WO2011096593A1 - 角膜内皮細胞の培養方法、移植用角膜内皮細胞シートの製造方法および角膜内皮細胞培養キット - Google Patents
角膜内皮細胞の培養方法、移植用角膜内皮細胞シートの製造方法および角膜内皮細胞培養キット Download PDFInfo
- Publication number
- WO2011096593A1 WO2011096593A1 PCT/JP2011/052966 JP2011052966W WO2011096593A1 WO 2011096593 A1 WO2011096593 A1 WO 2011096593A1 JP 2011052966 W JP2011052966 W JP 2011052966W WO 2011096593 A1 WO2011096593 A1 WO 2011096593A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- corneal endothelial
- endothelial cells
- cell sheet
- transplantation
- corneal
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0621—Eye cells, e.g. cornea, iris pigmented cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/38—Vitamins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
- C12N2533/54—Collagen; Gelatin
Definitions
- the present invention relates to a method for culturing corneal endothelial cells, which is low in infection risk and can be mass-cultured at low cost.
- Corneal endothelial cells play the most important role in maintaining the transparency of the cornea, but are said to hardly proliferate and regenerate in vivo. For this reason, when the corneal endothelial cells are damaged, the damaged part cannot be filled with the proliferated cells, and the wound healing mechanism tries to fill the gap by increasing the cell surface area by expanding and compensating the cells. . As a result, the density per unit area of corneal endothelial cells decreases. Therefore, when the wound surface is healed by increasing the surface area of the corneal endothelial cells, the function of the cornea naturally becomes limited, and when it breaks down, diseases such as vesicular keratopathy are caused.
- corneal transplantation The only treatment method for visual impairment resulting from the decrease in the number of corneal endothelial cells is corneal transplantation.
- corneal transplantation there is an extremely shortage of corneal donors around the world except the United States, and patients are forced to wait for a long time.
- the transparent healing rate of transplantation for eyes with a reduced number of corneal endothelial cells is not high, and there are problems such as inadequate corrective visual acuity after surgery. Therefore, treatment by corneal transplantation is not a perfect treatment.
- Patent Document 1 proposes a method for reconstructing the cornea by applying regenerative medicine and culturing and transplanting isolated corneal endothelial cells. ing.
- Non-Patent Document 1 discloses a culture method characterized by a combination of various types of growth factors and extracellular matrix (ECM).
- Non-Patent Document 2 discloses a culture method using bovine pituitary extract
- Non-Patent Document 3 discloses a culture method of culturing on ECM produced by bovine corneal endothelial cells.
- the proliferation efficiency of corneal endothelial cells by these methods is still unsatisfactory.
- Non-Patent Document 2 and Non-Patent Document 3 are cattle spongiform encephalopathy.
- BSE cattle spongiform encephalopathy
- Non-Patent Document 4 A method is adopted in which a keratotomy is performed, and the cultured corneal endothelial cell sheet is wrapped with a silicon sheet, and the corneal incision is carried into the anterior chamber with a pestle from the incision site (Non-patent Document 5).
- these transplantation methods require a high level of operator skill and are accompanied by high invasiveness, and there are problems in that corneal endothelial cells are damaged during transplantation.
- the problem to be solved by the present invention is a corneal endothelial cell culturing method, a corneal endothelial cell sheet for transplantation, and a corneal endothelial cell culture that are low in infection risk and capable of mass culture at low cost. It is to provide kits and the like.
- a transplant device for a corneal endothelial cell sheet that enables a simple operative procedure with minimal invasiveness and does not damage cultured corneal endothelial cells when transplanting corneal endothelial cells.
- corneal endothelial cells can be cultured in a large amount when cultured in a culture medium containing an ascorbic acid derivative, and the present invention has been completed. I came to let you. Furthermore, the present inventors have found that a corneal endothelial cell sheet can be transplanted with minimal invasiveness and without damaging cultured corneal endothelial cells by adopting the transplantation device having the configuration shown in FIG. .
- the present invention is as follows.
- a method for culturing corneal endothelial cells comprising culturing corneal endothelial cells in a culture solution containing an ascorbic acid derivative.
- the method according to [1], wherein the corneal endothelial cell is cultured on a biopolymer.
- the ascorbic acid derivative is ascorbic acid 2-phosphate.
- the biopolymer is an extracellular matrix molecule containing collagen.
- the method according to [4], wherein the collagen is atelocollagen.
- a method for producing a corneal endothelial cell sheet for transplantation comprising a step of culturing corneal endothelial cells in a culture solution containing an ascorbic acid derivative.
- the method according to [7] wherein the corneal endothelial cell is cultured on a biopolymer.
- the ascorbic acid derivative is ascorbic acid 2-phosphate.
- the biopolymer is an extracellular matrix molecule containing collagen.
- a corneal endothelial cell sheet for transplantation which is produced by the method according to any one of [7] to [11].
- a corneal endothelial cell culture kit comprising a base material coated with a biopolymer and a culture solution containing an ascorbic acid derivative.
- a transplantation device for transplanting a corneal endothelial cell sheet into the anterior chamber of the eyeball The transplant device has a cylindrical body, The cylindrical body has a thickness and a length that allow the outside of the cornea and the interior of the anterior chamber to communicate with each other, and has a conduit inside, and the conduit opens to both end faces of the cylindrical body.
- Both of the end faces described above are slopes having an angle other than a right angle with respect to the central axis of the pipe, and the directions of the slopes are related to each other so as to satisfy the following condition (I): Being Said transplantation device.
- (I) A line segment connecting a point that protrudes most to the one side in the longitudinal direction among the periphery of the opening in one end surface and a point that protrudes to the other side in the most longitudinal direction among the periphery of the opening in the other end surface Is parallel to the central axis of the pipe.
- the end surface on the side that should be positioned on the distal end side in the operation of inserting the instrument from the outside of the cornea into the anterior chamber is defined as the distal end surface
- the transplantation device according to [1 ′] wherein a groove is provided along the longitudinal direction from the distal end surface.
- the cross-sectional shape of the outer periphery of the body of the cylindrical main body and the cross-sectional shape of the pipe are both circular.
- the transplantation device according to [2 ′] are both circular.
- [7 ′] The width of the groove provided on the wall surface of the conduit is 1 mm to 2.6 mm, the depth of the groove is 0.03 mm to 0.1 mm, and the length of the groove is 1 mm to 4 mm.
- [8 ′] The angle between the tip surface and the central axis is 10 to 80 degrees on the acute angle side, and the angle between the other end surface opposite to the tip surface and the central axis is 10 degrees on the acute angle side.
- the transplantation device according to any one of [1 '] to [7'], which is ⁇ 80 degrees.
- corneal endothelial cells can be cultured in a large amount with high proliferation efficiency as compared with conventional culture methods. Also, since corneal endothelial cells can be cultured without using bovine pituitary gland and eyeballs that are designated as high risk sites for BSE infection, corneal endothelial cells having a low risk of BSE infection are provided. Can do. Furthermore, cultivating corneal endothelial cells that maintain a paving stone-like morphology even after repeated subcultures and that have the same functions as uncultured corneal endothelial cells while maintaining high proliferation efficiency. Can do. Moreover, when the transplanted corneal endothelial cell sheet obtained by the method of the present invention is transplanted into the eye, high-density corneal endothelial cells can be maintained in the eye.
- the transplantation device of the present invention it becomes possible to insert a cell sheet into the anterior chamber in a minimally invasive manner, and the time required for transplantation of the cell sheet is shorter than when a conventional method is adopted. Significantly shortened.
- Donor No. 2 cultured in the presence or absence of ascorbic acid 2-phosphate (Asc-2P).
- 7 is a photograph of corneal endothelial cells taken at the end of primary culture of No. 7; It is a figure which shows the effect of ascorbic acid 2-phosphate on the passage stability of a corneal endothelial cell
- Fig.2 (a) shows the cell number acquired by primary culture
- FIG.2 (b) shows cell growth stability.
- FIG. 2 (c) is a photograph of corneal endothelial cells taken at the end of the sixth passage.
- FIG. 3 is a diagram showing a comparison between a conventional corneal endothelial cell culture method and the method of the present invention using ascorbic acid 2-phosphate
- FIG. 3 is a diagram showing a comparison between a conventional corneal endothelial cell culture method and the method of the present invention using ascorbic acid 2-phosphate
- FIG. 3 is a diagram showing a comparison between a conventional corneal endotheli
- FIG. 3 shows the number of cells and the multiplication factor obtained in the primary culture.
- (B) is a photograph of corneal endothelial cells taken at the end of the third passage. It is a figure which shows the result of the quality evaluation of the corneal endothelial cell sheet
- FIG. 6A is a plan view showing the appearance of the transplant device
- FIG. 6B is a cross-sectional view of the transplant device when cut along a plane including the central axis of the duct. is there. It is a figure which shows typically the change of the wall thickness of the trunk
- group T represents a transplanted corneal endothelial cell sheet transplanted group
- group AS represents an atelocollagen sheet transplanted group without endothelial cells
- group C represents an untreated group.
- the vertical axis represents corneal thickness, and the horizontal axis represents the number of days after surgery.
- the present invention provides a method for culturing corneal endothelial cells, which comprises culturing corneal endothelial cells in a culture solution containing an ascorbic acid derivative.
- the corneal endothelial cell in the present invention refers to a cobblestone cell located in the innermost layer of the cornea of a living eyeball of an animal such as a human, and refers to a cell obtained by separating and culturing the cobblestone cell. .
- the corneal endothelial cells may be collected from living corneal endothelium or may be established corneal endothelial cells, but a corneal endothelial cell sheet obtained by applying the method of the present invention is used for corneal transplantation. In view of the above, it is desirable that the cells are collected from living corneal endothelium.
- the animal species of the corneal endothelial cell is not particularly limited, but in view of the problem of transplantation adaptation, it is desirable that the corneal endothelial cell is at least the same animal species as the previous animal species. Examples of such animal species include humans, dogs, cats, rabbits, pigs, monkeys, and the like.
- the corneal endothelial cell sheet of the present invention refers to a sheet-like structure obtained by culturing the corneal endothelial cells, and the cell sheet is adhered to the posterior surface of the cornea to restore the visual function after transplantation surgery.
- Any cell sheet may be used. That is, it may be a sheet-like cell aggregate composed only of corneal endothelial cells, or may be a sheet-like structure formed by combining corneal endothelial cells and a support (biopolymer film). Good.
- a support that is added in order that corneal endothelial cells exhibit a sheet-like structure or that corneal endothelial cells secrete to exhibit a sheet-like structure
- various extracellular matrix proteins for example, fibronectin, laminin, Collagen etc.
- bioabsorbable polymers for example, gelatin scaffolds such as MedGel (registered trademark) SP
- the corneal endothelial cell sheet can be produced by seeding corneal endothelial cells cultured in large quantities by the culture method of the present invention described later on a support (biopolymer membrane) such as an atelocollagen membrane. The biopolymer will be described later.
- the method for collecting corneal endothelial cells from the corneal endothelium is not particularly limited, and those skilled in the art can appropriately select the method.
- a Descemet's membrane is collected from corneal endothelial cells with corneal endothelial cells attached, and then minced and cultured in a medium containing collagenase at 5% CO 2 and 37 ° C. for 1 to 3 hours. Thereafter, fibroblasts and the like are removed by centrifugal washing, and trypsin digestion is performed to obtain corneal endothelial cells as pellets.
- collagenase A from Roche, collagenase type IA from Sigma, collagenase type I from Worthington, etc. can be used as the collagenase. use.
- a medium a DME medium containing 15% fetal calf serum (FCS) and 2 ng / ml basic fibroblast growth factor (bFGF) can be used.
- a feature of the present invention is that an ascorbic acid derivative is contained in the culture medium of corneal endothelial cells, so that corneal endothelial cells having a very low proliferation ability usually exhibit high proliferation efficiency while maintaining their characteristics. It becomes like this.
- the corneal endothelial cell sheet thus obtained has a function equivalent to that of normal corneal endothelium even when it is applied for transplantation.
- the ascorbic acid derivative contained in the culture solution is not particularly limited as long as it increases the proliferation ability of corneal endothelial cells.
- ascorbic acid 2-phosphate ascorbic acid 2-diphosphate, ascorbine Ascorbic acid phosphates such as acid 2-triphosphate, ascorbic acid 2-polyphosphate; ascorbic acid 2-phosphate diester, ascorbic acid 2-phosphate 6-palmitic acid, ascorbic acid 2-phosphate 6-myristic acid, Ascorbic acid 2-phosphate 6-stearic acid, ascorbic acid 2-phosphate 6-oleic acid, ascorbic acid 2-glucoside, ascorbic acid 2-glucoside 6-palmitic acid, ascorbic acid 2-glucoside 6-myristic acid, ascorbic acid 2-glucoside 6-stearic acid, ascorbic acid 2-glucose De 6-oleic acid, ascorbic acid esters such as ascorbic acid 2-sulfate, L- ascorbic acid alkyl esters, L- ascorbic acid phosphoric acid ester, L- ascorbic acid sulfuric ester, and the like.
- ascorbic acid esters such as ascorbic acid 2-sulfate, L
- the ascorbic acid derivative of the present invention may be a salt with an alkali metal such as sodium or potassium, or a salt with an alkaline earth metal such as calcium or magnesium, in addition to the above ascorbic acid derivative.
- ascorbic acid 2-phosphate is particularly preferable as one that enhances the proliferation ability of corneal endothelial cells.
- the content of the ascorbic acid derivative in the culture solution is not particularly limited as long as the proliferation ability of corneal endothelial cells is increased or a corneal endothelial cell sheet applicable to corneal transplantation is obtained, and is appropriately determined by those skilled in the art. It is possible.
- a general guideline is usually 5 to 1000 ⁇ g / ml, more preferably 20 to 100 ⁇ g / ml, from the viewpoint of mass culture of corneal endothelial cells.
- the culture solution in the present invention is not particularly limited as long as it contains an ascorbic acid derivative, and a DME medium, MEM or the like generally used for culturing animal cells can be used.
- a medium containing an ascorbic acid derivative, fetal calf serum (FCS), a growth factor, or the like can be used.
- the concentration in the case of adding glucose is not particularly limited and can be appropriately determined by those skilled in the art. Usually, it is 2.0 g / l or less, for example, 0.1 to 2.0 g / l, preferably 0.1 to 1.0 g / l.
- corneal endothelial cells are extremely poor proliferative cells
- cultivated corneal endothelial cells may be added with humoral factors such as known growth factors and growth factors in the medium, or extracellular matrix.
- Cells may be cultured on a protein-coated substrate. Such methods are known to those skilled in the art.
- the growth factor or growth factor includes B cell growth factor (BCGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), basic fibroblast.
- BCGF B cell growth factor
- EGF epidermal growth factor
- FGF fibroblast growth factor
- bFGF Cell growth factor
- preferred growth factors and growth factors from the viewpoint of mass culture of corneal endothelial cells include FGF and bFGF, and bFGF is particularly preferred.
- FGF and bFGF is particularly preferred.
- One or more of these growth factors and growth factors can be appropriately combined and contained in the culture solution.
- the concentration of growth factors and growth factors in the culture can be determined appropriately by those skilled in the art, but is usually 1 to 100 ng / ml, preferably 2 to 5 ng / ml.
- the method for culturing corneal endothelial cells of the present invention can include a step of seeding corneal endothelial cells on a biopolymer.
- the biopolymer in the present invention is a biocompatible polymer, and is an extracellular matrix molecule such as collagen, laminin, elastin, fibronectin, fibrinogen, thrombospondin, gelatin, heparan sulfate, chondroitin sulfate, RGDS, polycarbohydrate. Examples thereof include a polymer complex composed of one or more kinds of molecules selected from bFGF bonded to a fill, EGF bonded to a polycarbophil, and the like.
- a commercially available biopolymer may be used, and extracellular matrix molecules produced by various cultured cells may be used. These biopolymers can be used by appropriately combining one or more molecules.
- the biopolymer is preferably an extracellular matrix molecule containing collagen from the viewpoint of culturing corneal endothelial cells in large quantities, and the collagen is preferably atelocollagen without immunological activity from the viewpoint of transplantation.
- the collagen in the present invention is a collagen obtained from an animal body, and a corneal endothelial cell culture sheet applicable to transplantation is obtained when corneal endothelial cells are cultured on collagen in a culture solution containing an ascorbic acid derivative.
- the collagen is not particularly limited as long as it is collagen, but examples include type I collagen, type II collagen, type III collagen, type IV collagen and the like.
- the collagen content is 50 to 100% by weight, more preferably 80 to 100% by weight.
- Atelocollagen in the present invention is obtained by separating from connective tissue such as animal skin, bone, blood vessel, tendon, etc., and short fiber insoluble collagen crosslinked between collagen molecules is converted to pepsin or the like. It is obtained by treating with a protein separating enzyme or alkali and cleaving and digesting telopeptides present at both ends of the collagen molecule and involved in crosslinking.
- a protein separating enzyme or alkali and cleaving and digesting telopeptides present at both ends of the collagen molecule and involved in crosslinking When using bovine-derived atelocollagen, it is preferable to use atelocollagen derived from skin without the risk of BSE infection.
- atelocollagen As for atelocollagen, commercially available products include atelocollagen powder and atelocollagen solution manufactured by Koken Co., Ltd. Moreover, as an atelocollagen solution manufactured by Koken Co., Ltd., IAC-30, IAC-50 (bovine dermis-derived collagen acidic solution), MEN-02, HAN-02, DME-02 (bovine dermis-derived collagen neutrality) Solution).
- the extracellular matrix contains atelocollagen
- its content is 50 to 100% by weight, more preferably 80 to 100% by weight.
- biopolymers can be coated on a cell culture vessel by a method known per se. Those skilled in the art can appropriately select the method according to the purpose.
- seeding of corneal endothelial cells on a biopolymer can be performed using, for example, a suspension of cell pellets in a culture solution.
- the density (cell density) when seeding corneal endothelial cells is, for example, 500 to 600,000 pieces / cm 2 . If the cell density is too low, the proliferation efficiency of corneal endothelial cells decreases, and if the cell density is too high, the cells become confluent immediately and the efficient cell growth of the present invention cannot be exhibited.
- the culture temperature of corneal endothelial cells in the method of the present invention is 35 to 38 ° C, more preferably 37 ° C. Then, it is preferably cultured in an incubator of 2 to 15% CO 2 (preferably 5%) set at the temperature.
- the corneal endothelial cell obtained by the culturing method of the present invention is a cell having a paving stone shape like a normal corneal endothelial cell.
- the present invention also provides a method for producing a corneal endothelial cell sheet for transplantation.
- This production method is a method for producing a corneal endothelial cell sheet for transplantation, comprising a step of culturing corneal endothelial cells in a culture solution containing an ascorbic acid derivative.
- a corneal endothelial cell sheet for transplantation can be produced by seeding cells cultured in large quantities by the above-described corneal endothelial cell culture method on a biopolymer film such as an atelocollagen film.
- the production method of the present invention comprises a step of culturing corneal endothelial cells having extremely low proliferative ability in a culture solution containing an ascorbic acid derivative to proliferate corneal endothelial cells, and a cornea for transplantation using the proliferated cells. Producing an endothelial cell sheet.
- the raw material of the biopolymer film those prepared by forming the above-mentioned various biopolymers into a film or those prepared by vitrigel formation of collagen or the like are used.
- the thickness of the membrane is suitably about 10 to 50 ⁇ m, but about 10 ⁇ m is more preferable in order to approximate the thickness of the Descemet membrane in the living body.
- seeding density 2000 to 8000 cells.
- / Mm 2 preferably 4000 to 6000 / mm 2 ).
- ascorbic acid derivatives are not necessarily required at the time of seeding on the biopolymer membrane, and commonly used DME medium, MEM, etc. can be used, for example, low glucose concentration medium (DME medium, etc.)
- DME medium low glucose concentration medium
- FCS fetal calf serum
- the culture can be performed for 2 weeks or more using a DME medium containing 15% fetal bovine serum and 2 ng / ml bFGF, and functions equivalent to those of uncultured corneal endothelial cells (barrier function, pump function, cell It is preferable from the viewpoint of obtaining adhesive ability.
- the present invention also provides a corneal endothelial cell culture kit, which includes a base material coated with the above-described biopolymer and a culture solution containing the above-described ascorbic acid derivative.
- the substrate coated with the biopolymer in the present invention is not particularly limited, and a substrate in which a biopolymer is coated on a cell culture container or the like, or a biopolymer itself formed into a gel, film sheet or the like is used as a substrate. Can be used.
- the obtained corneal endothelial cell sheet can be used for transplantation as it is, but it is clear that the corneal endothelial cell sheet is usually difficult to handle and easily damaged. Furthermore, it is extremely difficult to insert the sheet into the anterior chamber and attach it to the treatment site (corneal endothelium) without damaging the obtained corneal endothelial cell sheet during corneal transplantation. Therefore, at the time of transplantation, it is possible to maintain the survival of the corneal endothelial cells in a sterile environment until the time of use in order to perform the operation easily, and at the time of transplantation, it is not influenced as much as possible by the operator's skill.
- the transplantation device of this invention shown by FIG. 6 can be used.
- the transplantation device of the present invention the sheet can be easily guided to the transplantation site in the eyeball without damaging the corneal endothelial cell sheet and without depending on the skill of the operator. It is. Compared with the conventional method, the time required for the transplantation operation is greatly shortened by using the transplantation device of the present invention.
- the transplant device of the present invention has at least both end faces 1A, 1B of the cylindrical body 1 having a slope similar to the shape of the cut when the cylinder is cut obliquely, An internal pipe line 2 is opened on each slope (hereinafter, an end face provided with a groove is referred to as “end face 1A”, and the other end is referred to as “end face 1B”). That is, both the end faces 1A and 1B are inclined surfaces having angles ⁇ and ⁇ other than a right angle with respect to the central axis X of the pipe line 2, and the directions of the inclined surfaces are as follows.
- the line segment connecting is parallel to the central axis X of the pipeline, Are related to each other so as to satisfy the condition.
- the end surface 1A is a distal end surface that should be positioned on the distal end side in the operation of inserting the instrument from the outside of the cornea into the anterior chamber, and is provided with a groove along the longitudinal direction from at least the distal end surface in the wall surface of the duct. Is provided.
- the end face 1B is an inclined surface having an angle ⁇ other than a right angle with respect to the central axis X of the pipe.
- This slope has a special effect on the cell sheet to be transplanted as follows. That is, as shown in FIG. 8A, an elongate grasping device S such as a micro forceps or a corneal sushi is passed through the duct from the end surface 1A side of the transplantation device 1, and the tip of the grasping device S is grasped.
- the end face 1B has a simple shape as if the tube was cut obliquely, but the flat sheet M on which the corneal endothelial cells are laid is guided into the duct while being gradually wound inwardly. It plays a role of being rolled into a cylindrical shape. This action makes it possible to draw the sheet into the conduit of the instrument while gently wrapping the sheet without damaging the corneal endothelial cells (see particularly FIG. 8B).
- the end face 1A is also an inclined surface having an angle ⁇ other than a right angle with respect to the central axis X of the pipe line.
- This inclined surface shows a derivation action opposite to the above-described introduction action by the end face 1B with respect to the cell sheet accommodated in a tubular shape in the duct. That is, as shown in FIG. 10 (a), when the cell sheet M accommodated in a tubular shape in the conduit of the transplantation device is pulled out by the grasping device S, the slope is in accordance with the displacement.
- the end surface 1A sequentially spreads the cell sheet M rounded into a cylindrical shape to the original sheet.
- the end face 1A is also a simple shape obtained by obliquely cutting a cylinder, but gradually returns the original planar sheet while gradually expanding the cell sheet M rounded into a cylinder. It plays a role of releasing outside the cylinder. This action makes it possible to insert a cell sheet into the anterior chamber in a minimally invasive manner.
- each of the end faces 1A and 1B is also possible that the directions of the slopes of the both end faces 1A and 1B are related to each other so as to satisfy the condition (I). It is important to obtain the following effect. That is, when the sheet is pulled out from the end surface 1A with respect to the cell sheet accommodated in a cylindrical shape by the introduction of the inclined surface of the end surface 1B, the leading edge of the sheet moves on a line connecting the leading end points 1a-1b. Since it spreads, the action of the slope of the end face 1A trying to spread the sheet is most preferably exhibited.
- the above condition (I) is: [A line connecting the point 1a and the central axis X (center point) and the line connecting the point 1b and the central axis X when the instrument is projected onto a plane perpendicular to the central axis X] Can be paraphrased.
- the point 1a of FIG.6 (b) is prescribed
- the point 1a may be defined as a design point assuming that the groove is not present and around the opening.
- the groove 3 is a groove provided along the longitudinal direction from the end face 1 ⁇ / b> A.
- the thickness of a part or all of the outer periphery of the body of the cylindrical main body is made thicker than the thickness in the end face 1A, or part or all of the thickness increases as the end face 1A moves from the end face 1B.
- the transplantation device of the present invention is inserted from the outside of the cornea into the anterior chamber (see FIG. 10 (a)), and the cell sheet is transplanted into the anterior chamber through the duct in the device. It is an instrument intended to do (see FIG. 10B).
- one end surface 1A of the end surfaces 1A and 1B is located on the distal end side (puncture side), and the other end surface is the proximal side.
- one end surface 1A to be positioned on the distal end side is also referred to as a “front end surface”, and the other end surface 1B is also referred to as a “base end surface”.
- the transplantation device of the present invention having the above configuration is used as follows, for example.
- a grasping instrument such as a corneal scissors is passed through the end faces 1 ⁇ / b> A to 1 ⁇ / b> B (see FIG. 8A), and the pipe line 2 while holding the cell sheet.
- the cell sheet is drawn into the tube (see FIG. 8B) and allowed to stand in the duct.
- the groove 3 is provided on the wall surface of the pipe line 2, in view of subsequent handling, the cell sheet is allowed to stand so that a part or all of the cell sheet is placed on the groove 3.
- FIG. 8C the end faces 1A and 1B are sealed and transported to the surgical site in a fixed state.
- the transplantation device having a cell sheet in the duct is inserted into the anterior chamber from the corneal incision as shown in FIG. 9 (a). After the insertion, the transplantation device is rotated about the central axis X so that the groove provided along the longitudinal direction from the front end surface of the device is arranged so as to approach the posterior surface of the corneal stroma, and is further fixed by pushing in (FIG. 9 (b)).
- This operation is a preferable operation for efficiently performing the transplantation by placing the cell sheet to be transplanted on the back of the corneal stroma.
- a grasping device such as a corneal set is inserted into the anterior chamber from the corneal incision on which the transplantation device is inserted and the corneal incision on the opposite side of 180 degrees, and the graft is introduced from the end surface 1A. While drawing the cell sheet in the instrument into the anterior chamber, the cell sheet is sequentially spread on the original cell sheet and placed at an appropriate location on the back of the corneal stroma (see FIG. 10B).
- the cell sheet can be stored and transported in a minimally invasive manner, or can be rapidly and minimally invasive in the cornea (corneal anterior chamber). Can be transplanted.
- the total length of the cylindrical main body is not particularly limited as long as it can be applied to introduce a cell sheet into the anterior chamber of the eyeball and can be manipulated when various elongated grasping instruments are inserted.
- a preferable dimension is 11 mm to 30 mm.
- 11 mm to 20 mm is a more preferable dimension.
- the inner diameter of the tube of the cylindrical main body is preferably small enough to allow insertion of various grasping instruments used for corneal endothelium transplantation and handling of the cell sheet, for example, 2 mm to 5.4 mm. More preferably, 2 to 3 mm is a preferable dimension.
- the inner diameter of the pipe line may vary within the above range for each part depending on the function and application in each part, but is desirably the same over the entire length. By making the inner diameter of the pipe line the same over the entire length, handling of the cell sheet is facilitated. These values are typical examples, and may be appropriately dimensioned as necessary.
- the angle ⁇ formed by the front end surface 1A with respect to the central axis X is not particularly limited as long as it is an angle other than a right angle.
- the angle ⁇ in FIG. 6A is preferably 10 degrees to 80 degrees, more preferably 20 degrees to 60 degrees, and particularly preferably 45 degrees.
- the angle ⁇ formed by the base end face 1B with respect to the central axis X is not particularly limited as long as it is an angle other than a right angle.
- the angle should be such that it can be drawn into the duct without damaging the corneal endothelial cells while gently wrapping the cell sheet.
- the angle ⁇ in FIG. 6A is preferably 10 to 80 degrees, more preferably 20 to 60 degrees, and particularly preferably 45 degrees. By adopting the angle, it becomes easier to visually recognize the cell sheet when the cell sheet is drawn into the duct.
- the material of the cylindrical body is preferably transparent or translucent, such as inorganic materials such as metals and ceramics, organic polymer materials such as plastics, polypropylene and low density polyethylene, etc. As long as it has properties, environmental resistance, corrosion resistance, biocompatibility, elasticity, heat resistance, ease of holding, and the like.
- inorganic materials such as metals and ceramics
- organic polymer materials such as plastics, polypropylene and low density polyethylene, etc.
- a material that does not harm the living body even if inserted into the anterior chamber of the eyeball should be used.
- polypropylene and low-density polyethylene are translucent materials that are also used for IOL injectors, and have a proven track record in the field of ophthalmology and are easy to use as disposable materials.
- the pipe wall surface material may be a separate material from the outside of the pipe body, particularly suitable for cell culture and cell maintenance. Good. Such a material can be appropriately selected by those skilled in the art.
- the thickness of the cylindrical body on the outer periphery of the body may be any thickness as long as it can withstand the insertion of the transplantation device of the present invention into the anterior chamber and the insertion of an elongated grasping device S such as a corneal sushi.
- the shape varies depending on the material constituting the main body.
- the other end face on the opposite side to the tip face 1A is used for the purpose of favorably maintaining airtightness in the anterior chamber by preventing air leakage from the outside of the cylindrical body during air replacement in the anterior chamber of the eye.
- Fig. 7 (Fig. 7 (a): an example in which the thickness of a part of the outer periphery of the cylindrical body is continuously increased.
- b) An example in which the entire thickness of the outer periphery of the body of the cylindrical main body continuously increases).
- the thickness of the front end surface 1A is 0.05 mm to 0.3 mm, and continuously as it moves to the other end surface 1B.
- the wall thickness of the end face 1B is 0.1 mm to 0.3 mm.
- the cross-sectional shape of the outer periphery of the trunk when the cylindrical main body is cut perpendicularly to the central axis of the conduit is not particularly limited as long as it is a shape suitable for handling the transplantation device of the present invention, but is preferably circular.
- the “circular” includes an oval.
- the cross-sectional shape of the pipe wall surface when the cylindrical main body is cut perpendicularly to the central axis of the pipe line is not particularly limited as long as it is an appropriate shape for filling the cell sheet, but is preferably circular.
- the “circular shape” includes an oval shape as long as the shape is suitable for filling a cell sheet in the transplantation device of the present invention.
- the transplantation device of the present invention is provided with a groove 3 along the longitudinal direction from the distal end surface in a preferred embodiment.
- the groove is gripped when the cell sheet is drawn into the transplantation device of the present invention as shown in FIG. 8, or when the cell sheet is inserted into the anterior chamber of the cornea as shown in FIG. This is for facilitating the gripping of the cell sheet by the instrument S.
- the dimension of the groove is such that the gripping device S can grip the end of the cell sheet using the groove, and the cylindrical body can maintain the strength that can withstand normal use. Good.
- the bottom of the groove may be in a form penetrating the tube wall of the cylindrical main body (in this case, the groove may be viewed as a “notch”).
- the width of the groove is preferably 1 mm to 2.6 mm, and the depth of the groove is 0.03 mm to 0.1 mm.
- the length of the groove is not particularly limited as long as a part or the whole of the sheet is allowed to stand on the groove when the cell sheet is inserted, and is preferably 1 mm to 10 mm, for example. Is 1 mm to 4 mm.
- the width and depth of the groove may continuously decrease as part or all of the groove advances along the longitudinal direction.
- the transplantation device of the present invention can be subjected to various mechanical processing such as cutting and welding, chemical processing, and the like as necessary with reference to known techniques.
- various mechanical processing such as cutting and welding, chemical processing, and the like as necessary with reference to known techniques.
- an IOL injector intended for IOL intraocular insertion may be mentioned.
- the transplantation device of the present invention can be produced by those skilled in the art using a mechanical processing technique known per se.
- the transplantation device of the present invention is preferably sterilized.
- the cell sheet applied to the transplantation device of the present invention is not particularly limited, and any cell can be used as long as it can form a sheet-like structure (epithelial tissue-like structure) with cell proliferation.
- a corneal endothelial cell sheet is desirable in view of the fact that the transplantation device of the present invention is in a form suitable for insertion into the corneal anterior chamber.
- a corneal endothelial cell sheet that adheres to the posterior surface of the corneal stroma and restores visual function after transplantation surgery is desirable.
- Examples of such a corneal endothelial cell sheet include a corneal endothelial cell sheet produced by the method of the present invention.
- the cell sheet may be a sheet-like cell aggregate composed only of corneal endothelial cells, or a sheet-like structure in which the corneal endothelial cells and the support are combined.
- Examples of such a cell sheet include those obtained by culturing corneal endothelial cells collected from a living cornea and growing them into a sheet shape, specifically, the corneal endothelial cell sheet described above.
- a support may be added to the culture medium when culturing.
- the support added to the culture solution examples include various extracellular matrix proteins (for example, fibronectin, laminin, collagen, etc.), bioabsorbable polymers (for example, gelatin scaffolds such as MedGel (registered trademark) SP), etc. However, it is not particularly limited.
- This support may be an extracellular matrix protein secreted by the cultured corneal endothelial cells themselves. Moreover, the growth factor and humoral factor which are mentioned later may be included.
- corneal endothelial cells are extremely poor proliferating cells
- cultivated corneal endothelial cells may be added with known growth factors and humoral factors in the medium, or coated with an extracellular matrix protein.
- the cells may be cultured on the prepared substrate.
- growth factors and humoral factors include RGDE peptide, bFGF, EGF, ascorbic acid derivatives (eg, ascorbic acid 2-phosphate) and the like.
- extracellular matrix proteins include fibronectin, laminin, and collagen.
- the operation of drawing the cell sheet into the transplantation device of the present invention can be performed, for example, as follows. From the cell sheet produced by culturing, the cell sheet is cut into an arbitrary size using Trepan and suspended on the medium. Next, an elongated grasping device S such as a corneal sushi is passed through the end faces 1A to 1B to grasp the cell sheet M (see FIG. 8A). Then, the grasped cell sheet is slowly drawn into the tube (see FIG. 8B). Retraction of the cell sheet is performed until a part or all of the cell sheet is disposed on the groove 3, and the cell sheet is allowed to stand (see FIG. 8C).
- an elongated grasping device S such as a corneal sushi is passed through the end faces 1A to 1B to grasp the cell sheet M (see FIG. 8A). Then, the grasped cell sheet is slowly drawn into the tube (see FIG. 8B). Retraction of the cell sheet is performed until a part or all of the cell sheet is disposed on the groove 3, and the cell sheet is
- both ends may be tightly plugged for the purpose of fixing and preventing contamination until the corneal transplantation operation.
- Any device may be used for the sealing plug, and examples thereof include a rubber lid.
- One embodiment of the transplantation device of the present invention filled with a cell sheet is shown in FIG. 8 (c), for example. If a long time is required for the corneal transplantation, a stopper with an appropriate hole may be inserted and placed in a separate container containing the culture medium.
- the operation of inserting the cell sheet into the anterior chamber of the eyeball from the transplantation device filled with the cell sheet can be performed, for example, as follows. First, the sealing plug of the end surface 1A is removed, and the transplantation device of the present invention is inserted into the anterior chamber from the corneal incision (see FIG. 9A), and the device is rotated along the longitudinal direction from the distal end surface of the device. Then, the groove provided is arranged so as to approach the posterior surface of the cornea substantially, and then pressed and fixed (see FIG. 9B).
- a grasping device S such as a corneal set is inserted into the anterior chamber, and the grasping device S is used from the end face 1A side.
- the cell sheet M in the transplantation device is grasped and pulled into the anterior chamber along the groove (see FIG. 10A).
- the cell sheet is pulled out from the transplant device into the anterior chamber while being sequentially expanded into the original sheet.
- the cell sheet is allowed to stand at an appropriate position on the rear surface of the corneal stroma (see FIG. 10B).
- a photograph of a rabbit eye specifically representing this operation is shown in FIG.
- a rigid mandrel is inserted into the transplantation device and protrudes with the mandrel so that the transplantation device is inserted into the anterior chamber. It may be inserted.
- the inserted cell sheet can be transplanted by adhering the cell sheet to the posterior surface of the cornea by perforating the inside of the anterior chamber with a syringe or the like by a method known per se, for example.
- Example 1 [Isolation and primary culture of corneal endothelial cells] From a rocky mountain lions eye bank, a cornea piece prepared from 10 human donor eyes aged 14 to 69 was cryopreserved in a preservation solution (trade name: Optisol, manufactured by Chiron Co., Ltd.). Obtained. They were 6-8 days after death. The cornea piece was transferred to a 35 mm Petri dish, and the endothelial surface was washed with a DME medium (hereinafter referred to as a basal medium) containing 15% fetal calf serum (FCS) and 2 ng / ml basic fibroblast growth factor (bFGF).
- a DME medium hereinafter referred to as a basal medium
- FCS fetal calf serum
- bFGF basic fibroblast growth factor
- the corneal endothelium together with the Descemet's membrane was peeled off in the form of a sheet from the peripheral portion of the inner surface of the cornea toward the center, and transferred to a 35 mm Petri dish.
- the Descemet's membrane piece with corneal endothelial cells on a Petri dish into small pieces of about 2 mm square, only the Desceme's piece that does not show attachment of cotton-like parenchyma is a low-adsorption centrifuge tube (Sumitomo Bakelite Co., Ltd.) In a basal medium containing 0.2% collagenase (trade name: collagenase A, collagenase activity:> 0.15 U / mg, manufactured by Roche) at 37 ° C., 5% Incubated with% CO 2 for 1-3 hours.
- collagenase trade name: collagenase A, collagenase activity:> 0.15 U / mg, manufactured by Roche
- Collagenase-treated cells were diluted with basal medium and centrifuged at 20 g for 2 minutes three times to remove cells floating in the supernatant. Next, the sample was diluted with phosphate buffered saline (PBS), and once subjected to centrifugal washing at 20 g for 2 minutes, the precipitated cell mass was added to 0.5% trypsin / 0.2% ethylenediaminetetraacetic acid (EDTA) was added and incubated at 37 ° C., 5% CO 2 for 5 minutes. A cell pellet was obtained by adding a basal medium and centrifuging at 500 g for 5 minutes.
- PBS phosphate buffered saline
- EDTA ethylenediaminetetraacetic acid
- the obtained cell pellet was resuspended in a basal medium containing 100 ⁇ g / ml ascorbic acid 2-phosphate (manufactured by Wako Pure Chemical Industries, Ltd.) and a basal medium for comparison not containing, and then prepared by the following method.
- a basal medium containing 100 ⁇ g / ml ascorbic acid 2-phosphate (manufactured by Wako Pure Chemical Industries, Ltd.) and a basal medium for comparison not containing, and then prepared by the following method.
- Each seed was seeded on a dish and cultured in an incubator at 37 ° C. and 5% CO 2 for 2 to 4 weeks while changing the medium every 2 to 3 days.
- atelocollagen (collagen acidic solution derived from bovine dermis, trade name: IAC-50, manufactured by Koken Co., Ltd.) was diluted 100 times with 10 mM acetic acid, 1 ml was added to a 35 mm dish, and left at 37 ° C. for 1 hour. Thereafter, the dish coated with atelocollagen was prepared by washing twice with 2 ml of PBS.
- Table 1 shows the results of primary culture of corneal endothelial cells obtained from the corneas of 10 donors aged 14 to 69 years in the presence and absence of ascorbic acid 2-phosphate, respectively. is there.
- all 10 corneal endothelial cells obtained from donors were found to dramatically increase the number of corneal endothelial cells obtained at the end of primary culture by adding ascorbic acid 2-phosphate. .
- donor Nos. 5 and 7 when cultured in a basal medium containing ascorbic acid 2-phosphate, a cobblestone cell image characteristic of corneal endothelial cells is displayed on the entire surface of the culture dish.
- the corneal endothelium together with the Descemet's membrane was peeled off in the form of a sheet from the peripheral portion of the inner surface of the cornea toward the center, and transferred to a 35 mm Petri dish.
- the Descemet's membrane piece was placed into small pieces of about 2 mm square on a Petri dish, place the endothelial side down on a dish coated with an extracellular matrix produced by fetal bovine corneal endothelial cells, and carefully place the dish.
- the cells were transferred to an incubator at 37 ° C. and 5% CO 2 and cultured for 2 to 3 weeks while changing the medium every 2-3 days.
- Fig. 3 shows the conventional method (Miyata K, Drake J, Osakabe Y, Hosokabe Y, Hwang D, Soyya K, Oshika T, Amano S. Cornea. 2001: About the primary culture and passage stability of corneal endothelial cells. It is the figure which compared the culture method on the bovine corneal endothelial cell production extracellular matrix which is -63), and the culture method in the presence of ascorbic acid 2-phosphate on atelocollagen. As shown in FIG. 3, the number of corneal endothelial cells at the end of the primary culture was obtained by culturing by the conventional method, but at any passage, the ascorbic acid 2-phosphate addition group had a larger number.
- FIG. 8 shows an example, and the number of cells obtained in the ascorbic acid 2-phosphate added group was larger than that in the non-added group even when the subculture was repeated after the completion of the primary culture (FIG. 2 (a)). ), (B)).
- the ascorbic acid 2-phosphate added group retained the cobblestone-like morphology peculiar to corneal endothelial cells, but no ascorbic acid 2-phosphate added The group did not retain the shape of corneal endothelial cells and exhibited fibroblast-like (FIG. 2 (c)).
- the corneal endothelial cells used were human corneal endothelial cells that had been subjected to primary culture in the same manner as in 1 above and cryopreserved after 3 subcultures in the same manner as in 3 above.
- a combination of a dish coated with atelocollagen produced by the same method as in the above 1 and a basal medium containing 100 ⁇ g / ml ascorbic acid 2-phosphate was used.
- atelocollagen prepared in the same way as 1 above, and change the medium every other day using basal medium. While culturing at 37 ° C. and 5% CO 2 (see FIG. 5). When the cells reached confluence, they were dispersed with 0.05% trypsin / 0.02% EDTA solution and suspended in basal medium. For cells to be transplanted into rabbits, the cells were labeled with a PKH26 staining kit (trade name: MINI26, manufactured by SIGMA).
- a 35 ⁇ m thick Atelocollagen membrane (manufactured by Koken Co., Ltd.) was cut out to a large bottom of a 35 mm dish, washed with a basal medium, and then fixed to the bottom of the dish with a silicon ring.
- the cells were suspended in DME medium containing 15% FCS and 2 ng / ml bFGF, the cells were seeded at a density of 6000 cells / mm 2 in a dish on which an atelocollagen membrane was fixed, and the medium was changed at 37 ° C., 5% with daily medium exchange. Cultivation was carried out in CO 2 for 1 to 4 weeks. Cells transplanted into rabbits were cultured for 3 weeks at 37 ° C. and 5% CO 2 . Thereby, a corneal endothelial cell sheet was obtained.
- Type IV collagen that is a major component of the corneal endothelial cell-related protein ZO-1 (barrier function), Na + / K + ATPase (pump function), and corneal endothelial cell basement membrane (Desme membrane) Western blot analysis was performed for (cell adhesion) by the following method.
- a protein extraction reagent (8 MUrea, 0.1% SDS, 20 mM Tris, pH 7.4) was added to the transplanted corneal endothelial cell sheet prepared in 4 above.
- a protein extraction reagent was added to endothelial cells (for one eye) collected from the cornea piece together with the Descemet's membrane.
- PVDF polyvinylidene fluoride
- HRP-linked anti-Mouse IgG (manufactured by GE Healthcare, # NIF825), HRP-linked anti-Rabbit IgG (manufactured by GE Healthcare, # NIF824), HRP-linked anti-Goat IgG (Santa Cruz ( Co., Ltd., # SC-2020).
- the target protein was detected using an ECL Advance Western Blotting Detection Kit (manufactured by GE Healthcare Co., Ltd.) and visualized using a Gel Documentation System (manufactured by Bio-Rad Laboratories Co., Ltd.).
- the corneal endothelial cell sheet for transplantation expresses ZO-1, Na + / K + ATPase ( ⁇ -1 and ⁇ -1) at the same level or higher as the control corneal endothelial cell.
- ZO-1 ZO-1
- Na + / K + ATPase ⁇ -1 and ⁇ -1
- type IV collagen expression equivalent to that of the control was confirmed in the corneal endothelial cell sheet for transplantation cultured for 2 weeks or more. From the above, it was suggested that the corneal endothelial cell sheet for transplantation has the same barrier function, pump function, and cell adhesion ability as uncultured corneal endothelial cells.
- the transplantation device of the aspect shown in FIG. 6 was produced and the use condition was evaluated.
- the cylindrical body was made of polypropylene and low-density polyethylene. The dimensions of each main part are as follows.
- Total length of cylindrical body 12.0mm Inner diameter of pipe: 2.6mm Thickness of the outer periphery of the barrel body: Tip surface side: 0.1 mm Base end side: 0.2mm Grooves provided on the wall of the pipeline: Width: 1.0mm Depth: 0.05mm Length: 3.0mm Angle ( ⁇ ) formed between the distal end surface and the central axis of the pipe: 45 degrees Angle formed between the base end face and the central axis of the pipe ( ⁇ ): 45 degrees
- the transplantation device of the present invention As described in Comparative Example 1 below, the surgical procedure was dramatically simplified compared to the conventional method, and the time required for transplantation was about 10 minutes. In addition, the degree of damage to the cells was significantly reduced.
- the cell sheet was drawn into the transplantation device together with the culture medium from the end face 1B) (see FIG. 8B). After filling the cell sheet into the transplantation device (see FIG. 8C), both ends were sealed with a rubber lid, transported to the operation room, and stored at room temperature until transplantation. If it takes a long time to transplant, place a lid with a suitable hole on the transplantation device, place it in another container containing the culture medium, transport and store it at room temperature, replace the above lid just before transplanting, and seal tightly did.
- JBS rabbits (3 Kg, female) were paralyzed by intramuscular administration of ketamine hydrochloride (60 mg / kg, Daiichi Sankyo) and xylazine (10 mg / kg, Bayer). After administration of 0.3 mg / ml mitomycin C (Kyowa Hakko Kogyo Co., Ltd.) for 3 minutes in the anterior chamber, a 2.4 mm corneal tunnel was prepared, and I / A (Arcon) was used as an anterior chamber with oxyglutathione reflux solution (Senju Pharmaceutical).
- the corneal tunnel was sutured with a nylon suture to prepare an endothelial cell proliferation inhibition model.
- the vitrectomy was performed with a 25G vitreous cutter while maintaining the depth of the anterior chamber by inserting a 25G irrigation tube into the anterior chamber and adding a reflux solution using Aculus (Arcon). It was.
- a 2.4 mm corneal tunnel was prepared, and the corneal endothelium surface was abraded with a 20G soft tapered needle. Endothelial detachment was confirmed by trypan blue staining after washing the anterior chamber with I / A.
- the desme membrane was peeled 6 mm with a cystome prepared with a 25 G sharp needle, and the desme membrane was confirmed again by trypan blue staining to produce a bullous keratopathy model rabbit. Ports were made in the cornea with 20G and 25G needles for grasping the endothelial sheet and inserting air, respectively, and the 2.4 mm corneal tunnel was enlarged to 3.2 mm to insert the graft. Remove the lid on the side with the groove of the transplantation device filled with the cell sheet (end surface 1A in FIG. 6), and insert the transplantation device about halfway into the anterior chamber filled with reflux (see FIG. 9 (a)). After the transplantation instrument was rotated (see FIG.
- a 23G DSAEK session was inserted into the tube to grasp the cell sheet (see FIGS. 10A and 11).
- the grasped cell sheet is drawn into the anterior chamber, moved to a substantial rear surface after peeling the Descemet's membrane (see FIG. 10 (b)), and then the cell sheet is replaced by air from the port made at 25G with a syringe.
- T group the substantial rear surface
- a 3.2 mm and 20 G corneal tunnel was sutured using bikinyl yarn (8-0) as an absorbing yarn.
- the group to which the atelocollagen sheet without endothelial cells was attached was the atelosheet group (AS group), and the untreated group to which nothing was attached was the control group (Group C).
- AS group atelosheet group
- Group C the untreated group to which nothing was attached
- the corneal thickness at 1, 3, and 7 days after transplantation was measured using SP-100 (Tome). Compared with the AS group and the C group, the corneal thickness decreased from the first day after the operation in the T group and was maintained during the observation period of 7 days (FIG. 12). Observation of the anterior ocular segment 1, 3, and 7 days after transplantation revealed that the cornea was turbid in the AS group and C group from 1 day after transplantation, but was transparent in the T group (FIG. 12). Moreover, it was confirmed by fluorescence observation that the transplanted cell sheet did not recognize cell detachment and was retained in the same manner as before transplantation. The same state was maintained 7 days after transplantation (FIG. 12).
- the transplantation device of the present invention is a device that enables simple and minimally invasive transplantation without damaging the cultured corneal endothelial cell sheet.
- Comparative Example 1 The corneal endothelial cell sheet for transplantation obtained in item 4 of Example 1 above was placed on Bujin Glide (manufactured by Moria), and the corneal tunnel of bullous keratopathy model rabbit obtained in item 9 of Example 1 was inserted into the anterior chamber, and a corneal endothelial cell sheet for transplantation was drawn into the anterior chamber using a 23G DSAEK scissors, and transplanted by air tamponade (conventional method). In this case, the transplantation of the corneal endothelial cell sheet took a long time as compared with the case where the transplantation device of the present invention described in Item 9 of Example 1 was used. In addition, cell detachment was observed in the transplanted cell sheet, and it was confirmed that the cell sheet was not retained as before transplantation.
- Bujin Glide manufactured by Moria
- the corneal tunnel of bullous keratopathy model rabbit obtained in item 9 of Example 1 was inserted into the anterior chamber
- the present invention relates to a method for culturing corneal endothelial cells, and can cultivate corneal endothelial cells having a low risk of BSE infection in a large amount with high proliferation efficiency. In addition, even if subculture is repeated, stable large-scale culture is possible while maintaining high growth efficiency. Furthermore, when the transplanted corneal endothelial cell sheet obtained by the method of the present invention is transplanted into the eye, high-density corneal endothelial cells can be maintained in the eye. Furthermore, according to the transplantation device of the present invention, it becomes possible to insert a cell sheet into the anterior chamber in a minimally invasive manner, and the time required for transplantation of the cell sheet is shorter than when a conventional method is adopted. Significantly shortened.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Neurosurgery (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Neurology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
また角膜内皮細胞の移植の際に、低侵襲で簡便な術式を可能とし、且つ培養角膜内皮細胞に損傷を与えない角膜内皮細胞シート用の移植器具が望まれている。
さらに本発明者らは、図6に示される構成の移植用器具を採用することで、低侵襲で簡便に、かつ培養角膜内皮細胞に損傷を与えることなく角膜内皮細胞シートを移植できることを見出した。
[1]角膜内皮細胞を、アスコルビン酸誘導体を含む培養液中で培養することを特徴とする、角膜内皮細胞の培養方法。
[2]角膜内皮細胞が、バイオポリマー上で培養される、[1]に記載の方法。
[3]アスコルビン酸誘導体が、アスコルビン酸2−リン酸である、[1]または[2]に記載の方法。
[4]バイオポリマーが、コラーゲンを含む細胞外マトリックス分子である、[2]または[3]に記載の方法。
[5]コラーゲンが、アテロコラーゲンである、[4]に記載の方法。
[6][1]~[5]のいずれかに記載の方法により製造されることを特徴とする、角膜内皮細胞。
[7]角膜内皮細胞を、アスコルビン酸誘導体を含む培養液中で培養する工程を含む、移植用角膜内皮細胞シートの製造方法。
[8]角膜内皮細胞が、バイオポリマー上で培養される、[7]に記載の方法。
[9]アスコルビン酸誘導体が、アスコルビン酸2−リン酸である、[7]または[8]に記載の方法。
[10]バイオポリマーが、コラーゲンを含む細胞外マトリックス分子である、[8]または[9]に記載の方法。
[11]コラーゲンが、アテロコラーゲンである、[10]に記載の方法。
[12][7]~[11]のいずれかに記載の方法により製造されることを特徴とする、移植用角膜内皮細胞シート。
[13]バイオポリマーでコートされた基材およびアスコルビン酸誘導体を含む培養液を含んでなる、角膜内皮細胞培養キット。
[1’]眼球の前房内に角膜内皮細胞シートを移植するための移植用器具であって、
当該移植用器具は、筒状本体を有し、
筒状本体は、角膜の外側と前房内とを連通し得る太さと長さとを有し、かつ、管路を内部に有し、該管路は、筒状本体の両方の端面に開口しており、
前記の両方の端面は、いずれも、管路の中心軸に対して直角以外の角度をなす斜面であって、かつ、それら斜面の向きは、下記(I)の条件を満たすように互いに関係付けられている、
前記移植用器具。
(I)一方の端面内の開口の周囲のうち最も長手方向の一方側に突き出した点と、他方の端面内の開口の周囲のうち最も長手方向の他方側に突き出した点とを結ぶ線分が、管路の中心軸に平行であること。
[2’]両方の端面のうち、当該器具を角膜の外側から前房内へと挿通する操作において先端側に位置すべき側の端面を、先端面として、管路の壁面には、さらに少なくとも前記先端面から長手方向に沿って溝が設けられている[1’]記載の移植用器具。
[3’]筒状本体を管路の中心軸に垂直に切断したときの、筒状本体の胴体外周の断面形状、および、管路の断面形状が、いずれも円形である、[1’]または[2’]記載の移植用器具。
[4’]管路の内径が、全長にわたって同じである、[3’]記載の移植用器具。
[5’]先端面とは反対側にある他方の端面において、筒状本体の胴体外周のうちの一部または全部の肉厚が、先端面における肉厚よりも厚くなっている、[4’]記載の移植用器具。
[6’]先端面から他方の端面へと移動するにつれて、筒状本体の胴体外周のうちの一部または全部の肉厚が連続的に増加している、[4’]または[5’]記載の移植用器具。
[7’]管路の壁面に設けられた溝の幅が1mm~2.6mmであり、溝の深さが0.03mm~0.1mm、溝の長さが1mm~4mmである、[1’]~[6’]のいずれか一に記載の移植用器具。
[8’]先端面と中心軸とがなす角度が、鋭角側において10度~80度であり、先端面とは反対側の他方の端面と中心軸とがなす角度が、鋭角側において10度~80度である、[1’]~[7’]のいずれか一に記載の移植用器具。
また、本発明の方法により得られる移植用角膜内皮細胞シートを眼内に移植した場合、眼内で高密度の角膜内皮細胞を維持することができる。
角膜内皮細胞シートは、後述する本発明の培養方法により大量培養した角膜内皮細胞を、アテロコラーゲン膜などの支持体(バイオポリマー膜)上に播種することにより製造することができる。バイオポリマーについては、後述する。
上記方法では、コラゲナーゼは、ロッシュ社のコラゲナーゼA、シグマ社のコラゲナーゼタイプIA、ワーシントン社のコラゲナーゼタイプIなどを用いることが可能であり、それぞれ0.2%となるように培地で調製したものを使用する。また培地としては15%牛胎児血清(FCS)および2ng/mlの塩基性繊維芽細胞増殖因子(bFGF)を含むDME培地を用いることができる。
本発明の培養方法において、培養液中に含まれるアスコルビン酸誘導体としては、角膜内皮細胞の増殖能を高める限り特に限定されないが、例えばアスコルビン酸2−リン酸、アスコルビン酸2−二リン酸、アスコルビン酸2−三リン酸、アスコルビン酸2−ポリリン酸などのアスコルビン酸リン酸類;アスコルビン酸2−リン酸ジエステル、アスコルビン酸2−リン酸6−パルミチン酸、アスコルビン酸2−リン酸6−ミリスチン酸、アスコルビン酸2−リン酸6−ステアリン酸、アスコルビン酸2−リン酸6−オレイン酸、アスコルビン酸2−グルコシド、アスコルビン酸2−グルコシド6−パルミチン酸、アスコルビン酸2−グルコシド6−ミリスチン酸、アスコルビン酸2−グルコシド6−ステアリン酸、アスコルビン酸2−グルコシド6−オレイン酸、アスコルビン酸2−硫酸などのアスコルビン酸エステル類、L−アスコルビン酸アルキルエステル、L−アスコルビン酸リン酸エステル、L−アスコルビン酸硫酸エステル等が挙げられる。
本発明のアスコルビン酸誘導体としては、上記したアスコルビン酸誘導体に加え、これらの塩である、ナトリウム、カリウム等のアルカリ金属との塩、カルシウム、マグネシウム等のアルカリ土類金属との塩であってよい。これらの中でも、特に角膜内皮細胞の増殖能を高めるものとして、アスコルビン酸2−リン酸が好ましい。
本発明におけるバイオポリマーとは、生体適合性を有する高分子であり、コラーゲン、ラミニン、エラスチン、フィブロネクチン、フィブリノゲン、トロンボスポンジン、ゼラチン、ヘパラン硫酸、コンドロイチン硫酸などの細胞外マトリックス分子、RGDS、ポリカルボフィルと結合したbFGF、ポリカルボフィルと結合したEGF等から選択される1種またはそれ以上の分子からなる高分子複合体が例示される。バイオポリマーとしては市販のものを用いてもよいし、また種々の培養細胞が生産する細胞外マトリックス分子を利用することも可能である。これらのバイオポリマーは、1種またはそれ以上の分子を適宜組み合わせて用いることができる。
バイオポリマーとしては、角膜内皮細胞を大量に培養する観点からコラーゲンを含む細胞外マトリックス分子であることが好ましく、またコラーゲンとしては、免疫活性のないアテロコラーゲンが移植の観点から好ましい。
細胞外マトリックス分子中にコラーゲンを含む場合、コラーゲンの含有量は、50~100重量%、より好ましくは80~100重量%である。
上述した角膜内皮細胞の培養方法により大量培養した細胞をアテロコラーゲン膜などのバイオポリマー膜上に播種することにより、移植用角膜内皮細胞シートを製造することができる。すなわち、本発明の製造方法は、増殖能の極めて低い角膜内皮細胞を、アスコルビン酸誘導体を含む培養液中で培養して角膜内皮細胞を増殖させる工程と、増殖させた細胞を用いて移植用角膜内皮細胞シートを製造する工程とを含む。
バイオポリマー膜上に細胞を播種する際には、播種後に細胞を増殖させるよりもむしろ細胞を高密度に播種するほうが品質の高い移植用角膜細胞内皮シートを作製できる(播種密度:2000~8000個/mm2、好ましくは4000~6000個/mm2)。このため、バイオポリマー膜上に播種する時点ではアスコルビン酸誘導体は必ずしも必要ではなく、一般的に使用されるDME培地、MEM等を用いることができ、例えば、低グルコース濃度の培地(DME培地等)に、牛胎児血清(FCS)、上述の成長因子等を含有させたものを用いることができる。本発明では、培地は15%牛胎児血清および2ng/mlのbFGFを含むDME培地を用いて2週間以上培養させることが、未培養の角膜内皮細胞と同等の機能(バリア機能、ポンプ機能、細胞接着能)を得る観点から好ましい。
そのような移植用器具としては特に限定されないが、好ましくは図6に示される本発明の移植用器具を用いることができる。本発明の移植用器具を用いることによって、角膜内皮細胞シートに損傷を与えることなく、また術者の技量に左右されることなく、該シートを簡便に眼球内の移植部位へ誘導することができるのである。また従来の方法に比べ、本発明の移植用器具を用いることで移植操作に要する時間が大幅に短縮される。本発明の移植用器具が有するこれらの効果を、移植用器具の各部位を説明しながら以下に詳細に記載する。
(I)一方の端面1A内の開口の周囲のうち最も長手方向の一方側に突き出した点1aと、他方の端面1B内の開口の周囲のうち最も長手方向の他方側に突き出した点1bとを結ぶ線分が、管路の中心軸Xに平行である、
という条件を満たすように互いに関係付けられている。
端面1Aは、当該器具を角膜の外側から前房内へと挿通する操作において先端側に位置すべき先端面であって、管路の壁面には、少なくとも前記先端面から長手方向に沿って溝が設けられている。
即ち、図8(a)に示すように、マイクロ鉗子や角膜セッシなどの細長い把持用器具Sを、移植用器具1の端面1A側から管路を通過させ、該把持用器具Sの先端の把持部分によって、細胞シートMの端を掴み、該シートMを管路内に引き込むと、先ず、斜面である端面1Bに開口している管路の開口先端部分がシートMに接して、該シートを微量だけ内側に巻き込んで筒状に丸めるように作用する。次いで、シートMをさらに管路内に引き込むと、図8(b)に示すように、管路の斜めの開口と該シートMとの接触部分は大きくなり、それにつれて、該シートを内側に巻き込んで筒状に丸める作用も大きくなる。そして最後には、図8(c)に示すように、該シートは、筒状に巻かれた状態となって管路に収容される。
即ち、端面1Bは、筒を斜めに切断したような単純な形状となっているが、角膜内皮細胞が乗っている平坦なシートMを、徐々に内側に巻き込みながら管路内に誘導し、スムーズに筒状に丸めた状態とする役割を果たす。
この作用によって、角膜内皮細胞に損傷を与えることなく、シートを緩やかに巻き込みながら、当該器具の管路内に引き込むことが可能になる(特に図8(b)参照)。
即ち、図10(a)に示すように、当該移植用器具の管路内に筒状となって収容された細胞シートMを把持用器具Sによって引き出して行くと、その変位に従って、斜面である端面1Aが、筒状に丸められた細胞シートMを順次もとのシートへと広げていく。図10には、細胞シートMが平面状に広がっていく中間的な状態を示していないが、斜面である端面1Aの作用による細胞シートMの中間的な状態は、図8(b)に示した状態と同様である。
即ち、端面1Aもまた、筒を斜めに切断したような単純な形状となっているが、筒状に丸められた細胞シートMを徐々に広げながら、スムーズに元の平面状のシートにもどして筒外に放出する役割を果たす。
この作用によって、低侵襲的に細胞シートを前房内に挿入することが可能になる。
即ち、端面1Bの斜面の導入作用によって筒状に収容されている細胞シートに対して、端面1Aからそのシートを引き出すとき、該シートの先端が、先端点1a−1bを結ぶ線上を移動して広がっていくので、端面1Aの斜面が該シートを広げようとする作用が最も好ましく発揮されるのである。
上記(I)の条件は、〔当該器具を中心軸Xに垂直な平面に投影したとき、点1aと中心軸X(中心点)とを結ぶ線と、点1bと中心軸Xとを結ぶ線とが一致すること〕と言い換えることができる。
また、図6(b)の点1aは、後述の溝3が設けられていない場合の開口の周囲に対して規定されるものである。溝3が設けられる場合には、該溝がなかったものとして、開口の周囲を想定し、点1aを設計上の点として規定すればよい。
本発明の移植用器具は、図10に示すように、角膜の外側から前房内へと挿通し(図10(a)参照)、当該器具内の管路を通して細胞シートを前房内に移植する(図10(b)参照)ことを意図した器具である。
図8に示されるように、まず角膜セッシ等の把持用器具(図8(a)におけるS)を端面1Aから1Bに通し(図8(a)参照)、細胞シートを把持したまま管路2内に引き込み(図8(b)参照)、細胞シートを管路内に静置させる。管路2の壁面に溝3が設けられている場合は、その後の取り扱いを鑑み、細胞シートの一部または全部が溝3上に設置されるよう静置させる。そして図8(c)に示されるように、端面1Aおよび1Bを密栓し、固定した状態で手術現場に搬送する。
細胞シートを管路内に有する当該移植用器具は、図9(a)に示されるように角膜切開創から前房内に挿入される。挿入した後、移植用器具を中心軸Xを中心として回転させて器具の先端面から長手方向に沿って設けられた溝が角膜実質後面に接近するよう配置させ、さらに押し込むことで固定する(図9(b)参照)。この操作は、移植される細胞シートを角膜実質裏面に配置させ、効率よく移植術を行うために好ましい操作である。すなわちこの操作によって、端面1Aに開口している管路の開口先端部分が角膜実質裏面に接近するので、角膜実質裏面の適当な箇所に細胞シートを配置させやすくなる。
次いで、移植用器具を挿入した角膜切開創と180度反対側の角膜切開創より角膜セッシ等の把持用器具(図10(a)におけるS)を前房内に挿入し、端面1Aから移植用器具内の細胞シートを前房内に引き込みつつ、順次細胞シートをもとの細胞シートに広げながら、角膜実質裏面の適当な箇所へ配置させる(図10(b)参照)。発明の効果の欄で述べたとおり、本発明の移植用器具を用いることで、低侵襲的に細胞シートを保存運搬することや、迅速かつ低侵襲的に角膜内(角膜前房)に細胞シートを移植することが可能となる。
これらの値は典型的な例であって、必要に適宜応じた寸法としてよい。
筒状本体の胴体外周における肉厚については、その材料と共に後述する。
これらの値は典型的な例であって、必要に適宜応じた寸法としてよい。
また筒状本体のうち、管路内に細胞シートを引き込むことを考慮して、管路壁面の材料を筒所本体外側とは別途の材料、特に細胞培養や細胞の維持に適切な材料としてもよい。このような材料は、当業者であれば適宜選択可能である。
このような本発明の移植用器具の一例を、図7に示す(図7(a):筒状本体の胴体外周の一部の肉厚が、連続的に増加している例。図7(b):筒状本体の胴体外周の全部の肉厚が、連続的に増加している例)。
具体的には、筒状本体の材料をポリプロピレン、もしくは低密度ポリエチレンとする場合、先端面1Aの肉厚は0.05mm~0.3mmであり、他方の端面1Bへと移動するにつれて連続的に増加し、端面1Bの肉厚は0.1mm~0.3mmである。
また筒状本体を管路の中心軸に垂直に切断したときの管路壁面の断面形状は、細胞シートを充填するのに適切な形状であれば特に限定されないが、好ましくは円形である。ここで「円形」は、本発明の移植用器具内に細胞シートを充填するのに適切な形状である限り、楕円形が含まれる。
当該溝の寸法は、該溝を利用して、把持用器具Sが細胞シートの端部を把持し得るものであり、かつ筒状本体が通常の使用に耐えうる強度を保ち得るものであればよい。また、該溝の底は、筒状本体の管壁を貫通した態様(この態様の場合、溝を「切り欠き」と見ることもできる)であってもよい。当該溝の寸法として好ましくは、溝の幅が1mm~2.6mmであり、溝の深さが0.03mm~0.1mmである。また溝の長さは、細胞シートを挿入した際に当該シートの一部または全部が溝上に静置されるような適切な長さであれば特に限定されないが、例えば1mm~10mmであり、好ましくは1mm~4mmである。溝の幅、深さは、一部または全部が長手方向に沿って進むごとに連続的に減少してもよい。
細胞シートとしては、角膜内皮細胞のみで構成されるシート状の細胞凝集体であってもよいし、角膜内皮細胞と支持体とが一緒になってシート状構造を呈したものであってもよい。
このような細胞シートとしては、生体角膜から採取した角膜内皮細胞を培養し、シート状になるまで増殖させたもの、具体的には前述した角膜内皮細胞シートが挙げられる。
増殖した角膜内皮細胞をシート状構造にするために、培養する際には支持体を培養液に加えてもよい。培養液に加えられる支持体としては、各種細胞外マトリックス蛋白質(例えば、フィブロネクチン、ラミニン、コラーゲンなど)や、生体吸収性高分子(例えば、MedGel(登録商標)SPのようなゼラチンスキャフォールドなど)などが挙げられるが、特に限定されない。この支持体は、培養した角膜内皮細胞自身が分泌する細胞外マトリックス蛋白質であってもよい。また後述する増殖因子や液性因子を含んでいてもよい。
このような増殖因子や液性因子としては、例えばRGDEペプチド、bFGF、EGF、アスコルビン酸誘導体(例、アスコルビン酸2−リン酸など)などが挙げられる。また細胞外マトリックス蛋白質としては、フィブロネクチン、ラミニン、コラーゲンなどが挙げられる。
培養して製造した細胞シートから、トレパンを用いて任意のサイズに細胞シートを切り出し、培地上に浮遊させる。次に角膜セッシ等の細長い把持用器具Sを端面1Aから1Bに通し、細胞シートMを把持する(図8(a)参照)。そして把持した細胞シートをゆっくりと管内に引き込む(図8(b)参照)。細胞シートの引き込みは、細胞シートの一部または全部が溝3上に配置されるところまで行い、ここで細胞シートを静置する(図8(c)参照)。
まず、端面1Aの密栓を外し、本発明の移植用器具を角膜切開創から前房内に挿入し(図9(a)参照)、当該器具を回転させて器具の先端面から長手方向に沿って設けられた溝が角膜実質後面に近づくよう配置させた後、さらに押し込み固定する(図9(b)参照)。次いで本発明の移植用器具を挿入した角膜切開創と180度反対側の角膜切開創より、角膜セッシ等の把持用器具Sを前房内に挿入し、端面1A側から把持用器具Sを用いて移植器具内の細胞シートMを把持し、これを溝にそって前房内に引き込む(図10(a)参照)。細胞シートは順次もとのシートへと広げられながら、移植器具内から前房内に引き出される。最後に、角膜実質後面の適切な位置に細胞シートを静置する(図10(b)参照)。この作業を具体的に表すウサギ眼の写真を、図11に示す。
本発明の移植用器具を眼球の前房内に挿入する際は、当該移植用器具の内部に剛性の高い心棒を挿入し、該心棒で突き出すようにして、当該移植用器具を前房内に挿入してもよい。
挿入した細胞シートは、自体公知の方法、例えば前房内をシリンジなどで空気置換することにより、細胞シートを角膜実質後面に接着させることで、細胞シートを移植することが可能である。
1.[角膜内皮細胞の単離と初代培養]
14歳から69歳の10例のヒト提供眼から調製された強角膜片を、保存液(商品名:Optisol、Chiron(株)製)中で低温保存された状態で、ロッキーマウンテンライオンズアイバンクから得た。それらは死後6~8日経過していた。
35mmペトリディッシュに強角膜片を移し、内皮面を15%牛胎児血清(FCS)及び2ng/ml塩基性繊維芽細胞増殖因子(bFGF)を含むDME培地(以下基礎培地と記載)で洗浄した。
微細なセッシを用いて、角膜内皮をデスメ膜ごと角膜の内面の周辺部から中心へ向かってシート状に剥ぎ取り、35mmペトリディッシュに移した。ペトリディッシュ上で角膜内皮細胞が付着したデスメ膜片をさらに2ミリ角程の小片に細切後、綿状の実質組織の付着を認めないデスメ細片のみを低吸着遠心チューブ(住友ベークライト(株)製)に回収し、0.2%のコラゲナーゼ(商品名:コラゲナーゼA、コラゲナーゼ活性:>0.15U/mg、ロシュ(Roche)(株)製)を含む基礎培地中で、37℃、5%CO2で1~3時間インキュベートした。
コラゲナーゼ処理した細胞を基礎培地で希釈し、20g、2分間の遠心洗浄を3回繰り返し、上清に浮遊する細胞を除去した。次にリン酸緩衝生理食塩水(PBS)で希釈し、同様に20gで2分間の遠心洗浄を1回行った後、沈殿した細胞塊に0.5%トリプシン/0.2%エチレンジアミン四酢酸(EDTA)を加え、37℃、5%CO2で5分間インキュベートした。基礎培地を加え、500gで5分間の遠心をすることにより細胞ペレットを得た。得られた細胞ペレットを、100μg/mlアスコルビン酸2−リン酸(和光純薬(株)製)を含む基礎培地と含まない比較用の基礎培地とに再懸濁後、下記の方法で作製したディッシュ上にそれぞれ播種し、37℃、5%CO2のインキュベータ内で2~4週間、2~3日毎に培地を交換しながら培養した。
<ディッシュの作製>
5mg/mlのアテロコラーゲン(ウシ真皮由来のコラーゲン酸性溶液、商品名:IAC−50、高研社(株)製)を10mM酢酸で100倍希釈し、35mmディッシュに1ml加え、37℃で1時間放置後、2mlのPBSで2回洗浄することによりアテロコラーゲンでコートされたディッシュを作製した。
特に10例中2例(ドナーNo.5および7)については、アスコルビン酸2−リン酸を含む基礎培地で培養した場合は、培養ディッシュ全面に角膜内皮細胞の特徴である敷石状の細胞像を認めたが、アスコルビン酸2−リン酸を含まない基礎培地で培養した場合は、細胞増殖を認めず初代培養に失敗した(図1参照、ドナーNo.7)。
従来から知られている方法(Miyata K,Drake J,Osakabe Y,Hosokawa Y,Hwang D,Soya K,Oshika T,Amano S.Cornea.2001 20:59−63)により、ヒト角膜内皮細胞を単離・培養した。以下にその方法を簡単に記載する。35mmペトリディッシュに角膜を移し、内皮面を基礎培地で洗浄した。微細なセッシを用いて、角膜内皮をデスメ膜ごと角膜の内面の周辺部から中心へ向かってシート状に剥ぎ取り、35mmペトリディッシュに移した。ペトリディッシュ上でデスメ膜片をさらに2mm角程の小片に細切後、胎児牛の角膜内皮細胞が産生した細胞外基質で被覆したディッシュ上に内皮面を下側にして置き、そのディッシュを注意深く37℃、5%CO2のインキュベータ内に移動し、2~3週間、2~3日毎に培地を交換しながら培養した。
上記1で得た14歳から69歳の10例のドナーの初代培養細胞を、それぞれ次の通りに継代培養した。
初代培養細胞をPBSで洗浄後、0.5%トリプシン/0.2%EDTAで分散させた。これに基礎培地を加え、500g、5分間遠心した後、100μg/mlアスコルビン酸2−リン酸を含む基礎培地と、含まない比較用の基礎培地に懸濁し、上記1と同様の方法で作製したアテロコラーゲンでコートされたディッシュ上に、1000個/cm2の細胞密度でそれぞれ播種し、37℃、5%CO2で培養した。細胞がコンフレントになった時点で同様の継代操作を繰り返した。
図2は、ドナーNo.8の例を示すもので、初代培養終了後も継代培養を繰り返してもアスコルビン酸2−リン酸添加群の方が非添加群と比較して取得細胞数が多くなった(図2(a)、(b))。また、6回継代終了時での細胞形態を見ると、アスコルビン酸2−リン酸添加群は、角膜内皮細胞特有の敷石状の形態を保持していたが、アスコルビン酸2−リン酸非添加群は、角膜内皮細胞の形態を保持せず繊維芽細胞様を呈した(図2(c))。
使用した角膜内皮細胞は、上記1と同様の方法で初代培養を行い、上記3と同様の方法で3回の継代培養を行った後に凍結保存したヒト角膜内皮細胞を用いた。初代培養および継代培養のいずれも、上記1と同様の方法で作製したアテロコラーゲンでコートされたディッシュと、100μg/mlアスコルビン酸2−リン酸を含む基礎培地の組み合わせを用いた。
2×106個の角膜内皮細胞を基礎培地に懸濁後、上記1と同様の方法で作製したアテロコラーゲンでコートされた10cmディッシュ3枚に播種し、基礎培地を用いて1日おきに培地交換しながら37℃、5%CO2で培養した(図5参照)。細胞がコンフレントに達した時点で、0.05%トリプシン/0.02%EDTA溶液で細胞を分散させ、基礎培地に懸濁した。家兎に移植する細胞については、細胞をPKH26染色キット(商品名:MINI26、SIGMA(株)製)で標識した。厚さ35μmのアテロコラーゲン膜(高研(株)製)を、35mmディッシュの底面大に切り抜き、基礎培地で洗浄後、ディッシュ底面にシリコンリングで固定した。15%のFCSと2ng/mlのbFGFを含むDME培地で細胞を懸濁し、アテロコラーゲン膜を固定したディッシュに6000個/mm2の密度で細胞を播種し、毎日培地交換しながら37℃、5%CO2で1~4週間培養した。家兎に移植する細胞については37℃、5%CO2で3週間培養した。これにより角膜内皮細胞シートを得た。
培養角膜内皮細胞シートに対し、角膜内皮機能に関連するタンパク質ZO−1(バリア機能)、Na+/K+ATPase(ポンプ機能)及び角膜内皮細胞基底膜(デスメ膜)の主要な構成成分であるIV型コラーゲン(細胞接着能)について以下の方法によりウエスタンブロット解析した。
上記4で作製した移植用角膜内皮細胞シートにタンパク質抽出用試液(8MUrea、0.1%SDS、20mM Tris、pH7.4)を加えた。コントロールとして強角膜片よりデスメ膜ごと回収した内皮細胞(1眼分)に、タンパク質抽出用試液を加えた。
氷上で10分間振とうした後抽出液を回収し、14000rpmで15分間遠心した。上清を回収し、回収した上清から5μgのサンプルを調製し、SDS−PAGEにて分離後、ポリフッ化ビニリデン(PVDF)膜に転写した。
ここで、1次抗体として次の抗体を使用した。
Rabbit anti−ZO−1(インビトロジェン(株)製、#16−240)、Mouse anti−Na+/K+ ATPase α−1(ミリポア(株)製、#05−369)、Mouse anti−Na+/K+ ATPase β−1(ミリポア(株)製、#05−382)、Goat anti−typeIVcollagen (サザンバイオテック(株)製、1340−01)。
また、2次抗体として次の抗体を使用した。
HRP−linked anti−Mouse IgG(GEヘルスケア(株)製、#NIF825)、HRP−linked anti−Rabbit IgG(GEヘルスケア(株)製、# NIF824)、HRP−linked anti−Goat IgG(サンタクルズ(株)製、#SC−2020)。
目的タンパクの検出にはECL Advance Western Blotting Detection Kit(GEヘルスケア(株)製)を使用し、Gel Documentation System(バイオ・ラッドラボラトリーズ(株)製)を用いて可視化した。
上記4において、3週間培養した移植用角膜内皮細胞シートを6mmトレパンで切り出し、トリパンブルーで染色後、シートの中心部分にビスコート(ヒアルロン酸ナトリウム/コンドロイチン硫酸エステルナトリウム、日本アルコン(株)製)を滴下した。DME培地で満たしたディッシュに移植用角膜内皮細胞シートを浸しDME培地を含浸させ、移植まで室温にて保存した。
図6に示す態様の移植用器具を作製し、その使用状況を評価した。
筒状本体をポリプロピレン、低密度ポリエチレンを材料として形成した。各主要部分の寸法は以下の通りである。
筒状本体の全長:12.0mm
管路の内径:2.6mm
筒状本体の胴体外周の肉厚:
先端面側:0.1mm
基端面側:0.2mm
管路の壁面に設けられた溝:
幅:1.0mm
深さ:0.05mm
長さ:3.0mm
先端面と管路の中心軸とがなす角度(α):45度
基端面と管路の中心軸とがなす角度(β):45度
本発明の移植用器具の開発過程における課題として、細胞シートを移植用器具内に充填する際に、シートが折れ曲がったり裏返ったりするために細胞がシートから剥離してしまうことがあった。そこで移植用器具右端(図6における端面1B)の細胞シート引き込み口を斜めに作製した結果、細胞が乗っているシート面が緩やかに内側に巻かれながら引き込まれるようになった(図8(a)および(b)参照)。このことにより細胞に損傷を与えることなく細胞シートを移植用器具に引き込むことが可能となった。また、前房内に挿入する側の移植用器具挿入口(図6における端面1A)の挿入口の斜め構造は、巻かれた細胞シートをゆっくりと広げる低侵襲な前房内挿入に有用であった。移植用器具引き込み口の厚みは空気置換時の気密性保持に有効であった(図7参照)。また本発明の移植用器具挿入口の溝(図6における溝3)は、細胞シートに損傷を与えずにセッシで挟むための構造として有用であった。
本発明の移植用器具を用いることにより、下記比較例1で述べるように術式は従来法と比べ飛躍的に簡便化され、移植に要した時間は10分程度であった。また細胞への損傷の程度は著しく軽減された。
移植用器具への細胞シートの挿入操作は実体顕微鏡下で行った。アテロコラーゲン膜上で3週間培養した角膜内皮細胞のシートを6mmトレパンで切り出し、トリパンブルーで染色後、当該細胞シートの中心部分にビスコート(アルコン)を滴下した。DME培地を満たしたディッシュに細胞シートを沈め、溝を有する端(図6(a)における端面1A)から23G DSAEKセッシを挿入し(図8(a)参照)、反対側(図6(a)における端面1B)から細胞シートを培地とともに移植用器具内に引き込んだ(図8(b)参照)。細胞シートを移植用器具に充填(図8(c)参照)後、ゴム製蓋で両端を密栓し、オペ室に輸送し移植まで室温にて保存した。移植までに長時間を要する場合には、移植用器具に適当な穴のあいた蓋をし、培地を入れた別の容器内に入れ室温で運搬・保存し、移植直前に上述の蓋と取り替え密栓した。
JBSラビット(3Kg、メス)にケタミンヒドロクロリド(60mg/kg、第一三共)およびキシラジン(xylazine)(10mg/kg、バイエル)を筋肉内投与して麻痺させた。0.3mg/mlマイトマイシンC(協和発酵工業)を3分間前房内投与後、2.4mm角膜トンネルを作製し、I/A(アルコン)を用いてオキシグルタチオン還流液(千寿製薬)で前房内を洗浄後ナイロン縫合糸で角膜トンネルを縫合し内皮細胞増殖抑制モデルを作製した。
モデルウサギの作製から2週間後、アキュラス(アルコン)を用い、25Gイリゲーションチューブを前房内に挿入し還流液を入れることで前房深度を保持しながら、25G硝子体カッターで硝子体切除を行った。2.4mm角膜トンネルを作製し、20Gソフトテーパードニードルで角膜内皮面を擦過した。I/Aで前房内洗浄後、トリパンブルー染色で内皮脱落を確認した。25G鋭針で作製したチストトームでデスメ膜を6mm剥離し、再度トリパンブルー染色でデスメ膜欠落を確認し、水疱性角膜症モデルウサギを作製した。
内皮シート把持用、空気挿入用にそれぞれ20G、25Gニードルで角膜にポートを作製し、移植片を挿入するため2.4mm角膜トンネルを3.2mmに拡大した。細胞シートを充填した移植用器具の溝がある側(図6における端面1A)の蓋をはずし、還流液を満たした前房内に移植用器具を半分程度挿入(図9(a)参照)し、移植用器具を回転させた後(図9(b)参照)、23G DSAEKセッシを管内に挿入して細胞シートを把持した(図10(a)および図11参照)。次いで把持した細胞シートを前房内に引き込み、デスメ膜を剥離した実質後面に移動(図10(b)参照)後、25Gで作製したポートから前房内をシリンジで空気置換することで細胞シートを実質後面に接着させた(T群)。移植後、吸収糸であるバイクリル糸(8−0)を用いて3.2mmと20Gの角膜トンネルを縫合した。内皮細胞を伴わないアテロコラーゲンシートを貼付した群をアテロシート群(AS群)、何も貼付しない無治療の群をコントロール群(C群)とした。術後は一日一回のオフロキサシン(参天)、塩酸ベタメサゾン軟膏(塩野義)の点眼・塗布を継続した。
上記実施例1の項目4で得られた移植用角膜内皮細胞シートを、ブジングライド(モリア社製)の上に乗せ、実施例1の項目9で得られた水疱性角膜症モデルウサギの角膜トンネルから前房内に挿入し、23GのDSAEK用セッシを用いて移植用角膜内皮細胞シートを前房内に引き込み、空気タンポナーデすることで移植した(従来法)。
この場合、上記実施例1の項目9に記載の本発明の移植用器具を用いた場合と比較して、角膜内皮細胞シートの移植に長時間を要した。また移植した細胞シートには細胞剥離が認められ、移植前と同様に保持されていないことが確認された。
さらに本発明の移植用器具によれば、低侵襲的に細胞シートを前房内に挿入することが可能になると共に、細胞シートの移植に要する時間は、従来の方法を採用した場合に比べて著しく短縮される。
1A 端面(先端部)
1a 端面1A内の開口の周囲のうち最も突き出した点
1B 端面(基端面)
1b 端面1B内の開口の周囲のうち最も突き出した点
2 管路
3 溝
X 中心軸
M 細胞シート
S 把持用器具
Claims (13)
- 角膜内皮細胞を、アスコルビン酸誘導体を含む培養液中で培養することを特徴とする、角膜内皮細胞の培養方法。
- 角膜内皮細胞が、バイオポリマー上で培養される、請求項1に記載の方法。
- アスコルビン酸誘導体が、アスコルビン酸2−リン酸である、請求項1または2に記載の方法。
- バイオポリマーが、コラーゲンを含む細胞外マトリックス分子である、請求項2または3に記載の方法。
- コラーゲンが、アテロコラーゲンである、請求項4に記載の方法。
- 請求項1~5のいずれか1項に記載の方法により製造されることを特徴とする、角膜内皮細胞。
- 角膜内皮細胞を、アスコルビン酸誘導体を含む培養液中で培養する工程を含む、移植用角膜内皮細胞シートの製造方法。
- 角膜内皮細胞が、バイオポリマー上で培養される、請求項7に記載の方法。
- アスコルビン酸誘導体が、アスコルビン酸2−リン酸である、請求項7または8に記載の方法。
- バイオポリマーが、コラーゲンを含む細胞外マトリックス分子である、請求項8または9に記載の方法。
- コラーゲンが、アテロコラーゲンである、請求項10に記載の方法。
- 請求項7~11のいずれか1項に記載の方法により製造されることを特徴とする、移植用角膜内皮細胞シート。
- バイオポリマーでコートされた基材およびアスコルビン酸誘導体を含む培養液を含んでなる、角膜内皮細胞培養キット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/577,184 US9376661B2 (en) | 2010-02-05 | 2011-02-04 | Method for culture of corneal endothelial cells, process for production of corneal endothelial cell sheet for transplantation purposes, and culture kit for corneal endothelial cells |
EP11739937.8A EP2532738B1 (en) | 2010-02-05 | 2011-02-04 | Method for culture of corneal endothelial cells, process for production of corneal endothelial cell sheet for transplantation purposes, and culture kit for corneal endothelial cells |
JP2011552866A JP5835693B2 (ja) | 2010-02-05 | 2011-02-04 | 角膜内皮細胞の培養方法、移植用角膜内皮細胞シートの製造方法および角膜内皮細胞培養キット |
US15/157,900 US20160257931A1 (en) | 2010-02-05 | 2016-05-18 | Method for culture of corneal endothelial cells, process for production of corneal endothelial cell sheet for transplantation purposes, and culture kit for corneal endothelial cells |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-024803 | 2010-02-05 | ||
JP2010024795 | 2010-02-05 | ||
JP2010-024795 | 2010-02-05 | ||
JP2010024803 | 2010-02-05 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/577,184 A-371-Of-International US9376661B2 (en) | 2010-02-05 | 2011-02-04 | Method for culture of corneal endothelial cells, process for production of corneal endothelial cell sheet for transplantation purposes, and culture kit for corneal endothelial cells |
US15/157,900 Continuation US20160257931A1 (en) | 2010-02-05 | 2016-05-18 | Method for culture of corneal endothelial cells, process for production of corneal endothelial cell sheet for transplantation purposes, and culture kit for corneal endothelial cells |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011096593A1 true WO2011096593A1 (ja) | 2011-08-11 |
Family
ID=44355582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052966 WO2011096593A1 (ja) | 2010-02-05 | 2011-02-04 | 角膜内皮細胞の培養方法、移植用角膜内皮細胞シートの製造方法および角膜内皮細胞培養キット |
Country Status (4)
Country | Link |
---|---|
US (2) | US9376661B2 (ja) |
EP (1) | EP2532738B1 (ja) |
JP (1) | JP5835693B2 (ja) |
WO (1) | WO2011096593A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013012087A1 (ja) * | 2011-07-15 | 2013-01-24 | 国立大学法人大阪大学 | 角膜内皮細胞の調製方法 |
WO2014104366A1 (ja) | 2012-12-27 | 2014-07-03 | 新田ゼラチン株式会社 | ヒト角膜内皮細胞シート |
WO2015133459A1 (ja) * | 2014-03-03 | 2015-09-11 | 国立大学法人東京大学 | 角膜疾患若しくは角膜損傷の予防、抑制又は治療剤、細胞シート、細胞培養補助剤、並びに細胞培養方法 |
EP2765188A4 (en) * | 2011-10-06 | 2015-11-04 | Univ Keio | PROCESS FOR THE PRODUCTION OF ENDOTHELIAL CELLS OF THE CORNEA |
WO2016093359A1 (ja) * | 2014-12-11 | 2016-06-16 | 学校法人慶應義塾 | 治療用角膜内皮代替細胞スフェアの製造方法 |
JP2016521130A (ja) * | 2013-05-03 | 2016-07-21 | エメトロープ オフサルミクス エルエルシー | ヒト角膜内皮細胞(hcec)の同定及び分離 |
WO2016129654A1 (ja) * | 2015-02-12 | 2016-08-18 | 国立大学法人 東京大学 | 角膜内皮前駆細胞の調製方法 |
KR20170042784A (ko) | 2014-09-05 | 2017-04-19 | 오사카 유니버시티 | 각막 내피 세포 마커 |
JP2020073602A (ja) * | 2016-02-15 | 2020-05-14 | 京都府公立大学法人 | ヒト機能性角膜内皮細胞およびその応用 |
JP2021502876A (ja) * | 2017-11-14 | 2021-02-04 | クック・バイオテック・インコーポレイテッドCook Biotech Incorporated | 滅菌組織製品および関連する方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUE041929T2 (hu) * | 2011-12-06 | 2019-06-28 | Astellas Inst For Regenerative Medicine | Eljárás szaruhártya endotél sejtek irányított differenciálására |
US11592024B2 (en) | 2015-10-02 | 2023-02-28 | Leybold Gmbh | Multi-stage rotary vane pump |
CN113249324A (zh) * | 2021-04-12 | 2021-08-13 | 天津农学院 | 一种猪眼睛角膜的培养及保存方法 |
WO2023142471A1 (zh) * | 2022-08-25 | 2023-08-03 | 山东第一医科大学附属眼科研究所(山东省眼科研究所、山东第一医科大学附属青岛眼科医院) | 一种大直径人工角膜内皮片及其应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004024852A1 (de) * | 2002-08-27 | 2004-03-25 | Symrise Gmbh & Co. Kg | Schwefelarme odoriermittel für flüssiggas |
JP2004222836A (ja) * | 2003-01-21 | 2004-08-12 | Tissue Engineering Initiative Co Ltd | 培養真皮シートの製造方法および培養真皮シート |
JP2004298447A (ja) * | 2003-03-31 | 2004-10-28 | Menicon Co Ltd | 結膜上皮細胞からなる角膜ないし結膜治療用培養シート、およびその作製方法 |
JP2005348736A (ja) * | 2004-06-11 | 2005-12-22 | Bioland Ltd | 細胞培養用膜の支持装置 |
JP2006204501A (ja) * | 2005-01-27 | 2006-08-10 | Yuichi Tei | 骨再生システム |
WO2007043255A1 (ja) * | 2005-09-13 | 2007-04-19 | Arblast Co., Ltd. | 培養角膜内皮シート及びその作製方法 |
JP2008099565A (ja) * | 2006-10-17 | 2008-05-01 | Koken Co Ltd | 心筋培養用のスポンジ状シート |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3122663B2 (ja) | 1990-06-21 | 2001-01-09 | 協和醗酵工業株式会社 | アスコルビン酸―2―リン酸の製造法 |
JPH07274952A (ja) * | 1994-04-14 | 1995-10-24 | Bio Material Kenkyusho:Kk | 肝細胞の培養法 |
JP3772468B2 (ja) * | 1997-06-11 | 2006-05-10 | 昭和電工株式会社 | L−アスコルビン酸−2−リン酸亜鉛塩及びその製造方法 |
JP4204784B2 (ja) * | 2000-03-24 | 2009-01-07 | 株式会社メニコン | 組織等価物の凍結保存方法および凍結保存された組織等価物 |
US20050214259A1 (en) | 2002-04-30 | 2005-09-29 | Yoichiro Sano | Corneal endothelium-like sheet and method of constructing the same |
JP2004024852A (ja) * | 2002-04-30 | 2004-01-29 | Amniotec:Kk | 角膜内皮様シート、及びその作製方法 |
EP1521821A2 (en) * | 2002-07-16 | 2005-04-13 | Biogentis Inc. | Method for preparing engineered tissue |
EP1741457A1 (en) * | 2002-08-09 | 2007-01-10 | Ottawa Health Research Institute | Ocular implant |
JP4916706B2 (ja) * | 2004-11-10 | 2012-04-18 | 株式会社機能性ペプチド研究所 | 哺乳動物線維芽細胞用完全合成培地 |
-
2011
- 2011-02-04 US US13/577,184 patent/US9376661B2/en not_active Expired - Fee Related
- 2011-02-04 JP JP2011552866A patent/JP5835693B2/ja not_active Expired - Fee Related
- 2011-02-04 WO PCT/JP2011/052966 patent/WO2011096593A1/ja active Application Filing
- 2011-02-04 EP EP11739937.8A patent/EP2532738B1/en not_active Not-in-force
-
2016
- 2016-05-18 US US15/157,900 patent/US20160257931A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004024852A1 (de) * | 2002-08-27 | 2004-03-25 | Symrise Gmbh & Co. Kg | Schwefelarme odoriermittel für flüssiggas |
JP2004222836A (ja) * | 2003-01-21 | 2004-08-12 | Tissue Engineering Initiative Co Ltd | 培養真皮シートの製造方法および培養真皮シート |
JP2004298447A (ja) * | 2003-03-31 | 2004-10-28 | Menicon Co Ltd | 結膜上皮細胞からなる角膜ないし結膜治療用培養シート、およびその作製方法 |
JP2005348736A (ja) * | 2004-06-11 | 2005-12-22 | Bioland Ltd | 細胞培養用膜の支持装置 |
JP2006204501A (ja) * | 2005-01-27 | 2006-08-10 | Yuichi Tei | 骨再生システム |
WO2007043255A1 (ja) * | 2005-09-13 | 2007-04-19 | Arblast Co., Ltd. | 培養角膜内皮シート及びその作製方法 |
JP2008099565A (ja) * | 2006-10-17 | 2008-05-01 | Koken Co Ltd | 心筋培養用のスポンジ状シート |
Non-Patent Citations (11)
Title |
---|
ENGELMANN K; FRIEDL P., CORNEA., vol. 14, 1995, pages 62 - 70 |
HITANI K. ET AL., MOL VIS., vol. 14, 2008, pages 1 - 9 |
KOIZUMI N ET AL.: "Cultivated Corneal Endothelial Cell Sheet Transplantation in a Primate Model.", INVEST OPHTHALMOL VIS SCI., vol. 48, no. 10, 2007, pages 4519 - 26, XP008164101 * |
MIMURA T. ET AL., NVEST OPHTHALMOL VIS SCI., vol. 45, 2004, pages 2992 - 7 |
MIYATA K; DRAKE J; OSAKABE Y; HOSOKAWA Y; HWANG D; SOYA K; OSHIKA T; AMANO S, CORNEA, vol. 20, 2001, pages 59 - 63 |
MIYATA K; DRAKE J; OSAKABE Y; HOSOKAWA Y; HWANG D; SOYA K; OSHIKA T; AMANO S., CORNEA, vol. 20, 2001, pages 59 - 63 |
NORIKO KOIZUMI: "Cultivated Corneal Endothelial Cell Sheet Transplantation in a Primate Model", JOURNAL OF JAPANESE OPHTHALMOLOGICAL SOCIETY, vol. 113, no. 11, 2009, pages 1050 - 1059, XP008164080 * |
SAITOH, Y. ET AL.: "Cytoprotection of Vascular Endotheliocytes by Phosphorylated Ascorbate Through Suppression of Oxidative Stress That Is Generated Immediately After Post-Anoxic Reoxygenation or With Alkylhydroperoxides", J CELL BIOCHEM, vol. 93, no. 4, 2004, pages 653 - 663, XP008164098 * |
See also references of EP2532738A4 * |
TANAKA, Y. ET AL.: "Age-Dependent Telomere- Shortening Is Repressed by Phosphorylated a- Tocopherol Together With Cellular Longevity and Intracellular Oxidative-Stress Reduction in Human Brain Microvascular Endotheliocytes", J CELL BIOCHEM, vol. 102, no. 3, 2007, pages 689 - 703, XP008164081 * |
ZHU C; JOYCE NC, INVEST OPHTHALMOL VIS SCI., vol. 45, 2004, pages 1743 - 51 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013012087A1 (ja) * | 2011-07-15 | 2013-01-24 | 国立大学法人大阪大学 | 角膜内皮細胞の調製方法 |
US9347041B2 (en) | 2011-07-15 | 2016-05-24 | Osaka University | Method for preparing corneal endothelial cell |
EP2765188A4 (en) * | 2011-10-06 | 2015-11-04 | Univ Keio | PROCESS FOR THE PRODUCTION OF ENDOTHELIAL CELLS OF THE CORNEA |
US9347042B2 (en) | 2011-10-06 | 2016-05-24 | Keio University | Method for producing corneal endothelial cell |
WO2014104366A1 (ja) | 2012-12-27 | 2014-07-03 | 新田ゼラチン株式会社 | ヒト角膜内皮細胞シート |
JP2021112206A (ja) * | 2013-05-03 | 2021-08-05 | エメトロープ オフサルミクス エルエルシー | ヒト角膜内皮細胞(hcec)の同定及び分離 |
JP2016521130A (ja) * | 2013-05-03 | 2016-07-21 | エメトロープ オフサルミクス エルエルシー | ヒト角膜内皮細胞(hcec)の同定及び分離 |
US10655102B2 (en) | 2013-05-03 | 2020-05-19 | Emmetrope Ophthalmics Llc | Identification and isolation of human corneal endothelial cells (HCECS) |
JP2019150039A (ja) * | 2013-05-03 | 2019-09-12 | エメトロープ オフサルミクス エルエルシー | ヒト角膜内皮細胞(hcec)の同定及び分離 |
WO2015133459A1 (ja) * | 2014-03-03 | 2015-09-11 | 国立大学法人東京大学 | 角膜疾患若しくは角膜損傷の予防、抑制又は治療剤、細胞シート、細胞培養補助剤、並びに細胞培養方法 |
US10968428B2 (en) | 2014-09-05 | 2021-04-06 | Osaka University | Corneal endothelial cell marker |
KR20170042784A (ko) | 2014-09-05 | 2017-04-19 | 오사카 유니버시티 | 각막 내피 세포 마커 |
US10501725B2 (en) | 2014-12-11 | 2019-12-10 | Keio University | Method for producing therapeutic corneal endothelial substitute cell sphere |
JPWO2016093359A1 (ja) * | 2014-12-11 | 2017-10-05 | 学校法人慶應義塾 | 治療用角膜内皮代替細胞スフェアの製造方法 |
WO2016093359A1 (ja) * | 2014-12-11 | 2016-06-16 | 学校法人慶應義塾 | 治療用角膜内皮代替細胞スフェアの製造方法 |
WO2016129654A1 (ja) * | 2015-02-12 | 2016-08-18 | 国立大学法人 東京大学 | 角膜内皮前駆細胞の調製方法 |
JP2020073602A (ja) * | 2016-02-15 | 2020-05-14 | 京都府公立大学法人 | ヒト機能性角膜内皮細胞およびその応用 |
JP2021502876A (ja) * | 2017-11-14 | 2021-02-04 | クック・バイオテック・インコーポレイテッドCook Biotech Incorporated | 滅菌組織製品および関連する方法 |
JP7366038B2 (ja) | 2017-11-14 | 2023-10-20 | クック・バイオテック・インコーポレイテッド | 滅菌組織製品および関連する方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011096593A1 (ja) | 2013-06-13 |
EP2532738B1 (en) | 2016-12-21 |
US9376661B2 (en) | 2016-06-28 |
US20160257931A1 (en) | 2016-09-08 |
US20130023050A1 (en) | 2013-01-24 |
JP5835693B2 (ja) | 2015-12-24 |
EP2532738A1 (en) | 2012-12-12 |
EP2532738A4 (en) | 2013-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5835693B2 (ja) | 角膜内皮細胞の培養方法、移植用角膜内皮細胞シートの製造方法および角膜内皮細胞培養キット | |
Peh et al. | Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview | |
US6045791A (en) | Retinal pigment epithelium transplantation | |
JP5946046B2 (ja) | ヒト角膜内皮細胞シート | |
CA2542041C (en) | Methods and compositions for growing corneal endothelial and related cells on biopolymers and creation of artifical corneal transplants | |
Lange et al. | Corneal endothelial cell transplantation using Descemet's membrane as a carrier | |
He et al. | Cutting and decellularization of multiple corneal stromal lamellae for the bioengineering of endothelial grafts | |
US10052411B2 (en) | Methods of treating corneal related diseases by corneal endothelial preparation which enables cells to grow in vivo | |
CA2542133A1 (en) | Human corneal endothelial cells and methods of obtaining and culturing cells for corneal cell transplantation | |
JP3490447B2 (ja) | 網膜色素上皮移植 | |
Del Priore et al. | Experimental and surgical aspects of retinal pigment epithelial cell transplantation | |
CN108939161B (zh) | 一种人源化活性去细胞角膜基质支架的制备方法 | |
CN106265744A (zh) | 脐带间充质干细胞在制备治疗角膜损伤的干细胞制剂中的应用 | |
RU2609253C1 (ru) | Способ лечения глубоких дефектов роговицы | |
Fukaya et al. | Effect of freezing on lens epithelial cell growth | |
RU2646162C1 (ru) | Способ иммобилизации клеточной подложки на основе биомембран в условиях жидкой культуральной системы | |
US20210379246A1 (en) | Methods of isolating and using descemet's membrane and compositions including isolated descemet's membrane | |
US20170224870A1 (en) | Method of packaging amniotic membrane | |
CN1253559C (zh) | 一种移植材料的制造方法 | |
CN115067321B (zh) | 一种角膜组织中长期立体保存营养胶囊及其制备方法 | |
RU2242190C2 (ru) | Способ лечения заболеваний роговицы | |
JP7544807B2 (ja) | 水晶体嚢から同種移植片材料または異種移植片材料を調製するための方法 | |
RU2720470C1 (ru) | Способ получения трансплантата для лечения лимбальной недостаточности | |
ES2357387B1 (es) | Gel de fibrina que contiene fibroplastos y células epiteliales del limbo esclerocorneal para bioingenier�?a de la superficie ocular (córnea, conjuntiva y limbo esclerocorneal). | |
CN116829699A (zh) | 视网膜色素上皮细胞在替代角膜内皮方面的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11739937 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011552866 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011739937 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011739937 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13577184 Country of ref document: US |