型二次電池。
  5.  前記第1のアニオンと前記第2のアニオンとのモル比[(第1のアニオン):(第2のアニオン)が、95:5~65:35である、請求の範囲第4項に記載の非水電解液型二次電池。
  6.  前記第1のアニオンが、少なくともビストリフルオロメタンスルホニルイミドであり、前記第2のアニオンが、少なくともトリフルオロメタンスルホネートである、請求の範囲第4項又は第5項に記載の非水電解液型二次電池。
  7.  前記非水電解液が、アセトニトリル、ジメチルスルホキシド、ジメトキシエタン、N-メチル-N-プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド、及びN-メチル-N-プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミドから選ばれる少なくとも1種の非水溶媒に、電解質塩を溶解したものである、請求の範囲第1項乃至第6項のいずれかに記載の非水電解液型二次電池。
  8.  前記正極、前記負極及び前記非水電解液と、大気とが遮断された閉鎖構造を有する、請求の範囲第1項乃至第7項のいずれかに記載の非水電解液型二次電池。
  9.  正極、負極、及び前記正極と前記負極との間に介在する非水電解液を備える非水電解液型二次電池の非水電解液であって、
     2種以上のアニオンを含み、
     前記非水電解液型二次電池は、前記正極、前記負極及び前記非水電解液と、少なくとも二酸化炭素及び水と、が遮断された閉鎖構造を有すると共に、放電電圧がリチウム電極基準で3V以下であることを特徴とする非水電解液。
  10.  前記非水電解液型二次電池が、非水電解液型リチウム二次電池である、請求の範囲第9項に記載の非水電解液。
  11.  前記非水電解液型二次電池は、前記正極が酸素を活物質とするリチウム-空気電池である、請求の範囲第10に記載の非水電解液。
  12.  少なくとも、相対的に分子量が大きい第1のアニオンと、相対的に分子量が小さい第2のアニオンを含む、請求の範囲第9項乃至第11項のいずれかに記載の非水電解液。
  13.  前記第1のアニオンと前記第2のアニオンとのモル比[(第1のアニオン):(第2のアニオン)が、95:5~65:35である、請求の範囲第12項に記載の非水電解液。
  14.  前記第1のアニオンが、少なくともビストリフルオロメタンスルホニルイミドであり、前記第2のアニオンが、少なくともトリフルオロメタンスルホネートである、請求の範囲第12項又は第13項に記載の非水電解液。
  15.  前記非水電解液が、アセトニトリル、ジメチルスルホキシド、ジメトキシエタン、N-メチル-N-プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド、及びN-メチル-N-プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミドから選ばれる少なくとも1種の非水溶媒に、電解質塩を溶解したものである、請求の範囲第9項乃至第14項のいずれかに記載の非水電解液。
  16.  前記非水電解液型二次電池は、前記正極、前記負極及び前記非水電解液と、大気とが遮断された閉鎖構造を有する、請求の範囲第9項乃至第15項のいずれかに記載の非水電解液。
PCT/JP2010/052647 2010-02-22 2010-02-22 非水電解液型二次電池及び非水電解液型二次電池用非水電解液 WO2011101992A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2010346157A AU2010346157B2 (en) 2010-02-22 2010-02-22 Non-aqueous electrolyte type secondary battery, and non-aqueous electrolyte for non-aqueous electrolyte type secondary battery
JP2012500443A JP5397533B2 (ja) 2010-02-22 2010-02-22 非水電解液型二次電池及び非水電解液型二次電池用非水電解液
EP10846128.6A EP2541665B1 (en) 2010-02-22 2010-02-22 Non-aqueous liquid electrolyte secondary battery
CN2010800644386A CN102771000A (zh) 2010-02-22 2010-02-22 非水电解液型二次电池以及非水电解液型二次电池用非水电解液
US13/575,330 US20120315553A1 (en) 2010-02-22 2010-02-22 Non-aqueous liquid electrolyte secondary battery and non-aqueous liquid electrolyte for non-aqueous liquid electrolyte secondary battery
PCT/JP2010/052647 WO2011101992A1 (ja) 2010-02-22 2010-02-22 非水電解液型二次電池及び非水電解液型二次電池用非水電解液
KR1020127021860A KR101376366B1 (ko) 2010-02-22 2010-02-22 비수 전해액형 이차 전지 및 비수 전해액형 이차 전지용 비수 전해액

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052647 WO2011101992A1 (ja) 2010-02-22 2010-02-22 非水電解液型二次電池及び非水電解液型二次電池用非水電解液

Publications (1)

Publication Number Publication Date
WO2011101992A1 true WO2011101992A1 (ja) 2011-08-25

Family

ID=44482609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052647 WO2011101992A1 (ja) 2010-02-22 2010-02-22 非水電解液型二次電池及び非水電解液型二次電池用非水電解液

Country Status (7)

Country Link
US (1) US20120315553A1 (ja)
EP (1) EP2541665B1 (ja)
JP (1) JP5397533B2 (ja)
KR (1) KR101376366B1 (ja)
CN (1) CN102771000A (ja)
AU (1) AU2010346157B2 (ja)
WO (1) WO2011101992A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040326A1 (en) * 2011-09-15 2013-03-21 Robert Bosch Gmbh Stable electrolyte materials for li-air battery systems
JP2013058407A (ja) * 2011-09-08 2013-03-28 Toyota Motor Corp 金属空気電池及び金属空気電池の製造方法
JP2013062181A (ja) * 2011-09-14 2013-04-04 Honda Motor Co Ltd 金属酸素電池
JP2013196922A (ja) * 2012-03-21 2013-09-30 National Institute Of Advanced Industrial & Technology リチウムイオン電池用電解質
JP2015518249A (ja) * 2012-04-25 2015-06-25 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ リチウム/空気タイプのリチウム電気化学電池
JP2015138581A (ja) * 2014-01-20 2015-07-30 株式会社豊田中央研究所 非水電解液空気二次電池
US20150214701A1 (en) * 2012-10-05 2015-07-30 Thomas Alfred Paul Apparatus Containing A Dielectric Insulation Gas Comprising An Organofluorine Compound
JP2017168190A (ja) * 2016-03-14 2017-09-21 株式会社豊田中央研究所 リチウム空気電池
WO2020209274A1 (ja) * 2019-04-08 2020-10-15 ARM Technologies株式会社 レドックスフロー電池用負極電解液及びレドックスフロー電池
JP2022505581A (ja) * 2018-11-07 2022-01-14 エルジー・ケム・リミテッド リチウム二次電池用正極材の触媒、及び、それを含むリチウム二次電池

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931028A (zh) * 2011-11-10 2014-07-16 住友电气工业株式会社 钠电池用负极活性物质、负极和钠电池
EP2629352A1 (en) 2012-02-17 2013-08-21 Oxis Energy Limited Reinforced metal foil electrode
CN103996891B (zh) * 2013-02-19 2017-03-08 中国科学院宁波材料技术与工程研究所 锂‑空气电池电解液体系
ES2671399T3 (es) 2013-03-25 2018-06-06 Oxis Energy Limited Un método para cargar una celda de litio-azufre
EP2784850A1 (en) 2013-03-25 2014-10-01 Oxis Energy Limited A method of cycling a lithium-sulphur cell
ES2546609T3 (es) 2013-03-25 2015-09-25 Oxis Energy Limited Un método para cargar una celda de litio-azufre
DE102013206740A1 (de) * 2013-04-16 2014-10-16 Robert Bosch Gmbh Alkali-Sauerstoff-Zelle mit Titanat-Anode
JP5418714B1 (ja) * 2013-07-09 2014-02-19 宇部興産株式会社 非水電解液キット及び非水電解液の調製方法
GB2517228B (en) 2013-08-15 2016-03-02 Oxis Energy Ltd Laminate cell
CA2932973A1 (en) * 2013-12-17 2015-06-25 Oxis Energy Limited A lithium-sulphur cell
CA2932977A1 (en) 2013-12-17 2015-06-25 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
CA2950513C (en) 2014-05-30 2023-04-04 Oxis Energy Limited Lithium-sulphur cell comprising dinitrile solvent
US9799881B2 (en) * 2015-04-27 2017-10-24 Toyota Motor Engineering & Manufacturing North America, Inc. Alloys as cathode materials for lithium-air batteries
CN112216871B (zh) * 2019-07-10 2022-04-15 比亚迪股份有限公司 一种锂离子电池电解液及其制备方法、锂离子电池和电池模组
KR20220089368A (ko) * 2020-12-21 2022-06-28 삼성전자주식회사 양극 재료, 이를 포함하는 양극 및 이를 포함하는 리튬공기전지
US11769881B1 (en) * 2022-02-17 2023-09-26 Srigouri Oruganty Ion-based electrochemical cell formulations and methods of preparation thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100309A (ja) 2001-09-25 2003-04-04 Toshiba Corp 非水電解質電池およびその製造方法
JP2004119278A (ja) 2002-09-27 2004-04-15 Toshiba Corp 非水電解質空気電池
JP2005142047A (ja) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008084689A (ja) * 2006-09-27 2008-04-10 Toshiba Corp 非水電解質電池、電池パック及び自動車
JP2009289450A (ja) * 2008-05-27 2009-12-10 Toyota Motor Corp 空気電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114070A (en) * 1997-06-19 2000-09-05 Sanyo Electric Co., Ltd. Lithium secondary battery
US6168889B1 (en) * 1998-12-10 2001-01-02 Micron Technology, Inc. Battery electrolytes and batteries
JP3617447B2 (ja) * 1999-12-01 2005-02-02 松下電器産業株式会社 リチウム二次電池
JP2002270231A (ja) * 2001-03-14 2002-09-20 Sony Corp 電 池
JP2002298914A (ja) * 2001-03-30 2002-10-11 Toshiba Corp 非水電解質二次電池
US8652692B2 (en) * 2005-11-23 2014-02-18 Polyplus Battery Company Li/Air non-aqueous batteries
JP2008117891A (ja) * 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd 電気化学エネルギー蓄積デバイス
US20090053594A1 (en) * 2007-08-23 2009-02-26 Johnson Lonnie G Rechargeable air battery and manufacturing method
CN101510622B (zh) * 2008-02-14 2012-07-04 比亚迪股份有限公司 一种用于锂离子二次电池的电解液及含有该电解液的电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100309A (ja) 2001-09-25 2003-04-04 Toshiba Corp 非水電解質電池およびその製造方法
JP2004119278A (ja) 2002-09-27 2004-04-15 Toshiba Corp 非水電解質空気電池
JP2005142047A (ja) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008084689A (ja) * 2006-09-27 2008-04-10 Toshiba Corp 非水電解質電池、電池パック及び自動車
JP2009289450A (ja) * 2008-05-27 2009-12-10 Toyota Motor Corp 空気電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2541665A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058407A (ja) * 2011-09-08 2013-03-28 Toyota Motor Corp 金属空気電池及び金属空気電池の製造方法
JP2013062181A (ja) * 2011-09-14 2013-04-04 Honda Motor Co Ltd 金属酸素電池
US10116021B2 (en) 2011-09-15 2018-10-30 Robert Bosch Gmbh Stable electrolyte materials for Li-air battery systems
WO2013040326A1 (en) * 2011-09-15 2013-03-21 Robert Bosch Gmbh Stable electrolyte materials for li-air battery systems
JP2013196922A (ja) * 2012-03-21 2013-09-30 National Institute Of Advanced Industrial & Technology リチウムイオン電池用電解質
JP2015518249A (ja) * 2012-04-25 2015-06-25 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ リチウム/空気タイプのリチウム電気化学電池
US20150214701A1 (en) * 2012-10-05 2015-07-30 Thomas Alfred Paul Apparatus Containing A Dielectric Insulation Gas Comprising An Organofluorine Compound
US9590397B2 (en) * 2012-10-05 2017-03-07 Abb Technology Ag Apparatus containing a dielectric insulation gas comprising an organofluorine compound
JP2015138581A (ja) * 2014-01-20 2015-07-30 株式会社豊田中央研究所 非水電解液空気二次電池
JP2017168190A (ja) * 2016-03-14 2017-09-21 株式会社豊田中央研究所 リチウム空気電池
JP2022505581A (ja) * 2018-11-07 2022-01-14 エルジー・ケム・リミテッド リチウム二次電池用正極材の触媒、及び、それを含むリチウム二次電池
JP7286764B2 (ja) 2018-11-07 2023-06-05 エルジー エナジー ソリューション リミテッド リチウム二次電池用正極材の触媒、及び、それを含むリチウム二次電池
US11876227B2 (en) 2018-11-07 2024-01-16 Lg Energy Solution, Ltd. Lithium secondary battery
WO2020209274A1 (ja) * 2019-04-08 2020-10-15 ARM Technologies株式会社 レドックスフロー電池用負極電解液及びレドックスフロー電池

Also Published As

Publication number Publication date
JPWO2011101992A1 (ja) 2013-06-17
AU2010346157A1 (en) 2012-08-30
JP5397533B2 (ja) 2014-01-22
US20120315553A1 (en) 2012-12-13
CN102771000A (zh) 2012-11-07
AU2010346157B2 (en) 2013-06-27
KR20120118848A (ko) 2012-10-29
EP2541665A4 (en) 2014-03-19
KR101376366B1 (ko) 2014-03-20
EP2541665A1 (en) 2013-01-02
EP2541665B1 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5397533B2 (ja) 非水電解液型二次電池及び非水電解液型二次電池用非水電解液
JP5454692B2 (ja) 空気極、金属空気電池及び金属空気電池用空気極の製造方法
US9231269B2 (en) Non-aqueous electrolyte air battery
JP5163709B2 (ja) 金属空気電池用液状空気極、及び当該液状空気極を備える金属空気電池
JP5273256B2 (ja) 非水電解質および金属空気電池
KR20140004640A (ko) 충전가능한 전기화학 에너지 저장 장치
JP5410277B2 (ja) シアノ基を有する非水電解液添加剤及びこれを用いた電気化学素子
KR20030079736A (ko) 전해액용 재료 및 이의 용도
JP5556618B2 (ja) リチウム空気電池
JP2013118145A (ja) 金属空気二次電池
EP2835859B1 (en) Electrolyte solution for lithium-air batteries, and lithium-air battery comprising the same
CN114665150A (zh) 一种可室温运行的锂金属固态电池及其制备方法
US20220255134A1 (en) Stable electrolyte based on a fluorinated ionic liquid and its use in high current rate lithium-air batteries
JP4998392B2 (ja) 非水電解質電池
US20240213527A1 (en) Battery cell
JP2009199879A (ja) リチウムガス電池及び酸化還元触媒
Vineeth et al. 9 Metal-Air Batteries
Batteries et al. 20 Electrolyte for
EP3742530A1 (en) Negative electrode, half secondary battery and secondary battery
KR20240089421A (ko) 아지로다이트 유형 구조를 갖는 무기 화합물, 그 제조 방법, 및 전기화학 응용 분야에서의 그 용도
JP2014002915A (ja) 金属−空気二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064438.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846128

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012500443

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010846128

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010346157

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13575330

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127021860

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010346157

Country of ref document: AU

Date of ref document: 20100222

Kind code of ref document: A