WO2011092802A1 - ヒートポンプ装置及び冷媒バイパス方法 - Google Patents

ヒートポンプ装置及び冷媒バイパス方法 Download PDF

Info

Publication number
WO2011092802A1
WO2011092802A1 PCT/JP2010/050949 JP2010050949W WO2011092802A1 WO 2011092802 A1 WO2011092802 A1 WO 2011092802A1 JP 2010050949 W JP2010050949 W JP 2010050949W WO 2011092802 A1 WO2011092802 A1 WO 2011092802A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
water
defrosting operation
bypass
Prior art date
Application number
PCT/JP2010/050949
Other languages
English (en)
French (fr)
Inventor
慶郎 青柳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP10844569.3A priority Critical patent/EP2530410B1/en
Priority to JP2011551611A priority patent/JP5570531B2/ja
Priority to PCT/JP2010/050949 priority patent/WO2011092802A1/ja
Priority to US13/521,856 priority patent/US9709308B2/en
Publication of WO2011092802A1 publication Critical patent/WO2011092802A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/023Set point defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting

Definitions

  • the present invention relates to a heat pump apparatus that performs a normal operation for heating water flowing in a water circuit and a defrosting operation serving as a reverse cycle of the normal operation using a circulating refrigerant.
  • Patent Document 1 shown below discloses an air conditioner including an indoor air heat exchanger, an outdoor air heat exchanger, and a bypass circuit.
  • Patent Document 2 discloses a heat pump type hot water supply outdoor unit including a water heat exchanger that performs heat exchange between water and a refrigerant, an outdoor unit side air heat exchanger, and a bypass circuit.
  • the air conditioner of Patent Document 1 by using a bypass circuit at the time of defrosting, the high temperature and high pressure refrigerant is bypassed in front of the outdoor unit side air heat exchanger and defrosting is performed in a state where the refrigerant does not flow to the indoor unit side. To improve the defrosting efficiency.
  • the bypass circuit and the expansion valve are used to bypass the refrigerant at the time of defrosting without flowing the refrigerant into the water heat exchanger to prevent the water heat exchanger from freezing.
  • the amount of refrigerant flowing to the water heat exchanger is reduced by the bypass circuit to prevent the water heat exchanger from freezing.
  • the refrigerant bypassed to the water heat exchanger on the indoor unit side is made to flow by using a bypass circuit at the time of defrosting to perform defrosting, thereby preventing the water heat exchanger from freezing.
  • a water heat exchanger that exchanges heat between water and a refrigerant is used.
  • the outdoor unit-side air heat exchanger is frosted and a defrosting operation is performed.
  • the heat possessed by the refrigerant is used for defrosting (heat dissipation due to excessive heat exchange at low outside air temperature), and the refrigerant deprived of heat for defrosting has a temperature before flowing into the water heat exchanger Is negative.
  • the water heat exchanger is frozen by the fact that the negative temperature refrigerant flows into the water heat exchanger.
  • the water flowing into the water heat exchanger which exchanges heat between the water and the refrigerant, is not controlled by the heat pump type hot water supply outdoor unit, and the system controller controlling the boil-up of the tank locally It controls the water flowing into the heat exchanger. Therefore, water is circulated even during the defrosting operation.
  • the temperature at the water inlet side of the water heat exchanger becomes 10 ° C. or lower
  • the temperature of the water outlet side becomes 0 ° C. or lower
  • the water heat exchanger is frozen (during a defrosting operation, it is a reverse cycle, so cooling) Get driving).
  • a bypass circuit and a solenoid valve are disposed on the outdoor unit side air heat exchanger outlet side and the water heat exchanger outlet side so that the refrigerant does not flow into the water heat exchanger, It is preventing freezing of the water heat exchanger.
  • the bypass circuit and the water heat exchanger are arranged in parallel to flow the refrigerant to reduce the amount of the refrigerant flowing into the water heat exchanger, thereby performing the freeze prevention.
  • the freeze protection of the water heat exchanger of Patent Document 2 is “freeze protection by not allowing refrigerant to flow into the water heat exchanger using a bypass circuit” (the above (1)) or “bypass circuit and “Freeze prevention by reducing the refrigerant flowing into the water heat exchanger in parallel with the water heat exchanger” (the above (2)).
  • heat exchange is not performed on the side of the water heat exchanger (for example, plate heat exchanger) located on the indoor unit side of the air conditioner (the above (1)), or sufficient heat exchange in the water heat exchanger
  • the heat exchange occurs only on the outdoor unit side, so the liquid refrigerant is returned to the compressor, and the compressor protection becomes incomplete. is there.
  • the object of the present invention is to provide a heat pump apparatus that performs high-efficiency defrosting operation using a water heat exchanger located on the indoor unit side while preventing water heat exchanger freezing during defrosting operation.
  • Another object of the present invention is to provide a heat pump apparatus that performs high efficiency operation in defrosting operation and protects the compressor by preventing liquid refrigerant from being returned to the compressor.
  • the heat pump device of the present invention is In a heat pump apparatus that performs a normal operation of heating water flowing through a water circuit and a defrosting operation serving as a reverse cycle of the normal operation using a circulating refrigerant.
  • a four-way valve connected to each of the suction port and the discharge port of the compressor by piping and switching the circulation direction of the refrigerant to switch between the normal operation and the defrosting operation;
  • a water heat exchanger that functions as a radiator that releases heat to the water during the normal operation and that functions as a heat sink that absorbs heat from the water during the defrosting operation;
  • a first decompression device that decompresses the circulating refrigerant;
  • a main refrigerant circuit that is connected by piping in this order with an air heat exchanger that functions as the heat absorber during the normal operation and also functions as the radiator during the defrosting operation;
  • a bypass circuit connecting a discharge side of the compressor and a connection portion which is a portion between the first pressure reducing device and the
  • the present invention it is possible to provide a heat pump apparatus that performs a high efficiency defrosting operation using the water heat exchanger located on the indoor unit side while preventing the water heat exchanger freezing during the defrosting operation.
  • FIG. 2 is a refrigerant circuit diagram of the outdoor unit 100 according to Embodiment 1.
  • FIG. 1 is a refrigerant circuit diagram of a heat pump type hot water supply outdoor unit 100 (hereinafter referred to as the outdoor unit 100) according to the first embodiment.
  • the outdoor unit 100 heat pump device
  • the outdoor unit 100 performs heating and hot water supply operation (hereinafter, referred to as normal operation) in which water flowing through the water circuit 15 is heated by the water heat exchanger 2 and defrost operation which is a reverse cycle to normal operation.
  • normal operation heating and hot water supply operation
  • defrost operation which is a reverse cycle to normal operation.
  • Using circulating refrigerant circulating refrigerant.
  • the broken line arrow indicates the refrigerant circulation direction in the normal operation
  • the solid line arrow indicates the refrigerant circulation direction in the defrosting operation.
  • the arrow 41 indicates the flow direction of the water circulating in the water circuit 15. Water is circulated by the water pump 17.
  • a hot water storage tank 16 is disposed in the water circuit 15.
  • the outdoor unit 100 includes a compressor 3, a four-way valve 4, a water heat exchanger 2, a first expansion valve 6 (first pressure reducing device), an intermediate pressure receiver 5, a second expansion valve 7 (second pressure reducing device) It has a main refrigerant circuit 110 in which the exchanger 1 is connected by piping, and a bypass circuit 120 in which the solenoid valve 10 and the third expansion valve 8 (bypass refrigerant pressure reducing device) are connected by piping.
  • the compressor 3 is of a type whose rotational speed is controlled by an inverter and whose capacity is controlled.
  • the four-way valve 4 is connected by piping to each of the suction port and the discharge port of the compressor 3, and switches the normal operation and the defrosting operation by switching the circulation direction of the refrigerant.
  • the water heat exchanger 2 exchanges heat between the water and the refrigerant.
  • the water heat exchanger 2 is, for example, a plate heat exchanger.
  • the water heat exchanger 2 heats the water of the water circuit 15 as a radiator (condenser) during normal operation, and functions as a heat absorber (evaporator) absorbing heat from the water of the water circuit 15 during defrosting operation.
  • the first expansion valve 6 adjusts the flow rate of the refrigerant to reduce the pressure.
  • the suction pipe 31 of the compressor 3 passes through the inside of the medium pressure receiver 5.
  • the refrigerant in the through portion 32 of the suction pipe 31 of the compressor 3 and the refrigerant in the medium pressure receiver 5 can exchange heat, and the medium pressure receiver 5 has a function as the internal heat exchanger 9.
  • the second expansion valve 7 adjusts the flow rate of the refrigerant to reduce the pressure.
  • the first expansion valve 6, the second expansion valve 7, and the third expansion valve 8 are electronic expansion valves whose opening degree is variably controlled.
  • the air heat exchanger 1 exchanges heat between the air and the refrigerant.
  • the air heat exchanger 1 functions as a heat absorber (evaporator) in normal operation and as a radiator (condenser) in defrosting operation.
  • the air heat exchanger 1 exchanges heat with the outside air blown by a fan or the like.
  • R410A or R407C which is a mixed refrigerant of HFC (Hydro Fluoro Carbon) system is used.
  • the bypass circuit 120 is a bypass circuit that connects the discharge side of the compressor 3 and the connection portion 19 which is a portion between the first expansion valve 6 and the medium pressure receiver 5.
  • the bypass circuit 120 bypasses a part of the refrigerant discharged from the compressor 3 during the defrosting operation from the main refrigerant circuit 110 toward the connection 19 as a bypass refrigerant.
  • the bypass refrigerant 22 merges with the refrigerant 21 flowing out of the medium pressure receiver 5 and flows into the water heat exchanger 2 via the first expansion valve 6.
  • the solenoid valve 10 is controlled by the control device 14 to open and close, thereby turning on and off the bypass refrigerant bypassed from the main refrigerant circuit 110.
  • the third expansion valve 8 is controlled by the control device 14 to adjust and reduce the flow rate of the bypass refrigerant bypassed from the main refrigerant circuit 110.
  • the first temperature sensor 11 a is the water outlet side of the water heat exchanger 2
  • the second temperature sensor 11 b is on the refrigerant inlet side of the water heat exchanger 2
  • the third temperature sensor 11 c is the water inlet side of the water heat exchanger 2
  • the fourth temperature sensor 11 d is on the refrigerant outlet side of the water heat exchanger 2
  • the sixth temperature sensor 11 f is a refrigerant inlet side of the air heat exchanger 1, Is located in Each of these temperature sensors measures the temperature of the refrigerant or the temperature of water at the installation site. Further, the fifth temperature sensor 11 e measures the temperature of the outside air around the outdoor unit 100.
  • a pressure sensor 12 for detecting the pressure of the discharged refrigerant is installed.
  • the pressure detected by the pressure sensor 12 is the heat in the water heat exchanger 2 or air heat. It may be considered to be equal to the condensing pressure of the refrigerant in the exchanger 1. From the condensation pressure detected by the pressure sensor 12, the controller 14 calculates the condensation temperature of the refrigerant.
  • Control device 14 In the outdoor unit 100, a control device 14 is installed.
  • the control device 14 operates the compressor 3 based on the measurement information of each of the temperature sensors 11 a to 11 f and the pressure sensor 12 and the operation content instructed by the user of the outdoor unit 100.
  • the fan blowing amount of the air heat exchanger 1, the opening degree of the first expansion valve 6, the second expansion valve 7, the third expansion valve 8, the solenoid valve 10, and the like are controlled.
  • FIG. 1 specifically shows the circulation direction of the refrigerant during the defrosting operation.
  • FIG. 3 shows the correspondence between the determination target and the detected temperature when the control device 14 executes control.
  • 4 and 5 are operation flowcharts of the outdoor unit 100.
  • the outdoor unit 100 is characterized by bypassing the refrigerant during the defrosting operation.
  • the gas refrigerant which flowed into water heat exchanger 2 condenses and liquefies, radiating heat with water heat exchanger 2 which functions as a condenser, and turns into a high-pressure low-temperature liquid refrigerant.
  • the heat radiated from the refrigerant passing through the water heat exchanger 2 heats the load-side water (water flowing through the water circuit 15) passing through the water heat exchanger 2.
  • the high-pressure low-temperature liquid refrigerant that has left the water heat exchanger 2 is slightly depressurized by the first expansion valve 6, and then enters a gas-liquid two-phase state and flows into the medium pressure receiver 5.
  • the refrigerant flowing into the medium pressure receiver 5 gives heat to the low temperature refrigerant flowing in the suction pipe 31 of the compressor 3 in the medium pressure receiver 5, is cooled and becomes liquid and flows out from the medium pressure receiver 5 .
  • the liquid refrigerant flowing out of the medium pressure receiver 5 is decompressed to a low pressure by the second expansion valve 7 to become a two-phase refrigerant, and then flows into the air heat exchanger 1 functioning as an evaporator, and the air heat exchanger Heat is absorbed from air at 1 and evaporated to gasify.
  • FIG. 2 is a refrigerant circuit diagram showing the flow of the refrigerant in the defrosting operation of the outdoor unit 100.
  • the circuit configuration of FIG. 2 is the same as that of FIG. 1, solid-line arrows indicating the flow direction of the refrigerant in the defrosting operation are described in detail in FIG. Next, with reference to FIG. 2, an operation of the defrosting operation of the outdoor unit 100 will be described.
  • the control device 14 When the detected temperature TL (f, in) of the sixth temperature sensor 11 f of the air heat exchanger 1 satisfies the following formula (1), which is a determination formula for starting the defrosting operation, for 180 seconds or more, the control device 14 It is determined that the heat exchanger 1 is frosted, and the normal operation shifts to the defrosting operation. TL (f, in,) ⁇ ⁇ 10 ° C. (1)
  • the detected temperature TL (f, in) in the equation (1) is a temperature in the normal operation. Therefore, the detected temperature TL (f, in) of the equation (1) is the inlet temperature of the refrigerant to the air heat exchanger 1.
  • the high temperature / high pressure gas refrigerant discharged from the compressor 3 defrosts the air heat exchanger 1 frosted through the four-way valve 4, and flows out from the air heat exchanger 1 as liquid refrigerant, and the second expansion
  • the gas-liquid 2 phase is generated through the valve 7, the liquid refrigerant is generated through the medium pressure receiver 5, the gas-liquid 2 phase is generated through the first expansion valve 6, and the water flows into the water heat exchanger 2 (evaporator).
  • the refrigerant that has flowed into the water heat exchanger 2 receives heat from the hot water of the water circuit 15 passing through the water heat exchanger 2 in the water heat exchanger 2, evaporates, and passes through the four-way valve 4 and the medium pressure receiver 5 , Return to the compressor 3 again.
  • the air heat exchanger 1 is defrosted by the circulation of the refrigerant.
  • the operation of the defrosting operation is defrosting by the reverse cycle (cooling operation).
  • the water heat exchanger 2 performs the cooling operation.
  • the temperature of the refrigerant flowing into the water heat exchanger 2 is lowered due to the reduction of the atmosphere around the air heat exchanger 1 (if the temperature is minus), or the water inlet temperature of the water heat exchanger 2 is 10 ° C.
  • the water outlet temperature of the water heat exchanger 2 may be 0 ° C. or lower, and the water heat exchanger 2 may be frozen.
  • the system controller (not shown) which controls the boiling of the hot water storage tank 16 may or may not have the possibility of the water heat exchanger 2 freezing.
  • the water pump 17 is operated to circulate the water in the water circuit 15 regardless of whether it is water. Therefore, the outdoor unit 100 performs antifreeze control.
  • the controller 14 opens the solenoid valve 10 and the third expansion valve 8 in the bypass circuit 120 during the defrosting operation to prevent freezing of the water heat exchanger 2, and the high temperature discharged from the compressor 3 A portion of the high pressure refrigerant is bypassed via the bypass circuit 120 to the connection 19 between the medium pressure receiver 5 and the upstream portion of the first expansion valve 6.
  • the refrigerant 21 flowing through the main refrigerant circuit 110 flowing out of the medium pressure receiver 5 mixes with the refrigerant 22 bypassed to the bypass circuit 120.
  • the mixed refrigerant flows into the water heat exchanger 2 through the first expansion valve 6. This mixing makes it possible to suppress the temperature drop of the refrigerant flowing through the water heat exchanger 2 and to prevent the water heat exchanger 2 from freezing.
  • the controller 14 controls the temperature sensor 11c (water inlet side), 11d (refrigerant) so that the temperature of the refrigerant flowing into the water heat exchanger 2 can be maintained at a temperature (for example, 20.degree. C. or more) that does not freeze the water heat exchanger 2.
  • a temperature for example, 20.degree. C. or more
  • Control of the solenoid valve 10, the third expansion valve 8 and the like is executed based on the temperature detected by the inlet side and the like. This will be described later.
  • the defrosting operation using the bypass circuit 120 can be performed with high efficiency by heat exchange (transfer of heat from hot water to refrigerant) in the water heat exchanger 2. Furthermore, since the refrigerant state can be gasified by the heat exchange in the water heat exchanger 2, the compressor 3 can be protected.
  • TW water heat exchanger 2
  • TW water heat exchanger 2
  • TR water heat exchanger 2
  • TTL air heat exchanger 1
  • the detected temperatures of the respective temperature sensors during the defrosting operation are as follows. (1) The first temperature sensor 11a is provided on the water outlet side of the water heat exchanger 2, and detects the water outlet temperature TW (a, out). (2) The second temperature sensor 11b is provided on the refrigerant outlet side of the water heat exchanger 2, and detects the refrigerant outlet temperature TR (b, out). (3) The third temperature sensor 11 c is provided on the water inlet side of the water heat exchanger 2 and detects the water inlet temperature TW (c, in). (4) The fourth temperature sensor 11d is provided on the refrigerant inlet side of the water heat exchanger 2, and detects the refrigerant inlet temperature TR (d, in).
  • the control device 14 opens the third expansion valve 8 and the solenoid valve 10 of the bypass circuit 120 only when detecting a state in which the following equations (2) and (3) simultaneously continue for 30 seconds.
  • a part Grb (for example, 30% of the total circulation amount Gr) is bypassed.
  • Expressions (2) and (3) are judgment expressions for starting bypass (also referred to as freezing judgment conditions). Temperature TW (a, out) ⁇ 3 ° C. (2) Temperature TW (c, in) ⁇ 10 ° C. (3)
  • the bypass amount of the bypass refrigerant Grb (refrigerant 22) is determined by the opening degree P of the third expansion valve 8.
  • the third expansion valve 8 decompresses the bypass refrigerant Grb. That is, the bypass refrigerant Grb changes from high pressure to medium pressure by the third expansion valve 8.
  • the refrigerant Gra (refrigerant 21) having flowed through the main refrigerant circuit 110 is mixed with the bypass refrigerant Grb (refrigerant 22) that has been bypassed and decompressed.
  • the mixed refrigerant flows into the water heat exchanger 2 through the first expansion valve 6.
  • the refrigerant inlet temperature TR (d, in) and the refrigerant outlet temperature TR (b, out) in the water heat exchanger 2 of the mixed refrigerant are TR (d, in) 20 20 ° C, and TR (b, out) 0 0 ° C
  • the controller 14 controls the third expansion valve 8 to satisfy the following condition.
  • the third expansion valve 8 will be described later in the description of FIG. After heat exchange is carried out in the water heat exchanger 2, the refrigerant is gasified, exchanged with the medium pressure refrigerant in the medium pressure receiver 5, and further heated and drawn into the compressor 3.
  • FIG. 4 is a flowchart showing the control operation of the control device 14 during the defrosting operation.
  • the controller 14 controls the bypass circuit 120 when the first temperature sensor 11 a and the third temperature sensor 11 c detect the freeze determination condition (formula (2) and formula (3)). And the third expansion valve 8 are opened (S3, S5).
  • the defrosting operation using the bypass circuit 120 is referred to as a bypass defrosting operation. That is, the freeze determination condition is a condition for starting the bypass defrosting operation. If the freeze determination condition is not detected, the controller 14 continues the detection of the freeze determination condition while continuing the normal defrosting operation.
  • freeze determination condition may be at least one of the temperature TW (a, out) and the temperature TW (c, in). Of course it is desirable to use both.
  • the control device 14 “monitors whether the outlet temperature TL (f, out) is 20 ° C. or more, the left side of the flow of FIG.
  • the outlet temperature TL (out) of the liquid refrigerant in the air heat exchanger 1 (condenser) is detected by the temperature sensor 11f. f, out) ”.
  • the control device 14 opens the solenoid valve 10 and the third expansion valve 8 and bypasses the high-temperature and high-pressure refrigerant when the freezing determination condition is detected before the “outlet temperature TL (f, out) 20 20 ° C.” is detected. Implement a bypass defrosting operation. Therefore, freezing of the water heat exchanger 2 at the time of defrosting operation can be prevented.
  • FIG. 5 is a flowchart showing the control operation at the time of the bypass defrosting operation at the time of the defrosting operation.
  • FIG. 5 shows specific contents of S5 and S6 of FIG. 4 as S5a to S5g.
  • the control operation of the bypass circuit 120 (the solenoid valve 10, the third expansion valve 8) by the outdoor unit 100 will be described with reference to FIG.
  • the control device 14 opens the solenoid valve 10 and the third expansion valve 8 to operate the bypass circuit 120, and bypasses the high temperature / high pressure refrigerant discharged from the compressor 3 to the bypass circuit 120 (S5a, S5b, S5c) .
  • the third expansion valve 8 is controlled to a predetermined opening degree.
  • the controller 14 TR (b, out) ⁇ 0 ° C., and TR (d, in) ⁇ 20 ° C.
  • the refrigerant is bypassed to the bypass circuit 120 while controlling the operating frequency of the compressor 3 with the goal of establishing the above (S5d).
  • the control device 14 When detecting the following equation (4) or (5), the control device 14 increases the bypass amount of the refrigerant by changing the opening degree of the third expansion valve 8 (increasing the opening degree), and The opening degree P of the third expansion valve 8 is controlled to satisfy the expressions (4) and (5) (S5e). Therefore, as shown in FIG. 3, the condition of “Formula (4) or Formula (5)” is a condition for starting control of the third expansion valve 8. TR (b, out) ⁇ 0 ° C ⁇ ⁇ ⁇ (4) or TR (d, in) ⁇ 20 ° C (5) If “TR (b, out) 0 0 ° C. and TR (d, in) 20 20 ° C.” is satisfied, the control of the control device 14 proceeds to S 5 f.
  • the opening degree control of the third expansion valve 8 may use at least one of the temperature TR (b, out) and the temperature TR (d, in). Of course it is desirable to use both.
  • the controller 14 targets “TL (f, out) 20 20 ° C.” in the air heat exchanger 1 (5 f). TL (f, out) ⁇ 20 ° C (6) In this case, the controller 14 TL (f, out) 20 20 ° C To increase the compressor frequency (S5g). Therefore, as shown in FIG. 3, “Equation (6)” is a condition for operating frequency control of the compressor 3. If TL (f, out) ⁇ 20 ° C. is detected in S5 f, the process of the controller 14 proceeds to S7.
  • the controller 14 determines the operating frequency control of the compressor 3 in S5g, that is, based on the temperature TL (f, out) that is the refrigerant temperature on the refrigerant outlet side of the air heat exchanger 1 in the defrosting operation. Do. However, the present invention is not limited to this, and the control device 14 may execute the operating frequency control of the compressor 3 based on the refrigerant inlet side temperature (TL (in)) of the air heat exchanger 1 in the defrosting operation. .
  • the control device 14 determines as a final confirmation of the bypass defrosting operation: TL (f, out) 20 20 ° C (7) Determines whether to continue for t 1 sec. As shown in FIG. 3, “Expression (7)” is a determination condition of the end of the bypass defrosting operation.
  • the control device 14 closes the solenoid valve 10 and the third expansion valve 8 to turn off the bypass circuit 120 (S8), and ends the bypass defrosting operation (S9). Then, the control device 14 ends the defrosting operation (S10), switches the four-way valve 4 (S11), and starts the normal operation again (S12).
  • control device 14 detects the freeze judgment condition (Formula (2), Formula (3)) of the water heat exchanger 2
  • the above control is performed until after the shift to the bypass defrosting operation (S3) and at the end (S9) continue.
  • the bypass defrosting operation is started when the temperature of the hot water flowing into the water heat exchanger 2 decreases during the defrosting operation (see FIG. 4). S3).
  • the bypass defrosting operation since the bypass refrigerant discharged and bypassed from the compressor 3 and the refrigerant flowing from the main refrigerant circuit 110 are mixed and flow into the water heat exchanger 2, the water heat exchanger 2 is A decrease in the flowing refrigerant temperature is suppressed. Therefore, freezing of the water heat exchanger 2 can be prevented.
  • the opening degree of the third expansion valve 8 is increased in the bypass defrosting operation (S5e in FIG. 5). You can increase the amount. Furthermore, the heat exchange with the water heat exchanger 2 can achieve high efficiency in the defrosting operation. Furthermore, since the degree of superheat of the refrigerant drawn into the compressor 3 is secured by the heat exchange with the water heat exchanger 2, the protection of the compressor can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 室外機100は、除霜運転時に、圧縮機3から吐出された冷媒の一部を、接続部19に向けてバイパスするバイパス回路120を備えている。室外機100の制御装置14は、除霜運転時における水熱交換器2の水入口の水温度TW(c,in)と水出口の水温度TW(a,out)とに基づいて、バイパス回路120の電磁弁10を開く制御を実行する。また、制御装置14は、除霜運転時において電磁弁10が開状態の場合に、水熱交換器2の冷媒入口の冷媒温度TR(d,in)と冷媒出口の冷媒温度TR(b,out)とに基づいて、バイパス回路120の第3膨張弁8の弁の開度を制御する。

Description

ヒートポンプ装置及び冷媒バイパス方法
 この発明は、水回路を流れる水を加熱する通常運転と、この通常運転のリバースサイクルとなる除霜運転とを、循環する冷媒を用いて行うヒートポンプ装置に関する。
 下記に示す特許文献1には、室内側空気熱交換器、室外側空気熱交換器、及びバイパス回路を備えた空気調和装置が、開示されている。また、特許文献2では、水と冷媒との熱交換を行う水熱交換器、室外機側空気熱交換器、及びバイパス回路を備えたヒートポンプ式給湯用室外機が開示されている。特許文献1の空気調和装置では、除霜時にバイパス回路を使用することにより、高温高圧の冷媒を室外機側空気熱交換器手前にバイパスさせて室内機側に冷媒を流さない状態で除霜をし、除霜効率の向上を図る。特許文献2のヒートポンプ式給湯用室外機では、バイパス回路と膨張弁とを使用して除霜時の冷媒を水熱交換器に流入させずに冷媒をバイパスさせて水熱交換器の凍結防止を図り、またバイパス回路で水熱交換器に流す冷媒量を低減させて水熱交換器の凍結防止を図る。しかし、特許文献1、2では、除霜時にバイパス回路を使用して室内機側の水熱交換器にバイパスさせた冷媒を流して除霜をし、水熱交換器の凍結防止を図ること、また水熱交換器での熱交換実施による除霜時の高効率運転に関する記載はない。
特開1988-286676号公報 特開2009-41860号公報
 従来のヒートポンプ式給湯用室外機では、水と冷媒との間で熱交換する水熱交換器が使用されている。低外気温(室外機周囲温度が氷点下)では、室外機側空気熱交換器が着霜するため除霜運転がおこなわれる。その際、冷媒の持つ熱は除霜に使用され(低外気温度での過度な熱交換による放熱)、除霜のために熱を奪われた冷媒は、水熱交換器に流入する前に温度がマイナスになる。このマイナス温度の冷媒が水熱交換器に流入することによって、水熱交換器が凍結してしまうという課題があった。このとき、水と冷媒とを熱交換する水熱交換器に流入する水は、ヒートポンプ式給湯用室外機では制御しておらず、現地においてタンクの沸き上げを制御しているシステムコントローラが、水熱交換器に流入する水の制御を行っている。このため除霜運転時でも水が循環されてしまう。水熱交換器における水入口側の温度が10℃以下になると水出口側の温度は0℃以下になるため、水熱交換器が凍結してしまう(除霜運転時はリバースサイクルになるため冷房運転になる)。
 この課題解決策として、
(1)特許文献2では、室外機側空気熱交換器出口側と水熱交換器出口側とにバイパス回路と電磁弁とを配置して、水熱交換器に冷媒を流入させないようにして、水熱交換器の凍結防止を行っている。
(2)また、前記のバイパス回路と水熱交換器とを並列にして冷媒を流し、水熱交換器に流入される冷媒量を低減して、凍結防止を行っている。このように、特許文献2の水熱交換器の凍結防止は、「バイパス回路を使用して水熱交換器に冷媒を流入させないことによる凍結防止」(前記(1))、あるいは「バイパス回路と水熱交換器とを並列にして、水熱交換器に流入する冷媒を低減させることによる凍結防止」(前記(2))である。
 このため、空気調和装置の室内機側に位置する水熱交換器(例えばプレート熱交換器)側での熱交換がなされていない(前記(1))、あるいは水熱交換器において十分な熱交換がされないため、低効率運転となり、また前記(1)では室外機側のみの熱交換になるため、液冷媒を圧縮機に返すことになってしまい、圧縮機保護が不完全になるという課題がある。
 この発明は、除霜運転時における水熱交換器凍結防止をしつつ、室内機側に位置する水熱交換器を使用して高効率の除霜運転を行うヒートポンプ装置の提供を目的とする。
 また、この発明は、除霜運転において高効率運転を行うと共に、液冷媒を圧縮機に返さないようにして圧縮機を保護するヒートポンプ装置の提供を目的とする。
 この発明のヒートポンプ装置は、
 水回路を流れる水を加熱する通常運転と、前記通常運転のリバースサイクルとなる除霜運転とを、循環する冷媒を用いて行うヒートポンプ装置において、
 圧縮機の吸入口と吐出口とのそれぞれと配管で接続されると共に冷媒の循環方向を切り替えることで前記通常運転と前記除霜運転とを切り替える四方弁と、
 前記通常運転時に前記水に放熱する放熱器として機能すると共に前記除霜運転時に前記水から吸熱する吸熱器として機能する水熱交換器と、
 前記循環する冷媒を減圧する第1減圧装置と、
 前記通常運転時に前記吸熱器として機能すると共に前記除霜運転時に前記放熱器として機能する空気熱交換器とが、これらの順に配管で接続され、冷媒が循環する主冷媒回路と、
 前記圧縮機の吐出側と、前記第1減圧装置と空気熱交換器との間の箇所である接続部とを接続するバイパス回路であって、前記除霜運転時に前記圧縮機から吐出された冷媒の一部を、前記主冷媒回路からバイパス冷媒として前記接続部に向けてバイパスするバイパス回路と
を備えたことを特徴とする。
 この発明により、除霜運転時における水熱交換器凍結防止をしつつ、室内機側に位置する水熱交換器を使用して高効率の除霜運転を行うヒートポンプ装置を提供できる。
 また、この発明により除霜運転において液冷媒を圧縮機に返さないようにして圧縮機を保護するヒートポンプ装置を提供できる。
実施の形態1の、室外機100の冷媒回路図。 実態の形態1の、室外機100の除霜運転時の冷媒循方向を示す図。 実態の形態1の、判定対象と検出温度との関係を示す図。 実態の形態1の、通常除霜運転動作を示すフローチャート。 実態の形態1の、バイパス除霜運転を示すフローチャート。
 実施の形態1.
 図1は、実施の形態1のヒートポンプ式給湯用室外機100(以下、室外機100という)の冷媒回路図である。室外機100(ヒートポンプ装置)は、水回路15を流れる水を水熱交換器2によって加熱する暖房給湯運転(以下、通常運転という)と、通常運転に対してリバースサイクルとなる除霜運転とを、循環する冷媒を用いて行う。図1において、破線の矢印は通常運転の冷媒循環方向を示し、実線の矢印は除霜運転の冷媒循環方向を示す。また、矢印41は水回路15を循環する水の流れる方向を示す。水ポンプ17によって水が循環する。なお水回路15には貯湯タンク16が配置されている。
 室外機100は、圧縮機3、四方弁4、水熱交換器2、第1膨張弁6(第1減圧装置)、中圧レシーバ5、第2膨張弁7(第2減圧装置)、空気熱交換器1が配管で接続された主冷媒回路110と、電磁弁10、第3膨張弁8(バイパス冷媒減圧装置)が配管で接続されたバイパス回路120とを備える。
 ここに、
(1)圧縮機3は、インバータにより回転数が制御され、容量制御されるタイプである。
(2)四方弁4は、圧縮機3の吸入口と吐出口とのそれぞれと配管で接続され、冷媒の循環方向を切り替えることで、通常運転と除霜運転とを切り替える。
(3)水熱交換器2は、水と冷媒の熱交換を行う。水熱交換器2は、例えばプレート熱交換器である。水熱交換器2は、通常運転時には放熱器(凝縮器)として水回路15の水を加熱すると共に、除霜運転時には水回路15の水から吸熱する吸熱器(蒸発器)として機能する。
(4)第1膨張弁6は、冷媒の流量を調整し減圧する。
(5)中圧レシーバ5の内部には、圧縮機3の吸入配管31が貫通している。圧縮機3の吸入配管31の貫通部32の冷媒と中圧レシーバ5内の冷媒とは熱交換可能な構成であり、中圧レシーバ5は、内部熱交換器9としての機能を備える。
(6)第2膨張弁7は、冷媒の流量を調整し減圧する。なお、第1膨張弁6、第2膨張弁7、第3膨張弁8は、開度が可変制御される電子膨張弁である。
(7)空気熱交換器1は、空気と冷媒の熱交換を行う。空気熱交換器1は、通常運転時には吸熱器(蒸発器)として機能すると共に除霜運転時には放熱器(凝縮器)として機能する。空気熱交換器1は、ファンなどで送風される外気と熱交換する。
(8)室外機100の冷媒としては、HFC(Hydro Fluoro Carbon)系の混合冷媒であるR410AあるいはR407Cが用いられる。
(バイパス回路120)
 バイパス回路120は、圧縮機3の吐出側と、第1膨張弁6と中圧レシーバ5との間の箇所である接続部19とを接続するバイパス回路である。バイパス回路120は、除霜運転時に圧縮機3から吐出された冷媒の一部を、主冷媒回路110からバイパス冷媒として接続部19に向けてバイパスする。バイパス冷媒22は中圧レシーバ5から流出した冷媒21と合流し、第1膨張弁6を介して水熱交換器2に流入する。
 電磁弁10は、制御装置14に制御されて開閉することで、主冷媒回路110からバイパスするバイパス冷媒のバイパスをオン、オフする。第3膨張弁8は、制御装置14に制御されることで、主冷媒回路110からバイパスされたバイパス冷媒の流量を調整し減圧する。
(温度センサ)
 主冷媒回路110には、以下の温度センサが配置されている。以下において、冷媒の入口、出口は通常運転時の冷媒循環方向を基準にしている。
 第1温度センサ11aが水熱交換器2の水出口側、
 第2温度センサ11bが水熱交換器2の冷媒入口側、
 第3温度センサ11cが水熱交換器2の水入口側、
 第4温度センサ11dが水熱交換器2の冷媒出口側、
 第6温度センサ11fが空気熱交換器1の冷媒入口側、
に配置されている。
 これらの温度センサは、それぞれ設置場所の冷媒温度あるいは水温度を計測する。
 また、第5温度センサ11eは、室外機100の周囲の外気温度を計測する。
(圧力センサ12)
 圧縮機3の吐出側と四方弁4とを接続する配管には、吐出冷媒の圧力を検出する圧力センサ12が設置されている。ここで、圧力センサ12と、水熱交換器2もしくは空気熱交換器1までの配管は短いため、圧力損失は小さく、圧力センサ12で検出される圧力は、水熱交換器2内もしくは空気熱交換器1内の冷媒の凝縮圧力と同等とみてよい。圧力センサ12によって検出される凝縮圧力から、制御装置14によって、冷媒の凝縮温度が演算される。
(制御装置14)
 室外機100内には、制御装置14が設置されている。制御装置14は、各温度センサ11a~11f及び圧力センサ12の計測情報や、室外機100の使用者から指示される運転内容に基づいて、圧縮機3の運転方法、四方弁4の流路切換、空気熱交換器1のファン送風量、第1膨張弁6、第2膨張弁7、第3膨張弁8、電磁弁10の開度などを制御する。
(動作の説明)
 次に、室外機100の運転動作を説明する。まず、図1を参照して、室外機100による通常運転時の動作を説明する。前述のように、圧縮機3や電子膨張弁など、制御される機器は、制御装置14によって制御される。
 なお、以下では各温度センサで検出される温度や、温度の検出時間等に具体的な値を用いて説明するが、これらの値はあくまでも一例であり、これらの値に限定されない。以下の動作説明では、図2に除霜運転時における冷媒の循環方向を具体的に示した。また、図3には、制御装置14が制御を実行する際の判定対象と検出温度との対応を示した。図4、図5は室外機100の動作フローチャートである。以下、図2~図5を参照して制御装置14の動作を説明する。室外機100は、除霜運転時に冷媒をバイパスすることが特徴である。
(1.通常運転の動作)
 通常運転時には、四方弁4の流路は、図1に示す点線方向に設定される。つまり四方弁4の設定により、通常運転時には、冷媒は、圧縮機3、四方弁4、水熱交換器2、第1膨張弁6、中圧レシーバ5、第2膨張弁7、空気熱交換器1、四方弁4、中圧レシーバ5、圧縮機3の順に循環する。
(1)圧縮機3から吐出された高温高圧のガス冷媒は、四方弁4を経て水熱交換器2に流入する。そして、水熱交換器2に流入したガス冷媒は、凝縮器として機能する水熱交換器2で放熱しながら凝縮液化し、高圧低温の液冷媒となる。水熱交換器2を通過する冷媒から放熱された熱によって、水熱交換器2を通過する負荷側の水(水回路15を流れる水)が、加熱される。
(2)水熱交換器2を出た高圧低温の液冷媒は、第1膨張弁6によって若干減圧された後、気液二相状態となり、中圧レシーバ5に流入する。
(3)中圧レシーバ5に流入した冷媒は、中圧レシーバ5内において圧縮機3の吸入配管31を流れる低温の冷媒に熱を与え、冷却されて液となって中圧レシーバ5から流出する。
(4)中圧レシーバ5から流出した液冷媒は、第2膨張弁7で低圧まで減圧されて二相冷媒となり、その後、蒸発器として機能する空気熱交換器1に流入し、空気熱交換器1において空気から吸熱し、蒸発して、ガス化する。
(5)ガス化した冷媒は、空気熱交換器1から四方弁4に向かい、四方弁4を経て、中圧レシーバ5で高圧の冷媒と熱交換してさらに加熱され、圧縮機3に吸入される。
(2.除霜運転の動作)
 図2は、室外機100の除霜運転における冷媒の流れを示す冷媒回路図である。図2の回路構成は図1と同じであるが、図1に対して、除霜運転において冷媒の流れる方向を示す実線の矢印を詳しく記載した。次に、図2を参照して、室外機100の除霜運転の動作を説明する。
 制御装置14は、空気熱交換器1の第6温度センサ11fの検出温度TL(f,in)が、除霜運転開始の判定式である下記式(1)を180秒以上満たした場合、空気熱交換器1に霜が付着していると判断し、通常運転から除霜運転動作に移行する。
 TL(f,in,)≦-10℃・・・(1)
 式(1)における検出温度TL(f,in)は通常運転における温度である。よって、式(1)の検出温度TL(f,in)は、空気熱交換器1への冷媒の入口温度である。
(1)圧縮機3から吐出された高温高圧のガス冷媒は、四方弁4を経て着霜した空気熱交換器1を除霜し、空気熱交換器1から液冷媒として流出し、第2膨張弁7を経て気液2相となり、中圧レシーバ5を経て液冷媒となり、第1膨張弁6を経て気液2相となり、水熱交換器2(蒸発器)に流入する。
(2)水熱交換器2に流入した冷媒は、水熱交換器2において水熱交換器2を通過する水回路15の湯から熱をもらい蒸発し、四方弁4、中圧レシーバ5を通り、再び圧縮機3に戻る。この冷媒の循環により、空気熱交換器1が除霜される。この除霜運転の動作は、リバースサイクル(冷房運転)による除霜になる。
 除霜運転時はリバースサイクルになるため、水熱交換器2にとっては冷房運転になる。この場合、空気熱交換器1の周囲大気の低下により水熱交換器2に流入する冷媒温度が低下した場合(マイナス温度になった場合)、あるいは水熱交換器2の水入口温度が10℃以下の場合には、水熱交換器2の水出口温度が0℃以下になる可能性があり、水熱交換器2が凍結するおそれがある。しかし、水熱交換器2の凍結の恐れがあっても、貯湯タンク16の沸き上げの制御をしているシステムコントローラ(図示していない)は、水熱交換器2の凍結の恐れの有無によらず、水ポンプ17を稼働させて水回路15の水を循環させている。そこで、室外機100が凍結防止の制御をおこなう。
(バイパス回路120によるバイパス)
 水熱交換器2の凍結の恐れに対して、制御装置14は、除霜運転の際、バイパス回路120内の電磁弁10と第3膨張弁8とを開き、圧縮機3から吐出された高温高圧の冷媒の一部を、バイパス回路120を介して、中圧レシーバ5と、第1膨張弁6の上流部との間の接続部19にバイパスする。室外機100では、中圧レシーバ5から流出した主冷媒回路110を流れる冷媒21と、バイパス回路120にバイパスした冷媒22とが混合する。混合された冷媒は、第1膨張弁6を経て水熱交換器2に流入する。この混合によって、水熱交換器2を流れる冷媒の温度低下が抑制可能になり、水熱交換器2の凍結を防止できる。
 このとき、水熱交換器2に流れ込む冷媒温度は水熱交換器2を凍結させない温度(例えば20℃以上)に維持できるよう、制御装置14が、温度センサ11c(水入口側)、11d(冷媒入口側)等による検出温度に基づき電磁弁10、第3膨張弁8等の制御を実行する。これについては、後述する。
 このバイパス回路120を用いた除霜運転は、水熱交換器2での熱交換(湯から冷媒への熱の移動)がなされることによって、高効率運転が可能である。さらに、水熱交換器2での熱交換の実施により冷媒状態をガス化できるので、圧縮機3の保護が可能である。
(3.バイパス回路120を用いた除霜運転の動作概要)
 次に、室外機100によるバイパス回路120を用いた除霜運転の制御動作を、図2を参照して説明する。
(温度記号について)
 以下では温度センサによって検出される熱交換器への「冷媒あるいは水」の「流入あるいは流出」の温度を、
 TW(a,out)
などと表す。
 ここに、
 「a」は検出元の温度センサを示し、
 「out」は熱交換器からの流出を示し、
 「in」であれば熱交換器への流入を示す。
 また、「TW」(水熱交換器2)は水温を示し、「TR」(水熱交換器2)び「TL」(空気熱交換器1)は冷媒温度を示す。
 除霜運転時における各温度センサの検出温度は次の様である。
(1)第1温度センサ11aは、水熱交換器2の水出口側に設けられ、水出口温度TW(a,out)を検出する。
(2)第2温度センサ11bは、水熱交換器2の冷媒出口側に設けられ、冷媒出口温度TR(b,out)を検出する。
(3)第3温度センサ11cは、水熱交換器2の水入口側に設けられ、水入口温度TW(c,in)を検出する。
(4)第4温度センサ11dは、水熱交換器2の冷媒入口側に設けられ、冷媒入口温度TR(d,in)を検出する。
 水熱交換器2に関する温度TW(a,out)、温度TW(c,in)、温度TR(b,out)、温度TR(d,in)が低下すると、水熱交換器2が凍結するおそれがある。
 そこで制御装置14は、下記の式(2)かつ式(3)が同時に30秒継続する状態を検出した際に限り、バイパス回路120の第3膨張弁8、電磁弁10を開き、冷媒の一部Grb(例えば全体の循環量Grの30%)をバイパスさせる。式(2)、式(3)はバイパス開始の判定式(凍結判定条件ともいう)である。
 温度TW(a,out)≦3℃・・・(2)
 温度TW(c,in)≦10℃・・・(3)
 バイパス冷媒Grb(冷媒22)に関しては、バイパス量は、第3膨張弁8の開度Pにより決定される。中圧レシーバ5と第1膨張弁6の上流部との間の接続部19にバイパス冷媒Grbを流入させるため、第3膨張弁8がバイパス冷媒Grbを減圧する。すなわち、第3膨張弁8によって、バイパス冷媒Grbは高圧から中圧になる。主冷媒回路110を流れてきた冷媒Gra(冷媒21)は、バイパスされて減圧されたバイパス冷媒Grb(冷媒22)と混合される。混合された冷媒は第1膨張弁6を経て水熱交換器2に流入する。混合された冷媒の水熱交換器2における冷媒入口温度TR(d,in)及び冷媒出口温度TR(b,out)が、
 TR(d,in)≧20℃、かつ、TR(b,out)≧0℃
を満足するように、制御装置14が第3膨張弁8を制御する。この第3膨張弁8は図5の説明で後述する。水熱交換器2にて熱交換実施後、冷媒はガス化され中圧レシーバ5で中圧の冷媒と熱交換し、さらに加熱され、圧縮機3に吸入される。
(4.除霜運転の具体的な動作)
 次に、図4を参照して、室外機100での除霜時の具体的な運転制御動作を説明する。図4は、除霜運転時における制御装置14による制御動作を示すフローチャートである。
 空気熱交換器1の第6温度センサ11fが、上記式(1)(TL(f,in)≦-10℃)を満たす温度TL(f,in)を180秒間検知した際、制御装置14は、除霜運転(リバースサイクル運転)を開始する(S1)。
(凍結判定条件)
 除霜運転を開始してから、制御装置14は、第1温度センサ11a、第3温度センサ11cによって、凍結判定条件(式(2)かつ式(3))が検出された場合、バイパス回路120の電磁弁10、第3膨張弁8を開く(S3,S5)。以下、バイパス回路120を使用する除霜運転をバイパス除霜運転という。すなわち、凍結判定条件は、バイパス除霜運転開始の条件である。凍結判定条件が検出されなければ、制御装置14は、通常の除霜運転を続けながら凍結判定条件の検出を続ける。
 なお、凍結判定条件は、温度TW(a,out)と温度TW(c,in)との両方を用いる場合を説明したが、これは一例である。凍結判定条件は、温度TW(a,out)と温度TW(c,in)とのうち少なくともいずれかを用いればよい。両方を用いることが望ましいのは、もちろんである。
(バイパス回路120)
 従来の除霜運転では、空気熱交換器1(凝縮器)の液冷媒の出口温度TL(out)に関して、
 出口温度TL(out)≧20℃
を満たす出口温度TL(out)が検出された場合には除霜運転は終了され、四方弁4の切り替えにより、再び、通常運転が開始される。
 すなわち従来では、水熱交換器2における凍結のおそれの有無によらず、「出口温度TL(out)≧20℃」が満たされるまで除霜運転が行われた。このため、「出口温度TL(out)≧20℃」が検出される前に水熱交換器2が凍結するおそれがあった。しかし、室外機100では、制御装置14は、図4のフローの右側(S4)のように「出口温度TL(f,out)が20℃以上かどうかを監視しながら、図4のフローの左側のように凍結判定条件の検出(S3)も行う。室外機100では空気熱交換器1(凝縮器)の液冷媒の出口温度TL(out)は温度センサ11fによって検出されるので、「TL(f,out)」と記載した。制御装置14は、「出口温度TL(f,out)≧20℃」が検出される前に凍結判定条件が検出された場合,電磁弁10、第3膨張弁8を開き高温高圧の冷媒をバイパスさせるバイパス除霜運転を実施する。したがって、除霜運転時における水熱交換器2の凍結を防止できる。
(5.バイパス除霜運転の動作)
 図5は、除霜運転時におけるバイパス除霜運転時の制御動作を示すフローチャートである。図5は図4のS5、S6の具体的な内容をS5a~S5gとして示している。
 図5を参照して、室外機100によるバイパス回路120(電磁弁10、第3膨張弁8)の制御動作を説明する。
 制御装置14は、バイパス回路120を作動させるため、電磁弁10、第3膨張弁8を開け、圧縮機3から吐出された高温高圧の冷媒をバイパス回路120にバイパスさせる(S5a,S5b、S5c)。このとき、第3膨張弁8は所定の開度に制御される。制御装置14は、
 TR(b,out)≧0℃、かつ、TR(d,in)≧20℃
の成立を目標として、圧縮機3の運転周波数を制御しつつバイパス回路120に冷媒をバイパスさせる(S5d)。制御装置14は、下記の式(4)または式(5)を検出した場合は、第3膨張弁8の開度を変更(開度を増加)することによって冷媒のバイパス量を増加させ、下記の式(4)、式(5)を満たすように第3膨張弁8をの開度Pを制御する(S5e)。従って、図3に示すように「式(4)または式(5)」の条件は、第3膨張弁8の制御開始の条件である。
 TR(b,out)<0℃・・(4)、または、TR(d,in)<20℃・・・(5)
 「TR(b,out)≧0℃、かつ、TR(d,in)≧20℃」が満たされた場合、制御装置14の制御はS5fに進む。
 なお、第3膨張弁8の開度制御は、温度TR(b,out)と温度TR(d,in)との両方を用いる場合を説明したが、これは一例である。第3膨張弁8の開度制御は、温度TR(b,out)と温度TR(d,in)との少なくともいずれかを用いればよい。両方を用いることが望ましいのは、もちろんである。
 制御装置14は、空気熱交換器1において、「TL(f,out)≧20℃」を目標とする(5f)。
 TL(f,out)<20℃・・・(6)
の場合、制御装置14は、
 TL(f,out)≧20℃
となるように圧縮機周波数を増加させる(S5g)。
 従って、図3に示すように「式(6)」は、圧縮機3の運転周波数制御の条件である。
 S5fにおいて、TL(f,out)≧20℃を検出した場合、制御装置14の処理はS7に進む。
 なお、制御装置14は、S5gにおいて、すなわち、除霜運転における空気熱交換器1の冷媒出口側の冷媒温度である温度TL(f,out)に基づいて、圧縮機3の運転周波数制御を判断する。しかしこれに限ることはなく、制御装置14は、除霜運転における空気熱交換器1の冷媒入口側温度(TL(in))に基づいて、圧縮機3の運転周波数制御を実行してもよい。
 S7において、制御装置14は、バイパス除霜運転の最終確認として、
 TL(f,out)≧20℃・・・(7)
がt秒、継続するかどうかを判定する。図3に示すように「式(7)」は、バイパス除霜運転終了の判定条件である。終了すると判定すると、制御装置14は、電磁弁10、第3膨張弁8を閉じてバイパス回路120をOFFにし(S8)、バイパス除霜運転を終える(S9)。そして、制御装置14は、除霜運転を終了し(S10)、四方弁4を切り替え(S11)、再び、通常運転を開始する(S12)。
(除霜のバックアップ:S5f、S5g)
 以上のように、除霜運転時において、TW(a,out)、TW(c,in)、TR(b,out)、TR(d,in)が低下し、水熱交換器2が凍結するおそれがある場合には、圧縮機3から吐出された高温高圧の冷媒の一部Grbがバイパス回路120にてバイパスされ、水熱交換器2の凍結が防止される。一方、このバイパスのため、空気熱交換器1に付着した霜を溶かすための冷媒量(熱量)が低下し、空気熱交換器1における熱交換量が低下する。そこで、S5f、S5gで説明したように、制御装置14は圧縮機3の運転周波数を増加(S5g)させて冷媒循環量を増加させ、除霜のバックアップを行う。
 制御装置14は、水熱交換器2の凍結判定条件(式(2)、式(3))を検出すると、バイパス除霜運転に移行後(S3)、終了時(S9)まで上記の制御を継続する。
 以上のように、実態の形態1の室外機100では、除霜運転時において、水熱交換器2に流入する湯の温度が低下した場合にはバイパス除霜運転が開始される(図4のS3)。バイパス除霜運転では、圧縮機3から吐出されてバイパスされたバイパス冷媒と、主冷媒回路110から流れてきた冷媒とが混合され、水熱交換器2に流入するので、水熱交換器2を流れる冷媒温度の低下が抑制される。よって、水熱交換器2の凍結が防止できる。また、低外気温により水熱交換器2に流入する冷媒温度が低下した場合には、バイパス除霜運転において、第3膨張弁8の開度が増やされる(図5のS5e)ので、バイパス冷媒量を増加できる。さらには、水熱交換器2との熱交換実施により、除霜運転における高効率化を図ることができる。さらに、水熱交換器2との熱交換実施により圧縮機3に吸入される冷媒の過熱度が確保されるので、圧縮機の保護を向上できる。
 1 空気熱交換器、2 水熱交換器、3 圧縮機、4 四方弁、5 中圧レシーバ、6 第1膨張弁、7 第2膨張弁、8 第3膨張弁、10 電磁弁、11a 第1温度センサ、11b 第2温度センサ、11c 第3温度センサ、11d 第4温度センサ、11e 第5温度センサ、11f 第6温度センサ、12 圧力センサ、14 制御装置、15 水回路、16 貯湯タンク、17 水ポンプ、19 接続部、100 室外機、110 主冷媒回路、120 バイパス回路。

Claims (9)

  1.  水回路を流れる水を加熱する通常運転と、前記通常運転のリバースサイクルとなる除霜運転とを、循環する冷媒を用いて行うヒートポンプ装置において、
     圧縮機の吸入口と吐出口とのそれぞれと配管で接続されると共に冷媒の循環方向を切り替えることで前記通常運転と前記除霜運転とを切り替える四方弁と、
     前記通常運転時に前記水に放熱する放熱器として機能すると共に前記除霜運転時に前記水から吸熱する吸熱器として機能する水熱交換器と、
     前記循環する冷媒を減圧する第1減圧装置と、
     前記通常運転時に前記吸熱器として機能すると共に前記除霜運転時に前記放熱器として機能する空気熱交換器とが、これらの順に配管で接続され、冷媒が循環する主冷媒回路と、
     前記圧縮機の吐出側と、前記第1減圧装置と空気熱交換器との間の箇所である接続部とを接続するバイパス回路であって、前記除霜運転時に前記圧縮機から吐出された冷媒の一部を、前記主冷媒回路からバイパス冷媒として前記接続部に向けてバイパスするバイパス回路と
    を備えたことを特徴とするヒートポンプ装置。
  2.  前記バイパス回路は、
     制御されて開閉することで前記バイパス冷媒のバイパスをオン、オフする電磁弁と、前記電磁弁を通過したバイパス冷媒を減圧するバイパス冷媒減圧装置とが、前記圧縮機の吐出側から前記接続部に向かう途中に配置されたことを特徴とする請求項1記載のヒートポンプ装置。
  3.  前記主冷媒回路は、
     前記第1減圧装置と、空気熱交換器との間の前記配管の途中にレシーバが配置されると共に、前記レシーバと空気熱交換器との間の前記配管の途中に前記循環する冷媒を減圧する第2減圧装置が配置されたことを特徴とする請求項2記載のヒートポンプ装置。
  4.  前記レシーバは、
     前記四方弁から前記圧縮機の吸入口に向かう前記配管の一部が内部を貫通すると共に、前記除霜運転時において、貫通する前記配管の一部を流れる冷媒と前記第2減圧装置から流れ込む冷媒とが熱交換することを特徴とする請求項3記載のヒートポンプ装置。
  5.  前記ヒートポンプ装置は、さらに、
     前記除霜運転時における前記水熱交換器の水入口の水温度TW(in)と水出口の水温度TW(out)との少なくともいずれかに基づいて、前記電磁弁を開く制御を実行する制御装置を備えたことを特徴とする請求項2~4のいずれかに記載のヒートポンプ装置。
  6.  前記バイパス冷媒減圧装置は、
     制御されることによりバイパス冷媒の減圧の度合を調整可能であり、
     前記制御装置は、
     前記除霜運転時において前記電磁弁が開状態の場合に、前記水熱交換器の冷媒入口の冷媒温度TR(in)と冷媒出口の冷媒温度TR(out)との少なくともいずれかに基づいて、前記バイパス冷媒減圧装置の冷媒の減圧の度合を制御することを特徴とする請求項5記載のヒートポンプ装置。
  7.  前記制御装置は、
     前記除霜運転時において前記電磁弁が開状態の場合に、前記空気熱交換器の冷媒入口の冷媒温度TL(in)と冷媒出口の冷媒温度TL(out)との少なくともいずれかに基づいて、前記圧縮機の運転周波数を制御することを特徴とする請求項5または6のいずれかに記載のヒートポンプ装置。
  8.  前記制御装置は、
     前記除霜運転時において前記電磁弁が開状態の場合に、前記空気熱交換器の冷媒入口の冷媒温度TL(in)と冷媒出口の冷媒温度TL(out)との少なくともいずれかに基づいて、前記電磁弁を閉じる制御を実行することを特徴とする請求項5~7のいずれかに記載のヒートポンプ装置。
  9.  水回路を流れる水を加熱する通常運転と、前記通常運転のリバースサイクルとなる除霜運転とを、循環する冷媒を用いて行うヒートポンプ装置が、前記除霜運転時に実行する冷媒バイパス方法において、
     圧縮機の吸入口と吐出口とのそれぞれと配管で接続されると共に冷媒の循環方向を切り替えることで前記通常運転と前記除霜運転とを切り替える四方弁と、
     前記通常運転時に前記水に放熱する放熱器として機能すると共に前記除霜運転時に前記水から吸熱する吸熱器として機能する水熱交換器と、
     前記循環する冷媒を減圧する第1減圧装置と、
     前記通常運転時に前記吸熱器として機能すると共に前記除霜運転時に前記放熱器として機能する空気熱交換器とが、
     これらの順に配管で接続され、冷媒が循環する主冷媒回路の、
     前記圧縮機の吐出側から、前記第1減圧装置と空気熱交換器との間の箇所である接続部に向けて、前記圧縮機から吐出された冷媒の一部を、バイパス冷媒としてバイパスすることを特徴とする冷媒バイパス方法。
PCT/JP2010/050949 2010-01-26 2010-01-26 ヒートポンプ装置及び冷媒バイパス方法 WO2011092802A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10844569.3A EP2530410B1 (en) 2010-01-26 2010-01-26 Heat pump device
JP2011551611A JP5570531B2 (ja) 2010-01-26 2010-01-26 ヒートポンプ装置
PCT/JP2010/050949 WO2011092802A1 (ja) 2010-01-26 2010-01-26 ヒートポンプ装置及び冷媒バイパス方法
US13/521,856 US9709308B2 (en) 2010-01-26 2010-01-26 Heat pump device and refrigerant bypass method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/050949 WO2011092802A1 (ja) 2010-01-26 2010-01-26 ヒートポンプ装置及び冷媒バイパス方法

Publications (1)

Publication Number Publication Date
WO2011092802A1 true WO2011092802A1 (ja) 2011-08-04

Family

ID=44318815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050949 WO2011092802A1 (ja) 2010-01-26 2010-01-26 ヒートポンプ装置及び冷媒バイパス方法

Country Status (4)

Country Link
US (1) US9709308B2 (ja)
EP (1) EP2530410B1 (ja)
JP (1) JP5570531B2 (ja)
WO (1) WO2011092802A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079749A (ja) * 2011-10-03 2013-05-02 Mitsubishi Electric Corp 冷却装置
WO2013088484A1 (ja) * 2011-12-16 2013-06-20 三菱電機株式会社 空気調和装置
JP2014088965A (ja) * 2012-10-29 2014-05-15 Toshiba Carrier Corp 給湯機
WO2014102934A1 (ja) * 2012-12-26 2014-07-03 ダイキン工業株式会社 ヒートポンプ温水暖房機
WO2014175151A1 (ja) * 2013-04-26 2014-10-30 東芝キヤリア株式会社 給湯装置
WO2015198750A1 (ja) * 2014-06-24 2015-12-30 ヤンマー株式会社 ヒートポンプ式チラー
WO2016071977A1 (ja) * 2014-11-05 2016-05-12 三菱電機株式会社 冷凍サイクル装置
JP2016183811A (ja) * 2015-03-26 2016-10-20 株式会社富士通ゼネラル マイクロ流路熱交換器
EP3225939A1 (en) 2016-03-31 2017-10-04 Mitsubishi Electric Corporation Refrigerant cycle with an ejector
EP3382300A1 (en) 2017-03-31 2018-10-03 Mitsubishi Electric R&D Centre Europe B.V. Cycle system for heating and/or cooling and heating and/or cooling operation method
WO2019008742A1 (ja) * 2017-07-07 2019-01-10 三菱電機株式会社 冷凍サイクル装置
JP2021152448A (ja) * 2017-12-27 2021-09-30 株式会社コロナ ヒートポンプ装置
CN114646178A (zh) * 2020-12-17 2022-06-21 青岛海尔生物医疗股份有限公司 一种除霜控制方法及制冷设备
JP2023503192A (ja) * 2020-02-06 2023-01-26 エルジー エレクトロニクス インコーポレイティド 空気調和装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729910B2 (ja) * 2010-03-05 2015-06-03 三菱重工業株式会社 温水ヒートポンプおよびその制御方法
CN102444988B (zh) * 2010-10-15 2015-04-08 艾欧史密斯(中国)热水器有限公司 热水器水路切换控制模块及切换控制方法
WO2014091548A1 (ja) * 2012-12-11 2014-06-19 三菱電機株式会社 空調給湯複合システム
SE537022C2 (sv) * 2012-12-21 2014-12-09 Fläkt Woods AB Förfarande och anordning för avfrostning av en förångare vidett luftbehandlingsaggregat
WO2014106895A1 (ja) * 2013-01-07 2014-07-10 三菱電機株式会社 ヒートポンプシステム
US10393418B2 (en) * 2013-12-25 2019-08-27 Mitsubishi Electric Corporation Air-conditioning apparatus
KR102315152B1 (ko) * 2014-01-08 2021-10-19 트루 매뉴팩쳐링 코., 인크. 각 얼음 제빙기용 가변 동작점 구성 요소
WO2016038830A1 (ja) * 2014-09-12 2016-03-17 パナソニックIpマネジメント株式会社 熱交換装置
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
WO2016059536A1 (en) * 2014-10-13 2016-04-21 Giamblanco Vincenzo A heat pump apparatus with energy recovery
JP2016161256A (ja) * 2015-03-04 2016-09-05 株式会社富士通ゼネラル 空気調和装置
US10345004B1 (en) 2015-09-01 2019-07-09 Climate Master, Inc. Integrated heat pump and water heating circuit
US11365921B2 (en) 2015-09-18 2022-06-21 Carrier Corporation System and method of freeze protection for a chiller
CN105258331B (zh) * 2015-10-30 2017-04-12 广东美的暖通设备有限公司 一种热泵热水机的防冻结控制方法及系统
US10634394B2 (en) 2015-12-18 2020-04-28 Samsung Electronics Co., Ltd. Air conditioner outdoor unit including heat exchange apparatus
JP2017166761A (ja) * 2016-03-17 2017-09-21 パナソニックIpマネジメント株式会社 ヒートポンプ給湯機
US10871314B2 (en) * 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
JP6731865B2 (ja) * 2017-02-06 2020-07-29 日立ジョンソンコントロールズ空調株式会社 空気調和機の室外機、及び空気調和機、並びに空調管理方法
US10935260B2 (en) 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
CN108375253A (zh) * 2018-03-12 2018-08-07 佛山市投纸软件有限公司 一种空调高压过滤器
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
CA3081986A1 (en) 2019-07-15 2021-01-15 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation
CN110736208B (zh) * 2019-09-26 2021-11-23 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
CN110736217B (zh) * 2019-09-27 2021-11-23 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
US11391480B2 (en) * 2019-12-04 2022-07-19 Johnson Controls Tyco IP Holdings LLP Systems and methods for freeze protection of a coil in an HVAC system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189450A (ja) * 1984-10-05 1986-05-07 株式会社日立製作所 空冷ヒ−トポンプ式冷凍サイクル装置
JPS62213654A (ja) * 1986-03-14 1987-09-19 株式会社日立製作所 ヒ−トポンプ式冷凍サイクル
JPS63286676A (ja) 1987-05-18 1988-11-24 三菱電機株式会社 空気調和装置
JP2006153418A (ja) * 2004-10-29 2006-06-15 Daikin Ind Ltd 冷凍装置
JP2009014298A (ja) * 2007-07-06 2009-01-22 Miura Co Ltd 冷凍機およびこれを用いたチラー
JP2009041860A (ja) 2007-08-09 2009-02-26 Toshiba Carrier Corp ヒートポンプ給湯装置の制御方法
JP2009243793A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp ヒートポンプ式給湯用室外機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162161A (ja) 1984-02-01 1985-08-23 松下電器産業株式会社 ヒ−トポンプ式冷暖房装置
JPS61191828A (ja) * 1985-02-21 1986-08-26 Matsushita Electric Ind Co Ltd 太陽熱利用給湯装置
JPS62255762A (ja) * 1986-04-30 1987-11-07 株式会社日立製作所 空気調和機
JPH0799297B2 (ja) 1986-06-25 1995-10-25 株式会社日立製作所 空気調和機
JPH0686958B2 (ja) * 1986-10-20 1994-11-02 松下電器産業株式会社 太陽熱利用給湯装置
JPS63213752A (ja) * 1987-03-03 1988-09-06 Matsushita Electric Ind Co Ltd 太陽熱利用給湯装置
JP3504455B2 (ja) * 1997-02-27 2004-03-08 三菱電機株式会社 空気調和機
JP3888403B2 (ja) * 1997-12-18 2007-03-07 株式会社富士通ゼネラル 空気調和機の制御方法およびその装置
JP2000274892A (ja) 1999-03-19 2000-10-06 Fujitsu General Ltd 空気調和機
JP3932913B2 (ja) 2002-01-29 2007-06-20 ダイキン工業株式会社 ヒートポンプ式給湯機
WO2006103815A1 (ja) * 2005-03-28 2006-10-05 Toshiba Carrier Corporation 給湯機
US20070240870A1 (en) * 2006-04-18 2007-10-18 Daytona Control Co., Ltd. Temperature control apparatus
JP4738293B2 (ja) 2006-09-13 2011-08-03 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ給湯機
JP4812606B2 (ja) * 2006-11-30 2011-11-09 三菱電機株式会社 空気調和装置
JP4974714B2 (ja) 2007-03-09 2012-07-11 三菱電機株式会社 給湯器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189450A (ja) * 1984-10-05 1986-05-07 株式会社日立製作所 空冷ヒ−トポンプ式冷凍サイクル装置
JPS62213654A (ja) * 1986-03-14 1987-09-19 株式会社日立製作所 ヒ−トポンプ式冷凍サイクル
JPS63286676A (ja) 1987-05-18 1988-11-24 三菱電機株式会社 空気調和装置
JP2006153418A (ja) * 2004-10-29 2006-06-15 Daikin Ind Ltd 冷凍装置
JP2009014298A (ja) * 2007-07-06 2009-01-22 Miura Co Ltd 冷凍機およびこれを用いたチラー
JP2009041860A (ja) 2007-08-09 2009-02-26 Toshiba Carrier Corp ヒートポンプ給湯装置の制御方法
JP2009243793A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp ヒートポンプ式給湯用室外機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530410A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079749A (ja) * 2011-10-03 2013-05-02 Mitsubishi Electric Corp 冷却装置
WO2013088484A1 (ja) * 2011-12-16 2013-06-20 三菱電機株式会社 空気調和装置
CN103874892A (zh) * 2011-12-16 2014-06-18 三菱电机株式会社 空气调节装置
JPWO2013088484A1 (ja) * 2011-12-16 2015-04-27 三菱電機株式会社 空気調和装置
EP2792968A4 (en) * 2011-12-16 2015-08-12 Mitsubishi Electric Corp AIR CONDITIONING
US9829224B2 (en) 2011-12-16 2017-11-28 Mitsubishi Electric Corporation Air-conditioning apparatus
CN103874892B (zh) * 2011-12-16 2016-02-03 三菱电机株式会社 空气调节装置
JP2014088965A (ja) * 2012-10-29 2014-05-15 Toshiba Carrier Corp 給湯機
EP2725305A3 (en) * 2012-10-29 2018-03-21 Toshiba Carrier Corporation Hot-Water Supply Apparatus And Control Method Of The Same
WO2014102934A1 (ja) * 2012-12-26 2014-07-03 ダイキン工業株式会社 ヒートポンプ温水暖房機
JPWO2014102934A1 (ja) * 2012-12-26 2017-01-12 ダイキン工業株式会社 ヒートポンプ温水暖房機
JP5977885B2 (ja) * 2013-04-26 2016-08-24 東芝キヤリア株式会社 給湯装置
WO2014175151A1 (ja) * 2013-04-26 2014-10-30 東芝キヤリア株式会社 給湯装置
JP2016008771A (ja) * 2014-06-24 2016-01-18 ヤンマー株式会社 ヒートポンプ式チラー
WO2015198750A1 (ja) * 2014-06-24 2015-12-30 ヤンマー株式会社 ヒートポンプ式チラー
WO2016071977A1 (ja) * 2014-11-05 2016-05-12 三菱電機株式会社 冷凍サイクル装置
JP2016183811A (ja) * 2015-03-26 2016-10-20 株式会社富士通ゼネラル マイクロ流路熱交換器
EP3225939A1 (en) 2016-03-31 2017-10-04 Mitsubishi Electric Corporation Refrigerant cycle with an ejector
EP3382300A1 (en) 2017-03-31 2018-10-03 Mitsubishi Electric R&D Centre Europe B.V. Cycle system for heating and/or cooling and heating and/or cooling operation method
WO2019008742A1 (ja) * 2017-07-07 2019-01-10 三菱電機株式会社 冷凍サイクル装置
JPWO2019008742A1 (ja) * 2017-07-07 2020-05-21 三菱電機株式会社 冷凍サイクル装置
JP2021152448A (ja) * 2017-12-27 2021-09-30 株式会社コロナ ヒートポンプ装置
JP7074915B2 (ja) 2017-12-27 2022-05-24 株式会社コロナ ヒートポンプ装置
JP2023503192A (ja) * 2020-02-06 2023-01-26 エルジー エレクトロニクス インコーポレイティド 空気調和装置
CN114646178A (zh) * 2020-12-17 2022-06-21 青岛海尔生物医疗股份有限公司 一种除霜控制方法及制冷设备
CN114646178B (zh) * 2020-12-17 2023-09-15 青岛海尔生物医疗股份有限公司 一种除霜控制方法及制冷设备

Also Published As

Publication number Publication date
EP2530410A4 (en) 2016-03-09
US20120291460A1 (en) 2012-11-22
JPWO2011092802A1 (ja) 2013-05-30
US9709308B2 (en) 2017-07-18
JP5570531B2 (ja) 2014-08-13
EP2530410B1 (en) 2018-05-30
EP2530410A1 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2011092802A1 (ja) ヒートポンプ装置及び冷媒バイパス方法
JP4974714B2 (ja) 給湯器
JP5265010B2 (ja) ヒートポンプ装置
US9316421B2 (en) Air-conditioning apparatus including unit for increasing heating capacity
JP5427428B2 (ja) ヒートポンプ式給湯・空調装置
CN102753900B (zh) 空调装置
EP2420767B1 (en) Heat-pump hot water supply and air conditioning apparatus
JP5992088B2 (ja) 空気調和装置
KR20110130813A (ko) 히트펌프 연동 급탕장치
JP2011127792A (ja) 空気熱源ヒートポンプ給湯・空調装置
JP5404761B2 (ja) 冷凍装置
WO2014049673A1 (ja) 空調給湯複合システム
GB2566381A (en) Refrigeration cycle system
JP2011179697A (ja) 冷凍サイクル装置および冷温水装置
JP4304832B2 (ja) 空気調和装置
JP2015064169A (ja) 温水生成装置
EP2918921B1 (en) Hot water generator
JP5333507B2 (ja) ヒートポンプ給湯装置
JP5769684B2 (ja) ヒートポンプ装置
JP2011174662A (ja) 空気熱源ヒートポンプ給湯・空調装置
JP5773897B2 (ja) ヒートポンプシステム及びヒートポンプシステムの制御方法
JP2018080899A (ja) 冷凍装置
JP2018036002A (ja) 空調給湯システム
JP2011075207A (ja) 空気調和機
JP2010281544A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844569

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551611

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13521856

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010844569

Country of ref document: EP