WO2011092918A1 - 広帯域アンテナ - Google Patents

広帯域アンテナ Download PDF

Info

Publication number
WO2011092918A1
WO2011092918A1 PCT/JP2010/069537 JP2010069537W WO2011092918A1 WO 2011092918 A1 WO2011092918 A1 WO 2011092918A1 JP 2010069537 W JP2010069537 W JP 2010069537W WO 2011092918 A1 WO2011092918 A1 WO 2011092918A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
conductor element
conductor plate
plate
radiation
Prior art date
Application number
PCT/JP2010/069537
Other languages
English (en)
French (fr)
Inventor
薫 須藤
洋隆 藤井
敏朗 平塚
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201080061437.6A priority Critical patent/CN102714357B/zh
Priority to JP2011551681A priority patent/JP5413467B2/ja
Publication of WO2011092918A1 publication Critical patent/WO2011092918A1/ja
Priority to US13/555,959 priority patent/US10418708B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the present invention relates to a broadband antenna suitable for use in high-frequency signals such as microwaves and millimeter waves.
  • a microstrip antenna in which a radiation conductor element and a grounding conductor plate that are opposed to each other with a dielectric thinner than a wavelength are provided and a parasitic conductor element is provided on the radiation surface side of the radiation conductor element (Patch antenna) is known (see, for example, Patent Document 1).
  • a microstrip antenna in which a radiation conductor element and a grounding conductor plate that are opposed to each other with a dielectric thinner than a wavelength are provided and a parasitic conductor element is provided on the radiation surface side of the radiation conductor element (Patch antenna) is known (see, for example, Patent Document 1).
  • two conductive plates facing each other with a gap are disposed between the radiating conductor element and the parasitic conductive element, and these conductive plates are A configuration that is electrically connected to a ground conductor plate is also known (see, for example, Patent Document 2).
  • JP 55-93305 A Japanese Utility Model Publication No. 4-27609
  • the wideband antenna according to Patent Document 1 realizes a wideband by using electromagnetic coupling between a radiation conductor element and a parasitic conductor element.
  • the size of the electromagnetic field coupling is greatly influenced by the distance between the radiating conductor element and the parasitic conductor element in the thickness direction.
  • the conductor plate is disposed between the radiating conductor element and the parasitic conductor element, the magnetic field coupling between the radiating conductor element and the parasitic conductor element is strengthened, and the band is reduced. There is a possibility of spreading.
  • the conductor plate is bent into an L-shape and its end is attached to the ground conductor by soldering. Therefore, the assembly is complicated and the productivity is low. There is a problem of growing.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a broadband antenna that can widen the band while suppressing variation in characteristics.
  • a wideband antenna includes a grounding conductor plate connected to the ground, a radiation conductor element facing the grounding conductor plate with a gap and connected to a feed line, and the radiation conductor element.
  • a parasitic conductor element disposed on the opposite side of the ground conductor plate from the ground and insulated from the ground conductor plate and the radiating conductor element, and a coupling amount between the parasitic conductor element and the radiating conductor element
  • a coupling amount adjusting conductor plate wherein the coupling amount adjusting conductor plate partially covers a portion where the parasitic conductor element and the radiation conductor element overlap each other, and a direction of a current flowing through the radiation conductor element The both ends of the radiating conductor element are crossed in the orthogonal direction to the ground conductor plate and electrically connected to the ground conductor plate.
  • the coupling amount adjusting conductor plate partially covers a portion where the parasitic conductor element and the radiation conductor element overlap each other, and the radiation conductor element is disposed in a direction orthogonal to the direction of the current flowing through the radiation conductor element.
  • a straddling configuration was adopted. For this reason, when the radiation conductor element and the parasitic conductor element are subjected to electric field coupling, the strength of the electric field coupling can be adjusted using the coupling amount adjusting conductor plate, and the feed line and the radiation conductor element are matched. The bandwidth can be widened.
  • the width direction of the coupling amount adjusting conductor plate is parallel to the direction of the current flowing through the radiating conductor element, by changing the width dimension of the coupling amount adjusting conductor plate, The strength of electric field coupling with the conductor element can be adjusted. Further, when the length direction of the coupling amount adjusting conductor plate is set to a direction orthogonal to the direction of the current flowing through the radiating conductor element, the resonance frequency of the current is adjusted by changing the length dimension of the coupling amount adjusting conductor plate. be able to.
  • the ground conductor plate and the coupling amount adjusting conductor plate are provided on a substrate made of an insulating material, the ground conductor plate and the coupling amount adjusting conductor plate can be easily connected using vias provided on the substrate. For this reason, the connection part by soldering can be eliminated, the assembling work can be simplified and the productivity can be improved, and the characteristic variation for each antenna can be reduced.
  • the coupling amount adjusting conductor plate is configured such that both end sides thereof are connected to the ground conductor plate using columnar conductors.
  • both end sides of the coupling amount adjusting conductor plate are connected to the ground conductor plate using columnar conductors. For this reason, for example, when the ground conductor plate and the coupling amount adjusting conductor plate are provided on a substrate made of an insulating material, the ground conductor plate and the coupling amount adjusting conductor plate are formed using vias that form columnar conductors provided on the substrate. Can be connected easily.
  • the feeder line is provided between another ground conductor plate provided on the side opposite to the radiation conductor element when viewed from the ground conductor plate, and between the other ground conductor plate and the ground conductor plate.
  • the strip conductor is configured to be connected to the radiation conductor element through a connection opening provided in the ground conductor plate.
  • the feeder line is constituted by a strip line disposed on the side opposite to the radiation conductor element when viewed from the ground conductor plate.
  • the ground conductor plate, the radiation conductor element, and the coupling amount adjusting conductor plate are made of an insulating material.
  • the feed line is constituted by a microstrip line made of a strip conductor provided on the side opposite to the radiation conductor element when viewed from the ground conductor plate, and the strip conductor of the microstrip line is the ground conductor plate.
  • the connection is made to the radiation conductor element through a connection opening.
  • the feed line is constituted by the microstrip line disposed on the side opposite to the radiation conductor element as viewed from the ground conductor plate.
  • the ground conductor plate, the radiation conductor element, and the coupling amount adjusting conductor plate are made of the insulating material.
  • the parasitic conductor element is formed of a substantially rectangular conductor plate with corner portions cut off.
  • the parasitic conductor element is formed by the substantially rectangular conductor plate with the corner portions cut off, the parasitic conductor element and the radiating conductor element are adjusted by adjusting the path of the current flowing through the parasitic conductor element.
  • the amount of coupling between the feed line and the radiation conductor element can be widened.
  • the ground conductor plate, the radiating conductor element, the parasitic conductor element, and the coupling amount adjusting conductor plate are provided on a multilayer substrate in which a plurality of insulating layers are laminated, and are mutually connected with respect to the thickness direction of the multilayer substrate. It is set as the structure arrange
  • the ground conductor plate, the radiating conductor element, the parasitic conductor element, and the coupling amount adjusting conductor plate are provided on a multilayer substrate in which a plurality of insulating layers are laminated. For this reason, for example, by providing a ground conductor plate, a radiating conductor element, a parasitic conductor element, and a coupling amount adjusting conductor plate on the surfaces of different insulating layers, these can be easily placed at different positions in the thickness direction of the multilayer board. Can be arranged. As a result, productivity can be improved and characteristic variation for each antenna can be reduced.
  • FIG. 2 is a cross-sectional view of the wideband patch antenna as seen from the direction of arrows II-II in FIG.
  • FIG. 3 is a cross-sectional view of the wideband patch antenna as seen from the direction of arrows III-III in FIG.
  • FIG. 4 is a cross-sectional view of the wideband patch antenna as seen from the direction of arrows IV-IV in FIG. 2. It is explanatory drawing which shows the 1st resonance mode of a wideband patch antenna in the same position as FIG. It is explanatory drawing which shows the 2nd resonance mode of a wideband patch antenna in the same position as FIG.
  • FIG. 10 is a cross-sectional view of the wideband patch antenna as seen from the direction of arrows XX in FIG. 9. It is sectional drawing which looked at the wideband patch antenna from the arrow XI-XI direction in FIG. It is sectional drawing which looked at the wideband patch antenna from the arrow XII-XII direction in FIG. It is a perspective view which shows the wideband patch antenna by 3rd Embodiment.
  • a wideband antenna for example, a wideband patch antenna for 60 GHz band will be described as an example and described in detail with reference to the accompanying drawings.
  • the broadband patch antenna 1 includes a multilayer substrate 2, a ground conductor plate 8, a radiating conductor element 9, a parasitic conductor element 15, a coupling amount adjusting conductor plate 16 and the like which will be described later.
  • the multilayer substrate 2 is formed in a flat plate shape extending in parallel with the X axis direction and the Y axis direction, for example, among the X axis direction, the Y axis direction, and the Z axis direction orthogonal to each other.
  • the multilayer substrate 2 has a width dimension of, for example, about several mm with respect to the Y-axis direction serving as the width direction, and has a length dimension of, for example, about several mm with respect to the X-axis direction serving as the length direction. For example, it has a thickness dimension of about several hundred ⁇ m with respect to the Z-axis direction which is the thickness direction.
  • the multilayer substrate 2 is formed of, for example, a low-temperature co-fired ceramic multilayer substrate (LTCC multilayer substrate), and has five insulating layers 3 to 7 stacked in the Z-axis direction from the front surface 2A side to the back surface 2B side. ing.
  • Each of the insulating layers 3 to 7 is made of an insulating ceramic material that can be fired at a low temperature of 1000 ° C. or less, and is formed in a thin layer shape.
  • the ground conductor plate 8 is formed using, for example, a conductive metal material such as copper or silver and connected to the ground.
  • the ground conductor plate 8 is located between the insulating layer 5 and the insulating layer 6 and covers substantially the entire surface of the multilayer substrate 2.
  • a radiation conductor element 9 is provided on the front surface side of the ground conductor plate 8, and a strip line 10 is provided on the back surface side of the ground conductor plate 8. For this reason, in order to connect between the radiation conductor element 9 and the strip line 10, for example, a substantially circular connection opening 8 ⁇ / b> A is provided in the central portion of the ground conductor plate 8.
  • the radiation conductor element 9 is formed, for example, in a substantially square shape using the same conductive metal material as that of the ground conductor plate 8 and faces the ground conductor plate 8 with a gap. Specifically, the radiation conductor element 9 is disposed between the insulating layer 5 and the insulating layer 4. An insulating layer 5 is disposed between the radiation conductor element 9 and the ground conductor plate 8. For this reason, the radiation conductor element 9 faces the ground conductor plate 8 while being insulated from the ground conductor plate 8.
  • the radiating conductor element 9 has a width dimension L1 of about several hundreds ⁇ m in the Y-axis direction and a length dimension L2 of about several hundreds ⁇ m in the X-axis direction. Yes.
  • the length dimension L2 in the X-axis direction of the radiation conductor element 9 is set to a value that is, for example, a half wavelength of a high-frequency signal to be used in terms of electrical length.
  • a later-described via 14 is connected to the radiation conductor element 9 at an intermediate position in the X-axis direction, and a later-described strip line 10 is connected via the via 14.
  • the radiating conductor element 9 is configured such that a current I flows in the X-axis direction by feeding from the strip line 10.
  • the strip line 10 is provided on the side opposite to the radiating conductor element 9 when viewed from the ground conductor plate 8, and constitutes a feeding line that supplies power to the radiating conductor element 9.
  • the strip line 10 is provided between another ground conductor plate 11 provided on the opposite side of the radiation conductor element 9 from the ground conductor plate 8 and between the ground conductor plate 8 and the ground conductor plate 11.
  • the strip conductor 12 is provided on the back surface 2B of the multilayer substrate 2 (the back surface of the insulating layer 7), and covers the back surface 2B over substantially the entire surface.
  • the ground conductor plate 11 is electrically connected to the ground conductor plate 8 by a plurality of vias 13.
  • the via 13 is formed as a columnar conductor by providing a conductive metal material such as copper or silver in a through hole having an inner diameter of several tens to several hundreds ⁇ m (for example, 100 ⁇ m) through the insulating layers 6 and 7. Has been.
  • the via 13 extends in the Z-axis direction, and both ends thereof are connected to the ground conductor plates 8 and 11, respectively.
  • the plurality of vias 13 are disposed so as to surround the strip conductor 12. As a result, the via 13 stabilizes the potential of the ground conductor plates 8 and 11 and suppresses leakage of a high-frequency signal propagating through the strip conductor 12.
  • the strip conductor 12 is made of, for example, the same conductive metal material as that of the ground conductor plate 8, is formed in an elongated strip shape extending in the X-axis direction, and is disposed between the insulating layer 6 and the insulating layer 7. .
  • the end portion of the strip conductor 12 is disposed in the center portion of the connection opening 8A, and is connected to the radiation conductor element 9 via a via 14 as a connection line.
  • the via 14 is formed as a columnar conductor in substantially the same manner as the via 13.
  • the via 14 is formed through the insulating layers 5 and 6, extends in the Z-axis direction through the central portion of the connection opening 8 ⁇ / b> A, and both ends thereof are connected to the radiation conductor element 9 and the strip conductor 12, respectively. Yes.
  • the strip line 10 is formed symmetrically with respect to a line parallel to the X axis passing through the center position in the width direction.
  • the parasitic conductor element 15 is formed in, for example, a substantially rectangular shape using the same conductive metal material as that of the ground conductor plate 8, and is positioned on the opposite side to the ground conductor plate 8 when viewed from the radiation conductor element 9. 2A (surface of the insulating layer 3). Insulating layers 3 and 4 are disposed between the parasitic conductor element 15 and the radiation conductor element 9. For this reason, the parasitic conductor element 15 faces the radiation conductor element 9 with an interval while being insulated from the radiation conductor element 9 and the ground conductor plate 8.
  • the parasitic conductor element 15 has a width dimension L3 of, for example, about several hundred ⁇ m in the Y-axis direction and a length dimension L4 of, for example, about several hundred ⁇ m in the X-axis direction. ing.
  • the width dimension L3 of the parasitic conductor element 15 is larger than the width dimension L1 of the radiation conductor element 9, for example.
  • the length dimension L4 of the parasitic conductor element 15 is smaller than the length dimension L2 of the radiation conductor element 9, for example.
  • the magnitude relationship between the parasitic conductor element 15 and the radiating conductor element 9 and the specific shapes thereof are not limited to those described above, and are appropriately set in consideration of the radiation pattern of the wideband patch antenna 1 and the like. .
  • the parasitic conductor element 15 causes electromagnetic field engagement with the radiating conductor element 9.
  • the coupling amount adjusting conductor plate 16 is formed in a substantially square shape using a conductive metal material similar to that of the ground conductor plate 8, for example, and is disposed between the radiating conductor element 9 and the parasitic conductor element 15. Specifically, as shown in FIGS. 2 and 3, the coupling amount adjusting conductor plate 16 is disposed between the insulating layer 3 and the insulating layer 4, and is connected to the radiating conductor element 9 and the parasitic conductor element 15. Insulated.
  • the coupling amount adjusting conductor plate 16 has a width dimension L5 of about several hundred ⁇ m in the Y-axis direction and a length dimension L6 of about several hundred ⁇ m in the X-axis direction, for example. is doing.
  • the width dimension L5 of the coupling amount adjusting conductor plate 16 is larger than, for example, the width dimension L1 of the radiation conductor element 9 and the width dimension L3 of the parasitic conductor element 15.
  • the length dimension L6 of the coupling amount adjusting conductor plate 16 is smaller than the length dimension L2 of the radiation conductor element 9 and the length dimension L4 of the parasitic conductor element 15, for example.
  • the coupling amount adjusting conductor plate 16 crosses the central portion (for example, the central portion in the X-axis direction) that is a part of the portion where the radiation conductor element 9 and the parasitic conductor element 15 overlap each other in the Y-axis direction. Covered. For this reason, the coupling amount adjusting conductor plate 16 straddles the radiation conductor element 9 in a direction orthogonal to the direction of the current I flowing through the radiation conductor element 9.
  • a pair of vias 17 are provided on both ends of the coupling amount adjusting conductor plate 16. These vias 17 are formed as columnar conductors in substantially the same manner as the vias 13 and are formed through the insulating layers 4 and 5 to electrically connect the coupling amount adjusting conductor plate 16 and the ground conductor plate 8. Yes.
  • the radiating conductor element 9, the parasitic conductor element 15, and the coupling amount adjusting conductor plate 16, for example, are arranged at the same position on the XY plane, for example. Further, the radiation conductor element 9, the parasitic conductor element 15, and the coupling amount adjusting conductor plate 16 are formed in line symmetry with respect to a line parallel to the X axis passing through these center positions, and the Y axis passing through these center positions. Are formed symmetrically with respect to a line parallel to the line.
  • the coupling amount adjustment conductor plate 16 adjusts the coupling amount between the radiation conductor element 9 and the parasitic conductor element 15.
  • the wideband patch antenna 1 has the above-described configuration, and the operation thereof will be described next.
  • the broadband patch antenna 1 transmits or receives a high-frequency signal corresponding to the length dimension L2 of the radiation conductor element 9.
  • the radiation conductor element 9 and the parasitic conductor element 15 are electromagnetically coupled to each other and have two resonance modes having different resonance frequencies as shown in FIGS.
  • the return loss of the high frequency signal also decreases in the frequency band between these two resonance frequencies. For this reason, compared to the case where the parasitic conductor element 15 is omitted, the usable high frequency signal band is widened.
  • the band where the strip line 10 and the radiating conductor element 9 are matched tends to widen.
  • the gap between the parasitic conductor element 15 and the radiating conductor element 9 is increased, the entire antenna is enlarged, and there is a problem that it is difficult to apply to a small electronic device or the like.
  • the coupling amount adjusting conductor plate 16 is provided between the radiation conductor element 9 and the parasitic conductor element 15, the radiation conductor element 9 and the parasitic conductor element 9 are fed using the coupling amount adjusting conductor plate 16. The amount of coupling with the conductor element 15 can be adjusted.
  • the thickness dimension of the multilayer substrate 2 was 0.7 mm.
  • the width L1 of the radiation conductor element 9 was 0.55 mm, and the length L2 was 0.7 mm.
  • the width L3 of the parasitic conductor element 15 was 1.15 mm, and the length L4 was 0.6 mm.
  • the width L5 of the coupling amount adjusting conductor plate 16 was 1.5 mm, and the length L6 was 0.3 mm.
  • the diameter of the vias 13, 14, and 17 was 0.1 mm.
  • the band where the return loss is lower than ⁇ 8 dB is about 14 GHz.
  • the band where the return loss is lower than ⁇ 8 dB is about 19 GHz and the band is widened.
  • the coupling amount adjusting conductor plate 16 can adjust the resonance frequency of the current according to the width dimension L5, and the radiation conductor element 9 and the parasitic conductor element 15 can be adjusted according to the length dimension L6.
  • the strength of electric field coupling can be adjusted.
  • the length dimension L6 of the coupling amount adjusting conductor plate 16 is preferably set to, for example, about half of the length dimension L2 of the radiation conductor element 9.
  • the coupling amount adjusting conductor plate 16 partially covers a portion where the radiation conductor element 9 and the parasitic conductor element 15 overlap each other, and is orthogonal to the direction of the current flowing through the radiation conductor element 9.
  • the radiation conductor element 9 was straddled in the direction. For this reason, when the radiation conductor element 9 and the parasitic conductor element 15 are subjected to electric field coupling, the strength of the electric field coupling can be adjusted using the coupling amount adjusting conductor plate 16, and the strip line 10 and the radiation conductor element can be adjusted. 9 can be widened.
  • both ends of the coupling amount adjusting conductor plate 16 are grounded using the vias 17 penetrating the insulating layers 4 and 5 of the multilayer substrate 2. It can be easily connected to the conductor plate 8. Therefore, the potential of the coupling amount adjusting conductor plate 16 can be stabilized, and the electrical characteristics of the coupling amount adjusting conductor plate 16 can be symmetric with respect to the Y-axis direction. As compared with the case where only one end side of each is connected to the ground conductor plate 8, generation of stray capacitance, unnecessary resonance phenomenon and the like can be suppressed.
  • the ground conductor plate 8, the radiating conductor element 9, the parasitic conductor element 15, and the coupling amount adjusting conductor plate 16 are provided on the multilayer substrate 2 on which a plurality of insulating layers 3 to 7 are laminated. For this reason, the parasitic conductor element 15, the coupling amount adjusting conductor plate 16, the radiating conductor element 9, and the ground conductor plate 8 are sequentially provided on the surfaces of the insulating layers 3 to 6 different from each other, and these are arranged in the thickness direction of the multilayer substrate 2. Can be easily arranged at different positions.
  • a strip line 10 is provided on the side opposite to the radiation conductor element 9 when viewed from the ground conductor plate 8. For this reason, the strip line 10 can be formed together on the multilayer substrate 2 provided with the ground conductor plate 8, the radiating conductor element 9, the parasitic conductor element 15, and the coupling amount adjusting conductor plate 16, thereby improving productivity and characteristics. Variations can be reduced.
  • FIG. 9 to FIG. 12 show a second embodiment of the present invention.
  • the feature of this embodiment is that the microstrip line is connected to the radiation conductor element.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the broadband patch antenna 21 according to the second embodiment includes a multilayer substrate 22, a ground conductor plate 8, a radiating conductor element 9, a parasitic conductor element 15, a coupling amount adjusting conductor plate 16, and the like.
  • the multilayer substrate 22 is formed of an LTCC multilayer substrate in substantially the same manner as the multilayer substrate 2 according to the first embodiment, and is a four-layer insulation layered in the Z-axis direction from the front surface 22A side to the rear surface 22B side. It has layers 23-26.
  • the ground conductor plate 8 is provided between the insulating layer 25 and the insulating layer 26 and covers the multilayer substrate 22 over substantially the entire surface.
  • the radiating conductor element 9 is located between the insulating layer 24 and the insulating layer 25 and faces the ground conductor plate 8 with a gap.
  • the parasitic conductor element 15 is provided on the surface 22A of the multilayer substrate 22 (the surface of the insulating layer 23). The parasitic conductor element 15 is located on the side opposite to the ground conductor plate 8 when viewed from the radiation conductor element 9 and is insulated from the radiation conductor element 9 and the ground conductor plate 8.
  • the coupling amount adjusting conductor plate 16 is provided between the insulating layer 23 and the insulating layer 24 and is disposed between the radiating conductor element 9 and the parasitic conductor element 15.
  • the coupling amount adjusting conductor plate 16 partially covers a portion where the radiation conductor element 9 and the parasitic conductor element 15 overlap each other, and straddles the radiation conductor element 9 in the Y-axis direction. Both end sides of the coupling amount adjusting conductor plate 16 are electrically connected to the ground conductor plate 8 via the vias 17.
  • the microstrip line 27 is provided on the opposite side of the radiating conductor element 9 from the ground conductor plate 8 and constitutes a feeding line that feeds power to the radiating conductor element 9.
  • the microstrip line 27 is constituted by a strip conductor 28 provided on the side opposite to the radiation conductor element 9 when viewed from the ground conductor plate 8.
  • the strip conductor 28 is made of, for example, the same conductive metal material as that of the ground conductor plate 8, is formed in an elongated strip shape extending in the X-axis direction, and is provided on the back surface 22 B of the multilayer substrate 22 (the back surface of the insulating layer 26). ing.
  • the microstrip line 27 is formed symmetrically with respect to a line parallel to the X axis passing through the center position in the width direction.
  • the end portion of the strip conductor 28 is disposed at the center portion of the connection opening 8A, and is connected to the radiation conductor element 9 through a via 29 as a connection line.
  • the via 29 is formed in substantially the same manner as the via 14 according to the first embodiment, penetrates the insulating layers 25 and 26, and extends in the Z-axis direction through the central portion of the connection opening 8A. Both ends of the via 29 are connected to the radiation conductor element 9 and the strip conductor 28, respectively.
  • this embodiment can obtain the same effects as those of the first embodiment.
  • the configuration of the microstrip line 27 is simplified as compared with the strip line 10 according to the first embodiment. Manufacturing cost can be reduced.
  • FIG. 13 and FIG. 14 show a third embodiment of the present invention.
  • the feature of the present embodiment is that the coupling adjusting conductor plate is connected to the ground conductor plate using vias penetrating the multilayer substrate.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the broadband patch antenna 31 according to the third embodiment includes a multilayer substrate 32, a ground conductor plate 8, a radiating conductor element 9, a parasitic conductor element 15, a coupling amount adjusting conductor plate 40, and the like.
  • the multilayer substrate 32 is formed in substantially the same manner as the multilayer substrate 22 according to the second embodiment, and includes four insulating layers 33 to 36 laminated in the Z-axis direction from the front surface 32A side to the back surface 32B side. Have.
  • the ground conductor plate 8 is provided between the insulating layer 35 and the insulating layer 36 and covers the multilayer substrate 32 over substantially the entire surface.
  • the radiating conductor element 9 is located between the insulating layer 34 and the insulating layer 35 and faces the ground conductor plate 8 with a gap.
  • the parasitic conductor element 15 is provided on the surface 32A of the multilayer substrate 32 (the surface of the insulating layer 33). The parasitic conductor element 15 is located on the side opposite to the ground conductor plate 8 when viewed from the radiation conductor element 9 and is insulated from the radiation conductor element 9 and the ground conductor plate 8.
  • the microstrip line 37 is formed in substantially the same manner as the microstrip line 27 according to the second embodiment, and includes a strip conductor 38 provided on the side opposite to the radiation conductor element 9 when viewed from the ground conductor plate 8.
  • the strip conductor 38 is made of, for example, the same conductive metal material as that of the ground conductor plate 8, is formed in an elongated strip shape extending in the X-axis direction, and is provided on the back surface 32 ⁇ / b> B (the back surface of the insulating layer 36) of the multilayer substrate 32. ing.
  • the end portion of the strip conductor 38 is disposed in the center portion of the connection opening 8A, and is connected to the radiation conductor element 9 via a via 39 as a connection line.
  • the via 39 is formed in substantially the same manner as the via 14 according to the first embodiment, penetrates the insulating layers 35 and 36, and extends in the Z-axis direction through the central portion of the connection opening 8A. Both ends of the via 39 are connected to the radiation conductor element 9 and the strip conductor 38, respectively.
  • the coupling amount adjusting conductor plate 40 is formed in substantially the same manner as the coupling amount adjusting conductor plate 16 according to the first embodiment, and is provided between the insulating layer 33 and the insulating layer 34, and the radiation conductor element 9 and the parasitic conductor. It is arranged between the element 15.
  • the coupling amount adjusting conductor plate 40 partially covers a portion where the radiation conductor element 9 and the parasitic conductor element 15 overlap each other, and straddles the radiation conductor element 9 in the Y-axis direction.
  • both ends of the coupling amount adjusting conductor plate 40 are electrically connected to the ground conductor plate 8 using vias 41 penetrating the multilayer substrate 32, and therefore the coupling amount adjusting conductor according to the first embodiment.
  • the via 41 constitutes a columnar conductor and penetrates all the insulating layers 33 to 36 of the multilayer substrate 32. For this reason, the via 41 extends in the Z-axis direction, and is connected to the ground conductor plate 8 and the coupling amount adjusting conductor plate 16 at an intermediate position.
  • this embodiment can obtain the same effects as those of the first embodiment.
  • the coupling amount adjusting conductor plate 40 is connected to the ground conductor plate 8 using the via 41 penetrating the multilayer substrate 32, it is difficult to form a via connecting a specific layer.
  • the via 41 made of a through-hole via can be easily formed.
  • the third embodiment the case where it is applied to the wideband patch antenna 31 having the microstrip line 37 as in the second embodiment has been described as an example. However, the third embodiment is different from the first embodiment. Similarly, the present invention may be applied to a broadband patch antenna having a strip line.
  • FIG. 15 and FIG. 16 show a fourth embodiment of the present invention.
  • a feature of the present embodiment is that the parasitic conductor element is formed by a substantially rectangular conductor plate with corner portions cut off.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the broadband patch antenna 51 according to the fourth embodiment includes the multilayer substrate 2, the ground conductor plate 8, the radiating conductor element 9, the parasitic conductor element 52, the coupling amount adjusting conductor plate 16, and the like.
  • the parasitic conductor element 52 is formed in substantially the same manner as the parasitic conductor element 15 according to the first embodiment.
  • the parasitic conductor element 52 according to the present embodiment is formed of a substantially rectangular conductor plate having a cutout portion 52A obtained by cutting off the corner portion.
  • the cut portion 52A of the parasitic conductor element 52 has a shape cut in a straight line, but may have a shape cut in, for example, an arc shape.
  • the amount of coupling between the radiation conductor element 9 and the parasitic conductor element 52 can be adjusted by appropriately setting the shape of the cutout portion 52A.
  • the present embodiment can obtain the same effects as those of the first embodiment.
  • the parasitic conductor element 52 is formed by a substantially rectangular conductor plate having a cut-out portion 52A with a corner portion cut off, so that the path of the current flowing through the parasitic conductor element 52 is adjusted.
  • the amount of coupling between the parasitic conductor element 52 and the radiation conductor element 9 can be adjusted, and the return loss can be reduced.
  • the band which the stripline 10 and the radiation conductor element 9 match can be widened, and a wide band can be achieved.
  • the present invention is applied to the broadband patch antenna 51 similar to that of the first embodiment has been described as an example.
  • the broadband patch antenna 21 according to the second and third embodiments is described. , 31 may be applied.
  • the broadband patch antennas 1, 21, 31, 51 are formed on the multilayer substrates 2, 22, 32 has been described as an example.
  • a conductor plate or the like is provided on a single layer substrate.
  • a broadband patch antenna may be formed.
  • the strip line 10 and the microstrip lines 27 and 37 are used as the feed line has been described as an example.
  • another feed line such as a coaxial cable may be used. .
  • the wideband patch antenna used for the 60 GHz band millimeter wave has been described as an example.
  • the present invention may be applied to a wideband patch antenna used for a millimeter wave or microwave of another frequency band. .

Landscapes

  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

 多層基板2の内部には、絶縁層5,6間に位置して接地導体板8を設けると共に、絶縁層4,5間に位置して放射導体素子9を設ける。この放射導体素子9には、ストリップ線路10を接続する。多層基板2の表面2Aには、放射導体素子9と対向した無給電導体素子15を設ける。多層基板2の絶縁層3,4間には、放射導体素子9と無給電導体素子15との間に位置して結合量調整導体板16を設ける。この結合量調整導体板16は、放射導体素子9に流れる電流Iの向きに対して直交方向に放射導体素子9を跨ぐと共に、その両端側がビア17を通じて接地導体板8と電気的に接続される。

Description

広帯域アンテナ
 本発明は、例えばマイクロ波やミリ波等の高周波信号に用いて好適な広帯域アンテナに関する。
 従来技術による広帯域アンテナとして、例えば波長に比べて薄い誘電体を挟んで互いに対向する放射導体素子と接地導体板を設けると共に、放射導体素子の放射面側に無給電導体素子を設けたマイクロストリップアンテナ(パッチアンテナ)が知られている(例えば、特許文献1参照)。また、他の従来技術として、前記特許文献1の構成に加えて、放射導体素子と無給電導体素子との間には、互いに隙間をもって対向した2つの導体板を配置し、これらの導体板を接地導体板に電気的に接続した構成も知られている(例えば、特許文献2参照)。
特開昭55-93305号公報 実開平4-27609号公報
 ところで、特許文献1による広帯域アンテナでは、放射導体素子と無給電導体素子との電磁界結合を利用して広帯域化を実現している。しかし、電磁界結合の大きさは放射導体素子と無給電導体素子との間の厚さ方向の間隔寸法が大きく寄与するため、帯域を広げるには限界がある。
 また、特許文献2による広帯域アンテナでは、放射導体素子と無給電導体素子との間に導体板を配置しているから、放射導体素子と無給電導体素子との磁界結合を強くなって、帯域が広がる可能性がある。しかし、導体板はL字形に折曲げると共に、その端部を半田付けによって接地導体に取り付ける構造となっているから、組立てが複雑となって生産性が低いのに加え、アンテナ毎の特性ばらつきも大きくなるという問題がある。
 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、特性ばらつきを抑制しつつ帯域を広げることができる広帯域アンテナを提供することにある。
 (1).上述した課題を解決するために、本発明による広帯域アンテナは、グランドに接続された接地導体板と、該接地導体板と間隔をもって対向し給電線路に接続された放射導体素子と、該放射導体素子からみて前記接地導体板と反対側に配置され前記接地導体板および放射導体素子と絶縁された無給電導体素子と、該無給電導体素子と前記放射導体素子との間に配置されこれらの結合量を調整する結合量調整導体板とを備え、前記結合量調整導体板は、前記無給電導体素子と前記放射導体素子とが互いに重なり合う部位を部分的に覆い、前記放射導体素子に流れる電流の向きに対して直交方向に前記放射導体素子を跨ぐと共に、その両端側が前記接地導体板と電気的に接続される構成としている。
 本発明によれば、結合量調整導体板は、無給電導体素子と放射導体素子とが互いに重なり合う部位を部分的に覆い、放射導体素子に流れる電流の向きに対して直交方向に放射導体素子を跨ぐ構成とした。このため、放射導体素子と無給電導体素子とが電界結合するときに、結合量調整導体板を用いてこの電界結合の強さを調整することができ、給電線路と放射導体素子とが整合する帯域を広くすることができる。
 具体的には、結合量調整導体板の幅方向が放射導体素子に流れる電流の向きと平行な方向としたときに、結合量調整導体板の幅寸法を変えることによって、放射導体素子と無給電導体素子との電界結合の強さを調整することができる。また、結合量調整導体板の長さ方向が放射導体素子に流れる電流の向きと直交する方向としたときに、結合量調整導体板の長さ寸法を変えることによって、電流の共振周波数を調整することができる。
 例えば接地導体板および結合量調整導体板を絶縁材料からなる基板に設けた場合には、該基板に設けたビアを用いて接地導体板と結合量調整導体板を容易に接続することができる。このため、半田付けによる接続箇所をなくして、組立て作業を簡略化して生産性を高めることができると共に、アンテナ毎の特性ばらつきを小さくすることができる。
 (2).本発明では、前記結合量調整導体板は、その両端側を柱状の導体を用いて前記接地導体板に接続する構成としている。
 本発明によれば、結合量調整導体板の両端側を柱状の導体を用いて接地導体板に接続する。このため、例えば接地導体板および結合量調整導体板を絶縁材料からなる基板に設けた場合には、該基板に設けた柱状の導体をなすビアを用いて接地導体板と結合量調整導体板を容易に接続することができる。
 (3).本発明では、前記給電線路は、前記接地導体板からみて前記放射導体素子と反対側に設けられた他の接地導体板と、該他の接地導体板と前記接地導体板との間に設けられたストリップ導体とからなるストリップ線路によって構成し、該ストリップ線路のストリップ導体は、前記接地導体板に設けた接続用開口を通じて前記放射導体素子に接続する構成としている。
 本発明によれば、給電線路は、接地導体板からみて放射導体素子と反対側に配置されたストリップ線路によって構成したから、例えば接地導体板、放射導体素子および結合量調整導体板を絶縁材料からなる基板に設けた場合には、該基板にストリップ線路を一緒に形成することができ、生産性の向上や特性ばらつきの軽減を図ることができる。
 (4).本発明では、前記給電線路は、前記接地導体板からみて前記放射導体素子と反対側に設けられたストリップ導体からなるマイクロストリップ線路によって構成し、該マイクロストリップ線路のストリップ導体は、前記接地導体板に設けた接続用開口を通じて前記放射導体素子に接続する構成としている。
 本発明によれば、給電線路は、接地導体板からみて放射導体素子と反対側に配置されたマイクロストリップ線路によって構成したから、例えば接地導体板、放射導体素子および結合量調整導体板を絶縁材料からなる基板に設けた場合には、該基板にマイクロストリップ線路を一緒に形成することができ、生産性の向上や特性ばらつきの軽減を図ることができる。
 (5).本発明では、前記無給電導体素子は、角隅部分を切り取った略四角形状の導体板によって形成している。
 本発明によれば、無給電導体素子は角隅部分を切り取った略四角形状の導体板によって形成したから、無給電導体素子に流れる電流の経路を調整して、無給電導体素子と放射導体素子との間の結合量を調整することができ、給電線路と放射導体素子とが整合する帯域を広くすることができる。
 (6).本発明では、前記接地導体板、放射導体素子、無給電導体素子および結合量調整導体板は、複数の絶縁層が積層された多層基板に設けると共に、該多層基板の厚さ方向に対して互いに異なる位置に配置する構成としている。
 本発明によれば、接地導体板、放射導体素子、無給電導体素子および結合量調整導体板は、複数の絶縁層が積層された多層基板に設ける構成とした。このため、例えば互いに異なる絶縁層の表面に接地導体板、放射導体素子、無給電導体素子および結合量調整導体板を設けることによって、これらを多層基板の厚さ方向に対して互いに異なる位置に容易に配置することができる。この結果、生産性を高めることができると共に、アンテナ毎の特性ばらつきを低減することができる。
本発明の第1の実施の形態による広帯域パッチアンテナを示す斜視図である。 広帯域パッチアンテナを図1中の矢示II-II方向からみた断面図である。 広帯域パッチアンテナを図2中の矢示III-III方向からみた断面図である。 広帯域パッチアンテナを図2中の矢示IV-IV方向からみた断面図である。 広帯域パッチアンテナの第1の共振モードを図2と同じ位置で示す説明図である。 広帯域パッチアンテナの第2の共振モードを図2と同じ位置で示す説明図である。 第1の実施の形態および第1の比較例において、リターンロスの周波数特性を示す特性線図である。 第1の実施の形態および第2,第3の比較例において、リターンロスの周波数特性を示す特性線図である。 第2の実施の形態による広帯域パッチアンテナを示す斜視図である。 広帯域パッチアンテナを図9中の矢示X-X方向からみた断面図である。 広帯域パッチアンテナを図10中の矢示XI-XI方向からみた断面図である。 広帯域パッチアンテナを図10中の矢示XII-XII方向からみた断面図である。 第3の実施の形態による広帯域パッチアンテナを示す斜視図である。 広帯域パッチアンテナを図13中の矢示XIV-XIV方向からみた断面図である。 第4の実施の形態による広帯域パッチアンテナを示す斜視図である。 第4の実施の形態による広帯域パッチアンテナを図4と同様な位置からみた断面図である。 第4の実施の形態および第4の比較例において、リターンロスの周波数特性を示す特性線図である。
 以下、本発明の実施の形態による広帯域アンテナとして例えば60GHz帯用の広帯域パッチアンテナを例に挙げて、添付図面を参照しつつ詳細に説明する。
 図1ないし図4は第1の実施の形態による広帯域パッチアンテナ1を示している。この広帯域パッチアンテナ1は、後述する多層基板2、接地導体板8、放射導体素子9、無給電導体素子15、結合量調整導体板16等によって構成されている。
 多層基板2は、互いに直交するX軸方向、Y軸方向およびZ軸方向のうち例えばX軸方向およびY軸方向に対して平行に広がる平板状に形成されている。この多層基板2は、幅方向となるY軸方向に対して例えば数mm程度の幅寸法を有し、長さ方向となるX軸方向に対して例えば数mm程度の長さ寸法を有すると共に、厚さ方向となるZ軸方向に対して例えば数百μm程度の厚さ寸法を有している。
 また、多層基板2は、例えば低温同時焼成セラミックス多層基板(LTCC多層基板)によって形成され、表面2A側から裏面2B側に向けてZ軸方向に積層した5層の絶縁層3~7を有している。各絶縁層3~7は、1000℃以下の低温で焼成可能な絶縁性のセラミックス材料からなり、薄い層状に形成されている。
 接地導体板8は、例えば銅、銀等の導電性金属材料を用いて形成され、グランドに接続されている。この接地導体板8は、絶縁層5と絶縁層6との間に位置して多層基板2の略全面を覆っている。接地導体板8の表面側には放射導体素子9が設けられると共に、接地導体板8の裏面側にはストリップ線路10が設けられている。このため、放射導体素子9とストリップ線路10との間を接続するために、接地導体板8の中央部分には、例えば略円形の接続用開口8Aが設けられている。
 放射導体素子9は、例えば接地導体板8と同様の導電性金属材料を用いて略四角形状に形成され、接地導体板8と間隔をもって対向している。具体的には、放射導体素子9は、絶縁層5と絶縁層4との間に配置されている。この放射導体素子9と接地導体板8との間には、絶縁層5が配置されている。このため、放射導体素子9は、接地導体板8と絶縁された状態で、接地導体板8と対面している。
 また、放射導体素子9は、図4に示すように、Y軸方向に例えば数百μm程度の幅寸法L1を有すると共に、X軸方向に例えば数百μm程度の長さ寸法L2を有している。この放射導体素子9のX軸方向の長さ寸法L2は、電気長で例えば使用する高周波信号の半波長となる値に設定されている。
 さらに、放射導体素子9には、X軸方向の途中位置に後述のビア14が接続されると共に、該ビア14を介して後述のストリップ線路10が接続されている。そして、放射導体素子9には、ストリップ線路10からの給電によって、X軸方向に向けて電流Iが流れる構成となっている。
 ストリップ線路10は、図1ないし図4に示すように、接地導体板8からみて放射導体素子9と反対側に設けられ、放射導体素子9に対する給電を行う給電線路を構成している。具体的には、ストリップ線路10は、接地導体板8からみて放射導体素子9と反対側に設けられた他の接地導体板11と、接地導体板8と接地導体板11との間に設けられたストリップ導体12とによって構成されている。ここで、接地導体板11は、多層基板2の裏面2B(絶縁層7の裏面)に設けられ、裏面2Bを略全面に亘って覆っている。この接地導体板11は、複数のビア13によって接地導体板8に電気的に接続されている。
 このビア13は、絶縁層6,7を貫通して内径が数十~数百μm程度(例えば100μm)の貫通孔に例えば銅、銀等の導電性金属材料を設けることによって柱状の導体として形成されている。また、ビア13は、Z軸方向に延びて、その両端が接地導体板8,11にそれぞれ接続されている。そして、複数のビア13は、ストリップ導体12を取囲んで配置されている。これにより、ビア13は、接地導体板8,11の電位を安定させると共に、ストリップ導体12を伝搬する高周波信号が漏洩するのを抑制している。
 一方、ストリップ導体12は、例えば接地導体板8と同様の導電性金属材料からなり、X軸方向に延びる細長い帯状に形成されると共に、絶縁層6と絶縁層7との間に配置されている。このストリップ導体12の端部は、接続用開口8Aの中心部分に配置され、接続線路としてのビア14を介して放射導体素子9に接続されている。
 このビア14は、ビア13とほぼ同様に柱状の導体として形成されている。また、ビア14は、絶縁層5,6を貫通して形成され、接続用開口8Aの中心部分を通ってZ軸方向に延び、その両端が放射導体素子9とストリップ導体12にそれぞれ接続されている。そして、ストリップ線路10は、幅方向の中心位置を通るX軸に平行な線に関して線対称に形成されている。
 無給電導体素子15は、例えば接地導体板8と同様の導電性金属材料を用いて略四角形状に形成され、放射導体素子9からみて接地導体板8と反対側に位置して、多層基板2の表面2A(絶縁層3の表面)に配置されている。この無給電導体素子15と放射導体素子9との間には、絶縁層3,4が配置されている。このため、無給電導体素子15は、放射導体素子9および接地導体板8と絶縁された状態で、放射導体素子9と間隔をもって対面している。
 また、無給電導体素子15は、図4に示すように、Y軸方向に例えば数百μm程度の幅寸法L3を有すると共に、X軸方向に例えば数百μm程度の長さ寸法L4を有している。この無給電導体素子15の幅寸法L3は、例えば放射導体素子9の幅寸法L1よりも大きくなっている。一方、無給電導体素子15の長さ寸法L4は、例えば放射導体素子9の長さ寸法L2よりも小さくなっている。なお、無給電導体素子15および放射導体素子9の大小関係やこれらの具体的な形状は、上述のものに限らず、広帯域パッチアンテナ1の放射パターン等を考慮して適宜設定されるものである。そして、無給電導体素子15は、放射導体素子9と電磁界係合を生じる。
 結合量調整導体板16は、例えば接地導体板8と同様の導電性金属材料を用いて略四角形状に形成され、放射導体素子9と無給電導体素子15との間に配置されている。具体的には、結合量調整導体板16は、図2および図3に示すように、絶縁層3と絶縁層4との間に配置され、放射導体素子9および無給電導体素子15に対して絶縁されている。
 また、結合量調整導体板16は、図4に示すように、Y軸方向に例えば数百μm程度の幅寸法L5を有すると共に、X軸方向に例えば数百μm程度の長さ寸法L6を有している。この結合量調整導体板16の幅寸法L5は、例えば放射導体素子9の幅寸法L1および無給電導体素子15の幅寸法L3よりも大きくなっている。一方、結合量調整導体板16の長さ寸法L6は、例えば放射導体素子9の長さ寸法L2および無給電導体素子15の長さ寸法L4よりも小さくなっている。これにより、結合量調整導体板16は、放射導体素子9と無給電導体素子15とが互いに重なり合う部位のうちその一部となる中心部分(例えばX軸方向の中心部分)をY軸方向に横切って覆っている。このため、結合量調整導体板16は、放射導体素子9に流れる電流Iの向きに対して直交方向に放射導体素子9を跨いでいる。
 また、結合量調整導体板16の両端側には一対のビア17が設けられている。これらのビア17は、ビア13とほぼ同様に柱状の導体として形成され、絶縁層4,5を貫通して形成され、結合量調整導体板16と接地導体板8とを電気的に接続している。
 そして、放射導体素子9、無給電導体素子15および結合量調整導体板16は、例えば互いの中心位置がXY平面上の同じ位置に配置されている。また、放射導体素子9、無給電導体素子15および結合量調整導体板16は、これらの中心位置を通るX軸に平行な線に関して線対称に形成されると共に、これらの中心位置を通るY軸に平行な線に関して線対称に形成されている。そして、結合量調整導体板16は、放射導体素子9と無給電導体素子15との間の結合量を調整するものである。
 本実施の形態による広帯域パッチアンテナ1は上述の如き構成を有するもので、次にその作動について説明する。
 まず、ストリップ線路10から放射導体素子9に向けて給電を行うと、放射導体素子9には、X軸方向に向けて電流Iが流れる。これにより、広帯域パッチアンテナ1は、放射導体素子9の長さ寸法L2に応じた高周波信号を送信または受信する。
 このとき、放射導体素子9と無給電導体素子15とは、互いに電磁界結合すると共に、図5および図6に示すように、互いに共振周波数が異なる2つの共振モードを有する。これら2つの共振周波数では高周波信号のリターンロスが低下するのに加え、これら2つの共振周波数の間の周波数帯域でも高周波信号のリターンロスが低下する。このため、無給電導体素子15を省いた場合に比べて、使用可能な高周波信号の帯域が広がる。
 また、無給電導体素子15は放射導体素子9との間隔寸法が大きくなるに従って、ストリップ線路10と放射導体素子9とが整合する帯域は広がる傾向がある。しかし、無給電導体素子15は放射導体素子9との間隔寸法が大きくなると、アンテナ全体が大型化してしまい、小型の電子機器等には適用が難しいという問題がある。
 これに対し、本実施の形態では、放射導体素子9と無給電導体素子15との間に結合量調整導体板16を設けたから、結合量調整導体板16を用いて放射導体素子9と無給電導体素子15との間の結合量を調整することができる。
 この結合量調整導体板16による効果を確認するために、結合量調整導体板16を設けた場合(第1の実施の形態)と、省いた場合(第1の比較例)について、リターンロスの周波数特性を測定した。その結果を図7に示す。なお、多層基板2の厚さ寸法は0.7mmとした。放射導体素子9の幅寸法L1は0.55mm、長さ寸法L2は0.7mmとした。無給電導体素子15の幅寸法L3は1.15mm、長さ寸法L4は0.6mmとした。結合量調整導体板16の幅寸法L5は1.5mm、長さ寸法L6は0.3mmとした。ビア13,14,17の直径は0.1mmとした。
 図7の結果より、結合量調整導体板16を設けない場合には、リターンロスが-8dBよりも低下する帯域が14GHz程度となる。これに対し、結合量調整導体板16を設けた場合には、リターンロスが-8dBよりも低下する帯域が19GHz程度となり、帯域が広がることが分かる。
 このように、結合量調整導体板16は、その幅寸法L5に応じて電流の共振周波数を調整することができ、その長さ寸法L6に応じて放射導体素子9と無給電導体素子15との電界結合の強さを調整することができる。
 また、結合量調整導体板16の長さ寸法L6には最適値が存在する。例えば図8中に第2の比較例として示すように、結合量調整導体板16の長さ寸法L6を小さくした場合(L6=0.2mm)には、高周波側でのリターンロスが小さくなり、帯域が狭くなることがある。一方、図8中に第3の比較例として示すように、結合量調整導体板16の長さ寸法L6を大きくし過ぎた場合(L6=0.6mm)にも、2つの共振周波数の間の周波数帯域でリターンロスが上昇してしまい、帯域が狭くなることがある。このため、広帯域化を図るためには、結合量調整導体板16の長さ寸法L6は、放射導体素子9の長さ寸法L2に対して、例えば半分程度の値に設定するのが好ましい。
 かくして、本実施の形態では、結合量調整導体板16は、放射導体素子9と無給電導体素子15とが互いに重なり合う部位を部分的に覆い、放射導体素子9に流れる電流の向きに対して直交方向に放射導体素子9を跨ぐ構成とした。このため、放射導体素子9と無給電導体素子15とが電界結合するときに、結合量調整導体板16を用いてこの電界結合の強さを調整することができ、ストリップ線路10と放射導体素子9とが整合する帯域を広くすることができる。
 また、接地導体板8および結合量調整導体板16を多層基板2に設けたから、多層基板2の絶縁層4,5を貫通するビア17を用いて、結合量調整導体板16の両端側を接地導体板8に容易に接続することができる。このため、結合量調整導体板16の電位を安定させることができると共に、結合量調整導体板16の電気的な特性をY軸方向に対して対称にすることができ、結合量調整導体板16の一端側だけを接地導体板8に接続した場合に比べて、浮遊容量の発生や不要な共振現象等を抑制することができる。
 また、接地導体板8、放射導体素子9、無給電導体素子15および結合量調整導体板16は、複数の絶縁層3~7が積層された多層基板2に設ける構成とした。このため、互いに異なる絶縁層3~6の表面に無給電導体素子15、結合量調整導体板16、放射導体素子9および接地導体板8を順次設けることによって、これらを多層基板2の厚さ方向に対して互いに異なる位置に容易に配置することができる。
 さらに、接地導体板8からみて放射導体素子9と反対側に位置してストリップ線路10を設けた。このため、接地導体板8、放射導体素子9、無給電導体素子15および結合量調整導体板16を設けた多層基板2にストリップ線路10を一緒に形成することができ、生産性の向上や特性ばらつきの軽減を図ることができる。
 次に、図9ないし図12は本発明の第2の実施の形態を示している。そして、本実施の形態の特徴は、放射導体素子にマイクロストリップ線を接続する構成としたことにある。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 第2の実施の形態による広帯域パッチアンテナ21は、多層基板22、接地導体板8、放射導体素子9、無給電導体素子15、結合量調整導体板16等によって構成されている。ここで、多層基板22は、第1の実施の形態による多層基板2とほぼ同様に、LTCC多層基板によって形成され、表面22A側から裏面22B側に向けてZ軸方向に積層した4層の絶縁層23~26を有している。
 この場合、接地導体板8は、絶縁層25と絶縁層26との間に設けられ、多層基板22を略全面に亘って覆っている。放射導体素子9は、絶縁層24と絶縁層25との間に位置して接地導体板8と間隔をもって対向している。無給電導体素子15は、多層基板22の表面22A(絶縁層23の表面)に設けられている。この無給電導体素子15は、放射導体素子9からみて接地導体板8と反対側に位置して、放射導体素子9および接地導体板8と絶縁されている。
 また、結合量調整導体板16は、絶縁層23と絶縁層24との間に設けられ、放射導体素子9と無給電導体素子15との間に配置されている。この結合量調整導体板16は、放射導体素子9と無給電導体素子15とが互いに重なり合う部位を部分的に覆い、放射導体素子9をY軸方向に跨いでいる。そして、結合量調整導体板16の両端側は、ビア17を介して接地導体板8に電気的に接続されている。
 マイクロストリップ線路27は、図9ないし図11に示すように、接地導体板8からみて放射導体素子9と反対側に設けられ、放射導体素子9に対する給電を行う給電線路を構成している。具体的には、マイクロストリップ線路27は、接地導体板8からみて放射導体素子9と反対側に設けられたストリップ導体28によって構成されている。このストリップ導体28は、例えば接地導体板8と同様の導電性金属材料からなり、X軸方向に延びる細長い帯状に形成されると共に、多層基板22の裏面22B(絶縁層26の裏面)に設けられている。そして、マイクロストリップ線路27は、幅方向の中心位置を通るX軸に平行な線に関して線対称に形成されている。
 また、ストリップ導体28の端部は、接続用開口8Aの中心部分に配置され、接続線路としてのビア29を介して放射導体素子9に接続されている。このビア29は、第1の実施の形態によるビア14とほぼ同様に形成され、絶縁層25,26を貫通すると共に、接続用開口8Aの中心部分を通ってZ軸方向に延びている。そして、ビア29の両端は、放射導体素子9とストリップ導体28にそれぞれ接続されている。
 かくして、本実施の形態でも第1の実施の形態と同様の作用効果を得ることができる。特に、本実施の形態では、放射導体素子9にマイクロストリップ線路27を接続する構成としたから、第1の実施の形態によるストリップ線路10に比べて、マイクロストリップ線路27の構成を簡略化することができ、製造コストを低減することができる。
 次に、図13および図14は本発明の第3の実施の形態を示している。そして、本実施の形態の特徴は、多層基板を貫通するビアを用いて結合用調整導体板を接地導体板に接続する構成としたことにある。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 第3の実施の形態による広帯域パッチアンテナ31は、多層基板32、接地導体板8、放射導体素子9、無給電導体素子15、結合量調整導体板40等によって構成されている。ここで、多層基板32は、第2の実施の形態による多層基板22とほぼ同様に形成され、表面32A側から裏面32B側に向けてZ軸方向に積層した4層の絶縁層33~36を有している。
 この場合、接地導体板8は、絶縁層35と絶縁層36との間に設けられ、多層基板32を略全面に亘って覆っている。放射導体素子9は、絶縁層34と絶縁層35との間に位置して接地導体板8と間隔をもって対向している。無給電導体素子15は、多層基板32の表面32A(絶縁層33の表面)に設けられている。この無給電導体素子15は、放射導体素子9からみて接地導体板8と反対側に位置して、放射導体素子9および接地導体板8と絶縁されている。
 マイクロストリップ線路37は、第2の実施の形態によるマイクロストリップ線路27とほぼ同様に形成され、接地導体板8からみて放射導体素子9と反対側に設けられたストリップ導体38によって構成されている。このストリップ導体38は、例えば接地導体板8と同様の導電性金属材料からなり、X軸方向に延びる細長い帯状に形成されると共に、多層基板32の裏面32B(絶縁層36の裏面)に設けられている。
 また、ストリップ導体38の端部は、接続用開口8Aの中心部分に配置され、接続線路としてのビア39を介して放射導体素子9に接続されている。このビア39は、第1の実施の形態によるビア14とほぼ同様に形成され、絶縁層35,36を貫通すると共に、接続用開口8Aの中心部分を通ってZ軸方向に延びている。そして、ビア39の両端は、放射導体素子9とストリップ導体38にそれぞれ接続されている。
 結合量調整導体板40は、第1の実施の形態による結合量調整導体板16とほぼ同様に形成され、絶縁層33と絶縁層34との間に設けられ、放射導体素子9と無給電導体素子15との間に配置されている。この結合量調整導体板40は、放射導体素子9と無給電導体素子15とが互いに重なり合う部位を部分的に覆い、放射導体素子9をY軸方向に跨いでいる。
 但し、結合量調整導体板40の両端側は、多層基板32を貫通するビア41を用いて接地導体板8に電気的に接続されている点で、第1の実施の形態による結合量調整導体板16とは異なる。この場合、ビア41は、第1の実施の形態によるビア17と同様に、柱状の導体を構成し、多層基板32の全ての絶縁層33~36を貫通している。このため、ビア41は、Z軸方向に延びると共に、その途中位置で接地導体板8および結合量調整導体板16にそれぞれ接続されている。
 かくして、本実施の形態でも第1の実施の形態と同様の作用効果を得ることができる。特に、本実施の形態では、多層基板32を貫通するビア41を用いて結合量調整導体板40を接地導体板8に接続する構成としたから、特定の層間を接続するビアの形成が難しい場合でも、スルーホールビアからなるビア41を容易に形成することができる。
 なお、第3の実施の形態では、第2の実施の形態と同様にマイクロストリップ線路37を備えた広帯域パッチアンテナ31に適用した場合を例に挙げて説明したが、第1の実施の形態と同様にストリップ線路を備えた広帯域パッチアンテナに適用してもよい。
 次に、図15および図16は本発明の第4の実施の形態を示している。そして、本実施の形態の特徴は、無給電導体素子は角隅部分を切り取った略四角形状の導体板によって形成したことにある。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 第4の実施の形態による広帯域パッチアンテナ51は、多層基板2、接地導体板8、放射導体素子9、無給電導体素子52、結合量調整導体板16等によって構成されている。
 無給電導体素子52は、第1の実施の形態による無給電導体素子15とほぼ同様に形成されている。但し、本実施の形態による無給電導体素子52は、その角隅部分を切り取った切取り部52Aを有する略四角形状の導体板によって形成されている。この場合、無給電導体素子52の切取り部52Aは、直線状に切り取った形状としたが、例えば円弧状に切り取った形状としてもよい。
 そして、切取り部52Aの形状に応じて、無給電導体素子52に流れる電流経路が変化する。このため、切取り部52Aの形状を適宜設定することによって、放射導体素子9と無給電導体素子52との結合量を調整することができる。
 この切取り部52Aによる効果を確認するために、角隅部分を切り取った場合(第4の実施の形態)と、切り取らなかった場合(第4の比較例)について、リターンロスの周波数特性を測定した。その結果を図17に示す。
 図17の結果より、角隅部分を切り取らない場合には、2つの共振周波数の間の帯域で、リターンロスが-8dB程度まで上昇する。これに対し、角隅部分を切り取った場合には、切り取らない場合に比べて、低周波側の共振周波数が高周波側にシフトするものの、2つの共振周波数の間の帯域では、リターンロスが-10dBよりも低下している。これにより、リターンロスが-10dBよりも低下する帯域が15GHz程度となり、帯域が広がることが分かる。
 かくして、本実施の形態でも第1の実施の形態と同様の作用効果を得ることができる。特に、本実施の形態では、無給電導体素子52は角隅部分を切り取った切取り部52Aを有する略四角形状の導体板によって形成したから、無給電導体素子52に流れる電流の経路を調整して、無給電導体素子52と放射導体素子9との間の結合量を調整することができ、リターンロスを低下させることができる。これにより、ストリップ線路10と放射導体素子9とが整合する帯域を広くすることができ、広帯域化を図ることができる。
 なお、第4の実施の形態では、第1の実施の形態と同様の広帯域パッチアンテナ51に適用した場合を例に挙げて説明したが、第2,第3の実施の形態による広帯域パッチアンテナ21,31に適用してもよい。
 また、前記各実施の形態では、広帯域パッチアンテナ1,21,31,51を多層基板2,22,32に形成した場合を例に挙げて説明したが、単層の基板に導体板等を設けることによって、広帯域パッチアンテナを形成してもよい。
 また、前記各実施の形態では、給電線路としてストリップ線路10やマイクロストリップ線路27,37を用いた場合を例に挙げて説明したが、例えば同軸ケーブル等の他の給電線路を用いる構成としてもよい。
 また、前記各実施の形態では、60GHz帯のミリ波に用いる広帯域パッチアンテナを例に挙げて説明したが、他の周波数帯のミリ波やマイクロ波等に用いる広帯域パッチアンテナに適用してもよい。
 1,21,31,51 広帯域パッチアンテナ(広帯域アンテナ)
 2,22,32 多層基板
 8 接地導体板
 8A 接続用開口
 9 放射導体素子
 10 ストリップ線路
 11 接地導体板(他の接地導体板)
 12,28,38 ストリップ導体
 13,14,17,29,39,41 ビア(柱状の導体)
 15,52 無給電導体素子
 16,40 結合量調整導体板
 27,37 マイクロストリップ線路
 52A 切取り部

Claims (6)

  1.  グランドに接続された接地導体板と、該接地導体板と間隔をもって対向し給電線路に接続された放射導体素子と、該放射導体素子からみて前記接地導体板と反対側に配置され前記接地導体板および放射導体素子と絶縁された無給電導体素子と、該無給電導体素子と前記放射導体素子との間に配置されこれらの結合量を調整する結合量調整導体板とを備え、
     前記結合量調整導体板は、前記無給電導体素子と前記放射導体素子とが互いに重なり合う部位を部分的に覆い、前記放射導体素子に流れる電流の向きに対して直交方向に前記放射導体素子を跨ぐと共に、その両端側が前記接地導体板と電気的に接続される構成とした広帯域アンテナ。
  2.  前記結合量調整導体板は、その両端側を柱状の導体を用いて前記接地導体板に接続する構成としてなる請求項1に記載の広帯域アンテナ。
  3.  前記給電線路は、前記接地導体板からみて前記放射導体素子と反対側に設けられた他の接地導体板と、該他の接地導体板と前記接地導体板との間に設けられたストリップ導体とからなるストリップ線路によって構成し、該ストリップ線路のストリップ導体は、前記接地導体板に設けた接続用開口を通じて前記放射導体素子に接続する構成としてなる請求項1に記載の広帯域アンテナ。
  4.  前記給電線路は、前記接地導体板からみて前記放射導体素子と反対側に設けられたストリップ導体からなるマイクロストリップ線路によって構成し、該マイクロストリップ線路のストリップ導体は、前記接地導体板に設けた接続用開口を通じて前記放射導体素子に接続する構成としてなる請求項1に記載の広帯域アンテナ。
  5.  前記無給電導体素子は、角隅部分を切り取った略四角形状の導体板によって形成してなる請求項1に記載の広帯域アンテナ。
  6.  前記接地導体板、放射導体素子、無給電導体素子および結合量調整導体板は、複数の絶縁層が積層された多層基板に設けると共に、該多層基板の厚さ方向に対して互いに異なる位置に配置する構成としてなる請求項1に記載の広帯域アンテナ。
PCT/JP2010/069537 2010-01-27 2010-11-03 広帯域アンテナ WO2011092918A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080061437.6A CN102714357B (zh) 2010-01-27 2010-11-03 宽带天线
JP2011551681A JP5413467B2 (ja) 2010-01-27 2010-11-03 広帯域アンテナ
US13/555,959 US10418708B2 (en) 2010-01-27 2012-07-23 Wideband antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-015562 2010-01-27
JP2010015562 2010-01-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/555,959 Continuation US10418708B2 (en) 2010-01-27 2012-07-23 Wideband antenna

Publications (1)

Publication Number Publication Date
WO2011092918A1 true WO2011092918A1 (ja) 2011-08-04

Family

ID=44318917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069537 WO2011092918A1 (ja) 2010-01-27 2010-11-03 広帯域アンテナ

Country Status (4)

Country Link
US (1) US10418708B2 (ja)
JP (1) JP5413467B2 (ja)
CN (1) CN102714357B (ja)
WO (1) WO2011092918A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709696A (zh) * 2012-01-11 2012-10-03 瑞声声学科技(深圳)有限公司 天线

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150081179A (ko) * 2014-01-03 2015-07-13 한국전자통신연구원 모노폴 또는 다이폴 안테나를 이용한 다채널 mimo 안테나 장치
CN103956571B (zh) * 2014-05-15 2016-05-25 重庆大学 一种基于互补裂口谐振环的宽带低剖面微带贴片天线
CN104103612B (zh) * 2014-07-07 2017-01-18 中国电子科技集团公司第二十研究所 一种应用于三维组件的垂直互连过渡结构
KR102151425B1 (ko) * 2014-08-05 2020-09-03 삼성전자주식회사 안테나 장치
DE102014220978A1 (de) * 2014-10-16 2016-04-21 Robert Bosch Gmbh Spulenanordnung zur induktiven Energieübertragung, induktive Energieübertragungsvorrichtung und Verfahren zum Herstellen einer Spulenanordnung zur induktiven Energieübertragung
US9825357B2 (en) * 2015-03-06 2017-11-21 Harris Corporation Electronic device including patch antenna assembly having capacitive feed points and spaced apart conductive shielding vias and related methods
CN105161838A (zh) * 2015-09-25 2015-12-16 南京中网卫星通信股份有限公司 一种单腔平板天线阵列单元
WO2017051526A1 (ja) * 2015-09-25 2017-03-30 パナソニックIpマネジメント株式会社 アンテナ装置
TWI659564B (zh) * 2017-01-13 2019-05-11 耀登科技股份有限公司 射頻天線裝置
CN106654573B (zh) * 2017-01-24 2023-09-29 耀登电通科技(昆山)有限公司 射频天线装置
JP6597659B2 (ja) * 2017-02-01 2019-10-30 株式会社村田製作所 アンテナ装置及びアンテナ装置の製造方法
CN108511880B (zh) * 2017-02-23 2020-05-15 香港城市大学深圳研究院 小型化特高频三元序列馈电天线
CN110622354A (zh) * 2017-05-19 2019-12-27 日立金属株式会社 平面阵列天线和无线通信组件
US20200106194A1 (en) * 2017-05-30 2020-04-02 Hitachi Metals, Ltd. Planar array antenna and wireless communication module
US10686254B2 (en) * 2017-05-31 2020-06-16 The Boeing Company Wideband antenna system
US10971806B2 (en) 2017-08-22 2021-04-06 The Boeing Company Broadband conformal antenna
KR102093763B1 (ko) * 2017-12-07 2020-03-26 (주)지에쓰씨 5g를 지원하는 수직 편파 안테나 구조
KR102022354B1 (ko) 2017-12-26 2019-09-18 삼성전기주식회사 안테나 모듈 및 안테나 장치
KR101985686B1 (ko) * 2018-01-19 2019-06-04 에스케이텔레콤 주식회사 수직 편파 안테나
US11233310B2 (en) * 2018-01-29 2022-01-25 The Boeing Company Low-profile conformal antenna
WO2019150892A1 (ja) * 2018-01-30 2019-08-08 株式会社村田製作所 多層基板およびアンテナ素子
US10916854B2 (en) * 2018-03-29 2021-02-09 Mediatek Inc. Antenna structure with integrated coupling element and semiconductor package using the same
JP7084245B2 (ja) * 2018-08-02 2022-06-14 日本ルメンタム株式会社 プリント回路基板、光モジュール、及び光伝送装置
US10916853B2 (en) 2018-08-24 2021-02-09 The Boeing Company Conformal antenna with enhanced circular polarization
US10938082B2 (en) 2018-08-24 2021-03-02 The Boeing Company Aperture-coupled microstrip-to-waveguide transitions
US10923831B2 (en) 2018-08-24 2021-02-16 The Boeing Company Waveguide-fed planar antenna array with enhanced circular polarization
JP6678722B1 (ja) * 2018-10-31 2020-04-08 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
WO2020100412A1 (ja) * 2018-11-15 2020-05-22 株式会社村田製作所 アンテナモジュール、通信モジュールおよび通信装置
KR102209371B1 (ko) * 2018-11-29 2021-02-01 주식회사 지엔테크놀로지스 에너지 절감을 위한 전자기적 결합 장치 및 이를 포함하는 무선 통신 시스템
CN109904593A (zh) * 2019-02-27 2019-06-18 东南大学 一种频带增强双极化基站天线
KR102166126B1 (ko) * 2019-04-11 2020-10-15 삼성전기주식회사 칩 안테나 모듈 및 이를 포함하는 전자기기
CN109980345B (zh) * 2019-03-22 2021-04-09 中国电子科技集团公司第三十八研究所 一种片上天线及天线阵
US11417959B2 (en) 2019-04-11 2022-08-16 Samsung Electro-Mechanics Co., Ltd. Chip antenna module and electronic device
US11431107B2 (en) 2019-04-11 2022-08-30 Samsung Electro-Mechanics Co., Ltd. Chip antenna module and method of manufacturing chip antenna module
KR102662537B1 (ko) * 2019-05-10 2024-05-02 삼성전자 주식회사 이중 대역 안테나 및 그것을 포함하는 전자 장치
WO2020262394A1 (ja) * 2019-06-25 2020-12-30 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
KR102207151B1 (ko) * 2019-07-31 2021-01-25 삼성전기주식회사 안테나 장치
JP6917419B2 (ja) * 2019-08-02 2021-08-11 原田工業株式会社 積層型パッチアンテナ
US11276933B2 (en) 2019-11-06 2022-03-15 The Boeing Company High-gain antenna with cavity between feed line and ground plane
KR102194761B1 (ko) 2020-02-28 2020-12-23 (주)지에쓰씨 5g를 지원하는 수직 편파 안테나 구조
US20220094061A1 (en) * 2020-09-24 2022-03-24 Apple Inc. Electronic Devices Having Co-Located Millimeter Wave Antennas
KR20230024104A (ko) * 2021-08-11 2023-02-20 삼성전기주식회사 안테나 장치
CN114788087A (zh) * 2021-09-23 2022-07-22 香港应用科技研究院有限公司 多层带通滤波器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427609U (ja) * 1990-06-27 1992-03-05
JP2003158419A (ja) * 2001-09-07 2003-05-30 Tdk Corp 逆fアンテナ及びその給電方法並びにそのアンテナ調整方法
JP2003234613A (ja) * 2002-02-08 2003-08-22 Mitsubishi Electric Corp アンテナ素子
WO2008072411A1 (ja) * 2006-12-15 2008-06-19 Murata Manufacturing Co., Ltd. アンテナおよびそのアンテナを備えた通信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593042B2 (ja) 1979-01-09 1984-01-21 日本電信電話株式会社 マイクロストリツプアンテナ
JPH1098322A (ja) * 1996-09-20 1998-04-14 Murata Mfg Co Ltd チップアンテナ及びアンテナ装置
JP2001267833A (ja) * 2000-03-16 2001-09-28 Mitsubishi Electric Corp マイクロストリップアンテナ
KR101007529B1 (ko) * 2003-12-25 2011-01-14 미쓰비시 마테리알 가부시키가이샤 안테나 장치 및 통신기기
US7541982B2 (en) * 2007-03-05 2009-06-02 Lockheed Martin Corporation Probe fed patch antenna
ITTO20080192A1 (it) * 2008-03-13 2009-09-14 St Microelectronics Srl Antenna a patch polarizzata circolarmente con singolo punto di alimentazione

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427609U (ja) * 1990-06-27 1992-03-05
JP2003158419A (ja) * 2001-09-07 2003-05-30 Tdk Corp 逆fアンテナ及びその給電方法並びにそのアンテナ調整方法
JP2003234613A (ja) * 2002-02-08 2003-08-22 Mitsubishi Electric Corp アンテナ素子
WO2008072411A1 (ja) * 2006-12-15 2008-06-19 Murata Manufacturing Co., Ltd. アンテナおよびそのアンテナを備えた通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709696A (zh) * 2012-01-11 2012-10-03 瑞声声学科技(深圳)有限公司 天线

Also Published As

Publication number Publication date
CN102714357B (zh) 2015-05-27
US20120287019A1 (en) 2012-11-15
CN102714357A (zh) 2012-10-03
US10418708B2 (en) 2019-09-17
JP5413467B2 (ja) 2014-02-12
JPWO2011092918A1 (ja) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5413467B2 (ja) 広帯域アンテナ
JP6129857B2 (ja) 偏波共用アンテナ
JP5408166B2 (ja) アンテナ装置
WO2013027824A1 (ja) アンテナ及び電子装置
US9472855B2 (en) Antenna device
WO2014073355A1 (ja) アレーアンテナ
JP2001308547A (ja) 高周波多層回路基板
JP2012191318A (ja) 水平方向放射アンテナ
JP2011155479A (ja) 広帯域アンテナ
US9564868B2 (en) Balun
WO2019107382A1 (ja) アンテナ装置
JP2009182786A (ja) 積層アンテナ
TW201351780A (zh) 印刷電路多層基片中短路槽孔線之實施方法及其印刷電路
JP4103927B2 (ja) マイクロストリップ線路型方向性結合器
JP5251603B2 (ja) 信号伝達用通信体及びカプラ
CN109950688B (zh) 微带型isgw圆极化缝隙行波天线
CN110957574A (zh) 一种带状线馈电的宽带毫米波天线单元
KR20100005616A (ko) 손실 개선을 위한 rf 전송 선로
JP7176663B2 (ja) 複合アンテナ装置
JP2000174515A (ja) コプレーナウェーブガイド−導波管変換装置
JP2014150524A (ja) 給電回路
JP2000174514A (ja) コプレナウェーブガイド−ストリップ線路変換器
JP2008085750A (ja) 高周波伝送変換回路
WO2016203921A1 (ja) アンテナ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061437.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844672

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551681

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844672

Country of ref document: EP

Kind code of ref document: A1