WO2011099070A1 - 還元鉄の製造方法及び銑鉄の製造方法 - Google Patents

還元鉄の製造方法及び銑鉄の製造方法 Download PDF

Info

Publication number
WO2011099070A1
WO2011099070A1 PCT/JP2010/000846 JP2010000846W WO2011099070A1 WO 2011099070 A1 WO2011099070 A1 WO 2011099070A1 JP 2010000846 W JP2010000846 W JP 2010000846W WO 2011099070 A1 WO2011099070 A1 WO 2011099070A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
content
gas
raw material
reduced iron
Prior art date
Application number
PCT/JP2010/000846
Other languages
English (en)
French (fr)
Inventor
内藤誠章
国友和也
金井則之
山村雄一
木村寛
三輪隆
小野透
磯部誠
川村拓史
篠竹昭彦
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to PCT/JP2010/000846 priority Critical patent/WO2011099070A1/ja
Publication of WO2011099070A1 publication Critical patent/WO2011099070A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the present invention relates to a method for producing reduced iron by directly reducing an iron oxide raw material mainly composed of iron oxide (mainly Fe 2 O 3 ) with a reducing gas; and the produced reduced iron is sintered ore, pellets, briquettes , And a method for producing pig iron by using it as a raw material for iron making to replace scrap, granule, shaped iron and the like.
  • iron oxide raw material mainly composed of iron oxide (mainly Fe 2 O 3 )
  • a method of directly reducing (sometimes referred to as “iron oxide raw material”) is known (see, for example, Patent Document 1).
  • H 2 O or CO 2 is added to natural gas and reformed in the presence of a catalyst such as Ni, Co, Fe, etc. (the following (1) and (2) Reducing gas with increased CO concentration and H 2 concentration is used.
  • the gas generated when coal is gasified contains the same reducing components (CO, H 2 ) as natural gas or reformed natural gas.
  • gasification of cheap and cheap steam coal (CO, H 2 and / or gas containing H 2 S as a main component is obtained) in a gasification furnace, and production of reduced iron using this gas as a reducing gas A method has also been proposed (see Patent Documents 2 and 3).
  • the reducing gas is heated to a predetermined temperature or more and introduced into the furnace, and the reducing gas It is necessary to adjust the amount ratio of H 2 and CO in the range to compensate for the decrease in the amount of heat due to the endothermic reaction of the above formula (3) by the exotherm of the exothermic reaction of the above formula (4).
  • the reduction conditions differ depending on the reduction process, for example, in the direct reduction method (MIDREX method [refer to Patent Documents 9 to 11]) using a vertical vertical shoft furnace, (a) massive iron ore, (b) powdery iron ore When reducing iron is produced by reducing pellets or briquettes agglomerated stones and / or (c) sintered ore, the temperature of the reducing gas is usually 800 to 1000 ° C., and H 2 in the reducing gas. The total concentration of CO is about 90 mol%, and the molar ratio: H 2 / CO is about 1.5.
  • blast furnace gas hereinafter sometimes referred to as “BFG”
  • COG coke oven gas
  • LDG converter gas
  • COG and LDG contain 50 mol% or more of CO and H 2 in total, so they are gases that can function as a reducing gas, but have a large calorific value (see Table 1). Currently, it is used as a fuel for heating furnaces and the like in the iron making process (see FIG. 1).
  • BFG has a total content of CO and H 2 lower than 30 mol%, it cannot function as a reducing gas by itself, but it is currently used as a fuel for a heating furnace in an iron manufacturing process ( (See FIG. 1).
  • the by-product gas generated in the iron-making process is currently diffused into the atmosphere as a combustion exhaust gas containing a large amount of CO 2 without utilizing the inherent reduction ability.
  • the by-product gas generated in the iron making process is currently a CO 2 emission source without utilizing the inherent reduction ability. Therefore, the present invention produces reduced iron using a reducing gas containing at least part of a by-product gas generated in the iron making process, and reduces the amount of CO 2 released in the iron making process, thereby preventing global warming.
  • the challenge is to contribute to
  • the inventors of the present invention have intensively studied a method for solving the above-described problems. As a result, a plurality of by-product gases generated in the iron making process are modified as necessary and mixed as appropriate, and the ratio of H 2 content [% by mass] to CO content [% by mass]: H 2 / It has been found that if the CO is adjusted within a predetermined range, a reducing gas having a reducing ability necessary for producing reduced iron can be produced.
  • the amount of CO 2 generated in the iron making process can be reduced by using the reduced iron produced by using the reducing gas containing at least a part of the by-product gas as an iron making raw material.
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
  • the method for producing reduced iron according to the present invention is a method for producing reduced iron by reducing an iron oxide raw material with a reducing gas, and a by-product gas containing at least one of H 2 and CO generated in the iron making process. And a step of supplying the reducing gas to a reduced iron manufacturing apparatus.
  • the reducing gas is a gas generated from a reducing furnace, a gas obtained by reforming natural gas, and a gas obtained by gasifying a general coal in a gasifier. And at least one of the above.
  • the by-product gas includes a by-product gas generated from at least one of a blast furnace and a coke-filled melting furnace, and a by-product gas generated from the coke oven; And at least one of by-product gas generated from the converter.
  • two or more by-product gases are selected from the by-product gases having different at least one of H 2 content and CO content.
  • mixed Te containing H 2 ratio [mol%] and CO content [mol%], as well as adjust the ratio of H 2 content [mol%] and CO content [mol%] H 2 / CO And may further include a step of producing a reducing gas.
  • the method for producing reduced iron according to the above (1) includes one or two or more by-product gases out of the by-product gases in which at least one of the H 2 content and the CO content is different.
  • the method for producing reduced iron according to (1) described above is one or two or more by-products selected from the by-product gases having different at least one of H 2 content and CO content rate. From the raw gas and the reformed by-product gas modified by adding at least one of H 2 O and CO 2 to the by-product gas and having different at least one of H 2 content and CO content, One or more by-product gases are selected and mixed, and the H 2 content [mol%] and the CO content [mol%], and the H 2 content [mol%] and the CO content [mol %]] May be further included to adjust the H 2 / CO ratio to produce a reducing gas.
  • At least one of the H 2 content and the CO content is selected from different by-product gases
  • the by-product gas may be obtained by removing one or more of N 2 , H 2 O, and CO 2 contained in the by-product gas in advance.
  • the reduced iron production apparatus may be a shaft furnace.
  • the iron oxide raw material charged into the shaft furnace is sintered ore in which powdered iron ore is agglomerated: 20% by mass or more; And / or one or more of pellets and briquettes agglomerated from the powdered iron ore.
  • a H 2 / CO of the reducing gas, and H 2 / CO mixing ratio of sintered ore in the iron oxide in the raw material (the mass%), Reduction resistance powder of the iron oxide raw material for maintaining stable operation, which is determined according to the secondary hematite content (mass%) in the sintered ore and the porosity (volume%) in the sintered ore.
  • H 2 / CO of the reducing gas is changed to (i) H 2 / CO and the blending ratio (mass%) of sintered ore in the iron oxide raw material. ), The secondary hematite content (mass%) in the sintered ore, and the porosity (volume%) of the iron oxide raw material for maintaining stable operation determined according to the porosity (volume%) in the sintered ore.
  • the reducible JIS-RI (%) is acceptable based on the relationship with the permissible limit value (lower limit) of the reducible JIS-RI (%) of the iron oxide raw material to achieve 60% or more.
  • the method for producing pig iron according to the present invention includes charging at least a part of the reduced iron produced by the method for producing reduced iron described in (1) above into a smelting reduction furnace to melt and reduce the pig iron. The manufacturing process is included.
  • the method for manufacturing pig iron according to (12) may further include a step of charging at least a part of the reduced iron in place of at least a part of scrap, granule, and shaped iron. .
  • the smelting reduction furnace is any one of a blast furnace, a coke-filled melting furnace, an electric furnace, a converter, and a kneading furnace. Also good.
  • the by-product gas generated in the iron making process can be used effectively for the production of reduced iron, and the amount of CO 2 generated in the iron making process is less than the amount of CO 2 generated in the blast furnace method. can do.
  • Oxide raw material, sintered ore alone, pellets alone and in the case of lump ore itself is a diagram showing an example of the relationship between the molar ratio H 2 / CO and reduction degradation index of the reducing gas.
  • the molar ratio H 2 / CO of sintered ore mixing ratio and the reducing gas in the oxide starting material is a diagram showing an example of the relationship between the reduction degradation index.
  • FIG. 1 is a diagram showing an example of the relationship between the molar ratio H 2 / CO in the reducing gas.
  • the relationship between the metallization rate (%) and the molar ratio H 2 / CO of the reducing gas when sintered ore, pellets, and lump ore are used alone as iron oxide raw materials and reduced at 900 ° C. is shown.
  • FIG. It is a figure which shows the relationship between the compounding ratio of the sintered ore in an iron oxide raw material, and the metallization rate (%) after reduction
  • JIS-RI and molar ratio satisfying 60% metallization rate and air permeability (upper powder rate upper limit) when reduced at a reducing gas temperature of 1000 ° C using an iron oxide raw material mixed with sintered ore and lump ore is a diagram showing the relationship between H 2 / CO.
  • JIS-RI and molar ratio H satisfying 60% metallization rate and air permeability (upper powder rate in the furnace) when reduced at a reducing gas temperature of 1000 ° C using iron oxide raw material mixed with sintered ore and pellets It is a figure which shows the relationship with 2 / CO.
  • FIG. 1 shows a conventional usage mode of by-product gas generated in an iron making process, taking a blast furnace, a coke oven, and a converter as examples.
  • blast furnace gas, coke oven gas, and converter gas are conventionally used as fuels for hot blast furnaces, heating furnaces, private power plants, etc. in the iron making process.
  • the present invention relates to a method for producing reduced iron in which reduced iron oxide raw material is produced with a reducing gas to produce reduced iron. (I) producing a reducing gas containing at least a part of a by-product gas containing H 2 and / or CO generated in the iron making process; (Ii) supplying the reducing gas to the reduced iron production apparatus; This is the basic technical idea.
  • the by-product gas of the present invention may be any by-product gas that is generated in the iron making process and contains H 2 and / or CO.
  • the generation source is not limited, but in terms of being obtained in large quantities, By-product gas generated from a coke-filled melting furnace, by-product gas generated from a coke oven, and by-product gas generated from a converter are preferred.
  • the by-product gas selected from the by-product gases having different contents of H 2 and / or CO is included in the reformed by-product gas in advance.
  • a reducing gas is produced by removing one or more of N 2 , H 2 O, and CO 2 .
  • gas generated from reduced iron manufacturing equipment gas obtained by reforming natural gas, and general coal were gasified in a gasifier.
  • generated outside steelmaking processes such as gas, may be mixed reducing gas containing H 2 and / or CO.
  • the reducing ability of the reducing gas depends on the H 2 content [mass%] and the CO content [mass%], and proceeds by an endothermic reaction and an exothermic reaction (see the above formulas (3) and (4)).
  • the ratio of H 2 content [% by mass] to CO content [% by mass]: H 2 / CO (hereinafter sometimes simply referred to as “H 2 / CO”) needs to be adjusted within a predetermined range. It is.
  • FIG. 2A and FIG. 2B show a reduction equilibrium diagram of iron oxide.
  • FIG. 2A is a reduction equilibrium diagram of iron oxide and CO when a CO—CO 2 gas is used.
  • FIG. 2B is a reduction equilibrium diagram of iron oxide and H 2 when an H 2 —H 2 O-based gas is used.
  • the reducibility (reduction reaction rate) of iron oxide depends on the content of CO and / or H 2 (reducing component) in the reducing gas.
  • M2 (mol%) When a reducing gas in which CO—CO 2 gas and H 2 —H 2 O gas are mixed at M1 (mol%): M2 (mol%) is used as the reducing gas, the temperature is similarly 1000 ° C.
  • the CO content in the reducing gas required for reducing to Fe is 72 ⁇ M1 / 100 (mol%), and the H 2 content is 55 ⁇ M2 / 100 (mol%).
  • the reducibility of the iron oxide raw material can be ensured by adjusting the CO content and the H 2 content of the reducing gas.
  • the molar ratio H 2 / CO also affects the reduced powdering characteristics of the iron oxide raw material charged into the reduction furnace.
  • iron oxide raw material contains sintered ore that is more easily reduced to powder than lump iron ore and pellets, in order to maintain good air permeability of the reduction furnace and perform stable operation, iron oxide It is desirable to set in consideration of the reduction powder resistance index RDI (%) of the raw material and further the reducible JIS-RI (%). This point will be described later.
  • FIG. 3 shows an example of the usage mode of the present invention.
  • blast furnace gas has a low content of CO and H 2 , so it is reformed with H 2 O and / or CO 2 , and
  • coke oven gas ( COG) and converter gas (LDG) are reformed with H 2 O and / or CO 2 as necessary
  • the reformed by-product gas is referred to as “reformed by-product gas”.
  • One or more of the by-product gas and the reformed by-product gas are appropriately selected and mixed and supplied to the reduced iron production apparatus.
  • the blast furnace gas (BFG), coke oven gas (COG), and converter gas (LDG) are preliminarily formed of N 2 , H 2 O, and CO 2 contained in the by-product gas before reforming. It is preferable to remove one type or two or more types.
  • the usage destination is determined according to the result of gas analysis.
  • it may be mixed with existing by-product gas, or may be mixed with existing by-product gas after reforming.
  • blast furnace gas (BFG) has less CO and H 2 than COG and LDG, it should be used after reforming with H 2 O and / or CO 2. preferable.
  • gas components especially CO and H 2
  • by-product gases such as BFG, COG, and LDG are appropriately analyzed to grasp the gas components (not shown), and a plurality of by-product gases and reforming are obtained.
  • the ratio of H 2 content [mol%] to CO content [mol%]: reducing gas with a H 2 / CO within a predetermined range is produced and reduced Supply to iron production equipment.
  • the component analysis of the by-product gas is desirably performed continuously, but may be performed intermittently when the furnace operation is stable and there is no significant change in the component composition.
  • FIG. 3 shows a usage mode in which BFG and COG are mixed. In this case, if necessary, one or both of BFG and COG may be modified.
  • FIG. 3 shows a utilization mode in which LDG and COG are mixed. In this case, one or both of LDG and COG may be modified as necessary.
  • FIG. 3 shows a usage mode in which BFG and LDG are mixed. Also in this case, one or both of BFG and LDG may be modified as necessary.
  • FIG. 3 shows a utilization mode in which BFG, COG, and LDG are mixed. Also in this case, one or more of BFG, COG and LDG may be modified as necessary.
  • a reducing gas having H 2 / CO within a predetermined range may be obtained.
  • the usage mode is not limited to the usage mode shown in FIG. As mentioned above, you may mix the gas provided with the reduction
  • the mixing ratio of the by-product gas and / or the reformed by-product gas is adjusted, and the reducing gas H 2 / CO is adjusted within a predetermined range.
  • one or two or more by-product gases selected from the by-product gases having different contents of H 2 and / or CO generated in the iron making process are selected and / or mixed. Then, H 2 O or CO 2 is added to this by-product gas and reformed by heating in the presence of a catalyst such as Fe, Ni, Co, etc., preferably after the reforming, nitrogen is removed and reduced Gas may be produced.
  • a catalyst such as Fe, Ni, Co, etc.
  • reforming is performed by adjusting the mixing ratio of the by-product gas and H 2 O or CO 2 , and preferably, before reforming, N 2 , H 2 O and CO contained in the by-product gas in advance. removing the one or more 2 to adjust the molar ratio H 2 / CO in the reducing gas within a predetermined range.
  • the reduced iron production apparatus used in the present invention may be any apparatus that can reduce the iron oxide raw material, and is not limited to a reduction apparatus having a specific structure, but a shaft furnace used in the prior art is preferable.
  • the iron oxide raw material only needs to contain mainly Fe 2 O 3 , and the form thereof is lump iron ore (lump ore) and powder iron ore (including iron-containing dusts) agglomerated and sintered. Pellet obtained by agglomerating ore and powdered iron ore (including iron-containing dusts) is preferable.
  • the iron oxide raw material for example, sintered ore agglomerated powdered iron ore: 20% by mass or more, and the remainder: massive iron ore and powdered iron ore
  • the iron oxide raw material which consists of 1 type or 2 types or more of the pellet and briquette which agglomerated this can be used.
  • Pellets and briquettes agglomerated powdered iron ore are classified into fired and non-fired ones, respectively.
  • the non-fired pellets further include carbon-containing pellets that contain carbon and have improved reducibility
  • the non-fired briquettes also contain carbon and contain carbon that has improved reducibility. There is a briquette.
  • Sintered ore has a higher content of secondary hematite (Fe 2 O 3 ) and higher porosity than other agglomerated or massive iron ores, and is easily reduced to powder. For this reason, the content (mass%) of the sintered ore in the iron oxide raw material, the secondary hematite content (mass%) in the sintered ore, and the porosity (volume%) in the sintered ore are oxidized. This affects the anti-reduction powder index RDI (%) of the iron raw material and the air permeability in the reduction furnace.
  • RDI anti-reduction powder index
  • FIG. 4 shows the relationship between the secondary hematite content and the sintered ore porosity in the sintered ore and the reduced powdering rate.
  • the reduction temperature was set to 550 ° C. at which reduction powdering easily proceeds, and the reduction powdering characteristics of the sintered ore were investigated.
  • the RDI (%) of the sinter increases as the secondary hematite content and the sinter porosity increase in the single sinter (that is, the reduced powder in the reduction furnace). Conversion rate increases).
  • the reduction powder resistance index RDI (%) is estimated in advance based on the secondary hematite content and sintered ore porosity in the sintered ore. It is necessary to keep it.
  • the reduction powder resistance index RDI (%) is measured according to JIS M8720. That is, the sintered ore sample 500g was sieved to 16-20Mm, under 550 °C, CO: 30%, N 2: in 70% of the reducing gas was 30 minutes reduction, then, the rotating drum After filling and rotating 900 times, sieving and displaying as a percentage (-2) of -2.83 mm.
  • the reduction powder resistance index RDI (%) of iron oxide raw materials must be maintained at a required level.
  • the mixing ratio (mass%) of the sintered ore in the iron oxide raw material, the secondary hematite content (mass%) in the sintered ore, and the porosity (volume%) in the sintered ore The relationship between the allowable limit value (upper limit value) of the anti-reduction powder index RDI (%) determined in accordance with the H 2 / CO of the reducing gas is determined in advance, and based on this relationship, a predetermined range of H 2 / CO Is set so that the reduction dust resistance index RDI (%) is equal to or less than an allowable limit value (upper limit value).
  • FIG. 5 shows the molar ratio H 2 / reducing gas in the case where the component composition and properties shown in Table 2 are reduced at 550 ° C. using each of the sintered ore, pellets, and block ore as the iron oxide raw material.
  • restoration powdering rate (%) is shown.
  • the reducible JIS-RI also increases in the order of lump ore ⁇ RDI35 sintered ore ⁇ pellet ⁇ RDI45 sintered ore.
  • the reduction powder resistance index RDI of the sintered ore varies depending on properties such as secondary hematite and porosity in the sintered ore. For this reason, as shown in Table 2, the reduction powder resistance index RDI (%) increases in the order of lump ore ⁇ pellet ⁇ RDI35 sintered ore ⁇ RDI45 sintered ore.
  • the reduced powdering rate (%) of the pellet is RDI35 sinter and RDI45 sinter. It becomes a value smaller than the reduction resistance index RDI (%) of the ore.
  • Fig. 6 shows reduction-resistant powdering of iron oxide raw material to maintain stable operation of the reduction furnace when supplying iron oxide raw material containing sintered ore to the shaft furnace and reducing at a reducing gas temperature of 1000 ° C.
  • An example of the relationship between the allowable limit value (upper limit value) of the index RDI and the reducing gas H 2 / CO is shown.
  • the reduction powder resistance index RDI of the iron oxide raw material decreases. Unless the molar ratio H 2 / CO of the reducing gas is lowered so as to be equal to or less than the allowable limit value (upper limit value) of the reduction resistance index RDI of the iron raw material, stable operation cannot be performed.
  • FIG. 7 an iron oxide raw material (500 g) appropriately blended with lump ore or pellets and sintered ore shown in Table 2 at 550 ° C. for 90 minutes, with a reducing gas of H 2 / CO: 1.5 or 1.0.
  • the relationship between the blending ratio of sintered ore and the reduced powdering rate when reduced is shown. After reduction, the powder rate of -3 mm was measured and used as the reduced powder rate. From FIG. 7, it can be seen that the reduction powdering rate increases as the blending ratio of sintered ore in the iron oxide raw material and / or H 2 / CO increases.
  • the reduced powdering rate (%) of the iron oxide raw material is the allowable upper limit value.
  • the iron oxide raw material containing RDI35 sintered ore and massive ore (see Table 2) is charged into a shaft furnace and reduced at a reduction temperature of 1000 ° C.
  • the relationship between the permissible limit value (upper limit value) (%) of the reduction powdering rate for maintaining stable operation and the reducing gas H 2 / CO is shown.
  • the RDI of the oxide raw material is 15 or more (sintering ore blending ratio: 20% or more) Equivalent), the reduction powdering rate increases in the reduction process (hematite-> magnetite) and the operation becomes unstable.
  • Sintered ore has a high porosity and secondary hematite content and high RDI compared to lump ore and pellets, so if a large amount of sintered ore is blended in the iron oxide raw material, the iron oxide raw material itself Since RDI becomes high, it is necessary to make H 2 / CO of the reducing gas 1.5 or less.
  • LDG, COG reformed gas, and BFG reformed gas are mixed to adjust the reducing gas H 2 / CO to 1.5 or less.
  • the reducing gas H 2 / CO is adjusted to 1.1. By this adjustment, the reduced powdering rate is reduced and stable operation can be performed.
  • the reducing gas H 2 / CO is adjusted so that the reduction powderization rate in the furnace becomes an allowable limit value (upper limit value) at which stable operation is possible.
  • the relationship between the allowable limit value (upper limit value) of the reduction dust resistance index RDI of the iron oxide material mixed with sintered ore and the reducing gas H 2 / CO is obtained in advance, and based on this relationship, the iron oxide material If the reduction gas H 2 / CO is adjusted so that the reduction powder resistance index RDI of the steel is below the allowable limit value (upper limit value) of reduction powdering, the reduction operation in the shaft furnace can be continued stably. be able to.
  • the reducible JIS-RI (%) of the iron oxide raw material affects the metallization rate of the obtained reduced iron, when the metallization rate is increased, the reducible JIS-RI (%) of the iron oxide raw material Need to be considered.
  • the reducible JIS-RI (%) is measured according to JIS M8713. That is, a 500 g sintered ore sample sieved to 19.0-22.4 mm was reduced with a reducing gas containing 30% CO and 70% N 2 at 900 ° C. for 180 minutes, before reduction. Is expressed as a ratio of the amount of reduced oxygen to the amount of oxygen to be reduced.
  • the reducible JIS-RI (%) of the iron oxide raw material must be maintained at a required level. Therefore, the allowable limit of reducible JIS-RI (%) (lower limit), previously obtained relation between H 2 / CO in the reducing gas, based on this relationship, the reducing gas molar ratio H 2 /
  • the predetermined range of CO is set to be equal to or greater than the allowable limit value (lower limit value) of the reducible JIS-RI (%).
  • the iron oxide raw material, the sintered ore, pellets, and lump ore having the compositions and properties shown in Table 2 were each charged into a shaft furnace alone and reduced at 900 ° C. %) And the reducing gas molar ratio H 2 / CO. It can be seen that the metallization rate (%) increases as the reducing gas molar ratio H 2 / CO increases.
  • FIG. 10 shows the relationship between the metallization rate (%) after reduction and the blending ratio of sintered ore.
  • JIS-RI The metallization rate (%) increases as the blending ratio of 75 ores is increased.
  • JIS-RI 65 sintered ore and replacing it with massive ore
  • increasing the blending ratio of sintered ore increases the metallization rate (%)
  • JIS- In the replacement of RI with 70 pellets the metallization rate (%) decreases as the blending ratio of sintered ore is increased.
  • FIG. 11 shows the reducibility JIS-RI of an iron oxide raw material that achieves H 2 / CO and metallization ratio (mass ratio of metallic iron to total iron): 60 to 85% under the condition of a reducing gas temperature of 1000 ° C. (%). It can be seen that the reduction gas molar ratio H 2 / CO needs to be reduced in order to increase the reducible JIS-RI (%).
  • the molar ratio H 2 / CO of the reducing gas is (i) H 2 / CO and the blending ratio of the sintered ore in the iron oxide raw material (mass% ), Secondary hematite content (mass%) in this sinter, and porosity (volume%) in this sinter, the resistance of the iron oxide raw material to maintain stable operation Relationship with allowable limit value (upper limit value) of reduced powdering index RDI (%), and (ii) H 2 / CO and average metallization ratio of reduced iron (mass ratio of metallic iron to total iron): 60 % Reducing reducible JIS-RI (%) is the allowable limit value (lower limit) based on the relationship with the allowable limit value (lower limit value) of the reducible JIS-RI (%) of the iron oxide raw material to achieve at least% Value) or more, it is necessary to set the reduction powder resistance index RDI (%) to be equal to or less than an allowable limit
  • Fig. 12 shows JIS- which satisfies the metallization rate of 60% and air permeability (upper limit of furnace powder rate) when iron oxide raw material mixed with sintered ore and lump ore is used and reduced at a reducing gas temperature of 1000 ° C.
  • the relationship between RI and the molar ratio H 2 / CO is shown.
  • Fig. 13 shows JIS- which satisfies the metallization rate of 60% and the air permeability (upper limit of furnace powder rate) when reduced at a reducing gas temperature of 1000 ° C using an iron oxide raw material in which sintered ore and pellets are mixed.
  • the relationship between RI and the molar ratio H 2 / CO is shown.
  • Pellets have higher JIS-RI and higher RDI than massive iron ore. Therefore, both air permeability and reducibility are satisfied at the same time under the conditions of higher JIS-RI and higher RDI compared to the relationship shown in FIG. There is an operating range to do.
  • a part or all of the reduced iron produced by the method for producing reduced iron of the present invention is charged into a blast furnace, a coke-filled melting furnace, an electric furnace, and a converter. To produce pig iron.
  • One part or all of the reduced iron may be charged into a hot metal transfer device such as a converter or a TPC (mixed vehicle) instead of part or all of scrap, granule, or shape. At this time, it is desirable to charge the produced reduced iron hot.
  • a hot metal transfer device such as a converter or a TPC (mixed vehicle)
  • a hopper having a heat insulating structure is provided on the exit side of the reduced iron production furnace, a predetermined amount is cut into a TPC (mixing car), and then the reduced iron produced by melting with TPC is melted to increase the molten iron. it can.
  • TPC mixed car
  • TPC kneading car
  • the present invention uses the by-product gas generated in the iron making process to reduce the iron oxide raw material to produce reduced iron, and melts the iron making raw material containing the reduced iron produced in this step. Through the process, the amount of CO 2 generated in the iron making process can be reduced.
  • the conditions employed in the present examples are one example of conditions used for confirming the feasibility and effects of the present invention. It is not limited to examples only.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 An example is shown in which reduced iron is manufactured using a reducing gas in which COG and LDG are mixed, cooled and then melted in a vertical melting furnace. “%” Relating to gas means “mol%”.
  • the component composition of COG was CO: 5% and H 2 : 55%
  • the component composition of LDG was CO: 70% and H 2 : 20% (see Table 1). Therefore, COG: 65% and LDG: 35% were mixed to produce a reducing gas.
  • the component composition of the reducing gas was CO: 27.8% and H 2 : 42.8% as shown in Table 3, and the mixing was as planned.
  • the reducing gas shown in Table 3 was supplied to the reduced iron production apparatus at 28 kNm 3 / Hr (COG: 18 kNm 3 / Hr, LDG: 10 kNm 3 / Hr).
  • the reduced iron supply device includes a ⁇ 5 m vertical shaft furnace main body, a reducing gas preheating furnace, a dust removal device, a CO 2 removal device, and the like.
  • the reduced iron production equipment was charged with half ore and pellets mixed in half as the iron oxide raw material.
  • the diameter of the lump ore and the pellet is about 10 mm.
  • the reducing gas heated to 900 ° C. was supplied to the main body of the shoft furnace to produce reduced iron.
  • HBI hot briquette iron
  • the production rate was about 40 t / H.
  • the HBI was charged into a 67 m 3 cupola and dissolved to produce pig iron.
  • the energy required from the reduction iron production to the pig iron production is 4.4 Gcal / t, which is larger than the hot metal production energy 4.2 Gcal / t in the large blast furnace, but the CO 2 generation amount is 1200 kg / t, and the blast furnace method CO 2 generation amount by 1600 kg / t was 3/4. This can be attributed to the utilization of by-product gas containing H 2 generated in the iron making process as a reducing gas.
  • RDI 35%
  • JIS-RI 65 sintered ore
  • RDI 45%
  • JIS-RI 75 sintered ore was added to the oxide raw material. Operated and confirmed operational status.
  • blast furnace gas (BFG), coke oven gas (COG), and converter gas (LDG) generated in the iron making process are mixed as they are or after being reformed.
  • BFG blast furnace gas
  • COG coke oven gas
  • LDG converter gas
  • Table 4 shows the test conditions and test results.
  • Comparative Example 1 is an operation example in which 20% of sintered ore of RDI: 35% and JIS-RI: 65 is blended in the oxide raw material, but H 2 / CO modified natural gas: Stable operation was possible with a reducing gas of 1.5.
  • Comparative Example 2 the oxide raw material was blended with sintered ore of RDI: 45% and JIS-RI: 75, and the blending ratio was increased to 25%. Operation was carried out under the same conditions. As a result, the fluctuation of aeration began to occur due to the increase in RDI of the sintered ore, or the reduction powdering accompanying the increase in the blending ratio of the sintered ore in the oxide raw material, and the operation became unstable.
  • Example 1 the converter gas (LDG) was mixed with natural gas under the same conditions as in Comparative Example 1 except for the blending ratio of the sintered ore and the reducing gas conditions, so that H 2 / CO: 1.2. It is an example of operation using the reduced reducing gas. In the operation example of Example 1, even when the blending ratio of the sintered ore in the oxide raw material is 25%, which is higher than that of Comparative Example 1, stable operation is possible due to the reduction of the reducing gas H 2 / CO. This is an example.
  • Example 2 is the same conditions as Example 1 except for the conditions of reducing gas, and as a reducing gas, coke oven gas (COG) and converter gas (LDG), which are by-products of the steelworks, are mixed,
  • COG coke oven gas
  • LDG converter gas
  • Example 3 is an operation example in which the mixing ratio of the sintered ore was increased to 50% under the same conditions as in Example 2 except for the reducing gas H 2 / CO and the mixing ratio of the sintered ore. This is an operation example in which stable operation is possible by adjusting the reducing gas H 2 / CO to 1.0.
  • the RDI of the oxide raw material is high. Therefore, a mixture of a plurality of steel plant byproduct gas having different H 2 / CO, it is necessary to adjust the H 2 / CO to be lower than 1.5.
  • Example 4 a sintered ore having a higher RDI than that in Example 3 (RDI: 45 sintered ore) was blended at a blending ratio of 60% higher than that in Example 3, and converted into coke oven gas (COG) and conversion.
  • This is an operation example in which the reducing gas H 2 / CO is adjusted lower than in Example 3 (H 2 / CO: 0.5) by the mixing ratio of the furnace gas (LDG).
  • LDG furnace gas
  • Example 5 a blast furnace gas (BFG), a coke oven gas (COG), and a converter gas (LDG) were mixed, and a reducing gas adjusted to H 2 /CO:0.4 was used.
  • BFG blast furnace gas
  • COG coke oven gas
  • LDG converter gas
  • the by-product gas generated in the iron making process can be used effectively in the production of reduced iron, and the amount of CO 2 generated in the iron making process is reduced by the CO generated in the blast furnace method. It can be reduced from 2 quantities. Therefore, the present invention has high applicability in the steel industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

 本発明は、酸化鉄原料を還元ガスで還元して還元鉄を製造する方法であって、製鉄プロセスで発生するH2及びCOの少なくとも一方を含む副生ガスを、少なくとも一部として含む前記還元ガスを製造する工程と;前記還元ガスを還元鉄製造装置に供給する工程と;を有する。

Description

還元鉄の製造方法及び銑鉄の製造方法
 本発明は、酸化鉄(主として、Fe23)を主体とする酸化鉄原料を還元ガスで直接還元して還元鉄を製造する方法と;製造した還元鉄を、焼結鉱、ペレット、ブリケット、スクラップ、粒銑、形銑等に替わる製鉄原料として使用して銑鉄を製造する方法と;に関する。
 従来から、還元ガスとして、天然ガス、又は、天然ガスを改質したガス(CO及びH2が主成分)を用い、酸化鉄(主として、Fe23)を主体とする酸化鉄原料(以下「酸化鉄原料」ということがある)を直接還元する方法が知られている(例えば特許文献1参照)。
 一般に、天然ガスを用いる直接還元法においては、天然ガスにH2O又はCO2を添加し、Ni、Co、Fe等の触媒の存在下で改質して(下記(1)及び(2)式参照)、CO濃度とH2濃度とを高めた還元ガスを用いている。
 CH4+H2O → CO+3H2-59.1kcal/mol  …(1)
 CH4+CO2 → 2CO+2H2-49.3kcal/mol …(2)
 ただし、上記方法を実施するプラントの建設は、天然ガスの安定供給が可能な天然ガス産出地にほぼ限られてしまう。
 石炭をガス化した時に発生するガス(石炭ガス化炉ガス)が、天然ガス又は改質天然ガスと同種の還元成分(CO、H2)を含んでいるので、コークス製造用の原料炭に比べて安価な一般炭をガス化炉でガス化(CO、H2、及び/又は、H2Sを主成分とするガスが得られる)して、このガスを還元ガスとして使用する還元鉄の製造方法も提案されている(特許文献2及び3参照)。
 また、CO及び/又はH2を所要量含んでいれば還元ガスとして機能するので、CO及び/又はH2を所要量含む廃ガスを、直接、又は、改質して、酸化鉄原料の直接還元に用いる方法も提案されている(特許文献4~11参照)。なお、特許文献9~11に開示の直接還元法は、通称、MIDREX法と言われている。
 一般に、Fe23を主体とする鉄鉱石を、H2及びCOを含む還元ガスで還元する場合、下記式(3)及び(4)の反応で還元が進行する。
 Fe23+3H2 → 2Fe+3H2O-22.8kcal/mol …(3)
 Fe23+3CO → 2Fe+3CO2+6.7kcal/mol  …(4)
 即ち、H2によるFe23の還元は、上記(3)式の吸熱反応により進行し、COによるFe23の還元は、上記(4)式の発熱反応により進行する。
 それ故、還元炉内の温度を所要レベルに維持し、Fe23の還元を効率的に促進するためには、還元ガスを所定温度以上に加熱して炉内に導入するとともに、還元ガス中のH2とCOの量比を所定範囲内に調整し、上記(3)式の吸熱反応による熱量の低下分を、上記(4)式の発熱反応による発熱で補償する必要がある。
 還元プロセスにより還元条件は異なるが、例えば、常圧の縦型ショフト炉を用いる直接還元法(MIDREX法[特許文献9~11参照])で、(a)塊状鉄鉱石、(b)粉状鉄鉱石を塊成化したペレット又はブリケット、及び/又は、(c)焼結鉱を還元して還元鉄を製造する場合、通常、還元ガスの温度は800~1000℃、還元ガス中のH2とCOの合計濃度は90モル%程度、モル比:H2/COは1.5程度である。
 ところで、製鉄プロセスにおいては、高炉ガス(以下「BFG」ということがある)、コークス炉ガス(以下「COG」ということがある)、及び、転炉ガス(以下「LDG」ということがある)などの副生ガスが大量に発生する。表1に、これら副生ガスの組成と保有熱量を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、COG及びLDGは、CO及びH2を合計で50モル%以上含んでいるので、還元ガスとして機能し得るガスであるが、発熱量が大きい(表1参照)ことから、もっぱら、製鉄プロセスにおける加熱炉などの燃料として利用されているのが現状である(図1参照)。
 BFGは、CO及びH2の含有量が合計で30モル%より低いので、単独では還元ガスとして機能し得ないが、製鉄プロセスにおける加熱炉などの燃料として利用されているのが現状である(図1参照)。
 即ち、製鉄プロセスで発生する副生ガスは、いずれも、本来備える還元能が活用されずに、CO2を多く含む燃焼排ガスとして、大気中に放散されているのが現状である。
特開昭63-213613号公報 特開昭56-105411号公報 特開2004-169074号公報 特開昭61-099613号公報 米国特許第3558118号明細書 米国特許第3850616号明細書 米国特許第3883123号明細書 米国特許第3948646号明細書 米国特許第3617227号明細書 米国特許第3748120号明細書 米国特許第3748120号明細書
 前述したように、製鉄プロセスで発生する副生ガスは、本来備える還元能が活用されないまま、CO2の放散源となっているのが現状である。そこで、本発明は、製鉄プロセスで発生する副生ガスを少なくとも一部として含む還元ガスを使用して還元鉄を製造するとともに、製鉄プロセスにおいて放出するCO2量を削減して、地球温暖化防止に寄与することを課題とする。
 本発明者らは、上記課題を解決する手法について鋭意研究した。その結果、製鉄プロセスで発生する複数の副生ガスを、必要に応じ改質し、適宜、混合して、H2含有率[質量%]とCO含有率[質量%]の比:H2/COを所定の範囲内に調整すれば、還元鉄の製造に必要な還元能を有する還元ガスを製造できることが判明した。
 そして、上記副生ガスを少なくとも一部に含む還元ガスを用いて製造した還元鉄を製鉄原料として使用することにより、製鉄プロセスで発生するCO2量を削減できることが判明した。
 本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。
 (1)本発明の還元鉄の製造方法は、酸化鉄原料を還元ガスで還元して還元鉄を製造する方法であって、製鉄プロセスで発生するH2及びCOの少なくとも一方を含む副生ガスを、少なくとも一部として含む前記還元ガスを製造する工程と;前記還元ガスを還元鉄製造装置に供給する工程と;を有する。
 (2)上記(1)に記載の還元鉄の製造方法では、前記還元ガスが、還元炉より発生するガスと、天然ガスを改質したガスと、一般炭をガス化炉でガス化したガスと、の少なくとも一つをさらに含んでもよい。
 (3)上記(1)に記載の還元鉄の製造方法では、前記副生ガスが、高炉及びコークス充填型溶融炉の少なくとも一方より発生した副生ガスと、コークス炉より発生した副生ガスと、転炉より発生した副生ガスと、の少なくとも一つを含んでもよい。
 (4)上記(1)に記載の還元鉄の製造方法は、H2の含有量及び前記COの含有量の少なくとも一方が異なる前記副生ガスの中から2種以上の副生ガスを選択して混合し、H2含有率[モル%]及びCO含有率[モル%]、並びに、H2含有率[モル%]とCO含有率[モル%]との比であるH2/COを調整して還元ガスを製造する工程をさらに有してもよい。
 (5)上記(1)に記載の還元鉄の製造方法は、H2の含有量及び前記COの含有率の少なくとも一方が異なる前記副生ガスの中から1種又は2種以上の副生ガスの、選択及び混合の少なくとも一方を行う工程と;この工程に次いで、前記副生ガスにH2O及びCO2の少なくとも一方を添加して改質し、H2含有率[モル%]及びCO含有率[モル%]、並びに、H2含有率[モル%]とCO含有率[モル%]との比であるH2/COを調整して還元ガスを製造する工程と;さらに有してもよい。
 (6)上記(1)に記載の還元鉄の製造方法は、H2の含有量及び前記COの含有率の少なくとも一方が異なる前記副生ガスの中から選択した1種又は2種以上の副生ガスと、この副生ガスにH2O及びCO2の少なくとも一方を添加して改質した、H2の含有率及びCOの含有率の少なくとも一方が異なる改質副生ガスの中から、1種又は2種以上の副生ガスを選択して混合し、H2含有率[モル%]及びCO含有率[モル%]、並びに、H2含有率[モル%]とCO含有率[モル%]との比であるH2/COを調整して還元ガスを製造する工程をさらに有してもよい。
 (7)上記(4)~(6)のいずれか1項に記載の還元鉄の製造方法では、前記H2の含有量及び前記COの含有量の少なくとも一方が異なる副生ガスの中から選択した前記副生ガスが、予め、この副生ガス中に含まれていたN2、H2O、及び、CO2の1種又は2種以上を除去したものであってもよい。
 (8)上記(1)に記載の還元鉄の製造方法では、前記還元鉄製造装置が、シャフト炉であってもよい。
 (9)上記(8)に記載の還元鉄の製造方法では、前記シャフト炉に装入する酸化鉄原料が、粉状鉄鉱石を塊成化した焼結鉱:20質量%以上と;残部:塊状鉄鉱石と;粉状鉄鉱石を塊成化したペレット及びブリケットの1種又は2種以上と;を含んでもよい。
 (10)上記(9)に記載の還元鉄の製造方法では、前記還元ガスのH2/COを、H2/COと、酸化鉄原料中の焼結鉱の配合率(質量%)と、この焼結鉱中の2次ヘマタイト含有率(質量%)と、前記焼結鉱中の気孔率(体積%)に応じて求めた、安定操業を維持するための上記酸化鉄原料の耐還元粉化指数RDI(%)の許容限界値(上限値)と、の関係に基づいて、耐還元粉化指数RDI(%)が所定の許容限界値(上限値)以下となるように設定する工程をさらに有してもよい。
 (11)上記(8)に記載の還元鉄の製造方法は、前記還元ガスのH2/COを、(i)H2/COと、酸化鉄原料中の焼結鉱の配合率(質量%)と、この焼結鉱中の2次ヘマタイト含有率(質量%)と、前記焼結鉱中の気孔率(体積%)に応じて求めた、安定操業を維持するための上記酸化鉄原料の耐還元粉化指数RDI(%)の許容限界値(上限値)と、の関係、及び、(ii)H2/COと、還元鉄の平均金属化率(トータル鉄に対する金属鉄の質量割合):60%以上を達成するための上記酸化鉄原料の被還元性JIS-RI(%)の許容限界値(下限値)と、の関係に基づいて、被還元性JIS-RI(%)が許容限界値(下限値)以上でかつ、耐還元粉化指数RDI(%)が許容限界値(上限値)以下となるように設定する工程をさらに含んでもよい。
 (12)本発明の銑鉄の製造方法は、上記(1)に記載の還元鉄の製造方法で製造した還元鉄の少なくとも一部を、溶融還元炉に装入して溶融及び還元し、銑鉄を製造する工程を含む。
 (13)上記(12)に記載の銑鉄の製造方法は、前記還元鉄の少なくとも一部を、スクラップ、粒銑、及び、形銑の少なくとも一部に替えて装入する工程をさらに含んでもよい。
 (14)上記(12)又は(13)に記載の銑鉄の製造方法では、前記溶融還元炉が、高炉、コークス充填型溶融炉、電気炉、転炉、及び、混銑炉のいずれかであってもよい。
 本発明によれば、製鉄プロセスで発生する副生ガスを有効に還元鉄の製造に用いることができるとともに、製鉄プロセスで発生するCO2量を、高炉法で発生するCO2の量よりも低減することができる。
製鉄プロセスで発生する副生ガスの従来の利用態様を示す図である。 酸化鉄とCOの還元平衡状態図である。 酸化鉄とH2の還元平衡状態図である。 製鉄プロセスで発生する副生ガスの本発明の利用態様を示す図である。 酸化物原料が焼結鉱単体の場合における、気孔率及び2次ヘマタイト含有率と還元粉化率の許容値(上限値)との関係の一例を示す図である。 酸化物原料が、焼結鉱単体、ペレット単体、及び塊鉱石単体の場合における、還元ガスのモル比H2/COと還元粉化率との関係の一例を示す図である。 焼結鉱を配合した酸化鉄原料の、還元炉の安定操業を維持するための耐還元粉化指数RDIの許容限界値(上限値)と、還元ガスのモル比H2/COとの関係を示す図である。 酸化物原料中の焼結鉱の配合割合及び還元ガスのモル比H2/COと、還元粉化率との関係の一例を示す図である。 焼結鉱の配合割合と、還元ガスのモル比H2/COとの関係の一例を示す図である。 焼結鉱、ペレット、及び、塊鉱石を、それぞれ単体で酸化鉄原料として用いて900℃で還元したときの、金属化率(%)と還元ガスのモル比H2/COとの関係を示す図である。 酸化鉄原料中の焼結鉱の配合割合と、還元後の金属化率(%)との関係を示す図である。 還元ガス温度1000℃の条件における、モル比H2/COと、金属化率(トータル鉄に対する金属鉄の質量割合):60~85%を達成する酸化鉄原料の被還元性JIS-RI(%)との関係を示す図である。 焼結鉱と塊鉱石を混合した酸化鉄原料を用い、還元ガス温度1000℃で還元した場合における、金属化率60%及び通気性(炉内粉率上限)を満足するJIS-RIとモル比H2/COとの関係を示す図である。 焼結鉱とペレットを混合した酸化鉄原料を用い、還元ガス温度1000℃で還元した場合における、金属化率60%及び通気性(炉内粉率上限)を満足するJIS-RIとモル比H2/COとの関係を示す図である。
 本発明について、以下、詳細に説明する。
 1)還元鉄の製造方法について説明する。
 図1に、高炉、コークス炉、及び、転炉を例にとり、製鉄プロセスで発生する副生ガスの従来の利用態様を示す。同図1に示すように、高炉ガス、コークス炉ガス、及び、転炉ガスは、従来から、製鉄プロセスにおける熱風炉、加熱炉、自家発電所などの燃料として利用されている。
 図1に示す従来の副生ガスの利用態様においては、燃焼排ガス中にCO2が多量に含まれているので、CO2の削減を期待することはできない。
 本発明は、酸化鉄原料を還元ガスで還元して還元鉄を製造する還元鉄の製造方法において、
 (i)製鉄プロセスで発生するH2及び/又はCOを含む副生ガスを少なくとも一部として含む還元ガスを製造し、
 (ii)上記還元ガスを還元鉄製造装置に供給する、
ことを基本的な技術思想とする。
 本発明の副生ガスは、製鉄プロセスにおいて発生し、H2及び/又はCOを含む副生ガスであればよく、特に、発生源に制限はないが、大量に得られる点で、高炉や、コークス充填型溶融炉より発生した副生ガス、コークス炉より発生した副生ガス、及び、転炉より発生した副生ガスが好ましい。
 そして、(a)H2及び/又はCO含有量の異なる前記副生ガスの中から、2種以上の副生ガスを選択して混合し、又は、(b)H2及び/又はCOの含有率の異なる上記副生ガスの中から、1種又は2種以上の副生ガスを選択し、及び/又は、混合し、次いで、H2O及び/又はCO2を添加して改質し、又は、(c)H2及び/又はCOの含有率の異なる前記副生ガスの中から選択した1種又は2種以上の副生ガスと、この副生ガスにH2O及び/又はCO2を添加して改質したH2及び/又はCOの含有率の異なる改質副生ガスの中から、1種又は2種以上の副生ガスを選択して混合して、還元ガスを製造する。
 好ましくは、前記(a)~(c)において、前記H2及び/又はCOの含有量の異なる副生ガスの中から選択した副生ガスについては、予め、改質副生ガスの中に含まれるN2、H2O、及び、CO2の1種又は2種以上を除去して、還元ガスを製造する。
 このとき、前記製鉄プロセスで発生した副生ガスに加えて、還元鉄製造装置(還元炉)より発生するガスや、天然ガスを改質したガス、及び、一般炭をガス化炉でガス化したガスなどの製鉄プロセス以外で発生した、H2及び/又はCOを含む還元ガスを混合してもよい。
 還元ガスの還元能は、H2含有率[質量%]とCO含有率[質量%]に依存し、しかも、吸熱反応と発熱反応により進行するので(前記式(3)及び(4)参照)、H2含有率[質量%]とCO含有率[質量%]の比:H2/CO(以下、単に「H2/CO」ということがある)を所定の範囲内に調整することが必要である。
 図2A及び図2Bに、酸化鉄の還元平衡状態図を示す。図2Aは、CO-CO系ガスを用いた場合の酸化鉄とCOの還元平衡状態図である。図2Bは、H-HO系ガスを用いた場合の酸化鉄とH2の還元平衡状態図である。
 図2A及び図2Bに示すように、酸化鉄の還元性(還元反応速度)は、還元ガス中のCO及び/又はH(還元性成分)の含有率に依存する。
 例えば、1000℃で、Fe23を、Fe34、FeOを経て、Feまで還元するために、(i)還元ガスとしてCO-CO系ガスを用いる場合には、還元ガス中に、CO:72モル%以上が必要であり、(ii)還元ガスとしてH-HO系ガスを用いる場合には、還元ガス中に、H2:55モル%以上が必要である。
 また、還元ガスとして、CO-CO系ガスとH-HO系ガスを、M1(モル%):M2(モル%)で混合した還元ガスを用いる場合には、同様に、1000℃でFeまで還元するのに必要となる還元ガス中のCO含有率は、72×M1/100(モル%)で、同H2含有率は、55×M2/100(モル%)となる。
 このように、還元ガスのCO含有率とH2含有率を調整することにより、酸化鉄原料の還元性を確保することができる。
 また、COによる還元は発熱反応で進行し、H2による還元は吸熱反応で進行するので、炉内における熱量を所定のレベルに維持するために、モル比H2/COを所定の範囲内に調整する必要がある。
 また、モル比H2/COは、還元炉に装入する酸化鉄原料の還元粉化特性にも影響する。特に、酸化鉄原料中に、塊状鉄鉱石やペレットに比べて還元粉化し易い焼結鉱石を含む場合は、還元炉の通気性を良好に維持し、安定した操業を行うためには、酸化鉄原料の耐還元粉化指数RDI(%)、さらには、被還元性JIS-RI(%)を考慮して設定することが望ましい。この点については、後述する。
 図3に、本発明の利用態様の一例を示す。
 図3に示すように、(i)高炉ガス(BFG)は、CO及びH2の含有量が少ないため、H2O及び/又はCO2で改質し、また、(ii)コークス炉ガス(COG)、及び、転炉ガス(LDG)は、必要に応じ、H2O及び/又はCO2で改質し(以下、改質した副生ガスを「改質副生ガス」という)、これら副生ガス及び改質副生ガスの中から、適宜、1種又は2種以上を選択して混合し、還元鉄製造装置に供給する。
 なお、高炉ガス(BFG)、コークス炉ガス(COG)、及び、転炉ガス(LDG)は、改質前に、予め、副生ガス中に含まれるN2、H2O、及びCO2の1種又は2種以上を除去するのが好ましい。
 還元鉄製造装置より発生するガス(以下「ARG」ということがある)は、ガス分析の結果に従い使用先を決定する。この場合、既存の副生ガスと混合してもよいし、また、改質後、既存の副生ガスと混合してもよい。
 なお、表1に示すように、高炉ガス(BFG)は、COG、及び、LDGに比べ、CO量及びH2量が少ないので、H2O及び/又はCO2で改質して用いるのが好ましい。
 本発明においては、BFG、COG、LDG等の副生ガス中のガス成分(特に、COとH2)を適宜分析してガス成分を把握し(図示なし)、複数の副生ガス及び改質副生ガスの1種又は2種以上を混合し、H2含有率[モル%]とCO含有率[モル%]の比:H2/COが所定の範囲内ある還元ガスを製造して還元鉄製造装置に供給する。
 副生ガスの成分分析は、連続的に行なうのが望ましいが、炉操業が安定していて、成分組成に大きな変化がない場合には、間欠的に行ってもよい。
 図3中の(1)は、BFGとCOGを混合する利用態様を示す。この場合、必要に応じ、BFG及びCOGの一方又は両方を改質してもよい。図3中の(2)は、LDGとCOGを混合する利用態様を示す。この場合も、必要に応じ、LDG及びCOGの一方又は両方を改質してもよい。
 また、図3中の(3)は、BFGとLDGを混合する利用態様を示す。この場合も、必要に応じ、BFG及びLDGの一方又は両方を改質してもよい。図3中の(4)は、BFG、COG、及び、LDGを混合する利用態様を示す。この場合も、必要に応じ、BFG、COG、及び、LDGの1種以上を改質してもよい。
 上記利用態様で製造した還元ガスを、還元鉄製造装置に供給する前に、ガス成分を分析し、H2/COが所定の範囲内にあることを確認することが望ましい。
 ただし、本発明においては、最終的に、還元鉄製造装置に供給する還元ガスとして、H2/COが所定の範囲内にある還元ガスが得られればよいので、製鉄プロセスで発生する副生ガスの利用態様は、図3に示す利用態様のみに限定されない。前述したように、製鉄プロセス以外で発生した還元能を備えるガスを混合してもよい。
 所定の範囲のH2/COを有する還元ガスを製造するために、副生ガスの成分組成を調整する必要がある場合には、(a)成分分析を行なう前に、副生ガスを改質(脱CO2、CH4の加水分解等)するか、(b)副生ガスを複数混合するか、又は、(c)改質副生ガスと他の副生ガス(改質してもしなくてもよい)を混合する。
 即ち、本発明においては、副生ガス及び/又は改質副生ガスの混合割合を調整し、還元ガスのH2/COを所定の範囲内に調整する。
 また、本発明においては、製鉄プロセスで発生するH2及び/又はCOの含有率の異なる前記副生ガスの中から、1種又は2種以上の副生ガスを選択し、及び/又は、混合し、次いで、この副生ガスにH2O又はCO2を添加し、Fe、Ni、Co等の触媒の存在下で加熱して改質し、好ましくは改質後、窒素を除去し、還元ガスを製造してもよい。
 この場合、副生ガス及びH2O又はCO2の混合割合を調整して改質し、好ましくは改質前に、予め、副生ガス中に含まれるN2、H2O、及び、CO2の1種又は2種以上を除去し、還元ガスのモル比H2/COを所定の範囲内に調整する。
 本発明で用いる還元鉄製造装置は、酸化鉄原料を還元し得る装置であればよく、特定構造の還元装置に限定されないが、従来技術で用いるシャフト炉が好ましい。
 酸化鉄原料は、主にFe23を含むものであればよく、その形態は、塊状鉄鉱石(塊鉱石)、粉状鉄鉱石(鉄含有ダスト類を含む)を塊成化した焼結鉱、及び、粉状鉄鉱石(鉄含有ダスト類を含む)を塊成化したペレットが好ましい。
 還元鉄製造装置としてシャフト炉を用いる場合、酸化鉄原料として、例えば、粉状鉄鉱石を塊成化した焼結鉱:20質量%以上、及び、残部:塊状鉄鉱石、及び、粉状鉄鉱石を塊成化したペレット及びブリケットの1種又は2種以上からなる酸化鉄原料を使用することができる。
 粉状鉄鉱石を塊成化したペレット及びブリケットは、それぞれ、焼成したものと、非焼成のものとに区分される。また、非焼成ペレットには、さらに、炭素を含有し、被還元性が向上した含炭ペレットがあり、また、非焼成ブリケットには、同じく、炭素を含有し、被還元性が向上した含炭ブリケットがある。
 焼結鉱は、その他の塊成鉱及び塊状鉄鉱石に比べて、二次ヘマタイト(Fe23)の含有量が多く、かつ、気孔率が高く、還元粉化し易い。このため、酸化鉄原料中の焼結鉱の含有率(質量%)、焼結鉱中の2次ヘマタイト含有率(質量%)、及び、焼結鉱中の気孔率(体積%)は、酸化鉄原料の耐還元粉化指数RDI(%)、及び、還元炉内の通気性に影響する。
 図4に、焼結鉱中の2次ヘマタイト含有率及び焼結鉱気孔率と、還元粉化率との関係を示す。還元温度を還元粉化が進行し易い550℃に設定し、焼結鉱単体の還元粉化特性を調査した。図4に示すように、焼結鉱単体中の2次ヘマタイト含有率及び焼結鉱気孔率の増加に伴って、焼結鉱のRDI(%)は増加する(即ち、還元炉内の還元粉化率が増大する)。
 焼結鉱を、酸化鉄原料の一部又は全部として用いる場合、焼結鉱中の2次ヘマタイト含有率及び焼結鉱気孔率に基づいて、予め、耐還元粉化指数RDI(%)を推定しておくことが必要である。
 なお、耐還元粉化指数RDI(%)は、JIS M8720に準じて測定する。つまり、16-20mmに篩い分けた500gの焼結鉱試料を、550℃のもとで、CO:30%、N2:70%の還元ガス中で30分還元し、その後、回転ドラム内に充填し、900回転させた後、篩い分け、-2.83mmの割合(%)で表示する。
 焼結鉱を含む酸化鉄原料の還元操業を安定的に継続するためには、酸化鉄原料の耐還元粉化指数RDI(%)を所要のレベルに維持しなければならない。
 それ故、酸化鉄原料中の焼結鉱の配合率(質量%)、この焼結鉱中の2次ヘマタイト含有率(質量%)、及び、この焼結鉱中の気孔率(体積%)に応じて求めた耐還元粉化指数RDI(%)の許容限界値(上限値)と、還元ガスのH2/COとの関係を予め求め、この関係に基づいて、H2/COの所定範囲を、耐還元粉化指数RDI(%)が許容限界値(上限値)以下となるように設定する。
 まず、図5に、表2に示す成分組成と性状の焼結鉱、ペレット、及び、塊鉱石のそれぞれを酸化鉄原料として用いて550℃で還元した場合における、還元ガスのモル比H2/COと還元粉化率(%)との関係を示す。図5中、横軸上のH2/CO=1.5は、天然ガスを改質したときの一条件を示している。
Figure JPOXMLDOC01-appb-T000002
 被還元性JIS-RIも、表2に示すように、塊鉱石<RDI35焼結鉱<ペレット<RDI45焼結鉱の順で増加する。一方、焼結鉱中の2次ヘマタイトや気孔率などの性状により焼結鉱の耐還元粉化指数RDIは変化する。このため、表2に示すように、耐還元粉化指数RDI(%)は、塊鉱石<ペレット<RDI35焼結鉱<RDI45焼結鉱の順に増加する。
 つまり、表2に示すように、ペレット中の気孔率が、RDI35焼結鉱及びRDI45焼結鉱に比べて少ないので、ペレットの還元粉化率(%)は、RDI35焼結鉱及びRDI45焼結鉱の耐還元粉化指数RDI(%)より小さい値となる。
 図6に、焼結鉱を配合した酸化鉄原料をシャフト炉に供給し、還元ガス温度1000℃で還元を行なう場合における、還元炉の安定操業を維持するための酸化鉄原料の耐還元粉化指数RDIの許容限界値(上限値)と、還元ガスのH2/COとの関係の一例を示す。
 図6から、還元炉の通気性を良好に維持した安定操業を行うためには、酸化物原料の耐還元粉化指数RDIが増加するのに伴い、酸化鉄原料の耐還元粉化指数RDIの許容限界値(上限値)以下になるように、還元ガスのモル比H2/COを下げる必要があることが解る。
 即ち、塊鉱石又はペレットと、これらよりも還元粉化し易い性状の焼結鉱を配合した酸化鉄原料を、シャフト炉で還元する場合、酸化鉄原料中の焼結鉱の配合割合の増大、及び/又は、焼結鉱中の2次ヘマタイト及び気孔率の増加(耐還元粉化指数RDIの増加)に伴い、酸化鉄原料の耐還元粉化指数RDIは低下するため、その低下に応じ、酸化鉄原料の耐還元粉化指数RDIの許容限界値(上限値)以下になるように、還元ガスのモル比H2/COを下げなければ、安定操業を行うことができないこととなる。
 図7に、表2に示す塊鉱石又はペレットと焼結鉱を適宜配合した酸化鉄原料(500g)を、550℃で90分、H2/CO:1.5又は1.0の還元ガスで還元したときの、焼結鉱の配合割合と還元粉化率の関係を示す。還元後、-3mmの粉率を測定し、還元粉化率とした。図7から、酸化鉄原料中の焼結鉱の配合割合、及び/又は、H2/COが高くなると、還元粉化率は上昇することが解る。
 図7において、シャフト炉における操業を安定化するための還元粉化率(%)の許容値(上限値)を仮に35%とすると、酸化鉄原料の還元粉化率(%)が許容上限値:35%以下になるように、焼結鉱のRDIに影響を及ぼす焼結鉱中の気孔率、2次ヘマタイト量、及び、酸化鉄原料中の焼結鉱の配合割合に応じて、還元ガスのH2/COを調整する必要がある。
 ここで、一例として、図8に、RDI35焼結鉱と塊鉱石(表2参照)を配合した酸化鉄原料をシャフト炉に装入し、還元温度:1000℃で還元したときの、還元炉の安定操業を維持するための還元粉化率の許容限界値(上限値)(%)と還元ガスのH2/COとの関係を示す。
 天然ガスを改質した通常の還元ガス(H2/CO=1.5)を使用するシャフト炉での操業においては、酸化物原料のRDIが15以上(焼結鉱配合率:20%以上に相当する)になると、還元過程(ヘマタイト->マグネタイト)で還元粉化率が増加して、操業が不安定になる。
 焼結鉱は、塊鉱石、ペレットに比べて、気孔率及び2次ヘマタイト含有率が高く、かつ、RDIが高いので、焼結鉱を酸化鉄原料中に多量に配合すると、酸化鉄原料自体のRDIが高くなるので、還元ガスのH2/COを1.5以下にする必要がある。
 図8に示す操業例は、LDG、COGの改質ガス、及び、BFGの改質ガスを混合して、還元ガスのH2/COを1.5以下に調整したものである。例えば、焼結鉱の配合割合が40%の場合、還元ガスのH2/COを1.1に調整する。この調整により、還元粉化率が低下して、安定操業を行うことができる。
 即ち、酸化鉄原料中の焼結鉱の配合割合、及び、酸化鉄原料中に配合する焼結鉱中の2次ヘマタイト含有率、及び、焼結鉱気孔率に応じて、還元ガスのH2/COを、炉内還元粉化率が、安定操業が可能な許容限界値(上限値)になるように調整する。
 したがって、予め、焼結鉱を配合した酸化鉄原料の耐還元粉化指数RDIの許容限界値(上限値)と還元ガスのH2/COとの関係を求め、この関係基づいて、酸化鉄原料の耐還元粉化指数RDIが、還元粉化の許容限界値(上限値)以下となるように、還元ガスのH2/COを調整すれば、シャフト炉での還元操業を安定して継続することができる。
 次に、酸化鉄原料の被還元性JIS-RI(%)について説明する。
 酸化鉄原料の被還元性JIS-RI(%)は、得られる還元鉄の金属化率に影響するので、金属化率を高める場合には、酸化鉄原料の被還元性JIS-RI(%)を考慮する必要がある。
 なお、被還元性JIS-RI(%)は、JIS M8713に準じて測定する。つまり、19.0-22.4mmに篩い分けた500gの焼結鉱試料を、900℃のもとで、COを30%、N2を70%含む還元ガスで180分還元した後、還元前の被還元酸素量に対する還元酸素量の割合で表示する。
 所定の金属化率(例えば、60%以上)を達成するためには、酸化鉄原料の被還元性JIS-RI(%)を所要のレベルに維持しなければならない。それ故、被還元性JIS-RI(%)の許容限界値(下限値)と、還元ガスのH2/COとの関係を予め求め、この関係に基づいて、還元ガスのモル比H2/COの所定の範囲を、被還元性JIS-RI(%)の許容限界値(下限値)以上となるように設定する。
 図9に、酸化鉄原料おして、表2に示す組成及び性状の焼結鉱、ペレット、及び、塊鉱石を、それぞれ単体でシャフト炉に装入し、900℃で還元したときの金属化率(%)と還元ガスのモル比H2/COの関係を示す。還元ガスのモル比H2/COの上昇に伴い、金属化率(%)は向上することが解る。
 JIS-RI:65及びJIS-RI:75の焼結鉱と、JIS-RI:70のペレット、JIS-RI:55の塊鉱石(表2、参照)を、配合割合を変えて配合した500gの酸化鉄原料試料を、H2/CO=0.5、0.8、及び、1.5の条件で、900℃、180分還元した。還元後の金属化率(%)と、焼結鉱の配合割合の関係を、図10に示す。なお、同図10中には、金属化率(%)の許容値(下限値)60%のライン(図中の符号a)と、ベース原料と同等の金属化率を維持するライン(図中の符号b)とを示した。
 JIS-RI:75の焼結鉱の配合割合を高めていくと、金属化率(%)は上昇する。一方、JIS-RI:65の焼結鉱を使用する場合、塊鉱石と置換する場合においては、焼結鉱の配合割合を高めていくと、金属化率(%)は上昇するが、JIS-RI:70のペレッとの置換では、焼結鉱の配合率を高めると、金属化率(%)は低下する。
 したがって、(i)H2/COと、酸化鉄原料中の焼結鉱の配合率(質量%)、この焼結鉱中の2次ヘマタイト含有率(質量%)、及び、この焼結鉱中の気孔率(体積%)に応じて求めた、安定操業を維持するための酸化鉄原料の耐還元粉化指数RDI(%)の許容限界値(上限値)との関係に加え、(ii)H2/COと、還元鉄の平均金属化率(トータル鉄に対する金属鉄の質量割合):60%以上を達成するための酸化鉄原料の被還元性JIS-RI(%)の許容限界値(下限値)との関係が重要である。
 図11に、還元ガス温度1000℃の条件における、H2/COと、金属化率(トータル鉄に対する金属鉄の質量割合):60~85%を達成する酸化鉄原料の被還元性JIS-RI(%)との関係を示す。被還元性JIS-RI(%)の上昇を狙う場合、還元ガスのモル比H2/COを低減する必要があることが解る。
 したがって、60%以上の金属化率を確実に得るには、還元ガスのモル比H2/COは、(i)H2/COと、酸化鉄原料中の焼結鉱の配合率(質量%)、この焼結鉱中の2次ヘマタイト含有率(質量%)、及び、この焼結鉱中の気孔率(体積%)に応じて求めた、安定操業を維持するための酸化鉄原料の耐還元粉化指数RDI(%)の許容限界値(上限値)との関係、及び、(ii)H2/COと、還元鉄の平均金属化率(トータル鉄に対する金属鉄の質量割合):60%以上を達成するための酸化鉄原料の被還元性JIS-RI(%)の許容限界値(下限値)との関係に基づいて、被還元性JIS-RI(%)が許容限界値(下限値)以上で、耐還元粉化指数RDI(%)が許容限界値(上限値)以下となるように設定する必要がある。
 図12に、焼結鉱と塊鉱石を混合した酸化鉄原料を用い、還元ガス温度1000℃で還元した場合における、金属化率60%と通気性(炉内粉率上限)を満足するJIS-RIとモル比H2/COの関係を示す。
 通常操業では、JIS-RI:55程度の塊鉱石を使用し、天然ガスを改質したガス(H2/CO=1.5)で操業しているが、天然ガスの代わりに製鉄プロセスで発生する副生ガス:LDG+COGを使用し、H2/CO=1.20で操業したところ、還元鉄(製品)の金属化率が低下し、操業が不安定になった。
 図13に、焼結鉱とペレットとを混合した酸化鉄原料を用い、還元ガス温度1000℃で還元した場合における、金属化率60%と通気性(炉内粉率上限)を満足するJIS-RIとモル比H2/COの関係を示す。
 ペレットは、塊状鉄鉱石に比べて、JIS-RIが高く、RDIが高いので、図12に示す関係に比べて、JIS-RIが高く、RDIが高い条件で、通気性と還元性を同時に満足する操業範囲が存在する。製鉄プロセスで発生する副生ガス:LDG+COGを混合し、H2/CO=1.20となるように調整して操業する場合、酸化鉄原料のJIS-RIが67以上の範囲(RDI35焼結鉱の場合)、又は、73以下の範囲(RDI145焼結鉱の場合)にあれば、下限金属化率60%と通気性を同時に満足する安定操業域が存在する。
 2)次に、銑鉄の製造方法について説明する。
 本発明の銑鉄の製造方法においては、本発明の還元鉄の製造方法で製造した還元鉄の1部又は全部を、高炉や、コークス充填型溶融炉、電気炉、及び、転炉に装入して溶融し、銑鉄を製造する。
 還元鉄の1部又は全部を、スクラップや粒銑、形銑の一部又は全部に替えて転炉やTPC(混銑車)等の溶銑搬送装置に装入してもよい。この時、製造した還元鉄を熱間で装入することが望ましい。
 例えば、還元鉄製造炉の出側に断熱構造のホッパーを設け、所定量をTPC(混銑車)に切り出し、その後、TPCで受銑することにより製造した還元鉄を溶解し、溶銑を増やすことができる。700℃で装入した場合、常温の約1.5倍の還元鉄を、混銑車(TPC)等の混銑炉内に投入することができる。
 本発明は、このように、製鉄プロセスで発生する副生ガスを活用して酸化鉄原料を還元して還元鉄を製造する工程、及び、この工程で製造した還元鉄を含む製鉄原料を溶融する工程を通じ、製鉄プロセスで発生するCO2の量を削減することができる。
 次に、本発明の実施例について説明するが、本実施例で採用する条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例のみに限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例1)
 COGとLDGを混合した還元ガスを用いて還元鉄を製造し、冷却した後、還元鉄を竪型溶解炉で溶解した例を示す。気体に係る%は「モル%」を意味する。
 ガス分析の結果、COGの成分組成は、CO:5%、H2:55%で、LDGの成分組成は、CO:70%、H2:20%であった(表1参照)。そこで、COG:65%、LDG:35%の割合で混合し、還元ガスを製造した。還元ガスの成分組成は、分析の結果、表3に示すように、CO:27.8%、H2:42.8%であり、計画通りの混合であった。
Figure JPOXMLDOC01-appb-T000003
 表3に示す還元ガスを、28kNm3/Hr(COG:18kNm3/Hr、LDG:10kNm3/Hr)で還元鉄製造装置に供給した。還元鉄供給装置は、φ5mの縦型シャフト炉本体、還元ガス予熱炉、除塵装置、CO2除去装置等から構成されている。
 還元鉄製造装置に、酸化鉄原料として、塊鉱石とペレットを半々で配合したものを装入した。塊鉱石とペレットの径は、略10mm程度である。900℃に加熱した還元ガスを、ショフト炉本体に供給し、還元鉄を製造した。還元鉄の再酸化を防止するため、熱間でブリケット(以下、HBI(ホットブリケットアイアン))にして冷却した。生産速度は、約40t/Hであった。
 上記HBIを、67m3のキュポラに装入して溶解し、銑鉄を製造した。還元鉄製造から銑鉄製造までに要したエネルギーは4.4Gcal/tであり、大型高炉での溶銑製造エネルギー4.2Gcal/tより大きいが、CO2発生量は、1200kg/tであり、高炉法によるCO2発生量:1600kg/tの3/4であった。これは、製鉄プロセスで発生するH2を含む副生ガスを還元ガスとして活用したことによるものといえる。
 (実施例2)
 還元ガスとして天然ガスを改質したガス(H2/CO=約1.5)、酸化鉄原料として、塊鉱石(RDI:10%、JIS-RI:55)とペレット(RDI:15%、JIS-RI:70)を用い、シャフト炉で通常の操業を実施した。次に、比較例1及び2として、上記酸化物原料にRDI:35%、JIS-RI:65の焼結鉱、又は、RDI:45%、JIS-RI:75の焼結鉱を配合して操業し、操業状態を確認した。
 次に、本発明の実施例として、還元ガスとして、製鉄プロセスで発生した高炉ガス(BFG)、コークス炉ガス(COG)、及び、転炉ガス(LDG)を、そのまま又は改質して混合し、H2/COを、所定の範囲内に調整した還元ガスを製造し、この還元ガスを用い、酸化鉄原料として、RDIの異なる焼結鉱を所定の配合割合で配合した酸化鉄原料をシャフト炉に装入し、同様に、操業状態を確認した。
 表4に、試験条件及び試験結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4において、比較例1は、酸化物原料に、RDI:35%、JIS-RI:65の焼結鉱を20%配合した操業例であるが、天然ガスを改質したH2/CO:1.5の還元ガスで、安定操業が可能であった。
 次に、比較例2として、酸化物原料に、RDI:45%、JIS-RI:75の焼結鉱を配合し、その配合割合を25%に増加し、他の条件は、比較例1と同じ条件で操業を実施した。その結果、焼結鉱のRDIの増加、又は、酸化物原料中の焼結鉱配合割合の増加に伴う還元粉化により、通気変動が生じ始め、操業が不安定となった。
 実施例1は、焼結鉱の配合割合及び還元ガスの条件以外は、比較例1と同じ条件で、天然ガスに転炉ガス(LDG)を混合して、H2/CO:1.2に低下させた還元ガスを用いた操業例である。実施例1の操業例は、酸化物原料中の焼結鉱の配合割合が、比較例1よりも高い25%の場合でも、還元ガスのH2/COの低下により、安定操業が可能となった例である。
 実施例2は、還元ガスの条件以外は、実施例1と同じ条件で、還元ガスとして、製鉄所の副生ガスであるコークス炉ガス(COG)と転炉ガス(LDG)を混合して、H2/CO:1.2に調整した還元ガスを用いた操業例である。同様に、安定操業が可能となった操業例である。
 実施例3は、還元ガスのH2/CO、及び、焼結鉱の配合割合以外は、実施例2と同じ条件で、焼結鉱の配合割合を50%に増加した操業例である。還元ガスのH2/COを1.0に調整することで、安定操業が可能となった操業例である。
 実施例1~3の結果を含む、還元粉化率の許容値(上限値)及び酸化物原料のRDIと、還元ガスのH2/COとの関係は、図6に示す傾向にある。
 塊鉱石やペレットに比べて、気孔率及び2次へマタイト含有率が高く、かつ、RDIが高い焼結鉱を、酸化物原料中に多量に配合する場合は、酸化物原料のRDIが高くたるため、H2/COの異なる複数の製鉄所副生ガスを混合して、H2/COを1.5より低くなるように調整する必要がある。
 実施例4は、実施例3よりもRDIが高い焼結鉱(RDI:45の焼結鉱)を、実施例3よりも高い60%の配合割合で配合し、コークス炉ガス(COG)と転炉ガス(LDG)の混合比により、還元ガスのH2/COを、実施例3よりも低く(H2/CO:0.5)調整した操業例である。実施例4では、実施例3よりも、酸化物原料のRDIが増加したにもかかわらず、安定操業が可能となった。
 実施例5は、高炉ガス(BFG)、コークス炉ガス(COG)、及び、転炉ガス(LDG)を混合し、H2/CO:0.4に調整した還元ガスを用い、酸化物原料中のRDI:45の焼結鉱を70%に増加し、残部をペレット(30%)とした操業例であるが、安定操業が可能であった。
 前述したように、本発明によれば、製鉄プロセスで発生する副生ガスを有効に還元鉄の製造に用いることができるととともに、製鉄プロセスで発生するCO2量を、高炉法で発生するCO2量より低減することができる。よって、本発明は、製鉄産業において利用可能性が高いものである。

Claims (14)

  1.  酸化鉄原料を還元ガスで還元して還元鉄を製造する方法であって、
     製鉄プロセスで発生するH2及びCOの少なくとも一方を含む副生ガスを、少なくとも一部として含む前記還元ガスを製造する工程と;
     前記還元ガスを還元鉄製造装置に供給する工程と;
    を有することを特徴とする還元鉄の製造方法。
  2.  前記還元ガスが、還元炉より発生するガスと、天然ガスを改質したガスと、一般炭をガス化炉でガス化したガスと、の少なくとも一つをさらに含む
    ことを特徴とする請求項1に記載の還元鉄の製造方法。
  3.  前記副生ガスが、高炉及びコークス充填型溶融炉の少なくとも一方より発生した副生ガスと、コークス炉より発生した副生ガスと、転炉より発生した副生ガスと、の少なくとも一つを含む
    ことを特徴とする請求項1に記載の還元鉄の製造方法。
  4.  H2の含有量及び前記COの含有量の少なくとも一方が異なる前記副生ガスの中から2種以上の副生ガスを選択して混合し、H2含有率[モル%]及びCO含有率[モル%]、並びに、H2含有率[モル%]とCO含有率[モル%]との比であるH2/COを調整して還元ガスを製造する工程を
    さらに有することを特徴とする請求項1に記載の還元鉄の製造方法。
  5.  H2の含有量及び前記COの含有率の少なくとも一方が異なる前記副生ガスの中から1種又は2種以上の副生ガスの、選択及び混合の少なくとも一方を行う工程と;
     この工程に次いで、前記副生ガスにH2O及びCO2の少なくとも一方を添加して改質し、H2含有率[モル%]及びCO含有率[モル%]、並びに、H2含有率[モル%]とCO含有率[モル%]との比であるH2/COを調整して還元ガスを製造する工程と;
    さらに有することを特徴とする請求項1に記載の還元鉄の製造方法。
  6.  H2の含有量及び前記COの含有率の少なくとも一方が異なる前記副生ガスの中から選択した1種又は2種以上の副生ガスと、この副生ガスにH2O及びCO2の少なくとも一方を添加して改質した、H2の含有率及びCOの含有率の少なくとも一方が異なる改質副生ガスの中から、1種又は2種以上の副生ガスを選択して混合し、H2含有率[モル%]及びCO含有率[モル%]、並びに、H2含有率[モル%]とCO含有率[モル%]との比であるH2/COを調整して還元ガスを製造する工程を
    さらに有することを特徴とする請求項1に記載の還元鉄の製造方法。
  7.  前記H2の含有量及び前記COの含有量の少なくとも一方が異なる副生ガスの中から選択した前記副生ガスが、予め、この副生ガス中に含まれていたN2、H2O、及び、CO2の1種又は2種以上を除去したものである
    ことを特徴とする請求項4~6のいずれか1項に記載の還元鉄の製造方法。
  8.  前記還元鉄製造装置が、シャフト炉である
    ことを特徴とする請求項1に記載の還元鉄の製造方法。
  9.  前記シャフト炉に装入する酸化鉄原料が、
     粉状鉄鉱石を塊成化した焼結鉱:20質量%以上と;
     残部:塊状鉄鉱石と;
     粉状鉄鉱石を塊成化したペレット及びブリケットの1種又は2種以上と;
    を含むことを特徴とする請求項8に記載の還元鉄の製造方法。
  10.  前記還元ガスのH2/COを、
     H2/COと、酸化鉄原料中の焼結鉱の配合率(質量%)と、この焼結鉱中の2次ヘマタイト含有率(質量%)と、前記焼結鉱中の気孔率(体積%)に応じて求めた、安定操業を維持するための上記酸化鉄原料の耐還元粉化指数RDI(%)の許容限界値(上限値)と、の関係に基づいて、耐還元粉化指数RDI(%)が所定の許容限界値(上限値)以下となるように設定する工程
    をさらに有することを特徴とする請求項9に記載の還元鉄の製造方法。
  11.  前記還元ガスのH2/COを、
     (i)H2/COと、酸化鉄原料中の焼結鉱の配合率(質量%)と、この焼結鉱中の2次ヘマタイト含有率(質量%)と、前記焼結鉱中の気孔率(体積%)に応じて求めた、安定操業を維持するための上記酸化鉄原料の耐還元粉化指数RDI(%)の許容限界値(上限値)と、の関係、及び、
     (ii)H2/COと、還元鉄の平均金属化率(トータル鉄に対する金属鉄の質量割合):60%以上を達成するための上記酸化鉄原料の被還元性JIS-RI(%)の許容限界値(下限値)と、の関係に基づいて、
     被還元性JIS-RI(%)が許容限界値(下限値)以上でかつ、耐還元粉化指数RDI(%)が許容限界値(上限値)以下となるように設定する工程
    をさらに有することを特徴とする請求項9に記載の還元鉄の製造方法。
  12.  請求項1に記載の還元鉄の製造方法で製造した還元鉄の少なくとも一部を、溶融還元炉に装入して溶融及び還元し、銑鉄を製造する工程を含む
    ことを特徴とする銑鉄の製造方法。
  13.  前記還元鉄の少なくとも一部を、スクラップ、粒銑、及び、形銑の少なくとも一部に替えて装入する工程をさらに含む
    ことを特徴とする請求項12に記載の銑鉄の製造方法。
  14.  前記溶融還元炉が、高炉、コークス充填型溶融炉、電気炉、転炉、及び、混銑炉のいずれかである
    ことを特徴とする請求項12又は13に記載の銑鉄の製造方法。
PCT/JP2010/000846 2010-02-10 2010-02-10 還元鉄の製造方法及び銑鉄の製造方法 WO2011099070A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000846 WO2011099070A1 (ja) 2010-02-10 2010-02-10 還元鉄の製造方法及び銑鉄の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000846 WO2011099070A1 (ja) 2010-02-10 2010-02-10 還元鉄の製造方法及び銑鉄の製造方法

Publications (1)

Publication Number Publication Date
WO2011099070A1 true WO2011099070A1 (ja) 2011-08-18

Family

ID=44367383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000846 WO2011099070A1 (ja) 2010-02-10 2010-02-10 還元鉄の製造方法及び銑鉄の製造方法

Country Status (1)

Country Link
WO (1) WO2011099070A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514460A (ja) * 2011-05-13 2014-06-19 ミドレックス テクノロジーズ,インコーポレイテッド コークス炉ガス及び酸素製鋼炉ガスを用いて酸化鉄を金属鉄に還元するシステム及び方法
WO2017134829A1 (ja) * 2016-02-05 2017-08-10 新日鐵住金株式会社 高炉シャフト部への水素含有還元ガス供給方法
JP2018024896A (ja) * 2016-08-08 2018-02-15 新日鐵住金株式会社 還元鉄の製造方法および溶鋼の製造方法ならびに還元鉄製造工程を含む高炉製鉄所
CN109082489A (zh) * 2018-10-30 2018-12-25 攀钢集团西昌钢钒有限公司 一种冶炼钒钛矿的方法
CN115058553A (zh) * 2022-06-20 2022-09-16 水木明拓氢能源科技有限公司 适用于氢气直接还原铁反应的竖炉反应器及其应用
JP2023001496A (ja) * 2021-06-21 2023-01-06 Jfeスチール株式会社 還元鉄の製造方法
WO2024028919A1 (ja) * 2022-08-01 2024-02-08 Jfeスチール株式会社 還元鉄の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107213A (en) * 1976-03-08 1977-09-08 Nippon Kokan Kk <Nkk> Linked operation method of blast furnace and shaft furnace
JPS5339918A (en) * 1976-09-24 1978-04-12 Sumitomo Metal Ind Ltd Production of cast iron and steel by combination of shaft furnace, bupola and converter
JPS61276910A (ja) * 1985-05-31 1986-12-06 Sumitomo Metal Ind Ltd 還元鉄の製造方法
JPS62267409A (ja) * 1986-05-07 1987-11-20 ホエスト―アルピン・インダストリーアンラーゲンバウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 集積ミル装置及びその操作方法
JP2010043314A (ja) * 2008-08-11 2010-02-25 Nippon Steel Corp 還元鉄及び銑鉄の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107213A (en) * 1976-03-08 1977-09-08 Nippon Kokan Kk <Nkk> Linked operation method of blast furnace and shaft furnace
JPS5339918A (en) * 1976-09-24 1978-04-12 Sumitomo Metal Ind Ltd Production of cast iron and steel by combination of shaft furnace, bupola and converter
JPS61276910A (ja) * 1985-05-31 1986-12-06 Sumitomo Metal Ind Ltd 還元鉄の製造方法
JPS62267409A (ja) * 1986-05-07 1987-11-20 ホエスト―アルピン・インダストリーアンラーゲンバウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 集積ミル装置及びその操作方法
JP2010043314A (ja) * 2008-08-11 2010-02-25 Nippon Steel Corp 還元鉄及び銑鉄の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514460A (ja) * 2011-05-13 2014-06-19 ミドレックス テクノロジーズ,インコーポレイテッド コークス炉ガス及び酸素製鋼炉ガスを用いて酸化鉄を金属鉄に還元するシステム及び方法
WO2017134829A1 (ja) * 2016-02-05 2017-08-10 新日鐵住金株式会社 高炉シャフト部への水素含有還元ガス供給方法
CN108699612A (zh) * 2016-02-05 2018-10-23 新日铁住金株式会社 向高炉炉身部供给含氢气的还原气体的方法
US10961596B2 (en) 2016-02-05 2021-03-30 Nippon Steel Corporation Method for supplying hydrogen-containing reducing gas to shaft part of blast furnace
JP2018024896A (ja) * 2016-08-08 2018-02-15 新日鐵住金株式会社 還元鉄の製造方法および溶鋼の製造方法ならびに還元鉄製造工程を含む高炉製鉄所
CN109082489A (zh) * 2018-10-30 2018-12-25 攀钢集团西昌钢钒有限公司 一种冶炼钒钛矿的方法
JP2023001496A (ja) * 2021-06-21 2023-01-06 Jfeスチール株式会社 還元鉄の製造方法
JP7497700B2 (ja) 2021-06-21 2024-06-11 Jfeスチール株式会社 還元鉄の製造方法
CN115058553A (zh) * 2022-06-20 2022-09-16 水木明拓氢能源科技有限公司 适用于氢气直接还原铁反应的竖炉反应器及其应用
CN115058553B (zh) * 2022-06-20 2023-11-03 水木明拓氢能源科技有限公司 适用于氢气直接还原铁反应的竖炉反应器及其应用
WO2024028919A1 (ja) * 2022-08-01 2024-02-08 Jfeスチール株式会社 還元鉄の製造方法

Similar Documents

Publication Publication Date Title
JP5064330B2 (ja) 還元鉄及び銑鉄の製造方法
WO2011099070A1 (ja) 還元鉄の製造方法及び銑鉄の製造方法
JP4167101B2 (ja) 粒状金属鉄の製法
WO2010117008A1 (ja) 金属鉄の製法
EP2450459B1 (en) Blast-furnace operation method
AU2008301651B2 (en) Process for producing molten iron
AU2007320645B2 (en) Process for production of granular metallic iron and equipment for the production
JP4764304B2 (ja) 高炉操業方法
JP6476940B2 (ja) 溶鋼の製造方法
JP2010090431A (ja) ニッケルおよびバナジウムを含む合金鉄の製造方法
JP2014122417A (ja) 還元鉄の製造方法
JP2006274440A (ja) 半還元焼結鉱およびその製造方法
JP6137087B2 (ja) 焼結鉱の製造方法
JP6763227B2 (ja) 還元鉄の製造方法および溶鋼の製造方法
JP3732024B2 (ja) 還元鉄ペレットの製造方法
JP3516793B2 (ja) 竪型炉へのダスト塊成鉱、自己還元性鉱塊、鉄屑、固体燃料等の原燃料装入方法
JP7040659B1 (ja) 還元炉の操業方法
JP2666396B2 (ja) 溶銑の製造方法
RU2217505C1 (ru) Способ переработки никельсодержащего железорудного сырья
JP2666397B2 (ja) 溶銑の製造方法
JP2009024240A (ja) 溶融鉄製造方法
JP2023045910A (ja) 炭素回収型マンガン系合金の製造方法及びその製造装置
KR20240090372A (ko) 선철 생산용 야금 공장 운영 시 탄소 발자국을 줄이는 방법
JP5292884B2 (ja) 高炉操業方法
JPH0689387B2 (ja) 溶融還元製鉄法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845675

Country of ref document: EP

Kind code of ref document: A1